
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Christof Voemel

SANS Intrusion Detection Practical - SANS Parliament Square 2001

GCIA Practical Assignment Version 3.0

September 7, 2001

Outline:

Assignment 1 - Describe the State of Intrusion Detection:
Chronicles of the birth of LaBrea - History is happening right now

References (for assignment 1)

Assignment 2 - Network Detects
Network Detect #1 - Scan for DNS servers
Network Detect #2 - Unicode vulnerability scan or IDS test?
Network Detect #3 - Portmap scan with immediately following attack attempt
Network Detect #4 - Large Pings for MTU discovery
Network Detect #5 - Scan for compromised systems on TCP port 24452

Assignment 3 - "Analyze This" Scenario

References (for assignments 2 and 3)

Appendix:
Samples from the data files for assignment 3
A script for snort log file parsing: process_scanalert.pl

Assignment 1 - Describe the State of Intrusion Detection:

Chronicles of the birth of LaBrea - History is happening right now

Abstract
A common practice of network defense is to set up honeypots in order
to study the behavior of attackers, see for example the
Honeynet Project at http://project.honeynet.org/
We describe in this essay the evolution of a complimentary technique
represented by the "LaBrea" software for Linux. LaBrea is designed as
a lightweight tool against automated scans and worm propagation,
intended to slow down an attacker by tricking him first into connections
with non-existent machines that are afterwards dropped without reset.
Thus, the attacker will continue to send data never being acknowledged
until the connection times out. LaBrea can be a valuable tool for an
intrusion analyst monitoring a network as it potentially slows down the
attacker and increases the time for reaction.
LaBrea, version 1.6 of August 28, is free under the GNU license and
available from http://www.threenorth.com/LaBrea/

Essay
In July 2001, we see the powerful "Code Red" worm spreading over the internet
exploiting a vulnerability in the Microsoft IIS 4.0/5.0 web server software.
For a summary of Code Red, we refer to
http://www.incidents.org/react/code_red.php
Characteristic for all variants of the worm is that once a system is
infected, it starts scanning other systems on TCP port 80 to infect them, too.

As a reaction to the worm spread, Tom Liston proposes on July 31, 2001
to the readers of the Incidents.org Intrusions Mail list
to install a sort of "decoy systems" to occupy the worm and slow it down.
http://www.incidents.org/archives/intrusions/msg01215.html
He points out that unused IP addresses could host these decoy systems
which should be doing nothing else but waiting for the worm to try

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

to connect to their TCP port 80. Once a TCP SYN is received on port 80,
the decoy host replies with a SYN/ACK and sets at the same time the
Maximum Segment Size (MSS) for the connection to a small value.
(The TCP MSS value specifies the maximum amount of TCP data in a single IP
datagram that the local system can accept.) The infected
system would now start to send the exploit code in small packets to the
decoy host, but the decoy host is programmed to acknowledge only the initial
SYN and none of the following packets.
This causes the TCP connection to time out after a fair amount of time,
keeping the infected machine occupied and slowing down the spread of the worm.
Furthermore, it wouldn't be necessary to really have a physical host on
each unused IP number, it would be sufficient to use a generalized
Network Address Translation to route all traffic to e.g. a single host
impersonating all the decoys.

After some initial discussions, Mihnea Stoenescu announces two days later
that she has successfully tried the concept, see
http://www.incidents.org/archives/intrusions/msg01239.html
"For a few hours I've been teergrubing CodeReds via three-way handshake on
behalf of an entire C-block, by using only one host. At a rate of 6 hosts
per minute hitting my block, I'm consuming circa 15 minutes of effective
attack time every minute. A lot of hosts can be scanned in 15 minutes."

This is the start of the development of what is now known as LaBrea.
Only one day later, on August 3, Tom Liston, announces the release
of CodeRedneck, a test code to bottleneck CodeRed scans. At the same time,
he publishes two sample traces of bottlenecked connections, the first
one timing out after 101.77, the second one after 93.60 seconds, compared
to "normally [...] 10 seconds or less for someone to scan a Class C subnet
(254 addresses)", see
http://www.incidents.org/archives/intrusions/msg01262.html
You can feel the joy of having discovered something new in his following
post, only roughly two and a half hours after having announced CodeRedneck.
This time, his traces show the 24 minutes-"teergrubbing" of a scanner trying
to launch an exploit against portmapper on TCP port 111
http://www.incidents.org/archives/intrusions/msg01259.html

We show part of these traces here for illustration
Aug 3 16:58:41 ns CodeRedneck: Teergrubing: 203.161.230.82 4138 ->
my.local.ip.addr 111
Aug 3 16:58:41 ns CodeRedneck: Activity: 203.161.230.82 4138 ->
my.local.ip.addr 111
Aug 3 17:20:20 ns CodeRedneck: Activity: 203.161.230.82 4138 ->
my.local.ip.addr 111
[...]
Aug 3 17:22:20 ns CodeRedneck: Activity: 203.161.230.82 4138 ->
my.local.ip.addr 111 *

On August 8, the first version of LaBrea, "la brea" (Spanish) = the tar,
is announced: http://www.incidents.org/archives/intrusions/msg01368.html
Bundling essentially the functionality of CodeRedneck on a Linux boot disk,
this initial version of LaBrea can be used to start a small runtime
environment for an improved version of CodeRedneck on a machine with minimal
hardware requirements.
After configuration, the machine is IP-aliasing itself to all the
previously unused IP numbers that shall be used as tarpits. While in reality
dropping all inbound TCP connections (without sending the graceful "RST"),
it teergrubs all connection attempts on every port to the tarpit machines,
extending the capabilities of the original CodeRedneck. Another difference
to the initial code is that LaBrea now uses TCP windows advertising
in order to reduce the incoming data stream to minimal 10 bytes.

During the following two days, a number of people evaluate the new tool
and post their experiences to the Incidents.org Intrusions Mail list.
The most important post for the further development of LaBrea comes
from Micropterus Salmoides asking how to use LaBrea effectively

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

for a whole x.x.x.x/16 subnet.
http://www.incidents.org/archives/intrusions/msg01380.html

The difficulties in solving this problem are associated to routing
packets to the tarpits on the LAN. In the initial design, the
LaBrea host acted as a gateway to the "virtual tarpits", however,
doing this for a whole subnet would exceed the capabilities of the
lightweight machine for which LaBrea is intended.
This is illustrated in the reply given by Tom Liston
http://www.incidents.org/archives/intrusions/msg01386.html
"...unless you have something sitting behind the router answering ARP
requests for an IP, it'll either deep-six the packet, or it'll reply with an
ICMP unreachable. What LaBrea does is use IP aliasing to create
"virtual machines" sitting on the IP addresses that you specify. [...]
I don't think a machine will handle that many aliases."

Only half an hour later, Tom Liston comes up with a solution to the
problem: The capabilities of LaBrea have to be extended such that not
only the IP addresses of non-existent hosts are spoofed but also
their ARP replies!
http://www.incidents.org/archives/intrusions/msg01388.html
"Here's the deal: Via libpcap and libnet, it appears that the next step for
LaBrea is possible. I should be able to write something that monitors arp
who-has requests, fires back an arp is-at, still DROPs all the inbound packets
and fires back a SYN/ACK. All based on a BPF filter... That means we can
handle "Big Honkin' Chunks o' IP space!" (TM)"

While Tom Liston is working on the extension of LaBrea to ARP spoofing,
Donald Smith reviews the source code and suggests substantial design
modifications improving both memory consumption and performance.
The first modification concerns LaBrea's random number
generator that is used to generate random IP id numbers and random
TCP sequence numbers for the SYN/ACK reply to the SYN scanner.
Donald argues that random number generation is computationally expensive and
therefore too slow. The second modification concerns the snaplenght of the
link layer interface that is shortened from 64KB packet inspection to 1500B
(standard Ethernet size).
The proposal for these modifications can be seen at
http://www.incidents.org/archives/intrusions/msg01408.html
and its acknowledgment by Tom Liston at
http://www.incidents.org/archives/intrusions/msg01413.html
(We remark that, while random number generation is at that time omitted
because of the cost argument, it is re-introduced in a clever way in
version 1.5 of LaBrea: random numbers are pre-generated and pulled from a
list when needed, see http://www.threenorth.com/LaBrea/)

On August 15, Tom Liston announces the beta release of the new LaBrea,
incorporating also ARP reply spoofing, see
http://www.incidents.org/archives/intrusions/msg01453.html
and finally one week later the full release as independent stand-alone
program for compilation and execution under windows
http://www.incidents.org/archives/intrusions/msg01505.html
The final release has the additional feature of not only covering
TCP SYN scans but also ICMP echo requests, making the false decoy hosts
"ping"-able.

Here ends, currently, the evolution of LaBrea. Its importance as a tool
for the intrusion analyst is clearly stated by Forrest Whitcher
http://www.incidents.org/archives/intrusions/msg01567.html
"I expect that this tool could be deployed in strategic places about
the 'net to lengthen the odds / increase the attack cost at little
expense to the defenders."
It is ideal if an analyst monitoring a network can rely on automated
defenses slowing down the attacker and giving the analyst more time
for reaction.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Personally, I think that the concept of LaBrea is very promising
and will certainly evolve. With respect to Nmap fingerprinting, it is clearly
possible to design virtual tarpits impersonating not any, but a specific
machine with a specific operating system, thus representing "virtual
honeypots". On the other hand, it is also clear that scanning techniques will
be adapted to recognize the simple "connection choking" performed by LaBrea.
A possible extension to LaBrea could for example incorporate
random selective acknowledging of packets while still dropping the connection.
It will be exciting to follow the further development of the "tar pit",
history is happening right now!

Disclaimer:
In this short chronicle, I try to describe the exciting evolution of LaBrea
as I could follow it by reading the posts to the Incidents.org
Intrusions Mail list. I have tried my best to give credit to the
contributions of everybody involved and apologize if I missed somebody's
achievements.

References (for assignment 1)

LaBrea, version 1.6 of August 28, is available from
http://www.threenorth.com/LaBrea/

http://project.honeynet.org/

http://www.nmap.org/

http://www.incidents.org/react/code_red.php

http://www.threenorth.com/LaBrea/

http://www.incidents.org/archives/intrusions/msg01215.html
Date: Tue, 31 Jul 2001 08:47:06 -0500
From: "Tom Liston" <tliston@xxxxxxxxxxx>
Subject: Can we make life difficult for Code Red?

http://www.incidents.org/archives/intrusions/msg01239.html
Date: Thu, 2 Aug 2001 04:20:32 +0300 (EEST)
From: Mihnea Stoenescu <mihnea@xxxxx>
Subject: RE: Can we make life difficult for Code Red?

http://www.incidents.org/archives/intrusions/msg01262.html
Date: Fri, 3 Aug 2001 14:53:20 -0500
From: "Tom Liston" <tliston@xxxxxxxxxxx>
Subject: Yes, we CAN make life difficult for Code Red (and a whole lot more...)

http://www.incidents.org/archives/intrusions/msg01259.html
Date: Fri, 3 Aug 2001 17:36:07 -0500
From: "Tom Liston" <tliston@xxxxxxxxxxx>
Subject: CodeRedneck

http://www.incidents.org/archives/intrusions/msg01368.html
Date: Wed, 8 Aug 2001 15:06:16 -0500
From: "Tom Liston" <tliston@xxxxxxxxxxx>
Subject: New tool: LaBrea

http://www.incidents.org/archives/intrusions/msg01380.html
Date: Thu, 09 Aug 2001 09:04:36 -0400
From: "Micropterus Salmoides" <micro_salmoides@xxxxxxxxxxx>
Subject: RE: New tool: LaBrea

http://www.incidents.org/archives/intrusions/msg01386.html
Date: Thu, 9 Aug 2001 09:49:17 -0500
From: "Tom Liston" <tliston@xxxxxxxxxxx>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Subject: RE: New tool: LaBrea

http://www.incidents.org/archives/intrusions/msg01388.html
Date: Thu, 9 Aug 2001 10:19:27 -0500
From: "Tom Liston" <tliston@xxxxxxxxxxx>
Subject: RE: New tool: LaBrea

http://www.incidents.org/archives/intrusions/msg01408.html
Date: Fri, 10 Aug 2001 10:05:24 -0600
From: "Smith, Donald " <Donald.Smith@xxxxxxxxx>
Subject: RE: My tribulations with the new tool: LaBrea

http://www.incidents.org/archives/intrusions/msg01413.html
Date: Fri, 10 Aug 2001 15:38:03 -0500
From: "Tom Liston" <tliston@xxxxxxxxxxx>
Subject: LaBrea - Update

http://www.incidents.org/archives/intrusions/msg01453.html
Date: Wed, 15 Aug 2001 14:36:35 -0500
From: "Tom Liston" <tliston@xxxxxxxxxxx>
Subject: Son of a tarpit! A new LaBrea! Beta testers wanted.

http://www.incidents.org/archives/intrusions/msg01505.html
Date: Wed, 22 Aug 2001 13:58:38 -0500
From: "Tom Liston" <tliston@xxxxxxxxxxx>
Subject: Announcement: The NEW LaBrea - *SON OF A TARPIT*

http://www.incidents.org/archives/intrusions/msg01544.html
Date: Tue, 28 Aug 2001 09:45:32 -0500
From: "Tom Liston" <tliston@xxxxxxxxxxx>
Subject: Livin' la Vida LaBrea...

http://www.incidents.org/archives/intrusions/msg01567.html
Date: Wed, 29 Aug 2001 22:55:41 -0400
From: forrest whitcher <fw@xxxxxxxxxxxxx>
Subject: Re: Livin' la Vida LaBrea... Too bad CodeRed doesn't speak IPv6?

Introductory remarks to assignments 2 and 3
--
For the assignments 2 and 3, I have used the following lists of frequently
seen port numbers:
http://www.iana.org/assignments/port-numbers
http://advice.networkice.com/advice/Exploits/Ports/default.htm
http://www.satx.rr.com/support/security/computer_ports.html
Whois lookups have been done with
http://www.arin.net/whois/index.html
The list of Common Vulnerabilities and Exposures is taken from
http://www.cve.mitre.org/cve/
As a web search engine, I used
http://www.google.com
Other references are given in the text and summarized at the end of the
report.

