
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 1 1/16/2005

Kevin Timm

GCIA Version 3.1

SANS Lonestar Conference
San Antonio, Texas
March 10 – 16 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 2 1/16/2005

ASSIGNMENT 1 - DESCRIBE THE STATE OF INTRUSION DETECTION____3

ASSIGNMENT 2 – DETECTS___17

ASSIGNMENT 3 – ANALYZE THIS SCENARIO__________________________39

REFERENCES___ 62

APPENDIX A - SPLICER.PL ___63

APPENDIX B - CISCO SECURE IDS LOG FORMAT______________________65

APPENDIX C – TCP_REPORT.PL AND UDP_REPORT.PL_________________66

APPENDIX D – METHODOLOGIES_____________________________________71

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 3 1/16/2005

Assignment 1: State Of Intrusion Detection

IDS Evasion with Session Splicing

IDS vendors have made tremendous gains in defeating IDS evasion techniques

within the past two years, especially where string matching and string obfuscation is
concerned. Evasion techniques that are network based are not as easy for an IDS to
defend against as string obfuscation techniques. These network level evasion techniques
were first brought to the forefront in the landmark 1998 research paper “Insertion,
Evasion and Denial of Service: Eluding Network Intrusion Detection” by Thomas Ptacek
and Timothy Newsham[1]. The paper details specific network level problems specifically
with fragmentation and session re-assembly. Recently tools such as Whisker by
RainForestPuppy[2] and Nessus[3] the vulnerability scanner have implemented session
splicing techniques. Many techniques outlined by Ptacek and Newsham are common to
both fragmentation and session splicing. Session splicing, because it involves a session is
useful only when the payload can be delivered over multiple packets where fragmentation
can be used with all protocols. This paper will focus on IDS evasion using session
splicing timeouts and to a lesser degree rule alerting and first exit problems that session
splicing can create.

The basic premise behind session splicing is to deliver the payload over multiple
packets thus defeating simple pattern matching without session reconstruction. This
payload can be delivered in many different manners and even spread out over a long
period of time. Currently, Whisker and Nessus have session splicing capabilities, and
other tools exist in the wild (see detect #1 from the detects section). I have created a perl
script splicer.pl that I will use to demonstrate many of these techniques. A trademark of a
spliced session is a continuous stream of small packets. The network trace below shows a
standard spliced session. For readability, this request has been abbreviated removing
bytes nine thru 31.

Trademark Session Splice
17:06:22.252252 64.194.107.85.32787 > W.X.Y.106.80: S 848344882:848344882(0) win 5840 <mss
1460,sackOK,timestamp 3152623[|tcp]> (DF) (ttl 64, id 44509, len 60)
17:06:22.292252 W.X.Y.106.80 > 64.194.107.85.32787: S 268545229:268545229(0) ack 848344883 win
5792 <mss 1460,sackOK,timestamp 17985824[|tcp]> (DF) (ttl 53, id 0, len 60)
17:06:22.292252 64.194.107.85.32787 > W.X.Y.106.80: . [tcp sum ok] ack 1 win 5840
<nop,nop,timestamp 3152627 17985824> (DF) (ttl 64, id 44510, len 52)
17:06:22.292252 64.194.107.85.32787 > W.X.Y.106.80: P [tcp sum ok] 1:2(1) ack 1 win 5840
<nop,nop,timestamp 3152627 17985824> (DF) (ttl 64, id 44511, len 53)
17:06:22.342252 W.X.Y.106.80 > 64.194.107.85.32787: . [tcp sum ok] ack 2 win 5792
<nop,nop,timestamp 17985829 3152627> (DF) (ttl 53, id 56810, len 52)
17:06:22.492252 64.194.107.85.32787 > W.X.Y.106.80: P [tcp sum ok] 2:3(1) ack 1 win 5840
<nop,nop,timestamp 3152647 17985829> (DF) (ttl 64, id 44512, len 53)
17:06:22.532252 W.X.Y.106.80 > 64.194.107.85.32787: . [tcp sum ok] ack 3 win 5792
<nop,nop,timestamp 17985848 3152647> (DF) (ttl 53, id 56811, len 52)
17:06:22.692252 64.194.107.85.32787 > W.X.Y.106.80: P [tcp sum ok] 3:4(1) ack 1 win 5840
<nop,nop,timestamp 3152667 17985848> (DF) (ttl 64, id 445F13, len 53)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 4 1/16/2005

17:06:22.732252 W.X.Y.106.80 > 64.194.107.85.32787: . [tcp sum ok] ack 4 win 5792
<nop,nop,timestamp 17985868 3152667> (DF) (ttl 53, id 56812, len 52)
17:06:22.892252 64.194.107.85.32787 > W.X.Y.106.80: P [tcp sum ok] 4:5(1) ack 1 win 5840
<nop,nop,timestamp 3152687 17985868> (DF) (ttl 64, id 44514, len 53)
17:06:22.932252 W.X.Y.106.80 > 64.194.107.85.32787: . [tcp sum ok] ack 5 win 5792
<nop,nop,timestamp 17985888 3152687> (DF) (ttl 53, id 56813, len 52)
17:06:23.092252 64.194.107.85.32787 > W.X.Y.106.80: P [tcp sum ok] 5:6(1) ack 1 win 5840
<nop,nop,timestamp 3152707 17985888> (DF) (ttl 64, id 44515, len 53)
17:06:23.122252 W.X.Y.106.80 > 64.194.107.85.32787: . [tcp sum ok] ack 6 win 5792
<nop,nop,timestamp 17985908 3152707> (DF) (ttl 53, id 56814, len 52)
17:06:23.292252 64.194.107.85.32787 > W.X.Y.106.80: P [tcp sum ok] 6:7(1) ack 1 win 5840
<nop,nop,timestamp 3152727 17985908> (DF) (ttl 64, id 44516, len 53)
17:06:23.332252 W.X.Y.106.80 > 64.194.107.85.32787: . [tcp sum ok] ack 7 win 5792
<nop,nop,timestamp 17985928 3152727> (DF) (ttl 53, id 56815, len 52)
17:06:23.492252 64.194.107.85.32787 > W.X.Y.106.80: P [tcp sum ok] 7:8(1) ack 1 win 5840
<nop,nop,timestamp 3152747 17985928> (DF) (ttl 64, id 44517, len 53)
17:06:23.532252 W.X.Y.106.80 > 64.194.107.85.32787: . [tcp sum ok] ack 8 win 5792
<nop,nop,timestamp 17985948 3152747> (DF) (ttl 53, id 56816, len 52)
17:06:28.292252 64.194.107.85.32787 > W.X.Y.106.80: P [tcp sum ok] 31:32(1) ack 1 win 5840
<nop,nop,timestamp 3153227 17986408> (DF) (ttl 64, id 44541, len 53)
17:06:28.322252 W.X.Y.106.80 > 64.194.107.85.32787: . [tcp sum ok] ack 32 win 5792
<nop,nop,timestamp 17986428 3153227> (DF) (ttl 53, id 56840, len 52)
17:06:28.492252 64.194.107.85.32787 > W.X.Y.106.80: P [tcp sum ok] 32:33(1) ack 1 win 5840
<nop,nop,timestamp 3153247 17986428> (DF) (ttl 64, id 44542, len 53)
17:06:28.532252 W.X.Y.106.80 > 64.194.107.85.32787: . [tcp sum ok] ack 33 win 5792
<nop,nop,timestamp 17986448 3153247> (DF) (ttl 53, id 56841, len 52)
17:06:28.692252 64.194.107.85.32787 > W.X.Y.106.80: P 33:83(50) ack 1 win 5840 <nop,nop,timestamp
3153267 17986448> (DF) (ttl 64, id 44543, len 102)
17:06:28.732252 W.X.Y.106.80 > 64.194.107.85.32787: . [tcp sum ok] ack 83 win 5792
<nop,nop,timestamp 17986468 3153267> (DF) (ttl 53, id 56842, len 52)
17:06:28.732252 W.X.Y.106.80 > 64.194.107.85.32787: F [tcp sum ok] 566:566(0) ack 83 win 5792
<nop,nop,timestamp 17986468 3153267> (DF) (ttl 53, id 56844, len 52)
17:06:28.732252 64.194.107.85.32787 > W.X.Y.106.80: . ack 1 win 5840 <nop,nop,timestamp 3153271
17986468,nop,nop,[|tcp]> (DF) (ttl 64, id 44544, len 64)
17:06:28.742252 W.X.Y.106.80 > 64.194.107.85.32787: P 1:566(565) ack 83 win 5792
<nop,nop,timestamp 17986468 3153267> (DF) (ttl 53, id 56843, len 617)
17:06:28.742252 64.194.107.85.32787 > W.X.Y.106.80: . [tcp sum ok] ack 567 win 6780
<nop,nop,timestamp 3153272 17986468> (DF) (ttl 64, id 44545, len 52)
17:06:28.742252 64.194.107.85.32787 > W.X.Y.106.80: F [tcp sum ok] 83:83(0) ack 567 win 6780
<nop,nop,timestamp 3153272 17986468> (DF) (ttl 64, id 44546, len 52)
17:06:28.792252 W.X.Y.106.80 > 64.194.107.85.32787: . [tcp sum ok] ack 84 win 5792
<nop,nop,timestamp 17986474 3153272> (DF) (ttl 53, id 56845, len 52)

 At first this may seem easy to defend against by just checking for

abnormally small packets. However, this is not the case because these are packets with
the ACK flag set and packets with the ACK flag set are normally very small and contain
no payload. This makes detection under normal traffic more difficult.

For testing and comparison, a lab was constructed that contains three hosts on the
same broadcast domain. The initial setup of the lab was as follows using Snort, Cisco
Secure IDS and a Windows 2000 web server running Entercept 2.01 host IDS agent.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 5 1/16/2005

A full description of the Cisco IDS log format and signatures used in these examples can
be found in Appendix B. It should be noted that all request returned a page of some sort
from the web server.

Lab Setup

Host Type IP Version Function
Cisco Secure IDS W.X.Y.123 3.1 Beta IDS Only
Snort Sensor W.X.Y.122 Snort 1.8.6 / RH 7.2 IDS / Apache Web

Server
Windows Host IDS W.X.Y.124 W2K Server /

Entercept 2.01
IIS Web Server
HIDS Agent

Several different requests were sent using the splicer.pl tool. Tables depict the

request, which is the web request, splice size in bytes and timing in seconds with the
associated logs from the devices. These attacks were sent from the ip 64.194.107.85.
Note: organization specific information has been X out in the Cisco IDS logs.

Detecting Session splicing with string matching IDS is very challenging. It is not

possible to create signatures that just look for small packets with the ACK flag set since
this occurs abundantly in normal traffic. Signatures must look do some payload
comparison. Snort has several signatures to detect the tool Whisker session splices.

Snort Session Splicing Signature 1
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-MISC
whisker splice attack"; content: "|20|"; flags: A+; dsize: 1;reference:arachnids,296;
classtype:attempted-recon; sid:1104; rev:1;)

Snort Session Splicing Signature 2
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-MISC
whisker splice attack"; dsize: <5; flags: A+; content:
"|09|";reference:arachnids,415; classtype:attempted-recon; sid:1087; rev:1;)

 The first signature looks for 0x20 (a space) in the first 2 bytes of a packet with
ack flags set and directed toward the defined variable $HTTP_SERVERS. The second
signature looks for 0x09 (tab) within the first six bytes of a packet with ACK flags set
directed toward the defined variable $HTTP_SERVERS. These signatures catch the
default Whisker session splicing usage usage fine. However, these rules can be evaded by
splicing the session differently. The tool splicer.pl allows different values to be specified
for the payload size to be delivered. It should be pointed out that splicer.pl is written for
HTTP traffic, however the basic premise of session splicing extends into all TCP
protocols.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 6 1/16/2005

Example 1: Non Malicious Spliced request

Request Splice Size (bytes) Timing (seconds)
Get /index.html HTTP/1.0\r\n 1 .20

Cisco IDS Logs
None Available

Snort Logs
04/09-22:07:34.680000 [**] [1:1104:1] WEB-MISC whisker splice attack [**] [Classification: Attempted
Information Leak] [Priority: 2] {TCP} 64.194.107.85:33185 -> W.X.Y.124:80
04/09-22:07:36.480000 [**] [1:1104:1] WEB-MISC whisker splice attack [**] [Classification: Attempted
Information Leak] [Priority: 2] {TCP} 64.194.107.85:33185 -> W.X.Y.124:80
04/09-22:07:36.560000 [**] [1:0:0] Session Splice WEB [**] [Classification: Potentially Bad Traffic]
[Priority: 2] {TCP} 64.194.107.85:33185 -> W.X.Y.124:80
04/09-22:07:37.370000 [**] [1:0:0] Session Splice WEB [**] [Classification: Potentially Bad Traffic]
[Priority: 2] {TCP} 64.194.107.85:33185 -> W.X.Y.124:80

 What we can ascertain from the initial test is that the Cisco IDS has no default
check for generic Whisker style (1 byte) session splicing if there is not a malicious
payload associated with the request. Snort generated four alerts associated with two
signatures, one of which is associated with Whisker and one signature that is a custom
generic splicing signature that I developed, which will be detailed later.

To avoid the standard Whisker signatures an attacker can increase the size of the spliced
packets as demonstrated below.

Session splicing with larger payloads
23:56:36.991823 64.194.107.85.33244 > W.X.Y.124.80: S 3136238607:3136238607(0) win 5840 <mss
1460,sackOK,timestamp 15635196[|tcp]> (DF)
23:56:37.091823 W.X.Y.124.80 > 64.194.107.85.33244: S 1360132749:1360132749(0) ack 3136238608
win 17520 <mss 1460,nop,wscale 0,nop,nop,timestamp[|tcp]> (DF)
23:56:37.091823 64.194.107.85.33244 > W.X.Y.124.80: . ack 1 win 5840 <nop,nop,timestamp 15635206
0> (DF)
23:56:37.091823 64.194.107.85.33244 > W.X.Y.124.80: P 1:3(2) ack 1 win 5840 <nop,nop,timestamp
15635206 0> (DF)
23:56:37.301823 W.X.Y.124.80 > 64.194.107.85.33244: . ack 3 win 17518 <nop,nop,timestamp 3198390
15635206> (DF)
23:56:38.091823 64.194.107.85.33244 > W.X.Y.124.80: P 3:5(2) ack 1 win 5840 <nop,nop,timestamp
15635306 3198390> (DF)
23:56:38.311823 W.X.Y.124.80 > 64.194.107.85.33244: . ack 5 win 17516 <nop,nop,timestamp 3198400
15635306> (DF)
23:56:39.091823 64.194.107.85.33244 > W.X.Y.124.80: P 5:7(2) ack 1 win 5840 <nop,nop,timestamp
15635406 3198400> (DF)
23:56:39.311823 W.X.Y.124.80 > 64.194.107.85.33244: . ack 7 win 17514 <nop,nop,timestamp 3198410
15635406> (DF)
23:56:40.091823 64.194.107.85.33244 > W.X.Y.124.80: P 7:9(2) ack 1 win 5840 <nop,nop,timestamp
15635506 3198410> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 7 1/16/2005

Example 2: Splicing with larger splices

Request Splice Size Timing
/index.html 2 1

Cisco IDS Logs
None Available

Snort Logs
04/10-00:52:06.690000 [**] [1:0:0] Session Splice WEB [**] [Classification: Potentially
Bad Traffic] [Priority: 2] {TCP} 64.194.107.85:33243 -> W.X.Y.124:80
04/10-00:52:09.680000 [**] [1:0:0] Session Splice WEB [**] [Classification: Potentially
Bad Traffic] [Priority: 2] {TCP} 64.194.107.85:33243 -> W.X.Y.124:80

This successfully defeats Snorts Whisker based evasion signatures. To write a
signature to detect this evasion technique, it is required that the IDS look for smaller
packets with the ACK flag set and some content. There must be some content associated
with the packet otherwise the signature will trigger on all associated ACK packets. The
generic splicing rule below will work.

Generic Session Splicing rule
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"Generic Session
Splice ATTACK"; uricontent: "H"; flags: A+; dsize: <16; classtype:bad-unknown;)

This particular signature detects any URI with a content of “H” and a dsize of less than
17 bytes. This should catch any web request that does not conform to “$METHOD /
HTTP/1.0\r\n\” where $METHOD is equivalent to any HTTP method. The “H” was
chosen because it is necessary in the HTTP request. This is still quite easy to evade by
padding the URI with self referencing “./”directories, using a tab delimiter (Apache) or a
space (IIS and Apache) and Nulls (IIS). This example will use the ida overflow URL
since it does not require a specific URL for the attack to be successful. The Snort
signature for the ida overflow is as follows

Snort ida overflow signature
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-IIS ISAPI
.ida attempt"; uricontent:".ida?"; nocase; dsize:>239; flags:A+;
reference:arachnids,552; classtype:web-application-attack; reference:cve,CAN-
2000-0071; sid:1243; rev:2;)

 This signature looks for the URI content of ida? with a size of 240 bytes. There
are a couple methods that can evade this. One method is to splice the payload into
requests that are larger, such as 18 bytes, thus evading the string match. Now this
signature could be re-written to only look for ida? and not require a length of 240 bytes.
This signature will then trigger on normal traffic and create false alarms. Since this attack
does not require a specific URI to be requested, an attacker could front load the request
with bogus data to create a longer URI. To make this work we need to calculate the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 8 1/16/2005

amount of characters needed to have the “H” fall into an 18 byte slice. We needed four
bytes at the front of our request so the request ends up looking like the request below.

Request for Example 3:
./splicer.pl -h W.X.Y.124 -r "/NNNN.ida?xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xx
xxx
xx" -t 1 -s 18

Example 3: Using padding to evade session signatures

Request Splice Size Timing
Above Example 3 1 18

Cisco IDS Logs
4,1001256,2002/04/11,01:17:49,2002/04/10,20:17:49,10008,100,101,OUT,IN,5,5126,
0,TCP/IP,64.194.107.85,W.X.Y.124,32768,80,0.0.0.0,

Snort Logs
04/10-20:17:46.150000 [**] [1:1242:2] WEB-IIS ISAPI .ida access [**] [Classification:
access to a potentually vulnerable web application] [Priority: 2] {TCP}
64.194.107.85:32768 -> W.X.Y.124:80

Notice that Cisco Secure IDS successfully detects the true attack with a signature
which depicts the true threat. Snort detects ida access, but does not trigger the attack
signature that it should. Even though Snort alerts this alert appears less threatening than it
really is.

Session Re-assembly needed
 Session splicing signatures for string matching IDS devices are proven
inadequate. Sessions must be re-assembled before comparison or else they will fail.
Several different attacks were sent to the victim host for testing purposes.

