
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Testing Application Identification Features of

Firewalls

GIAC (GCIA) Gold Certification

Author: William McGlasson, william.mcglasson@gmail.com
Advisor: Dr. Hamed Khiabani

Accepted:
October 25th, 2013

Abstract
As many applications migrate to the use of HTTP-based protocols, traditional
firewalls have become less effective as an access control. To address this, the
firewall industry has adopted a new feature generically referred to in this paper as
Application Identification. Over the next decade, it is surmised that administrators
will become increasingly dependent on application identification to apply proper
access control at their network perimeter. A question that is too rarely asked,
though, is how do we know application identification works as advertised? Is it easy
to evade? Most of this technology to date is closed-source. This paper aims to
answer that question by suggesting and demonstrating possible methods of evasion.

Testing Application Identification Features of Firewalls 2

William McGlasson, william.mcglasson@gmail.com

1. Introduction
Firewalls have evolved over the last couple decades from simple packet filters as

add-ons to an operating system to the latest application-layer firewalls running their own,

sometimes purpose-built operating systems. The premise of firewalls up to the recent

decade has been that applications use specific protocols; these protocols operate over

defined transport protocols paired with their IANA-assigned or ephemeral port. It can be

observed, however, that over the past decade, applications have largely migrated away

from proprietary network protocols to widely accepted and standardized protocols such

as HTTP and its secured counterpart, HTTPS (Blanchet, 2012) (Labovitz, 2010).

Some speculate that the cause for the migration to HTTP-based protocols is a

direct result of tyrannical firewall administrators. Others suggest the explosion of

Software-as-a-Service and cloud-based services prompted the transition. In any case, it’s

likely that the popularity of HTTP and increasing availability of high-speed internet has

just as much to do with the transition as any other theory.

The migration of applications to HTTP as a transport protocol presents a problem

for the traditional firewall model; simply permitting TCP ports 80 and 443 through a

perimeter firewall grants users access to thousands of internet-resident applications

(Controlling Web 2.0 Applications, 2011). Technologies like ActiveX, Silverlight, and

Java Applets allow full-fledged desktop applications to run within the browser. The well-

established firewall vendors have been recently challenged by unencumbered start-ups

with technology some coined as ‘Next Generation Firewall’ (Pescatore, J., Young, G.,

2012). Despite the aggressive marketing of the ‘Next Generation’ terminology, the

information security community does not consider these firewalls to be of another

generation; rather, an evolution or maturation of the application-layer inspection of third-

generation firewalls.

 Like any new security technology, implementations typically get better over time

with testing and research. History often repeats itself; new developers repeat the

mistakes of their predecessors, re-introducing flaws into new technology that had long

been considered patched (Chess & West, 2007). Application identification to this depth

Testing Application Identification Features of Firewalls 3

William McGlasson, william.mcglasson@gmail.com

and complexity is in its infancy, and for that very reason is largely untested and likely to

be flawed. The goal of this research paper is to suggest possible methods of application

identification evasion, and to test some of those methods and observe the results.

2. Application Identification Evasion
2.1. Firewall Evasion Primer

Firewall evasion is not a new concept. Since the introduction of packet filters,

researchers have been developing and suggesting methods of evasion. Well-known

examples include fragmentation-based attacks, payload obfuscation, and unusual

combinations of TCP flags (Ptacek and Newsham, 1998). Evasion techniques are made

possible by protocol implementations that include misinterpretations, intentional or non-

intentional violations, or lack of specific RFC guidance resulting in variations in behavior

across platforms.

In many cases, evasion attempts typically concentrate on a single technique, such

as fragmentation-based attacks. In this paper, we will attempt to evade the Application

Control feature of a Fortinet FortiGate firewall using single and combined evasion

techniques from layers three, four and seven of the OSI reference model. A combination

of tools including Evader, Wireshark, TCPDump, and Scapy will be used to create

evasion attempts and analyze the results.

2.2. Stonesoft Evader
 It would be wise to automate wherever possible. Many tools exist for testing a

single evasion technique; in some cases, just a handful of evasion techniques. NMap, for

example, provides for testing of some basic evasion techniques such as fragmentation-

based attacks, IP Options manipulation, and even firewalking through the NMap

Scripting Engine. However, a tool exists for launching a wealth of know evasion

techniques against a target. That tool is Evader; developed and released by Stonesoft.

Evader allows the user to cherry-pick from a number of evasion techniques from layers

three, four and seven of the OSI model. The goal is to find evasion techniques that will

allow us to circumvent the Application Control feature of a Fortinet Fortigate firewall.

Testing Application Identification Features of Firewalls 4

William McGlasson, william.mcglasson@gmail.com

 A lab was set up using the instructions in the Evader User’s Guide from Stonesoft

(“Evader User’s Guide,” 2013). For simplicity, the http_phpbb_highlight exploit was

used against the built-in Evader victim services. The Fortinet FortiGate unit was

configured in a layer 3 routing topology between the Evader attacker and victim

machines. Evader version 2013.4.594 was used in testing, along with a Fortinet Fortigate

running firmware version 4.0 MR3 Patch 15 and FortiGuard signatures dated between

2013-09-30 and 2013-10-14. A firewall rule was created to allow traffic to flow from the

Evader attacker machine to the Evader victim machine with Port Address Translation.

Port Address Translation was used as it more closely represents Application Control

evasion scenarios. Stateful inspection is enabled by default and, as such, return traffic

from the Evader victim is permitted when it matches an existing flow.

 In order to test for proper connectivity, ICMP echo requests were sent from the

Evader attacker to the Evader victim machine; ICMP echo replies were received,

confirming at least layer three connectivity. A request for the web page on the Evader

victim was sent from the Evader attacker as per the Evader User’s Guide;; this confirmed

layer seven connectivity. Tests began with a clean payload sent from the Evader attacker,

without any evasion attempts. This simply sends an HTTP GET request for

/phpBB2/config.php. In this case, a 200 OK was received from the Evader victim,

further demonstrating layer seven connectivity.

