
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Intrusion Detection In-Depth

GCIA Practical Assignment

Version 3.1

Jason Tant

SANS–Washington D.C

May 5–May 12, 2002

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

1 THE CURRENT STATE OF INTRUSION DETECTION.. 1

1.0 THE FALLACIES ... 1
1.1 WINDUMP: HARVESTING THE DATA ... 1
1.2 SNORT: FINDING NEEDLES IN THE HAYSTACK ... 2
1.3 SORTING THE NEEDLES .. 4
1.4 A NEEDLE AMONG NEEDLES .. 4
1.5 SO YOU FOUND A PING. WHAT NOW?.. 5
1.6 THAT SINKING FEELING .. 6
1.7 HOUSTON, WE HAVE A PROBLEM .. 8
1.8 LESSONS LEARNED–DETECTING AND PREVENTING FUTURE ATTEMPTS.................... 9
1.9 CONCLUSIONS... 10
1.10 WORKS CITED... 11

2 NETWORK DETECTS .. 13

2.0 DETECT #1–DNS SPOOF FALSE POSITIVE ... 13
2.1 DETECT #2–ICMP SOURCE QUENCH.. 19
2.2 DETECT #3–NETWORK MISCONFIGURATION ... 26

3 ANALYZE THIS ... 33

3.0 EXECUTIVE SUMMARY .. 33
3.1 FILES TO BE ANALYZED .. 33
3.2 NETWORK PROFILE... 33
3.3 DETECTS BY SEVERITY OR NUMBER OF OCCURRENCES .. 36
3.4 TOP TALKERS.. 42
3.5 EXTERNAL SOURCE INFORMATION ... 43
3.6 LINK GRAPH .. 46
3.7 INSIGHTS INTO INTERNAL MACHINES.. 47
3.8 ANALYSIS PROCESS.. 51

4 APPENDIX A .. 55

4.1 AUTOMATED ROTATING OF LOG FILES IN A WINDOWS ENVIRONMENT 55
4.2 PARSING UNIQUE ERRORS FROM A SNORT FULL ALERT FILE 56

5 APPENDIX B .. 58

5.1 UNIVERSITY LOG FILE ALERTS ... 58

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1

1 The Current State of Intrusion Detection

“It Began With a Ping”
1.0 The Fallacies

“Why would anyone hack into our network? We do not have any data worth stealing
and we have so few machines.” An associate of mine recently asked me this question
after a single machine isolated inside the DMZ of his firewall, was compromised. The
answer was simple: The machine was hacked because it could be hacked. There was
some security flaw, hole, or vulnerability in the system that allowed it to be subverted
and used for someone else’s purposes.

I remember falling into that same trap some time before with a Microsoft Windows
network to which I had access. This particular network was small. It was merely ten to
fifteen machines sharing a connection to the Internet. I fell into this trap, that is, until my
eyes were opened through a study of intrusion detection and analysis. In this paper, I
will demonstrate some of the common tools and techniques used today for intrusion
analysis in the context of a real-world hack captured on this small network. Through
this discussion, I shall illustrate the importance of thoroughness, diligence and knowing
your network in the scope of an intrusion analysts’ duties as well asdriving home the
point that complacency is our worst enemy.

1.1 WinDump: Harvesting the Data

At the time of the event in question, I was manually rotating my WinDump logs every
morning. According to the Politecnico di Torino website which hosts the software,
WinDump is: “the porting to the Windows platform of tcpdump, the most used network
sniffer/analyzer for UNIX...[WinDump] is fully compatible with tcpdump and can be used
to watch and diagnose network traffic according to various complex rules...WinDump is
free and released under a BSD-style license.”1 Tcpdump version 3.7 actually
introduced the capability to handle log rotation, but the current release of WinDump at
the time of this writing is based upon tcpdump version 3.5.2, which does not. An
example script and method to handle WinDump log rotation in a Windows environment
can be found in Appendix A.

WinDump’s place in this network was to capture and log all incoming and outgoing
traffic in binary format for later review. This would create an audit trail for what had
happened on our network during the previous day. In this environment, WinDump was
run with the “-s 1500” and “-w <file>” options.

According to the WinDump manual, “-s 1500” is used to expand the default packet
capture size in bytes, known as the snaplen, to 1500.2 In her presentation on
fragmentation theory, security analyst Judy Novak states that 1500 bytes is the

1 Politecnico di Torino. “WinDump: tcpdump for Windows.”
2 Politecnico di Torino. “Windump Manual.”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

maximum size for an IP datagram3. Thus, this option ensured that full packets were
captured as they traversed the network.

The WinDump manual also states that the “-w <file>” option will cause the application to
“write the raw packets to file rather than parsing and printing them out. They can later
be printed with the -r option.”4 This allowed us to do post processing of the data offline.
As a word of caution, on this small, low-volume network, WinDump captured an average
of three hundred megabytes of data per day. In a larger environment, this setup would
most likely not be a scalable solution without addressing space and bandwidth
utilization.

1.1.0 The Anatomy of WinDump Text Output

The options presented thus far allow WinDump to log packets in its binary format. Later
in this paper, we will see WinDump used with filters to deliver specific subsets of
packets in a text-based format. A breakdown of typical WinDump TCP text output
(adapted from a description found in Intrusion Signatures and Analysis for tcpdump5)
can be seen below in Figure 1.