Assignment 2 - Network Detects

Network Detect #1 - Scan for DNS servers

[**] IDS7/misc_SourcePortTraffic-53-tcp [**]
07/10-09:51:13.280591 type:0x800 len:0x3C
198.87.182.135:53 -> good.guy.xxx.xxx:53 TCP TTL:244 TOS:0x0 ID:39444
IpLen:20 DgmLen:40
******S* Seq: 0x726CB93E Ack: 0xE35B332 Win: 0x28 TcpLen: 20
0x0000: 00 20 AF DC D7 D8 00 60 09 C4 16 7A 08 00 45 00 `...z..E.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0x0010: 00 28 9A 14 00 00 F4 06 37 84 C6 57 B6 87 C7 4C .(......7..W...L
0x0020: B1 0B 00 35 00 35 72 6C B9 3E 0E 35 B3 32 50 02 ...5.5rl.>.5.2P.
0x0030: 00 28 CD 06 00 00 1E 60 FF 6C D3 73 .(.....`.l.s

=+

[**] IDS7/misc_SourcePortTraffic-53-tcp [**]
07/10-09:51:13.283591 type:0x800 len:0x3C
198.87.182.135:53 -> good.guy.xxx.xxx:53 TCP TTL:243 TOS:0x0 ID:39444
IpLen:20 DgmLen:40
******S* Seq: 0x726CB93E Ack: 0xE35B332 Win: 0x28 TcpLen: 20
0x0000: 00 A0 24 14 AF F0 00 60 09 C4 16 7A 08 00 45 00 ..$....`...z..E.
0x0010: 00 28 9A 14 00 00 F3 06 38 7A C6 57 B6 87 C7 4C .(......8z.W...L
0x0020: B1 15 00 35 00 35 72 6C B9 3E 0E 35 B3 32 50 02 ...5.5rl.>.5.2P.
0x0030: 00 28 CC FC 00 00 8B B8 6E B3 7D 22 .(......n.}"

=+

[**] IDS7/misc_SourcePortTraffic-53-tcp [**]
07/10-09:51:13.285192 type:0x800 len:0x3C
198.87.182.135:53 -> good.guy.xx.xxx:53 TCP TTL:243 TOS:0x0 ID:39444
IpLen:20 DgmLen:40
******S* Seq: 0x726CB93E Ack: 0xE35B332 Win: 0x28 TcpLen: 20
0x0000: 00 C0 4F 20 9B 00 00 60 09 C4 16 7A 08 00 45 00 ..O...`...z..E.
0x0010: 00 28 9A 14 00 00 F3 06 38 77 C6 57 B6 87 C7 4C .(......8w.W...L
0x0020: B1 18 00 35 00 35 72 6C B9 3E 0E 35 B3 32 50 02 ...5.5rl.>.5.2P.
0x0030: 00 28 CC F9 00 00 1E 60 FF 6C D3 73 .(.....`.l.s

=+

[**] IDS7/misc_SourcePortTraffic-53-tcp [**]
07/10-09:51:13.285459 type:0x800 len:0x3C
198.87.182.135:53 -> good.guy.xx.xxx:53 TCP TTL:243 TOS:0x0 ID:39444
IpLen:20 DgmLen:40
******S* Seq: 0x726CB93E Ack: 0xE35B332 Win: 0x28 TcpLen: 20
0x0000: 00 A0 24 05 EB 8B 00 60 09 C4 16 7A 08 00 45 00 ..$....`...z..E.
0x0010: 00 28 9A 14 00 00 F3 06 38 76 C6 57 B6 87 C7 4C .(......8v.W...L
0x0020: B1 19 00 35 00 35 72 6C B9 3E 0E 35 B3 32 50 02 ...5.5rl.>.5.2P.
0x0030: 00 28 CC F8 00 00 7D 2A 40 3D 7D 2A .(....}*@=}*

=+

[**] IDS7/misc_SourcePortTraffic-53-tcp [**]
07/10-09:51:13.286057type:0x800 len:0x3C
198.87.182.135:53 -> good.guy.xxx.xxx:53 TCP TTL:243 TOS:0x0 ID:39444
IpLen:20 DgmLen:40
******S* Seq: 0x726CB93E Ack: 0xE35B332 Win: 0x28 TcpLen: 20
0x0000: 00 60 6E 3B 08 93 00 60 09 C4 16 7A 08 00 45 00 .`n;...`...z..E.
0x0010: 00 28 9A 14 00 00 F3 06 38 73 C6 57 B6 87 C7 4C .(......8s.W...L
0x0020: B1 1C 00 35 00 35 72 6C B9 3E 0E 35 B3 32 50 02 ...5.5rl.>.5.2P.
0x0030: 00 28 CC F5 00 00 7A B1 54 48 92 C0 .(....z.TH..

=+
(...snip, not all traces shown, cf. the URL for the source of the trace)

1. Source of Trace.
This trace was obtained from the incidents.org archive page
http://www.incidents.org/archives/intrusions/msg01017.html
Date of posting: Tue, 10 Jul 2001 16:10:33 -0500
From: "Rich Phelps"
Subject: INCIDENT

2. Detect was generated by:
Snort IDS

3. Probability the source address was spoofed:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Although the IP destination addresses are (somehow poorly)
sanitized, this is clearly a scan and not a DoS.
We can see this either from the different MAC destination addresses
packet 1: 00 20 AF DC D7 D8, packet 2: 00 A0 24 14 AF F0, etc...
or from the IP destination address in hex format
packet 1: C7 4C B1 0B, packet 2: C7 4C B1 15, etc...
Since the scanner wants a response, his source address is not spoofed.

4. Description of attack:
We see a scan for TCP port 53 (0x35) with crafted packets.
We look at first at the IP headers
packet 1: 4500 0028 9A14 0000 F406 3784 C657 B687 C74C B10B
packet 2: 4500 0028 9A14 0000 F306 387A C657 B687 C74C B115
packet 3: 4500 0028 9A14 0000 F306 3877 C657 B687 C74C B118
etc...
We see clear indications of packet craft, all packets have the
same identification 0x9814, also the TTL is suspiciously high,
probably initially set to 255 by the sender.
Looking further at the TCP content, we see more such indications:
packet 1: 0035 0035 726C B93E 0E35 B332 5002 0028 CD06 0000 1E60 FF6C D373
packet 2: 0035 0035 726C B93E 0E35 B332 5002 0028 CCFC 0000 8BB8 6EB3 7D22
packet 3: 0035 0035 726C B93E 0E35 B332 5002 0028 CCF9 0000 1E60 FF6C D373
etc...
We see that all packets have the same sequence number 0x726C B93E
and also the same acknowledgment number 0x0E35 B332. The TCP window
size is always advertised as 0x28. The TCP header length
is said to be 20 octets, and from the IP headers we see that the total length
of the packet should be 0x28=40 octets. However, we see that the actual
TCP payload has a size of 26 octets!
This attack signature can be related to the "synscan 2.0" tool, see the URLs
given as correlations.

5. Attack mechanism:
The attacker is scanning for DNS servers for a later targeted exploit.
The Berkeley Internet Name Domain (BIND) package is the most widely used
implementation of Domain Name Service (DNS) and infamous for its history
of vulnerabilities discovered over the years.
At the time of writing this report, BIND vulnerabilities were ranking as
number one threat in the SANS Top Ten, with the recently
discovered vulnerabilities CVE-1999-0833 and CVE-1999-0009, see
http://www.sans.org/topten.htm

6. Correlations:
At the incidents.org archive page, see
http://www.incidents.org/archives/intrusions/msg00980.html
Date: Thu, 5 Jul 2001 17:36:10 -0600
From: "Smith, Donald "
Subject: synscan 2.0
and
http://www.incidents.org/archives/intrusions/msg01020.html
Date: Tue, 10 Jul 2001 17:17:35 -0600
From: "Smith, Donald "
Subject: RE: INCIDENT

7. Evidence of active targeting:
This is clearly a scan targeted at the subnet C7.4C.B1.* = 199.76.177.*
The 'oversized' TCP payload indicates that an immediate exploit attempt
could follow, once a DNS server has been detected.

8. Severity:
Criticality: 5 (DNS server is key element of the network infra structure)
Lethality: 5 (root compromise possible)
System Countermeasures: (I don't have enough details about the system,
but I assume, the poster has applied all BIND patches before posting
to incidents.org.)

Network counter measures: 4 (I don't have enough details about the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

firewall, however, IDS logging with full packet capturing is in place.)
This gives a severity of 2.

9. Defensive recommendation:
Extensive recommendations are given at the SANS page
http://www.sans.org/topten.htm
Most important is to upgrade to the latest version of BIND and
to employ all patches. Most notably, new BIND versions can and should
be run as a non-privileged user.

10. Multiple choice test question:
Printed below is the hex-content of a TCP packet.
Which of the following characteristics indicates packet craft?
Exhibit:
4500 0028 9A14 0000 F406 3784 C657 B687
C74C B10B 0035 0035 726C B93E 0E35 B332
5002 0028 CD06 0000 1E60 FF6C D373

a)The protocol 0x06.
b)The combination of source port 0x35 and destination port 0x35.
c)The total length of the IP datagram 0x28.
d)The IP Type Of Service (TOS) value of 0x0.
C
Answer: C
The dumped IP datagram has actually a total length of 46 octets and
not 40 as stated.

Network Detect #2 - Unicode vulnerability scan or IDS test?

[**] [102:1:1] spp_http_decode: ISS Unicode attack detected [**]
09/05-02:40:54.291297 0:0:C:46:5C:D1 -> 0:E0:1E:8E:31:71 type:0x800 len:0x7D
61.183.107.135:1431 -> 130.216.191.21:80 TCP TTL:42 TOS:0x0 ID:4237
IpLen:20 DgmLen:111 DF
AP Seq: 0xBD132FF5 Ack: 0x4EA173B2 Win: 0x5A00 TcpLen: 32
TCP Options (3) => NOP NOP TS: 13064 745178560 [Snort log]

[**] [102:1:1] spp_http_decode: ISS Unicode attack detected [**]
09/05-02:40:54.314890 0:0:C:46:5C:D1 -> 0:E0:1E:8E:31:71 type:0x800 len:0x7D
61.183.107.135:1435 -> 130.216.191.25:80 TCP TTL:42 TOS:0x0 ID:4239
IpLen:20 DgmLen:111 DF
AP Seq: 0xBD1647BA Ack: 0x1F69FE01 Win: 0x5A00 TcpLen: 32
TCP Options (3) => NOP NOP TS: 13065 14788526 [Snort log]

[**] [102:1:1] spp_http_decode: ISS Unicode attack detected [**]
09/05-02:40:54.333607 0:0:C:46:5C:D1 -> 0:E0:1E:8E:31:71 type:0x800 len:0x71
61.183.107.135:1448 -> 130.216.191.38:80 TCP TTL:42 TOS:0x0 ID:4241
IpLen:20 DgmLen:99 DF
AP Seq: 0xBD202F05 Ack: 0x6EEAE331 Win: 0x5A00 TcpLen: 20 [Snort log]

[**] [102:1:1] spp_http_decode: ISS Unicode attack detected [**]
09/05-02:40:54.550329 0:0:C:46:5C:D1 -> 0:E0:1E:8E:31:71 type:0x800 len:0x7D
61.183.107.135:1455 -> 130.216.191.45:80 TCP TTL:42 TOS:0x0 ID:4248
IpLen:20 DgmLen:111 DF
AP Seq: 0xBD257B1D Ack: 0xE72BA754 Win: 0x5A00 TcpLen: 32
TCP Options (3) => NOP NOP TS: 13067 256051526 [Snort log]

[**] [102:1:1] spp_http_decode: ISS Unicode attack detected [**]
09/05-02:40:54.573106 0:0:C:46:5C:D1 -> 0:E0:1E:8E:31:71 type:0x800 len:0x7D
61.183.107.135:1460 -> 130.216.191.50:80 TCP TTL:42 TOS:0x0 ID:4250
IpLen:20 DgmLen:111 DF
AP Seq: 0xBD299491 Ack: 0xB5A7F0FC Win: 0x5A00 TcpLen: 32
TCP Options (3) => NOP NOP TS: 13067 0 [Snort log]

packet dump:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[**] spp_http_decode: ISS Unicode attack detected [**]
09/05-02:40:54.333607 0:0:C:46:5C:D1 -> 0:E0:1E:8E:31:71 type:0x800 len:0x71
61.183.107.135:1448 -> 130.216.191.38:80 TCP TTL:42 TOS:0x0 ID:4241
IpLen:20 DgmLen:99 DF
AP Seq: 0xBD202F05 Ack: 0x6EEAE331 Win: 0x5A00 TcpLen: 20
47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%
63 31 25 31 63 2E 2E 2F 77 69 6E 6E 74 2F 73 79 c1%1c../winnt/sy
73 74 65 6D 33 32 2F 63 6D 64 2E 65 78 65 20 48 stem32/cmd.exe H
54 54 50 2F 31 2E 30 0D 0A 0D 0A TTP/1.0....

1. Source of Trace.
http://www.incidents.org/archives/intrusions/msg01621.html
Date: Wed, 5 Sep 2001 09:03:24 +1200 (NZST)
From: Russell Fulton <r.fulton@xxxxxxxxxxxxxx>
Subject: Exploit attempt from

2. Detect was generated by:
Snort plugin spp_http_decode

3. Probability the source address was spoofed:
Http works over TCP port 80, thus a 3-way handshake is established
and the source address cannot be spoofed.

4. Description of attack:
We see a scan of servers on TCP port 80 associated to http.
The snort alert refers to a flaw in the Microsoft IIS Unicode translation
described by the Internet Security Systems (ISS) at
http://xforce.iss.net/alerts/advise68.php
Unicode is a standard providing a identifiers for every character in
every language to facilitate uniform computer representation of the
characters used all over the world, see http://www.unicode.org
The vulnerability of the IIS consists of the fact that (the unpatched)
IIS doesn't decode overlong Unicode representations until after path checking
and allows a directory transversal attack, see
http://www.securityfocus.com/archive/1/140091
While the obvious directory transversal
http://www.victim.com/../../winnt/system32/cmd.exe
doesn't work because IIS strips off "../..", the unpatched IIS doesn't
recognize the equivalent Unicode representation "..%C1%1C.." as directory
transversal and allows so the attacker to execute commands.
This vulnerability has been categorized as CAN-2000-0884.