In these examples, a malicious Unicode request was sent to the victim host. This
signature was chosen because it’s almost identical on Cisco and Snort. Cisco detects three
signatures 3215, 5114 and 3216. These are all associated with general Unicode activity.
Signature 5114 detects Unicode characters while signatures 3215 and 3216 detect the
“/../” activity. Using 1 byte session splices, Snort only detected the previously mentioned
session splicing signatures. This is an example of Snort’s use of first exit rules.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 9 1/16/2005

Example 4: Malicious Spliced request

Request Splice Size (bytes) Timing (seconds)
GET /scripts/..%c0%af../

HTTP/1.0\r\n
1 .20

Cisco IDS Logs
4,1008202,2002/04/10,03:57:55,2002/04/09,22:57:55,10008,100,101,OUT,IN,1,3000,80,TCP/IP,64.194.107
.85,W.X.Y.124,33194,80,0.0.0.0,5634510
4,1008203,2002/04/10,03:58:02,2002/04/09,22:58:02,10008,100,101,OUT,IN,4,3215,0,TCP/IP,64.194.107.
85,W.X.Y.124,33194,80,0.0.0.0,URL with /..,474554202F736372697074732F2E2EZZ
4,1008204,2002/04/10,03:58:06,2002/04/09,22:58:06,10008,100,101,OUT,IN,4,5114,1,TCP/IP,64.194.107
.85,W.X.Y.124,33194,80,0.0.0.0,..%c0%af..*HTTP,474554202F736372697074732F2E2E256330256166
2E2EZZ
4,1008205,2002/04/10,03:58:06,2002/04/09,22:58:06,10008,100,101,OUT,IN,5,3216,0,TCP/IP,64.194.107
.85,W.X.Y.124,33194,80,0.0.0.0,../..,474554202F736372697074732F2E2E2563302561662E2EZZ

Snort Logs
04/09-22:57:56.090000 [**] [1:1104:1] WEB-MISC whisker splice attack [**] [Classification: Attempted
Information Leak] [Priority: 2] {TCP} 64.194.107.85:33194 -> W.X.Y.124:80
04/09-22:58:06.590000 [**] [1:1104:1] WEB-MISC whisker splice attack [**] [Classification: Attempted
Information Leak] [Priority: 2] {TCP} 64.194.107.85:33194 -> W.X.Y.124:80
04/09-22:58:07.090000 [**] [1:0:0] Session Splice WEB [**] [Classification: Potentially Bad Traffic]
[Priority: 2] {TCP} 64.194.107.85:33194 -> W.X.Y.124:80

Using larger slices, we can evade the splicing signatures but are picked up by
Snort’s normal signatures. Cisco alerts to the true attack.

Example 5: Session Splicing using larger splices

Request Splice Size Timing
GET /scripts/..%c0%af../

HTTP/1.0\r\n
11 .5

Cisco IDS Logs
,1001332,2002/04/11,02:12:37,2002/04/10,21:12:37,10008,100,101,OUT,IN,4,3215,0,TCP/IP,64.194.107
.85,W.X.Y.124,32783,80,0.0.0.0,URL with /..,474554202F736372697074732F2E2E2563302561662EZ
Z
4,1001333,2002/04/11,02:12:37,2002/04/10,21:12:37,10008,100,101,OUT,IN,4,5114,1,TCP/IP,64.194.107
.85,W.X.Y.124,32783,80,0.0.0.0,..%c0%af..*HTTP,474554202F736372697074732F2E2E25633025616
62E2E2F20485454502F312E30ZZ
4,1001334,2002/04/11,02:12:37,2002/04/10,21:12:37,10008,100,101,OUT,IN,5,3216,0,TCP/IP,64.194.107
.85,W.X.Y.124,32783,80,0.0.0.0,../..,474554202F736372697074732F2E2E2563302561662E2E2F2048
5454502F312E30ZZ

Snort Logs
04/10-21:12:38.140000 [**] [1:1113:1] WEB-MISC http directory traversal [**] [Classification:
Attempted Information Leak] [Priority: 2] {TCP} 64.194.107.85:32783 -> W.X.Y.124:80
04/10-21:12:38.640000 [**] [1:0:0] Abnormal WEB Request [**] [Classification: Potentially Bad Traffic]
[Priority: 2] {TCP} 64.194.107.85:32783 -> W.X.Y.124:80
04/10-21:12:39.360000 [**] [1:1287:2] WEB-IIS scripts access [**] [Classification: access to a
potentually vulnerable web application] [Priority: 2] {TCP} 64.194.107.85:32783 -> W.X.Y.124:8

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 10 1/16/2005

The next attempt both IDS devices alert fine. This attack uses two byte splices
and slightly delayed time sequences of one second. I think some assumptions can now be
made. Both Snort and Cisco have some session re-assembly capabilities. Snort, however
will alert differently for the same attack depending on techniques used. This has to do
with how Snort determines which rule it will alert on.

Example 6: Smaller Splice time delayed padded HTTP

Request Splice Size Timing
GET /scripts/..%c0%af../
HTTP/1.0\r\n

2 1

Cisco IDS Logs
4,1008380,2002/04/10,04:37:42,2002/04/09,23:37:42,10008,100,101,OUT,IN,4,3215,0,TCP/IP,64.194.107
85,W.X.Y.124,33234,80,0.0.0.0,URL with /..,474554202F736372697074732F2E2E25ZZ
4,1008381,2002/04/10,04:37:46,2002/04/09,23:37:46,10008,100,101,OUT,IN,4,5114,1,TCP/IP,64.194.107
.85,W.X.Y.124,33234,80,0.0.0.0,..%c0%af..*HTTP,474554202F736372697074732F2E2E256330256166
2E2E2FZZ
4,1008382,2002/04/10,04:37:46,2002/04/09,23:37:46,10008,100,101,OUT,IN,5,3216,0,TCP/IP,64.194.107
.85,W.X.Y.124,33234,80,0.0.0.0,../..,474554202F736372697074732F2E2E2563302561662E2E2FZZ

Snort Logs
04/09-23:29:32.280000 [**] [1:1113:1] WEB-MISC http directory traversal [**] [Classification:
Attempted Information Leak] [Priority: 2] {TCP} 64.194.107.85:33233 -> W.X.Y.124:80
04/09-23:29:34.380000 [**] [110:4:1] spp_unidecode: Invalid Unicode String detected [**] {TCP}
64.194.107.85:33233 -> W.X.Y.124:80
04/09-23:37:51.590000 [**] [1:1287:2] WEB-IIS scripts access [**] [Classification: access to a
potentually vulnerable web application] [Priority: 2] {TCP} 64.194.107.85:33234 -> W.X.Y.124:80

The next example the HTTP portion of the request was padded to avoid triggering
the generic splicing rule. The splices remain at 2 bytes. The time between splices was
moved to 20 seconds. Snort appears to time out some of the request because this time a
different alert is received. Snort must have been able to only re-assemble a portion of the
attack.

Example 7: Smaller Slices, padded HTTP, longer time

Request Splice Size Timing
GET /scripts/..%c0%af../
HTTP/1.0\r\n

2 20

Cisco IDS Logs
4,1008392,2002/04/10,04:47:40,2002/04/09,23:47:40,10008,100,101,OUT,IN,4,3215,
0,TCP/IP,64.194.107.85,W.X.Y.124,33236,80,0.0.0.0,URL
with/..,474554202F736372697074732F2E2E25ZZ4,1008393,2002/04/10,04:49:00,2002/04/09,23:49:00,
10008,100,101,OUT,IN,4,5114,1,TCP/IP,64.194.107.85,W.X.Y.124,33236,80,0.0.0.0,..%c0%af..*
HTTP,474554202F736372697074732F2E2E2563302561662E2E2FZZ4,1008394,2002/04/10,04:49:00,200
2/04/09,23:49:00,10008,100,101,OUT,IN,5,3216,0,TCP/IP,64.194.107.
85,W.X.Y.124,33236,80,0.0.0.0,../..,474554202F736372697074732F2E2E2563302561662E2E2FZZ

Snort Logs
04/09-23:50:59.380000 [**] [1:1287:2] WEB-IIS scripts access [**] [Classification: access to a
potentually vulnerable web application] [Priority: 2] {TCP} 64.194.107.85:33236 -> W.X.Y.124:80

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 11 1/16/2005

In a default configuration, Snort appears to time out requests after a certain
amount of time. Cisco is still seeing the alerts. The following request still uses two byte
splices, but the time between splices is increased to 45 seconds.

Example 8: 2 Byte splices delayed by 45 seconds

Request Splice Size Timing
GET /scripts/..%c0%af../
HTTP/1.0\r\n

2 45

Cisco IDS Logs
4,1008411,2002/04/10,05:03:34,2002/04/10,00:03:34,10008,100,101,OUT,IN,4,3215,0,TCP/IP,64.194.107
.85,W.X.Y.124,33239,80,0.0.0.0,URL with /..,4745474554202F7363726372697074732F2E2E25ZZ
4,1008414,2002/04/10,05:06:34,2002/04/10,00:06:34,10008,100,101,OUT,IN,4,5114,1,TCP/IP,64.194.107
.85,W.X.Y.124,33239,80,0.0.0.0,..%c0%af..*HTTP,4745474554202F7363726372697074732F2E2E256
3302561662E2E2FZZ
4,1008415,2002/04/10,05:06:34,2002/04/10,00:06:34,10008,100,101,OUT,IN,5,3216,0,TCP/IP,64.194.107
.85,W.X.Y.124,33239,80,0.0.0.0,../..,4745474554202F7363726372697074732F2E2E2563302561662E2
E2FZZ

Snort Logs
None available

Increasing the time further will eventually evade Cisco Secure IDS.

Example 9: 2 Byte splices delayed by 100 seconds

Request Splice Size Timing
GET /scripts/..%c0%af../
HTTP/1.0\r\n

2 100

Cisco IDS Logs
None Available

Snort Logs
None Available

 In basic session splicing attacks where the hosts reside on the same broadcast
domain it is possible to evade the IDS by not using the default one byte splice and
delaying the attack significantly. The reason different Snort signatures will trigger, which
can make an attack seem less threatening is because of Snort’s first exit rule. I suspected
the problem was in the way rules were passed through the detection engine for
comparison. I posted an email to Snort-Devel mail list and received this response from
Martin Roesch the founder of Snort.

“If you want the single-byte detects for the real scripts that are being accessed, turn off
the rule that's going off, that's Snort's "first exit" engine doing it's job. If you want to
extend the tracking time for a session, increase the default timeout value for the stream4
preprocessor:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 12 1/16/2005

preprocessor stream4: timeout 3600, detect_scans”

 This helps explain why different Snort rules would trigger under different
circumstances. I did some basic testing with turning of the session splicing rules and
setting the timeout longer. Snort does a better job off detecting the true attack without the
evasion signatures. However, the early exit rule still causes a Unicode cmd.exe attack to
be seen as scripts access, and other attacks such as .ida to be misdiagnosed depending on
how the splices fall and their timing.

 Whether these methods are successful when an IDS employs session re-assembly
is somewhat host and application dependent. In testing, Apache on RedHat sessions, time
out in six minutes while IIS on Windows 2000 doesn’t appear to timeout in any
reasonable amount of time. This timeout of six minutes by Apache makes time based
evasion more difficult when the host is on the same broadcast domain as the victim. To
remove the broadcast domain, the web server was given a new IP behind a router one
additional hop from the sensors.

Lab Setup 2

Host Type IP Version Function
Snort Sensor W.X.Y.122 Snort 1.8.6 / RH 7.2 IDS / Apache Web

Server
Cisco Secure IDS W.X.Y.123 3.1 Beta IDS Only
Windows Host IDS W.X.Y.108 W2K Server /

Entercept 2.01
IIS Web Server
HIDS Agent

Cisco 3600 Router W.X.Y.125 IOS Router

 The victim host and IDS devices are now not on the same broadcast domain. The
victim host is also now one extra hop away. To help expedite the test, a simple custom
signature was created on both IDS devices to alarm on the URL foo.htm. This was done
to avoid triggering any alarms on the Entercept HIDS agent and to avoid any first exit
rules.

Test Signature Snort:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-IIS kevin
foo test access"; flags: A+; uricontent:"foo.htm"; nocase; classtype:web-
application-attack; sid: 1256; rev:2;)

Test Signature Cisco Secure IDS # 30001:
Engine STATE.HTTP SIGID 30001 AlarmThrottle FireOnce ChokeThreshold
ANY DeObfuscate True Direction ToService MinHits 1 ResetAfterIdle 15
ServicePorts 80,3128,8000,8010,8080,8888,24326 SigName foo ThrottleInterval 15
UriRegex foo.htm

To test that re-assembly was working well, and there were no other problems
prohibiting proper alarming, a quick test was run sending 6 byte splices quickly.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 13 1/16/2005

Both devices alarmed properly without a problem.

Test 1: Session 1 Fast
18:36:12.746266 64.194.107.85.33296 > W.X.Y.108.80: S 332613146:332613146(0) win 5840 <mss
1460,sackOK,timestamp 78415572[|tcp]> (DF) (ttl 64, id 49358, len 60)
18:36:12.906266 W.X.Y.108.80 > 64.194.107.85.33296: S 2058514897:2058514897(0) ack 332613147
win 17520 <mss 1460,nop,wscale 0,nop,nop,timestamp[|tcp]> (DF) (ttl 116, id 2480, len 64)
18:36:12.906266 64.194.107.85.33296 > W.X.Y.108.80: . [tcp sum ok] ack 1 win 5840
<nop,nop,timestamp 78415588 0> (DF) (ttl 64, id 49359, len 52)
18:36:12.906266 64.194.107.85.33296 > W.X.Y.108.80: P 1:8(7) ack 1 win 5840 <nop,nop,timestamp
78415588 0> (DF) (ttl 64, id 49360, len 59)
18:36:13.146266 W.X.Y.108.80 > 64.194.107.85.33296: . [tcp sum ok] ack 8 win 17513
<nop,nop,timestamp 90556 78415588> (DF) (ttl 116, id 2481, len 52)
18:36:13.906266 64.194.107.85.33296 > W.X.Y.108.80: P 8:14(6) ack 1 win 5840 <nop,nop,timestamp
78415688 90556> (DF) (ttl 64, id 49361, len 58)
18:36:14.156266 W.X.Y.108.80 > 64.194.107.85.33296: . [tcp sum ok] ack 14 win 17507
<nop,nop,timestamp 90566 78415688> (DF) (ttl 116, id 2482, len 52)
18:36:14.906266 64.194.107.85.33296 > W.X.Y.108.80: P 14:20(6) ack 1 win 5840 <nop,nop,timestamp
78415788 90566> (DF) (ttl 64, id 49362, len 58)
18:36:15.156266 W.X.Y.108.80 > 64.194.107.85.33296: . [tcp sum ok] ack 20 win 17501
<nop,nop,timestamp 90576 78415788> (DF) (ttl 116, id 2483, len 52)
18:36:15.906266 64.194.107.85.33296 > W.X.Y.108.80: P 20:71(51) ack 1 win 5840 <nop,nop,timestamp
78415888 90576> (DF) (ttl 64, id 49363, len 103)
18:36:16.156266 W.X.Y.108.80 > 64.194.107.85.33296: . [tcp sum ok] ack 71 win 17450
<nop,nop,timestamp 90586 78415888> (DF) (ttl 116, id 2492, len 52)
18:36:16.446266 W.X.Y.108.80 > 64.194.107.85.33296: . 1:1449(1448) ack 71 win 17450
<nop,nop,timestamp 90587 78415888> (DF) (ttl 116, id 2493, len 1500)
18:36:16.446266 64.194.107.85.33296 > W.X.Y.108.80: . [tcp sum ok] ack 1449 win 8688
<nop,nop,timestamp 78415942 90587> (DF) (ttl 64, id 49364, len 52)
18:36:16.546266 W.X.Y.108.80 > 64.194.107.85.33296: . 1449:2897(1448) ack 71 win 17450
<nop,nop,timestamp 90587 78415888> (DF) (ttl 116, id 2494, len 1500)
18:36:16.546266 W.X.Y.108.80 > 64.194.107.85.33296: . 2897:2921(24) ack 71 win 17450
<nop,nop,timestamp 90588 78415888> (DF) (ttl 116, id 2495, len 76)
18:36:16.546266 64.194.107.85.33296 > W.X.Y.108.80: . [tcp sum ok] ack 2897 win 11584
<nop,nop,timestamp 78415952 90587> (DF) (ttl 64, id 49365, len 52)
18:36:16.546266 64.194.107.85.33296 > W.X.Y.108.80: . [tcp sum ok] ack 2921 win 11584
<nop,nop,timestamp 78415952 90588> (DF) (ttl 64, id 49366, len 52)
18:36:16.576266 W.X.Y.108.80 > 64.194.107.85.33296: FP 2921:3397(476) ack 71 win 17450
<nop,nop,timestamp 90589 78415942> (DF) (ttl 116, id 2496, len 528)
18:36:16.576266 64.194.107.85.33296 > W.X.Y.108.80: F [tcp sum ok] 71:71(0) ack 3398 win 14480
<nop,nop,timestamp 78415955 90589> (DF) (ttl 64, id 49367, len 52)
18:36:16.656266 W.X.Y.108.80 > 64.194.107.85.33296: . [tcp sum ok] ack 72 win 17450
<nop,nop,timestamp 90590 78415955> (DF) (ttl 116, id 2497, len 52)
 Cisco IDS Logs
4,1064599,2002/05/01,00:33:35,2002/04/30,19:33:35,10008,100,101,OUT,IN,1,3000,80,
TCP/IP,64.194.107.85,W.X.Y.108,33296,80,0.0.0.0,332613146
4,1064600,2002/05/01,00:33:36,2002/04/30,19:33:36,10008,100,101,OUT,IN,4,30001,0,
TCP/IP,64.194.107.85,W.X.Y.108,33296,80,0.0.0.0, ,474554202F666F6F2E68746D20ZZ

Snort Logs
04/30-19:33:46.690000 [**] [1:1256:2] WEB-IIS kevin foo test access [**] [Classification: Web
Application Attack] [Priority: 1] {TCP} 64.194.107.85:33296 -> W.X.Y.108:80

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 14 1/16/2005

 Both the devices alerted on the custom signatures while using basic session
splicing techniques. The Cisco device alerted on a signature 3000 which is a TCP
connection and signature 30001 which is the custom foo.htm signature. This proves
session re-assembly is working correctly on both devices. The following evasion
technique takes advantage of inherent network problems as described by Newsham and
Ptacek[1] and Vern Paxson and Mark Handley in their paper “Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to End Protocol Semantics”[4]. The
following test was done.

• Fake resets
 To understand the fake reset, the basic principle is to send a reset packet with a low TTL
value destined to the host that the IDS will see and understand as a session teardown but
will timeout before the host. The next logs are from a fake reset, which Snort is and Cisco
are both susceptible to. There are other evasion techniques similar to this one that can be
used when a host is more hops away. These techniques for splicing all take advantage of
a fake packet timing out before it gets to the host. Using these techniques on can send
multiple packets containing the same data, hoping the IDS will use the incorrect data to
perform analysis. Only fake reset packets were tested, since all techniques work on the
same premise. Note the timing was set a longer timeout to give myself time to craft the
reset packet using HPING2. The inserted reset and its associated response (from the
router icmp ttl exceeded message) are highlighted in red.

