
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Practical Assignment for GIAC Intrusion Analyst Certification

Version 2.8

Alan Woodroffe

SANS Parliament Square, London, June 2001

Assignment 1 - Network Detects

1. Detect 1

Raw data taken from syslog log files generated by a FireWall, only those lines relevant
to the detect are shown (the hostname of the firewall has been changed to
'<firewall> ').

[Reducing the font size used to display the following data will make it more readable.]

Dec 22 15:04:50 <firewall> PPP: Phase: bundle: Network
Dec 22 15:04 :52 <firewall> FILTER: Remote access filter blocks: TCP PPP
[64.124.41.195/8888] ->[62.188.17.65/1488] l=21 f=0x18.
Dec 22 15:05:07 <firewall> FILTER: Remote access filter blocks: TCP PPP
[64.124.41.195/8888] ->[62.188.17.65/1488] l=21 f=0x18.
Dec 22 15:05:3 7 <firewall> FILTER: Remote access filter blocks: TCP PPP
[64.124.41.195/8888] ->[62.188.17.65/1488] l=21 f=0x18.
Dec 22 15:06:37 <firewall> FILTER: Remote access filter blocks: TCP PPP
[64.124.41.195/8888] ->[62.188.17.65/1488] l=21 f=0x18.
Dec 22 15:08:36 <firewall> FILTER: Remote access filter blocks: TCP PPP
[64.124.41.195/8888] ->[62.188.17.65/1488] l=21 f=0x18.

Dec 28 22:52:23 <firewall> PPP: Phase: bundle: Network
Dec 28 22:53:38 <firewall> FILTER: Remote access filter blocks: TCP PPP
[204.71.202.119/5 050]->[62.188.156.49/1309] l=0 f=0x10.
Dec 28 22:54:54 <firewall> FILTER: Remote access filter blocks: TCP PPP
[204.71.202.119/5050] ->[62.188.156.49/1309] l=0 f=0x10.
Dec 28 22:56:11 <firewall> FILTER: Remote access filter blocks: TCP PPP
[204.71.202.119/5 050]->[62.188.156.49/1309] l=0 f=0x10.
Dec 28 22:57:27 <firewall> FILTER: Remote access filter blocks: TCP PPP
[204.71.202.119/5050] ->[62.188.156.49/1309] l=0 f=0x14.

Apr 26 13:45:45 <firewall> PPP: Phase: bundle: Network
Apr 26 13:46:09 <firewall> FILTER : Remote access filter blocks: TCP PPP
[205.188.8.202/5190] ->[62.188.24.76/1040] l=0 f=0x10.
Apr 26 13:47:09 <firewall> FILTER: Remote access filter blocks: TCP PPP
[205.188.8.202/5190] ->[62.188.24.76/1040] l=0 f=0x10.
Apr 26 13:48:09 <firewall> FILTER: Re mote access filter blocks: TCP PPP
[205.188.8.202/5190] ->[62.188.24.76/1040] l=0 f=0x10.
Apr 26 13:49:09 <firewall> FILTER: Remote access filter blocks: TCP PPP
[205.188.8.202/5190] ->[62.188.24.76/1040] l=0 f=0x10.
Apr 26 13:50:09 <firewall> FILTER: Remote access filter blocks: TCP PPP
[205.188.8.202/5190] ->[62.188.24.76/1040] l=0 f=0x10.
Apr 26 13:51:09 <firewall> FILTER: Remote access filter blocks: TCP PPP
[205.188.8.202/5190] ->[62.188.24.76/1040] l=0 f=0x10.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Apr 26 13:52:09 <firewall> FILTER: Remote acc ess filter blocks: TCP PPP
[205.188.8.202/5190] ->[62.188.24.76/1040] l=0 f=0x10.
Apr 26 13:53:09 <firewall> FILTER: Remote access filter blocks: TCP PPP
[205.188.8.202/5190] ->[62.188.24.76/1040] l=0 f=0x14.

Aug 16 07:39:23 <firewall> PPP: Phase: bundle: N etwork
Aug 16 07:40:12 <firewall> FILTER: Remote access filter blocks: TCP PPP
[64.124.41.211/8888] ->[62.188.143.5/1193] l=25 f=0x18.
Aug 16 07:42:12 <firewall> FILTER: Remote access filter blocks: TCP PPP
[64.124.41.211/8888] ->[62.188.143.5/1193] l=25 f=0 x18.
Aug 16 07:44:12 <firewall> FILTER: Remote access filter blocks: TCP PPP
[64.124.41.211/8888] ->[62.188.143.5/1193] l=25 f=0x18.
Aug 16 07:46:12 <firewall> FILTER: Remote access filter blocks: TCP PPP
[64.124.41.211/8888] ->[62.188.143.5/1193] l=25 f=0x1 8.

Aug 20 18:52:07 <firewall> PPP: Phase: bundle: Network
Aug 20 18:52:46 <firewall> FILTER: Remote access filter blocks: TCP PPP
[212.187.177.10/1755] ->[62.188.131.190/1114] l=56 f=0x19.
Aug 20 18:53:50 <firewall> FILTER: Remote access filter blocks: TCP PPP
[212.187.177.10/1755] ->[62.188.131.190/1114] l=56 f=0x19.
Aug 20 18:54:54 <firewall> FILTER: Remote access filter blocks: TCP PPP
[212.187.177.10/1755] ->[62.188.131.190/1114] l=56 f=0x19.
Aug 20 18:55:57 <firewall> FILTER: Remote access filter blocks: TCP PPP
[212.187.177.10/1755] ->[62.188.131.190/1114] l=56 f=0x19.
Aug 20 18:57:01 <firewall> FILTER: Remote access filter blocks: TCP PPP
[212.187.177.10/1755] ->[62.188.131.190/1114] l=56 f=0x19.
Aug 20 18:58:05 <firewall> FILTER: Remote access filter blo cks: TCP PPP
[212.187.177.10/1755] ->[62.188.131.190/1114] l=0 f=0x14.

The above raw data was then translated by a custom written shell script on the UNIX
system where the syslog logs are logged and passed into a spreadsheet to format the
data and add the seconds between successive packets (where required) to produce the
following:

[Reducing the font size used to display the following data will make it more readable.]

Date Time Pro Src_IP SrcP Dst_IP DstP Len Flags
[Notes][Secs]

22/12/00 15:04:50
FireWall OnLine
22/12/00 15:04:52 TCP 64.124.41.195 8888 62.188.17.65 1488 21 ...AP...
8888=ddi -tcp-1
22/12/00 15:05:07 TCP 64.124.41.195 8888 62.188.17.65 1488 21 ... AP... 15
22/12/00 15:05:37 TCP 64.124.41.195 8888 62.188.17.65 1488 21 ...AP... 30
22/12/00 15:06:37 TCP 64.124.41.195 8888 62.188.17.65 1488 21 ...AP... 60
22/12/00 15:08:36 TCP 64.124.41.195 8888 62.188.17.65 1488 21 ...AP... 119

28/12/00 22:52:23
FireWall OnLine
28/12/00 22:53:38 TCP 204.71.202.119 5050 62.188.156.49 1309 0 ...A....
5050=mmcc
28/12/00 22:54:54 TCP 204.71.202.119 5050 62.188.156.49 1309 0 ...A.... 76
28/12 /00 22:56:11 TCP 204.71.202.119 5050 62.188.156.49 1309 0 ...A.... 77
28/12/00 22:57:27 TCP 204.71.202.119 5050 62.188.156.49 1309 0 ...A.R.. 76

26/04/01 13:45:45
FireWall OnLine
26/04/01 13:46:09 TCP 205.188.8.202 5190 62.188.24.76 1040 0 ...A....
5190=aol
26/04/01 13:47:09 TCP 205.188.8.202 5190 62.188.24.76 1040 0 ...A.... 60
26/04/01 13:48:09 TCP 205.188.8.202 5190 62.188.24.76 1040 0 ...A.... 60
26/04/01 13:49:09 TCP 205.188.8.202 5190 62.188.24.76 1040 0 ...A.... 60
26/04/01 13:50:09 TCP 205.188.8.202 5190 62.188.24.76 1040 0 ...A.... 60
26/04/01 13:51:09 TCP 205.188.8.202 5190 62.188.24.76 1040 0 ...A.... 60

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

26/04/01 13:52:09 TCP 205.188.8.202 5190 62.188.24.76 1040 0 ...A.... 60
26/04/01 13:53:09 TCP 205.188.8.202 5190 62.188.24.76 1040 0 ...A.R.. 60

16/08/01 07:39:23
FireWall OnLine
16/08/01 07:40:12 TCP 64.124.41.211 8888 62. 188.143.5 1193 25 ...AP...
8888=ddi -tcp-1
16/08/01 07:42:12 TCP 64.124.41.211 8888 62.188.143.5 1193 25 ...AP... 120
16/08/01 07:44:12 TCP 64.124.41.211 8888 62.188.143.5 1193 25 ...AP... 120
16/08/01 07:46:12 TCP 64.124.41.211 8888 62.188.1 43.5 1193 25 ...AP... 120

20/08/01 18:52:07
FireWall OnLine
20/08/01 18:52:46 TCP 212.187.177.10 1755 62.188.131.190 1114 56 ...AP..F
1755=ms-streaming
20/08/01 18:53:50 TCP 212.187.177.10 1 755 62.188.131.190 1114 56 ...AP..F 64
20/08/01 18:54:54 TCP 212.187.177.10 1755 62.188.131.190 1114 56 ...AP..F 64
20/08/01 18:55:57 TCP 212.187.177.10 1755 62.188.131.190 1114 56 ...AP..F 64
20/08/01 18:57:01 TCP 212.187.177.10 1755 62.188.131.190 1114 56 ...AP..F 64
20/08/01 18:58:05 TCP 212.187.177.10 1755 62.188.131.190 1114 0 ...A.R.. 64

1.1. Source of trace
My (small business) network.

1.2. Detect was generated by
Firewall software causing syslog entries to be generated in response to
violation of firewall access filters. The firewall software provides corporate
Internet access via a dial -up on demand modem. The firewall device refers to
access to itself (any data destined for one of its port's IP addresses) as 'remote
access' .

IP addresses are a ssigned dynamically by the company's Internet Service
Provider (ISP) at every dial -on-demand connection, the company in question
does not use fixed IP addresses. Therefore the 'internal' IP addresses have not
been sanitised.

The firewall performs Network Address Translation for any data being passed
from the internal company networks out to the Internet and applies stateful
analysis of inbound data to decide if it is 'allowed' data and to which internal
address to route it.

1.2.1. Firewall syslog format
Permitted or denied access to the firewall's IP addresses is configured within
the firewall's filters and any violation of these filter tables is logged to a syslog
server as:

<Date> <Time> <Hostname> FILTER: Remote access filter blocks:
<Protocol> <Interface> [< SrcIP>/<SrcPort>] ->[<DstIP>/<DstPort>]
l=<Length> f=<Flags>.

For example:

Dec 22 15:04:52 <firewall> FILTER: Remote access filter blocks: TCP
PPP [64.124.41.195/8888] ->[62.188.17.65/1488] l=21 f=0x18.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Various firewall activity is logged to its syslog se rver and some of this
diagnostic data is very useful when diagnosing alleged intrusion activity. One
such type of logging is that generated when the firewall dials up its Internet
link and goes online:

<Date> <Time> <Hostname> <Interface>: <Message>

For example (when going online):

Dec 22 15:04:50 <firewall> PPP: Phase: bundle: Network

The firewall refers to its dial -up interface by the name 'PPP' (for Point -to-Point
Protocol). Log data was selected by various criteria, including the value of the
<Interface> field being 'PPP'; as this field is therefore constant it was not
included in the translated, formatted data.

1.2.2. Filtered and processed data format
All date formats are shown as DD/MM/YY.

The data logged by the syslog server from the firewall is fil tered in real-time
by a custom written filtering/formatting shell script which issues UNIX
'nslookup' calls to a DNS server in an attempt to identify the DNS name of any
IP address which cause 'Remote access' violations. The script also simplifies
some of the gathered data (e.g. IP address and ports '[1.2.3.4/5] -
>[11.22.33.44/55]' into '1.2.3.4 5 11.22.33.44 55') and translates computer
oriented data into human oriented data (e.g. TCP flags '0x18' into '...A.R..'
meaning the TCP flags 'Ack' and 'Reset' are set).

The output of the above script is displayed on a monitor and is used to alert the
company's Data Security staff (the author) to any potential intrusion.

1.3. Probability that source address was spoofed
Very low.

All the detected packets are TCP which r equire a three-way handshake for a
connection to become 'established'. The observed packets (data, FIN and
RST) should only be observed after the handshake. It is possible to subvert
the three-way handshake but it is unlikely that these TCP sessions were
subverted. It is unlikely that these are crafted packets (not needing the three -
way handshake).

1.4. Description of the attack
These intercepts are examples of observing someone else's data immediately
following connection to the Internet. The detection is a n example of a 'false
positive' (i.e. a non-malicious event which caused an alert).

Dial-up on demand Internet access mechanisms only 'connect' to the Internet
when instructed to do so. Reasons for this are typically of two types:
randomly timed instance s when staff within the network served by the firewall
require access to Internet resources (e.g. HTTP, SMTP); and [possibly regular]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

instances when the company's email equipment checks to see if there is in -
bound email for company recipients (e.g. POP3).

Internet access is provided to this company by one of the largest ISPs in the
UK and their IP address re -use policy is unknown but presumed (due to the
nature of these intercepts) to be that IP addresses used by one connected site
are freed when that site disconnects from the Internet and are within a few
minutes made available to others connecting customers.

1.5. Attack Mechanism
This is not an attack but is included to highlight scenarios observed by Internet
users who do not have permanent links to the Inter net.

The five above examples of this scenario show TCP packets attempting to
come into to company network from various sites on the Internet and being
rejected by the firewall (the firewall is configured to silently discard such
packets, it does not send any response (e.g. TCP 'Reset') to the sender.

The fidelity of the data logged by the firewall does not include TCP sequence
numbers so we cannot determine if the observed packets are repetitions of the
same packets (TCP retransmissions) or packets contai ning different data.
However, the times of receipt give a strong indication that these are TCP
retransmissions (Stevens, p. 298 -299).

When a TCP connection fails due to one side of the connection being
unavailable (e.g. system crashed or network link dow n) the severed side (or
possibly both sides in the case of a severed network link) start TCP
retransmission where they re -send data for which they have not received and
'Acknowledgement' packet. To avoid congestion they wait for a period of
time between each re-sending of a packet. After a period of time sending
unsuccessful retransmissions a systems should give up and abort the
connection by sending a TCP 'Reset' packet.

Some TCP implementations 'exponentially backoff' when sending re -
transmissions mean ing that the delay between successive retransmitted packets
increases. BSD implementations double their delay up to a period of 64
seconds and then persist at 64 seconds until sending a RST after around 9
minutes. Some systems (including early Solaris sy stems) send their RST
packet after only 2 minutes of retransmissions.

The example shown dated 22/12/00 shows the first packet being received only
2 seconds after the firewall went on -line and exponential delays from 15 to
120 seconds (shown as 119 seconds due to timing alignment differences
between the sender and the firewall). The firewall log showed that the firewall
stayed on-line for several minutes after these packets were logged: it is strange
that no RST packet was observed.

The example shown date d 28/12/00 shows the first packet being received 15
seconds after the firewall went on -line and fixed delays of around 75 seconds.
A terminating RST packet was observed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The example shown dated 26/04/01 shows the first packet being received 24
seconds after the firewall went on -line and fixed delays of 60 seconds. A
terminating RST packet was observed.

The example shown dated 16/08/01 shows the first packet being received 49
seconds after the firewall went on -line and fixed delays of 120 seconds. The
firewall log showed that the firewall stayed on -line for several minutes after
these packets were logged: it is strange that no RST packet was observed.

The example shown dated 20/08/01 shows the first packet being received 39
seconds after the firewall wen t on-line and fixed delays of 64 seconds. A
terminating RST packet was observed.

The key to recognising these occurrences is that the first packet observed will
be observed a period of time less than a retransmission time after the firewall
goes on-line (e.g. the example shown from 26/04/01 with a first packet being
received 24 seconds after the firewall went on -line 60 seconds between
subsequent packets).

1.6. Correlation
None found.

1.7. Evidence of active targeting
This is not active targeting.

1.8. Severity
The severity formula is:

(criticality + lethality) - (system countermeasures + network countermeasures)

Each variable has a value from 1 (lowest) to 5 (highest).

Criticality: 5, the firewall appears to be the target (due to NAT).

Lethality: 1, the attack is unl ikely to succeed (if it had not been blocked by
the firewall the destination would have sent a TCP Reset).

System countermeasures: 5, the Operating System will send a TCP Reset.

Network countermeasures: 5, the traffic was blocked by the firewall.

(5 + 1) - (5 + 5) = -4

1.9. Defensive Recommendations
None. The 'attack' was silently blocked by the firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1.10. Multiple choice test question
In a network environment where dial -on-demand Internet access is provided,
which of the following is evidence of TCP data th at was intended for a former
user of a dynamically assigned IP address?

a. RIP data being received immediately after a dial -on-demand session
starting.
b. Outbound data being sent to a DNS server immediately after a dial -on-
demand session starting.
c. Repeated TCP packets being received for a not open address/port within a
few seconds of a dial -on-demand session starting.
d. Multiple TCP 'Reset' packets being observed to the same address/port
destination.

Answer: c

2. Detect 2

Raw data taken from syslog lo g files generated by FireWall and UNIX host (DNS
nslookup enquiries in automated response to firewall alerts), only those lines relevant to
the detect are shown.