5. Attack mechanism:
The basic attack mechanism has already been described under 4 and is
also explained at http://www.8thlayer.org/unicode.html
From there, we take one example to illustrate the dangers of the vulnerability:
http://www.target.site/scripts/..%c0%af../winnt/system32/newcmd.exe?/c

+echo+you+be+ultra+hacked+>+..\wwwroot\index.htm
It is remarkable that the representation of the "/" character varies
from one character set to another, in the above line it is "%c0%af" and not
"..%C1%1C..".
The question is whether the traces above show an attack or something else.
We see TCP packets logged of length "len:0x71" and "len:0x7D", unfortunately,
only the contents of one of the smaller packets is printed.
The dumped packet contains
GET /scripts/..%c1%1c../winnt/system32/cmd.exe HTTP/1.0...
which doesn't do anything malicious. By doing research on the web,
I found the (French) web site
http://www.hsc.fr/ressources/outils/idswakeup/
describing a utility performing IDS tests like the following:
133.186.155.192 -> 127.0.0.1 80/tcp GET /scripts/cmd.exe HTTP/1.0
Such a utility could be easily modified to execute also the above command.
For a complete analysis, I would need the packet dumps of the larger packets.
At this point, I would suppose that someone is testing the IDS, or perhaps
trying to find out whether an IDS is installed. (I realize that the command
"HTTP/1.0..." could also be used to trigger an error message and to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

obtain the version banner of IIS. However, I think that this possibility
is not very likely as the attacker wouldn't need to use an exploit to obtain
this information.)

6. Correlations:
I don't know of any traces showing the same "harmless" commands.
I have already pointed out the possibility of an IDS test.
There have been a lot of Unicode attacks that can be found by searching the
web. A complete write-up on Unicode together with the backgate kit
can be found at the SANS page
http://www.incidents.org/react/unicode.php

7. Evidence of active targeting:
We see something like a scan, or as discussed, an IDS test. This
might be targeted specifically at our network, however, we don't have evidence
of an exploit attempt targeted at one of the machines.

8. Severity:
Criticality: 4 (Web server probe)
Lethality: 3-5 (not enough infos, depends whether the logs contain malicious

packets that would allow to obtain control over the machine)
System Countermeasures: 4 (not enough infos, I assume that IIS is patched)
Network counter measures: 3-4 (not enough infos, but at least IDS is in place)
This gives a severity of 0-2, for a clear rating, more information is needed.

9. Defensive recommendation:
The Unicode bug has been completely fixed, refer to the following
Microsoft security bulletin for the patch
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/ms00-
057.asp

10. Multiple choice test question:
In the packet dump shown below, what is the significance of the
content represented by the ASCII characters "..%c1%1c.."?
Exhibit:
09/05-02:40:54.333607 0:0:C:46:5C:D1 -> 0:E0:1E:8E:31:71 type:0x800 len:0x71
61.183.107.135:1448 -> 130.216.191.38:80 TCP TTL:42 TOS:0x0 ID:4241
IpLen:20 DgmLen:99 DF
AP Seq: 0xBD202F05 Ack: 0x6EEAE331 Win: 0x5A00 TcpLen: 20
47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%
63 31 25 31 63 2E 2E 2F 77 69 6E 6E 74 2F 73 79 c1%1c../winnt/sy
73 74 65 6D 33 32 2F 63 6D 64 2E 65 78 65 20 48 stem32/cmd.exe H
54 54 50 2F 31 2E 30 0D 0A 0D 0A TTP/1.0....
a)Packets containing the characters "..%c1%1c.." circumvent the detection

by the snort IDS, because snort can't speak Unicode.
b)The characters "..%c1%1c.." allowed to change a directory on an

unpatched IIS.
c)The characters "..%c1%1c.." are the Unicode encoding of "69", the

signature of the "Woodstock-virus".
d)The characters "..%c1%1c.." generate a buffer overflow in the

Apache web server and allow the attacker to gain root privileges.
B
Answer: B
The unpatched IIS (4.0 and 5.0) doesn't recognize the Unicode
representation "..%C1%1C.." of "../.." as directory transversal and allows so
the attacker to execute commands.

Network Detect #3 - Portmap scan with immediately following attack attempt

Jun 13 13:24:52 66.96.216.175:3365 -> a.b.c.51:111 SYN ******S*
Jun 13 13:24:54 66.96.216.175:4159 -> a.b.c.59:111 SYN ******S*
Jun 13 13:24:54 66.96.216.175:4162 -> a.b.c.62:111 SYN ******S*
Jun 13 13:24:56 66.96.216.175:760 -> a.b.c.62:111 UDP
Jun 13 13:24:57 66.96.216.175:4180 -> a.b.c.80:111 SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Jun 13 13:24:54 66.96.216.175:4205 -> a.b.c.105:111 SYN ******S*
Jun 13 13:24:57 66.96.216.175:4252 -> a.b.c.152:111 SYN ******S*
Jun 13 13:24:54 66.96.216.175:4292 -> a.b.c.192:111 SYN ******S*
Jun 13 13:24:54 66.96.216.175:4301 -> a.b.c.201:111 SYN ******S*
Jun 13 13:24:54 66.96.216.175:4309 -> a.b.c.209:111 SYN ******S*
Jun 13 13:24:54 66.96.216.175:4312 -> a.b.c.212:111 SYN ******S*
(snip, not all scan traces shown, refer to URL below)
Jun 13 13:24:56 hosth portmap[1879]: connect from 66.96.216.175 to getport(status):
request from unauthorized host
Jun 13 13:24:56 hosth snort: RPC portmap request rstatd: 66.96.216.175:760 ->
a.b.c.62:111

1. Source of Trace.
This trace was obtained from the incidents.org archive page
http://www.incidents.org/archives/intrusions/msg00817.html
Date: Thu, 14 Jun 2001 12:43:30 -0400
From: Laurie Zirkle <lat@xxxxxxxxxx>
Subject: June 13, 2001 probes (part #1)

2. Detect was generated by:
Snort (scan report) and system logs.

3. Probability the source address was spoofed:
Zero, because the scanner watches the replies from his SYN scan.
Once he has discovered the potentially vulnerable machine a.b.c.62:111,
he immediately tries to connect to connect to statd.

4. Description of attack:
As of the date of this report, RPC weaknesses are the number 3 among the
SANS Top Ten Most Critical Security Threats (http://www.sans.org/topten.htm).
The portmap daemon manages RPC requests, in this case one to the stat daemon.
We look at the log message
Jun 13 13:24:56 hosth portmap[1879]: connect from 66.96.216.175 to getport(status):
request from unauthorized host
Normally, the "getport(status)" call causes the statd-server (a network
status monitor) to start listening on a socket, the corresponding port number
is returned by portmapper to the client that should then connect to this port
in order to send or receive file data.
With respect to the scans before, it is clear that here, this is an attack in
order to exploit one of several known vulnerabilities of statd,
for the most recent one CAN-2000-0666 see
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0666
for others, see the links on the SANS Top Ten page.
In the current case, the attacker fails because a secure portmapper is
installed which recognizes that the attacker is not authorized for
a remote connect to statd and logs the event.

5. Attack mechanism:
If the attacker succeeds to connect to statd, he can gain root privileges on
the system. By supplying crafted queries to the server, he can trick the
server into executing them as commands. Since the server runs with root
privileges, the host running this server can be compromised.
As an example, see the description of an exploit for the vulnerability
CAN-2000-0666 on
http://www.cert.org/advisories/CA-2000-17.html
and in the bugtraq archives, e.g. at
http://security-archive.merton.ox.ac.uk/bugtraq-200007/0209.html

6. Correlations:
Portmap attacks occur very frequently, see also the traces I analyzed for
assignment 3 in this report. Other correlations include
http://www.incidents.org/archives/intrusions/msg01060.html
Date: Mon, 16 Jul 2001 07:24:54 -0400
From: Laurie Zirkle <lat@xxxxxxxxxx>
Subject: July 14, 2001 probes
and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.incidents.org/archives/intrusions/msg01210.html
Date: Mon, 30 Jul 2001 11:40:13 -0400
From: Laurie Zirkle <lat@xxxxxxxxxx>
Subject: July 28, 2001 probes (part 1)

7. Evidence of active targeting:
The exploit attempt is clearly targeted at the host identified to be possibly
vulnerable from the preceding scan.

8. Severity:
Criticality: 2 (I assume that a.b.c.62 is a user desktop)
Lethality: 5 (attacker can gain root access)
System Countermeasures: 4 (secure portmapper installed)
Network counter measures: 2 (the firewall doesn't block access to port 111)
This gives a severity of 1.

9. Defensive recommendation:
Blocking port 111 from external access on the firewall has been recommended
by SANS, see http://www.sans.org/newlook/resources/IDFAQ/blocking.htm
For Solaris operating systems, also the high ports 32770, 32771,... have to
be blocked.

10. Multiple choice test question:
In the traces of the SYN scan shown below, which is the service that the
attacker is looking for?
Exhibit:
Jun 13 13:24:54 66.96.216.175:4205 -> a.b.c.105:111 SYN ******S*
Jun 13 13:24:57 66.96.216.175:4252 -> a.b.c.152:111 SYN ******S*
Jun 13 13:24:54 66.96.216.175:4292 -> a.b.c.192:111 SYN ******S*
Jun 13 13:24:54 66.96.216.175:4301 -> a.b.c.201:111 SYN ******S*
Jun 13 13:24:54 66.96.216.175:4309 -> a.b.c.209:111 SYN ******S*
Jun 13 13:24:54 66.96.216.175:4312 -> a.b.c.212:111 SYN ******S*

a)FTP.
b)RPCbind.
c)SNMP.
d)Back Orifice
B
Answer: B
RPCbind (portmapper) is listening on TCP port 111.

Network Detect #4 - Large Pings for MTU discovery

Jun 7 18:46:56 sparky kernel: Packet log: input DENY ppp0 PROTO=1
32.97.170.150:8 12.82.133.172:0 L=1500 S=0x00 I=12295 F=0x4000 T=244 (#45)
Jun 7 18:46:57 sparky kernel: Packet log: input DENY ppp0 PROTO=1
32.97.170.137:8 12.82.133.172:0 L=1500 S=0x00 I=8574 F=0x4000 T=244 (#45)
Jun 7 18:46:59 sparky kernel: Packet log: input DENY ppp0 PROTO=1
32.97.170.149:8 12.82.133.172:0 L=1500 S=0x00 I=33637 F=0x4000 T=244 (#45)
Jun 7 18:47:13 sparky kernel: Packet log: input DENY ppp0 PROTO=1
32.97.170.149:8 12.82.133.172:0 L=1500 S=0x00 I=37030 F=0x4000 T=244 (#45)
Jun 7 18:47:30 sparky kernel: Packet log: input DENY ppp0 PROTO=1
32.97.170.150:8 12.82.133.172:0 L=1500 S=0x00 I=16241 F=0x4000 T=244 (#45)
Jun 7 18:47:38 sparky kernel: Packet log: input DENY ppp0 PROTO=1
32.97.170.137:8 12.82.133.172:0 L=1500 S=0x00 I=13455 F=0x4000 T=244 (#45)
Jun 7 18:47:42 sparky kernel: Packet log: input DENY ppp0 PROTO=1
32.97.170.149:8 12.82.133.172:0 L=1500 S=0x00 I=40763 F=0x4000 T=244 (#45)
Jun 7 18:51:07 sparky kernel: Packet log: input DENY ppp0 PROTO=1
32.97.170.150:8 12.82.133.172:0 L=1500 S=0x00 I=39684 F=0x4000 T=244 (#45)
Jun 7 18:51:08 sparky kernel: Packet log: input DENY ppp0 PROTO=1
32.97.170.149:8 12.82.133.172:0 L=1500 S=0x00 I=65323 F=0x4000 T=244 (#45)

06/07-18:46:56.327073 32.97.170.150 -> 12.82.133.172
ICMP TTL:244 TOS:0x0 ID:12295 IpLen:20 DgmLen:1500 DF

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Type:8 Code:0 ID:0 Seq:0 ECHO
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00.....
<snip>
continue to fill each of 3 packets to 1500 bytes

snort:
06/07-18:46:57.277134 32.97.170.137 -> 12.82.133.172
ICMP TTL:244 TOS:0x0 ID:8574 IpLen:20 DgmLen:1500 DF
Type:8 Code:0 ID:0 Seq:0 ECHO
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00....
<snip>
continue to fill each of 4 packets to 1500 bytes

snort:
06/07-18:46:59.657435 32.97.170.149 -> 12.82.133.172
ICMP TTL:244 TOS:0x0 ID:33637 IpLen:20 DgmLen:1500 DF
Type:8 Code:0 ID:0 Seq:0 ECHO
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00...
<snip>
continue to fill each of 4 packets to 1500 bytes

1. Source of Trace.
This trace was obtained from the incidents.org archive page
http://www.incidents.org/archives/intrusions/msg00698.html
Date: Sat, 09 Jun 2001 08:17:39 -0700
From: John Sage <jsage@xxxxxxxxxxxxxx>
Subject: 06/07/01 probes at FinchHaven: Big pings

2. Detect was generated by:
Linux IPChains and snort.

3. Probability the source address was spoofed:
The ICMP message type 8, code 0, is an echo request. If the sender wants
the reply, the source address cannot spoofed.