Test 2: Fake Reset Successful
18:43:34.316266 64.194.107.85.33298 > W.X.Y.108.80: S 788083420:788083420(0) win 5840 <mss
1460,sackOK,timestamp 78459729[|tcp]> (DF)
18:43:34.386266 W.X.Y.108.80 > 64.194.107.85.33298: S 2169462490:2169462490(0) ack 788083421
win 17520 <mss 1460,nop,wscale 0,nop,nop,timestamp[|tcp]> (DF)
18:43:34.386266 64.194.107.85.33298 > W.X.Y.108.80: . ack 1 win 5840 <nop,nop,timestamp 78459736
0> (DF)
18:43:34.386266 64.194.107.85.33298 > W.X.Y.108.80: P 1:8(7) ack 1 win 5840 <nop,nop,timestamp
78459736 0> (DF)
18:43:34.596266 W.X.Y.108.80 > 64.194.107.85.33298: . ack 8 win 17513 <nop,nop,timestamp 94970
78459736> (DF)
18:43:57.116266 64.194.107.85.33298 > W.X.Y.108.80: R 788083428:788083428(0) win 512
18:43:57.196266 W.X.Y.125 > 64.194.107.85: icmp: time exceeded in-transit [tos 0xc0]
18:44:04.386266 64.194.107.85.33298 > W.X.Y.108.80: P 8:14(6) ack 1 win 5840 <nop,nop,timestamp
78462736 94970> (DF)
18:44:04.636266 W.X.Y.108.80 > 64.194.107.85.33298: . ack 14 win 17507 <nop,nop,timestamp 95271
78462736> (DF)
18:44:34.386266 64.194.107.85.33298 > W.X.Y.108.80: P 14:20(6) ack 1 win 5840 <nop,nop,timestamp
78465736 95271> (DF)
18:44:34.586266 W.X.Y.108.80 > 64.194.107.85.33298: . ack 20 win 17501 <nop,nop,timestamp 95570
78465736> (DF)
18:45:04.386266 64.194.107.85.33298 > W.X.Y.108.80: P 20:71(51) ack 1 win 5840 <nop,nop,timestamp
78468736 95570> (DF)
18:45:04.566266 W.X.Y.108.80 > 64.194.107.85.33298: . 1:1449(1448) ack 71 win 17450
<nop,nop,timestamp 95868 78468736> (DF)
18:45:04.566266 64.194.107.85.33298 > W.X.Y.108.80: . ack 1449 win 8688 <nop,nop,timestamp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 15 1/16/2005

78468754 95868> (DF)
18:45:04.666266 W.X.Y.108.80 > 64.194.107.85.33298: . 1449:2897(1448) ack 71 win 17450
<nop,nop,timestamp 95868 78468736> (DF)
18:45:04.666266 W.X.Y.108.80 > 64.194.107.85.33298: . 2897:2921(24) ack 71 win 17450
<nop,nop,timestamp 95868 78468736> (DF)
18:45:04.666266 64.194.107.85.33298 > W.X.Y.108.80: . ack 2897 win 11584 <nop,nop,timestamp
78468764 95868> (DF)
18:45:04.666266 64.194.107.85.33298 > W.X.Y.108.80: . ack 2921 win 11584 <nop,nop,timestamp
78468764 95868> (DF)
18:45:04.696266 W.X.Y.108.80 > 64.194.107.85.33298: FP 2921:3397(476) ack 71 win 17450
<nop,nop,timestamp 95870 78468754> (DF)
18:45:04.706266 64.194.107.85.33298 > W.X.Y.108.80: F 71:71(0) ack 3398 win 14480
<nop,nop,timestamp 78468768 95870> (DF)
18:45:04.776266 W.X.Y.108.80 > 64.194.107.85.33298: . ack 72 win 17450 <nop,nop,timestamp 95871
78468768> (DF)

Cisco IDS Logs
4,1064610,2002/05/01,00:40:56,2002/04/30,19:40:56,10008,100,101,OUT,IN,1,3000,80,TCP/IP
,64.194.107.85,W.X.Y.108,33298,80,0.0.0.0,788083420
4,1064611,2002/05/01,00:41:30,2002/04/30,19:41:30,10008,100,101,IN,OUT,1,2005,0,TCP/IP
,W.X.Y.125,64.194.107.85,0,0,0.0.0.0,

Snort Logs
None Available

 Both IDS devices were susceptible to this fake reset attack. Snort logged nothing
while Cisco Secure IDS only logged a signature 3000 connection request and a 2005
ICMP destination unreachable message. It should be noted that Snort developers are
currently working to defeat this style of network evasion through the use of assigning a
minimum TTL required for assembly of the session. Much of this has been driven by the
recent release of a tool by Dug Song called fragroute[5] which tests many of the
fragmentation problems described by Newsham and Ptacek[1].

Conclusion:
 Several different session splicing evasion techniques have been demonstrated
with varying degrees of success. Most of the techniques that are available with
fragmentation can be used to some degree with splicing. The following table summarizes
some of the similarities between fragmentation and splicing and denotes whether I had
any success in limited testing.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 16 1/16/2005

A comparison of fragmentation and session splicing evasion techniques:
Technique Fragmentation Session Splicing Successful in

limited testing
Splitting payload Yes Yes Limited
Data overwrite Yes Yes Not tested
Data Insertion Yes Yes Not tested
Fake Reset
Teardown

Yes Yes Yes

Delayed delivery Limited Yes Yes
Trigger less
threatening rules

Yes Yes Yes

The reality is that many network level problems still exist and are very difficult for
devices to handle without traffic normalization unless the device uses “bifurcating
analysis”[4] techniques which means that if an IDS detects traffic which has possible
multiple interpretations it will apply all interpretations to the analysis and alarm if any
match a signature. Still, the use of session splicing timeouts presents a unique problem
for the IDS. If a host operating system will keep the session alive for a very long period
of time, than the IDS must do the same. IDS designers recently have made tremendous
strides in defeating string matching evasion techniques; now network level techniques are
being addressed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 17 1/16/2005

Assignment 2: Network Detects

Detects:
 A combination of several networks were used for sourcing detects. A description
of the networks is below.

Network #1:
Home network. This is my home network, a DSL connected Red Hat Linux 7.1 host
serving as a combination iptables firewall and Snort IDS. Snort is version 1.8.4 using the
standard rule set plus a few custom rules. The custom rules will only be referenced if they
were an integral part of a detect. The host is running a variety of services including Web,
FTP, Telnet, SSH, MySQL, and Portmap. The firewall allows world access to all of these
services. Port 81 and 53 TCP are port forwarded to a Windows 2000 server on the
internal network. SSH is OpenSSH version 2.5.2p2. SSH has been configured to only
allow protocol version 2 and to not use login. Web Ports 80 and 443 are password
protected. This host runs a constant version of tcpdump logging everything with the
command tcpdump –w /dumpfiles.tcpdump-$date.dmp &.

Network #2:
This network is a Red Hat 7.2 host serving Web, Email and DNS for 81 domains. This
host runs Sendmail, Bind, Apache, MySQL, FTP, SSH, IMAP and Portmap. This host
has no firewall but uses a combination of Portsentry and tcp-wrappers for protection. This
host is running Snort version 1.8.4 using a default rule set with the addition of a few
custom rules. The custom rules will only be referenced if they are applicable to a detect.
This host runs a constant version of tcpdump logging everything with the command
tcpdump –w /dumpfiles.tcpdump-$date.dmp &.

Network #3:
This network is a combination of networks my employer manages. It consists of Cisco
Secure IDS sensors, Cisco PIX firewalls, Checkpoint FW1 firewalls, and Entercept HIDS
agents. Since these are managed hosts and customer networks IP addresses will be
sanitized. Once again the sensors use default configuration with the addition of custom
signatures.

Network #4:
This is a lab network consisting of both Snort 1.8.6 and Cisco 3.1IDS sensors. A
Windows 2000 web server running IIS with Entercept HIDS, and a Red Hat 6.2 server
with Telnet and Apache open. There is not functional firewall in this network. This
network also runs a constant version of tcpdump logging everything with the command
tcpdump –w /dumpfiles.tcpdump-$date.dmp &.

Detect #1: Noisy port scan followed by session spliced web attacks

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 18 1/16/2005

Attack overview and analysis:

This detect consisted of 442 Snort alerts. A breakdown of the 442 alerts is as follows. The
Source IP is 172.143.143.116.
root@server1 snort]# grep 172.143.143.116 alert-3-36 |awk -F] '{print $3}' |cut -c 0-30
|sort |uniq -c |sort -r

 432 spp_portscan: portscan status
 4 Abnormal Web Request
 2 SCAN Proxy attempt [**
 1 spp_portscan: PORTSCAN DETECT
 1 spp_portscan: End of portscan
 1 Session Splicing attempt [**
 1 INFO - Possible Squid Scan [*

Snort alerts without port scan entries

03/24-00:53:50.960307 [**] [1:0:0] Abnormal Web Request [**]
[Classification: Potentially Bad Traffic] [Priority: 2] {TCP}
172.143.143.116:2589 -> W.X.Y.16:80
03/24-00:57:53.119547 [**] [1:615:2] SCAN Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2] {TCP}
172.143.143.116:3699 -> W.X.Y.16:1080
03/24-01:03:46.370944 [**] [1:618:1] INFO - Possible Squid Scan [**]
[Classification: Attempted Information Leak] [Priority: 2] {TCP}
172.143.143.116:1806 -> W.X.Y.16:3128
03/24-01:17:42.150156 [**] [1:620:1] SCAN Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2] {TCP}
172.143.143.116:2873 -> W.X.Y.16:8080
03/24-01:36:50.513678 [**] [1:0:0] Abnormal Web Request [**]
[Classification: Potentially Bad Traffic] [Priority: 2] {TCP}
172.143.143.116:1164 -> W.X.Y.16:80
03/24-01:45:22.697933 [**] [1:0:0] Abnormal Web Request [**]
[Classification: Potentially Bad Traffic] [Priority: 2] {TCP}
172.143.143.116:1182 -> W.X.Y.16:80
03/24-01:45:42.057991 [**] [1:0:0] Abnormal Web Request [**]
[Classification: Potentially Bad Traffic] [Priority: 2] {TCP}
172.143.143.116:1183 -> W.X.Y.16:80
03/24-01:47:18.979763 [**] [1:0:0] Session Splicing attempt [**]
[Classification: Potentially Bad Traffic] [Priority: 2] {TCP}
172.143.143.116:1184 -> W.X.Y.16:80

Signatures triggered by this attack.

Abnormal web request
local.rules:alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
(msg:"Abnormal Web Request";
flags:A+;content:"htt";nocase;content:!"accept";nocase;content:!"User-
Agent";nocase; classtype:bad-unknown;)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 19 1/16/2005

This is a custom rule I wrote. The basic premise behind this rule was to catch web
requests not intitiated by a web browser. Most automated web scanning tools do not send
requests with the same information as a web browser. This particular rule catches
requests that contain htt but do not contain the User-Agent or accept headers. This rule
triggers on many of the CodeRed and Concept worm scans.

Scan proxy attempt
scan.rules:alert tcp $EXTERNAL_NET any -> $HOME_NET 1080 (msg:"SCAN
Proxy attempt"; flags:S; reference:url,help.undernet.org/proxyscan/;
classtype:attempted-recon; sid:615; rev:2;)
scan.rules:alert tcp $EXTERNAL_NET any -> $HOME_NET 8080 (msg:"SCAN
Proxy attempt";flags:S; classtype:attempted-recon; sid:620; rev:1;)

These two rules are from the standard Snort rule set. These rules look for SYN packets to
ports 1080 and 8080. These ports are associated with well-known proxies. In this case
these rules triggered as part of a larger port scan. The port scan log supports this theory.
In this attempt the attacker scanned every port from port 1 to port 9677.

INFO – Possible Squid Scan
scan.rules:alert tcp $EXTERNAL_NET any -> $HOME_NET 3128 (msg:"INFO -
Possible Squid Scan"; flags:S; classtype:attempted-recon; sid:618;
rev:1;)

This rule is from the standard Snort rule set. This triggers on SYN requests to port 3128.
This is part of the larger port scan.

Session Splicing attempt
local.rules:alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
(msg:"Session Splicing attempt"; flags:A+;content:"g";nocase; dsize:
<12; classtype:bad-unknown;)

This is a custom rule I wrote as well. Snort does have two rules to catch Whisker session
splicing attempts. I feel that these rules are a little to specific to Whisker and miss other
tools. This rule looks for a “g” in a web request and a total content length of less than 13
bytes. Normal web request are formatted as “GET HTTP/1.0\r\n\r\n” require 16 bytes in
the get request. This rule benignly triggers often, and has its own deficiencies

Here is the output from the Snort logs. This gives us a better view into the packets that
triggered the specific alerts.

Snort Logs:
-*> Snort! <*-
Version 1.8.4 (Build 99)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)
03/24-00:53:50.960307 172.143.143.116:2589 -> W.X.Y.16:80
TCP TTL:114 TOS:0x0 ID:33060 IpLen:20 DgmLen:120 DF
AP Seq: 0xA52A7565 Ack: 0x5A6E561B Win: 0x4322 TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 20 1/16/2005

47 45 54 20 2F 20 48 54 54 50 2F 31 2E 30 0D 0A GET / HTTP/1.0..
43 6F 6E 6E 65 63 74 69 6F 6E 3A 20 43 6C 6F 73 Connection: Clos
65 0D 0A 50 72 61 67 6D 61 3A 20 6E 6F 2D 63 61 e..Pragma: no-ca
63 68 65 0D 0A 43 6F 6E 74 65 6E 74 2D 54 79 70 che..Content-Typ
65 3A 20 74 65 78 74 2F 68 74 6D 6C 0D 0A 0D 0A e: text/html....

=+

03/24-00:57:53.119547 172.143.143.116:3699 -> W.X.Y.16:1080
TCP TTL:114 TOS:0x0 ID:36997 IpLen:20 DgmLen:48 DF
******S* Seq: 0xAC00C9DE Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1322 NOP NOP SackOK

=+

03/24-01:03:46.370944 172.143.143.116:1806 -> W.X.Y.16:3128
TCP TTL:114 TOS:0x0 ID:43598 IpLen:20 DgmLen:48 DF
******S* Seq: 0xB75D679F Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1322 NOP NOP SackOK

=+

03/24-01:17:42.150156 172.143.143.116:2873 -> W.X.Y.16:8080
TCP TTL:114 TOS:0x0 ID:59633 IpLen:20 DgmLen:48 DF
******S* Seq: 0xD29213CD Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1322 NOP NOP SackOK

=+

03/24-01:36:50.513678 172.143.143.116:1164 -> W.X.Y.16:80
TCP TTL:114 TOS:0x0 ID:2782 IpLen:20 DgmLen:51 DF
AP Seq: 0xEA4473BF Ack: 0xFD3820BE Win: 0x4322 TcpLen: 20
68 74 74 70 64 2E 63 6F 6E 66 20 httpd.conf

=+

03/24-01:45:22.697933 172.143.143.116:1182 -> W.X.Y.16:80
TCP TTL:114 TOS:0x0 ID:3119 IpLen:20 DgmLen:55 DF
AP Seq: 0xF1F152B0 Ack: 0x1CD6D5DC Win: 0x4322 TcpLen: 20
69 6E 64 65 78 2E 68 74 6D 6C 20 48 54 54 50 index.html HTTP

=+

03/24-01:45:42.057991 172.143.143.116:1183 -> W.X.Y.16:80
TCP TTL:114 TOS:0x0 ID:3161 IpLen:20 DgmLen:64 DF
AP Seq: 0xF23D144B Ack: 0x1DF5A5E1 Win: 0x4322 TcpLen: 20
47 45 54 20 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 GET /index.html
48 54 54 50 2F 31 2E 30 HTTP/1.0

=+

03/24-01:47:18.979763 172.143.143.116:1184 -> W.X.Y.16:80
TCP TTL:114 TOS:0x0 ID:3196 IpLen:20 DgmLen:51 DF
AP Seq: 0xF3B0519C Ack: 0x251BD1A1 Win: 0x4322 TcpLen: 20
63 6F 6E 66 69 67 5F 6C 6F 67 5F config_log_

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 21 1/16/2005

=+

The session splicing log is the last packet. We will use tcpdump http://tcpdump.org
logs to view these and logs and determine the attackers motives.

Tcpdump logs of Snort alert
01:47:17.179764 172.143.143.116.1184 > W.X.Y.16.http: S 4088418715:4088418715(0) win 16384 <mss
1322,nop,nop,sackOK> (DF)
01:47:17.180785 W.X.Y.16.http > 172.143.143.116.1184: S 622580128:622580128(0) ack 4088418716
win 5840 <mss 1460,nop,nop,sackOK> (DF)
01:47:17.384921 172.143.143.116.1184 > W.X.Y.16.http: . ack 1 win 17186 (DF)
01:47:18.979763 172.143.143.116.1184 > W.X.Y.16.http: P 1:12(11) ack 1 win 17186 (DF)
01:47:18.979857 W.X.Y.16.http > 172.143.143.116.1184: . ack 12 win 5840 (DF)
01:47:19.729700 172.143.143.116.1184 > W.X.Y.16.http: P 12:14(2) ack 1 win 17186 (DF)
01:47:19.729788 W.X.Y.16.http > 172.143.143.116.1184: . ack 14 win 5840 (DF)
01:47:19.731023 W.X.Y.16.http > 172.143.143.116.1184: P 1:333(332) ack 14 win 5840 (DF)
01:47:19.731214 W.X.Y.16.http > 172.143.143.116.1184: F 333:333(0) ack 14 win 5840 (DF)
01:47:19.982073 172.143.143.116.1184 > W.X.Y.16.http: . ack 334 win 16854 (DF)
01:47:21.522640 172.143.143.116.1184 > W.X.Y.16.http: F 14:14(0) ack 334 win 16854 (DF)
01:47:21.522683 W.X.Y.16.http > 172.143.143.116.1184: . ack 15 win 5840 (DF)

The target server responded to this attempt with an HTTP 501 Method not Implemented
response.