Because there are not yet any IPS or Application Control policies assigned to the

FortiGate, compromise of the Evader victim using a clean, evasion-less payload ought to

test successful. As shown in the following screenshot, compromise with a clean payload

was successful. The second screenshot shows the resulting shell, where the ‘ls’

command was executed. In order to simulate as closely as possible a real scenario where

Application Control evasion might occur, a public IP address was assigned to our Evader

Testing Application Identification Features of Firewalls 5

William McGlasson, william.mcglasson@gmail.com

victim in this test, and is censored in the screenshots shown (Destination IP Address).

However, the test would be equally effective against a private IP address.

 Next, a custom IPS policy was applied to the FortiGate, as shown in the first

screenshot below. To once again ensure a good baseline, clean payloads were sent to the

Evader victim. A 200 OK response was received. In the continued interest of securing a

good baseline, the exploit payload was sent to the victim machine without the use of any

evasion techniques. This attack was successfully blocked by the FortiGate as the second

screenshot indicates.

Testing Application Identification Features of Firewalls 6

William McGlasson, william.mcglasson@gmail.com

The goal is to find a handful of evasions or combinations of evasions that can be

used to bypass the Application Control feature of the FortiGate in later testing. While it’s

possible to continue testing manually, Evader has a feature for automating the testing of

multiple combinations of evasion techniques. The Mongbat feature allows the user to

provide parameters on the number of evasions to test at one time, the total run time, the

number of workers, and different modes of attack. By default, Mongbat chooses evasion

techniques at random. After putting Mongbat through a handful of runs, many

standalone and combined evasion techniques were found to be effective in evading the

IPS policy of the FortiGate. These techniques were repeated to ensure successful

compromise of the Evader victim, and are shown below using language directly from the

Evader tool. The ‘+’ character is used to show where evasions were successful only

when paired with others; by themselves, the evasions were tested to be ineffective.

Testing Application Identification Features of Firewalls 7

William McGlasson, william.mcglasson@gmail.com

 Send payload in TCP handshakes SYN packet (Evader Option: --

evasion=tcp_synwithpayload)

 HTTP requests are sent with an empty string as HTTP method

(Evader Option: --

evasion=[http_connect,end]http_request_method,"empty")

 75% probability to send a duplicate TCP packet with an old
timestamp destined for PAWS elimination. The duplicate packet has a
timestamp <normal - 6> and has random alphanumeric bytes as
payload (Evader Option: --

evasion=tcp_paws,"75%","6","random_alphanum")

 HTTP requests are sent with USER as HTTP method (Evader Option:

--evasion=http_request_method,"user") + Exploit Payload Obfuscation

(Evader Option: --extra=obfuscate=true)

 HTTP request URLs are converted to absolute URLs.
<random_string>://<long random_string> is prepended to the URL.
(Evader Option: --

evasion=[http_connect,end]http_url_absolute,"normal_random","normal_

https") + Exploit Payload Obfuscation (Evader Option: --

extra=obfuscate=true)

Many other combinations of evasions were found to be equally effective but, for

the sake of brevity, are excluded here. The goal is to be able to apply one or more of

these evasion techniques to the FortiGate Application Control policies and test for

effectiveness.

2.3. Putting FortiGate Application Control to the test
Before attempting to apply the FortiGate IPS Policy evasion techniques to

Application Control policies, a basic understanding of the underlying mechanics behind

at least one of the evasions will help define the proper tool(s) needed to recreate this

evasion. The first evasion technique that was mentioned, “Send payload in TCP

Testing Application Identification Features of Firewalls 8

William McGlasson, william.mcglasson@gmail.com

handshakes SYN packet”, seems self-explanatory. A deeper dive shows that it’s more

complex than it may appear on the surface. The Evader tool provides us with a packet

capture of the traffic that was sent and received. By reading in the packet capture file

with tcpdump using the “-r” option, we get a basic sense of the transaction, starting with

the three-way TCP handshake:

13:44:00.296096 IP 10.1.1.146.58440 > 192.168.1.1.http: S

1616031611:1616033059(1448) win 65535 <nop,nop,timestamp

1725055279 0>

13:44:00.299509 IP 192.168.1.1.http > 10.1.1.146.58440: S

3462227197:3462227197(0) ack 1616031612 win 14480 <mss

1460,nop,nop,timestamp 2371036 1725055279>

13:44:00.299765 IP 10.1.1.146.58440 > 192.168.1.1.http: .

ack 1 win 65535 <nop,nop,timestamp 1725055282 2371036>

In the first packet, only the SYN TCP flag is set, indicating the start of a TCP

session. In parentheses, the number 1448 indicates that 1448 bytes of TCP payload are

included in the packet. While sending data on the initial SYN is considered unusual, it is

not in violation of standards. Section 3.4 of RFC 793, Transmission Control Protocol,

states:

“Several examples of connection initiation follow. Although these examples do

not show connection synchronization using data-carrying segments, this is perfectly

legitimate, so long as the receiving TCP doesn't deliver the data to the user until it is

clear the data is valid (i.e., the data must be buffered at the receiver until the connection

reaches the ESTABLISHED state).” (“Transmission Control Protocol”, 1981)

It would seem the FortiGate agrees, and allows the packet to be forwarded; the

anticipated SYN/ACK packet is received in response. Worth noting is the unusual

acknowledgement number in the SYN/ACK packet. Had the Evader victim accepted the

payload included with the SYN packet, the acknowledgement number would be

1616033060 (Initial Sequence Number (1616031611) + Acknowledgement of SYN Flag

(1) + Payload (1448)). Finally, in the ACK packet, although not shown in the tcpdump

Testing Application Identification Features of Firewalls 9

William McGlasson, william.mcglasson@gmail.com

output, the Evader attacker insists on accepting the payload sent with the initial SYN

packet by setting the sequence number to 1616033060. The next couple packets show

how the Evader victim responds:

13:44:00.299868 IP 10.1.1.146.58440 > 192.168.1.1.http: P

1449:1837(388) ack 1 win 65535 <nop,nop,timestamp

1725055283 2371036>

13:44:00.301930 IP 192.168.1.1.http > 10.1.1.146.58440: .

ack 1 win 14480 <nop,nop,timestamp 2371037 1725055279>

 In the first packet, the Evader attacker sends the second half of the payload (338

bytes), and sets the PSH TCP flag, indicating that the Evader victim should process the

data sent so far and push it up the stack to the application for processing. Interestingly,

the Evader victim responds with an acknowledgement number of 1, indicating that it is

still waiting for the first byte of payload. So far, the Evader victim has not accepted

(acknowledged) any of the payloads sent. The Evader attacker tries sending the initial

payload again, this time with both the SYN and ACK flags set:

13:44:00.800922 IP 10.1.1.146.58440 > 192.168.1.1.http: S

1616031611:1616033059(1448) ack 3462227198 win 65535

<nop,nop,timestamp 1725055796 2371037>

13:44:00.801096 IP 10.1.1.146.58440 > 192.168.1.1.http: P

1449:1837(388) ack 1 win 65535 <nop,nop,timestamp

1725055796 2371037>

13:44:00.803890 IP 192.168.1.1.http > 10.1.1.146.58440: .

ack 1837 win 17376 <nop,nop,timestamp 2371162 1725055796>

13:44:00.803915 IP 192.168.1.1.http > 10.1.1.146.58440: .

ack 1837 win 17376 <nop,nop,timestamp 2371162 1725055796>

In the second packet, the Evader attacker sends the second half of the payload

with only the ACK flag set. In the third and fourth packets, you can see that the Evader

Testing Application Identification Features of Firewalls 10

William McGlasson, william.mcglasson@gmail.com

victim finally accepts the payloads. At this point, the entire exploit has evaded the IPS

policy of the FortiGate and executed on the victim, providing shell access on the port of

choice.

2.4. Applying IPS Evasion Techniques to FortiGate Application
Control

With an understanding of the mechanics behind the “Send payload in TCP

handshakes SYN packet” evasion used in testing with Evader, the next step is to attempt

to apply this evasion to FortiGate Application Control policies. The Application Control

feature of Fortinet FortiGate firewalls identifies nearly three thousand applications. The

list of applications are organized into such categories as Web, Email, Social Networking,

Media, Games, Botnet, Proxy, etc. Depending on the category, reasons for controlling an

application vary. With websites like YouTube in the Media category, excessive

bandwidth usage may be an issue for a network administrator; in the Botnet category,

there is a real threat to network security in the form of backdoor access or data

compromise; in the case of the Proxy or Social Networking categories, there may be a

concern for productivity loss or data leaks. Reasons for application control abound.

Therefore, one can infer that reasons for evasion of Application Control are plenty.

One of the applications found in the Social Networking category is Yahoo

Answers. This application signature will be used in the FortiGate Application Control

policy; the ability to receive responses from this application will dictate success or failure

of the evasion attempts. Creating a TCP conversation such as the one analyzed earlier is

not a simple task. Evader uses a custom TCP/IP stack to reliably create the unusual

evasions it’s capable of. Not many tools exist for creating and manipulating an entire

TCP conversation. However, one such tool does provide a great degree of packet crafting

and interaction, and is likely our best chance of recreating this interaction; that tool is

Scapy.

Scapy is an interactive packet manipulation program. It allows you to build your

own packets from scratch, transmit them on the wire, and capture the results. The

manipulation capabilities of Scapy are impressive. As such, Scapy will be used to build

evasions and test against the Application Control of the FortiGate firewall. The virtual

Testing Application Identification Features of Firewalls 11

William McGlasson, william.mcglasson@gmail.com

machine version of Backtrack Linux 5.0 R3 comes packaged with Scapy 2.0.1, and will

serve as the platform for testing. As with the Evader attacker, the Backtrack virtual

machine is configured to go through the FortiGate firewall in a layer 3 routing topology,

out to the internet.

Again, to ensure a proper baseline, it was confirmed that the Backtrack virtual

machine is able to browse to http://answers.yahoo.com/ on the internet. Because there

are not yet any Application Control policies applied to the FortiGate, navigation to the

site was successful. Additionally, the FortiGate traffic log shows evidence of the traffic

passing through the unit.

Testing Application Identification Features of Firewalls 12

William McGlasson, william.mcglasson@gmail.com

Next, a custom Application Control policy is created. Within this policy, the

Yahoo Answers signature is set to ‘Block’, as shown in the screenshot below. Next, the

policy is applied to traffic flowing from our Backtrack VM to the internet. Once the

policy is applied, attempts to navigate to http://answers.yahoo.com/ are effectively

blocked by the FortiGate Application Control policy.

With an effective baseline, Scapy can be used to build the evasion attempt. Using

knowledge from the dissection of the “Send payload in TCP handshakes SYN packet”

evasion packet capture earlier, combined with a packet capture taken during a simple

HTTP request for http://answers.yahoo.com/ in Firefox, packets are crafted using the

following Scapy syntax (Maxwell 2012) (Biondi, Scapy community, 2010):

packet1=(IP(dst="208.71.44.31")/TCP(sport=4074,dport=80)/"G

ET / HTTP/1.1\r\nAccept: text/html, application/xhtml+xml,

/\r\nAccept-Language: en-US\r\nUser-Agent: Mozilla/5.0

(compatible; MSIE 10.0; Windows NT 6.2; WOW64;

Trident/6.0)\r\nAccept-Encoding: gzip, deflate,

peerdist\r\nHost: answers.yahoo.com\r\nDNT:

1\r\nConnection: Keep-Alive\r\nCookie:

ywadp1000198838279=3180564201;

fpc1000198838279=Zej4Gmdh|fsRDQJoNaa|fses1000198838279=|Fpo

rIHlNaa|Zej4Gmdh|fvis1000198838279=|8Mo8HYo01s|8Mo8HYo01s|8

Mo8HYo01s|s|8Mo8HYo01s|8Mo8HYo01s;

answers3=eyJkIjoibm9uZSIsInYiOiJhMyIsImh0IjoicmVjZW50IiwiaG

YiOiJlbiIsImN0Ijoib3BlbiIsImNmIjoiZW4iLCJjcyI6Im5ldyIsImF0I

joiYW5zd2VyIn0=;