4. Description of attack:
We receive large ping packets on a modem that are denied by IPChains and
logged by snort. Maliciously formed pings can be used to crash
certain vulnerable systems. The infamous Ping O' Death is one example.
However, this is absolutely not the case in our case. The packets have
a size of 1500, the usual MTU of Ethernet and the DF (don't fragment bit) set.
One gets immediately the idea that we see actually not an attack but an MTU
discovery.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

5. Attack mechanism:
32.97.170.150 pings 12.82.133.172 with a large packet of size 1500
with DF bit in order to find out the MTU of the connection between them.
Either 12.82.133.172 replies to the echo request, in this case the MTU
is at least 1500. If no reply is received by 32.97.170.150, or the
ICMP error message "fragmentation needed but DF flag set" is received,
the MTU is smaller than 1500. To discover the MTU of a connection
is beneficial because it prevents unnecessary fragmentation of the IP
datagrams in transit. In the IPChains logs, we see 32.97.170.150 repeating the
pings over several minutes because the firewall at
12.82.133.172 drops the echo requests.
John Sage (see the correlations) states that finding the MTU
"is fairly common from AIX machines."

6. Correlations:
Correlations can be found at
http://www.incidents.org/archives/intrusions/msg00720.html
Date: Mon, 11 Jun 2001 09:35:51 -0700
From: John Sage <jsage@xxxxxxxxxxxxxx>
Subject: Re: 06/07/01 probes at FinchHaven: Big pings
the GCIA practical of Marc Bayerkohler
http://www.sans.org/giactc/gcia.htm
and the complete thread starting with the post
http://www.incidents.org/archives/intrusions/msg01568.html
Date: Thu, 30 Aug 2001 00:56:08 -0400
From: Chris Brenton <cbrenton@xxxxxxxxxxx>
Subject: Weird Type 8 stuff

[**] MISC Large ICMP Packet [**]
06/08-15:11:42.610845 129.33.225.36 -> xxx.xxx.xxx.2
ICMP TTL:239 TOS:0x0 ID:62655 IpLen:20 DgmLen:1500 DF
Type:8 Code:0 ID:0 Seq:0 ECHO
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

[**] MISC Large ICMP Packet [**]
06/08-14:32:14.976177 162.75.1.14 -> xxx.xxx.xxx.2
ICMP TTL:243 TOS:0x0 ID:9793 IpLen:20 DgmLen:1496 DF
Type:8 Code:0 ID:0 Seq:0 ECHO
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

7. Evidence of active targeting:
The ping is directed at 12.82.133.172, that's active, but probably not
malicious targeting.

8. Severity:
Criticality: 2 (host on PPP link)
Lethality: 1 (false alarm, not an attack)
System Countermeasures: 4 (IPChains, snort, probably well patched)
Network counter measures: 1 (probably, the ISP doesn't have firewall, etc)
This gives a severity of -2.

9. Defensive recommendation:
ICMP traffic can not only be used for attacks but also for reconnaissance,
see e.g. the paper "ICMP Usage In Scanning" by Ofir Arkin, at
http://www.sys-security.com/archive/papers/ICMP_Usage_v3.0.pdf
For this reason, it is generally advisable to block most of the
ICMP traffic at the firewall, in fact, all apart from the ICMP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

error message "fragmentation needed but DF flag set", see e.g.
http://www.faqs.org/faqs/computer-security/most-common-qs/section-18.html

10. Multiple choice test question:
In the ICMP echo request dumped below, which of the following fields
is the most "suspicious" one and could be a reason to inspect the packet?
Exhibit:
06/07-18:46:56.327073 32.97.170.150 -> 12.82.133.172
ICMP TTL:244 TOS:0x0 ID:12295 IpLen:20 DgmLen:1500 DF
Type:8 Code:0 ID:0 Seq:0 ECHO

a)The TCP Sequence number 0.
b)The ICMP code 0.
c)The Type Of Service 0.
d)The Datagram Length 1500.
D
Answer: D
ICMP traffic doesn't have a TCP sequence number, and TOS=0 and ICMP=0 are
common values for the respective fields. However, for a simple echo
request, the datagram is quite big. It is not necessarily malicious, as
it can serve to discover the MTU of a connection.

Network Detect - #5 Scan for compromised systems on TCP port 24452

Jun 9 08:52:06 hosth /kernel: Connection attempt to TCP a.b.c.62:24452
from 200.23.66.65:24452
Jun 9 08:56:11 hostmf /kernel: Connection attempt to TCP a.b.f.167:24452
from 200.23.66.65:24452
Jun 9 08:52:06 200.23.66.65:24452 -> a.b.c.4:24452 SYN ******S*
Jun 9 08:52:06 200.23.66.65:24452 -> a.b.c.9:24452 SYN ******S*
Jun 9 08:52:06 200.23.66.65:24452 -> a.b.c.33:24452 SYN ******S*
Jun 9 08:52:06 200.23.66.65:24452 -> a.b.c.62:24452 SYN ******S*
Jun 9 08:52:06 200.23.66.65:24452 -> a.b.c.101:24452 SYN ******S*
Jun 9 08:52:06 200.23.66.65:24452 -> a.b.c.121:24452 SYN ******S*
Jun 9 08:52:06 200.23.66.65:24452 -> a.b.c.182:24452 SYN ******S*
Jun 9 08:52:06 200.23.66.65:24452 -> a.b.c.209:24452 SYN ******S*
Jun 9 08:52:06 200.23.66.65:24452 -> a.b.c.212:24452 SYN ******S*
Jun 9 08:52:07 200.23.66.65:24452 -> a.b.d.233:24452 SYN ******S*
Jun 9 08:52:07 200.23.66.65:24452 -> a.b.e.25:24452 SYN ******S*
Jun 9 08:52:07 200.23.66.65:24452 -> a.b.e.42:24452 SYN ******S*
Jun 9 08:52:07 200.23.66.65:24452 -> a.b.e.48:24452 SYN ******S*
Jun 9 08:52:07 200.23.66.65:24452 -> a.b.e.79:24452 SYN ******S*
Jun 9 08:52:07 200.23.66.65:24452 -> a.b.e.100:24452 SYN ******S*
Jun 9 08:52:07 200.23.66.65:24452 -> a.b.e.101:24452 SYN ******S*
Jun 9 08:52:08 200.23.66.65:24452 -> a.b.e.128:24452 SYN ******S*
Jun 9 08:52:08 200.23.66.65:24452 -> a.b.e.229:24452 SYN ******S*
Jun 9 08:52:08 200.23.66.65:24452 -> a.b.e.238:24452 SYN ******S*
Jun 9 08:52:08 200.23.66.65:24452 -> a.b.f.37:24452 SYN ******S*
Jun 9 08:52:08 200.23.66.65:24452 -> a.b.f.190:24452 SYN ******S*
Jun 9 08:52:08 200.23.66.65:24452 -> a.b.f.192:24452 SYN ******S*

1. Source of Trace.
This trace was obtained from the incidents.org archive page
http://www.incidents.org/archives/intrusions/msg00713.html
Date: Sun, 10 Jun 2001 21:19:00 -0400
From: Laurie Zirkle <lat@xxxxxxxxxx>
Subject: June 9, 2001 probes (part #1)

2. Detect was generated by:
Snort and system logs.

3. Probability the source address was spoofed:
Zero, because the SYN scanner needs a response.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

4. Description of attack:
The TCP port 24452 is not assigned as can be checked at
http://www.iana.org/assignments/port-numbers
This makes one immediately suspicious about a backdoor installed
at that port. From the time stamps that can be seen in the traces,
it is clear that the scan is automated. There are speculations about a
worm, see the URLs given as correlations. However, I haven't seen these
speculations being confirmed at the time of writing this report.
We see two log messages:
Jun 9 08:52:06 hosth /kernel: Connection attempt to TCP a.b.c.62:24452
from 200.23.66.65:24452
Jun 9 08:56:11 hostmf /kernel: Connection attempt to TCP a.b.f.167:24452
from 200.23.66.65:24452
By doing research on the web, I found the following URL
http://www.geocrawler.com/archives/3/165/1999/9/0/2672764/
producing logs in the same format.
According to this page, the FreeBSD-3.2 inetd has a "-l" flag which logs all
connection attempts, regardless of whether they are allowed, or denied.
With the additional commands
sysctl -w net.inet.udp.log_in_vain=1
sysctl -w net.inet.tcp.log_in_vain=1
also connections to invalid ports can be logged.

5. Attack mechanism:
With some research on the web, I found the following
page describing a sophisticated system compromise, see
http://www.rvglug.org/pipermail/rvglug/2001-February/000436.html
The attacker modified /etc/xinitd.conf by adding a root /bin/sh on
TCP port24452. Anybody connecting on this port can execute commands
with root privileges.

6. Correlations:
A more stealthy SYN/FIN scan on TCP port 24452 for compromised systems is
shown at the URL http://www.incidents.org/archives/intrusions/msg00540.html
[**] SCAN-SYN FIN [**]
03/09-15:22:06.846446 64.208.150.130:24452 -> 10.1.120.75:24452
TCP TTL:27 TOS:0x0 ID:39426
S*F* Seq: 0x37EE05EC Ack: 0x490B5266 Win: 0x404
Another trace, this time a SYN scan like in our logs, is shown at
http://www.incidents.org/archives/intrusions/msg00747.html

7. Evidence of active targeting:
This is a noisy SYN scan not targeted at a particular machine.
From the timestamps it is clear that we see an automated scan, for
example by a script.

8. Severity:
Criticality: 2 (if there is a backdoor, it is probably at a user's desktop)
Lethality: 5 (attacker can become root, if backdoor is found)
System Countermeasures: 3 (we assume that
Network counter measures: 2 (firewall doesn't block access to this port)
This gives a severity of

9. Defensive recommendation:
Check for processes running on port 24452, for example with the "lsof"
command. In case you find a backdoor installed, proceed according to
the SANS guide "Incident Handling Step by Step: Unix Trojan Programs",
http://www.incidents.org/react/trojan.php
Generally, it is advisable to block traffic to "strange" ports
per default at a firewall, for example by denying everything that is not
explicitly allowed.

10. Multiple choice test question:
An IDS sensor logs scans of the ports listed below. Which of these
ports is probably NOT associated to trojan activity but used
by certain operating systems for regular services?

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

a)Port 24452.
b)Port 27374.
c)Port 31337.
d)Port 32770.
D
Answer: D.
The Sun Solaris portmapper not only listens on the well known port 111, but
also on a high port greater or equal to 32770.
A backdoor placed at port 24452 was described in the above analysis,
port 27374 is infamous for the Sub7 trojan, and the "ELEET" port 31337
is prominent for Back Orifice.

Assignment 3 - "Analyze This" Scenario

In the following, I give a security evaluation on the basis of 5 days of
snort logs from the University of Maryland, Baltimore County.
The snort log data has been obtained from the data page
of the CCS Security Officer and NIDS Handler, Andy Johnston
http://www.research.umbc.edu/~andy/
Further information on the layout of the IDS and the sensors collecting
the data has been taken from a presentation given by the CCS Junior Security
Officer, Robin Anderson
http://userpages.umbc.edu/~robin/Presentations/Snort/Snort_FINAL.ppt
According to the presentation, sensors and analysis boxes are separated
and both automatically administrated by cron scripts.
Two types of sensors are in place:
A short term sensor is collecting data in intervals of 15 minutes
and forwarding them to an analysis station that processes the data
immediately. It generates alert data files and logs also selected packets
with their full header as "out_of_spec" (OOS).
A long term sensor collects scan data in intervals of a day, these logs
are processed by an analysis station that sends emails with a summary to the
security officers.

The data sets I have investigated are from June 29 to July 3, 2001.
The files used for my analysis are the
5 Snort Alert Reports "alert.010629",...,"alert.010703"
containing alert logs in the "snort -A fast" output format and reports from
the spp_portscan plugin,
the 5 Snort Scan reports "scans.010629",...,"scans.010703" containing details
about UDP and TCP scans of the network,
and finally the 5 Snort "out_of_spec" (OOS) data sets
"oos_Jun.29.2001",...,"oos_Jul.3.2001"
containing the full headers of selected packets of interest.
A sample overview of the three different log formats is given in the appendix.

Only the OOS data is small enough to be investigated directly by a human, the
alert and the scan logs are together of a size of approximately 42 MB. For
data parsing and data inspection, I developed a perl script starting from
the work of Chris Kuethe, GCIA.
My script process_scanalert.pl is substantially
enhanced and has the following features:
- simultaneous parsing of alert and scan logs possible with correlation between

the files
- list of occurring attack/scan types sorted by frequency
- list of targets sorted by frequency
- detection of fingerprint attempts in scan logs by unusual TCP flags
- list containing only those targets that have been fingerprinted
- detection of target addresses that are multicast/broadcast addresses
- list of attackers sorted by frequency
- list of fingerprinting attackers
- detection of spoofed source addresses (10.*, 172.16-31.*., 192.168.*)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

- summary of snort spp_portscan plugin alerts
- list of scanned TCP ports, with marked fingerprints sorted by frequency
- list of scanned UDP ports sorted by frequency
- separate list of destination ports occurring in alert files,

also sorted by [**] attack signature [**]
- list of attack-target pairs sorted by frequency
- list of paired communications, for example:

151.21.227.249-MY.NET.137.31 *** <- 3 *** -> 1 ***
My script is given in the appendix.
Apart from using the script on whole data sets, it is also possible to use it
on selected parts of the data. For example, the command line
cat alerts | grep -i 'trojan' | process_scanalert.pl -v > output
does a data analysis uniquely on all alerts of the form
[**] Possible trojan server activity [**].

For quick data browsing together with easy ARIN whois lookup of IP addresses,
I also used SnortSnarf version 010821.1 on the alert logs.
(http://www.silicondefense.com/software/snortsnarf/index.htm)
Some aspects of SnortSnarf need still to be fixed, for example, I had to

substitute MY.NET by digits like 10.10 in order to allow SnortSnarf to parse
the data. Also, SnortSnarf wasn't able to read scan logs and was therefore
useless for correlations between scan and alert logs.

The following part of this report is structured as follows:
In the next section, we give an analysis of the alert log files.
Secondly, an analysis of the scan logs is given and then a description
of the treatment of the OOS data. Finally, a summary of the analysis is
given. For each type of alert or other incident,
I investigate the packets sent by the concerned systems on MY.NET for
indications of a possible compromise. I resolve attacker IP addresses on
ARIN if this seems appropriate and give defensive recommendations.
I think that it is easier for an incident handler, if I list
registration information about external source addresses
in the analysis report of the attack they participate instead of displaying
them in a separate table. The same holds for lists of possible compromises
and defensive recommendations. I indicate if a host is concerned by several
attacks and thus the defensive measures have to take account of several
incidents.