Aug 16 07:44:12 <firewall> FILTER: Remote access filter blocks: TCP PPP
[64.124.41.211/8888] ->[62.188.143.5/1193] l=25 f=0x18.
Aug 16 21:24:06 <unix_host> unix: UX:logger:INFO:64.124.41.211 DNS Name: Name:
n211.napster.com
Aug 16 07:44:31 <firewall> FILTER: Remote access filter blocks: ICMP PPP
[158.43.254.146/11] ->[62.188.143.5/11] l=32 f=0x0.
Aug 16 21:24:25 <unix_host> unix: UX:logger:INFO:158.43.254.146 DNS Name: Name:
pos0-1.cr2.lnd5.gbb.uk.uu.net
Aug 16 07:44:36 <firewall> FILTER: Remote access filter blocks: ICMP PPP
[146.188.7.234/11] ->[62.188.143.5/11] l=32 f=0x0.
Aug 16 21:24:30 <un ix_host> unix: UX:logger:INFO:146.188.7.234 DNS Name: Name:
so-1-0-0.TR2.LND2.Alter.Net
Aug 16 07:44:41 <firewall> FILTER: Remote access filter blocks: ICMP PPP
[146.188.13.33/11] ->[62.188.143.5/11] l=32 f=0x0.
Aug 16 21:24:35 <unix_host> unix: UX:logge r:INFO:146.188.13.33 DNS Name: Name:
so-0-0-0.IR1.DCA6.Alter.Net
Aug 16 07:44:46 <firewall> FILTER: Remote access filter blocks: ICMP PPP
[152.63.9.210/11] ->[62.188.143.5/11] l=32 f=0x0.
Aug 16 21:24:40 <unix_host> unix: UX:logger:INFO:152.63.9.210 DNS Name: Name:
0.so-0-0-0.TR1.DCA6.ALTER.NET
Aug 16 07:44:53 <firewall> FILTER: Remote access filter blocks: ICMP PPP
[152.63.38.117/11] ->[62.188.143.5/11] l=32 f=0x0.
Aug 16 21:24:47 <unix_host> unix: UX:logger:INFO:152.63.38.117 DNS Name: Name:
POS6-0.BR3.DCA6.ALTER.NET
Aug 16 07:45:04 <firewall> FILTER: Remote access filter blocks: ICMP PPP
[209.249.203.34/11] ->[62.188.143.5/11] l=32 f=0x0.
Aug 16 21:24:58 <unix_host> unix: UX:logger:INFO:209.249.203.34 DNS Name: Name:
core1 -core3-oc48.iad1.above.n et
Aug 16 07:45:11 <firewall> FILTER: Remote access filter blocks: ICMP PPP
[208.184.210.90/11] ->[62.188.143.5/11] l=32 f=0x0.
Aug 16 21:25:05 <unix_host> unix: UX:logger:INFO:208.184.210.90 DNS Name: Name:
main1colo1 -core5-oc12.sjc2.above.net
Aug 16 07 :45:16 <firewall> FILTER: Remote access filter blocks: ICMP PPP
[208.184.139.247/11] ->[62.188.143.5/11] l=32 f=0x0.
Aug 16 21:25:10 <unix_host> unix: UX:logger:INFO:208.184.139.247 DNS Name: Name:
208.184.139.247.napster.com

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Aug 16 07:46:12 <firewall> F ILTER: Remote access filter blocks: TCP PPP
[64.124.41.211/8888] ->[62.188.143.5/1193] l=25 f=0x18.
Aug 16 21:26:05 <unix_host> unix: UX:logger:INFO:64.124.41.211 DNS Name: Name:
n211.napster.com

The above raw data was then translated by a custom writte n shell script on the UNIX
system where the syslog logs are logged and passed into a spreadsheet to format the
data to produce the following:

Date Time Pro Src_IP SrcP Dst_IP DstP Len Flags [Notes]
16/08/01 07:44:12 TCP 64.124 .41.211 8888 62.188.143.5 1193 25 ...AP...
16/08/01 21:24:06 DNS 64.124.41.211
n211.napster.com
16/08/01 07:44:31 ICMP 158.43.254.146 11 62.188.143.5 11 32 0x0
16/08/01 21:24:25 DNS 158.43.254.146 pos0 -
1.cr2.lnd5.gbb.uk.uu.net
16/08/01 07:44:36 ICMP 146.188.7.234 11 62.188.143.5 11 32 0x0
16/08/01 21:24:30 DNS 146.188.7.234 so -1-0-
0.TR2.LND2.Alter.Net
16/08/01 07:44:41 I CMP 146.188.13.33 11 62.188.143.5 11 32 0x0
16/08/01 21:24:35 DNS 146.188.13.33 so -0-0-
0.IR1.DCA6.Alter.Net
16/08/01 07:44:46 ICMP 152.63.9.210 11 62.188.143.5 11 32 0x0
16/08/01 21:24:40 DNS 152.63.9 .210 0.so -0-
0-0.TR1.DCA6.ALTER.NET
16/08/01 07:44:53 ICMP 152.63.38.117 11 62.188.143.5 11 32 0x0
16/08/01 21:24:47 DNS 152.63.38.117 POS6 -
0.BR3.DCA6.ALTER.NET
16/08/01 07:45:04 ICMP 209.249.203.34 11 62.188.143.5 11 32 0x0
16/08/01 21:24:58 DNS 209.249.203.34 core1 -
core3 -oc48.iad1.above.net
16/08/01 07:45:11 ICMP 208.184.210.90 11 62.188.143.5 11 32 0x0
16/08/01 21:25:05 DNS 208.184.210.90
main1colo1 -core5-oc12.sjc2.above.net
16/08/01 07:45:16 ICMP 208.184.139.247 11 62.188.143.5 11 32 0x0
16/08/01 21:25:10 DNS 208.184.139.247
208.184.139.24 7.napster.com
16/08/01 07:46:12 TCP 64.124.41.211 8888 62.188.143.5 1193 25 ...AP...
16/08/01 21:26:05 DNS 64.124.41.211
n211.napster.com

2.1. Source of trace
My (small business) network.

2.2. Detect was generated by
Firewall software causing syslog entries to be generated in response to
violation of firewall access filters. See Detect 1 for details.

It should be noted that the dial -on-demand firewall was online for several
minutes before these packets were observed, it is not likely that this data was a
remnant of previous use of the dynamically assigned IP address.

2.2.1. Firewall syslog format
Automated DNS lookups performed by the UNIX host where the syslog logs
are logged appear formatted as:

<Date> <Time> <Hostname> unix : UX:logger:INFO:<IPAddr> DNS Name: Name:
<DNSName>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

For example:

Aug 16 21:20:06 <unix_host> unix: UX:logger:INFO:64.124.41.211 DNS
Name: Name: n211.napster.com

Other lines are formatted as detailed in Detect 1.

It should be noted that there are timing differences between the times logged
to the syslog server by the firewall and those logged by the UNIX system
holding the syslog logs. The dates and time logged by a syslog server are
those supplied by the logging equipment, not the syslog server. The firewall
being used has a unreliable real -time clock and it is apparent that sometimes
the firewall's clock was not correctly set (as on this occasion). This anomaly
highlights the importance of ensuring that clocks and timing generators
used in all equipment which will be collated should be consistent.

2.2.2. Filtered and processed data format
The data logged by the syslog server from the firewall is filtered in real -time
as detailed in Detect 1. Lines shown here for ICMP packets (not shown in
Detect 1 above) include a flag field which shows the ICMP message code (in
hexadecimal) contained within the packet.

2.3. Probability that source address was spoofed
Medium.

ICMP message type 11 message code 0 packets are used to indicate 'Time To
Live exceeded in transit ' (http://www.iana.org/assignments/icmp -parameters)
and they are used as a one-way error indication when the TTL counter in an IP
packet decrements to zero on route to its destination before reaching that
destination. It is unlikely that these packets would have been crafted with
spoof source addresses because, other than consuming a small amount of
network bandwidth and processor time, they would have no detrimental effect
on the recipient.

2.4. Description of the attack
This intercept is the result of a traceroute command being issued from an
internal (on the protected side of the firewall) Windows system. It appears to
be an attack on the Internet interface of the firewall but it can be shown tha t
this appearance is a result of the NAT mechanism used within the firewall (see
'attack mechanism' below).

The Windows traceroute command (named 'tracert') works by sending ICMP
'echo request' packets towards the host being traced. The command first sen ds
three packets with their TTL set to 1 which will cause the first recipient
(possibly a router) to decrement the TTL to 0 and then, if it is not the
destination, report that it cannot forward the packet because the TTL is 0. The
reporting back is done b y sending an ICMP 'Time To Live exceeded in transit'
from the intermediate router to the tracert host thus identifying the IP address
of the intermediate router. Subsequent packets are sent by 'tracert' with

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

increasing TTL values so that routers nearer to the destination are identified
until the destination itself is reached.

The firewall is configured to reject packets directed at it from IP addresses that
are not in the firewall's table of active connections (the firewall is 'stateful').
Therefore if a n ICMP 'Time exceeded' message is received from an IP address
to which no outbound packet has been sent then the firewall will reject the
packet thinking it to be unsolicited.

2.5. Attack Mechanism
This is not an attack but is included to provide an example of a scenario that
may be perceived to be an attack. If recognised, an 'attack' of this type can
quickly be disregarded, leaving analysts to concentrate on other more
important scenarios.

Log analysis was carried out to find if any 'tracert' had been logged
immediately prior to the 'attack'. Selected lines from the syslog are shown:

Aug 16 07:44:31 <firewall> FILTER: Outbound filter accepts : ICMP ep1
[<Win_Host>/8] ->[64.124.41.211/8] l=68 f=0x0.
Aug 16 07:44:31 <firewall> NAT: Open ICMP [<Win_Host>/3] ->[62.188.143.5/3] -
>[64.124.41.211/3].
Aug 16 07:44:31 <firewall> NAT: Close ICMP [<Win_Host>/3] ->[62.188.143.5/3] -
>[64.124.41.211/3] Pkts 3 0, Bytes 276 0.
Aug 16 07:44:31 <firewall> FILTER: Remote access filter blocks: ICMP PPP
[158.43.254.146/11] ->[62.188.1 43.5/11] l=32 f=0x0.

Aug 16 07:44:34 <firewall> FILTER: Outbound filter accepts : ICMP ep1
[<Win_Host>/8] ->[64.124.41.211/8] l=68 f=0x0.
Aug 16 07:44:34 <firewall> NAT: Open ICMP [<Win_Host>/3] ->[62.188.143.5/3] -
>[64.124.41.211/3].
Aug 16 07:44:35 <firewa ll> NAT: Close ICMP [<Win_Host>/3] ->[62.188.143.5/3] -
>[64.124.41.211/3] Pkts 3 0, Bytes 276 0.

Aug 16 07:44:36 <firewall> FILTER: Outbound filter accepts : ICMP ep1
[<Win_Host>/8] ->[64.124.41.211/8] l=68 f=0x0.
Aug 16 07:44:36 <firewall> NAT: Open ICMP [< Win_Host>/3] ->[62.188.143.5/3] -
>[64.124.41.211/3].
Aug 16 07:44:36 <firewall> NAT: Close ICMP [<Win_Host>/3] ->[62.188.143.5/3] -
>[64.124.41.211/3] Pkts 3 0, Bytes 276 0.
Aug 16 07:44:36 <firewall> FILTER: Remote access filter blocks: ICMP PPP
[146.188.7.234 /11]->[62.188.143.5/11] l=32 f=0x0.

Aug 16 07:44:39 <firewall> FILTER: Outbound filter accepts : ICMP ep1
[<Win_Host>/8] ->[64.124.41.211/8] l=68 f=0x0.
Aug 16 07:44:39 <firewall> NAT: Open ICMP [<Win_Host>/3] ->[62.188.143.5/3] -
>[64.124.41.211/3].
Aug 16 0 7:44:40 <firewall> NAT: Close ICMP [<Win_Host>/3] ->[62.188.143.5/3] -
>[64.124.41.211/3] Pkts 3 0, Bytes 276 0.

<similar lines removed for brevity>

Aug 16 07:45:15 <firewall> FILTER: Outbound filter accepts : ICMP ep1
[<Win_Host>/8] ->[64.124.41.211/8] l=68 f=0x0.
Aug 16 07:45:15 <firewall> NAT: Open ICMP [<Win_Host>/3] ->[62.188.143.5/3] -
>[64.124.41.211/3].
Aug 16 07:45:16 <firewall> NAT: Close ICMP [<Win_Host>/3] ->[62.188.143.5/3] -
>[64.124.41.211/3] Pkts 3 0, Bytes 276 0.
Aug 16 07:45:16 <firewall> FILTER: Remote access filter blocks: ICMP PPP
[208.184.139.247/11] ->[62.188.143.5/11] l=32 f=0x0.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Aug 16 07:45:19 <firewall> FILTER: Outbound filter accepts : ICMP ep1
[<Win_Host>/8] ->[64.124.41.211/8] l=68 f=0x0.
Aug 16 07:45:19 <firewall> NAT: Open ICMP [<Win_H ost>/3] ->[62.188.143.5/3] -
>[64.124.41.211/3].
Aug 16 07:45:36 <firewall> NAT: Close ICMP [<Win_Host>/3] ->[62.188.143.5/3] -
>[64.124.41.211/3] Pkts 3 3 , Bytes 276 276.

Note[1]: References to the IP address of the issuing Windows host systems
have been changed to <Win_Host>.

Questions arise from analysis of this information:

a) Why does the firewall report ' Open ICMP [<Win_Host>/3] -

>[62.188.143.5/3] ->[64.124.41.211/3]' ? ICMP
message type 3 is 'Destination unreachable' which is not appropriate in
this scenario . The <Win_Host> system asked for
'[<Win_Host>/8]->[64.124.41.211/8] l=68 f=0x0 '
which is ICMP message type 8, message code 0 (echo request).

b) Why does the second group of 3 ICMP packets (sent around 07:44:34 -

07:44:35) not show a corresponding 'time excee ded' response?

Further analysis was carried out to establish the characteristics of tracert's
operation in a controlled environment so that comparisons could be made to
this observation 'from the wild'. A tracert command was issued from another
Windows system, through a router to the same firewall to a target [Solaris]
system behind the firewall. Microsoft's 'Network Monitor' was used to
monitor packets in/out of the issuing Windows system; tcpdump was used on
both the router and the target system; syslo g entries (as above) were collected
from the firewall. The resultant intelligence is shown (some columns have
been removed to save page width in the interests of readability):

sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>

sender:(NetMon) ICMP Time Exceeded while trying to deliver to <target>
<router> <sender>
sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
sender:(NetMon) ICMP Time Exceeded while trying to deliver to <target>
<router> <sender>
sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
sender:(NetMon) ICMP Time Exceeded while trying to deliver to <ta rget>
<router> <sender>
sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
sender:(NetMon) ICMP Time Exceeded while trying to deliver to <target>
<firewall_inside> <sender>
sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
sender:(NetMon) ICMP Time Exceeded while trying to deliver to <target>
<firewall_inside> <sender>
sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
sender:(NetMon) ICMP Time Exceeded while trying to deliver to <target>
<firewall_inside> <sender>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
sender:(NetMon) ICMP Echo Reply, To <sender> From <target>
<target> <sender>
sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
sender:(NetMon) ICMP Echo Re ply, To <sender> From <target>
<target> <sender>
sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
sender:(NetMon) ICMP Echo Reply, To <sender> From <target>
<target> <sender>

router:(tcpdump) 12:23:45.39 <sender> > <target>: icmp: echo request [ttl 1] (id
44299)
router:(tcpdump) 12:23:45.39 <sender> > <target>: icmp: echo request [ttl 1] (id
44555)
router:(tcpdump) 12:23:45.40 <sender> > <target>: icmp: echo req uest [ttl 1] (id
44811)
router:(tcpdump) 12:23:46.39 <sender> > <target>: icmp: echo request (ttl 2, id
45067)
router:(tcpdump) 12:23:46.39 <sender> > <target>: icmp: echo request (ttl 2, id
45323)
router:(tcpdump) 12:23:46.39 <sender> > <target>: icmp: echo request (ttl 2, id
45579)
router:(tcpdump) 12:23:47.39 <sender> > <target>: icmp: echo request (ttl 3, id
45835)
router:(tcpdump) 12:23:47.40 <sender> > <target>: icmp: echo request (ttl 3, id
46091)
router:(tcpdump) 12:23:47.40 <sender> > <target >: icmp: echo request (ttl 3, id
46347)

firewall:(syslog) Aug 31 12:23:49 <firewall> FILTER: Outbound filter accepts : ICMP
ep0 [<sender>/8] ->[<target>/8] l=68 f=0x0.
firewall:(syslog) Aug 31 12:23:49 <firewall> NAT: Open ICMP [<sender>/1] -
>[<firewall_dmz >/1]->[<target>/1].
firewall:(syslog) Aug 31 12:24:05 <firewall> NAT: Close ICMP [<sender>/1] -
>[<firewall_dmz>/1] ->[<target>/1] Pkts 3 3, Bytes 276 276.

target:(tcpdump) 12:23:48.428992 <firewall_dmz> > <target>: icmp: echo request
[ttl 1]
target:(tcpdum p) 12:23:48.429302 <target> > <firewall_dmz>: icmp: echo reply (DF)
target:(tcpdump) 12:23:48.432430 <firewall_dmz> > <target>: icmp: echo request
[ttl 1]
target:(tcpdump) 12:23:48.432510 <target> > <firewall_dmz>: icmp: echo reply (DF)
target:(tcpdump) 12:23:48.436247 <firewall_dmz> > <target>: icmp: echo request
[ttl 1]
target:(tcpdump) 12:23:48.436317 <target> > <firewall_dmz>: icmp: echo reply (DF)

These logs were then placed in order of occurrence so that the flow of data
may be observed, thus:

sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
router:(tcpdump) 12:23:45.39 <sender> > <target>: icmp: echo request [ttl 1] (id
44299)
sender:(NetMon) ICMP Time Exceeded while trying to deliver to <target>
<router> <sender>

sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
router:(tcpdump) 12:23:45.39 <sender> > <target>: icmp: echo request [ttl 1] (id
44555)
sender:(NetMon) ICMP Time Exceeded while trying to deliver to <target>
<router> <sender>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
router:(tcpdump) 12:23:45.40 <sender> > <target>: icmp: echo request [ttl 1] (id
44811)
sender:(NetMon) ICMP Time Exceeded while trying to deliver to <target>
<router> <sender>

sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
router:(tcpdump) 12:23:46.3 9 <sender> > <target>: icmp: echo request (ttl 2, id
45067)
sender:(NetMon) ICMP Time Exceeded while trying to deliver to <target>
<firewall_inside> <sender>

sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
router:(tcpdump) 12:23:46.39 <sender> > <target>: icmp: echo request (ttl 2, id
45323)
sender:(NetMon) ICMP Time Exceeded while trying to deliver to <target>
<firewall_inside> <sender>

sender:(NetMon) ICMP E cho, From <sender> To <target>
<sender> <target>
router:(tcpdump) 12:23:46.39 <sender> > <target>: icmp: echo request (ttl 2, id
45579)
sender:(NetMon) ICMP Time Exceeded while trying to deliver to <target>
<firewal l_inside> <sender>

sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target>
router:(tcpdump) 12:23:47.39 <sender> > <target>: icmp: echo request (ttl 3, id
45835)
firewall:(syslog) Aug 31 12:23:49 <firewall> FILTER: Outbound filter accepts : ICMP
ep0 [<sender>/8] ->[<target>/8] l=68 f=0x0.
firewall:(syslog) Aug 31 12:23:49 <firewall> NAT: Open ICMP [<sender>/1] -
>[<firewall_dmz>/1] ->[<target>/1].
target:(tcpdump) 12:23:48.428992 <firewall_dmz> > <target>: icmp: echo request
[ttl 1]
target:(tcpdump) 12:23:48.429302 <target> > <firewall_dmz>: icmp: echo reply (DF)
sender:(NetMon) ICMP Echo Reply, To <sender> From <target>
<target> <sender>

sender:(NetMon) ICMP Echo, From <sende r> To <target>
<sender> <target>
router:(tcpdump) 12:23:47.40 <sender> > <target>: icmp: echo request (ttl 3, id
46091)
target:(tcpdump) 12:23:48.432430 <firewall_dmz> > <target>: icmp: echo request
[ttl 1]
target:(tcpdump) 12:23:48.4 32510 <target> > <firewall_dmz>: icmp: echo reply (DF)
sender:(NetMon) ICMP Echo Reply, To <sender> From <target>
<target> <sender>

sender:(NetMon) ICMP Echo, From <sender> To <target>
<sender> <target >
router:(tcpdump) 12:23:47.40 <sender> > <target>: icmp: echo request (ttl 3, id
46347)
target:(tcpdump) 12:23:48.436247 <firewall_dmz> > <target>: icmp: echo request
[ttl 1]
target:(tcpdump) 12:23:48.436317 <target> > <firewall_dmz>: icmp: echo reply (DF)
sender:(NetMon) ICMP Echo Reply, To <sender> From <target>
<target> <sender>

firewall:(syslog) Aug 31 12:24:05 <firewall> NAT: Close ICMP [<sender>/1] -
>[<firewall_dmz>/1] ->[<target>/1] Pkts 3 3, Bytes 276 276.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Note[1]: The W indows commands 'tracert -d -h 1 <target> ',
'tracert -d -h 2 <target> ' and 'tracert -d -h 3
<target> ' (with incrementing '-h' maximum hop count arguments) were
used to verify that issuing ICMP echo requests with a hop count up to and
including the firewall do not cause the firewall to open an ICMP path to the
target. Only the final tracert command (with ' -h 3' to use a maximum hop
count of 3) caused the 'ICMP ep0 [<sender>/8] ->[<target>/8]
l=68 f=0x0 ' syslog entry from the firewall.