01:47:19.731023 W.X.Y.16.http > 172.143.143.116.1184: P [tcp sum ok] 1:333(332) ack 14 win 5840
(DF) (ttl 64, id 22265, len 372)
0x0000 4500 0174 56f9 4000 4006 5550 4027 1110 E..tV.@.@.UP@'..
0x0010 ac8f 8f74 0050 04a0 251b d1a1 f3b0 51a9 ...t.P..%.....Q.
0x0020 5018 16d0 f643 0000 3c21 444f 4354 5950 P....C..<!DOCTYP
0x0030 4520 4854 4d4c 2050 5542 4c49 4320 222d E.HTML.PUBLIC."-
0x0040 2f2f 4945 5446 2f2f 4454 4420 4854 4d4c //IETF//DTD.HTML
0x0050 2032 2e30 2f2f 454e 223e 0a3c 4854 4d4c .2.0//EN">.<HTML
0x0060 3e3c 4845 4144 3e0a 3c54 4954 4c45 3e35 ><HEAD>.<TITLE>5
0x0070 3031 204d 6574 686f 6420 4e6f 7420 496d 01.Method.Not.Im
0x0080 706c 656d 656e 7465 643c 2f54 4954 4c45 plemented</TITLE
0x0090 3e0a 3c2f 4845 4144 3e3c 424f 4459 3e0a >.</HEAD><BODY>.
0x00a0 3c48 313e 4d65 7468 6f64 204e 6f74 2049 <H1>Method.Not.I
0x00b0 6d70 6c65 6d65 6e74 6564 3c2f 4831 3e0a mplemented</H1>.
0x00c0 636f 6e66 6967 5f6c 6f67 5f20 746f 202f config_log_.to./
0x00d0 696e 6465 782e 6874 6d20 6e6f 7420 7375 index.htm.not.su
0x00e0 7070 6f72 7465 642e 3c50 3e0a 496e 7661 pported.<P>.Inva
0x00f0 6c69 6420 6d65 7468 6f64 2069 6e20 7265 lid.method.in.re
0x0100 7175 6573 7420 636f 6e66 6967 5f6c 6f67 quest.config_log
0x0110 5f3c 503e 0a3c 4852 3e0a 3c41 4444 5245 _<P>.<HR>.<ADDRE
0x0120 5353 3e41 7061 6368 652f 312e 332e 3232 SS>Apache/1.3.22

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 22 1/16/2005

The tcpdump logs show evidence of a true session splicing attempt that was not detected
by Snort. This attempt did not elicit a response from the server.

tcpdump -r 172.143.143.116.dmp -Xvn "(src port 80 and dst port 3521) or (dst port 80
and src port 3521)"

01:08:27.926211 172.143.143.116.3521 > W.X.Y.16.http: S [tcp sum ok] 3231429409:3231429409(0) win
16384 <mss 1322,nop,nop,sackOK> (DF) (ttl 114, id 48999, len 48)
0x0000 4500 0030 bf67 4000 7206 bc25 ac8f 8f74 E..0.g@.r..%...t
0x0010 4027 1110 0dc1 0050 c09b b321 0000 0000 @'.....P...!....
0x0020 7002 4000 34a0 0000 0204 052a 0101 0402 p.@.4......*....
01:08:27.926266 W.X.Y.16.http > 172.143.143.116.3521: S [tcp sum ok] 2426323710:2426323710(0) ack
3231429410 win 5840 <mss 1460,nop,nop,sackOK> (DF) (ttl 64, id 0, len 48)
0x0000 4500 0030 0000 4000 4006 ad8d 4027 1110 E..0..@.@...@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2fe c09b b322 ...t.P........."
0x0020 7012 16d0 0998 0000 0204 05b4 0101 0402 p...............
01:08:28.135382 172.143.143.116.3521 > W.X.Y.16.http: . [tcp sum ok] ack 1 win 17186 (DF) (ttl 114, id
49004, len 40)
0x0000 4500 0028 bf6c 4000 7206 bc28 ac8f 8f74 E..(.l@.r..(...t
0x0010 4027 1110 0dc1 0050 c09b b322 909e c2ff @'.....P..."....
0x0020 5010 4322 0a0a 0000 0000 0000 0000 P.C"..........
01:08:29.092131 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 1:2(1) ack 1 win 17186 (DF) (ttl
114, id 49022, len 41)
0x0000 4500 0029 bf7e 4000 7206 bc15 ac8f 8f74 E..).~@.r......t
0x0010 4027 1110 0dc1 0050 c09b b322 909e c2ff @'.....P..."....
0x0020 5018 4322 a600 0000 6400 0000 0000 P.C"....d.....
01:08:29.092212 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 2 win 5840 (DF) (ttl 64, id
15196, len 40)
0x0000 4500 0028 3b5c 4000 4006 7239 4027 1110 E..(;\@.@.r9@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b323 ...t.P.........#
0x0020 5010 16d0 365b 0000 P...6[..
01:08:29.345298 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 2:3(1) ack 1 win 17186 (DF) (ttl
114, id 49027, len 41)
0x0000 4500 0029 bf83 4000 7206 bc10 ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b323 909e c2ff @'.....P...#....
0x0020 5018 4322 97ff 0000 7200 0000 0000 P.C"....r.....
01:08:29.345379 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 3 win 5840 (DF) (ttl 64, id
15197, len 40)
0x0000 4500 0028 3b5d 4000 4006 7238 4027 1110 E..(;]@.@.r8@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b324 ...t.P.........$
0x0020 5010 16d0 365a 0000 P...6Z..
01:08:29.562648 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 3:4(1) ack 1 win 17186 (DF) (ttl
114, id 49030, len 41)
0x0000 4500 0029 bf86 4000 7206 bc0d ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b324 909e c2ff @'.....P...$....
0x0020 5018 4322 94fe 0000 7500 0000 0000 P.C"....u.....
01:08:29.562717 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 4 win 5840 (DF) (ttl 64, id
15198, len 40)
0x0000 4500 0028 3b5e 4000 4006 7237 4027 1110 E..(;^@.@.r7@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b325 ...t.P.........%
0x0020 5010 16d0 3659 0000 P...6Y..

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 23 1/16/2005

01:08:30.040547 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 4:5(1) ack 1 win 17186 (DF) (ttl
114, id 49042, len 41)
0x0000 4500 0029 bf92 4000 7206 bc01 ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b325 909e c2ff @'.....P...%....
0x0020 5018 4322 a2fd 0000 6700 0000 0000 P.C"....g.....
01:08:30.040622 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 5 win 5840 (DF) (ttl 64, id
15199, len 40)
0x0000 4500 0028 3b5f 4000 4006 7236 4027 1110 E..(;_@.@.r6@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b326 ...t.P.........&
0x0020 5010 16d0 3658 0000 P...6X..
01:08:30.739975 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 5:6(1) ack 1 win 17186 (DF) (ttl
114, id 49055, len 41)
0x0000 4500 0029 bf9f 4000 7206 bbf4 ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b326 909e c2ff @'.....P...&....
0x0020 5018 4322 a1fc 0000 6800 0000 0000 P.C"....h.....
01:08:30.740060 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 6 win 5840 (DF) (ttl 64, id
15200, len 40)
0x0000 4500 0028 3b60 4000 4006 7235 4027 1110 E..(;`@.@.r5@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b327 ...t.P.........'
0x0020 5010 16d0 3657 0000 P...6W..
01:08:31.302186 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 6:7(1) ack 1 win 17186 (DF) (ttl
114, id 49066, len 41)
0x0000 4500 0029 bfaa 4000 7206 bbe9 ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b327 909e c2ff @'.....P...'....
0x0020 5018 4322 9afb 0000 6f00 0000 0000 P.C"....o.....
01:08:31.302271 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 7 win 5840 (DF) (ttl 64, id
15201, len 40)
0x0000 4500 0028 3b61 4000 4006 7234 4027 1110 E..(;a@.@.r4@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b328 ...t.P.........(
0x0020 5010 16d0 3656 0000 P...6V..
01:08:31.637278 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 7:8(1) ack 1 win 17186 (DF) (ttl
114, id 49073, len 41)
0x0000 4500 0029 bfb1 4000 7206 bbe2 ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b328 909e c2ff @'.....P...(....
0x0020 5018 4322 a4fa 0000 6500 0000 0000 P.C"....e.....
01:08:31.637370 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 8 win 5840 (DF) (ttl 64, id
15202, len 40)
0x0000 4500 0028 3b62 4000 4006 7233 4027 1110 E..(;b@.@.r3@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b329 ...t.P.........)
0x0020 5010 16d0 3655 0000 P...6U..
01:08:32.052579 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 8:9(1) ack 1 win 17186 (DF) (ttl
114, id 49085, len 41)
0x0000 4500 0029 bfbd 4000 7206 bbd6 ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b329 909e c2ff @'.....P...)....
0x0020 5018 4322 01fa 0000 0800 0000 0000 P.C"..........
01:08:32.052662 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 9 win 5840 (DF) (ttl 64, id
15203, len 40)
0x0000 4500 0028 3b63 4000 4006 7232 4027 1110 E..(;c@.@.r2@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b32a ...t.P.........*
0x0020 5010 16d0 3654 0000 P...6T..
01:08:32.325991 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 9:10(1) ack 1 win 17186 (DF) (ttl
114, id 49092, len 41)
0x0000 4500 0029 bfc4 4000 7206 bbcf ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b32a 909e c2ff @'.....P...*....

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 24 1/16/2005

0x0020 5018 4322 9bf8 0000 6e00 0000 0000 P.C"....n.....
01:08:32.326076 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 10 win 5840 (DF) (ttl 64, id
15204, len 40)
0x0000 4500 0028 3b64 4000 4006 7231 4027 1110 E..(;d@.@.r1@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b32b ...t.P.........+
0x0020 5010 16d0 3653 0000 P...6S..
01:08:32.517543 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 10:11(1) ack 1 win 17186 (DF)
(ttl 114, id 49098, len 41)
0x0000 4500 0029 bfca 4000 7206 bbc9 ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b32b 909e c2ff @'.....P...+....
0x0020 5018 4322 a4f7 0000 6500 0000 0000 P.C"....e.....
01:08:32.517616 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 11 win 5840 (DF) (ttl 64, id
15205, len 40)
0x0000 4500 0028 3b65 4000 4006 7230 4027 1110 E..(;e@.@.r0@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b32c ...t.P.........,
0x0020 5010 16d0 3652 0000 P...6R..
01:08:32.800280 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 11:12(1) ack 1 win 17186 (DF)
(ttl 114, id 49108, len 41)
0x0000 4500 0029 bfd4 4000 7206 bbbf ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b32c 909e c2ff @'.....P...,....
0x0020 5018 4322 90f6 0000 7900 0000 0000 P.C"....y.....
01:08:32.800351 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 12 win 5840 (DF) (ttl 64, id
15206, len 40)
0x0000 4500 0028 3b66 4000 4006 722f 4027 1110 E..(;f@.@.r/@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b32d ...t.P.........-
0x0020 5010 16d0 3651 0000 P...6Q..
01:08:33.057797 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 12:13(1) ack 1 win 17186 (DF)
(ttl 114, id 49116, len 41)
0x0000 4500 0029 bfdc 4000 7206 bbb7 ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b32d 909e c2ff @'.....P...-....
0x0020 5018 4322 dbf5 0000 2e00 0000 0000 P.C"..........
01:08:33.057862 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 13 win 5840 (DF) (ttl 64, id
15207, len 40)
0x0000 4500 0028 3b67 4000 4006 722e 4027 1110 E..(;g@.@.r.@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b32e ...t.P..........
0x0020 5010 16d0 3650 0000 P...6P..
01:08:33.375588 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 13:14(1) ack 1 win 17186 (DF)
(ttl 114, id 49127, len 41)
0x0000 4500 0029 bfe7 4000 7206 bbac ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b32e 909e c2ff @'.....P........
0x0020 5018 4322 a6f4 0000 6300 0000 0000 P.C"....c.....
01:08:33.375657 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 14 win 5840 (DF) (ttl 64, id
15208, len 40)
0x0000 4500 0028 3b68 4000 4006 722d 4027 1110 E..(;h@.@.r-@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b32f ...t.P........./
0x0020 5010 16d0 364f 0000 P...6O..
01:08:33.611923 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 14:15(1) ack 1 win 17186 (DF)
(ttl 114, id 49138, len 41)
0x0000 4500 0029 bff2 4000 7206 bba1 ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b32f 909e c2ff @'.....P.../....
0x0020 5018 4322 9af3 0000 6f00 0000 0000 P.C"....o.....
01:08:33.612008 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 15 win 5840 (DF) (ttl 64, id
15209, len 40)
0x0000 4500 0028 3b69 4000 4006 722c 4027 1110 E..(;i@.@.r,@'..

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 25 1/16/2005

0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b330 ...t.P.........0
0x0020 5010 16d0 364e 0000 P...6N..
01:08:33.819904 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 15:17(2) ack 1 win 17186 (DF)
(ttl 114, id 49142, len 42)
0x0000 4500 002a bff6 4000 7206 bb9c ac8f 8f74 E..*..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b330 909e c2ff @'.....P...0....
0x0020 5018 4322 9c83 0000 6d6e 0000 0000 P.C"....mn....
01:08:33.819970 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 17 win 5840 (DF) (ttl 64, id
15210, len 40)
0x0000 4500 0028 3b6a 4000 4006 722b 4027 1110 E..(;j@.@.r+@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b332 ...t.P.........2
0x0020 5010 16d0 364c 0000 P...6L..
01:08:34.277646 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 17:18(1) ack 1 win 17186 (DF)
(ttl 114, id 49151, len 41)
0x0000 4500 0029 bfff 4000 7206 bb94 ac8f 8f74 E..)..@.r......t
0x0010 4027 1110 0dc1 0050 c09b b332 909e c2ff @'.....P...2....
0x0020 5018 4322 01f1 0000 0800 0000 0000 P.C"..........
01:08:34.277733 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 18 win 5840 (DF) (ttl 64, id
15211, len 40)
0x0000 4500 0028 3b6b 4000 4006 722a 4027 1110 E..(;k@.@.r*@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b333 ...t.P.........3
0x0020 5010 16d0 364b 0000 P...6K..
01:08:35.452825 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 18:20(2) ack 1 win 17186 (DF)
(ttl 114, id 49174, len 42)
0x0000 4500 002a c016 4000 7206 bb7c ac8f 8f74 E..*..@.r..|...t
0x0010 4027 1110 0dc1 0050 c09b b333 909e c2ff @'.....P...3....
0x0020 5018 4322 fce4 0000 0d0a 0000 0000 P.C"..........
01:08:35.452910 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 20 win 5840 (DF) (ttl 64, id
15212, len 40)
0x0000 4500 0028 3b6c 4000 4006 7229 4027 1110 E..(;l@.@.r)@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b335 ...t.P.........5
0x0020 5010 16d0 3649 0000 P...6I..
01:08:35.454122 W.X.Y.16.http > 172.143.143.116.3521: P [tcp sum ok] 1:345(344) ack 20 win 5840
(DF) (ttl 64, id 15213, len 384)
0x0000 4500 0180 3b6d 4000 4006 70d0 4027 1110 E...;m@.@.p.@'..
0x0010 ac8f 8f74 0050 0dc1 909e c2ff c09b b335 ...t.P.........5
0x0020 5018 16d0 645a 0000 3c21 444f 4354 5950 P...dZ..<!DOCTYP
0x0030 4520 4854 4d4c 2050 5542 4c49 4320 222d E.HTML.PUBLIC."-
0x0040 2f2f 4945 5446 2f2f 4454 4420 4854 4d4c //IETF//DTD.HTML
0x0050 2032 2e30 2f2f 454e 223e 0a3c 4854 4d4c .2.0//EN">.<HTML
0x0060 3e3c 4845 4144 3e0a 3c54 4954 4c45 3e35 ><HEAD>.<TITLE>5
0x0070 3031 204d 6574 686f 6420 4e6f 7420 496d 01.Method.Not.Im
0x0080 706c 656d 656e 7465 643c 2f54 4954 4c45 plemented</TITLE
0x0090 3e0a 3c2f 4845 4144 3e3c 424f 4459 3e0a >.</HEAD><BODY>.
0x00a0 3c48 313e 4d65 7468 6f64 204e 6f74 2049 <H1>Method.Not.I
0x00b0 6d70 6c65 6d65 6e74 6564 3c2f 4831 3e0a mplemented</H1>.
0x00c0 6472 7567 686f 6508 6e65 792e 636f 6d6e drughoe.ney.comn
0x00d0 0820 746f 202f 696e 6465 782e 6874 6d20 ..to./index.htm.
0x00e0 6e6f 7420 7375 7070 6f72 7465 642e 3c50 not.supported.<P
0x00f0 3e0a 496e 7661 6c69 6420 6d65 7468 6f64 >.Invalid.method
0x0100 2069 6e20 7265 7175 6573 7420 6472 7567 .in.request.drug
0x0110 686f 6508 6e65 792e 636f 6d6e 083c 503e hoe.ney.comn.<P>
0x0120 0a3c 4852 3e0a 3c41 4444 5245 5353 3e41 .<HR>.<ADDRESS>A
0x0130 7061 6368 652f 312e 332e 3232 2053 6572 pache/1.3.22.Ser

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 26 1/16/2005

0x0140 7665 7220 6174 2073 6f75 7468 7465 7861 ver.at.southtexa
0x0150 7373 6f6c 7574 696f 6e73 2e63 6f6d 2050 ssolutions.com.P

Decoding the actual request reveals the following:

Source IP 172.143.143.116
Source Port 3521
Destination IP W.X.Y.16
Destination Port 80
Request drughoe.ney.comn
Response 501 Method Not Implemented

The same attempt again was made again from several different source ports to port 80.
The command used to find these requests is

[root@server1 dumpfiles]# tcpdump -r 172.143.143.116.dmp -n '(dst port 80 and tcp[13]
& 0x03 =0) and (len <=61)' |wc -l
 286

Decoding each request will reveal many poorly formed Unix style commands. These
were all from spliced sessions.

Request and Port Combinations
Port Request
1161 Log
1162 Files
1163 Rename
1164 Httpd.conf
1165 Srm.xc..conf
1166 Httpd.conf
1167 Access.conf
1168 .htaccess
1169 Httpd
1170 Cog.nf
1171 /etc/inte..etd.conf
1179 Help
1492 <:head:>
1357 443
3661 W.X.Y.16

Detect #1 Answer section

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 27 1/16/2005

Source of the attack: Network #2

Detect was generated by:
Snort IDS. With the default Snort rule set this would have looked like a noisy port scan.
With the custom rules I created it merited more inspection. Additional logs were provided
by tcpdump running in the background logging everything.

Probability the source address was spoofed:
Unlikely, the attack used TCP which requires a three way handshake. The web requests
require a completed three way handshake. A lookup of the address shows this as an AOL
address

Name Resolution: AC8F8F74.ipt.aol.com.
Trace route distance: 16 hops. The TTL of 114 would be close to a correct windows TTL
of 128.
By doing passive OS fingerprinting we realize this is a Windows 2000 host. This finding
is based on the facts.

• The base TTL is 128
• The initial window size is 16284
• The IP length of the SYN packet is 48
• TCP Options are MSS, Sack OK and 2 NO-OPS.

This matches the findings of Toby Miller[6] in his paper “Passive OS Fingerprinting:
Details and Techniques” http://www.incidents.org/papers/OSfingerprinting.php.

Description of the attack:
This was a strange attack. First the attacker did a very noisy sequential port scan of ports
ranging from port 1 to port 9677. Every IDS will alert on this. The attacker then tried to
sneak under the radar of an IDS by using session splicing techniques in web requests. The
web requests were mostly malformed, and some were misspelled. It makes me believe
the attacker was very amateurish but using a possibly advanced tool for the web requests.
Of particular interest is the fact that the attack appears to have been run from a Windows
host. Most of the tools that perform network evasion tricks are usually Unix based.
Whisker which is available at http://www.wiretrip.net/rfp/p/doc.asp/i6/d21.htm has
similar abilities and can run on Windows. However, the request are poorly formed and
not consistent with default Whisker requests. Whisker behavior can be changed, but if the
attacker was skilled enough to modify Whisker I would think they would generate more
legitimate and useful requests.