1.Attack/Scan alerts prioritized by number of occurrences

118870 UDP SRC and DST outside network
15201 Possible trojan server activity
4977 High port 65535 tcp - possible Red Worm - traffic
3029 Spp_portscan detect
1648 External RPC call
1646 connect to 515 from outside
1053 Watchlist 000220 IL-ISDNNET-990517
467 SMB Name Wildcard
301 Queso fingerprint
271 SYN-FIN scan!
220 WinGate 1080 Attempt
124 Port 55850 tcp - Possible myserver activity - ref. 010313-1
118 Watchlist 000222 NET-NCFC
75 NMAP TCP ping!
66 Null scan!
58 TCP SRC and DST outside network
40 High port 65535 UDP - possible Red Worm - traffic
33 SUNRPC highport access!
29 connect to 515 from inside
24 Russia Dynamo - SANS Flash 28-jul-00
8 Attempted Sun RPC high port access
3 Back Orifice
2 STATDX UDP attack
1 TCP SMTP Source Port traffic

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1 ICMP SRC and DST outside network
1 Tiny Fragments - Possible Hostile Activity

Many of these attacks have been seen before, compare e.g. with the work of
Byron Thatcher, March 2001 available from
http://www.sans.org/giactc/gcia.htm
The most remarkable difference in our data sets
is perhaps that we note significantly more trojan server activity.
Using the link analysis feature of my analysis script to identify
two-sided communications, I can identify a significant number of
suspicious hosts on MY.NET that need to be checked or supervised for
possible compromises.

Analysis of the attack alerts in detail:

*UDP SRC and DST outside network
These packets were sent to the following
destination ports: 53 (DNS), 137(NetBIOS nbtstat), 138(NetBIOS master browser),
and 5779. The port 5779 was unknown to me, moreover, 103758 occurrences were

logged, 87% of all alerts of this kind. Research on the source addresses
and inspection of the target addresses showed that most of the traffic came
from Yahoo and was sent to class D multicast addresses.
Among the remaining detects, those coming from the reserved
private address space 192.168.* and 172.16.* called my attention.
However, an inspection of the logs revealed that this was probably related
to ordinary name resolution traffic
07/01-14:30:25.212260 [**] UDP SRC and DST outside network [**]
192.168.0.102:137 -> 162.129.20.10:53

07/02-12:50:42.143742 [**] UDP SRC and DST outside network [**]
172.16.25.169:137 -> 172.16.3.101:137

Apparently, the site uses NAT. As a conclusion, the packet logging should
not alert on source addresses from the private address space in use to avoid
false alarms. Also, I would ask to verify that filtering of the incoming
packets on these addresses is in place in order to avoid spoofing. Further, a
firewall has to block all NetBIOS requests from the outside.

*Possible trojan server activity
A lot of ports are associated to alerts of this kind, I will not display
them all. 85% of all detects were associated to TCP destination port 27374
which is heavily used by the SubSeven v2.1 Windows trojan,
for information see e.g. the corresponding CERT advisory
http://www.cert.org/incident_notes/IN-2001-07.html
As an example, I show the proceeding for this case, the other cases
of trojan activity can be treated similarly.
The most active scanner was 24.159.128.162 (Charter Communications) with
306 scans of the form
07/02-19:49:42.521287 [**] Possible trojan server activity [**]
24.159.128.162:3601 -> MY.NET.111.52:27374

07/02-19:49:42.532642 [**] Possible trojan server activity [**]
24.159.128.162:3603 -> MY.NET.111.54:27374

07/02-19:49:43.577797 [**] Possible trojan server activity [**]
24.159.128.162:3607 -> MY.NET.111.58:27374

for the trojan.
Badly enough, some hosts like the following one are responding:
07/02-19:49:43.577842 [**] Possible trojan server activity [**]
MY.NET.111.58:27374 -> 24.159.128.162:3607

This machine is possibly infected, as a typical reaction of the SubSeven trojan
is to report his presence when triggered by a packet to its port.
A good strategy for trojan detection is therefore to look for machines
engaging in two-sided communication with others. This link analysis is not
only effective for the SubSeven trojan but can also be applied to other
alerts. From processing all trojan alerts with our script and looking
for machines exchanging packets in both directions with others,
we obtain the following, unfortunately extremely long, list of 614 possibly
compromised hosts that need to be checked. In addition to possibly installing
the necessary patches, it might be reasonable to block trojan ports on the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

firewall for both incoming and outgoing traffic, and perhaps some fine-tune
the snort rules in order to reduce the number of false positives.
The list of possibly compromised host in the subnet MY.NET consists of:

99.61, 99.60, 99.53, 99.52, 99.46, 99.42, 99.230, 99.187, 99.174, 99.171,
99.169, 99.165, 99.161, 99.159, 98.121, 97.249, 97.248, 97.246, 97.244,
97.241, 97.240, 97.239, 97.237, 97.230, 97.228, 97.220, 97.212, 97.207,
97.204, 97.182, 97.170, 97.164, 85.62, 75.82, 75.223, 75.220, 75.216, 75.207,
75.196, 75.158, 75.144, 75.135, 75.126, 75.118, 75.114, 75.110, 7.121, 68.11,
68.1, 60.63, 60.59, 60.55, 60.51, 60.39, 60.38, 60.22, 60.14, 60.1, 54.1,
53.98, 53.90, 53.86, 53.75, 53.70, 53.58, 53.54, 53.50, 53.47, 53.43, 53.39,
53.34, 53.226, 53.222, 53.210, 53.206, 53.202, 53.198, 53.174, 53.167, 53.159,
53.155, 53.151, 53.150, 53.147, 53.143, 53.139, 53.135, 53.131, 53.122, 53.114,
53.110, 53.107, 53.103, 53.1, 5.77, 5.65, 5.41, 5.40, 5.38, 5.36, 5.16, 5.13,
5.121, 5.109, 5.104, 5.1, 27.1, 253.10, 232.49, 230.69, 230.61, 230.45, 230.41,
230.37, 230.29, 230.25, 230.173, 230.169, 230.161, 230.153, 230.149, 230.137,
230.117, 230.109, 227.81, 227.77, 227.65, 227.53, 227.193, 227.189, 227.185,
227.181, 227.173, 227.169, 227.137, 227.129, 226.201, 224.97, 224.49, 224.45,
224.41, 224.37, 224.29, 224.185, 224.181, 224.17, 224.133, 224.121, 224.105,
224.101, 222.97, 222.85, 222.81, 222.77, 222.69, 222.45, 222.33, 222.29,
222.25, 222.245, 222.241, 222.229, 222.197, 222.177, 222.173, 222.17, 222.157,
222.129, 222.125, 222.113, 222.105, 221.249, 221.245, 221.241, 221.201, 219.1,
217.98, 217.89, 217.73, 217.69, 217.62, 217.57, 217.50, 217.45, 217.33,
217.141, 217.134, 217.133, 217.130, 217.109, 217.106, 216.97, 216.73, 216.5,
216.33, 216.25, 216.169, 216.165, 216.161, 216.157, 216.149, 216.145, 216.141,
216.129, 216.125, 216.117, 216.113, 215.77, 215.73, 215.69, 215.65, 215.57,
215.49, 215.45, 215.37, 215.249, 215.241, 215.233, 215.221, 215.217, 215.213,
215.205, 215.117, 214.65, 214.57, 214.53, 214.213, 214.201, 214.197, 214.189,
214.185, 214.177, 214.165, 214.153, 214.125, 214.121, 214.105, 213.97, 213.45,
213.41, 213.33, 213.25, 213.241, 213.237, 213.229, 213.221, 213.217, 213.209,
213.193, 213.185, 213.181, 213.161, 213.153, 213.145, 213.137, 213.133,
213.129, 213.113, 213.109, 212.69, 212.41, 212.37, 212.213, 212.165, 212.149,
212.145, 212.137, 212.125, 212.117, 212.113, 212.109, 212.101, 21.9, 21.81,
21.77, 21.5, 21.49, 21.41, 21.32, 21.28, 21.20, 21.16, 21.1, 209.77, 209.73,
209.61, 209.57, 209.41, 209.37, 209.181, 209.173, 209.169, 209.161, 209.133,
209.125, 209.117, 208.53, 208.49, 208.41, 208.133, 208.13, 208.125, 208.121,
208.117, 208.109, 207.253, 207.249, 207.245, 207.241, 207.237, 207.193,
207.185, 207.173, 206.85, 206.69, 206.53, 206.49, 206.33, 206.29, 206.21,
206.17, 206.157, 206.153, 206.149, 206.145, 206.141, 206.129, 206.109,
206.105, 205.97, 205.93, 205.77, 205.65, 205.5, 205.49, 205.41, 205.37,
205.241, 205.233, 205.105, 205.101, 204.205, 204.197, 203.85, 203.81, 203.69,
203.61, 203.57, 203.5, 203.49, 203.41, 203.189, 203.185, 203.173, 203.161,
203.153, 203.145, 203.141, 203.133, 203.13, 203.125, 200.97, 200.35, 200.180,
200.171, 200.169, 200.167, 200.165, 200.163, 200.161, 200.159, 200.157,
200.155, 200.153, 200.151, 200.149, 200.146, 200.144, 200.142, 200.140,
200.138, 200.134, 200.132, 200.130, 2.203, 195.23, 185.66, 184.42, 184.39,
182.93, 182.92, 182.237, 182.136, 182.121, 182.108, 181.37, 181.33, 180.192,
180.185, 18.25, 18.21, 179.86, 179.82, 179.79, 179.78, 179.70, 179.67, 179.54,
165.162, 165.126, 163.99, 163.42, 163.22, 163.107, 163.103, 162.98, 162.83,
162.81, 162.70, 162.51, 162.49, 162.39, 162.35, 162.242, 162.235, 162.231,
162.226, 162.127, 162.123, 162.119, 162.117, 162.108, 162.104, 162.100,
157.5, 157.49, 157.4, 157.241, 157.216, 157.212, 157.204, 157.176, 156.124,
156.121, 153.45, 153.237, 153.209, 153.205, 153.201, 153.197, 153.196,
153.188, 153.177, 153.161, 153.157, 153.145, 153.141, 153.137, 153.125,
153.116, 152.48, 152.248, 152.216, 152.185, 152.181, 152.173, 152.172,
152.17, 152.169, 152.16, 152.157, 152.149, 152.144, 152.109, 151.98, 151.79,
151.75, 151.71, 151.190, 150.98, 150.54, 150.42, 150.38, 150.2, 150.127,
150.119, 15.72, 15.69, 146.21, 146.17, 146.16, 145.91, 145.90, 145.88,
145.85, 145.84, 145.82, 145.53, 145.246, 145.227, 145.223, 145.211, 145.179,
145.178, 145.171, 145.155, 145.154, 145.1, 144.25, 143.238, 143.154, 143.147,
141.229, 140.191, 140.151, 140.143, 140.134, 14.2, 139.69, 139.29, 139.24,
139.229, 139.121, 138.59, 138.51, 138.46, 138.30, 138.14, 138.10, 137.1,
130.86, 130.187, 130.162, 130.127, 130.123, 130.122, 130.11, 121.26, 120.28,
120.1, 116.47, 116.28, 115.95, 115.51, 115.31, 112.25, 112.24, 112.20, 111.91,
111.78, 111.75, 111.69, 111.58, 111.21, 111.195, 111.185, 111.174, 111.173,
111.166, 111.161, 111.152, 111.145, 111.143, 111.139, 111.130, 111.116,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

111.114, 111.111, 109.9, 109.17, 109.16, 109.13, 106.69, 106.4, 106.228,
106.200, 106.20, 106.192, 106.188, 106.149, 106.126, 106.1, 105.204, 105.189,
105.185, 105.120, 104.213, 104.208, 104.200, 104.128, 104.117, 104.105,
100.84, 100.73, 100.65, 100.57, 100.56, 100.52, 100.45, 100.32, 100.227,
100.224, 100.214, 100.201, 100.180, 100.172, 100.165, 100.120, 100.1, 10.87,
10.83, 10.79, 10.59, 10.15

*High port 65535 tcp - possible Red Worm - traffic
We see 4977 alerts for the Adore (originally: Red) Worm, not to be confused
with Code Red. Information on this Linux Worm can be found at
http://www.sans.org/y2k/adore.htm
The top source for this alert was 192.207.123.2 (Philips Laboratories)
with 4918 alerts from 09:59:05 to 10:04:46 on June 29 connecting
to MY.NET.99.51 on port 23. My guess would be that someone from the university
was at Philips and tried to connect home via telnet.
More suspicious is traffic to port 25 SMTP, as the Adore worm v.02 is known to
send emails in order to announce the infection of a machine.
06/29-19:30:34.861744 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.253.24:65535 -> 195.121.6.51:25

07/01-19:31:00.295100 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.253.24:65535 -> 18.7.21.83:25

SMTP connections are to an address in the Netherlands and MIT.
This is is suspicious, I would investigate this host or at least observe it
for more activity of this kind. Furthermore, link analysis shows
a two-sided connection between 38.202.60.19 and MY.NET.253.52, this host
needs also to be looked at. It could also be worth to block port 65535 at the
firewall.

*Output from the portscan module will be treated together with the scan logs

*External calls to portmapper tcp/udp 111 should generally be blocked at the
firewall, because of a number of well documented vulnerabilities
associated to RPC services, see e.g.
http://www.cert.org/incident_notes/IN-2001-01.html
http://www.cert.org/advisories/CA-2001-05.html
http://www.cert.org/advisories/CA-2000-17.html
As of the date of this report, RPC weaknesses are the number 3 among the
SANS Top Ten Most Critical Securit Threats (http://www.sans.org/topten.htm).
Blocking port 111 has been recommended by SANS, see
http://www.sans.org/newlook/resources/IDFAQ/blocking.htm
The top scanner with 433 alerts on July 1 is 211.23.6.234,
the company CHTD, Chunghwa Telecom Co.,Ltd. from Taiwan.
This server tried also a STATDX UDP attack on MY.NET.6.15
has been reported of attempted connection to port 515, see
http://www.incidents.org/archives/intrusions/msg00960.html
Such a behavior could be a good reason to put the machine on
a black list, denying at the firewall by default every connection from it.