Note[2]: The router is a UNIX host (UnixWare), tcpdump (Version 3.0.4)
running on one of its interfaces does not log packets transmitted by that
interface, only those received by it.

Note[3]: The target system is also a UNIX host (Solaris), tcpdump (Version
3.6) running on one of its interfaces logs packets both transmitted and
received by that interface.

Note[4]: The firewall allows ICMP packets to reach <target> and records the
number of packets sent/received and total number of bytes sent/received (see
last line in the above traces). The firewall records that 3 packets were sent [by
the firewall, to <target>] and that 3 were received, 'Pkts 3 3 ' respectively.
The firewall records that 276 bytes were sent in total in these packets and that
276 bytes were received, 'Bytes 276 276 ' respectively. It we assume that
each packets was the same size then dividing 276 by 3 gives us 92 bytes per
packet. Using our knowledge of IP and ICMP headers we can decompose the
byte count into: IP header (20 bytes), ICMP header (4 bytes) leavin g 68 bytes
for ICMP data content. Checking the firewall log entries we can see that the
firewall does indeed log the data length as 68 (' l=68').

The questions from above were then re -visited:

a) This time the firewall reports ' Open ICMP [<sender>/1] -

>[<firewall_dmz>/1]->[<target>/1] ' when the Win_Host
system requested '[<sender>/8]->[<target>/8] l=68 f=0x0 '.
Could it be that the firewall is incorrectly reporting the outbound ICMP
message type? Bear in mind that TCP and UDP packets contain their port
number in the 16 bits at byte offsets 2 and 3 in TCP and UDP packets and
that an ICMP packet's message type is an 8 bit value located at byte offset
0 in the ICMP packet. Offset 2 and 3 in ICMP packets contain a 16 -bit
checksum; could it be that this is being incorrectly interpreted as the
message type? This could account for the fact that it is recorded
differently on different occasions.

b) In this example we either see a 'time exceeded' response or the final 'echo

reply' for all sent packets. An explanation for the lack of responses in the
above 'real world' example could be that the items of equipment that
should have replied were perhaps configured not to send ICMP error
packets.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

2.6. Correlation
Searching yahoo.com for 'ICMP 11' revealed a report at
//false.net/ipfilter/2001_03/0285.html which discusses similar anomalies.

2.7. Evidence of active targeting
This is not active targeting.

2.8. Severity
The severity formula exp lained in Detect 1 above.

Criticality: 5, the firewall appears to be the target (due to NAT).

Lethality: 3, this may be a DoS attack on the firewall (a recognised DoS attack
would be a 4).

System countermeasures: 3, the Operating System should cope with the data.

Network countermeasures: 5, the traffic was blocked by the firewall.

(5 + 3) - (3 + 5) = 0

2.9. Defensive Recommendations
None. The 'attack' was silently blocked by the firewall. It may be prudent in
this type of environment (i.e. using a firewal l with Network Address
Translation) to modify firewall rules to silently discard inbound ICMP 'time
exceeded in transit' packets as the firewall may not be able to determine to
which 'inside' IP address it should forward them.

2.10. Multiple choice test question
When the Windows 'tracert' command is used, why might some responses
appear to be missing?

a. some ICMP packets are often routed to the wrong destination.
b. intermediate routers may be configured not to send ICMP error packets.
c. firewalls never pass o n ICMP error packets.
d. some systems respond to 'tracert' with packets using unrecognisable
protocols.

Answer: b

3. Detect 3

Raw data taken from syslog log files generated by FireWall, only those lines relevant to
the detect are shown.

Apr 17 14:27:35 <f irewall> FILTER: Remote access filter blocks: UDP PPP
[62.188.26.244/1028] ->[62.188.26.92/5632] l=2.
Apr 17 14:27:35 <firewall> FILTER: Remote access filter blocks: UDP PPP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[62.188.26.244/1028] ->[62.188.26.92/22] l=2.
Apr 17 14:29:03 <firewall> FILTER: Rem ote access filter blocks: UDP PPP
[62.188.26.244/1029] ->[62.188.26.92/5632] l=2.
Apr 17 14:29:03 <firewall> FILTER: Remote access filter blocks: UDP PPP
[62.188.26.244/1029] ->[62.188.26.92/22] l=2.
Apr 17 14:30:07 <firewall> FILTER: Remote access filter bl ocks: UDP PPP
[62.188.26.244/1030] ->[62.188.26.92/5632] l=2.
Apr 17 14:30:07 <firewall> FILTER: Remote access filter blocks: UDP PPP
[62.188.26.244/1030] ->[62.188.26.92/22] l=2.

The above raw data was then translated by a custom written shell script on th e UNIX
system where the syslog logs are logged and passed into a spreadsheet to format the
data to produce the following:

Date Time Pro Src_IP SrcP Dst_IP DstP Len Secs
17/04/01 14:27:35 UDP 62.188.26.244 1028 62.188.26.92 5632 2
17/04/01 14:27:35 UDP 62.188.26.244 1028 62.188.26.92 22 2 0:00:00

17/04/01 14:29:03 UDP 62.188.26.244 1029 62.188.26.92 5632 2 0:01:28
17/04/01 14:29:03 UDP 62.188.26.244 1029 62.188.26.92 22 2 0:00:00

17/04/01 14:30:07 UDP 62.188.26.244 1030 62 .188.26.92 5632 2 0:01:04
17/04/01 14:30:07 UDP 62.188.26.244 1030 62.188.26.92 22 2 0:00:00

3.1. Source of trace
My (small business) network.

3.2. Detect was generated by
Firewall software causing syslog entries to be generated in response to
violation of firewall access filters. See Detects above for details.

It should be noted that the dial -on-demand firewall was online for several
minutes before these packets were observed, it is not likely that this data was a
remnant of previous use of the dynamically a ssigned IP address.

3.2.1. Firewall syslog format
The lines seen above represent UDP packets, the format of the lines is similar
to that shown for TCP packets in Detect 1 except that UDP packets do not
show any 'Flag' data (they do not have 'flags' as TCP packets do nor 'message
codes' as ICMP packets do).

3.2.2. Filtered and processed data format
As for the Detects above.

3.3. Probability that source address was spoofed
Medium.

UDP packets do not require a three -way handshake to establish them (as TCP
packets do) and it is possible to send spoofed source address UDP packets
fairly easily.

Why would anyone send just 6 UDP packets to my equipment? It does not
seem to be a DoS attempt. The answer is probably that this is a
reconnaissance attempt. There is no point in spoo fing source addresses in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

reconnaissance attempts because you will not learn the result of the
reconnaissance. Some reconnaissance processes do use spoof addresses (as
well as their genuine address) to confuse attacked systems by sending packets
from many different source addresses hoping that the systems will respond to
all the packets and that an analyst will not know which of the source addresses
is the genuine address.

3.4. Description of the attack
This intercept appears to be a reconnaissance attack.
See CVE-2000-0273 and Bugtraq BID:1095 for details.
It is known by the name 'PCanywhere Denial of Service Vulnerability' and is
attributed to Frankie Zie <root@cnns.net> on 9 Apr 2000.

3.5. Attack Mechanism
Information at
www.networkice.com/advice/Exploits/Ports/groups/PCanywhere/default.htm
provides further information about the mechanism used in this vulnerability.

Port 5632 is used by PCanywhere software to 'ping' a syste m to which a
connection is being attempted to see if the PCanywhere service is available on
the target system. A programming bug swapped the bytes in order versions
(the 16 bit number 5632 when byte swapped is 22).

The networkice reference also states 'I f the user doesn't know the IP address,
PCanywhere will ping the entire local address range with these packets
looking for servers. These scans are frequently seen by home users from their
neighbors.' Looking at the IP addresses in use in this instance we see source
62.188.26.244 and destination 62.188.26.92 so we seem to have an example of
this.

3.6. Correlation
A person identified as 'binette@home' discussed a pattern very similar to the
above on 8 January 2001 and the item is included in Matt Fearnow's SANS
handler's diary at www.sans.org/y2k/010801.htm .

3.7. Evidence of active targeting
This is probably not active targeting. The source IP address is within the same
Class C range as the dynamically assigned firewa ll address in use at the time.
It is probable that the source address is scanning addresses within a particular
range of addresses to see which respond. If any systems respond it is
presumed that the source address will then conduct more detailed
reconnaissance or initiate an exploit on the recognised architecture/service.

3.8. Severity
The severity formula explained in Detect 1 above.

Criticality: 5, the firewall appears to be the target (due to NAT).

Lethality: 2, this appears to be reconnaissance.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

System countermeasures: 4, the Operating System should reply with 'port
Unreachable', as the systems do not listen on UDP ports 22 or 5632.

Network countermeasures: 5, the traffic was blocked by the firewall.

(5 + 2) - (4 + 5) = -2

3.9. Defensive Recommendations
None. The 'attack' was silently blocked by the firewall.

3.10. Multiple choice test question
Why are packets sent from custom written programs sometimes observed
communicating with unexpected destination port numbers?

a. Because programmers sometimes forget to u se 'network byte ordered' data.
b. Because the programs often use the wrong protocol.
c. Because programs cannot guarantee which port they will use.
d. Because of hardware faults with network equipment.

Answer: a

4. Detect 4

Raw data taken from syslog log files generated by FireWall, only those lines relevant to
the detect are shown.

Dec 11 16:14:25 <firewall> FILTER: Remote access filter blocks: UDP PPP
[194.130.102.189/500] ->[62.188.19.92/500] l=268.
Dec 11 16:14:40 <firewall> FILTER: Remote access filte r blocks: UDP PPP
[194.130.102.189/500] ->[62.188.19.92/500] l=268.
Dec 11 16:14:55 <firewall> FILTER: Remote access filter blocks: UDP PPP
[194.130.102.189/500] ->[62.188.19.92/500] l=268.
Dec 11 16:14:55 <firewall> FILTER: Remote access filter blocks: UDP PPP
[194.130.102.189/500] ->[62.188.19.92/500] l=268.
Dec 11 16:15:01 <firewall> FILTER: Remote access filter blocks: UDP PPP
[194.130.102.189/500] ->[62.188.19.92/500] l=68.
Dec 11 16:15:10 <firewall> FILTER: Remote access filter blocks: UDP PPP
[194.130.10 2.189/500] ->[62.188.19.92/500] l=268.
Dec 11 16:15:10 <firewall> FILTER: Remote access filter blocks: UDP PPP
[194.130.102.189/500] ->[62.188.19.92/500] l=268.

Dec 12 09:36:28 <firewall> FILTER: Remote access filter blocks: UDP PPP
[193.131.113.187/500] ->[62.188.22.95/500] l=84.

Apr 6 21:48:13 <firewall> FILTER: Remote access filter blocks: UDP PPP
[206.9.231.3/500] ->[62.188.130.16/500] l=80.
Apr 6 21:48:28 <firewall> FILTER: Remote access filter blocks: UDP PPP
[206.9.231.3/500] ->[62.188.130.16/500] l=8 0.
Apr 6 21:48:43 <firewall> FILTER: Remote access filter blocks: UDP PPP
[206.9.231.3/500] ->[62.188.130.16/500] l=80.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The above raw data was then translated by a custom written shell script on the UNIX
system where the syslog logs are logged and passed into a spreadsheet to format the
data to produce the following:

Date Time Pro Src_IP SrcP Dst_IP DstP Len Secs
11/12/00 16:14:25 UDP 194.130.102.189 500 62.188.19.92 500 268
11/12/00 16:14:40 UDP 194.130.102.189 500 62.188.19.9 2 500 268 0:00:15
11/12/00 16:14:55 UDP 194.130.102.189 500 62.188.19.92 500 268 0:00:15
11/12/00 16:14:55 UDP 194.130.102.189 500 62.188.19.92 500 268 0:00:00
11/12/00 16:15:01 UDP 194.130.102.189 500 62.188.19.92 500 268 0:00:06
11/12/00 16:15 :10 UDP 194.130.102.189 500 62.188.19.92 500 268 0:00:09
11/12/00 16:15:10 UDP 194.130.102.189 500 62.188.19.92 500 268 0:00:00

12/12/00 09:36:28 UDP 193.131.113.187 500 62.188.22.95 500 84

06/04/01 21:48:13 UDP 206.9.231.3 500 62.188.130. 16 500 80
06/04/01 21:48:28 UDP 206.9.231.3 500 62.188.130.16 500 80 0:00:15
06/04/01 21:48:43 UDP 206.9.231.3 500 62.188.130.16 500 80 0:00:15

4.1. Source of trace
My (small business) network.

4.2. Detect was generated by
Firewall software causing s yslog entries to be generated in response to
violation of firewall access filters. See Detects above for details.

It should be noted that the dial -on-demand firewall was online for several
minutes before these packets were observed, it is not likely that this data was a
remnant of previous use of the dynamically assigned IP address.

4.2.1. Firewall syslog format
As for the Detects above.

4.2.2. Filtered and processed data format
As for the Detects above.

4.3. Probability that source address was spoofed
Medium.

UDP packets do not require a three -way handshake to establish them (as TCP
packets do) and it is possible to send spoofed source address UDP packets
fairly easily.

As in Detect 3, this is probably a reconnaissance attempt. There is no point in
spoofing source addr esses in reconnaissance attempts because you will not
learn the result of the reconnaissance.

4.4. Description of the attack
UDP port 500, IANA port name 'isakmp' (Internet Security Association and
Key Management Protocol) is used for encryption key exchange wh en
establishing secure sessions for various reasons, including VPNs and secure
Web communications.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The usage of UDP port 500 for isakmp is discussed in RFC2408 (Maughan).

4.5. Attack Mechanism
The isakmp protocol uses UDP port 500 to exchange information to en able
secure keys to be established which will themselves be used to secure some
other communication path (possibly a TCP socket conveying HTTP data).

Unsolicited activity using UDP port 500 would be expected in circumstances
where secure facilities were o ffered by the destination system (e.g. VPNs). A
system not offering any such services would not expect any such unsolicited
activity, therefore this activity is considered to be reconnaissance activity.

It is assumed that if UDP port 500 responded and wa s used to implement
isakmp then the source system would follow up with a probe or attack on the
secure service accessed via the key negotiated with isakmp. The UDP port
500 probe failed and therefore no subsequent activity was attempted.

4.6. Correlation
In archives.neophasis.com/archives/incidents/2000 -12/0110.html Greg Woods
describes probes on UDP port 500, his consensus is that it appears to be a
reconnaissance probe to se e if the probed site is providing VPN facilities.

In archives.neophasis.com/archives/incidents/2000 -12/0114.html TJ
Jablonowski states that this occurrence could be the result of a Windows 2000
system (perhaps unknowingly to it's user) attempting to establish a secure
connection with an Internet site. However, this is not believed to be the case
here because the full firewall logs were checked for other instance of the 3
source IP addresses encountered above and no such occurrences were found.

In www.incidents.org/archives/intrusions/msg01092.html on 18 July 2001
Vicki Irwin refers to t he second reference above and observes that recent Code
Red instances have been seen to precede their TCP port 80 activity by probing
UDP port 500 a few seconds before. It is unlikely that this instance is a
variation of Code Red as it was detected back i n December 2000.

Various Penetration Test software tools (e.g. PGP's CyberCop Scanner) test to
see if target systems are vulnerable to attack on UDP port 500. Such
penetration tests can cause IDSs and firewalls to report potential intrusions.

4.7. Evidence of active targeting
There is no evidence of active targeting.

4.8. Severity
The severity formula explained in Detect 1 above.

Criticality: 5, the firewall appears to be the target (due to NAT).

Lethality: 2, this appears to be a reconnaissance attempt.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

System countermeasures: 4, the Operating System should reply with 'port
Unreachable' as the system does not listen on UDP port 500.

Network countermeasures: 5, the traffic was blocked by the firewall.

(5 + 2) - (4 + 5) = -2

4.9. Defensive Recommendations
None. The 'attack' was silently blocked by the firewall.

4.10. Multiple choice test question
If packets are observed going to port 500 on a system what additional data is
particularly useful in diagnosing the cause of the 'attack'?

a. full fidelity data from the firewall showing port 80 packets a short time after
the port 500 traffic.
b. the data content of the packets.
c. all data to or from the system in question.
d. logs from all firewalls on local networks.