B=1tj2t7l9374vr&b=4&d=9_ciHv9pYEIAg0BiFWW4QC95Bfub7kuoTFPrY

Q--&s=6m&i=9x4Bj5WykiGbQkhfUJ0T; ucs=bnas=0; AO=o=0&dnt=1;

F=a=nfUakS0MvSpc6ZVnyvtywryjtuwfIZknYP9ifYvatybV.Bpmd_0d3l_

ft6F211504Q5iPks-&b=213H;

Y=v=1&n=0ov87at22jlm7&l=mc26b0ii/o&p=m2j2v66d13000400&jb=21

|58|&r=b3&lg=en-US&intl=us; C=mg=1; YLS=v=1&p=1&n=1;

PH=fn=ZvbRpY2vj.YlAKtPDaF0Kg--&l=en-US&i=us;

T=z=YXeQSBYrFVSBGD1p38sU2M0NjE3MAY1NjcyTjM0MDVO&a=4EE&sk=DA

Ap7hss1AMsSq&ks=EAAhH.YxS.xbIZ613ja_Rmuhw--

~E&d=c2wBTVRZd053RXlNVEExT1RRek56STUBYQE0RUUBZwFLUUNTN1dBWF

E1VkdGRVVXUlo3VEhXU0dVVQFzY2lkAWM1bERXcV9NclN4aktJODZ1dVpiN

WpVa3lhUS0BYWMBQUNwR2Q4MlkBb2sBWlcwLQF0aXABUDMyOXhDAXNjAXds

AXp6AVlYZVFTQkE3RQ--;

Testing Application Identification Features of Firewalls 13

William McGlasson, william.mcglasson@gmail.com

ypcdb=e8cc7a825a41ee52627a8854c7ac6b2b\r\nX-P2P-PeerDist:

Version=1.1\r\nX-P2P-PeerDistEx: MinContentInformation=1.0,

MaxCont")

answer1=sr1(packet1)

src_ack=answer1.seq + 1

packet2=(IP(dst="208.71.44.31")/TCP(sport=4074,dport=80,fla

gs="A",seq=1381,ack=src_ack))

send(packet2)

packet3=(IP(dst="208.71.44.31")/TCP(sport=4074,dport=80,fla

gs="PA",seq=1381,ack=src_ack)/"entInformation=2.0\r\n\r\n")

send(packet3)

packet4=(IP(dst="208.71.44.31")/TCP(sport=4074,dport=80,fla

gs="SA",seq=0,ack=src_ack)/"GET / HTTP/1.1\r\nAccept:

text/html, application/xhtml+xml, */*\r\nAccept-Language:

en-US\r\nUser-Agent: Mozilla/5.0 (compatible; MSIE 10.0;

Windows NT 6.2; WOW64; Trident/6.0)\r\nAccept-Encoding:

gzip, deflate, peerdist\r\nHost: answers.yahoo.com\r\nDNT:

1\r\nConnection: Keep-Alive\r\nCookie:

ywadp1000198838279=3180564201;

fpc1000198838279=Zej4Gmdh|fsRDQJoNaa|fses1000198838279=|Fpo

rIHlNaa|Zej4Gmdh|fvis1000198838279=|8Mo8HYo01s|8Mo8HYo01s|8

Mo8HYo01s|s|8Mo8HYo01s|8Mo8HYo01s;

answers3=eyJkIjoibm9uZSIsInYiOiJhMyIsImh0IjoicmVjZW50IiwiaG

YiOiJlbiIsImN0Ijoib3BlbiIsImNmIjoiZW4iLCJjcyI6Im5ldyIsImF0I

joiYW5zd2VyIn0=;

B=1tj2t7l9374vr&b=4&d=9_ciHv9pYEIAg0BiFWW4QC95Bfub7kuoTFPrY

Q--&s=6m&i=9x4Bj5WykiGbQkhfUJ0T; ucs=bnas=0; AO=o=0&dnt=1;

F=a=nfUakS0MvSpc6ZVnyvtywryjtuwfIZknYP9ifYvatybV.Bpmd_0d3l_

ft6F211504Q5iPks-&b=213H;

Y=v=1&n=0ov87at22jlm7&l=mc26b0ii/o&p=m2j2v66d13000400&jb=21

|58|&r=b3&lg=en-US&intl=us; C=mg=1; YLS=v=1&p=1&n=1;

Testing Application Identification Features of Firewalls 14

William McGlasson, william.mcglasson@gmail.com

PH=fn=ZvbRpY2vj.YlAKtPDaF0Kg--&l=en-US&i=us;

T=z=YXeQSBYrFVSBGD1p38sU2M0NjE3MAY1NjcyTjM0MDVO&a=4EE&sk=DA

Ap7hss1AMsSq&ks=EAAhH.YxS.xbIZ613ja_Rmuhw--

~E&d=c2wBTVRZd053RXlNVEExT1RRek56STUBYQE0RUUBZwFLUUNTN1dBWF

E1VkdGRVVXUlo3VEhXU0dVVQFzY2lkAWM1bERXcV9NclN4aktJODZ1dVpiN

WpVa3lhUS0BYWMBQUNwR2Q4MlkBb2sBWlcwLQF0aXABUDMyOXhDAXNjAXds

AXp6AVlYZVFTQkE3RQ--;

ypcdb=e8cc7a825a41ee52627a8854c7ac6b2b\r\nX-P2P-PeerDist:

Version=1.1\r\nX-P2P-PeerDistEx: MinContentInformation=1.0,

MaxCont")

send(packet4)

The variable “packet1” is used to hold the first packet; “answer1” is used to hold

the received SYN/ACK packet; “packet2” the second packet, and so on. The first packet

(packet1) is the initial TCP SYN, along with 1380 bytes of payload. The first answer

(answer1) will be the SYN/ACK from answers.yahoo.com. The second packet (packet2)

is the ACK packet. The third packet (packet3) is the second half of the payload with the

addition of the PSH flag set. Lastly, the fourth packet (packet4) is a re-transmission of

the initial 1380 bytes of payload with the SYN flag set.