*connect to 515 from outside and inside
The BSD lpd printing service called LPRng using printer port tcp 515
has a well known recent vulnerability
http://www.kb.cert.org/vuls/id/382365
which is exploited for example by the Red Hat Linux Ramen worm.
A documentation on Ramen together with instructions
for detection and removal can be found at
http://www.sans.org/y2k/ramen.htm
The most suspicious traffic of this kind were three alerts of the form
alerts0629_0703:06/29-01:41:54.127208 [**] connect to 515 from outside [**]
255.255.255.255:31337 -> MY.NET.134.110:515
and 9 packets to broadcast addresses like the following
alerts0629_0703:06/30-10:39:03.237615 [**] connect to 515 from outside [**]
150.183.110.179:1140 -> MY.NET.134.0:515
The first thing to say is that the firewall should block spoofed source
addresses like 255.255.255.255. Secondly, it would be advisable to block also
broadcast attempts from the outside.
Furthermore, it is again possible to shun the most persistent scanners

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

like 150.183.110.179 (Korea Institute of Science and Technology).
The following systems on MY.NET tried to connect to external 515 ports
and should therefore be investigated on the presence of the worm:
100.234, 179.78, and 219.42.

*Watchlist 000220 IL-ISDNNET-990517 and Watchlist 000222 NET-NCFC
These are alerts on connections from hosts infamous for suspicious
activities, the first list contains addresses from Israel, the second
one addresses belonging to the
Computer Network Center Chinese Academy of Sciences.
Similar traffic has been observed by Bakos and Zeltser, see
http://ouah.bsdjeunz.org/George_Bakos.html
http://www.zeltser.com/sans/idic-practical/
Among the ports observed in the communications was the most prominent TCP port
1214. Traffic of this kind was for example seen at
http://www.incidents.org/archives/intrusions/msg00527.html
An interpretation of this traffic as being associated to the "KaZaA"
filesharing program has been given at
http://www.incidents.org/archives/intrusions/msg00530.html

*SMB Name Wildcard
The port 137 is used by NetBIOS nbtstat. In order to avoid network
reconnaissance, or exploits like the 911 worm
(http://www.cert.org/incident_notes/IN-2000-03.html),
it should be blocked by the firewall.

*Queso fingerprint
Generally, systems trying a fingerprint reconnaissance should be put on a
watchlist and further connections should be logged and investigated.
A typical queso fingerprint can be seen at
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids29&view=research
However, the alert rule on these fingerprints in the file RULES.SAMPLE
of the snort software
alert tcp any any -> 192.168.1.0/24 any (msg:"Queso fingerprint";flags: S12;)
states quite general characteristics, namely the TCP flags: S12.
The number of false positives can be quite high, see
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids29&view=event
The top host triggering these alerts is 199.183.24.194 (Red Hat Software).
These strange alerts have the form
06/29-03:17:13.082973 [**] Queso fingerprint [**] 199.183.24.194:49498 ->
MY.NET.253.42:25

06/29-03:53:52.142546 [**] Queso fingerprint [**] 199.183.24.194:58557 ->
MY.NET.253.42:25

06/29-03:56:49.232870 [**] Queso fingerprint [**] 199.183.24.194:60028 ->
MY.NET.253.41:25

06/29-05:10:09.454394 [**] Queso fingerprint [**] 199.183.24.194:51954 ->
MY.NET.253.43:25

06/29-05:19:39.838918 [**] Queso fingerprint [**] 199.183.24.194:55902 ->
MY.NET.253.43:25

(... not all traces shown, 138 alerts, 3 destination hosts.)
This is not exactly a scan as only three destinations are involved.
Below, I inspect the OOS data in order to decide whether this activity
is malicious. My conclusion will be that the alerts above are false
positives.

*SYN-FIN scan!
These scans were considered to be stealthy, as some IDS seemed to get
confused by the SF flags set together. Today, this isn't true anymore.
Scans will be discussed thoroughly when the scan logs are investigated.

*WinGate 1080 Attempt
WinGate is a proxy that could be abused to hide the identity of an attacker,
so they keep looking for it. Further information on this kind of probe
can be found for example at
http://www.whitehats.com/info/IDS175
Firewalls that are able to distinguish between connections initiated from the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

inside and connections initiated from the outside can be configured to
block reconnaissance traffic from the outside to the proxy.

*Port 55850 tcp - Possible myserver activity - ref. 010313-1
Due to the reference 010313, I examined the alert file of March 13.
However, TCP port 55850 didn't occur in this file. Unfortunately, the
corresponding OOS data for this day was no longer available for inspection.
By research on the internet, I found the following page
http://archives.neohapsis.com/archives/incidents/2000-10/0136.html
about the MyServer DDoS Agent at UDP (not TCP!) port 55850.
In essence, I am confused by this snort alert need more information to
handle these detect. I see three two-sided communications involving
hosts of my network, this would be my point to start, once that I have
confirmed that this alert makes sense. The concerned hosts are
MY.NET.217.154, MY.NET.253.52, and MY.NET.5.29.

*NMAP TCP ping!
NMAP is a stealthy OS fingerprinting and reconnaissance tool
that is documented at
http://www.insecure.org/nmap/
We see several reconnaissance pings, the most active scanner is
207.238.101.253 (Business Internet, Inc.) doing a scan with 30 detects
over the whole period of five days investigated. Further connections
from scanners like this one should be monitored for further correlations
and attempts of exploits.

*Null scan
Another stealthy scan using crafted packets with no TCP flags set.
Most prominent is a slow scan from 213.66.109.65 (Telia Network services ISP)
directed at MY.NET.217.130, a server reported already above
of suspicious trojan activity associated to port 27374.
From the traces below, it appears as if the traces could be also related to
gnutella file sharing (port 6346). In essence, this host needs definitely to
be looked at.
07/01-08:20:41.428158 [**] Null scan! [**] 213.66.109.65:3400 ->
MY.NET.217.130:6346

07/01-17:16:44.410608 [**] Null scan! [**] 213.66.109.65:4065 ->
MY.NET.217.130:6346

(not all traces printed...)
Traces like the above are posted at
http://www.sans.org/y2k/052000.htm
more information about gnutella is given at
http://www.sans.org/y2k/gnutella.htm

*TCP SRC and DST outside network
These traces seem mostly to be related to gnutella traffic.
We see 37 instances of the form
07/03-19:45:33.226183 [**] TCP SRC and DST outside network [**]
24.180.140.132:6346 -> 213.122.166.185:21979

It is well known that gnutella clients can spoof their source address,
see http://www.sans.org/y2k/gnutella.htm
It is likely, that we see an example of this kind of traffic here.
By filtering outgoing traffic from MY.NET and dropping all connections
that do not have a valid source address within MY.NET, we should be able
to make this kind of traffic disappear. Also, snort rules could perhaps
be adjusted to ignore this kind of traffic.

*High port 65535 udp - possible Red Worm - traffic
The Red Worm has been explained above,
Link analysis shows the host MY.NET.70.242 involved in two-sided communications
with 207.65.152.69 and 195.179.0.30. It should be checked for possible
compromise.

*Attempted Sun RPC high port access
As stated in the SANS ID FAQ,
http://www.sans.org/newlook/resources/IDFAQ/blocking.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Solaris 2.x portmapper listens not only on TCP port 111, and UDP port 111,
but also on a port greater than 32770. Thus, the vulnerabilities exploitable
for port 111 described above could also exploited via the port 32771
registered in our locks. One solution is to filter for such ports on the
firewall, another is the installation of a secure portmapper. Refer
to the cited SANS page for details.
*SUNRPC highport access!
In the alert files, 33 SUNRPC highport accesses are logged, to the hosts
MY.NET.217.6, MY.NET.60.39, and MY.NET.1.6. Each of them could be possibly
compromised and needs to be checked. In particular, MY.NET.60.39
is associated to 6 different alert signatures
(8 Attempted Sun RPC high port access, 5 WinGate 1080 Attempt,
3 Queso fingerprint, 3 Back Orifice, 1 SUNRPC highport access,
1 Possible trojan server activity) thus seeming to be a valuable target.

*Russia Dynamo - SANS Flash 28-jul-00
As indicated by the title, traffic of this kind has first occurred
last year and refers to trojan-compromised Windows machines sending large
amounts of data to a Russian IP address (194.87.6.X). The original
flash is available at
http://archives.neohapsis.com/archives/sans/2000/0068.html
By now, machines should be patched against this trojan.
However, we see two-sided traffic between
MY.NET.104.111 and 194.87.6.201 and also between
MY.NET.182.120 and 194.87.6.229. Therefore, I recommend checking
MY.NET.104.111 and MY.NET.182.120.

*Back Orifice
Port 31337 ("ELEET") is quite an infamous port for back doors,
used by, among others, the trojan Back Orifice.
This trojan is well known and documented, see for example
http://www.networkice.com/advice/Phauna/RATs/Back_Orifice/default.htm
One of the most popular techniques is to use an infected computer
for reconnaissance on others ("Bouncing"), see e.g.
http://www.networkice.com/advice/Underground/Hacking/Methods/Technical/Bounce/default.htm
Looking at the traces on our network, this appears to be the case
The host 207.41.14.11 (US Courts, NETBLK-SPRINT-CF290E-1) is running several
probes clearly targeted against one of our hosts, MY.NET.60.39.
We show only selected ones:
07/03-14:26:06.894016 [**] SUNRPC highport access! [**] 207.41.14.11:40809
-> MY.NET.60.39:32771

07/03-14:28:17.630340 [**] Attempted Sun RPC high port access [**]
207.41.14.11:1755 -> MY.NET.60.39:32771

07/03-14:31:32.863038 [**] Back Orifice [**] 207.41.14.11:1765 ->
MY.NET.60.39:31337

07/03-14:31:59.231822 [**] Back Orifice [**] 207.41.14.11:1755 ->
MY.NET.60.39:31337

07/03-14:32:10.369533 [**] Attempted Sun RPC high port access [**]
207.41.14.11:1765 -> MY.NET.60.39:32771

07/03-15:00:12.364831 [**] WinGate 1080 Attempt [**] 207.41.14.11:48644 ->
MY.NET.60.38:1080

07/03-15:01:42.643866 [**] Back Orifice [**] 207.41.14.11:3697 ->
MY.NET.60.39:31337

Apart from observing carefully MY.NET.60.39 for possible infections,
I would contact the responsible for 207.41.14.11 and ask him to check
his computer.

*STATDX UDP attack
A well known input validation problem in rpc.statd is documented by CERT, see
http://www.cert.org/advisories/CA-2000-17.html
(CVE entries: CVE-1999-0018, CVE-1999-0019)
Two attackers try to exploit this on MY.NET.6.15, see the logs below and
the remarks on the external calls to portmapper tcp/udp 111 above.
07/01-09:00:37.454441 [**] STATDX UDP attack [**] 211.23.6.234:835 ->
MY.NET.6.15:32776

06/30-12:17:02.627140 [**] External RPC call [**] 210.90.168.5:3217 ->

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

MY.NET.6.15:111
06/30-12:17:02.869023 [**] STATDX UDP attack [**] 210.90.168.5:836 ->
MY.NET.6.15:32776

MY.NET.6.15 needs to be checked for a possible compromise.

*TCP SMTP Source Port traffic
The following packet triggered the alert because TCP port 25 is usually only
used for mailing.
07/03-11:16:43.255384 [**] TCP SMTP Source Port traffic [**]
207.88.135.158:25 -> MY.NET.5.73:807
The destination port 807 is clearly suspicious, however, I have no explanation
for this packet. I would suggest to contact someone at 207.88.135.158
(Concentric Network Corporation), in particular because only processes
running as root can be configured to use ports below 1024.

*ICMP SRC and DST outside network
Neither IP source nor destination address of the following ICMP packet
belong to MY.NET.
06/29-22:52:03.053264 [**] ICMP SRC and DST outside network [**]
172.128.115.252 -> 24.0.217.198
The question is, why they are seen on MY.NET. One explanation is that someone
on MY.NET is crafting ICMP packets. This could be prevented by blocking
outgoing traffic not originating from MY.NET.

*Tiny Fragments - Possible Hostile Activity
Tiny fragments are a clear indication of packet craft and can be used
to crash IP stacks or to circumvent payload inspection by firewalls
that don't reassemble IP datagrams before inspection. We see only one
packet on our network.
06/30-15:03:17.324734 [**] Tiny Fragments - Possible Hostile Activity [**]
202.39.78.125 -> MY.NET.98.144
A reasonable threshold for triggering this kind of alert together with
further alerts of this kind is given at
http://archives.neohapsis.com/archives/snort/2000-05/0103.html
Snort has a preprocessor "defrag" that handles fragmented IP datagrams, see
http://www.snort.org/docs/faq.html#1.5
It should be installed.

2. Scan logs prioritized by number of occurrences

192203 SYN **S*****
150324 UDP
301 SYN (non-standard flags)
275 SYNFIN (SF flags)
93 INVALIDACK (ACK set, not 'normal', no SPAU or FULLXMAS)
84 NOACK (A flag is missing)
70 NULL (none of SFRPAU)
33 UNKNOWN (unusual combinations of flags, see spp_portscan.c)
26 VECNA (one of the following combinations: P, U, PU, FP, FU)
10 XMAS (FPU flags)
6 FULLXMAS (SFRPAU flags)
5 FIN (F flag)
2 SPAU (SPAU flags)
2 NMAPID (SFPU flags)

Snort goes through several steps in order to classify a scan, this process
can be seen from the inspection of the file 'spp_portscan.c' in the snort
distribution (available from http://www.snort.org/).
Standard TCP SYN **S***** scans and UDP scans are by far the most common types
of scans. All other scans are TCP scans with particular combinations of
flag bits set. They are reported by the spp_portscan module as stealth scans.
We don't list all encountered combinations of flag bits,
but certainly a lot of the 256 possible pattern were actually seen.
Special combinations of TCP flags can be used for fingerprinting,
or to circumvent detection by an IDS,
therefore, special attention should be payed to them. On the other hand, it is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

dangerous to simply ignore standard SYN **S***** scans just because they
are not considered stealthy. With everybody paying attention to special
TCP flags and slow scans, it appears almost as the safest bet to launch
a quick SYN **S***** scan and getting ignored because of the overwhelming
amount of traffic.