Answer: a

5. Detect 5

Raw data taken from syslog log files ge nerated by FireWall, only those lines relevant to
the detect are shown (the large quantity of lines shown is required to perform TCP
retransmission analysis).

Apr 16 05:54:47 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17123] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 05:54:48 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17124] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 05:54:50 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17123] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 05:54:52 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17124] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 05:54:58 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17123] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 05:54:59 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17124] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 05:55:08 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17123] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 05:55:09 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17124] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 05:55:32 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17123] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 05:55:33 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17124] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 05:56:20 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17123] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 05:56:21 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17124] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 05:57:56 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17123] ->[62.188.143.198/113] l=0 f=0x2.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Apr 16 05:57:57 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/17124] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:12:37 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/22945] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:13:07 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23157] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:13:22 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/22945] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:13:28 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23157] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:13:29 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23158] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:13:32 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23159] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:13:33 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23158] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:13:34 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23159] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:13:38 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23158] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:13:40 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23159] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:13:50 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23158] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:13:52 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23159] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:13:52 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23157] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:14:07 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23868] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:14:10 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/22945] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:14:10 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23868] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:14:14 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23158] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:14:17 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23159] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:14:17 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23868] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:14:29 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23868] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:14:41 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23157] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:14:52 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23868] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:15:02 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23158] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:15:04 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23159] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:15:40 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23868] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:15:46 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/22945] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:00 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24616] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:03 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24617] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:05 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24616] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:06 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24617] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:11 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24616] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:14 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24617] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:16 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24620] ->[62.188.143.198/113] l=0 f=0x2.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Apr 16 06:16:16 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23157] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:17 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24620] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:21 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24616] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:22 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24620] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:23 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24617] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:29 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24641] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:31 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24641] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:35 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24620] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:37 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24641] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:38 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23158] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:40 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23159] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:45 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24616] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:47 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24617] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:49 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24641] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:16:58 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24620] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:17:13 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24641] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:17:16 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/23868] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:17:34 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24616] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:17:35 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24617] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:17:46 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24620] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:18:01 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24641] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:19:09 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24616] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:19:11 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24617] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:19:22 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24620] ->[62.188.143.198/113] l=0 f=0x2.
Apr 16 06:19:37 <firewall> FILTER: Remote access filter blocks: TCP PPP
[216.127.64.117/24641] ->[62.188.143.198/113] l=0 f=0x2.
Apr 30 01:30:31 <firewall> FILTER: Remote access filter blocks: TCP PPP
[195.82.124.160/3809] ->[62.188.135.50/113] l=0 f=0x2.
Apr 30 01:30:34 <firewall> FILTER: Remote access filter blocks: TCP PPP
[195.82.124.160/3809] ->[62.188.135.50/113] l=0 f=0x2.
Apr 30 01:30:40 <firewall> FILTER: Remote access filter blocks: TCP PPP
[195.82.124.160/3809] ->[62.188.135.50/113] l=0 f=0x2.
Apr 30 01:30:56 <firewall> FILTER: Remote access filter blocks: TCP PPP
[195.82.124.160/3812] ->[62.188.135.50/113] l=0 f=0x2.
Apr 30 01:30:59 <firewall> FILTER: Remote access filter blocks: TCP PPP
[195.82.124.160/3812] ->[62.188.1 35.50/113] l=0 f=0x2.
Apr 30 01:31:05 <firewall> FILTER: Remote access filter blocks: TCP PPP
[195.82.124.160/3812] ->[62.188.135.50/113] l=0 f=0x2.

The above raw data was then translated by a custom written shell script on the UNIX
system where the syslog logs are logged and passed into a spreadsheet to format the
data to produce the following (some lines are out of sequence so they can be grouped by

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

source port number, the large quantity of lines shown is required to perform TCP
retransmission analysis):

Date Time Pro Src_IP SrcP Dst_IP DstP Len Flags_etc Secs
16/04/01 05:54:47 TCP 216.127.64.117 17123 62.188.143.198 113 0S.
16/04/01 05:54:50 TCP 216.127.64.117 17123 62.188.143.198 113 0S.
0:00:03
16/04/01 05 :54:58 TCP 216.127.64.117 17123 62.188.143.198 113 0S.
0:00:08
16/04/01 05:55:08 TCP 216.127.64.117 17123 62.188.143.198 113 0S.
0:00:10
16/04/01 05:55:32 TCP 216.127.64.117 17123 62.188.143.198 113 0S.
0:00:24
16/04/01 05: 56:20 TCP 216.127.64.117 17123 62.188.143.198 113 0S.
0:00:48
16/04/01 05:57:56 TCP 216.127.64.117 17123 62.188.143.198 113 0S.
0:01:36

16/04/01 05:54:48 TCP 216.127.64.117 17124 62.188.143.198 113 0S.
16/04/01 05 :54:52 TCP 216.127.64.117 17124 62.188.143.198 113 0S.
0:00:04
16/04/01 05:54:59 TCP 216.127.64.117 17124 62.188.143.198 113 0S.
0:00:07
16/04/01 05:55:09 TCP 216.127.64.117 17124 62.188.143.198 113 0S.
0:00:10
16/04/01 05: 55:33 TCP 216.127.64.117 17124 62.188.143.198 113 0S.
0:00:24
16/04/01 05:56:21 TCP 216.127.64.117 17124 62.188.143.198 113 0S.
0:00:48
16/04/01 05:57:57 TCP 216.127.64.117 17124 62.188.143.198 113 0S.
0:01:36

16/04/01 06:12:37 TCP 216.127.64.117 22945 62.188.143.198 113 0S.
16/04/01 06:13:22 TCP 216.127.64.117 22945 62.188.143.198 113 0S.
0:00:45
16/04/01 06:14:10 TCP 216.127.64.117 22945 62.188.143.198 113 0S.
0:00:48
16/04/01 06: 15:46 TCP 216.127.64.117 22945 62.188.143.198 113 0S.
0:01:36

16/04/01 06:13:07 TCP 216.127.64.117 23157 62.188.143.198 113 0S.
16/04/01 06:13:28 TCP 216.127.64.117 23157 62.188.143.198 113 0S.
0:00:21
16/04/01 06 :13:52 TCP 216.127.64.117 23157 62.188.143.198 113 0S.
0:00:24
16/04/01 06:14:41 TCP 216.127.64.117 23157 62.188.143.198 113 0S.
0:00:49
16/04/01 06:16:16 TCP 216.127.64.117 23157 62.188.143.198 113 0S.
0:01:35

16/04/01 06:13:29 TCP 216.127.64.117 23158 62.188.143.198 113 0S.
16/04/01 06:13:33 TCP 216.127.64.117 23158 62.188.143.198 113 0S.
0:00:04
16/04/01 06:13:38 TCP 216.127.64.117 23158 62.188.143.198 113 0S.
0:00:05
16/04/01 06 :13:50 TCP 216.127.64.117 23158 62.188.143.198 113 0S.
0:00:12
16/04/01 06:14:14 TCP 216.127.64.117 23158 62.188.143.198 113 0S.
0:00:24
16/04/01 06:15:02 TCP 216.127.64.117 23158 62.188.143.198 113 0S.
0:00:48
16/04/01 06: 16:38 TCP 216.127.64.117 23158 62.188.143.198 113 0S.
0:01:36

16/04/01 06:13:32 TCP 216.127.64.117 23159 62.188.143.198 113 0S.
16/04/01 06:13:34 TCP 216.127.64.117 23159 62.188.143.198 113 0S.
0:00:02

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

16/04/01 06 :13:40 TCP 216.127.64.117 23159 62.188.143.198 113 0S.
0:00:06
16/04/01 06:13:52 TCP 216.127.64.117 23159 62.188.143.198 113 0S.
0:00:12
16/04/01 06:14:17 TCP 216.127.64.117 23159 62.188.143.198 113 0S.
0:00:25
16/04/01 06: 15:04 TCP 216.127.64.117 23159 62.188.143.198 113 0S.
0:00:47
16/04/01 06:16:40 TCP 216.127.64.117 23159 62.188.143.198 113 0S.
0:01:36

16/04/01 06:14:07 TCP 216.127.64.117 23868 62.188.143.198 113 0S.
16/04/01 06 :14:10 TCP 216.127.64.117 23868 62.188.143.198 113 0S.
0:00:03
16/04/01 06:14:17 TCP 216.127.64.117 23868 62.188.143.198 113 0S.
0:00:07
16/04/01 06:14:29 TCP 216.127.64.117 23868 62.188.143.198 113 0S.
0:00:12
16/04/01 06: 14:52 TCP 216.127.64.117 23868 62.188.143.198 113 0S.
0:00:23
16/04/01 06:15:40 TCP 216.127.64.117 23868 62.188.143.198 113 0S.
0:00:48
16/04/01 06:17:16 TCP 216.127.64.117 23868 62.188.143.198 113 0S.
0:01:36

16/04/01 06:16:00 TCP 216.127.64.117 24616 62.188.143.198 113 0S.
16/04/01 06:16:05 TCP 216.127.64.117 24616 62.188.143.198 113 0S.
0:00:05
16/04/01 06:16:11 TCP 216.127.64.117 24616 62.188.143.198 113 0S.
0:00:06
16/04/01 06: 16:21 TCP 216.127.64.117 24616 62.188.143.198 113 0S.
0:00:10
16/04/01 06:16:45 TCP 216.127.64.117 24616 62.188.143.198 113 0S.
0:00:24
16/04/01 06:17:34 TCP 216.127.64.117 24616 62.188.143.198 113 0S.
0:00:49
16/04/01 06:1 9:09 TCP 216.127.64.117 24616 62.188.143.198 113 0S.
0:01:35

16/04/01 06:16:03 TCP 216.127.64.117 24617 62.188.143.198 113 0S.
16/04/01 06:16:06 TCP 216.127.64.117 24617 62.188.143.198 113 0S.
0:00:03
16/04/01 06: 16:14 TCP 216.127.64.117 24617 62.188.143.198 113 0S.
0:00:08
16/04/01 06:16:23 TCP 216.127.64.117 24617 62.188.143.198 113 0S.
0:00:09
16/04/01 06:16:47 TCP 216.127.64.117 24617 62.188.143.198 113 0S.
0:00:24
16/04/01 06:1 7:35 TCP 216.127.64.117 24617 62.188.143.198 113 0S.
0:00:48
16/04/01 06:19:11 TCP 216.127.64.117 24617 62.188.143.198 113 0S.
0:01:36

16/04/01 06:16:16 TCP 216.127.64.117 24620 62.188.143.198 113 0S.
16/04/01 06: 16:17 TCP 216.127.64.117 24620 62.188.143.198 113 0S.
0:00:01
16/04/01 06:16:22 TCP 216.127.64.117 24620 62.188.143.198 113 0S.
0:00:05
16/04/01 06:16:35 TCP 216.127.64.117 24620 62.188.143.198 113 0S.
0:00:13
16/04/01 06:1 6:58 TCP 216.127.64.117 24620 62.188.143.198 113 0S.
0:00:23
16/04/01 06:17:46 TCP 216.127.64.117 24620 62.188.143.198 113 0S.
0:00:48
16/04/01 06:19:22 TCP 216.127.64.117 24620 62.188.143.198 113 0S.
0:01:36

16/04/01 06:16:29 TCP 216.127.64.117 24641 62.188.143.198 113 0S.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

16/04/01 06:16:31 TCP 216.127.64.117 24641 62.188.143.198 113 0S.
0:00:02
16/04/01 06:16:37 TCP 216.127.64.117 24641 62.188.143.198 113 0S.
0:00:06
16/04/01 06:1 6:49 TCP 216.127.64.117 24641 62.188.143.198 113 0S.
0:00:12
16/04/01 06:17:13 TCP 216.127.64.117 24641 62.188.143.198 113 0S.
0:00:24
16/04/01 06:18:01 TCP 216.127.64.117 24641 62.188.143.198 113 0S.
0:00:48
16/04/01 06:19 :37 TCP 216.127.64.117 24641 62.188.143.198 113 0S.
0:01:36

30/04/01 01:30:31 TCP 195.82.124.160 3809 62.188.135.50 113 0S.
30/04/01 01:30:34 TCP 195.82.124.160 3809 62.188.135.50 113 0S.
0:00:03
30/04/01 01:3 0:40 TCP 195.82.124.160 3809 62.188.135.50 113 0S.
0:00:06

30/04/01 01:30:56 TCP 195.82.124.160 3812 62.188.135.50 113 0S.
30/04/01 01:30:59 TCP 195.82.124.160 3812 62.188.135.50 113 0S.
0:00:03
30/04/01 01: 31:05 TCP 195.82.124.160 3812 62.188.135.50 113 0S.
0:00:06

5.1. Source of trace
My (small business) network.

5.2. Detect was generated by
Firewall software causing syslog entries to be generated in response to
violation of firewall access filters. See Detects above for details.

It should be noted that the dial -on-demand firewall was online for several
minutes before the times when these packets were observed, it is not likely
that any of this data was a remnant of previous use of the dynamically
assigned IP address.

5.2.1. Firewall syslog format
As for the Detects above.

5.2.2. Filtered and processed data format
As for the Detects above.

5.3. Probability that source address was spoofed
Low.

These TCP packets are SYN packets attempting to establish a TCP
connection. A r esponse SYN/ACK would be routed to the source address.
There would be little point spoofing the source address.

5.4. Description of the attack
This intercept appears to be an attempt at a DoS against SuSE Linux systems.

The 'ident' service identifies details (the system dependant 'user identifier') of
the user of an established TCP connection. A default configuration of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

ident service in SuSE Linux systems allows a remote attacker to conduct a
DoS attack.

For further details refer to CVE-1999-0746 at cve.mitre.org and
www.networkice.com/advice/Exploits/Ports/113/default.htm .

Further details of the ident protocol can be found in RFC 1413 (St, Johns).

BugtraqID: 587 also refers to this vulnerability.

5.5. Attack Mechanism
BugtraqID: 587 provides details of this vulnerability stating the DoS works by
exhausting available memory on the target system by causing th e system to
start multiple ident processes to respond to the large number of connections
requests sent by the attacker.

The first group of intrusions came from 216.127.64.117 (DNS name not
found) and we observe TCP retransmissions (the source port remains the same
for small groups in detected packets and the time between those packets seems
to show exponential backoff). The backoff timings could be used to detect the
origin of the IP stack in use in the source's operating system, these seem to
consistently double from 3 seconds until 96 seconds after which the
originating IP software gives up attempting to make the connection.

The first observed occurrence came from source port 17123 and the next from
port 17124, use of sequential ports in this way is oft en caused by program
code intentionally looping to repeat an operation. Later we see ports 13257,
23158 and 23159 which again indicates automation rather than separate
manually initiated activity.

Even later activity (source ports 24616, 24617, 24620 and 24641) indicate that
other activity was occurring on the source system between those ports being
opened for use. The activity could be similar SYN attempts to other
destination addresses or some other activity, perhaps local, on the source
system.

The two SYN attempts observed on 30 Apr 2001 from source IP address
195.82.124.160 (DNS name not found) show a different TCP retransmission
characteristic, it is probable that the source operating system is different from
that used above.

The above fine detail gives us intelligence which enables us to guess that the
first system was possibly carrying out simultaneous attacks against multiple
destination addresses of which we were just one.

5.6. Correlation
This vulnerability is referred to as 'SuSE identd Denial of Service Attack' and
was attributed to Hendrik Scholz <hendrik@SCHOLZ.NET> on 14 Aug 1999.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

5.7. Evidence of active targeting
This is probably not active targeting against a specific target system, it is more
likely to be evidence of a scan over several destinat ion IP addresses. The use
of three widely different source IP addresses over several months indicates
reconnaissance scans being performed.

5.8. Severity
The severity formula explained in Detect 1 above.

Criticality: 5, the firewall appears to be the target (due to NAT).

Lethality: 4, it is a DoS.

System countermeasures: 5, the Operating System will send a TCP Reset
because we are not running the ident service.

Network countermeasures: 5, the traffic was blocked by the firewall.

(5 + 4) - (5 + 5) = -1

5.9. Defensive Recommendations
None. The 'attack' was silently blocked by the firewall.

5.10. Multiple choice test question
How might causing a target system to run a large number of instances of a
service program (e.g. identd, telnetd) cause a DoS?

a. By causing the t arget system to run out of disk space.
b. Because the target system will change its IP address.
c. Because only three instances of any service are allowed.
d. By exhausting the available memory on the target system.

Answer: d

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Assignment 2 - Describe the State of Intrusion Detection

Simplified Analysis Tools

1. Introduction
This assignment was undertaken around the time when SANS NewsBites Vol. 3 Num. 37
were published. A tutorial was included from Bill Murray and other NewsBites editors titled
"Protection of Home/SOHO Systems with Persistent Connections and IP Addresses". The
tutorial notes that "Once penetrated, they [Home/SOHO systems] become a hazard to their
neighbors. As their numbers increase, they become a threat to the health of the net."
(Murray, p. 1).

The author of this paper operates a SOHO environment and has developed various analysis
tools that can be used to assist protecting Home/SOHO systems. These tools are presented
here and have been made available for others to use and develop f urther.

Some major manufacturers are spending considerable effort developing 'correlation engines'
that will enable their customers to collate and process data from many sources. Small and
medium sized enterprises (SMEs) often cannot afford these product s and therefore there is a
requirement for an equivalent product for SMEs. This paper provides some tools that can be
used by those operating in the SME range of businesses.

2. Objective
To produce analysis tools which will run on less expensive UNIX based c omputer systems.
Some UNIX based systems have neither language compilers nor very fast processors. The
objectives in writing these tools were:

1. To enable the tools to run on systems with limited run -time commands;
2. To enable the tools to run as quickly as possible.
3. To develop tools which will generate data to 'link graphs'.

A limited set of tools were used … those that come with a standard UNIX system, notably:

Name Derivation of name Purpose
ksh Named after David Korn, one of its authors A command inter preter.
awk Named after Messrs. Aho, Weinberger and

Kernighan
Match patterns of given data and
possibly process them in various ways.

cat Concatenate files Join input files together to produce
output.

grep Globally search for regular expression and
print it

Select patterns of given data, do not
process them.

Sed Stream Editor Edit the input data to produce different
output data, capable of working on
very large volumes of data compared to
some text editors.

Sort The program sorts data! To sort given in put data into specified
order(s) and produce sorted output.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3. Approach
Note: Data extracted from the analyst's UNIX system is shown here in Courier font,
coloured blue for easier reading.