The sr1() function of Scapy is used to capture the returning SYN/ACK packet

from answers.yahoo.com in the variable “answer1”. The intention here is to capture the

Initial Sequence Number from the SYN/ACK packet in order to generate the

acknowledgement number in packets two, three and four. The “src_ack” variable is used

for precisely that purpose.

 In the continued interest of simulating real-world use cases, the payload in use

was generated from an actual browser (Firefox) request to http://answers.yahoo.com/.

This is ideal because, like the Evader exploit payload, this payload is too large to fit

within the MTU of the network, forcing the payload to be broken out into two separate

TCP segments.

 Lastly, it’s worth noting that Scapy uses a raw TCP socket, unbeknownst to the

Linux kernel. The effect here is that the Linux kernel will send a TCP packet with the

RST flag set upon receiving the SYN/ACK packet from answers.yahoo.com. Because

this will effectively thwart the evasion attempts, an iptables rule must be created that will

Testing Application Identification Features of Firewalls 15

William McGlasson, william.mcglasson@gmail.com

drop outbound packets with the RST flag set (Weber, 2010). In the lab, the following

iptables syntax adds the rule to drop the packets desired:

iptables –A OUTPUT –p tcp –-tcp-flags RST RST –s 10.1.1.147

–d 208.71.44.31 –j DROP

2.5. The Result
Using the custom crafted packets with Scapy, this particular evasion technique

was found to be effective against the Application Control policy. The packet capture

shows an HTTP 200 OK response from answers.yahoo.com. Following is a screenshot of

Wireshark showing the TCP conversation, as well as identical tcpdump output.

17:46:51.192187 IP 10.1.1.147.4074 > 208.71.44.31.http: S

0:1380(1380) win 8192

17:46:51.374837 IP 208.71.44.31.http > 10.1.1.147.4074: S

2887690183:2887690183(0) ack 1 win 14600 <mss 1460>

17:46:52.683597 IP 208.71.44.31.http > 10.1.1.147.4074: S

2887690183:2887690183(0) ack 1 win 14600 <mss 1460>

Testing Application Identification Features of Firewalls 16

William McGlasson, william.mcglasson@gmail.com

17:46:54.683663 IP 208.71.44.31.http > 10.1.1.147.4074: S

2887690183:2887690183(0) ack 1 win 14600 <mss 1460>

17:46:58.885301 IP 208.71.44.31.http > 10.1.1.147.4074: S

2887690183:2887690183(0) ack 1 win 14600 <mss 1460>

17:47:04.637435 IP 10.1.1.147.4074 > 208.71.44.31.http: .

ack 1 win 8192

17:47:19.946943 IP 10.1.1.147.4074 > 208.71.44.31.http: P

1381:1403(22) ack 1 win 8192

17:47:19.958349 IP 208.71.44.31.http > 10.1.1.147.4074: .

ack 1 win 14600

17:47:37.871483 IP 10.1.1.147.4074 > 208.71.44.31.http: S

0:1380(1380) ack 2887690184 win 8192

17:47:37.885621 IP 208.71.44.31.http > 10.1.1.147.4074: .

ack 1403 win 16560

17:47:38.372642 IP 208.71.44.31.http > 10.1.1.147.4074: .

1:537(536) ack 1403 win 16560

17:47:41.373416 IP 208.71.44.31.http > 10.1.1.147.4074: .

1:537(536) ack 1403 win 16560

17:47:47.373304 IP 208.71.44.31.http > 10.1.1.147.4074: .

1:537(536) ack 1403 win 16560

17:47:59.374145 IP 208.71.44.31.http > 10.1.1.147.4074: .

1:537(536) ack 1403 win 16560

17:48:23.375006 IP 208.71.44.31.http > 10.1.1.147.4074: .

1:537(536) ack 1403 win 16560

17:49:11.378272 IP 208.71.44.31.http > 10.1.1.147.4074: .

1:537(536) ack 1403 win 16560

Testing Application Identification Features of Firewalls 17

William McGlasson, william.mcglasson@gmail.com

 Had the FortiGate effectively blocked the application request, an HTTP 200 OK

response from answers.yahoo.com would not have been seen on the Backtrack VM.

Following is a screenshot showing the behavior when the FortiGate effectively blocks the

application request:

2.6. Data on the initial SYN
In reviewing the packet capture details, one might make the argument that the

payload sent on the initial SYN is unnecessary, since the destination host doesn’t

acknowledge it anyway. Perhaps, simply having the SYN flag set on the first payload

packet after the three-way TCP handshake is sufficient to bypass the FortiGate

Application Control policy. In testing, it was discovered otherwise. When sending the

initial payload after the 3-way TCP handshake was complete, the FortiGate was effective

in blocking any payload sent thereafter. A combination of SYN, ACK, and PSH flags

were attempted, but found to be ineffective. Attempts were also made to send the two

halves of the payload out of order; this was also found to be ineffective. Only in sending

the payload in the initial SYN were we able to evade the FortiGate Application Control

policy.

Testing Application Identification Features of Firewalls 18

William McGlasson, william.mcglasson@gmail.com

2.7. Applying other evasion techniques
As noted in section 2.2, several other evasion techniques were found using

Stonesoft Evader that could potentially be applied to evasion of application identification

and control. For the sake of brevity, these other techniques are not discussed in detail.

However, testing of two other techniques was completed and found to be effective; one in

limited capacity.