Attack Mechanism:
This reconnaissance portion of this attack was successful. Some of the malformed web
requests suggest that the attacker was targeting a Unix OS. One of the session spliced
web requests is for drughoe.ney.comn. At the targeted W.X.Y.16 address there is a web
sight called drughoney.com. Some of the other web requests seem to target typical Linux
files such as /etc/inetd.conf and several well known Apache configuration files. The

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 28 1/16/2005

attack was unsuccessful as the web server consistently returned “501 Method Not
Implemented” error pages. I feel the attack was probably a good tool in novice hands.

Correlations:
I could not find any information on similar attacks.

Evidence of Active Targeting:
There is evidence of active targeting due to the web requests bearing a resemblance to a
sight that resides at that IP.

Severity: 1

Criticality - 5 This server is a DNS server, email server and Web server for 81
 sites.

Lethality – 1 This attack was very unlikely to succeed against this system.

System Countermeasures – 5 This system is modern system running current
software, tcp wrappers and ssh.

Network Countermeasures – 0 There are no network countermeasures. This server
resides in a data center with direct connection to the internet.

Severity = (Criticality + Lethality) –
 (System Countermeasures + Network Countermeasures)

: (5 + 1) – (5 + 0) = 1

Defensive Recommendations: No defensive recommendations are needed for this
specific attack. I do feel however the methods used in this attack do present a significant
threat, especially if advanced tools are in novice hands on Windows based platforms.

Multiple Choice Test Question:
The following trace could possibly be an example of ?

01:08:29.345379 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 3 win 5840 (DF) (ttl 64, id
15197, len 40)
01:08:29.562648 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 3:4(1) ack 1 win 17186 (DF) (ttl
114, id 49030, len 41)
01:08:29.562717 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 4 win 5840 (DF) (ttl 64, id
15198, len 40)
01:08:30.040547 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 4:5(1) ack 1 win 17186 (DF) (ttl
114, id 49042, len 41)
01:08:30.040622 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 5 win 5840 (DF) (ttl 64, id
15199, len 40)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 29 1/16/2005

01:08:30.739975 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 5:6(1) ack 1 win 17186 (DF) (ttl
114, id 49055, len 41)
01:08:30.740060 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 6 win 5840 (DF) (ttl 64, id
15200, len 40)
01:08:31.302186 172.143.143.116.3521 > W.X.Y.16.http: P [tcp sum ok] 6:7(1) ack 1 win 17186 (DF) (ttl
114, id 49066, len 41)
01:08:31.302271 W.X.Y.16.http > 172.143.143.116.3521: . [tcp sum ok] ack 7 win 5840 (DF) (ttl 64, id
15201, len 40)

A., A normal web conversation between two Unix hosts.
B., An IIS backdoor scan attempt
C., An attempt at IDS evasion
D., Malformed fragmented packets

Answer – C is the correct answer. These small request passing a byte at a time are an
attempt to take advantage of session reconstruction weaknesses of several ID systems.

 Detect # 2: SQL Insertion attack on an IIS web server

 This detect is a SQL insertion attack. This detect was detected by a Cisco Secure
IDS sensor software version 2.2.18. Since this attack was sourced from a corporate
network the destination of this attack will be scrubbed from the logs. The signature used
to detect this was a custom written signature.
Signature SQL insertion
RecordOfStringName 8010 80 1 1
".*=.*[Ss][Ee][Ll][Ee][Cc][Tt].*[Ff][Rr][Oo][Mm]"
This signature is a Regex enabled signature designed to look for any HTTP traffic to port
80 with content that includes select and from statements. Select and from statements are
normally associated with SQL queries, but they also occur in normal traffic, especially in
database driven web sites. This signature admittedly is not perfect which will be
discussed later. The following logs are associated with this signature.

Cisco IDS logs
4,1403640,2002/03/08,17:51:01,2002/03/08,09:51:01,10008,X,X,OUT,IN,4,8000,8010,
TCP/IP,198.83.130.39,X.X.X.X,2223,80,0.0.0.0,.*=.*[Ss][Ee][Ll][Ee][Cc][Tt].*[Ff][Rr]
[Oo][Mm],67652F6769662C20696D6167652F782D786269746D61702C20696D616765
2F6A7065672C20696D6167652F706A7065672C202A2F2A0D0A4163636570742D4C
616E67756167653A20656E2D75730D0A526566657265723A20687474703A2F2F7777
772E67756573732E636F6D2F7369676E696E2F64656661756C742E6173700D0A5072
61676D613A206E6F2D63616368650D0A436F6F6B69653A2041535053455353494F4E
494451474751474F53513D4B47464541424F424E4B4A4347414A44434E424D4D4B4
D460D0A0D0A737465703D7369676E496E26757365726E616D653D2532372B756E69
6F6E2B616C6C2B73656C6563742B6F746865722B66726F6DZZ
4,1403641,2002/03/08,17:51:01,2002/03/08,09:51:01,10008,X,X,OUT,IN,4,8000,8010,
TCP/IP,198.83.130.39,X.X.X.X,2223,80,0.0.0.0,.*=.*[Ss][Ee][Ll][Ee][Cc][Tt].*[Ff][Rr]
[Oo][Mm],20656E2D75730D0A526566657265723A20687474703A2F2F7777772E677
56573732E636F6D2F7369676E696E2F64656661756C742E6173700D0A507261676D
613A206E6F2D63616368650D0A436F6F6B69653A2041535053455353494F4E4944

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 30 1/16/2005

51474751474F53513D4B47464541424F424E4B4A4347414A44434E424D4D4B4D46
0D0A0D0A737465703D7369676E496E26757365726E616D653D2532372B756E696F
6E2B616C6C2B73656C6563742B6F746865722B66726F6D2B6F746865727461626C
652B77686572652B2532372532372533442532372670617373776F72643D2532372B7
56E696F6E2B616C6C2B73656C6563742B6F746865722B66726F6DZZ
3,1403642,2002/03/08,17:51:05,2002/03/08,09:51:05,10003,X,X,10008,1,2003,EXEC ShunHost
198.83.130.39 1440
3,1403643,2002/03/08,17:51:05,2002/03/08,09:51:05,10003,X,X,10008,1,2003,EXEC ShunHost
198.83.130.39 1440

The Cisco IDS event logs are in a comma format of twenty one fields. The following is a
description of the fields with the associated value from the first log.

Cisco Log Description

Field Description Value
1 Record Type 4
2 Record ID 1403640
3 GMT Datestamp 2002/03/08
4 GMT Timestamp 17:51:01
5 Local Datestamp 2002/03/08
6 Local Timestamp 9:51:01
7 Application ID 10008
8 Host ID X
9 Organization ID X
10 Source Direction OUT
11 Destination Direction IN
12 Alarm Level 4
13 Sig ID 8000
14 SubSig ID 8010
15 Protocol TCP/IP
16 Source IP 198.83.130.39
17 Destination IP X.X.X.X
18 Source Port 2223
19 Destination Port 80
20 Router IP 0.0.0.0
21 Data

To decode the hex payload we run a perl script to convert the hex to ascii.

Hexdecode Output
4,1403640,2002/03/08,17:51:01,2002/03/08,09:51:01,10008,X,X,OUT,IN,4,8000,8010,
TCP/IP,198.83.130.39,X.X.X.X,2223,80,0.0.0.0,.*=.*[Ss][Ee][Ll][Ee][Cc][Tt].*[Ff]
[Rr][Oo][Mm],
ge/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Accept-Language: en-us

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 31 1/16/2005

Referer: http://www.X.com/signin/X.asp
Pragma: no-cache
Cookie:
step=signIn&username=%27+union+all+select+other+from3

4,1403641,2002/03/08,17:51:01,2002/03/08,09:51:01,10008,X,X,OUT,IN,4,8000,8010,
TCP/IP,198.83.130.39,X.X.X.X,2223,80,0.0.0.0,.*=.*[Ss][Ee][Ll][Ee][Cc][Tt].*[Ff][Rr]
[Oo][Mm],
 en-us
Referer: http://www.X.com/signin/X.asp
Pragma: no-cache
Cookie:
step=signIn&username=%27+union+all+select+other+from+othertable+where+%27
%27%3D%27&password=%27+union+all+select+other+from3
ge/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Accept-Language: en-us
Referer: http://www.X.com/signin/X.asp
Pragma: no-cache
Cookie:

The attacker formatted two requests with the intent to use SQL injection techniques with
malicious intent.

Source of the attack: Network #3

Attack was generated by:
Cisco Secure IDS running version 2.2.18 on a corporate network. This detect was
captured through the use of a custom string match signature.

Probability the source address was spoofed:
It is very unlikely that this attack was spoofed. The attack was using an established TCP
session that requires a three way handshake. Running nslookup on the IP returns no
information, but a whois query reveals that the owner of the address space is New York
based ANS communications.

[geektools.com]
Query: 198.83.130.39
Registry: whois.arin.net
Results:
ANS Communications, Inc (NETBLK-BLK198-16-ANS)
 100 Clearbrook Road
 Elmsford, NY 10523
 US

 Netname: BLK198-16-ANS
 Netblock: 198.83.0.0 - 198.83.255.255
 Maintainer: ANS

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 32 1/16/2005

 Coordinator:
 ANS CO+RE Systems, Inc. (ANS-NOC-ARIN) noc@ANS.NET
 1-800-456-6300

 Domain System inverse mapping provided by:

 NS.ANS.NET 199.171.54.35
 NIS.ANS.NET 147.225.1.2

 Record last updated on 25-Sep-2001.
 Database last updated on 4-Apr-2002 19:59:13 EDT.

Description of the attack:
This attack is becoming more commonplace and presents a serious threat to corporate
database driven web sites. These attacks require an interactive session by the attacker so
there is little chance of this attack being used as a worm. The problems this attack
presents are many. The potential for monetary loss or the disclosure of sensitive
information is great. These attacks can also be very difficult to defend against because
they are not as much an application problem as they are a result of poor bounds checking
of input data in web applications. Most sites that are vulnerable to this and have the
potential for significant loss often use SSL for these transactions. This presents problems
in detection since the IDS can not understand the encrypted data. In this style of attack it
is possible for an attacker to acquire sensitive customer information such as credit card
numbers, bank account numbers, user accounts, user passwords, change order entries and
status and get sensitive corporate information or database schemas. In summary, the
attacker can get any information that is in the database. A full description of how this
attack works is available in this paper by Chris Anly
http://www.nextgenss.com/papers/advanced_sql_injection.pdf and in this white paper by
Kevin Spett http://cgisecurity.net/lib/SQLInjectionWhitePaper.pdf

Attack Mechanism:
This is a subtle interactive attack. Automated tools are not necessarily effective since
there are many variables and much interpretation that is needed to successfully execute
The attack.

Correlations:
No correlation of target system logs or firewall logs is possible in this attack due to the
environment of this device.

Evidence of Active Targeting:
This is active targeting. The attacker must first browse the web sight and in this example
appears to be attempting to take advantage a user sign-in or sign-up form.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 33 1/16/2005

Severity: 5
 Criticality – 5 This is a E-commerce enabled web site with database access.

Lethality – 5 This attack could potentially be very damaging to a corporation
 and corporate image.

System Countermeasures –3 This system was a well patched modern system but
could have potential application programming issues.

Network Countermeasures – 2 The firewall allowed the traffic but the IDS
shunned the attacker thus removing the potential threat. There is no evidence that
the attack was successful.

Severity = (Criticality + Lethality) –
 (System Countermeasures + Network Countermeasures)

(5 +5) – (3 –2) = 5

Defensive Recommendations:
To properly defend against this attack the web server should have current security
patches in place for the web server and all associated scripting languages the site uses. In
addition to it is necessary to do proper checking of user inputted data to strip any possible
characters that can allow for this attack to be successful. Web site source code audits and
application vulnerability testing should be done. In H.D. Moore’s presentation on SQL
insertion he estimated that 50 % of all database driven sites for medium size companies
are vulnerable. For smaller company’s 75% are vulnerable. The document is located at
http://www.digitaloffense.net/confs/bootcamp02/jpeg/sql/Slide01.html
A IDS will have a difficult time defending against this sort of attack. Some of the
problems with detecting these attacks from an IDS viewpoint are encryption and the
difficulty in writing signatures that will not false alarm often. To write effective
signatures it is necessary for the IDS to have robust regular expression pattern matching
capabilities. It is also necessary to have multiple signatures to detect this. As alluded to
earlier the signature that detected this was less than perfect.

Original SQL insertion signature
RecordOfStringName 8010 80 1 1
".*=.*[Ss][Ee][Ll][Ee][Cc][Tt].*[Ff][Rr][Oo][Mm]"

Other signatures can be developed which may false alarm less. Suggested replacement
signatures are listed below.

SQL insertion signatures
RecordOfStringName 8010 80 1 1
"[Gg][Ee][Tt].*=%27.*[Uu][Nn][Ii][Oo][Nn]"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 34 1/16/2005

RecordOfStringName 8011 80 1 1
"[Pp][Oo][Ss][Tt].*=%27.*[Uu][Nn][Ii][Oo][Nn]"

RecordOfStringName 8012 80 1 1 "[Gg][Ee][Tt].*=%27=1"

RecordOfStringName 8013 80 1 1 "[Gg][Ee][Tt].*=%27%3d1"

RecordOfStringName 8014 80 1 1 "[Pp][Oo][Ss][Tt].*=%27=1"

RecordOfStringName 8015 80 1 1 "[Pp][Oo][Ss][Tt].*=%27%3d1"

These first two signature varies from our original in that %27 (which is a hex encoded ‘)
has been added and union replaces select and from qualifiers as well as making the
request dependent on a get or post method. The advantages to this is that most of the
insertion techniques use a hex encoded ‘ and union statement to add on to the normal
SQL query. The last four signatures look for get and post methods involving a ‘=1 (which
is a general return true statement). These signatures require the ‘ be hex encoded and the
= could either be hex encoded as 3D or just used as an = sign.

Multiple Choice Test Question:

This is most likely an example of

GET /accounts/login.php?fname=john&lname=%27=1&password=%27%3D1
HTTP/1.0\r\n\r\n

A., A normal user login to a web site.
B., An attempt to use SQL insertion techniques to extract information from a database.
C., A user getting a normal web page by the above name.
D., Both A and C could be correct.

Answer – B This is most likely an attempt to use SQL injection techniques to get extract
information from a database.

Detect #3: Syn-Fin FTP scan

 This detect was a SYN-FIN scan directed towards a lab which included a Cisco
Secure IDS, Windows 2000 Web Server protected by Entercept, and a Snort IDS. The
attacker was scanning for ftp.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 35 1/16/2005

Cisco Secure IDS Logs
4,1012858,2002/04/17,00:32:55,2002/04/16,19:32:55,10008,100,101,OUT,IN,1,3000
,21,TCP/IP,143.248.62.88,W.X.Y.122,21,21,0.0.0.0,1638201219
4,1012859,2002/04/17,00:32:55,2002/04/16,19:32:55,10008,100,101,OUT,IN,3,3041
,0,TCP/IP,143.248.62.88,W.X.Y.122,21,21,0.0.0.0,
4,1012860,2002/04/17,00:32:55,2002/04/16,19:32:55,10008,100,101,OUT,IN,1,3000,
21,TCP/IP,143.248.62.88,W.X.Y.123,21,21,0.0.0.0,1638201219
4,1012861,2002/04/17,00:32:55,2002/04/16,19:32:55,10008,100,101,OUT,IN,1,3000,
21,TCP/IP,143.248.62.88,W.X.Y.124,21,21,0.0.0.0,1638201219

A full description of the Cisco log format is available in Appendix B. The source IP
generated four distinct log entries on the Cisco device consisting of two unique
signatures. The signatures triggered were 3000 which is a TCP connection and a 3041
which is a SYN-FIN scan. The 3000 signature triggered to 3 distinct IP addresses
W.X.Y.122-124 while signature 3041 only triggered once.

Snort Alert Logs
04/16-19:32:59.950000 [**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection
[**] {TCP} 143.248.62.88:21 -> W.X.Y.122:21
04/16-19:32:59.957563 [**] [100:1:1] spp_portscan: PORTSCAN DETECTED to port 21 from
143.248.62.88 (STEALTH) [**]
04/16-19:32:59.970000 [**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection
[**] {TCP} 143.248.62.88:21 -> W.X.Y.123:21
04/16-19:32:59.990000 [**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection
[**] {TCP} 143.248.62.88:21 -> W.X.Y.124:21
04/16-19:34:07.990598 [**] [100:2:1] spp_portscan: portscan status from 143.248.62.88: 3 connections
across 3 hosts: TCP(3), UDP(0) STEALTH [**]
04/16-19:37:08.074214 [**] [100:3:1] spp_portscan: End of portscan from 143.248.62.88: TOTAL
time(0s) hosts(3) TCP(3) UDP(0) STEALTH [**]

The Snort logs show three SYN-FIN alerts, which is contrary to the Cisco Secure IDS
logs only having one alert for SYN-FIN connection. The Snort alerts are detected by the
Snort portscan pre-processor and are not unique signatures. The snort host logs
everything using tcpdump with the command tcpdump –w /dumpfiles/tcpdump-
$date.dmp &. The tcpdump logs are broken down by host. Packets sent by the attacker
are highlighted in red.