Snort produces data in different formats depending on the type of d ata. Snort alert files are in
the following format:

<header lines>
MM/DD -hh:mm:ss.<fract> [**] <text> [**] <src_ip>:<src port> -> <dst ip>:<dst port>

For example:

 Snort Alert Re port at Mon Jul 2 00:05:14 2001

07/01 -00:00:30.477266 [**] UDP SRC and DST outside network [**] 169.254.161.0:1
37 -> 130.132.143.43:137

Snort scan files are in the following format:

<header lin es>
MMM DD hh:mm:ss <src_ip>:<src port> -> <dst ip>:<dst port>

For example:

 Snort Scan Report at Mon Jul 2 00:10:43 2001

Jul 1 00:12:47 MY.NET.6.45:7000 -> 129.240.86.35:7001 UDP

Snort OOS (Out Of Specification) files are in the following format:

<header lines>
MM/DD -hh:mm:ss.<fract> <src_ip>:<src port> -> <dst ip>:<dst port>
<additional data lines ...>
<separator lines>

For example:

Initializing Network Interface ep0
snaplen = 68
Entering readback mode....
07/01 -00:36:54.628555 63.254.9.59:32899 -> MY.NET.70.97:11055
TCP TTL:120 TOS:0x0 ID:60416 DF
21**R*AU Seq: 0x339E9EF3 Ack: 0xB3E894EE Win: 0x623
F3 1A 1F 50 CD 52 70 3A 5A E3 ...P.Rp:Z.

=+

Development of tools to process these differing formats of data would be simpler if the
formats were the same. Can these formats be converted into a single format? Some formats
have certain data that other formats lack e.g. the fraction of a second field that is present in
alert and oos files but lacking in scans files. The approach was taken that data pertaining on
event be presented on one line and that any field not having a value in a particular format
would be left blank.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The scripts used here process the raw Snort data into a consistent comma separated format:

Date,Time,Fraction_of_Second,Src_IP,Src_Port,Dst_IP,Dst_Port,Other

where Other varies according to the type of data being processed.

Where a data field is not present a null field is generated. Beware that there may be commas
in the final field, typically where the data is the ASCII representation of the data (payload)
part of a packet in the OOS data.

The scripts used for this analysis are available from the author's web site in zipped tar format
or tar format for those who may wish to use them for their own purposes.

3.1. Phase 1 - Translating the data formats
The Snort alert files are processed with a Korn shell script named 'alert.ksh':

#!/bin/ksh
Process Snort alert files to produce lines of t he form ...
DATE,TIME,FRACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

Note: 'portscan status' lines are removed as their data is
contained within a following 'end of portscan' line.

Usage cat alert_file[s] | alert.ksh >outputfile

e.g. cat aler t.0107*.txt | alert.ksh >alert.txt

grep '^[01][0 -9]/[0-9][0-9]-' | grep -v ' portscan status from ' | \
 sed -f alert.sed
exit 0

The script uses grep to find the lines containing 'MM/DD -' (i.e. not header lines), passes those
lines to another instance of grep (with the ' -v' flag) which searches for lines not including the
pattern ' portscan status from ' and then passes the resulting data to sed which processes it
according to the sed pattern file named 'alert.sed':

s/,//g
s/-/,/
s/\./,/
s/\([^]* \) \(.....* *\]\) \(.*\):\(.*\) -> \(.*\):\(.*\)/\1,\3,\4,\5,\6,\2/
s/\([^]* \) \(.*\) from \([^]*\) \((.*\)/\1,\3,,,,\2 \4/
s/\([^]* \) \(.*\) from \([^]*\)\(: .*\)/\1,\3,,,,\2 \4/
s/ \[**\]//g
s/, /,/

The sed script works as follows: line 1 removes any commas from the input data; line 2
converts the first hyphen into a comma; line 3 converts the first fullstop (decimal points) into
a comma; line 4 searches for the text between the [**] markers, the IP addresses and ports
and reorders them into the requir ed format with commas between them; line 5 searches for
and processes some of the portscan lines; line 6 searches for and processes other portscan
lines; line 7 removes the '[**]' strings; and line 8 removes spaces after commas.

The Snort scans files ar e processed with a Korn shell script named 'scans.ksh':

#!/bin/ksh
Process Snort scans files to produce lines of the form ...

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

DATE,TIME,FRACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

Usage cat scans_file[s] | scans.ksh >outputfile

e.g. cat scans.0107* .txt | scans.ksh >scans.txt

grep '^[A -Z][a-z][a-z] ' | sed -f scans.sed
exit 0

The script uses grep to find the lines containing a capital letter followed by two lower case
letters at the beginning of a line (i.e. not header lines) and passes those lines to sed which
processes it according to the sed pattern file named 'scans.sed':

s/^\(...\) /\1 0/
s/^Jan /01 \//
s/^Feb /02 \//
s/^Mar /03 \//
s/^Apr /04 \//
s/^May /05 \//
s/^Jun /06 \//
s/^Jul /07 \//
s/^Aug /08 \//
s/^Sep /09 \//
s/^Oct /10 \//
s/^Nov /11 \//
s/^Dec /12 \//
s/\([^]* \) \([^]*\) \([^]* \):\([^]* \) -> \([^]* \):\([^]*\)
/\1,\2,,\3,\4,\5,\6,/

The sed script works as follows: line 1 searches for lines where the day of the month is less
than ten and inserts a leading '0'; lines 2 -13 convert three l etter month names into 2 digit
month numbers; and line 14 formats the remaining data with commas between the fields.

The Snort OOS files are processed with a Korn shell script named 'oos.ksh':

#!/bin/ksh
Process Snort oos files to produce lines of the form ...
DATE,TIME,FRACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

Usage cat oos_file[s] | oos.ksh >outputfile

e.g. cat oos.0107*.txt | oos.ksh >oos.txt

ALL=
while read LINE
do
 if test ! "$LINE"
 then
 test "$ALL" && echo "$ALL"
 AL L=
 else
 case "$LINE" in
 [01][0 -9]/*) ALL="$ALL $LINE" ;;
 *) test "$ALL" && ALL="$ALL $LINE" ;;
 esac
 fi
done | sed -f oos.sed
exit 0

The script joins lines to form a single line for each event (ignoring blank lines and separator
lines). The resultant data is passed to sed which processes it according to the sed pattern file
named 'oos.sed':

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

s/^ //
s/-/,/
s/\./,/
s/\([^]* \) \([^]*\):\([^]* \) -> \([^]* \):\([^]* \) /\1,\2,\3,\4,\5,/
s/ []*/ /g

The sed script works as follows: line 1 removes a space at the start of a line; line 2 changes
the first hyphen into a comma; line 3 converts the first fullstop (decimal points) into a
comma; line 4 formats the remaining data with commas between the fields; and line 5
reduces multiple spaces to just one space.

The scans, alerts and oos data having been formatted into a consistent format can now be
processed to produce useful data and statistics for further analysis.

3.2. Phase 2 - Generating 'top_talkers' data
One of the useful statistics required when analysing IDS data is detecting which IP addresses
are being reported most by the IDS. The IP address causing the most events to be produced
by an IDS is called the 'top talker'. The 'top talkers' can be ranked into a list. A similar
concept is the 'top destination' where the most frequently targeted IP address is detected.
Scripts were developed to generate 'top talker' and 'top destinations' data.

The output from the formatting scripts is processed to generate 'top talkers' list with a Korn
shell script named 'top_talk.ksh':

#!/bin/ksh
Generate list of top talkers from lines of the form ...
DATE,TIME,FRACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

output lines are of the form ...
IP COUNT

Usage top_talk.ksh <inputdata >outputfile

e.g. top_talk.ksh <alert.txt >top_talk.txt
e.g. cat alert.txt oos.txt scans.txt | top_talk.ksh >top_talk.txt

awk -F, '{print $4}' | awk -f count.awk | sort -nr -k 2
exit 0

The script joins uses two instances of the 'awk' program. The f irst awk program outputs just
field 4 (source IP address) from each input line (the ' -F,' flag causes awk to use ',' as a field
seperator) and passes these (single field) lines to the second instance of awk which processes
it according to the awk program i n the file named 'count.awk':

{
 for (i=1; i<=tot; i++) {
 if (value[i] == $0) {
 count[i]++
 break
 }
 }
 if (i > tot) {
 value[i] = $0
 count[i] = 1
 tot++
 }
}
END {
 for (i=1; i<= tot; i++) {
 print value[i], count[i]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 }
}

The awk program works as follows: the for loop searches for the current line of text in an
awk data array (which is empty at the start of the program); if the for loop finds the text in the
array then it increments a counter of how many times the text occurs in the data. If the text is
not found in the array then a new line is added to the array with the text in question and an
occurrence count of 1. The lines beginning at the ' END' statement tell the awk program what
to do when all data has been processed; the program loops through all the entries in the array
and prints out the text and the occurrences count.

A similar script is used to generate a 'top destination' list with a Korn shell script name d
'top_dest.ksh':

#!/bin/ksh
Generate list of top destinations from lines of the form ...
DATE,TIME,FRACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

output lines are of the form ...
IP COUNT

Usage top_dest.ksh <inputdata >outputfile

e.g. top_dest. ksh <alert.txt >top_dest.txt
e.g. cat alert.txt oos.txt scans.txt | top_dest.ksh >top_dest.txt

awk -F, '{print $6}' | awk -f count.awk | sort -nr -k 2
exit 0

The script works in the same way as the 'top_talk' script except that it outputs just field 6
(destination IP address) from each input line for passing to the count.awk program.

3.3. Phase 3 - Generating IP address specific data
Another useful toolset is one to extract data relating to specified IP addresses. The 'ip.ksh'
script selects events concerni ng an IP address (the address can be either the source or
destination):

#!/bin/ksh
Select lines with destination IP address, lines are of the form ...
DATE,TIME,FRACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

output lines are of the form ...
DATE,TIME,FR ACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

Usage ip.ksh address <inputfile >outputfile

e.g. ip.ksh 1.2.3.4 <alert.txt >ip.txt
e.g. cat alert.txt oos.txt scans.txt | ip.ksh 1.2.3.4 >ip.txt

USAGE='Usage: ip.ksh address <inputfile >outputfile'
test $# != 1 && echo $USAGE >&2 && exit 1

grep -e "^[^,]*,[^,]*,[^,]*,$1," -e "^[^,]*,[^,]*,[^,]*,[^,]*,[^,]*,$1,"
exit 0

The 'ip_src.ksh' script selects events with a specified source IP address:

#!/bin/ksh
Select lines with source IP address, lines are of th e form ...
DATE,TIME,FRACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

output lines are of the form ...
DATE,TIME,FRACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

Usage ip_src.ksh address <inputfile >outputfile

e.g. ip_src.ksh 1.2.3.4 <alert.txt >ip_src.txt
e.g. cat alert.txt oos.txt scans.txt | ip_src.ksh 1.2.3.4 >ip_src.txt

USAGE='Usage: ip_src.ksh address file[s] >outputfile'
test $# != 1 && echo $USAGE >&2 && exit 1

grep "^[^,]*,[^,]*,[^,]*,$1,"
exit 0

The 'ip_dest.ksh' script selects events with a spec ified destination IP address:

#!/bin/ksh
Select lines with destination IP address, lines are of the form ...
DATE,TIME,FRACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

output lines are of the form ...
DATE,TIME,FRACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

Usage ip_dest.ksh address <inputfile >outputfile

e.g. ip_dest.ksh 1.2.3.4 <alert.txt >ip_dest.txt
e.g. cat alert.txt oos.txt scans.txt | ip_dest.ksh 1.2.3.4 >ip_dest.txt

USAGE='Usage: ip_dest.ksh address <inputfile >outputfile'
test $# != 1 && echo $ USAGE >&2 && exit 1

grep "^[^,]*,[^,]*,[^,]*,[^,]*,[^,]*,$1,"
exit 0

These tools can be combined with those that follow to select comprehensive statistics sets.

3.4. Phase 3 - Generating top port usage data
Another useful statistic might be that of the most prolific port(s) in use. A script called
'top_port.ksh' was developed to process the event data to generate top (source or destination)
port usage:

#!/bin/ksh
Generate list of top port usage for a given IP address, input in the form ...
DATE,TIME,FRA CT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

output lines are in the form ...
IP PORT

Usage top_port.ksh address <inputfile >outputfile

e.g. top_port.ksh 1.2.3.4 <alert.txt >top_port.txt
e.g. cat alert.txt oos.txt scans.txt | top_port.ksh 1.2.3.4 >t op_port.txt

ADDR=$1

awk -F, "{
 if (\$4 == \"$ADDR\") { printf \"%s,%d \\n\", \"$ADDR \", \$5 }
 if (\$6 == \"$ADDR\") { printf \"%s,%d \\n\", \"$ADDR \", \$7 }
}" | awk -f count.awk | sort -nr -k 2
exit 0

The awk program in the above script looks fo r the selected IP address in either the source or
destination address field and outputs the corresponding port number.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The 'top_portd.ksh' script processes the event data to generate top destination port usage:

#!/bin/ksh
Generate list of top dest por t usage
DATE,TIME,FRACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

output lines are of the form ...
PORT COUNT

Usage top_portd.ksh <inputfile >outputfile

e.g. top_portd.ksh <alert.txt >top_portd.txt
e.g. cat alert.txt oos.txt scans.txt | top_portd. ksh >top_portd.txt

awk -F, '{print $7}' | awk -f count.awk | sort -nr -k 2
exit 0

The 'top_portd.ksh' script processes the event data to generate top destination port usage:

#!/bin/ksh
Generate list of top dest port usage
DATE,TIME,FRACT,SRCIP,SRCP ORT,DSTIP,DSTPORT,TEXT

output lines are of the form ...
PORT COUNT

Usage top_portd.ksh <inputfile >outputfile

e.g. top_portd.ksh <alert.txt >top_portd.txt
e.g. cat alert.txt oos.txt scans.txt | top_portd.ksh >top_portd.txt

awk -F, '{print $7}' | awk -f count.awk | sort -nr -k 2

exit 0

An example of use of this script is to find the destination ports which are
most targeted in packets containing OOS data:

$ top_portd.ksh <oos.txt | head -5
111 557
80 470
25 182
6346 52
1214 41

This clearly shows that the selected OOS data (in the 'oos.txt' file) contains 557 events where
the target port was 111 (portmapper). The second most prevalent targeted port was 80 (http).

3.5. Phase 4 - Generating 'link graph' data
The final set of tools that have bee n developed to date are used to assist generation of 'link
graphs'. Link graphs are designed to show, in a graphical form, the data flow of selected
analysed data.

The first link script 'links.ksh' produces a list of links to or from a named IP address:

#!/bin/ksh
Generate data for generating a link graph, input data is of the form ...
DATE,TIME,FRACT,SRCIP,SRCPORT,DSTIP,DSTPORT,TEXT

output data is of the form ...
IP1 PORT1 DIR IP2 PORT2 COUNT

Usage links.ksh ADDR <inputfile >outputfile

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

e.g. links.ksh 1.2.3.4 <oos.txt >links.txt
e.g. cat scans.txt oos.txt | links.ksh 1.2.3.4 >links.txt

IP=$1

awk -F, "{
 if (\$4 == \"$IP\" && \$6 != \"\") { print \$4, \$5, \"to\", \$6, \$7 }
 if (\$6 == \"$IP\" && \$4 != \"\") { print \$6, \$7, \"fm\", \$4, \$5 }
}" | awk -f count.awk | sort -nr -k 6
exit 0

An example of use of this script is shown below:

$./links.ksh 24.159.128.162 <alert.txt >temp1
$ cat temp1
24.159.128.162 3933 to MY.NET.112.141 27374 4
24.159.128.162 3897 to MY.NET.112.1 03 27374 4
...
24.159.128.162 3869 to MY.NET.112.74 27374 3
24.159.128.162 3861 to MY.NET.112.66 27374 3
24.159.128.162 3855 to MY.NET.112.60 27374 3
24.159.128.162 3850 to MY.NET.112.54 27374 3
24.159.128.162 3822 to MY.NET.112.25 27374 3
24.159.128.162 3 822 fm MY.NET.112.25 27374 3
24.159.128.162 3793 to MY.NET.111.251 27374 3
24.159.128.162 3737 to MY.NET.111.193 27374 3
24.159.128.162 3730 to MY.NET.111.186 27374 3
24.159.128.162 3676 to MY.NET.111.130 27374 3
24.159.128.162 3676 fm MY.NET.111.130 27374 3
...

The output is sorted in the script to show the highest port usage first. The lines shown in bold
highlight two -way traffic, 3 packets were seen from the selected IP address to another
address and 3 packets were seen to the selected IP address from another address.

The data produced by the previous script can be used as input to the next two scripts, the first
one is named 'linkg.ksh', its purpose is to generate a link graph (albeit in text format!):

#!/bin/ksh
Generate (NOT sortable) link graph , input data is of the form ...
IP1 PORT1 DIR IP2 PORT2 COUNT

Usage linkg.ksh LOW HIGH <inputfile >outputfile

e.g. linkg.ksh 2 10 <oos.txt >linkg.txt
e.g. cat scans.txt oos.txt | linkg.ksh 2 10 >linkg.txt

1 .. LO are the values to be marked as LEAST occurring (i.e. " --->")
HI .. are the values to be marked as MOST occurring (i.e. ">>>>")
(other values are marked as medium frequency occurring) (i.e. " ->->")

LO=$1
HI=$2

sort -k 1,1 -k 4,4 -k 2,2 -k 5,5 -k 3,3 -k 6,6 | awk "{
 if (\$3 == \"to\") {
 if (\$6 <= $LO) { ptr = \"--->\" }
 else if (\$6 >= $HI) { ptr = \">>>>\" }
 else { ptr = \"->->\" }
 } else {
 if (\$6 <= $LO) { ptr = \"<---\" }
 else if (\$6 >= $HI) { ptr = \"<<<<\" }
 else { ptr = \"<-<-\" }
 }

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 if (\$1 != last_ip1) { ip1 = \$1 } else { ip1 = \"\" }
 if (\$4 != last_ip2) { ip2 = \$4 } else { ip2 = \"\" }
 last_ip1= \$1
 last_ip2= \$4
 format= \"%-15s %5s %s %6d %s % -5s %-15s\n\"
 printf format, ip1, \$2, ptr, \$6, ptr, \$5, ip2
}"
exit 0

An example of use of this script is shown below:

$ linkg.ksh 2 4 <temp1
24.159.128.162 3676 < -<- 3 < -<- 27374 MY.NET.111.130
 3676 ->-> 3 ->-> 27374
 3730 ->-> 3 ->-> 27374 MY.NET.111.186
 3737 ->-> 3 ->-> 27374 MY.NET.111.193
 3793 ->-> 3 ->-> 27374 MY.NET.111.251
 3624 < -<- 3 < -<- 27374 M Y.NET.111.75
 3624 ->-> 3 ->-> 27374
 3630 ->-> 3 ->-> 27374 MY.NET.111.82
 3638 < -<- 3 < -<- 27374 MY.NET.111.90
 3897 >>>> 4 >>>> 27374 MY.NET.112.103
 393 3 >>>> 4 >>>> 27374 MY.NET.112.141
 3822 < -<- 3 < -<- 27374 MY.NET.112.25
 3822 ->-> 3 ->-> 27374
...