2.7.1. HTTP requests are sent with an empty string as HTTP method
This technique was found to be effective in bypassing the FortiGate Application

Control policy. However, most destination web servers will return an “HTTP 400 Bad

Request” response. Only in cases where the destination will accept an HTTP payload

without specifying the HTTP method, would this technique be effective. According to

section 5 of RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, an HTTP request

message must include the method in the first line of the message. Therefore, we can

draw the conclusion that this evasion technique will be largely ineffective against HTTP

servers which are implemented according to RFC 2616 (Fielding et al., 1999). Although

ancillary, it was also found that the HTTP HEAD request method can be used to evade

FortiGate Application Control. Because the HEAD request method returns only meta

information, it’s application in evasion is limited.

2.7.2. Sending a duplicate TCP packet with an old timestamp destined for
PAWS elimination.

This technique was also found to be effective against the FortiGate Application

Control policy. As mentioned in section 2.2, the duplicate packet has a TCP timestamp

value older than is expected, and is destined to be discarded by the destination host due to

Protection Against Wrapped Sequence (PAWS) numbers. The duplicate packet also has

a random, alphanumeric payload. Scapy syntax to recreate this evasion technique

follows.

packet1=(IP(dst="208.71.44.31")/TCP(sport=4074,dport=80,opt

ions=[('Timestamp', (198300247,0))]))

Testing Application Identification Features of Firewalls 19

William McGlasson, william.mcglasson@gmail.com

answer1=sr1(packet1)

src_ack=answer1.seq + 1

src_tsecr=answer1.getlayer("TCP").options[3][1][0]

packet2=(IP(dst="208.71.44.31")/TCP(sport=4074,dport=80,fla

gs="A",options=[('Timestamp',

(198300244,src_tsecr))],seq=1,ack=src_ack))

packet3=(IP(dst="208.71.44.31")/TCP(sport=4074,dport=80,fla

gs="A",options=[('Timestamp',

(198300250,src_tsecr))],seq=1,ack=src_ack))

send(packet2)

send(packet3)

packet4=(IP(dst="208.71.44.31")/TCP(sport=4074,dport=80,fla

gs="A",options=[('Timestamp',

(198300245,src_tsecr))],seq=1,ack=src_ack)/"e50WwqkhgpbNY54

mcOvkWwuOXiLLBY6ujyFZC2sUsS2hCXleWgLcYsWe6qIkandaGJFzG97ItO

IuIxMscI6gcreR6tu55Sg0lCthoifqfk0we1X4NR09lof5kjt7dxX25H2eu

sBNJwM67GppWxXHMKhCcj8HUsB61A9MDkhCZiS5dsgkAVtKVnhGfLenyKiv

UYY06ehrbgpBdJ3PtgO6GJszq8fJliI3xne50jvqBdtyhxNUpIm6eAz0iiq

rNgLeIxmclKjsJZk0a1DJjSZLilsZTyorAWmP4dWV3drsnqkyDPhoWyizhB

htdjWJTyCWUJZD5lmTf1gr1W1oqBhp9C1l5qZr0N4y1PWzNpwO7qelOGIYo

fG5ndPXRitT8NyJz0mv7maw9Ozi2mTOU56TeoJZ3nK0wcrBJPB4NSuIY2pc

Z8jwWjpekeUEKsYRtNkolBuwSwAcOa8m3qm4Jqd2WZwalWwpbAeC3ivoogW

EzNIX0ibSXuywESoIckaZCohEeg91NW8WgnToMtZDF5BIon5J4syNRcI1kT

KfSsRa3k6WIfPrBNXkOrHltkFBs95YoyB4SBUwxmZBCIFRjPCZT6FtCkJ5P

asMfWlR92HhvPUyqB0tzTLOh9mKuLpuaSNy4PoOmafd8kP3qYdOVyJ7VMli

Testing Application Identification Features of Firewalls 20

William McGlasson, william.mcglasson@gmail.com

EHOTStyvfRPu8KdeBVn3HDaSzBIh7NVrEC8f5VhCNosv3bOEdvRvPvLIgcG

Wy9N6ZEwjDlJa4JRuKVeAphP2mkmXBgZu73kDdBKHyN6AowW2sCadbBMmzU

0BoXGbvWow7JkvzsXMTVdulTirlszllu5BODMD6rEvo6IxRP6otrhDzxcAC

4nXAWqMTSxurOdpM6NDVwRPE3tvSiHLT5WNhRywPjZp0TSdLB372ucaGrgZ

aoouooKWSEWqRuerJvTiBPmccbMsAoxWSSoTiFKLrNSJfNYeLY1AwXbUELr

rAwZ7vJZqX47upCuKU70ijjH74KaGp9VHEPcvNDKEA7excligDGdup99Ma1

WunLULf82F9kWmtIplcfBtwmdhylsSJfxzzHHACc0RPMJz3BIG3jZg2qodK

sTMfqZRwtrVWtxHHRcCTyoYTXy7bqvEus7sXHlDcLfwVyW1WyW4Js1WCtvf

B0io6NZwIlOcEtYo1JABCvS19czRwD8P9lguJE1CGEhtiMhdpWadq8nDh4v

6V62TdmF0GXYLchUsO8nKWuOCbiuqO7rZG34SDXazWIGfkAJ1Eep2VAY8yN

PboSVFDMHndRh6t9fEWjbcBuud3GzWtUb89jg2AsCX9kzzs72dJcDJGXnvM

BgdRX3MBt3c3LGiYvHwdVOgiK4VABbCgmC1ZtBXvEKiwgOOUrM5SjG3goBW

6MB2EW8ChrPXDNftmeUsg2udg757")

packet5=(IP(dst="208.71.44.31")/TCP(sport=4074,dport=80,fla

gs="A",options=[('Timestamp',

(198300251,src_tsecr))],seq=1,ack=src_ack)/"GET /

HTTP/1.1\r\nAccept: text/html, application/xhtml+xml,

/\r\nAccept-Language: en-US\r\nUser-Agent: Mozilla/5.0

(compatible; MSIE 10.0; Windows NT 6.2; WOW64;

Trident/6.0)\r\nAccept-Encoding: gzip, deflate,

peerdist\r\nHost: answers.yahoo.com\r\nDNT:

1\r\nConnection: Keep-Alive\r\nCookie:

ywadp1000198838279=3180564201;

fpc1000198838279=Zej4Gmdh|fsRDQJoNaa|fses1000198838279=|Fpo

rIHlNaa|Zej4Gmdh|fvis1000198838279=|8Mo8HYo01s|8Mo8HYo01s|8

Mo8HYo01s|s|8Mo8HYo01s|8Mo8HYo01s;

answers3=eyJkIjoibm9uZSIsInYiOiJhMyIsImh0IjoicmVjZW50IiwiaG

YiOiJlbiIsImN0Ijoib3BlbiIsImNmIjoiZW4iLCJjcyI6Im5ldyIsImF0I

joiYW5zd2VyIn0=;

B=1tj2t7l9374vr&b=4&d=9_ciHv9pYEIAg0BiFWW4QC95Bfub7kuoTFPrY

Q--&s=6m&i=9x4Bj5WykiGbQkhfUJ0T; ucs=bnas=0; AO=o=0&dnt=1;

F=a=nfUakS0MvSpc6ZVnyvtywryjtuwfIZknYP9ifYvatybV.Bpmd_0d3l_

ft6F211504Q5iPks-&b=213H;

Y=v=1&n=0ov87at22jlm7&l=mc26b0ii/o&p=m2j2v66d13000400&jb=21

|58|&r=b3&lg=en-US&intl=us; C=mg=1; YLS=v=1&p=1&n=1;

PH=fn=ZvbRpY2vj.YlAKtPDaF0Kg--&l=en-US&i=us;

T=z=YXeQSBYrFVSBGD1p38sU2M0NjE3MAY1NjcyTjM0MDVO&a=4EE&sk=DA

Ap7hss1AMsSq&ks=EAAhH.YxS.xbIZ613ja_Rmuhw--

~E&d=c2wBTVRZd053RXlNVEExT1RRek56STUBYQE0RUUBZwFLUUNTN1dBWF

E1VkdGRVVXUlo3VEhXU0dVVQFzY2lkAWM1bERXcV9NclN4aktJODZ1dVpiN

Testing Application Identification Features of Firewalls 21

William McGlasson, william.mcglasson@gmail.com

WpVa3lhUS0BYWMBQUNwR2Q4MlkBb2sBWlcwLQF0aXABUDMyOXhDAXNjAXds

AXp6AVlYZVFTQkE3RQ--;

ypcdb=e8cc7a825a41ee52627a8854c7ac6b2b\r\nX-P2P-PeerDist:

Version=1.1\r\nX-P2P-PeerDistEx: MinContentInformation=1.0,

MaxCont")

send(packet4)

send(packet5)

packet6=(IP(dst="208.71.44.31")/TCP(sport=4074,dport=80,fla

gs="PA",options=[('Timestamp',

(198300245,src_tsecr))],seq=1381,ack=src_ack)/"mSj4IMINGkPn

ckOhXWow1mT3ti")

packet7=(IP(dst="208.71.44.31")/TCP(sport=4074,dport=80,fla

gs="PA",options=[('Timestamp',

(198300251,src_tsecr))],seq=1381,ack=src_ack)/"entInformati

on=2.0\r\n\r\n")

send(packet6)

send(packet7)

3. Motive Behind Evasion of Application Identification
Although it might seem obvious on the surface, one must ask the question, why

would someone attempt to evade application identification? Just as bad actors have

attempted to evade IDS and IPS systems of the past, evasion of application identification

will persist into the future.

Testing Application Identification Features of Firewalls 22

William McGlasson, william.mcglasson@gmail.com

3.1. The Employee
Because applications like Facebook, YouTube, Pandora Radio, Netflix, and others

will be limited by such technologies, it is likely that software and tools will eventually be

developed for the dissenting employee to bypass these controls. A simple internet search

for “bypass web filter” returns hundreds of results with suggestions as to the use of proxy

services, encryption, or terminating the processes of end-system content-filtering

software. Internet censorship by government entities at the national level has only

furthered development of technologies for bypassing such controls (Villeneuve, 2006).

3.2. The Software Developer
Software developers have a vested interest in making their applications as user-

friendly and accessible as possible. The majority of users do not understand firewalls or

ports; when they purchase software, they simply expect it to fulfill its promises. End-

users cannot be bothered with port forwarding on their home routers or making requests

of their IT department. As such, software developers understand that in the greater

population of networks, ports 80 and 443 are permitted outbound; as such, they often

design application specifications using these ports to target the greatest degree of

compatibility. Some software on the market already intentionally evades firewalls with

the intent of providing users with a seamless, connect-anywhere experience. Skype is

one such example of software that attempts to appease this mentality (Schmidt, 2006).

3.3. The Threat Agent
Botnets will continue to be a real threat and, like applications, each botnet has its

own signature (Lu, Tavallee, Ghorbani, 2009). Over the past decade, we’ve seen a

migration of attacks from the perimeter of networks to attacks from within. Because of a

focus on perimeter security and a lack of resources allocated to reduction of internal

network risk, threat agents changed their strategy, subverting the perimeter entirely.

Application identification gives us an opportunity to regain control in this arena. For that

Testing Application Identification Features of Firewalls 23

William McGlasson, william.mcglasson@gmail.com

reason, we can expect to see malware developers change their game yet again; perhaps

initially with attempts to evade application identification.

The APT presence will continue. While application identification may not

outright stop APT, it will at the very least create a stop gap. Application identification

creates opportunity to detect APT. As such, we’ll likely see APT change their tactics

where outbound application identification is suspected.

4. Conclusion
It’s been demonstrated that application identification and, more specifically, the

Application Control feature of the FortiGate firewall is vulnerable to evasion techniques

without the proper signatures enabled (see Appendix A). While protection is available to

customers that enable it, most will likely opt for the default signature set. Additionally,

with FortiOS 5.0 announced less than 13 months ago, many customers are likely still

using a version of FortiOS 4.0, where some protection is unavailable (Fortinet Rolls Out

New FortiOS 5.0 Operating System, 2012).