Tcpdump Logs: host W.X.Y.122
19:32:59.950000 143.248.62.88.ftp > W.X.Y.122.ftp: SF [tcp sum ok] 1638201219:1638201219(0) win
1028 (ttl 18, id 39426, len 40)
19:32:59.950000 W.X.Y.122.ftp > 143.248.62.88.ftp: R [tcp sum ok] 0:0(0) ack 1638201221 win 0 (DF)
(ttl 255, id 0, len 40)

Tcpdump Logs: host W.X.Y.123
19:32:59.970000 143.248.62.88.ftp > W.X.Y.123.ftp: SF [tcp sum ok] 1638201219:1638201219(0) win
1028 (ttl 18, id 39426, len 40)
19:32:59.970000 W.X.Y.123.ftp > 143.248.62.88.ftp: S [tcp sum ok] 2605978220:2605978220(0) ack
1638201220 win 24656 <mss 1460> (DF) (ttl 60, id 63603, len 44)
19:33:03.330000 W.X.Y.123.ftp > 143.248.62.88.ftp: S [tcp sum ok] 2605978220:2605978220(0) ack
1638201220 win 24656 <mss 1460> (DF) (ttl 60, id 63604, len 44)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 36 1/16/2005

19:33:10.080000 W.X.Y.123.ftp > 143.248.62.88.ftp: S [tcp sum ok] 2605978220:2605978220(0) ack
1638201220 win 24656 <mss 1460> (DF) (ttl 60, id 63605, len 44)
19:33:23.580000 W.X.Y.123.ftp > 143.248.62.88.ftp: S [tcp sum ok] 2605978220:2605978220(0) ack
1638201220 win 24656 <mss 1460> (DF) (ttl 60, id 63606, len 44)
19:33:50.580000 W.X.Y.123.ftp > 143.248.62.88.ftp: S [tcp sum ok] 2605978220:2605978220(0) ack
1638201220 win 24656 <mss 1460> (DF) (ttl 60, id 63607, len 44)
19:34:44.570000 W.X.Y.123.ftp > 143.248.62.88.ftp: S [tcp sum ok] 2605978220:2605978220(0) ack
1638201220 win 24656 <mss 1460> (DF) (ttl 60, id 63608, len 44)
19:35:44.570000 W.X.Y.123.ftp > 143.248.62.88.ftp: S [tcp sum ok] 2605978220:2605978220(0) ack
1638201220 win 24656 <mss 1460> (DF) (ttl 60, id 63609, len 44)
19:36:44.560000 W.X.Y.123.ftp > 143.248.62.88.ftp: R [tcp sum ok] 1:1(0) ack 1 win 24656 (DF) (ttl 60,
id 63610, len 40)

Tcpdump Logs: host W.X.Y.124
9:32:59.990000 143.248.62.88.ftp > W.X.Y.124.ftp: SF [tcp sum ok] 1638201219:1638201219(0) win
1028 (ttl 18, id 39426, len 40)
19:32:59.990000 W.X.Y.124.ftp > 143.248.62.88.ftp: S [tcp sum ok] 2349397918:2349397918(0) ack
1638201220 win 16616 <mss 1460> (DF) (ttl 128, id 48310, len 44)
19:33:02.920000 W.X.Y.124.ftp > 143.248.62.88.ftp: S [tcp sum ok] 2349397918:2349397918(0) ack
1638201220 win 16616 <mss 1460> (DF) (ttl 128, id 48311, len 44)
19:33:08.930000 W.X.Y.124.ftp > 143.248.62.88.ftp: S [tcp sum ok] 2349397918:2349397918(0) ack
1638201220 win 16616 <mss 1460> (DF) (ttl 128, id 48312, len 44)

The attacker sent a SYN-FIN packet to host W.X.Y.122 and host 122 responds with a
reset. The attacker send a SYN-FIN packet to host W.X.Y.123 and host 123 which is a
listening Solaris 2.8 host using tcp-wrappers gladly responds with 7 ACK packets before
finally sending a reset. The ACK packets each have a unique incrementing IP ID, which
precludes them from being re-transmissions. Host W.X.Y.124, which is a Windows 2000
server responds the same way.

Source of the attack: Network 4

Attack was generated by:
Snort 1.8.6 and Cisco Secure IDS 3.1

Probability the source address was spoofed:
Performing a trace route to the source of this attack reveals the host is 18 hops away. This
is not consistent with the TTL of the attacker, which is 18. These are forged packets, so it
is conceivable that the TTL is forged as well.

Description of the attack:
This attack is really very common. The attacker uses the same source and destination
ports. This is supposed to be an attempt to bypass a packet filtering device by using a
common port such as FTP, Web or DNS. In trying to bypass a filtering device the
attacker would most likely be more successful source porting from port 80. The attacker
also sets the SYN and FIN flags in the packet. This combination may be used to bypass a
firewall that incorrectly checks for SYN packets by only seeing if the particular flag is set

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 37 1/16/2005

by itself. This subtle relationship can be best described by creating tcpdump filters for the
two methods.

• tcp[13]=2
• tcp[13] &0x02 !=0

The first filter only catches packets in which the SYN bit is the only bit set, so in essence
a packet with SYN and FIN would not meet those requirements. The second filter will
detect any packet that the SYN flag is set regardless of other flags. These are obviously
crafted packets.

Crafted Packets:
19:32:59.950000 143.248.62.88.ftp > W.X.Y.122.ftp: SF [tcp sum ok] 1638201219:1638201219(0) win
1028 (ttl 18, id 39426, len 40)
19:32:59.970000 143.248.62.88.ftp > W.X.Y.123.ftp: SF [tcp sum ok] 1638201219:1638201219(0) win
1028 (ttl 18, id 39426, len 40)
9:32:59.990000 143.248.62.88.ftp > W.X.Y.124.ftp: SF [tcp sum ok] 1638201219:1638201219(0) win
1028 (ttl 18, id 39426, len 40)

The TTL is very low, the sequence number is the same for all packets, the SYN and FIN
flags are set, the window size is small at 1028 and the IP ID remains the same for all
packets at 39426.

Attack Mechanism:
This is an automated attack, most likely someone of script kiddie level that is either using
a tool written by someone else or fairly new to writing tools themselves. A non kiddie
level attacker with thorough knowledge of networking would never be so loud. This can
trigger several IDS alarms easily and is not very stealthy where IDS is concerned.

Correlations:
I submitted a Dshield query but have not received a response.

Evidence of Active Targeting:
No real evidence of active targeting. This is most likely an automated and unattended
scan.

Severity: 0

Criticality –3 Two of these are IDS sensors. They are in a lab and not critical
except for occasional testing.

Lethality – 3 It was successful reconnaissance, nothing more.

System Countermeasures –5 These are well protected and up to date hosts. The
Windows 2000 server was running Entercept in protect mode.

Network Countermeasures – 1 There were no network countermeasure to this
activity.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 38 1/16/2005

Severity = (Criticality + Lethality) –
 (System Countermeasures + Network Countermeasures)

(3 + 3) – (5 +1) = 0

Defensive Recommendations:
This attack is really pretty simple to protect against. Most modern firewalls will not allow
this activity through. Likewise, any recent IDS can detect these attacks with ease. An IDS
could shun or reset the attacker since there is no chance of a false alarm on these attacks.

Multiple Choice Test Question:
Question: Given the packet below, which is obviously forged, use passive fingerprinting
techniques to determine which operating system most likely sent this packet ?

9:32:59.990000 143.248.62.88.ftp > W.X.Y.124.ftp: SF [tcp sum ok]
1638201219:1638201219(0) win 1028 (ttl 18, id 39426, len 40)

A., Windows
B., Linux
C., Solaris
D., None of the above

Answer – D. No reasonable assumption can be made of this packet. It does not fit in with
any modern operating system fingerprint. The only assumption that can be made is that it
was most likely generated from a platform that has many tools for crafting IP packets.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 39 1/16/2005

Assignment 3: Analyze This

Analyze This!

Overview:

Var-log consulting analyzed six days worth of IDS log data, using the alerts,
scans and out of spec logs from March 18th thru March 23rd for GIAC University.
Following is a thorough analysis of this data. For the purpose of analysis all MY.NET
addresses were converted to the 10.10 Network. A full description of the methodology
used in distilling the data is listed in Appendix D.

Executive Summary:

There is significant evidence of active targeting directed towards GIAC
University. Furthermore, from the log data provided there is evidence of compromised
internal hosts and malicious activity being initiated from inside GIAC University. .
Contained in this analysis are summary tables, threat graphs, link graphs, host, and event
analysis. Events were chosen for analysis based on several key factors. These factors
include

• Events with a high probability of being an external threat
• Scans that varied from a baseline, showing significant change from day to

day
• Possible hosts that are compromised

A general recommendations section is contained at the end, which gives detailed
recommendations that can help improve the overall security posture of GIAC University
without adversely impacting the traditionally open University security policy.

Table 1: Event Totals

Event Type Amount
Alerts 1,554,265
Scans 3,312,172
Out Of Spec 673

Alert Summary: Detects By Occurrence
The following tables contain a summary of the 20 most common events. Port Scans and
Watch List alerts have been excluded. Port Scans are handled in the scans section.

Table 2: Alert Summary (Detects by Occurrence)

Alert Type Total
Connect to 515 from inside 164,090

spp_http_decode: IIS Unicode attack
detected

90307

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 40 1/16/2005

IDS552/web-iis_IIS ISAPI Overflow ida
INTERNAL nosize

74277

SMB Name Wildcard 73702
SNMP public access 39759
ICMP Echo Request L3retriever Ping 36585
MISC Large UDP Packet 26880
INFO MSN IM Chat data 16792
INFO Inbound GNUTella Connect request 12464
High port 65535 udp - possible Red Worm
– traffic

11008

spp_http_decode: CGI Null Byte attack
detected

10557

ICMP Echo Request Nmap or HPING2 6473
WEB-MISC Attempt to execute cmd 3702
FTP DoS ftpd globbing 3038
ICMP Fragment Reassembly Time
Exceeded

2382

INFO Outbound GNUTella Connect
request

1961

Possible trojan server activity 1911
SCAN Proxy attempt 1605
ICMP Router Selection 1498
WEB-IIS view source via translate header 992

The following two tables list the most common source and destination IP’s and the alert
most often associated with the particular IP and direction. IP’s colored red are listed in
both charts. An asterisk next to an IP denotes that there is enough suspicious traffic to
warrant analysis of the traffic to the host. These IP’s were chosen because log analysis of
the traffic determined these IP’s were either common targets or common sources of
events that may be high threat.

Table 3: Alert Source Summary (Alert Top Talkers Source)

Source IP Alerts Most Common Alert
10.10.88.190* 74277 IDS552/web-iis_IIS ISAPI Overflow ida
10.10.70.177 20644 SNMP public access
10.10.11.6 16685 spp_portscan
10.10.11.7 13868 SMB Name Wildcard
10.10.153.119 11722 connect to 515 from inside
10.10.153.118 9524 connect to 515 from inside
10.10.153.124 8389 connect to 515 from inside
10.10.153.106* 7839 IIS Unicode attack detected
10.10.153.171 7645 connect to 515 from inside
10.10.153.211* 7600 IIS Unicode attack detected

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 41 1/16/2005

Table 4: Alert Destination Summary (Alert Top Talkers Destination)

Destination IP Alerts Most Common Alert
10.10.150.198 163864 connect to 515 from inside
10.10.11.6 36147 ICMP Echo Request L3retriever Ping
10.10.11.7 30147 ICMP Echo Request L3retriever Ping
211.115.213.202 10709 IIS Unicode attack detected
10.10.11.5 10606 ICMP Echo Request L3retriever Ping
209.10.239.135 9449 CGI Null Byte attack
10.10.153.153* 7031 MISC Large UDP Packet
10.10.153.197* 6561 MISC Large UDP Packet
10.10.150.195 6152 SNMP public access
10.10.153.208 5854 INFO Inbound GNUTella Connect request

The following two tables list the most common source and destination IP’s from external
networks and the alert most often associated with the particular IP. IP’s colored red are
listed in both charts. An asterisk next to an IP denotes that there is enough suspicious
traffic to warrant analysis of the traffic to the host. Several hosts are analyzed in the host
analysis section.

Table 5: Alert Source Summary External (External Alert Top Talkers Source)

Source IP Alerts Address Space Owner Most Common Alert
212.179.35.118 5148 ISDN Net Ltd (ISREAL) Watchlist 000220 IL-

ISDNNET-990517
208.191.18.173* 4934 American Association Of

Petroleum
IIS Unicode attack detected

63.240.15.199 4429 AT&T CERFnet MISC Large UDP Packet
63.240.15.204 3776 AT&T CERFnet High port 65535 udp -

possible Red Worm - traffic
63.240.15.207 3044 AT&T CERFnet MISC Large UDP Packet
63.240.15.205 2714 AT&T CERFnet MISC Large UDP Packet
202.98.15.138 2386 CC-MULTI-MEDIA-NET

(CHINA)
MISC Large UDP Packet

212.179.27.176 1404 ISDN Net Ltd (ISREAL) Watchlist 000220 IL-
ISDNNET-990517

80.13.214.233* 1312 Wanadoo Interactive
(FRANCE)

IIS Unicode attack detected

61.132.208.63 1253 CHINANET-AH (CHINA) INFO - Possible Squid Scan

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 42 1/16/2005

Table 6: Alert Destination Summary External (External Alert Top Talkers
Destination)
Destination IP Alerts Address Space Owner Most Common Alert
211.115.213.202 10709 GCG-IDC (Korea) IIS Unicode attack
209.10.239.135 9449 Globix Corporation CGI Null Byte attack
211.32.117.26 2889 DACOM (Korea) IIS Unicode attack
211.115.213.207 2517 GCG-IDC (Korea) IIS Unicode attack
64.12.184.141 2128 AOL IIS Unicode attack
211.233.85.9 1577 KIDC (Korea) IIS Unicode attack
211.233.29.215 1523 KIDC (Korea) IIS Unicode attack
211.233.85.62 1514 KIDC (Korea) IIS Unicode attack
224.0.0.2 1498 MCAST ICMP Router Selection
211.233.29.207 1444 KIDC (Korea) IIS Unicode attack

Threat Source Summary:
The following graph depicts the alerts and their associated external threat. This was
obtained by taking a total count for each alert, then counting the number of unique
addresses that triggered each alert. Once a total count of the unique addresses responsible
for each alert was obtained, the addresses were broken down by the source and
destination networks. Alerts of a source network that was not 10.10 (MY.NET) or a
destination that was 10.10 (MY.NET) were considered to be external threats. The
following table will help explain this graph.

Table 7: Graph Explanation

Alert Destination Alert Source Threat Level
Destination inside Source outside Very High (purple & blue)
Destination inside Source inside Medium (purple)
Destination outside Source inside Low
Destination outside Source outside Not shown (Should not be seen)

Graph 1: Threat Source Summary (top 20 alerts)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 43 1/16/2005

Alerts:External Threat

0

50

100

150

200

250

Percent Src outside Percent Dst inside

Percent Dst inside 3.68 0 100 100 100 100 48.6 100 100 4.76 99.8 100 100 18.3 50 100 0 100 100

Percent Src outside 11.3 0 0.44 0 0 97.2 50 99.9 43 0 0 100 100 0 46.7 100 0 100 97.1

IIS
Uni
cod

IIS
ISA
PI

SM
B

Na

SN
MP
pub

ICM
P

L3r

MIS
C

Lar

INF
O

MS

INF
O

Inb

Hig
h

pos

CGI
Null
Byt

ICM
P

Ech

WE
B-

MIS

FTP
Do
S

ICM
P

Fra

Pos
sibl

e

SC
AN
Pro

ICM
P

Rou

WE
B-
IIS

Null
sca
n!

The following table summarizes the threats that are more likely from external sources.
Potential impact is associated with each of these alerts. Alerts of high impact will be
analyzed in the event analysis section. The impact table describes the possible types of
activity associated with each impact rating.

Table 8: Impact Ratings
Impact Level Impact

Potential Compromise High
Potential Denial Of Service

Medium Recognisance and Enumeration
Low Misuse of resources

Table 9: Most Common Alerts, External
Alert Count Impact
MISC Large UDP Packet 26880 High
INFO Inbound GNUTella Connect request 12464 Low
High port 65535 udp - possible Red Worm
– traffic

11008 High

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 44 1/16/2005

WEB-MISC Attempt to execute cmd 3702 High
FTP DoS ftpd globbing 3038 High
SCAN Proxy attempt 1605 Medium
WEB-IIS view source via translate header 992 Medium
Null Scan 839 Medium

Conversely, by looking at the graph in reverse we can assume that alerts that are at a very
low level on the graph are sourced from inside of GIAC Universities network and
destined outside. The following table depicts these alerts with their associated impact.
This may signify compromised hosts or someone from within the network attempting to
compromise external hosts.

Table 10: Most common Alerts, Internal
Alert Count Impact
IIS Unicode attack 90307 High
IIS ISAPI Overflow ida 74277 High
CGI Null Byte attack 10557 Medium
ICMP Fragment Reassembly
Time Exceeded

2382 Medium

ICMP Router Selection 1498 Low

Scan Summary:
Port scans were distilled using the same methods as the alerts were. Following is
summary of the most common source port and destination ports. Ports common to both
tables are highlighted in red.

Table 11:Scans Most Common Destination Port
Port Amount Service
7001 439211 Chat
80 437454 HTTP
7000 256844 Chat
1346 215415 Alta Analytics
53 191773 DNS
0 132627 Not used
4665 103764 EDonkey
137 89347 Netbios-ns
514 83794 Syslog
6346 55625 Gnutella

Table 12: Scans Most Common Source Port
Port Count Service
7000 439100 Chat
123 386018 NTP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 45 1/16/2005

7001 293629 Chat
1347 215379 bbn-mmc
0 162729 Not used
137 89629 Netbios-ns
514 73075 Syslog
1257 51023 Shockwave2
88 50560 Kerberos
1753 32943 Translogic-lm

Table 13 represents the internal IP addresses that were most often scanned.

Table 13: Most Commonly scanned Destination IP Internal
Count IP Port
109719 10.10.1.3 53
83681 10.10.1.7 514
77365 10.10.6.45 7000
73520 10.10.1.4 53
49532 10.10.60.43 7000
28503 10.10.5.55 137
26241 10.10.6.53 7000
25707 10.10.5.50 137
18029 10.10.6.49 7000
16002 10.10.6.53 7000

Malicious scans:
While scans are useful for identifying traffic patterns the most common patterns are often
not malicious in nature and are the result of normal traffic. The following graphs depict
scans in which the percentage of activity destined to a certain port varied tremendously
from day to day. These graphs represent scans destined to the internal network and
mathematically work by detecting a certain degree of change from average. To remove
changes in traffic from day to day every port/count combination was converted to a
percentage of that day’s activity. Then all days for that port combination were summed
together and divided by the amount of days data used (which was 6). Then ports, which
exceeded a certain multiplier of their average for any day, were represented in the graph.
This multiplier was somewhat arbitrary, and was manipulated until eight to twelve ports
became apparent. This limit was really imposed by the limitations of readable functional
graphs. In the case of UDP scans a certain minimum qualifying percentage was used to
help further distill the data. The scripts used to generate this udp_report.pl and
tcp_report.pl are included in Appendix C.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 46 1/16/2005

Link Graph 1: TCP Scans Anomalous (Link Graph #1)

8080 5 5 3 360 4
8888 1 292

12345 9 88
13000 303

TCP Scans Anomalous

0

500

1000

C
ou

nt

Series1 Series2 Series3

Series6 1 1 24 13 1

Series5 4 292 106 90 4

Series4 13 1 3 1 594 374

Series3 3 5 2 3

1 2 3 4 5 6

TCP Scans Anomalous

0

100

200

300

400

500

600

700

C
ou

nt

Mar 18th Mar 19th Mar 20th Mar 21st

Mar 23rd 1 1 24 13 1

Mar 22nd 4 292 106 90 4

Mar 21st 13 1 3 1 594

Mar 20th 3 5 2 3

Mar 19th 234 71 3 1 6

Mar 18th 1 256 3 1 6 2

1 2 3 4 5 6

From the above link graph a few combination stand out. Port 0 was scanned excessively
on Mar 19th, Port 22 on Mar 18th, the proxy port combination of 1080, 3128, 8000 and
8080 on the 21st and 8888 and 99 on 22nd. The last two combinations will be examined in
greater detail later in the event analysis section.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 47 1/16/2005

Link Graph 2: UDP Scans Anomalous (Link Graph #2)

UDP Scans Anomalous

0

10000

20000

30000
40000

50000

60000

70000

80000
90000

Port

C
ou

nt
Mar 18th Mar 19th Mar 20th Mar 21st Mar 22nd Mar 23rd

Mar 23rd 43 2306 419 46 44 42 2096 43

Mar 22nd 58 4092 648 159 116 118 1323 112

Mar 21st 352 2258 324 110 398 103 76 57

Mar 20th 501 4922 834 97 105 93 92 77

Mar 19th 1152 41477 8340 115 118 87 118 70

Mar 18th 612 28734 4871 48 58 439 49 41

111 514 778 1168 1171 1235 1347 1391

From the above link graph we can see that scans destined to port 514 and 778 were very
high on the 18th and 19th. Conversely scans to port 1347 were very high on the 22nd and
23rd.