At first, we list the top ten attackers and the top ten targets.
Afterwards, we give the same information for those attacks using
TCP fingerprinting. Finally, we list the most popular UDP/TCP address
ports, and we show also the most popular TCP destination ports for stealth
scans.

Top Ten Scan Targets Top Ten Attackers
23505 MY.NET.219.42 49655 MY.NET.160.114
5068 MY.NET.110.33 30156 211.207.15.190
4839 MY.NET.180.76 23501 66.68.62.229
4828 MY.NET.71.248 19508 217.81.194.157
4700 MY.NET.178.222 15814 205.188.233.121
4366 MY.NET.108.13 14921 205.188.233.153
4007 MY.NET.145.166 13110 148.223.228.15
3850 MY.NET.145.197 12087 61.222.34.170
3785 MY.NET.60.39 (5 fps) 10867 207.236.81.82
3496 MY.NET.106.184 9583 205.188.244.249

Top Ten Fingerprinted Targets Top Ten Fingerprinting Attackers
112 MY.NET.70.97 fps 269 211.180.236.194 fps
84 MY.NET.70.149 fps 138 199.183.24.194 fps
54 MY.NET.253.41 fps 75 24.66.152.186 fps
45 MY.NET.253.42 fps 27 193.226.113.248 fps
44 MY.NET.253.43 fps 11 66.41.18.185 fps
37 MY.NET.150.225 fps 9 213.66.109.65 fps
18 MY.NET.5.29 fps 9 24.169.190.158 fps
15 MY.NET.217.130 fps 7 148.63.17.58 fps
15 MY.NET.219.50 fps 7 64.198.133.235 fps
14 MY.NET.150.133 fps 6 217.0.71.249 fps

Top Ten TCP ports Top Ten FPrinted TCP Ports Top Ten UDP ports
92370 21 269 111 (269 fps) 58845 6970
38227 53 146 25 (146 fps) 38150 27005
10463 1214 (105 fps) 105 1214 (105 fps) 11615 6112
5914 27374 76 6346 (76 fps) 7070 7778
5199 47017 19 0 (19 fps) 2454 7000
2904 25 (146 fps) 12 21536 (12 fps) 1768 7003
2027 6346 (76 fps) 9 20 (9 fps) 1607 53
1872 111 (269 fps) 4 143 (4 fps) 849 21077
1634 515 4 3456 (4 fps) 592 27243
299 6347 (2 fps) 4 113 (4 fps) 385 4665

Popular scan targets give an idea which systems might get next the attention
of attackers, this is particularly true for those subject to stealthy scans.
Active attackers can be put on a watchlist or completely blocked by
a firewall.
Popular destination ports indicate which sorts of exploits an attacker wants
to use, this makes it easier to look for them. Generally, we see a lot
of scans to the ports that also appeared in our alert logs and have been
analyzed above. If a port suddenly gets popular without the corresponding
vulnerability being published e.g. to bugtraq, it is perhaps advisable
to block it at the firewall. TCP port 1214 has a lot of scans associated
to it, and I am not completely convinced that all of this is related to
the KaZaA filesharing program, as was given as a possible explanation
in the analysis of the watchlist detects above.
Looking at the top attackers, we see MY.NET.160.114 sending UDP packets
from UDP port 777. The corresponding TCP port 777 is associated to the
"Undetected" trojan, and I would strongly advise to check this system
for a possible compromise. If we apply link analysis to the scan logs, we
see MY.NET.98.144 in two-sided communication with 15 other hosts, where 11

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

are from 62.27.42.*. I would suppose that some kind of server is running on
MY.NET.98.144 and check it for possible backdoors. The other host involved
in heavy two-sided communication with 66.68.62.229 (Roadrunner Southwest)
is MY.NET.219.42. Looking at the scan logs, I see on July 1 the host
MY.NET.219.42 starting an exhaustive port scan on 66.68.62.229
Jul 1 12:39:15 MY.NET.219.42:4879 -> 66.68.62.229:569 SYN **S*****
Jul 1 12:39:15 MY.NET.219.42:4884 -> 66.68.62.229:1379 SYN **S*****
Jul 1 12:39:15 MY.NET.219.42:4885 -> 66.68.62.229:438 SYN **S*****
Jul 1 12:39:15 MY.NET.219.42:4887 -> 66.68.62.229:426 SYN **S*****
Jul 1 12:39:15 MY.NET.219.42:4888 -> 66.68.62.229:578 SYN **S*****
...(not all traces shown, 1170 packets)
Nine hours later, the revenge comes promptly from 66.68.62.229
scanning back
Jul 1 21:20:05 66.68.62.229:63030 -> MY.NET.219.42:1 SYN **S*****
Jul 1 21:20:05 66.68.62.229:63031 -> MY.NET.219.42:2 SYN **S*****
Jul 1 21:20:05 66.68.62.229:63032 -> MY.NET.219.42:3 SYN **S*****
Jul 1 21:20:05 66.68.62.229:63033 -> MY.NET.219.42:4 SYN **S*****
Jul 1 21:20:05 66.68.62.229:63034 -> MY.NET.219.42:5 SYN **S*****
...(not all traces shown, 23501 packets)
I would check who was working on MY.NET.129.42, and also
check for a backdoor as the same host was also subject to
"connect to 515 from outside and inside" alerts.

When I analyzed scan and alert logs together in order to find hidden
correlations, I realized that this was not necessary as all scanning activity
had been reliably recorded as summarizing alerts by the spp_portscan module.
This is a clear indication that the different sensors 'see' the same packet
flow, and that the scan logs give the details to the spp_portscan alerts.

3.Inspection of OOS data for suspicious activity
The OOS logs contain the full packet headers of selected events
that triggered alerts. For this reason, they can be used in some
cases to distinguish between false and true positives.
As an example, I investigate the packets coming from Red Hat
triggering the Queso fingerprint alerts.

=+
06/29-01:26:46.348740 199.183.24.194:60628 -> MY.NET.253.41:25
TCP TTL:54 TOS:0x0 ID:61718 DF
21S***** Seq: 0x53A51F0B Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 327609885 0 EOL EOL EOL EOL

=+
06/29-01:31:49.590043 199.183.24.194:35578 -> MY.NET.253.42:25
TCP TTL:54 TOS:0x0 ID:26439 DF
21S***** Seq: 0x669E03CB Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 327640204 0 EOL EOL EOL EOL

=+
06/29-01:48:51.093254 199.183.24.194:39612 -> MY.NET.253.41:25
TCP TTL:54 TOS:0x0 ID:42772 DF
21S***** Seq: 0xA77C5491 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 327742341 0 EOL EOL EOL EOL

=+
06/29-03:15:27.976400 199.183.24.194:49498 -> MY.NET.253.42:25
TCP TTL:54 TOS:0x0 ID:4056 DF
21S***** Seq: 0xEE7BEB0A Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 328262866 0 EOL EOL EOL EOL

=+
06/29-03:32:02.403299 199.183.24.194:53712 -> MY.NET.253.43:25
TCP TTL:54 TOS:0x0 ID:60432 DF
21S***** Seq: 0x2D5F8528 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 328362296 0 EOL EOL EOL EOL

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

=+
06/29-03:52:07.265564 199.183.24.194:58557 -> MY.NET.253.42:25
TCP TTL:54 TOS:0x0 ID:23100 DF
21S***** Seq: 0x79A165F3 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 328482767 0 EOL EOL EOL EOL

=+
(more logs of this kind)

Investigating these packets, the only non-common thing I can see
are the TCP flags 21S*****. However, this is not necessarily an
indication for packet craft.
Looking at the TCP destination port 25 (SMTP)
and the time of the packets, I would suppose that we see here
actually Red Hat mailing list activity with mails being sent
to the mail servers MY.NET.253.41, MY.NET.253.42, and MY.NET.253.43.
Doing research on the web, I found the SANS writeup on ECN
http://www.incidents.org/detect/ecn.php.
With this as a background, I classify the alerts as false positives.
I would ask to tune the snort rules appropriately such that the number of
false positives is reduced. A possible modification of the "Queso fingerprint"
signature is given at
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids29&view=signatures
There it is suggested to take also the TTL field into account:
alert TCP $EXTERNAL any -> $INTERNAL any
(msg:"IDS29/scan_probe-Queso Fingerprint attempt"; ttl:>225; flags: S12;)

4. Summary
In the previous sections, I have given an analysis of the incidents logged
during the period of five days from June 29 to July 3, 2001, at the
University of Maryland, Baltimore County.

The number of severe incidents was very high and to a large part related to
trojan and worm activity. I have identified a large number of
possibly compromised host that need immediately to be investigated.
Furthermore, I found that the firewall rule set needs to be adjusted
such that some possibly vulnerable services are protected from external access.
I also indicated several IP source addresses, including those which are
obviously spoofed, which should be generally denied at the firewall.
Perhaps, a firewall policy "Deny everything that is not explicitly allowed"
should be enforced.
However, I also found a large number of false alarms given by the IDS.
Clearly, the snort rule set has to be tuned and I have given some suggestions
during the previous sections. By following my recommendations,
it is possible to enhance substantially the security of MY.NET and, as a
positive side effect, to reduce the number of alerts given by the IDS.

References (for assignment 2 and 3)

http://advice.networkice.com/advice/Exploits/Ports/default.htm
http://archives.neohapsis.com/archives/incidents/2000-10/0136.html
http://archives.neohapsis.com/archives/sans/2000/0068.html
http://archives.neohapsis.com/archives/snort/2000-05/0103.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0666
http://ouah.bsdjeunz.org/George_Bakos.html
http://security-archive.merton.ox.ac.uk/bugtraq-200007/0209.html
http://userpages.umbc.edu/~robin/Presentations/Snort/Snort_FINAL.ppt
http://www.8thlayer.org/unicode.html
http://www.arin.net/whois/index.html
http://www.cert.org/advisories/CA-2000-17.html
http://www.cert.org/advisories/CA-2001-05.html
http://www.cert.org/incident_notes/IN-2000-03.html),
http://www.cert.org/incident_notes/IN-2001-01.html
http://www.cert.org/incident_notes/IN-2001-07.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.cve.mitre.org/cve/
http://www.faqs.org/faqs/computer-security/most-common-qs/section-18.html
http://www.geocrawler.com/archives/3/165/1999/9/0/2672764/
http://www.google.com
http://www.hsc.fr/ressources/outils/idswakeup/
http://www.iana.org/assignments/port-numbers
http://www.incidents.org/archives/intrusions/msg00527.html
http://www.incidents.org/archives/intrusions/msg00530.html
http://www.incidents.org/archives/intrusions/msg00540.html
http://www.incidents.org/archives/intrusions/msg00698.html
http://www.incidents.org/archives/intrusions/msg00713.html
http://www.incidents.org/archives/intrusions/msg00720.html
http://www.incidents.org/archives/intrusions/msg00747.html
http://www.incidents.org/archives/intrusions/msg00817.html
http://www.incidents.org/archives/intrusions/msg00960.html
http://www.incidents.org/archives/intrusions/msg00980.html
http://www.incidents.org/archives/intrusions/msg01017.html
http://www.incidents.org/archives/intrusions/msg01020.html
http://www.incidents.org/archives/intrusions/msg01060.html
http://www.incidents.org/archives/intrusions/msg01210.html
http://www.incidents.org/archives/intrusions/msg01568.html
http://www.incidents.org/archives/intrusions/msg01621.html
http://www.incidents.org/detect/ecn.php.
http://www.incidents.org/react/unicode.php
http://www.insecure.org/nmap/
http://www.kb.cert.org/vuls/id/382365
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/ms00-
057.asp
http://www.networkice.com/advice/Phauna/RATs/Back_Orifice/default.htm
http://www.networkice.com/advice/Underground/Hacking/Methods/Technical/Bounce/default.htm

http://www.research.umbc.edu/~andy/
http://www.rvglug.org/pipermail/rvglug/2001-February/000436.html
http://www.sans.org/giactc/gcia.htm
http://www.sans.org/newlook/resources/IDFAQ/blocking.htm
http://www.sans.org/topten.htm
http://www.sans.org/topten.htm).
http://www.sans.org/y2k/052000.htm
http://www.sans.org/y2k/adore.htm
http://www.sans.org/y2k/gnutella.htm
http://www.sans.org/y2k/ramen.htm
http://www.satx.rr.com/support/security/computer_ports.html
http://www.securityfocus.com/archive/1/140091
http://www.silicondefense.com/software/snortsnarf/index.htm)
http://www.snort.org/).
http://www.snort.org/docs/faq.html#1.5
http://www.sys-security.com/archive/papers/ICMP_Usage_v3.0.pdf
http://www.unicode.org
http://www.victim.com/../../winnt/system32/cmd.exe
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids29&view=event
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids29&view=research
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids29&view=signatures
http://www.whitehats.com/info/IDS175
http://www.zeltser.com/sans/idic-practical/
http://xforce.iss.net/alerts/advise68.php

Appendix 1 : Samples from the data files for assignment 3:
--

alert.010629:

Snort Alert Report at Sat Jun 30 00:06:59 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

06/29-00:15:17.926017 [**] UDP SRC and DST outside network [**] 134.192.131.107:137 ->
134.192.1.5:53
06/29-00:15:19.429287 [**] UDP SRC and DST outside network [**] 134.192.131.107:137 ->
134.192.1.5:53

scans.010629:

Snort Scan Report at Sat Jun 30 00:11:04 2001

Jun 29 00:15:58 151.21.227.249:2441 -> MY.NET.133.215:111 SYN **S*****
Jun 29 00:15:58 151.21.227.249:2445 -> MY.NET.133.219:111 SYN **S*****
Jun 29 00:16:00 151.21.227.249:2166 -> MY.NET.133.21:111 SYN **S*****

oos_Jun.29.2001:

oos_Jun.29.2001

Initializing Network Interface ep0
snaplen = 68
Entering readback mode....
06/29-00:04:09.908220 216.211.22.92:32983 -> MY.NET.219.50:1848
TCP TTL:14 TOS:0x0 ID:7936 DF
**SFRPAU Seq: 0x6972664F Ack: 0x9E1B5EA0 Win: 0xB2D5
TCP Options => NOP NOP TS: 511509506 1852142215