Note: The '--->' arrows are supposed to indicate thin arrows, the '->->' arrows are supposed
to indicate medium thickness arrows and the '>>>>' arrows are supposed to indicate thick
arrows. The thresholds of thin and thick are provided by arguments to the script.

Another example of use of these link data generation scripts is:

$./links.ksh MY.NET.100.230 <a lert.txt
MY.NET.100.230 25 to 152.163.225.102 55850 15
MY.NET.100.230 65535 to 207.115.55.67 25 7
MY.NET.100.230 27374 to 65.10.118.35 3044 2
MY.NET.100.230 113 fm 159.226.63.200 2869 1
MY.NET.100.230 113 fm 159.226.5.222 4009 1
MY.NET.100.230 113 fm 159.2 26.5.222 3683 1

$./links.ksh MY.NET.100.230 <alert.txt | ./linkg.ksh 2 10
MY.NET.100.230 25 >>>> 15 >>>> 55850 152.163.225.102
 113 < --- 1 < --- 3683 159.226.5.222
 113 < --- 1 < --- 4009
 113 < --- 1 < --- 2869 159.226.63.200
 65535 ->-> 7 ->-> 25 207.115.55.67
 27374 ---> 2 ---> 3044 65.10.118.35

This data could be converted into a graphical link graph:

65.10.118.35

207.1 15.55.67

159.226.5.222

152.163.225.102

159.226.63.200

MY.NET.100.230

 27374 65535
 25 113

 3044 25

 55850 2869
 3683 4009

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

After the abov e script had been written it was realised that the output of the script is not as
flexible as it could be because some lines do not contain all fields of data (e.g. they cannot be
sorted). A second script named 'linkg2.ksh' was developed to produce flexib le output:

#!/bin/ksh
Generate link graph (sortable output), input data is of the form ...
IP1 PORT1 DIR IP2 PORT2 COUNT

Usage linkg2.ksh LOW HIGH <inputfile >outputfile

e.g. linkg2.ksh 2 10 <oos.txt >linkg2.txt
e.g. cat scans.txt oos.txt | linkg2.ksh 2 10 >linkg2.txt

1 .. LOW are the values to be marked as LEAST occurring (i.e. " --->")
HIGH .. are the values to be marked as MOST occurring (i.e. ">>>>")
(other values are marked as medium frequency occurring) (i.e. " ->->")

LO=$1
HI=$2

sort -k 1,1 -k 4,4 -k 2,2 -k 5,5 -k 3,3 -k 6,6 | awk "{
 if (\$3 == \"to\") {
 if (\$6 <= $LO) { ptr = \"--->\" }
 else if (\$6 >= $HI) { ptr = \">>>>\" }
 else { ptr = \"->->\" }
 } else {
 if (\$6 <= $LO) { ptr = \"<---\" }
 else if (\$6 >= $HI) { ptr = \"<<<<\" }
 else { ptr = \"<-<-\" }
 }
 format= \"%-15s %5s %s %6d %s % -5s %-15s\n\"
 printf format, \$1, \$2, ptr, \$6, ptr, \$5, \$4
}"
exit 0

An example of use of this script is shown below:

$./linkg2.ksh 2 4 <temp1 | sort -k 2 -k 3
24.159.128.162 3624 ->-> 3 ->-> 27374 MY.NET.111.75
24.159.128.162 3624 < -<- 3 < -<- 27374 MY.NET.111.75
24.159.128.162 3630 ->-> 3 ->-> 27374 MY.NET.111.82
24.159.128.162 3638 < -<- 3 < -<- 27374 MY.NET.111.90
24.159.128.162 3676 ->-> 3 ->-> 27374 MY.NET.111.130
24.159.128.162 3676 < -<- 3 < -<- 27374 MY.NET.111.130
24.159.128.162 3730 ->-> 3 ->-> 27374 MY.NET.111.186
24.159.128.162 3737 ->-> 3 ->-> 27374 MY.NET.111.193
24.159.128.162 3793 ->-> 3 ->-> 27374 MY.NET.111.251
24.159.128.162 3822 ->-> 3 ->-> 27374 MY.NET.112.25
24.159.128.162 3822 < -<- 3 < -<- 27374 MY.NET.112.25
24.159.128.162 3850 ->-> 3 ->-> 27374 MY.NET.112.54
24.159.128.162 3855 ->-> 3 ->-> 27374 MY.NET.112.60
24.159.128.162 3861 ->-> 3 ->-> 27374 MY.NET.112.66
24.159.128.162 3869 ->-> 3 ->-> 27374 MY.NET.112.74
24.159.128.162 3897 >>>> 4 >>>> 27374 MY.NET.112.103
24.159.128.162 3933 >>>> 4 >>>> 27374 MY.NET.112.141

3.6. Phase 5 - Generating ad-hoc data
The benefit of constructed so many seemingly trivial scripts is that they may be used in
conjunction with each other. Many combinations of the scripts were used in analysing the
data in part 3 of this practical.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

4. Conclusions
With the increase in Home/SOHO systems in use today the Internet community needs greater
protection for such devices to avoid their being used as third pa rty agents by those with
malicious intent. The owners of these systems may be law abiding and not intending to cause
problems but with their systems connected to 'always on' communications technology they
provide immense processing power which will be harnessed by others if the owners do not
protect them.

Various vendors sell small firewall devices that are able to be configured with access/deny
rules and produce log information. Various IDSs are available free of charge (e.g. Snort)
which can be cheaply installed and configured. Both of these mechanisms can generate huge
amounts of logging information, which is next to useless, if nobody examines it and actions
their findings.

The aim of this paper has been to encourage thought about this problem and t o provide some
simple tools that will help the analysis of log data.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Assignment 3 - "Analyse This"

The scenario for this report was that the author had been asked to provide a security audit for
a University and had been provided with data from a Snort Intrusion Detection System using
a fairly standard set of rules.

1. Executive Summary
Data for the period 1 -5 July 2001 (Sun-Thurs) was selected and analysed.

The logs showed that there was considerable anomalous activity within the network. This
activity can cause problems in several ways: it may be malicious and illegal; it may also be
slowing down genuine network activity.

There were 15188 occurrences of 'possible trojan server activity' which means that there is a
considerable chance that rogue programs have been installed (intentionally or not) on systems
within the University. These trojans may be using University systems to cause problems to
other Internet users. The trojans may also be letting malicious personnel access to the
University's sensitiv e data.

There were 2172 occurrences of the network being scanned. This activity is probably of no
beneficial use. Data coming in to the University's networks from persistent scanning sites
should be blocked.

Some systems have been seen to be running du bious software that may be leaking University
data to outside systems.

It is recommended that the University develop a network architecture that allows the bulk of
its systems to be behind firewalls that limit access from the Internet into the University.

It is suggested that a baseline of standards be devised and adopted for all operating systems in
use. This baseline should be regularly updated to take advantage of various patches to
overcome vulnerabilities and other operating systems shortfalls, as t hey become available.

To protect those systems which are used to explore out on the Internet (and those internally
into which users install unknown software) it is suggested that regular checks are made to
ensure that no rogue software is operating and th at the security baseline is intact. Tools such
as CyberCop (Commercial) and Nessus (freely available) can be used for this task.

2. Files chosen for analysis
The files chosen were those for 1 st to 5th July 2001. One reason for this choice was that 1 st
July 2001 was a Sunday that may lead to differences in occurrences compared to the other
days (weekdays).

Various GCIA practicals were downloaded from the SANS site
www.sans.org/giactc/gcia.htm to be searched for correlations. Other correlations were found
by using search engines on the Internet (e.g. www.yahoo.com).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3. Top Five Prioritised Detects (by number of occurrences)
The detected alerts are summarised as follows:

Occurrences Description
15188 Possible trojan server activity
8015 UDP SRC and DST outside network
2172 spp_portscan: End of portscan (TOTAL HOSTS:1 TCP:0 UDP:10)
1426 External RPC call
1294 connect to 515 from outside
690 Watchlist 000220 IL -ISDNNET -990517
386 SMB Name Wildcard
275 SYN-FIN scan!
217 Queso fingerprint
173 WinGate 1080 Attempt
157 Port 55850 tcp - Possible myserver activity - ref. 010313 -1
108 SUNRPC highport access!
86 Watchlist 000222 NET -NCFC
71 NMAP TCP ping!
54 TCP SRC and D ST outside network
53 High port 65535 tcp - possible Red Worm - traffic
47 Null scan!
8 Attempted Sun RPC high port access
3 Back Orifice
2 Russia Dynamo - SANS Flash 28 -jul-00
1 connect to 515 from inside
1 STATDX UDP attack
1 TCP SMTP Source Port traffic

3.1. Priority 1 Detect (Possible trojan server activity)
Of the 15188 alerts to p ossible trojan server activity , 12889 (85%) were to destination TCP
port 27374 and the other 2299 (15%) were from source TCP port 27374. TCP port 27374 is
commonly used by the Ramen worm and SubSeven trojan exploit.

The SubSeven trojan can be used by attackers to make use of the infected system for their
own ends. Infected systems are also used to scan other systems to which they have access
with the intent of planting the SubSeven virus on those systems, and so it spreads…

Without full fidelity logs of the packets that caused the alerts it is not possible to give an
assured judgement on some of the alerts seen. An example of this is given in the following
table where the data seen may be a TCP SYN from the 'attacker' (65.8.220.176) and a
responding TCP RST from the system in the network being monitored (MY.NET.10.59). If
this is the case then the MY.NET.10.59 system has not been compromised, it has refused the
requested connection to TCP port 27374.

Date Time SRC IP Src P Dst IP Dst P
02-Jul 19:50:29 65.8.220.176 4713 MY.NET.10.59 27374
02-Jul 19:50:29 MY.NET.10.59 27374 65.8.220.176 4713

Some of the alerts cause us to believe that logging may not have been comple te, packets may
have been dropped. The example given here is of external system 65.8.220.176 appearing to
scan internal addresses MY.NET.10.43 through MY.NET.10.57, although we do not see the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

probe to MY.NET.10.54 we see the response from MY.NET.10.54 (no te the port number of
4708 on the external host, one more than the previously observed port used by the same host
to probe MY.NET.10.53) which were hopefully TCP RSTs.

Date Time SRC IP Src P Dst IP Dst P
02-Jul 19:50:29 65.8.220.176 4697 MY.NET.10.43 27374
02-Jul 19:50:29 65.8.220.176 4699 MY.NET.10.45 27374
02-Jul 19:50:29 65.8.220.176 4703 MY.NET.10.49 27374
02-Jul 19:50:38 65.8.220.176 4703 MY.NET.10.49 27374
02-Jul 19:50:29 65.8.220.176 4707 MY.NET.10.53 27374
02-Jul 19:50:38 65.8.220.176 4707 MY.NET.10.53 27374
02-Jul 19:50:29 MY.NET.10.54 27374 65.8.220.176 4708
02-Jul 19:50:30 MY.NET.10.54 27374 65.8.220.176 4708
02-Jul 19:50:30 MY.NET.10.54 27374 65.8.220.176 4708
02-Jul 19:50:29 65.8.220.176 4711 MY.NET.10.57 27374

In some cases repeate d alerts were raised between an external host and an internal host which
gives greater cause for concern. However, examination of the Snort scan files gives greater
insight into these scenarios. It appears that the external host repeatedly tried to conne ct with
the internal host: repeated SYNs can be seen (again some packets seem to be missing):

Date Time SRC IP Src P Dst IP Dst P
02-Jul 19:51:14 24.159.128.162 3822 MY.NET.112.25 27374
02-Jul 19:51:14 MY.NET.112.25 27374 24.159.128.162 3822
02-Jul 19:51:14 24.159.128.162 3822 MY.NET.112.25 27374
02-Jul 19:51:14 MY.NET.112.25 27374 24.159.128.162 3822
02-Jul 19:51:15 24.159.128.162 3822 MY.NET.112.25 27374
02-Jul 19:51:15 MY.NET.112.25 27374 24.159.128.162 3822

Date Time SRC IP Src P Dst IP Dst P Flags

02-Jul 19:51:14 24.159.128.162 3822 MY.NET.112.25 27374 SYN **S*****
02-Jul 19:51:15 24.159.128.162 3822 MY.NET.112.25 27374 SYN **S*****

There is a FAQ page at www.sans.org/ne wlook/resources/IDFAQ/subseven.htm that gives
useful information about the ways to detect if your system has been infected by the SubSeven
trojan.

Conclusion: The activity on TCP port 27374 was probes for install SubSeven trojan
programs, none appear to have been found .

Recommendation: Block inbound TCP SYN traffic to port 27374 at the network's boundary
firewall.

3.1.1. Correlations
CAN-1999-0660 and CAN-2000-0138 at www.mitre.org are both candidate vulnerabilities
describin g this type of activity.

PJ Goodwin makes various comments about TCP port 27374 scans in his GCIA paper at
www.sans.org/y2k/practical/PJ_Goodwin_GCIA.doc , his report also refers to TCP p ort
27374 activity being primarily probing for installed SubSeven trojans, not necessarily finding
and making use of them.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3.2. Priority 2 Detect (UDP SRC and DST outside network)
Packets should not be observed on a network if they are not either from an internal system or
to an internal system. The only exception to this would be if the network in question was
routing data between other networks (e.g. an ISP or a backbone Internet site). The site in
question is a University and it is assumed that the Universi ty is not intending to route data for
others.

The top five occurrences of this alert were as follows:

Src IP Src P Dst IP Dst P Dst Port Occurrences
169.254.X.Y 137 A.B.C.D 137 NetBIOS Name 6038

169.254.161.0 137 130.132.143.43 137 NetBIOS Name 2927 *
169.254.161.0 137 130.132.143.42 137 NetBIOS Name 2873 *
63.250.213.26 1039 233.28.65.164 5779 IANA unassigned 1788
192.168.X.Y 137 63.240.138.21 137 NetBIOS Name 90

* These two figures are part of the 6038 in the first row.

The most prevalent trace i s of 6038 'NetBIOS Name service' (UDP port 137) packets from
Class B network 169.254.X.Y to various destination addresses, including the two specific
destination addresses shown in the table.

In his posting at http://www.shmoo.com/mail/fw1/mar01/msg01360.shtml , Ryan Vickmark
states:

In Windows 98 and Windows 2000 if a computer is set to use DHCP and is unable to
locate a DHCP server it picks a random number from the 169.254.0.0/16 range.

A draft paper at http://www.ietf.org/proceedings/98dec/I -D/draft-ietf-dhc-ipv4-autoconfig -01.txt
provides the clarification (Troll, p. 3):

The address range to use MUST be "169.254/16", which is registered with the IANA
as the LINKLOCAL net.

Conclusion: The above quote and the fact that the packets are 'NetBIOS name service' would
seem to indicate the underlying problem.

Recommendation: Provide a default DHCP s erver to 'catch' Windows 98/2000 systems and
give them a correct IP address for the network in question.

The fourth most prevalent trace is from UDP port 1039 at 63.250.213.26 to UDP port 5779 at
233.28.65.164. Addresses in the Class D range (224.0.0.0 to 239.255.255.255) are multicast
addresses that are used wh en one source address communicates with multiple destinations
with each packet. Addresses in the range 233.0.0.0 to 233.255.255.255 are assigned as the
'GLOP block' in RFC 3171 (Albanna, p. 2).

Packets addressed to multicast addresses are not explicitly destined for the internal network
but when some process within the internal network 'joined' a multicast group the routers to,
and source of, the multicast data were instructed to forward copies of the packets to the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

internal network. They are therefore incorrectly classified as 'SRC and DST outside
network'.

Conclusion: These 233.X.Y.Z addresses are not outside the SRC or DST range of addresses.

Recommendation: Add the address range 224.0.0.0 to 239.255.255.255 to the IDS's
knowledge of internal addresses .

The fifth most prevalent trace is from UDP port 137 at various source addresses in the Class
C range 192.168.X.Y. This address range is one of those referred to as a Private Address
range detailed in RFC 1918 (Rekhter, p.4). Addresses in Private Address ranges should
never be routed across the Internet, they should either be dropped at Internet routers or be
subject to Network Address Translation by routers/firewalls.

One way to try to determine the source of these (non -multicast) packets would be to analyse a
packet trace (e.g. from 'tcpdump') to find the MAC (hardware) address of the device
originating these packets. If the MAC address is that of a router then packets will have to be
traced on the 'other' side of the router until a source address that is not a router is detected.
This device should then be examined for the source of the data.

Conclusion: Packets with either source or destination addresses in the ranges of Private IP
Addresses defined in RFC 1918 (e.g. 192.168.X.Y) should not be forwarded by routers to the
Internet, the packets should be restricted to their own private networks (e.g. a company or
educational establishment). Any systems that need to be 'visible' to the In ternet from within
such a private network should be subject the Network Address Translation so that the visible
address in not within the Private Address range.

Recommendation: Filter Private Addresses form propagating through external
routers/firewalls. Add the private address ranges to the IDS's knowledge of internal
addresses.

3.2.1. Correlations
Russell Felton discusses similar 169.254.X.Y anomalies in his posting to
http://www.theorygro up.com/Arhive/Argus/1999/msg00165.html .

Andrew Windsor makes various comments about 'UDP SRC and DST outside network' in his
GCIA paper at http://www.sans.org/y2k/practical/Andrew_Wi ndsor_GCIA.doc , but in his
analysis the DST address was always a Multicast address (224.x.y.z).

SANS handler Jeff Stsutzman report activity from 192.168.X.Y addresses to UDP port 90 &
138 in the SANS diary entry at www.sans.org/y2k/032900 -2030.htm.