Out Of Spec Packet Summary:
 There were 673 out of spec packet alerts for the period from March 18th thru
March 23rd. Of these events, 611 were generated by two hosts 64.152.183.174 and
217.56.233.186. Another 15 of these events were generated by 210.83.45.86. The events
from these three hosts will be addressed in the event analysis section.

Internal host analysis:

Due to the nature of the alarms these hosts either received or generated there is
sufficient cause to further analyze these specific hosts. I will be using the standard rules
provided with Snort-1.8.4 for this analysis.
10.10.88.190
10.10.153.211

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 48 1/16/2005

10.10.153.106
10.10.153.153
10.10.153.197

Host: 10.10.88.190
This host was the source of 74277 “IIS ISAPI Overflow “alarms. This most relevant
Snort signature for this alarm triggers on any .ida attempt with a payload size greater than
240 bytes, which is associated with the .ida buffer overflow.

Snort Signature: ida
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-IIS ISAPI
.ida attempt"; uricontent:".ida?"; nocase; dsize:>239; flags:A+;
reference:arachnids,552; classtype:web-application-attack; reference:cve,CAN-
2000-0071; sid:1243; rev:2;)

Most of these alerts trigger on the 18th of March. This type of activity is most
closely associated with the Code Red or Nimda (Concept) worms. Since this host did not
trigger other alarms that are associated with Nimda it is believed that this host was
infected with Code Red. For more information on Code Red a full analysis by eEye
Digital Security is available at
http://www.eeye.com/html/Research/Advisories/AL20010717.html . Do to the nature of
this particular infection and how the worm chose it’s victims it is believed that this is
Code Red version 1. The reason for this assumption is that Code Red 2 scanned more
within the local class A and B networks, thus the destination IP’s being attacked from this
host would have attacked more often within GIAC Universities network. This conclusion
is based on the fact that this worm appears to not be heavily favoring any particular
networks. This host appears to have only scanned until early on March 19th so I believe
the initial infection problem has been resolved. To prevent this attack from being
successful the system must be patched or reconfigured. The Microsoft patch is available
at
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS
01-033.asp

Host: 10.10.153.211
Host 10.10.153.211 was the source of 7,600 “Unicode attack detected” alerts and 11,611
alerts overall. Most of the Unicode alerts were on Mar 18th and Mar 21st.

Table 14: Alerts associated with 10.10.153.211
Count Alert Source of Destination
7041 IIS Unicode Attack Source
3713 Spp_portscan Source
524 INFO MSN IM Chat Both
294 Connect to 515 Source
30 Possible Red Worm Destination

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 49 1/16/2005

5 Scan Proxy attempt Destination
2 ICMP Echo NMAP or HPING Destination
1 SYN-FIN Destination
1 INFO possible Squid scan Destination

 Due to this host using MSN Instant Messenger and the fact that the Unicode attacks were
inconsistent this appears to a malicious user rather than a compromised host.

Host: 10.10.153.106
This host was associated with a total of 11,038 alerts of which 7,839 were Unicode
attacks. This host appears to be targeting the same networks with Unicode attacks as
10.10.153.211. Once again this appears to be active targeting by a malicious user. A
breakdown of the alerts associated with this host reveals striking similarity to
10.10.153.211 which is shown in table 14. This host however, did generate 500 ICMP
Fragment Reassembly Time Exceeded alarms on Mar 21st. The alarms are in response to
the host receiving the first fragments of a series of fragmented packets but not receiving
any others. After a Operating System specific amount of time the receiving host then
sends back an ICMP Fragment Reassembly time exceeded message. The true source of
these alerts is 212.73.235.74. This IP (212.73.235.74) generated this alert to another
internal host 10.10.153.167 as well.

Host: 10.10.153.153
The internal host 10.10.153.153 generated 16,341 total alerts of which 4053 were
portscans directed at various ports. Another 2816 of these alerts were CGI Null Byte
attacks directed at 209.10.239.135. Another 2176 alerts for Unicode attacks were
generated. Most of these were directed at the 211.233 network, which is in Korea. These
attacks were spread out over several days. A total breakdown of all alerts for this host
was as follows.

Table 15: Alerts associated with 10.10.153.153
Count Alert Source of Destination
6799 Large UDP Packet Destination
4053 Portscan Source
2816 CGI Null Byte Source
2176 Unicode Source
185 Possible Red Worm Destination
160 Fragmentation Time

Exceeded
Destination

93 Connect to 515 Source
21 Scan Proxy Attempt Destination
11 Exploit x86 NOOP Destination
11 Possible Squid scan Destination
9 Possible IRC access Source

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 50 1/16/2005

4 EXPLOT NTPDX buffer

overflow
Destination

2 ICMP NMAP or HPING Destination
1 SYN-FIN scan Destination

In addition to the scanning this host has been involved in it appears that this host may
have been the target of a NTPDX buffer overflow attempt on March 20th and 21st as well
as may have been the target of several UDP based attacks on the 18th and 19th. These
attacks will be covered in more detail in the event analysis section. This host actively
participated in several attacks mostly directed towards Korean Internet address space.

Host: 10.10.153.197
This host was either the source or destination in 14,524 alerts of which 9.957 were
portscans. Many of these scans originate from port 6970 and use UDP as the protocol.
This port and protocol combination is associated with RTP so it is possible many of these
scans may be normal user traffic. This host initiated 483 Unicode alerts directed mainly
towards 211 and 203 address space which are Korean. Alerts associated with this host
were similar to 10.10.153.153. This actively participated in attacks directed towards
Korean networks.

Event Analysis:
 This section contains analysis of alerts and scans chosen through the distillation
process. For this section each event will follow a standard format.

Event: WEB-MISC Attempt to execute cmd and IIS Unicode

 This attack was chosen because it is viewed as a substantial external threat from
graph 1. There were 3702 alerts generated, of which the source of the attack was 100%
outside of GIAC Universities network and the destination was always a host inside GIAC
Universities network.

Source of the attack:
GIAC Universities network. 27 different external hosts generated this alert. 2450 alerts
were generated from a single host 208.191.18.173. Discussion of this attack will focus
primarily on this host.

Attack was generated by:
Snort IDS. The most likely signature to trigger this from Snort 1.8.4 signature base is the
signature listed below. This signature may not be an exact match as the message is
different. This signature looks for the URI content “cmd?&”.

Signature: cmd
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-IIS cmd?
acess";flags: A+; content:".cmd?&"; nocase; classtype:web-application-attack;
sid:1003; rev:2;)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 51 1/16/2005

Probability the source address was spoofed:
There is very little probability the source address was spoofed. The attack requires a full
TCP connection. Running an nslookup on this IP returns nothing. A whois query using
geektools (http://geektools.com) shows the owner as American Association of Petroleum
as the owner of the address space from 208.191.18.168 208.191.18.175.

Whois: 208.191.18.173
Southwestern Bell Internet Services (NETBLK-SBIS2) SBIS2
 208.188.0.0 - 208.191.255.255
American Association of Petroleum (NETBLK-SBCIS81285) SBCIS81285
 208.191.18.168 - 208.191.18.175

Doing a visual trace route using http://visualroute.backland.net shows the owner of the IP
to be in Okemah Oklahoma.

Description of the attack:
This attack took place on March 20th and lasted just over 5 hours. The attack was against
six internal hosts

Host Summary
Host Count
10.10.150.246 1418
10.10.150.220 777
10.10.150.41 691
10.10.150.143 658
10.10.150.59 612
10.10.150.101 397
10.10.88.217 381

Attack Mechanism:
This attack attempts to execute commands outside the web server’s root directory. The
attacker usually tries to execute cmd.exe. If the attacker is successful the attacker will be
able to access cmd.exe with the privilege of the web server which is normal user
privileges. This particular attack can actually be a part of several other attacks. Attacks
usually associated with this can be Unicode directory traversal, Code Red and the
Concept Worm. Attackers commonly will deface the web site, perform denial of service
or possibly execute commands to upload programs to the server for further access. This
particular attack generated two other alerts other than Unicode or cmd.exe.

Alerts
spp_http_decode: IIS Unicode attack detected [**] 208.191.18.173:1741 ->

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 52 1/16/2005

10.10.150.41:80
WEB-MISC 403 Forbidden [**] 10.10.150.41:80 -> 208.191.18.173:1742
WEB-IIS Unauthorized IP Access Attempt [**] 10.10.150.41:80 -> 208.191.18.173:1732
WEB-MISC Attempt to execute cmd [**] 208.191.18.173:1740 -> 10.10.150.41:80

Since this attack only generated these alerts and did not generate ida overflow, which
would associate the attack with Code Red, nor did it generate a root.exe alerts which
would associate the attack with the Concept worm it is believed this was some other
variant, or a possible directed attack. In his practical, Guofei Jiang gives a full description
of the mechanics of the Unicode attack at
http://www.sans.org/newlook/digests/unicode.htm.

Correlations:
There was no other activity from this host

Defensive Recommendations:
Microsoft has recently released a cumulative patch that repairs this as well as several
other recent IIS vulnerabilities. The patch is available at
http://www.microsoft.com/security/security_bulletins/ms02018_iis.asp.
Microsoft also has an IIS lockdown tool available at
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/tools/l
ocktool.asp. Most security breaches can be avoided by staying current on system security
updates.

Event: NTPDX buffer overflow

This event was chosen because several inside hosts were attacked using this
particular attack. This is a particularly dangerous attack that can yield administrator
access.

Source of the attack:
Several inside hosts were attacked between March 18th and March 22nd from six distinct
sources.

Logs
03/18-20:18:59.768424 [**] EXPLOIT NTPDX buffer overflow [**] 213.248.114.96:256 ->
10.10.153.152:123
03/19-20:06:32.445546 [**] EXPLOIT NTPDX buffer overflow [**] 63.146.181.119:123 ->
10.10.152.246:123
03/19-20:06:33.098635 [**] EXPLOIT NTPDX buffer overflow [**] 63.146.181.119:123 ->
10.10.152.246:123
03/19-20:06:33.742495 [**] EXPLOIT NTPDX buffer overflow [**] 63.146.181.119:123 ->
10.10.152.246:123
03/19-20:06:34.398952 [**] EXPLOIT NTPDX buffer overflow [**] 63.146.181.119:123 ->

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 53 1/16/2005

10.10.152.246:123
03/20-22:56:14.155424 [**] EXPLOIT NTPDX buffer overflow [**] 211.233.25.32:1354 ->
10.10.153.153:123
03/20-22:56:14.897141 [**] EXPLOIT NTPDX buffer overflow [**] 211.233.25.32:1354 ->
10.10.153.153:123
03/21-20:12:57.345314 [**] EXPLOIT NTPDX buffer overflow [**] 63.250.205.9:1271 ->
10.10.153.185:123
03/21-21:43:38.106908 [**] EXPLOIT NTPDX buffer overflow [**] 63.250.205.44:1239 ->
10.10.153.153:123
03/21-21:43:38.447766 [**] EXPLOIT NTPDX buffer overflow [**] 63.250.205.44:1239 ->
10.10.153.153:123
03/22-08:56:31.973364 [**] EXPLOIT NTPDX buffer overflow [**] 66.38.171.141:18100 ->
10.10.150.215:123

Attack was generated by:

Signature: NTPDX
alert udp $EXTERNAL_NET any -> $HOME_NET 123 (msg:"EXPLOIT ntpdx
overflow attempt"; dsize: >128; reference:arachnids,492; classtype:attempted-
admin; sid:312; rev:1;)

Probability the source address was spoofed:
Very little, this attack does use UDP, which can easily be spoofed. The attacker, however
is trying to get shell access. The following is a whois on the the attacking hosts.

Attacker 1: 213.248.114.96
Query: 213.248.114.96
Registry: whois.ripe.net
Results:
% This is the RIPE Whois server.
% The objects are in RPSL format.
% Please visit http://www.ripe.net/rpsl for more information.
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 213.248.114.64 - 213.248.114.127
netname: JOINTMODERN
descr: Joint Modern Ltd
descr: Only for Co-location
descr: London
country: GB
admin-c: CM251-RIPE
tech-c: AR346-RIPE
status: ASSIGNED PA
mnt-by: TELIANET-LIR

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 54 1/16/2005

notify: mntripe@telia.net
changed: jessica@telia.net 20011128
source: RIPE

route: 213.248.64.0/18
descr: TELIANET-BLK
remarks: Abuse issues should be reported at
remarks: http://www.telia.com/security/
remarks: Mail to abuse@telia.net will be auto-replied
remarks: and referred to the URL above.
origin: AS1299
mnt-by: TELIANET-RR
changed: rr@telia.net 20010514
source: RIPE

person: Charles Moss
address: Hudson House
address: Hudson Way
address: Derby
e-mail: charles.moss@mediawave.co.uk
phone: +44-1332-866700
fax-no: +46-1332-208485
nic-hdl: CM251-RIPE
notify: mntripe@telia.net
changed: jessica@telia.net 20011128
source: RIPE

person: Andy Ringer
address: Hudson House
address: Hudson Way
address: Derby
e-mail: andy.ringer@mediawave.co.uk
phone: +46-1332-866700
fax-no: +46-1332-208485
nic-hdl: AR346-RIPE
notify: mntripe@telia.net
changed: jessica@telia.net 20011128
source: RIPE

Attacker 2: 63.146.181.119
Query: 63.146.181.119
Registry: whois.arin.net
Results:
Qwest Communications (NETBLK-NET-QWEST-BLKS-2) NET-QWEST-BLKS-2
 63.144.0.0 - 63.151.255.255

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 55 1/16/2005

Scale 8 (NETBLK-QWEST-IAD-SCALE81) QWEST-IAD-SCALE81
 63.146.180.0 - 63.146.181.255

Attacker 3: 211.233.25.32
P Address : 211.233.25.0-211.233.25.63
Network Name : KIDC-INFRA-COLOCATION
Connect ISP Name : KIDC
Connect Date : 20001201
Registration Date : 20001220

[Organization Information]
Orgnization ID : ORG141241
Org Name : KIDC
State : SEOUL
Address : 261-1 Nonhyun-dong Kangnam-ku
Zip Code : 135-010

[Admin Contact Information]
Name : SangGyu Jang
Org Name : KIDC
State : SEOUL
Address : 261-1 Nonhyun-dong Kangnam-ku
Zip Code : 135-010
Phone : +82-2-6440-2920
Fax : +82-2-6440-2909
E-Mail : support@kidc.net

[Technical Contact Information]
Name : TaeUng Kim
Org Name : KIDC
State : SEOUL
Address : 261-1 Nonhyun-dong Kangnam-ku
Zip Code : 135-010
Phone : +82-2-6440-1965
Fax : +82-2-6440-2909
E-Mail : ip@kidc.net

Attacker 4: 63.250.205.9 & 63.250.205.44
Query: 63.250.205.9
Registry: whois.arin.net
Results:
Yahoo! Broadcast Services, Inc. (NETBLK-NETBLK2-YAHOOBS)
 701 First Avenue
 Sunnyvale, California 94089

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 56 1/16/2005

 US

 Netname: NETBLK2-YAHOOBS
 Netblock: 63.250.192.0 - 63.250.223.255
 Maintainer: YAHO

 Coordinator:
 Admin, Netblock (NA258-ARIN) netblockadmin@yahoo-inc.com
 1-408-349-5555

 Domain System inverse mapping provided by:

 NS1.YAHOO.COM 66.218.71.63
 NS2.YAHOO.COM 209.132.1.28
 NS3.YAHOO.COM 217.12.4.104
 NS4.YAHOO.COM 63.250.206.138
 NS5.YAHOO.COM 64.58.77.85

 ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE

 Record last updated on 27-Mar-2002.
 Database last updated on 19-Apr-2002 19:58:48 EDT.

Attacker 5: 66.38.171.141
Query: 66.38.171.141
Registry: whois.arin.net
Results:
GT Group Telecom Services Corp. (NETBLK-GROUPTELECOM-BLK-3)
GROUPTELECOM-BLK-3
 66.38.128.0 - 66.38.255.255
Streaming Media Corp. (NETBLK-GT-66-38-171-0) GT-66-38-171-0
 66.38.171.0 - 66.38.171.255

Description of the attack:
There were six different attackers trying to exploit five different internal hosts. Each one
of these external hosts performed several scans of the network and had other triggered
other alarms including possible Red Worm traffic.

Logs (Brief)
spp_portscan: portscan status from 63.146.181.119: 7 connections across 1 hosts:
TCP(0), UDP(7) [**]
pp_portscan: portscan status from 213.248.114.96: 7 connections across 1 hosts: TCP(0)
, UDP(7) [**]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 57 1/16/2005

pp_portscan: portscan status from 211.233.25.32: 7 connections across 1 hosts: TCP(0),
UDP(7) [**]
spp_portscan: PORTSCAN DETECTED from 63.250.205.9 (THRESHOLD 4
connections exceeded in 4 seconds) [**]
spp_portscan: portscan status from 66.38.171.141: 1 connections across 1 hosts: TCP(0),
UDP(1) [**]

Attack Mechanism:
This attack targets a buffer overflow in the Network Time Protocol daemon. An attack
description with buffer overflow code is available at
http://online.securityfocus.com/archive/1/174011 The Cert advisory is available at
http://www.kb.cert.org/vuls/id/970472

Correlations:
There are correlations to other attacks upon the same network which will be analyzed
next.

Defensive Recommendations:
This vulnerability has been known since April 2001 and affects many Unix / Linux
variants. Patches are available.
FreeBSD
ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages-3-stable/net/ntp-4.0.99k_2.tgz
RedHat Linux
ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages-3-stable/net/ntp-
4.0.99k_2.tgz

Event : High port 65535 udp - possible Red Worm – traffic
 This alert was chosen for analysis because of the significantly large amount of
alerts from this signature and because the threat was determined from graph 1 to be
mostly external.

Source of the attack:
This alert triggered 11008 times from 203 distinct source addresses. Since hosts that
triggered the NPDX alerts also triggered these the focus will be on those hosts.

Count Source IP
57 213.248.114.96
18 66.38.171.141
12 63.250.205.44
10 63.250.205.9
7 63.146.181.119
3 211.233.25.32

Attack was generated by:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 58 1/16/2005

The current Snort 1.8.4 rule set does not have a specific rule for the Red Worm / Adore
worm. The signature appears to alert on any TCP or UDP traffic that involves port 65535.

Probability the source address was spoofed:
Very little, all of the traffic uses UDP which is easily spoofed but due to the variety of
alerts generated and the fact the attacker is attempting to execute a buffer overflow
spoofing is unlikely. I can not verify this by doing a trace back since I do not have access
to GIAC university’s network.