=+
06/29-00:12:39.667322 65.0.7.50:33297 -> MY.NET.253.125:80
TCP TTL:49 TOS:0x0 ID:0 DF
21S***** Seq: 0x43AD9D61 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 19731182 0 EOL EOL EOL EOL

=+

Appendix 2: A script for snort log file parsing: process_scanalert.pl

#!/usr/local/bin/perl -ws
#
use: process_scanalert.pl -v -l=1 samplescan.data > analysis.output
#
unless
(defined($c)||defined($d)||defined($o)||defined($p)||defined($s)||defined($t)||defined($u)
||defined($v)){

print "use the following action flags\n";
print "\t-c \tprint the communicating hosts\n";

print "\t-d \tprint the target hosts\n";
print "\t-f \twatch for fingerprinting attempts\n";
print "\t-o \tprint the attacked/scanned ports\n";
print "\t-p \tprint the attacker/target pair\n";
print "\t-s \tprint the attacking hosts\n";
print "\t-t \tprint the attack type\n";

print "\t-u \tprint summary from spp_portscan\n";
print "\t-v \tbe verbose and print everything\n";

print "----";
print "\t-l=n\tconnection threshold before printing\n";
exit 1;
}

if(defined($l)){$thresh=$l;}else{$thresh=0;}
$vv=0; #set $vv=1 for very verbose output for script debugging

#############################
Data parsing and analysis
#############################
while (<>){

#format of scan.YYMMDD

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

if($_ =~
/^([a-zA-Z]{3}\s+\d{1,2})\s([0-9\:]{8})\s([MYNET0-9\.]+)\:([0-9\w]+)\s\-\>\s([MYNET0-9\.]+
)\:([0-9\w]+)\s(\w+[\w\s*]*)/){

chomp;
$date=$1;$time=$2;$src_addr=$3;$src_port=$4;
$dst_addr=$5;$dst_port=$6;$scantype=$7;
$pkey = "$src_addr-$dst_addr";
$pkeyl = "$src_addr:src_port-dst_addr:$dst_port";
++$asrc{$src_addr}; #count the same source address
++$adst{$dst_addr}; #count the same dest address
if($scantype =~ /UDP/){

++$pdst_udp{$dst_port};} #count the same dest port
else{++$pdst_tcp{$dst_port};}
++$type{$scantype}; #count the same scan type
++$pair{$pkey}; #count the same connection direction (IP only)
++$pairl{$pkeyl}; #count the same connection direction (IP:port)
#look for OS fingerprint scans
unless (($scantype =~ /SYN\s**S*****/)||($scantype =~ /UDP/)||($scantype =~

/FIN\s***F****/)){
++$fsrc{$src_addr};
++$fdst{$dst_addr};
if($scantype !~ /UDP/){++$fpdst_tcp{$dst_port};}
++$fpr{$pkey};
++$ftyp{$scantype};}

}
#format of alert.YYMMDD
elsif($_ =~ /^[0-9\/]{5}\-[0-9\:\.]{15}\s+\[**\]/){

#look for portscans
if($_ =~ /portscan/i){

#we investigate only the summary of the portscans
if($_ =~

/^([0-9\/]{5})\-([0-9\:\.]{15})\s+\[**\]\s+spp_portscan\:\sEnd\sof\sportscan\sfrom\s([MY
NET0-9\.]+)\s+\(TOTAL\sHOSTS\:([0-9]*)\s+TCP\:([0-9]*)\s+UDP\:([0-9]*)\)\s+\[**\]/){
$date=$1;$time=$2;$portscan_dst=$3;
$nmb_portscanners=$4;$nmb_scanTCPpacks=$5;$nmb_scanUDPpacks=$6;
++$type{"Spp_portscan detect"};
$nmb_portscan{$portscan_dst}+=$nmb_portscanners;
if($nmb_scanTCPpacks != 0){

$portscan_tcp{$portscan_dst}+=$nmb_scanTCPpacks;}
if($nmb_scanUDPpacks != 0){

$portscan_udp{$portscan_dst}+=$nmb_scanUDPpacks;}
}
else{if($vv){print"Ignore intermediate output from spp_portscan $_ \n";}}

}
#parse 'normal' alerts
else{ #need (.*?) stingy instead of greedy matching here...

if($_ =~
/^([0-9\/]{5})\-([0-9\:\.]{15})\s+\[**\]\s+(.*?)\s+\[**\]\s([MYNET0-9\.]+)\:([0-9\w]+)
\s\-\>\s([MYNET0-9\.]+)\:([0-9\w]+)/){
$date=$1;$time=$2;$attacktype=$3;$src_addr=$4;$src_port=$5;
$dst_addr=$6;$dst_port=$7;
$pkey = "$src_addr-$dst_addr";
$pkeyl = "$src_addr:src_port-dst_addr:$dst_port";
++$asrc{$src_addr};
++$adst{$dst_addr};
++$pdst{$dst_port}; #cannot distinguish udp/tcp here easily
if((! defined($portlist{$attacktype}))||

($portlist{$attacktype} !~ /$dst_port/)){
$portlist{$attacktype} .= " $dst_port";}

++$type{$attacktype};
++$pair{$pkey}; #count the same connection direction (IP only)
++$pairl{$pkeyl};} #count the same connection direction (IP:port)

elsif($_ =~
/^([0-9\/]{5})\-([0-9\:\.]{15})\s+\[**\]\s+(.*?)\s+\[**\]\s([MYNET0-9\.]+)\s+\-\>\s([M
YNET0-9\.]+)/){
#signatures that don't involve ports, e.g. ICMP traffic

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

$date=$1;$time=$2;$attacktype=$3;$src_addr=$4;$dst_addr=$5;
$pkey = "$src_addr-$dst_addr";
++$asrc{$src_addr};
++$adst{$dst_addr};
++$type{$attacktype};
++$pair{$pkey};

}
else{

if($v){
print"Ignore line $_ \n";}}
}

}
else{print "!!! Ignore unknown data: $_ \n";}

}

############################
Print various statistics
############################
#Print different scan signatures
if (($t)||($v)&&(defined(%type))){

print "\n\Attack/Scan Types\n=================\n\n" if ($v) ;
foreach $key (sort { $type{$b} <=> $type{$a} }keys(%type)){

if($v){ if ($key =~ /\s*(.*?)\s+/){ $totaltype{$1}+=$type{$key};}}
if((($f)||($v))&&defined($ftyp{$key})){ $fp="\t\($ftyp{$key} fps\)";}
else{ $fp=""; }
print "$type{$key} \t$key $fp\n" if($type{$key} >= $thresh);

}
print "\n\Total Scan Types\n================\n\n" if ($v) ;
foreach $key (sort { $totaltype{$b} <=> $totaltype{$a} }keys(%totaltype)){

print "$totaltype{$key} \t$key \n" if($totaltype{$key} >= $thresh);
}

}
#Print target hosts
if (($d)||($v)&&(defined(%adst))){

print "\n\nTargets\n=======\n\n" if ($v) ;
foreach $key (sort { $adst{$b} <=> $adst{$a} } keys(%adst)){

if((($f)||($v))&&($fdst{$key})){$fp="\t($fdst{$key} fps)";}else{$fp="";}
if(($key =~/\.255\s*$/)||($key =~/\.0\s*$/)){ $BCAST=" BCAST ";}else{ $BCAST="";}
if($key =~/^\s*(224|225|226|227|228|229|230|231|232|233|234|235|236|237|238|239)\./){

$MCAST=" MCAST ";}else{ $MCAST="";}
print "$adst{$key} \t$key $fp $MCAST $BCAST\n" if($adst{$key} >= $thresh);

}
}
if (($f)||($v)&&(defined(%fdst))){

print "\n\nFingerprinted targets\n=====================\n\n" if ($v) ;
foreach $key (sort { $fdst{$b} <=> $fdst{$a} } keys(%fdst)){

$fp="fps";
if(($key =~/\.255\s*$/)||($key =~/\.0\s*$/)){ $BCAST=" BCAST ";}else{ $BCAST="";}
if($key =~/^\s*(224|225|226|227|228|229|230|231|232|233|234|235|236|237|238|239)\./){

$MCAST=" MCAST ";}else{ $MCAST="";}
print "$fdst{$key} \t$key $fp $MCAST $BCAST\n" if($adst{$key} >= $thresh);

}
}
#Print attacking hosts
if (($s)||($v)&&(defined(%asrc))){

print "\n\nAttackers by frequency\n======================\n\n" if ($v) ;
foreach $key (sort {$asrc{$b} <=> $asrc{$a}} keys(%asrc)){

if((($f)||($v))&&($fsrc{$key})){$fp="\t($fsrc{$key} fps)";}else{$fp="";}
if(($key =~/^\s*10\./)||($key

=~/^\s*172\.(16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31)\./)||($key
=~/^\s*192\.168\./)){ $SPOOFED=" SPOOF ";}else{ $SPOOFED="";}

print "$asrc{$key} \t $key $fp $SPOOFED\n" if($asrc{$key} >= $thresh);}
if($vv){print "\n\nAttackers by IP\n======================\n\n" if ($v) ;

foreach $key (sort {$a cmp $b }keys(%asrc)){
if((($f)||($v))&&($fsrc{$key})){$fp="\t($fsrc{$key} fps)";}else{$fp="";}
print "$asrc{$key} \t$key $fp\n" if($asrc{$key} >= $thresh);}}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

}
if (($f)||($v)&&(defined(%fdst))){

print "\n\nFingerprinting attackers\n========================\n\n" if ($v) ;
foreach $key (sort { $fsrc{$b} <=> $fsrc{$a} } keys(%fsrc)){

$fp="fps";
if(($key =~/^\s*10\./)||($key

=~/^\s*172\.(16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31)\./)||($key
=~/^\s*192\.168\./)){ $SPOOFED=" SPOOF ";}else{ $SPOOFED="";}

print "$fsrc{$key} \t $key $fp $SPOOFED\n" if($fsrc{$key} >= $thresh);
}

}
#Print summary from spp_portscan
if (($u)||($v)&&(defined(%nmb_portscan))){

print "\n\nspp_portscan statistics\n=======================\n\n" if ($v) ;
print "* Nmb. of portscans\n";
foreach $key (sort { $nmb_portscan{$b} <=> $nmb_portscan{$a} } keys(%nmb_portscan)){

print"$nmb_portscan{$key} \t$key \n" if($nmb_portscan{$key} >= $thresh);}
if(defined(%portscan_tcp)){

print "* Nmb. of tcp packets\n";
foreach $key (sort { $portscan_tcp{$b} <=> $portscan_tcp{$a} } keys(%portscan_tcp)){

print"$portscan_tcp{$key} \t$key \n" if($portscan_tcp{$key} >= $thresh);}
}
if(defined(%portscan_udp)){

print "* Nmb. of udp packets\n";
foreach $key (sort { $portscan_udp{$b} <=> $portscan_udp{$a} } keys(%portscan_udp)){

print"$portscan_udp{$key} \t$key \n" if($portscan_udp{$key} >= $thresh);}
}

}
#Print attacked/scanned ports
if (($o)||($v)&&(defined(%pdst_tcp))){

print "\n\nScanned TCP ports\n=================\n\n" if ($v) ;
foreach $key (sort { $pdst_tcp{$b} <=> $pdst_tcp{$a} } keys(%pdst_tcp)){

if((($f)||($v))&&($fpdst_tcp{$key})){$fp="\t($fpdst_tcp{$key} fps)";}else{$fp="";}
print "$pdst_tcp{$key} \t$key $fp\n" if($pdst_tcp{$key} >= $thresh);

}
}
if (($o)||($v)&&(defined(%pdst_udp))){

print "\n\nScanned UDP ports\n=================\n\n" if ($v) ;
foreach $key (sort { $pdst_udp{$b} <=> $pdst_udp{$a} } keys(%pdst_udp)){

print "$pdst_udp{$key} \t$key \n" if($pdst_udp{$key} >= $thresh);}
}
if (($o)||($v)&&(defined(%pdst))){

print "\n\nPorts in alert files\n====================\n\n" if ($v) ;
foreach $key (sort { $pdst{$b} <=> $pdst{$a} } keys(%pdst)){

print "$pdst{$key} \t$key \n" if($pdst{$key} >= $thresh);}
}
if (($o)||($v)&&(defined(%portlist))){

print "\n\nPorts by attack\n===============\n\n" if ($v) ;
foreach $key (sort keys(%portlist)){

print "$key \t $portlist{$key} \n";}
}
#Attacker-Target pairs
if (($p)||($v)&&(defined(%pair))){

print "\n\nAttacks/Targets\n===============\n\n" if ($v) ;
foreach $key (sort { $pair{$b} <=> $pair{$a} } keys(%pair)){

if((($f)||($v))&&($fpr{$key})){$fp="\t($fpr{$key} fps)";}else{$fp="";}
print "$pair{$key} \t$key $fp\n" if($pair{$key}>= $thresh);

}
}
#Communicating parties
if (($c)||($v)&&(defined(%pair))){

print "\n\nCommunicating parties\n=====================\n\n" if ($v) ;
foreach $key (sort { $pair{$b} <=> $pair{$a} } keys(%pair)){

if($key =~ /([MYNET0-9\.]+)\-([MYNET0-9\.]+)/){
$src=$1;$dst=$2;
$revkey="$dst-$src";

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

if(defined($pair{$revkey})){
if($src le $dst) {$commkey="$src-$dst";}
else {$commkey="$dst-$src";}
if((($f)||($v))&&($fpr{$key})){$fp="\t(fp)";}else{$fp="";}
if($key eq $commkey)

{$commpair{$commkey} .= " -> $pair{$key} $fp *** ";}
else

{$commpair{$commkey} .= " <- $pair{$key} $fp *** ";}
}

}
}
foreach $commkey (sort keys(%commpair)){

print "$commkey *** $commpair{$commkey} \n";
}

}