3.3. Priority 3 Detect (Portscans)
The table of observed portscans is as follows (ranked by number of scans reported):

Src IP Scans Tot Hosts Tot TCP Tot UDP
199.183.24.194 90 90 90
MY.NET.100.230 87 1302 113 1274
MY.NET.70.80 87 1295 1431

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

MY.NET.140.191 84 1451 1612
211.207.15.190 70 29885 30094
24.66.152.186 58 58 59
142.177.206.111 44 44 603
MY.NET.98.174 34 34 2247
MY.NET.6.45 30 261 262
MY.NET.98.188 27 337 341
213.118.56.46 25 6158 6266
148.223.228.15 24 12837 13110
61.222.34.170 24 10739 10994
MY.NET.217.10 20 4671 1 5752

Although IP address 199.183.24.194 was reported most often by Snort for having performed
scans, the figures for 211.207.15.190, 148.223.228.15 and 61.222.34.17 0 cause more concern
because they scanned more hosts. The reason for this anomaly is that Snort has to decide
when a scan has finished so that it can report the fact. Address 199.183.24.194 may have
performed 90 scans but we can see from the number of ho sts scanned that each scan only
scanned one host and only one [TCP] port on that host. Is that a scan? Is Snort reporting
correctly? Looking at some of the lines in Snort's scan log files relating to this source address
we see lines of the form:

07/01,00:56:44,,199.183.24.194,45255,MY.NET.253.43,25,SYN 21S***** RESERVEDBITS
07/01,10:15:51,,199.183.24.194,37893,MY.NET.253.41,25,SYN 21S***** RESERVEDBITS

which show that Snort was in fact seeing abnormal activity because the reserved bits in the
TCP flags field (the higher order two bits) were set.

Both of the packets shown above were destined to port 25 (SMTP). The packets are crafted
(generated by a probing program rather than a normal operating system's network stack)
because the flags bits set ('21S') do not conform to TCP rules.

Site details:

nslookup: vger.kernel.org

whois: Server Name: NS.VGER.KERNEL.ORG

IP Address: 199.183.24.194
Registrar: NETWORK SOLUTIONS, INC.
Whois Server: whois.networksolutions.com

Conclusion: This address has been seen t o be carrying out malicious activity and is probably
attempting to identify types of operating systems in use.

Recommendation: 1) That the address be blocked coming in to the network at the boundary
firewall; and 2) that the administrators of the site be informed that their system has been
observed scanning MY.NET.X.Y. If the address in question has been compromised by some
third party then informing its owners will alert them to the fact and allow them to eradicate
the problem.

Whilst only being reporte d by Snort for carrying out 70 scans, source address 211.207.15.190
scanned 29885 hosts! The table below shows some examples of the scans:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Date Time Src IP Description
01-Jul 05:05:36 211.207.15.190 spp_portscan: PORTSCAN DETECTED (THRESHOLD

7 connectio ns in 2 seconds)
01-Jul 05:06:13 211.207.15.190 spp_portscan: End of portscan (TOTAL HOSTS:2509

TCP:2525 UDP:0)
01-Jul 05:06:29 211.207.15.190 spp_portscan: PORTSCAN DETECTED (THRESHOLD

7 connections in 2 seconds)
01-Jul 05:06:42 211.207.15.190 spp_portscan: End of portscan (TOTAL HOSTS:554

TCP:559 UDP:0)
01-Jul 05:06:44 211.207.15.190 spp_portscan: PORTSCAN DETECTED (THRESHOLD

7 connections in 2 seconds)
01-Jul 05:06:58 211.207.15.190 spp_portscan: End of portscan (TOTAL HOSTS:687

TCP:692 UDP:0)
01-Jul 05:07:00 211.207.15.190 spp_portscan: PORTSCAN DETECTED (THRESHOLD

7 connections in 2 seconds)
01-Jul 05:07:06 211.207.15.190 spp_portscan: End of portscan (TOTAL HOSTS:164

TCP:165 UDP:0)
01-Jul 05:07:09 211.207.15.190 spp_portscan: PORTSCAN D ETECTED (THRESHOLD

7 connections in 2 seconds)
01-Jul 05:07:39 211.207.15.190 spp_portscan: End of portscan (TOTAL HOSTS:2400

TCP:2414 UDP:0)

Examining Snort's scan log files for the period 01 -Jul 05:06:29 - 05:06:42 during which Snort
reported that this source address had scanned 554 hosts and 559 TCP ports we see just 96
records, (each of which was on 01 -Jul, from the above address, to TCP port 21 (FTP
Control), with just the SYN flags set). The log appears to be incomplete because we see
increasing port numbers on the source system probing increasing IP addresses in the
MY.NET range but there are gaps in each which match (i.e. if the source port jumps by 3
then the destination address also jumps by 3). The logged data shows that the scan covered
addresses in the range MY.NET.145.2 to MY.NET.145.248 which, allowing for missed data,
seems to be a complete scan of the MY.NET.145.1 to MY.NET.145.254 range.

We can deduce from this information that the source address carried out a scan of the FTP
service on the addresses in question.

Site details:

nslookup: no match found
whois: no match found

Conclusion: This address has been seen to be scanning for systems that operate the FTP
service. The scan was probably trying to identify the operating systems in use.

Recommendation: As above.

3.4. Priority 4 Detect (External RPC call)
The following table shows a summary of the probes made by various external systems against
the RPC service on IP addresses within the University's IP address range. If the Remote
Procedure Call portmapper service is running on a host then a client connecting to it will be
given details of what programs have registered themselves with the portmapper. Subsequent
connections can then be made to those services with possible access to data and/or processing
power.

Date Time Src IP Src P Dst IP Dst P

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

01-Jul 09:05:21 164.164.87.134 1606 MY.NET.132.0 111 From
01-Jul 09:05:23 164.164.87.134 2017 MY.NET.132.240 111 To
01-Jul 09:05:27 164.164.87.134 2070 MY.NET.133.3 111 From
01-Jul 09:05:34 164.164.87.134 2601 MY.NET.133.246 111 To
01-Jul 09:05:31 164.164.87.134 2645 MY.NET.134.35 111 From
01-Jul 09:05:41 164.164.87.134 3159 MY.NET.134.231 111 To
01-Jul 09:05:39 164.164.87.134 3199 MY.NET.135.15 111 From
01-Jul 09:05:44 164.164.87.134 3632 MY.NET.135.253 111 To
01-Jul 09:05:51 164.164.87.134 4193 MY.NET.137.1 111 From
01-Jul 09:06:02 164.164.87.134 4776 MY.NET.137.253 111 To

02-Jul 01:02:41 170.211.172.90 4720 MY.NET.132.175 111 From
02-Jul 01:02:41 170.211.172.90 4790 MY.NET.132.245 111 To
02-Jul 01:02:41 170.211.172.90 4800 MY.NET.133.0 111 From
02-Jul 01:02:41 170.211.172.90 1081 MY.NET.133.253 111 To
02-Jul 01:02:41 170.211.172.90 1093 MY.NET.134.9 111 From
02-Jul 01:02:41 170.211.172.90 1184 MY.NET.134.100 111 To
02-Jul 01:02:42 170.211.172.90 1369 MY.NET.135.29 111 From
02-Jul 01:02:44 170.211.172.90 1591 MY.NET.135.251 111 To
02-Jul 01:02:44 170.211.172.90 1851 MY.NET.137.0 111 From
02-Jul 01:02:44 170.211.172.90 1925 MY.NET.137.74 111 To

02-Jul 09:08:18 199.84.54.32 111 MY.NET.132.1 111 From
02-Jul 09:08:20 199.84.54.32 111 MY.NET.132.253 111 To
02-Jul 09:08:20 199.84.54.32 111 MY.NET.133.17 111 From
02-Jul 09:08:23 199.84.54.32 111 MY.NET.133.254 111 To
02-Jul 09:08:23 199.84.54.32 111 MY.NET.134.3 111 From
02-Jul 09:08:25 199.84.54.32 111 MY.NET.134.253 111 To
02-Jul 09:08:25 199.84.54.32 111 MY.NET.135.1 111 From
02-Jul 09:08:28 199.84.54.32 111 MY.NET.135.250 111 To
02-Jul 09:08:31 199.84.54.32 111 MY.NET.137.18 111 From
02-Jul 09:08:33 199.84 .54.32 111 MY.NET.137.236 111 To

04-Jul 00:01:03 204.117.207.245 3826 MY.NET.133.58 111 From
04-Jul 00:01:03 204.117.207.245 3914 MY.NET.133.146 111 To
04-Jul 00:01:04 204.117.207.245 4119 MY.NET.134.96 111 From
04-Jul 00:01:04 204.117.207.245 4190 MY.NET.134.167 111 To
04-Jul 00:01:02 204.117.207.245 4361 MY.NET.135.83 111 From
04-Jul 00:01:02 204.117.207.245 4437 MY.NET.135.159 111 To
04-Jul 00:01:07 204.117.207.245 4823 MY.NET.137.35 111 From
04-Jul 00:01:07 204.117.207.245 4898 MY.NET.13 7.110 111 To

01-Jul 08:46:36 211.23.6.234 1448 MY.NET.132.28 111 From
01-Jul 08:46:47 211.23.6.234 2011 MY.NET.132.246 111 To
01-Jul 08:46:44 211.23.6.234 2098 MY.NET.133.73 111 From
01-Jul 08:46:53 211.23.6.234 2616 MY.NET.133.254 111 To
01-Jul 08:46:53 211.23.6.234 2618 MY.NET.134.1 111 From
01-Jul 08:46:59 211.23.6.234 2986 MY.NET.134.191 111 To
01-Jul 08:46:57 211.23.6.234 3229 MY.NET.135.25 111 From
01-Jul 08:47:07 211.23.6.234 3642 MY.NET.135.246 111 To
01-Jul 08:47:10 211.23.6.234 4247 MY.NET.137.1 111 From
01-Jul 08:47:19 211.23.6.234 4605 MY.NET.137.176 111 To

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

We can see that source addresses 164.164.87.134, 170.211.172.90, 199.84.54.32,
204.117.207.245 and 211.23.6.234 have scanned a comprehensive range of destination
addresses from MY.NET.132.0 to MY.NET.137.255.

A SANS paper by David Reece at http://www.sans.org/newlook/resources/IDFAQ/blocking.htm
(Reece) provides more insight into this problem.

The only one of the above IP addresses that could be resolved was:
Site details:

nslookup: no match found
whois: Server Name: NS.URETHANEEXPERTS.COM

IP Address: 204.117.207.245
Registrar: REGISTER.COM, INC.
Whois Server: whois.register.com

Conclusion: The observed scan was [part of] a network mapping scan to establish which
addresses are in use in the address ranges and possibly what operating system[s] the scanned
hosts are running.

Recommendation: If inbound connections are not required to TCP RPC, block them a t the
external firewall.

3.4.1. Correlations
The paper at http://www.cert.org/advisories/CA -2000-17.html gives details of port 111
exploits.

Candidate vulnerability CAN -2000-0666 on the CVE database a t www.mitre.org also refers
to this issue.

3.5. Priority 5 Detect (connect to 515 from outside)
Data from the logs being reported to destination port 515 (IANA port list name: 'printer',
IANA description: 'spooler', protocols TCP and UDP) was summarised and analysed. The
data showed that MY.NET addresses had been scanned in a similar way to those reported in
3.4 above.

Generating a link count for all inbound packets from 165.132.31.137 showed that each
destination system rec eived either one or two packets. Allowing for the IDS to have dropped
packets it is assumed that each destination system received approximately 2 packets. These
were thought to be TCP SYNs and a check of the Snort scans files corroborated the
suspicion.

Date Time Src IP SrcP Dst IP DstP
03-Jul 05:37:56 255.255.255.255 31337 MY.NET.135.58 515

The packet shown above stood out from all the others that had targeted port 515. IP address
255.255.255.255 is known as the 'limited broadcast address' (Stevens, p. 171) and is not
normally used as a source address. Port 31337 is associated with the Back Orifice exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Conclusion: The observed scan was [part of] a network mapping scan to establish which
addresses are in use in the address ranges and possibly wh at operating system[s] the scanned
hosts are running. None of the systems responded to the scan.

Recommendation: If inbound connections are not required to the printer service, block them
at the external firewall.

3.5.1. Correlations
Roderick Campbell observed this detect as his fifth highest occurrence in his GCIA paper that
can be found at www.sans.org/y2k/practical/Roderick_Campbell_GCIA.doc .

The SANS alert at http://www.sans.org/newlook/alerts/port515.htm gives further insight into
this type of probe.

4. 'Top Ten Talkers'
The top talkers are those source IP addresses who are reported upon most often by IDSs (i.e.
who is allegedly causing the alerts, beware that source IP addresses may be spoofed).

The list of 'top talkers' generated by the 'top_talk.ksh' UNIX shell script (see below) from the
selected Snort log files are:

Rank IP Address Occurrences
1 MY.NET.160.114 67101
2 211.207.15.190 30297
3 66.68.62.229 23506
4 205.188.233.121 15074
5 205.188.233.153 14936
6 148.223.228.15 13158
7 61.222.34.170 12136
8 205.188.244.249 9594
9 205.188.246.121 8459

10 MY.NET.217.10 8225

The details of the top five external tal kers are given below.

4.1. Top Talker No 1 (211.207.15.190)
The following command was used to analyse which Snort files gave details of packets
involving this IP address:

grep -c ,211.207.15.190, scans.txt alert.txt oos.txt

The command searches for the patter n ",211.207.15.190, " in the three listed files and the ' -
c' flag causes the command to report the number of times the pattern was found in each file.
The output of the command was:

scans.txt:30156 alert.txt:141 oos.txt:0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

All the data from this IP addres s was found to be targeted to TCP port 21 (FTP control) on
various addresses in the MY.NET.X.Y range. None of the Snort log files included evidence
of any replies.

Site details:

nslookup: no match found
whois: no match found

4.2. Top Talker No 2 (66.68.62.229)
The above grep command was used again and gave the following results:

scans.txt:24671 alert.txt:6 oos.txt:1

Analysing the data to and from this IP address shows that all the data (all 24671 packets)
were sent between this address and MY.NET.219.42. 23 500 of the packets were targeted at
MY.NET.219.42 and the remaining 1171 packets were observed from MY.NET.219.42 to
66.68.62.229.

The range of ports in use was extremely wide although all the source ports used on the
66.68.62.229 system were in the range 61000-65095. These packets were used to scan ports
from 1 to 15000 on the MY.NET.219.42 system. An example is shown here:

07/01,12:39:16,,MY.NET.219.42,4001,66.68.62.229,214,SYN **S*****
07/01,21:36:23,,66.68.62.229,61806,MY.NET.219.42,4001,SYN **S**** *

Site details:

nslookup: cs666862 -229.austin.rr.com
whois: no match found

The site name 'cs666862 -229.austin.rr.com' indicates that this site may be a dial -up service,
dynamically allocated when required. It is unlikely that analysis of this IP address after the
event will provide genuine information - the IP address has probably been re -allocated to
another user.

4.3. Top Talker No 3 (205.188.233.121)
The above grep command was used again and gave the following results:

scans.txt:15059 alert.txt:15 oos.txt:0

All the data from this IP address was found to be targeted to UDP port 6970 on various
addresses in the MY.NET.X.Y range. None of the Snort log files included evidence of any
replies.

UDP port 6970 is used for receiving 'RealAudio' data. The ' nslook up' command returns
information that the site in question's name is: g2lb4.spinner.com , looking at
http://www.spinner.com we find that this site is an 'Internet Radio Station'. The observed
data appears to be systems running applications such as QuickTime or RealPlayer to receive
audio (e.g. news feeds or music) over the Internet.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

N.B. A trojan program known as 'Gate Crasher' listens on TCP port 6970, the activity seen in
this example was all UDP and therefore not su spected to be Gate Crasher activity.

Site details:

nslookup: g2lb4.spinner.com
whois: no match found

4.4. Top Talker No 4 (205.188.233.153)
The above grep command was used again and gave the following results:

scans.txt:14921 alert.txt:15 oos.txt:0

This IP a ddress' DNS name is 'g2lb5.spinner.com ' and is a sister site to system identified as
Top Talker No. 3.

Site details:

nslookup: g2lb5.spinner.com
whois: no match found

4.5. Top Talker No 5 (148.223.228.15)
The above grep command was used again and gave the foll owing results:

scans.txt:13110 alert.txt:48 oos.txt:0

Data from this IP address was found to be targeted to many UDP and TCP ports on various
addresses in the MY.NET.X.Y range. Some of the Snort log files included evidence of
replies.
Some examples of inbound packets are:

07/01 00:56:44 148.223.228.15 45255 MY.NET.253.43 25 SYN 21S***** RESERVEDBITS
07/01 01:05:47 148.223.228.15 32927 MY.NET.70.97 65176 NOACK 21SFRP*U RESERVEDBITS
07/01 01:06:00 148.223.228.15 4978 MY.NET.1.6 563 SYN 21S***** RESERV EDBITS

These packets have been crafted, they are not generated by operating systems' network
stacks. They show signs of malicious activity.

Site details:

nslookup: du -148-223-228-15.prodigy.net.mx
whois: no match found

Looking up prodigy.net.mx reveale d:
Site details:

whois: Server Name: PRODIGY.NET.MX
IP Address: 148.235.168.60
Registrar: REGISTER.COM, INC.
Whois Server: whois.register.com

5. Analysis of Out Of Specification (OOS) Data

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The name 'Out Of Specification' refers to data that does not conform to the defined ways of
communicating using TCP/IP. The table below show the number of OOS packets detected
for the top ten sources of OOS data, with their DNS names and whois information.

IP Address Detects DNS Name Whois information
211.180.236.194 557 Not found Name: NS.CWDESIGN.CO.KR

Registrar: YESNIC CO. LTD.
Whois Server: whois.yesnic.com

210.77.146.33 390 Not found Name: NS2.YOULE.NET
Registrar:BULKREGISTER.COM,INC.
Whois Server: whois.bulkregister.com

199.183.24.194 175 vger.kernel.o
rg

Name: NS.VGER.KERNEL.ORG
Registrar: NETWORK SOLUTIONS,
INC.

24.66.152.186 108 h24-66-152-
186.gv.shawc
able.net

Not found

216.5.180.10 41 Not found Not found
193.226.113.248 31 248.valahia.r

o
Not found

209.150.103.212 18 Realityfailure
.org

Name: DNS.REALITYFAILU RE.ORG
Registrar: TUCOWS, INC.
Whois Server: whois.opensrs.net

64.152.176.4 12 64-152-176-
4-rev-
l3.inyc.com

Not found

24.169.190.158 11 syr-24-169-
190-
158.twcny.rr.
com

Not found

192.117.120.140 11 firegate.savan
.com

Not found

Various of these addresse s were chosen for further analysis, the results of which are given
below.