Description of the attack:
All of the IP’s share common attacks. The alerts have a similar format to below.
19-20:06:34.398952 [**] EXPLOIT NTPDX buffer overflow [**] 63.146.181.119:123 -
> 10.10.152.246:123
03/19-20:19:39.475393 [**] spp_portscan: portscan status from 63.146.181.119: 4
connections across 1 hosts: TCP(0), UDP(4) [**]
03/19-20:19:41.956346 [**] spp_portscan: portscan status from 63.146.181.119: 3
connections across 1 hosts: TCP(0), UDP(3) [**]
03/19-20:00:43.046064 [**] High port 65535 udp - possible Red Worm - traffic [**]
63.146.181.119:65535 -> 10.10.152.246:65280

Attack Mechanism:
The “Red Worm” or Adore worm as it is otherwise known scans the Internet looking for
Linux hosts that are vulnerable to rpc-statd, wu-ftpd, LPRng and BIND. Once a host is
compromised the worm changes configuration files, attempts to send system specific
information via email and replaces the ps binary with a trojaned version. The NTPDX
vulnerability is not associated with the Red Worm. Examining the scan files, several of
these hosts have very similar traffic patterns. These patterns all contain the following
UDP activity as well as random high port to high port activity.
Source port 0 -> Destination port 0
Source port 516 -> Destination port 1588
Source port 7000 -> Destination port 7001

Host: 213.248.114.96
Mar 18 19:40:58 213.248.114.96:516 -> 10.10.153.152:1588 UDP
Mar 18 19:40:59 213.248.114.96:30511 -> 10.10.153.152:25719 UDP
Mar 18 19:41:02 213.248.114.96:0 -> 10.10.153.152:0 UDP
Mar 18 19:41:00 213.248.114.96:55278 -> 10.10.153.152:1407 UDP
Mar 18 19:41:03 213.248.114.96:7000 -> 10.10.153.152:7001 UDP

Host: 63.146.181.119
Mar 19 19:51:40 63.146.181.119:516 -> 10.10.152.246:1588 UDP
Mar 19 19:51:44 63.146.181.119:0 -> 10.10.152.246:0 UDP
Mar 19 19:51:43 63.146.181.119:12112 -> 10.10.152.246:30066 UDP
Mar 19 19:51:43 63.146.181.119:15677 -> 10.10.152.246:15677 UDP
Mar 19 19:51:44 63.146.181.119:7000 -> 10.10.152.246:7001 UDP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 59 1/16/2005

Mar 19 19:51:45 63.146.181.119:7000 -> 10.10.152.246:7001 UDP

Host: 211.233.25.32
Mar 20 22:48:21 211.233.25.32:516 -> 10.10.153.153:1588 UDP
Mar 20 22:48:25 211.233.25.32:0 -> 10.10.153.153:0 UDP
Mar 20 22:48:22 211.233.25.32:20125 -> 10.10.153.153:46286 UDP
Mar 20 22:48:23 211.233.25.32:7000 -> 10.10.153.153:7001 UDP
Mar 20 22:48:24 211.233.25.32:25793 -> 10.10.153.153:54770 UDP

Port 7000 and 7001 are associated with port IRC and afs3. Due to the irregularity of the
ports I do not believe this is Afs traffic. Port 1588 is associated with Triquest-lm and port
516 is videotex. This traffic definitely does not fit within the realms of normal activity.
The are several port 0 to port 0 UDP packets and random high port access within a
second or two of each other. This does not necessarily fit the Adore Worm traffic pattern.
It appears that many of these “Red Worm” are triggering on the random high port access
in this communication.

Correlations:
A write up on the adore worm is available on the Sans web site
http://www.sans.org/y2k/adore.htm.
An article titled “”Adore”” worm squirms in Linux systems” from April 4th on CNET
discusses the worm http://news.com.com/2100-1001-255283.html?legacy=cnet

Defensive Recommendations:
An Adore worm detection and removal kit is available at
http://www.ists.dartmouth.edu/IRIA/knowledge_base/tools/adorefind.htm.
Even though Adore was believed to start spreading on April 1 2001 many of the
vulnerabilities it uses data back into 2000. Patches were available to correct these
problems. In fact, Adore itself secures the systems after infection by killing vulnerable
services and disallowing anonymous ftp. By maintaining current system security patches
as well as securing basic OS installs by not allowing anonymous ftp and turning of
unnecessary services many of these problems can be avoided.

Event:FTP DoS ftpd globbing

Source of the attack:
This attack was chosen for analysis because the attack was always initiated from outside
GIAC University’s network. Several internal hosts were attacked. The current Snort
signature base does not come with this signature by default so I must assume it is custom.
Being a custom signature I do not know how prone it is to false alarms. Prudent security
measures would be to assume it is in fact a true event. I would imagine due to the nature
of this particular problem though, that there could be a large amount of false alarms

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 60 1/16/2005

associated with this signature. The reason for this is that the signatures for this attack
(which are not included in the Snort 1.8.4 signatures) are prone to false alarms. The
closest signature for file Wu-Ftpd file globbing that I could find is below.

Signature: Wu-Ftpd File Globbing
alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP wu-ftp file completion
attempt {"; flags:A+; flow:to_server; content:"~"; content:"{"; reference:bugtraq,3581;
classtype:misc-attack; sid:1378; rev:5;)

Attack was generated by:
Forty-eight different external IP addresses generated this attack directed towards twelve
internal addresses. The primary victim was 10.10.153.191

Probability the source address was spoofed:
Very little, this attack requires the three-way handshake of TCP.

Description of the attack:
The original vulnerability is detailed at http://online.securityfocus.com/bid/3581
Red Hat originally made the attack public on November 27, 2001. The attack itself
requires valid user credentials to login. Therefore the attack does not lend itself well to
worm style attacks, unless anonymous ftp is enabled. The attack itself is based around the
malformed globbing patterns (which interpret certain meta characters and allow for wild
card searches) which can cause a heap overwrite condition. This allows the attacker to
execute arbitrary code with the access of the Wu-Ftpd process, which is usually root.

Defensive Recommendations:
Vendor patches have been available since late 2001. Disabling anonymous access can
significantly reduce the exposure to this attack.

Event: Out Of Spec Host 64.152.183.174 & Host 217.56.233.186
On March 20th host 64.152.183.174 scanned 316 hosts by sequentially scanning for the
ftp service. On March 19th host 217.56.233.186 scanned 297 hosts in the same manner.
The attacker used a source port of 21 and sent the connection attempts with the SYN-FIN
flags sent. This attack is most likely a “script kiddie” using a noisy automated tool.
However the reconnaissance was successful as host 10.10.150.139 responded to the
reconnaissance. This attack was detailed earlier as “Detect # 3”.

Event: Scan TCP ports 1080, 3128, 8000, 8080
On March 21st ports 1080, 3128, 8000 and 8080 saw a dramatic increases in activity. The
normal activity for those ports had been under ten per day but that amount increased to
over well over 300 for the 21st. The ports 1080, 3128, and 8080 are associated strongly

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 61 1/16/2005

with Ring Zero. According to Stephen Northcutt
http://www.sans.org/newlook/resources/IDFAQ/ring_zero.htm
Ring Zero occasionally will use port 8000 as well. These are well known proxy ports.
External host 61.132.208.63 generated 1080 different scan log entries.

General Recommendations:

Var-log consulting realizes that because GIAC University is a University it
requires a very open security policy. Because of this open policy it is difficult to keep
these attacks from occurring. The standard business style security implementations do not
really fit because access is too restricted and it may be costly to implement. There are
however, a few changes that can be done to reduce this type of activity significantly. To
prevent internal hosts from being compromised by non directed worm style attacks it is
necessary to maintain current vendor system patches. Regular security audits and holding
administrators accountable for implementing system patches can ensure that critical
systems are kept relatively current. GIAC does not appear to have a formal incident
response plan. Actively monitoring IDS logs and responding when alerts occur can
minimize the impact of these events through quick containment. Certain IDS signatures
are good candidates for using automated IDS response techniques such as shunning, TCP
Resets or routing hosts to Null. Integrating the process of security, where there is
scheduled re-evaluation and improvement, structuring an incident response plan and
holding administrators accountable for maintaining current patches on critical systems
could offer a much improved security posture while still maintaining the open, flexible
policy that is required by GIAC University.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 62 1/16/2005

References

[1] Ptacek, Thomas and Newsham, Timothy “Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection” January, 1998. URL:
http://secinf.net/info/ids/idspaper/idspaper.html

[2] Puppy, Rain Forest “A look at whisker’s anti-IDS tactics” December 24, 1999. URL:
http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html

[3] Arboi, Michel and Deraison, Renaud “Using Nessus’s NIDS evasion features”
2002, URL: http://www.nessus.org/doc/nids.html

[4] Handley, Mark Paxson, Vern and Kreibich, Christian “Network Intrusion Detection:
Evasion, Traffic Normalization, and End-to-End Protocol Semantics” May 22, 2001.
URL: http://www.icir.org/vern/papers/norm-usenix-sec01-html

[5] Song, Dug ”Fragroute”, April, 2002. URL:
http://www.monkey.org/~dugsong/fragroute/

[6] Miller, Toby “Passive OS Fingerprinting: Details and Techniques”, November 6,
2001, URL: http://www.incidents.org/papers/OSfingerprinting.php.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 63 1/16/2005

Appendix A: Splicer.pl

#!/usr/bin/perl

use Socket;
use Getopt::Std;

require 'getopts.pl';
getopts('h:t:s:r:');
if (!$opt_h || !$opt_t || !$opt_r) {
 &usage();
 exit 1;
}

sub usage {
 print "\tUSAGE: splicer -h <host> -r <request> -t <timing> -s<splice sizes>\n\n";
 print "\t************Notes***********\n";
 print "\t***Apache times out a unfinished request in 6 minutes\n";
 print "\t***IIS doesn't appear to have such a timeout\n";
 print "\t***If no splice size is specified it will send 1 byte at a time\n\n";
}

if ($opt_s == NULL) {
 $opt_s=1;
}

$host=$opt_h;
$size=$opt_s;
$req="GET $opt_r HTTP/1.0\r\n";
$time=$opt_t;

$header="Host: $host\r\nUser-Agent: Session-Splice\r\n\r\n";

@greq=(split//,$req);
socket(SERVER, PF_INET, SOCK_STREAM, getprotobyname('tcp'));
$addr = sockaddr_in(80, inet_aton($host));
connect(SERVER, $addr);
select(SERVER); $|=1;
select(STDOUT);
$i=0;

Send packet
foreach $char (@greq) {
 chomp $char;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 64 1/16/2005

 if ($i == $size) {
 push(@new,$char);
 print SERVER @new;
 select(undef,undef,undef,$time);
 $i = 0;
 $i++;
 $#new=-1;
 } else {
 push(@new,$char);
 $i++;

 }
}
print SERVER "$header";

Parse our requesr
do {
 $line = <SERVER>
 }
 until ($line =~ /^\r\n/);
 @output = <SERVER>;
 close (SERVER) ;
 print "@output\n";

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 65 1/16/2005

Appendix B: Cisco IDS Log Format

Cisco Log Description

Field Description Value
1 Record Type 4
2 Record ID 1403640
3 GMT Datestamp 2002/03/08
4 GMT Timestamp 17:51:01
5 Local Datestamp 2002/03/08
6 Local Timestamp 9:51:01
7 Application ID 10008
8 Host ID X
9 Organization ID X
10 Source Direction OUT
11 Destination Direction IN
12 Alarm Level 4
13 Sig ID 8000
14 SubSig ID 8010
15 Protocol TCP/IP
16 Source IP 198.83.130.39
17 Destination IP X.X.X.X
18 Source Port 2223
19 Destination Port 80
20 Router IP 0.0.0.0
21 Data

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 66 1/16/2005

Appendix C: tcp_report.pl and udp_report.pl

tcp_report.pl
#!/usr/bin/perl

open (outfile, ">tcp_report.csv");
$t18=`cat 18.tcp.int|wc -l`;
$t19=`cat 19.tcp.int|wc -l`;
$t20=`cat 20.tcp.int|wc -l`;
$t21=`cat 21.tcp.int|wc -l`;
$t22=`cat 22.tcp.int|wc -l`;
$t23=`cat 23.tcp.int|wc -l`;

@portlist=`cat tcpports.int`;
@tcp18=`cat 18.tcp.int.srt`;
@tcp19=`cat 19.tcp.int.srt`;
@tcp20=`cat 20.tcp.int.srt`;
@tcp21=`cat 21.tcp.int.srt`;
@tcp22=`cat 22.tcp.int.srt`;
@tcp23=`cat 23.tcp.int.srt`;

foreach $line(@tcp18) {
chomp $line;
for ($line) {
s/^\s+//;
}
($count,$port)=split(/\s+/,$line);
$h18{$port} = $count;
}

foreach $line(@tcp19) {
chomp $line;
for ($line) {
s/^\s+//;
}
($count,$port)=split(/\s+/,$line);
$h19{$port} = $count;
}

foreach $line(@tcp20) {
chomp $line;
for ($line) {
s/^\s+//;
}
($count,$port)=split(/\s+/,$line);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 67 1/16/2005

$h20{$port} = $count;
}

foreach $line(@tcp21) {
chomp $line;
for ($line) {
s/^\s+//;
}
($count,$port)=split(/\s+/,$line);
$h21{$port} = $count;
}

foreach $line(@tcp22) {
chomp $line;
for ($line) {
s/^\s+//;
}
($count,$port)=split(/\s+/,$line);
$h22{$port} = $count;
}

foreach $line(@tcp23) {
chomp $line;
for ($line) {
s/^\s+//;
}
($count,$port)=split(/\s+/,$line);
$h23{$port} = $count;
}

foreach $p(@portlist) {
chomp $p;
#print "$p\n";
#print "$h18{$p}\n";
$d18=$h18{$p};
$d19=$h19{$p};
$d20=$h20{$p};
$d21=$h21{$p};
$d22=$h22{$p};
$d23=$h23{$p};

$p18=(sprintf "%.2f",($d18/$t18));
$p19=(sprintf "%.2f",($d19/$t19));
$p20=(sprintf "%.2f",($d20/$t20));
$p21=(sprintf "%.2f",($d21/$t21));

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 68 1/16/2005

$p22=(sprintf "%.2f",($d22/$t22));
$p23=(sprintf "%.2f",($d23/$t23));

$tot=($p18+$p19+$p20+$p21+$p22+$p23);
$a=($tot/6);
$max=($a*3);
if (($p18 > $max)||($p19 > $max)||($p20 > $max)||($p21 > $max)||($p22 > $max)||($p23
> $max)) {
 print outfile
"$p,$d18,$p18,$d19,$p19,$d20,$p20,$d21,$p21,$d22,$p22,$d23,$p23\n";
 } else {}
}
close(outfile);

udp_report.pl

#!/usr/bin/perl

open (outfile, ">udp_report.csv");
$t18=`cat 18.udp.int|wc -l`;
$t19=`cat 19.udp.int|wc -l`;
$t20=`cat 20.udp.int|wc -l`;
$t21=`cat 21.udp.int|wc -l`;
$t22=`cat 22.udp.int|wc -l`;
$t23=`cat 23.udp.int|wc -l`;

@portlist=`cat udpports.int`;
@udp18=`cat 18.udp.int.srt`;
@udp19=`cat 19.udp.int.srt`;
@udp20=`cat 20.udp.int.srt`;
@udp21=`cat 21.udp.int.srt`;
@udp22=`cat 22.udp.int.srt`;
@udp23=`cat 23.udp.int.srt`;

foreach $line(@udp18) {
chomp $line;
for ($line) {
s/^\s+//;
}
($count,$port)=split(/\s+/,$line);
$h18{$port} = $count;
}

foreach $line(@udp19) {
chomp $line;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 69 1/16/2005

for ($line) {
s/^\s+//;
}
($count,$port)=split(/\s+/,$line);
$h19{$port} = $count;
}

foreach $line(@udp20) {
chomp $line;
for ($line) {
s/^\s+//;
}
($count,$port)=split(/\s+/,$line);
$h20{$port} = $count;
}

foreach $line(@udp21) {
chomp $line;
for ($line) {
s/^\s+//;
}
($count,$port)=split(/\s+/,$line);
$h21{$port} = $count;
}

foreach $line(@udp22) {
chomp $line;
for ($line) {
s/^\s+//;
}
($count,$port)=split(/\s+/,$line);
$h22{$port} = $count;
}

foreach $line(@udp23) {
chomp $line;
for ($line) {
s/^\s+//;
}
($count,$port)=split(/\s+/,$line);
$h23{$port} = $count;
}

foreach $p(@portlist) {
chomp $p;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 70 1/16/2005

#print "$p\n";
#print "$h18{$p}\n";
$d18=$h18{$p};
$d19=$h19{$p};
$d20=$h20{$p};
$d21=$h21{$p};
$d22=$h22{$p};
$d23=$h23{$p};

$p18=(sprintf "%.6f",($d18/$t18));
$p19=(sprintf "%.6f",($d19/$t19));
$p20=(sprintf "%.6f",($d20/$t20));
$p21=(sprintf "%.6f",($d21/$t21));
$p22=(sprintf "%.6f",($d22/$t22));
$p23=(sprintf "%.6f",($d23/$t23));

$min=".00009";
if (($p18 < $min)||($p19 < $min)||($p20 < $min)||($p21 < $min)||($p22 < $min)||($p23 <
$min)) {
 } else {
$tot=($p18+$p19+$p20+$p21+$p22+$p23);
$a=($tot/6);
$max=($a*2);
if (($p18 > $max)||($p19 > $max)||($p20 > $max)||($p21 > $max)||($p22 > $max)||($p23
> $max)) {
 print outfile
"$p,$d18,$p18,$d19,$p19,$d20,$p20,$d21,$p21,$d22,$p22,$d23,$p23\n";
 } else {}
 }
}
close(outfile);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC v.3.1 Practical
Kevin Timm Page 71 1/16/2005

Appendix D: Methodologies

The methodologies were quit simple. I first attempted SnortSnarf, which due to the large
amount of data promptly caused my personal server to crash on three occasions.
Realizing that wasn’t getting me anywhere I resorted to standard Unix tools like sed,
awk, cut, grep and vi. For ease in sorting or trying to make sense out of MY.NET I
converted every IP that was MY.NET to a 10.10 network. This was done using the
command “sed s/MY.NET/10.10/g”. I created a simple shell script called sort.sh to help
sort the data.
Sort.sh
#!/bin/sh

cat $1 |awk -F\> '{print $2}' |awk -F: '{print $2}' |cut -d" " -f 1 |sort |uniq -c |sort -nr>
$1.srt

I used a variety of variants to distill the data. I then wrote the two perl scripts
tcp_report.pl and udp_report.pl to establish port relationships over time. I tweaked the
variables in those scripts until my output was eight to twelve events, which was enough
to make a clean graph. I generated another graph to depict threat source through use of
the common Unix tools alluded earlier.