Application identification and control will likely become a mainstay of future

firewalls, and will become a critical tool for firewall administrators in the quest to secure

internal networks. As firewalls toting application identification see greater penetration in

the marketplace, we can expect to see a rise in subversion attempts against these controls

like those demonstrated here.

5. References
Biondi, P., Scapy community (2010 April). Scapy Documentation. Retrieved from

http://www.secdev.org/projects/scapy/doc/index.html

Blanchet, M. (2012 July). Implications of running Internet over ports 80 and 443.

Retrieved from http://tools.ietf.org/html/draft-blanchet-iab-internetoverport443-00

Chess, B., West, J. (2007). Secure Programming with Static Analysis. Boston, MA:

Addison-Wesley Professional

Controlling Web 2.0 Applications in the Enterprise, Retrieved from

http://www.fortinet.com/sites/default/files/whitepapers/WP-APPCONTROL.pdf

Testing Application Identification Features of Firewalls 24

William McGlasson, william.mcglasson@gmail.com

Evader User’s Guide (2013 April). Retrieved from

http://evader.stonesoft.com/assets/files/Evader_UsersGuide_20130415.pdf

Fielding, R., UC Irvine, Gettys, J., Compaq/W3C, Mogul, J., Compaq, . . . W3C/MIT

(1999). Hypertext Transfer Protocol – HTTP/1.1. Retrieved from

http://www.ietf.org/rfc/rfc2616.txt

Fortinet Rolls Out New FortiOS 5 Operating System for Enabling More Security, Control

and Intelligence to Fight Advanced Threats and Secure BYOD Environments

(2012 October). Retrieved from

http://www.fortinet.com/press_releases/121016_os5.html

Labovitz, C. (2010 March). Internet Traffic and Content Consolidation. Retrieved from

http://www.ietf.org/proceedings/77/slides/plenaryt-4.pdf

Lu, W., Tavallaee, M., Ghorbani, A. A. (2009 March). Automatic Discovery of Botnet

Communities on Large-Scale Communication Networks. Retrieved from

http://ants.iis.sinica.edu.tw/3BkMJ9lTeWXTSrrvNoKNFDxRm3zFwRR/27/2009

_ASIACCS_Automatic%20discovery%20of%20botnet%20communities%20on%

20large-scale%20communication%20networks.pdf

Maxwell, A. (2012 May). The Very Unofficial Dummies Guide To Scapy. Retrieved

from http://theitgeekchronicles.files.wordpress.com/2012/05/scapyguide1.pdf

Pescatore, J., Young, G. (2009 October). Defining the Next-Generation Firewall.

Retrieved from

http://img1.custompublish.com/getfile.php/1434855.1861.sqqycbrdwq/Defining+t

he+Next-Generation+Firewall.pdf

Ptacek, T. H., Newsham, T. N. (1998 January). Insertion, Evasion, and Denial of Service:

Eluding Network Intrusion Detection. Retrieved from

https://sparrow.ece.cmu.edu/group/731-s08/readings/ptacek-newsham.pdf

Schmidt, J. (2006 December). How Skype and Co. get round firewalls. Retrieved from

http://www.h-online.com/security/features/How-Skype-Co-get-round-firewalls-

747197.html

Transmission Control Protocol (1981 September). Retrieved from

http://www.ietf.org/rfc/rfc793.txt

Testing Application Identification Features of Firewalls 25

William McGlasson, william.mcglasson@gmail.com

Villeneuve, N. (2006 January). The filtering matrix: Integrated mechanisms of

information control and the demarcation of borders in cyberspace. Retrieved

from http://ojphi.org/ojs/index.php/fm/article/view/1307/1227

Weber, C. (2010 January). Scapy 3 way handshake. Retrieved from

http://www.packetlevel.ch/html/scapy/scapy3way.html

Appendix A: Fortinet Response
Fortinet’s Product Security and Incident Response Team (PSIRT) was contacted

regarding these findings. Fortinet PSIRT reported that protection against the attack

discussed in section 2.6, sending payload in the initial TCP SYN packet, is available in

FortiOS 4.0 MR3 and FortiOS 5.0 under the signature name “TCP.Data.On.Syn”. In

testing, it was confirmed that this signature is effective in blocking this evasion technique

in FortiOS 4.0 MR3. However, the signature does not work as one might expect. The

signature simply drops any initial TCP SYN packet with a payload. Because the TCP

RFC allows for payload to be sent on the initial SYN, this is not ideal. Ideally, the IPS

would queue up the payload as part of the TCP conversation and, once the three-way

handshake is complete, pass the payload on to other signatures for inspection. On the

other hand, allowing the IPS to queue up initial TCP SYN packets with payloads might

expose the IPS to memory-exhaustion denial of service attacks. It’s possible that there is

simply a trade-off to be made here. By default, the signature TCP.Data.On.Syn is

disabled, with the detection action set to ‘Pass.’ In order to effectively block this evasion

technique, the signature must first be enabled, then action set to ‘Block’ or similar.

Fortinet PSIRT did not comment on the evasion technique discussed in section 2.7.1.

Regarding the technique discussed in section 2.7.2, old TCP timestamp destined

for PAWS elimination, Fortinet PSIRT reported that protection against this technique is

available only in FortiOS 5.0 under the signature name “TCP.Out.Of.Range.Timestamp.”

In testing with FortiOS 5.0, it was confirmed that this signature is effective in blocking

this evasion technique. It was observed that the signature drops all subsequent packets

after an attempt to send duplicate packets with differing TCP timestamps is detected. To

enable this signature, you must first set the IPS signature database to ‘extended.’

Testing Application Identification Features of Firewalls 26

William McGlasson, william.mcglasson@gmail.com

Instructions can be found in the FortiOS CLI Reference for FortiOS 5.0. Once the IPS

signature database is set to ‘extended,’ the TCP.Out.Of.Range.Timestamp signature must

be enabled, and action set to ‘Block’ or similar.