5.1. OOS Data: 211.180.236.194
All OOS data seen related to this address was from TCP port 111 (portmapper) to port 111 at
various MY.NET.X.Y addresses. Some packets are shown below:

07/03,13:21:11,493913,211.180.236.194,111,MY.NET.132.1,111,TCP TTL:25
TOS:0x0 ID:39426 **SF**** Seq: 0x695B4072 Ack: 0x44C85FBB Win: 0x404 00 00
00 00 00 00

07/03,13:21:11,529981,211.180.236.194,111,MY.NET.132.3,111,TCP TTL:25
TOS:0x0 ID:39426 **SF**** Seq: 0x695B4072 Ack: 0x44C85FBB Win: 0x404 00 00
00 00 00 00

07/03,13:21:11,572401,211.180.236.194,111,MY.NET.132.5,111,TCP TTL:25
TOS:0x0 ID:39426 **SF**** Seq: 0x695B4072 Ack: 0x44C85FBB Win: 0x404 00 00
00 00 00 00

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Various characteristics can be seen in t his data:
1) The IP ID field (value:29426) doesn't change between packets;
2) The TCP flags SYN and FIN are both set, this is not a valid flag combination;
3) The TCP sequence number (value:0x695B4072) doesn't change between packets;
4) The TCP acknowledgement number (value:0x44C85FBB) doesn't change between

packets;

Many more packets were seen like these, all destined to different destination IP addresses.
We can conclude from this that this was a SYN/FIN scan against MY.NET.X.Y. This is
corroborated by entries in Snort's scan files.

5.2. OOS Data: 210.77.146.33
All OOS data seen related to this address was directed to TCP port 80 (http) at two
MY.NET.X.Y addresses. Some packets are shown below:

07/01,15:39:49,026156,210.77.146.33,34575,MY.NET.253.114,80,TCP TTL:46
TOS:0x0 ID:29838 DF 21S***** Seq: 0x64C06770 Ack: 0x0 Win: 0x16D0 TCP
Options => MSS: 1460 SackOK TS: 4789246 0 EOL EOL EOL EOL

07/01,15:39:50,133797,210.77.146.33,34584,MY.NET.253.114,80,TCP TTL:46
TOS:0x0 ID:36186 DF 21S***** Seq: 0x65689936 Ack: 0x0 Win: 0x16D0 TCP
Options => MSS: 1460 SackOK TS: 4789356 0 EOL EOL EOL EOL

07/01,15:39:51,396430,210.77.146.33,34608,MY.NET.253.114,80,TCP TTL:46
TOS:0x0 ID:4826 DF 21S***** Seq: 0x654D0630 Ack: 0x0 Win: 0x16D0 TCP
Options => MSS: 1460 SackOK TS: 4789482 0 EOL EOL EOL EOL

Of the 390 packets detected, 370 were directed at MY.NET.253.114 and the remaining 20
packets at MY.NET.100.165. 156 packets were targeted at MY.NET.253.114 on Jul 01
between 15:39:49 and 15:43:03. The packets have TCP reserved bits '2' and '1' and the SYN
bit set, this is not a valid flag combination. The IP Identification field changes from 29838 to
36186 to 4826 over a period of two seconds. This is not normal behaviour and is another
sign of crafted packets.

5.3. OOS Data: 24.169.190.158
The following are some of the packets observed from this IP address:

07/03,16:49:27,752393,24.169.190.158,2953,MY.NET.70.66,6346,TCP TTL:108 TOS:0x0
ID:41555 DF 21S*R*** Seq: 0xD0188 Ack: 0x28F668F Win: 0x5010 ...

07/03,16:50:10,149447,24.169.190.158,0,MY.N ET.70.66,2953,TCP TTL:108 TOS:0x0
ID:25175 DF **SF*P*U Seq: 0x18CA0188 Ack: 0x8AAA6690 Win: 0x5010 ...

07/03,16:51:00,006281,24.169.190.158,0,MY.NET.70.66,2953,TCP TTL:108 TOS:0x0
ID:29022 DF **SF**A* Seq: 0x18CA0189 Ack: 0x8BF66691 Win: 0x5010 TCP Option s => NOP
NOP TS: 80020482 2864587741

07/03,16:51:04,401103,24.169.190.158,0,MY.NET.70.66,2953,TCP TTL:108 TOS:0x0
ID:58974 DF 21*FRP** Seq: 0x18CA0189 Ack: 0x9A1C6691 Win: 0x5010 TCP Options =>
MSS: 1460 NOP WS: 1 Opt 17 (24): D155 0E55 0000 0000 0000 000 0 0000 0000 0000 0000
0000 EOL EOL EOL EOL EOL EOL EOL EOL

07/03,16:53:01,313036,24.169.190.158,2953,MY.NET.70.66,6346,TCP TTL:108 TOS:0x0
ID:40045 DF 21**RP** Seq: 0x18C97CE Ack: 0xED6695 Win: 0x5010 TCP Options => NOP
NOP TS: 1021564102 1772319503

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

07/03,16:53:09,629219,24.169.190.158,2953,MY.NET.70.66,6346,TCP TTL:108 TOS:0x0
ID:53614 DF 21**RP** Seq: 0x18CDF34 Ack: 0xD6696 Win: 0x5010 ...

A check of all ports used to/from this address was performed by the following script call:

$./links.ksh 24.169.1 90.158 <oos.txt

24.169.190.158 2953 to MY.NET.70.66 6346 6
24.169.190.158 0 to MY.NET.70.66 2953 5

Ports TCP 6346 and UDP 6347 are commonly used by Gnutella software.

It is unusual to see a source side port (2953) suddenly be used as a source port for a return
packet, especially when the destination port of that packet is 0, this may be a programming
error.

The number of TCP options shown in the fourth packet leads to speculation that the packet
may be intended to cause a buffer overrun.

5.4. OOS Data: 192.117.120.140
The following are some of the packets observed from this IP address:

07/03,05:14:54,309606,192.117.120.140,62741,MY.NET.70.27,6347,TCP TTL:43 TOS:0x0
ID:12300 DF 21S***** Seq: 0xB733EE4F Ack: 0x0 Win: 0x16D0 TCP Options => MSS: 1460
SackOK TS: 74767939 0 EOL EOL EOL EOL
07/03,05:40:49,895834,192.117.120.140,64079,MY.NET.228.74,6346,TCP TTL:43 TOS:0x0
ID:55274 DF 21S***** Seq: 0x1935EA3D Ack: 0x0 Win: 0x16D0 TCP Options => MSS: 1460
SackOK TS: 74923479 0 EOL EOL EOL EOL
07/03,05:40:52,907907,192. 117.120.140,64079,MY.NET.228.74,6346,TCP TTL:43 TOS:0x0
ID:55275 DF 21S***** Seq: 0x1935EA3D Ack: 0x0 Win: 0x16D0 TCP Options => MSS: 1460
SackOK TS: 74923779 0 EOL EOL EOL EOL
07/03,05:40:58,967539,192.117.120.140,64079,MY.NET.228.74,6346,TCP TTL:43 TOS:0 x0
ID:55276 DF 21S***** Seq: 0x1935EA3D Ack: 0x0 Win: 0x16D0 TCP Options => MSS: 1460
SackOK TS: 74924379 0 EOL EOL EOL EOL
07/03,07:31:32,627584,192.117.120.140,63711,MY.NET.70.27,6347,TCP TTL:43 TOS:0x0
ID:20162 DF 21S***** Seq: 0xBCBEAF04 Ack: 0x0 Win: 0x16D0 TCP Options => MSS: 1460
SackOK TS: 385478 0 EOL EOL EOL EOL
07/03,07:44:48,950258,192.117.120.140,64231,MY.NET.228.74,6346,TCP TTL:43 TOS:0x0
ID:26458 DF 21S***** Seq: 0xEE107F95 Ack: 0x0 Win: 0x16D0 TCP Options => MSS: 1460
SackOK TS: 465103 0 EOL EOL EOL EOL
07/03,07:44:51,982874,192.117.120.140,64231,MY.NET.228.74,6346,TCP TTL:43 TOS:0x0
ID:26459 DF 21S***** Seq: 0xEE107F95 Ack: 0x0 Win: 0x16D0 TCP Options => MSS: 1460
SackOK TS: 465403 0 EOL EOL EOL EOL
07/03,07:44:58,041895,192.117.120.140,6423 1,MY.NET.228.74,6346,TCP TTL:43 TOS:0x0
ID:26460 DF 21S***** Seq: 0xEE107F95 Ack: 0x0 Win: 0x16D0 TCP Options => MSS: 1460
SackOK TS: 466003 0 EOL EOL EOL EOL
07/03,08:19:51,248526,192.117.120.140,61646,MY.NET.201.74,6346,TCP TTL:43 TOS:0x0
ID:13156 DF 21S ***** Seq: 0x724C7E8F Ack: 0x0 Win: 0x16D0 TCP Options => MSS: 1460
SackOK TS: 675307 0 EOL EOL EOL EOL
07/03,08:19:54,291975,192.117.120.140,61646,MY.NET.201.74,6346,TCP TTL:43 TOS:0x0
ID:13157 DF 21S***** Seq: 0x724C7E8F Ack: 0x0 Win: 0x16D0 TCP Options => MSS: 1460
SackOK TS: 675607 0 EOL EOL EOL EOL
07/03,08:20:00,243730,192.117.120.140,61646,MY.NET.201.74,6346,TCP TTL:43 TOS:0x0
ID:13158 DF 21S***** Seq: 0x724C7E8F Ack: 0x0 Win: 0x16D0 TCP Options => MSS: 1460
SackOK TS: 676207 0 EOL EOL EOL EOL

All the above packets show an unusual use of the TCP flags field, the bits '2' and '1' are not
normally used.

The two packets targeted to MY.NET.70.27 are both to TCP port 6347. The other packets
are to port 6346 (often used by Gnutella).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The two 'bursts' of three packets sent to MY.NET.228.74 and the one 'burst' of three packets
sent to MY.NET.201.74 show delays of 2 -3 and then 5-7 seconds almost as if they were TCP
re-transmissions (but they shouldn't change their IP ID if that were the case).

This seems to be an attempt to elicit a response from the targeted systems.

A check of all OOS data to/from this address was performed by the following script call:

$./links.ksh 192.117.120.140 <oos.txt | ./linkg.ksh 1 10

192.117.120.140 61646 ->-> 3 ->-> 6346 MY.NET.201.74
 64079 ->-> 3 ->-> 6346 MY.NET.228.74
 64231 ->-> 3 ->-> 6346
 62741 ---> 1 ---> 6347 MY.NET.70.27
 63711 ---> 1 ---> 6347

The following link graph represen ts this data in a graphical form:

6. Concerns about internal systems

The list of top talkers lists two internal systems: MY.NET.160.114 and MY.NET.217.10.

MY.NET.160.114 was observed performing many portscans against external systems. T his
activity may be illegal. The identity of MY.NET.160.114 should be established and steps
taken to ensure that its activity is legitimate.

MY.NET.217.10 was observed performing many portscans against external systems. This
activity may be illegal. Th e identity of MY.NET.217.10 should be established and steps
taken to ensure that its activity is legitimate.

MY.NET.217.154 TCP port 1214 has been observed communicating with 199.4.19.2. TCP
port 1214 is used by 'Morpheus' software (a file sharing progra m). The Morpheus software is
known to have a security problem where it can used to gain access to a system's private data.
MY.NET.217.154 should be checked to ensure it is not 'leaking' University data.

Other internal systems are causing concern. These should be overcome if the systems as a
whole are scanned for vulnerabilities/trojans etc. and any such situations eradicated. The
issue will then be how to keep them clean!

MY.NET.70.27

MY.NET.228.74

192.117.120.140

MY.NET.201.74

 62741/63711 64079/64231
 61646

6347 6346
 6346

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

7. Defensive Recommendations
It is recommended that the University develop a network architecture that allows the bulk of
its systems to be behind firewalls. The ruleset on the firewalls for inbound data should be
established on a 'need to have' basis: only allow access where users can demonstrate that they
need to have it. Systems prov iding data to the outside world can have access explicitly
provided to them by the ruleset. Outbound access through the firewall should be fairly open
as the University presumably wishes to encourage learning and investigation.

Any Internet facing firewa lls should be configured to deny any packets inbound or outbound
that have source or destination ports within the range defined as Private IP Addresses in RFC
1918.

It is suggested that a baseline of standards be devised and adopted for all operating syst ems in
use. This baseline should be regularly updated to take advantage of various patches to
overcome vulnerabilities and other operating systems shortfalls as they become available.

To protect those systems which are used to explore out on the Internet (and those internally
into which users install unknown software) it is suggested that regular checks are made to
ensure that no rogue software is operating and that the security baseline is intact. Tools such
as CyberCop (Commercial) and Nessus (freely a vailable) can be used for this task.

8. Analytical Process
The chosen data was copied to a UNIX system where it was subjected to various custom
written scripts.

Reference was made to UNIX shell scripts in PJ Goodwin's GCIA practical at
www.sans.org/y2k/practical/PJ_Goodwin_GCIA.doc (Goodwin) although the scripts used
there could not be used here due to the format of the comma separated files used in this
analysis being different from those that PJ Goodwin used.

The scripts used here process the raw Snort data into a consistent comma separated format:

Date,Time,Fraction_of_Second,Src_IP,Src_Port,Dst_IP,Dst_Port,Other

where Other varies according to the type of data being processed.

Where a data field is not present a null field is generated. Beware that there may be commas
in the final field, typically where the data is the ASCII representation of the data (payload)
part of a packet in the OOS data.

The scripts used for this analysis ar e available from the author's web site in zipped tar format
or tar format for those who may wish to use them for their own purposes.

The scripts and other files are also included here. Beware that some lines get wrapped by the
software used to view this document (e.g. MS Word). You may have to reduce the pitch of
the font to see lines correctly.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The results of the UNIX sh ell scripts were copied to a MS Windows NT system where MS
Excel was used to manipulate the data (primarily to sort the data using various key fields).

The Snort alert files were processed with a Korn shell script named 'alert.ksh' (which uses a
sed patte rn file named 'alert.sed') to produce a file called alert.txt by the following command:

cat alert.01070[1 -5].txt | alert.ksh >alert.txt

The Snort scans files were processed with a Korn shell script named 'scans.ksh' (which uses
an sed pattern file named 'scans.sed') to produce a file called scans.txt by the following
command:

cat scans.01070[1 -5].txt | scans.ksh > scans.txt

The Snort OOS files were processed with a Korn shell script named 'oos.ksh' (which uses an
sed pattern file named 'oos.sed') to pro duce a file called oos.txt by the following command:

cat oos.01070[1 -5].txt | oos.ksh > oos.txt

The output from the above scripts was processed to generate 'top talkers' list with a Korn
shell script named 'top_talk.ksh':

cat alert.txt scans.txt oos.txt | top_talk.ksh > tt.txt

The output from the above scripts was processed to generate 'top destinations' list with a Korn
shell script named 'top_dest.ksh':

cat alert.txt scans.txt oos.txt | top_dest.ksh > td.txt

Selected IP addresses were extracted from selections of the above files and used to generate
lists of associated ports and other addresses/ports to which they have been observed to
communicate (i.e. to be 'linked') , for example:

links.ksh 65.8.220.176 <alert.txt >links.alert.65.8.220.176.txt

Which generates data of the form:

IP_Address Port Direction IP_Address Port Link_Count

Sample:

65.8.220.176 4660 to MY.NET.10.4 27374 4
65.8.220.176 4636 to MY.NET.9.235 27374 4
65.8.220.176 4626 to MY.NET.9.225 27374 4
65.8.220.176 4754 to MY.NET.10.102 27374 3
65.8.220.176 4752 to MY.NET.10.100 27374 3
65.8.220.176 4748 to MY.NET.10.96 27374 3
65.8.220.176 4739 fm MY.NET.10.86 27374 3
65.8.220.176 4708 fm MY.NET.10.54 27374 3

 …

This data was then processed to generate a crude 'link graph' with the fol lowing command:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

linkg.ksh 1 4 <links.alert.65.8.220.176.txt >linkg.a.65.8.220.176.txt

Which generates data of the form:

IP_Address Port Pointer Link_Count Pointer Port IP_Address

Sample:

65.8.220.176 4656 ->-> 2 ->-> 27374 MY.NET.10.0
 4666 ->-> 3 ->-> 27374 MY.NET.10.10
 4752 ->-> 3 ->-> 27374 MY.NET.10.100
 4754 ->-> 3 ->-> 27374 MY.NET.10.102
 4756 ->-> 2 ->-> 27374 MY.NET.10.104
 4668 ---> 1 ---> 27374 MY.NET.10.13
 4670 < -<- 2 <-<- 27374 MY.NET.10.15
 4670 ->-> 2 ->-> 27374
 4672 ---> 1 ---> 27374 MY.NET.10.17
 4658 ->-> 3 ->-> 27374 MY.NET.10.2

Note 1: Where a line does not show an IP address on the left or the right it is because the
address is the same as on the previous line.

Note 2: The 'boldness' of the pointers is intended to indicate the magnitude of the link, the
arguments given to the linkg.k sh command ('1' and '4' in this example) tell the script what
link counts to consider as low magnitude (shown as ' ---> ') and what link counts to consider
high magnitude ('>>>> '). Magnitudes between these values are shown as ' ->-> '.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

List of References

Albanna, Z. et al. IANA Guidelines for Ipv4 Multicast Address Assignments (RFC 3171) .
Juniper Networks, et al. 2001

Goodwin, PJ. GCIA practical. URL: www.sans.org/y2k/practical/PJ_Goodwin _GCIA.doc ,
2000

Maughan, D. et al. Internet Security Association and Key Management Protocol (RFC 2408) .
National Security Agency, et al, 1998

Murray, Bill. et al. " Protection of Home/SOHO Systems with Persistent Connections and IP
Addresses." SANS News Bites. Vol. 3 Num. 37 (2000)

Reece, David. Is blocking port 111 sufficient to protect your systems from RPC attacks? .
SANS Institute, URL: http://www.sans.org/newlook/resources/IDFAQ/b locking.htm (12 Sep.
2001)

Rekhter, Y., et al. Address Allocation for Private Internets (RFC 1918) . Cisco Systems et al,
1996

St. Johns, M. Identification Protocol (RFC 1413) . US DoD, 1993

Stevens, W. Richard. TCP/IP Illustrated, Volume 1 . Reading: Add ison Wesley Longman Inc,
1994.

ICMP Type Numbers . 29 Jun. 2001. URL: http://www.iana.org/assignments/icmp -parameters
(16 Aug. 2001)

Troll, R. Automatically Choosing an IP address in an Ad -Hoc Ipv4 Network . Oct 1998, URL:
http://www.ietf.org/proceedings/98dec/I -D/draft-ietf-dhc-ipv4-autoconfig-01.txt (Sep 2001)