Figure 1 - Typical WinDump TCP Text Output

1.2 Snort: Finding Needles in the Haystack

Once the WinDump log files had been rotated, it was time to begin analysis. For this
task, I turned to Snort. The official Snort website describes Snort as: “a lightweight
network intrusion detection system, capable of performing real-time traffic analysis and
packet logging on IP networks…Snort uses a flexible rules language to describe traffic
that it should collect or pass, as well as a detection engine that utilizes a modular plug-
in architecture.”6

3 Novak, p.3-4
4 Politecnico di Torino. “Windump Manual.”
5 Northcutt et al. p.2
6 Roesch et al.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

Snort is open source, free, and licensed under the GNU Public License. In addition to
its real-time analysis features, Snort possesses the capability to read in packet logs
written in the libpcap format (which is used by both WinDump and tcpdump). By using
Snort in this fashion, we are able to carefully analyze the network traffic from the
previous day in search of potential problems.

There are a host of different configurations available for using Snort which can be
readily reviewed in the Snort User’s Manual provided with the software at:
http://www.snort.org/dl. Up to date Windows binary versions of the Snort software are
available from: http://www.silicondefense.com/techsupport/downloads.htm. At the time
of this event, I was using Snort with an up to date rule set (found at:
http://www.snort.org/dl/signatures/), the default preprocessors, and a small library of
local rules which I had built to monitor traffic from suspicious IP addresses. I ran Snort
twice against each log file. Both configurations logged packets of interest to binary files.
The first run output in full alert mode and the second in fast alert mode (after changing
the name of the alert.ids and portscan.log files accordingly).

The purpose for running Snort offline in this fashion was to separate the capturing of the
data from the processing of the data. Data processing tends to be the most CPU
intensive part of intrusion detection. Thus offline processing of data allowed me to
perform larger and more complex analysis in Snort without a concern for CPU utilization
and the effects this would have on real-time analysis.

1.2.0 The Anatomy of a Snort Alert

Before proceeding further, it may be helpful to review the format in which Snort prints
full alerts. A typical Snort full text alert7 can be seen in Figure 2.

Alert Message Name
[**] [1:530:5] NETBIOS NT NULL session [**]

Alert Message Classification
[Classification: Attempted Information Leak] [Priority: 2]

Timestamp
01/17-06:25:55.102886

Source IP Address : Port
1.1.1.1:1256

Traffic Flow
->

Dest IP Address : Port
1.1.1.2:139

Protocol
TCP

Time To
Live
TTL:128

Type of
Service
TOS:0x0

IP ID
ID:18220

Header
Length
IpLen:20

Datagram
Length
DgmLen:214

Frag Bits
DF

TCP Flags
AP

TCP Sequence ID
Seq: 0x2827F3BF

TCP Ack
Ack: 0xBE4898EA

TCP Window Size
Win: 0x21D3

TCP Header
Length
TcpLen: 20

References to this Alert
[Xref => http://www.securityfocus.com/bid/1163]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0347]
[Xref => http://www.whitehats.com/info/IDS204]

7 Based upon Roesch, p.39.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

Figure 2 - A Typical Snort Full Text Alert

1.3 Sorting the Needles

With the log files rotated and the alert files generated, it was time to review the Snort
output. With all of the Snort rule sets active, it can generate quite a bit of traffic. Even
on a small network you can quickly fall prey to information overload unless you have a
managed, systematic approach to analysis. There are tools available to help aid in
sorting through the information, such as SnortSnarf, which takes the text-based log files
and converts them into linked HTML pages. Preferring a bit more control over my data
though, I wrote a very simple script, which usesActiveState’s Perl for Windowsand the
Cygwin Unix toolset for Windows to parse out unique alert messages from the full alerts
list and present a quick list in a text file. This script can be found in Appendix A.

At first glance, I thought it would be just another day. I would check all of the alert
messages and they would turn out to be the standard network traffic that I would see on
a daily basis. Glancing through the relatively short list, nothing really jumped out at me.
That was my first mistake.

1.4 A Needle Among Needles

So I went about business as usual. Again using the Cygwin toolset, I created text files
from the fast alert list containing each particular error message. Visually skimming
through the gaggle of ICMP PING alert messages, I searched for IP addresses not
belonging inside the network. Lo and behold, I found one. Looking a bit closer at the
message I realized that this was something new. I flipped back to the summary file I
had built. Did I miss something?

The answer was an unequivocal yes. A different type of ICMP PING had come across
the network overnight. In my haste however, I had missed it. The alert message
triggered by Snort was:

[**] ICMP PING Delphi-Piette Windows [**]

At this point my curiosity was peaked. Opening the full alerts file and searching on
“Delphi” I found the following alert:

[**] [1:372:4] ICMP PING Delphi-Piette Windows [**]
[Classification: Misc activity] [Priority: 3]
01/17-18:06:47.847936 some.bad.guy.ip -> my.local.ip.net
ICMP TTL:46 TOS:0x0 ID:35287 IpLen:20 DgmLen:84
Type:8 Code:0 ID:512 Seq:51388 ECHO
[Xref => http://www.whitehats.com/info/IDS155]

Figure 3 - Snort ICMP Delphi-Piette Alert Message

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

Noticing the reference link at the end of the alert, I hopped over to the Whitehat
arachNIDS database, which stated: “This event indicates that a ping request was sent
to your network. Ping requests are usually used to determine whether a host is
responsive, but can be misused to map your network. This particular ping was probably
generated by software using Delphi code (written by F. Piette).“8

This summary of the alert was fairly standard in comparison with other ICMP PING
summaries, with the exception of the last line about Delphi and F. Piette. Still, this was
not enough to raise serious concerns in my mind. I accepted the possibility that it could
be someone attempting to map the network and warranted further investigation.

Immediately following the summary section on the Whitehat web site was a section
called “How Specific”. In that section it was indicated that the rule associated with this
particular event was very specific.9 Checking the Snort rule set confirmed that the
content section was indeed detailed, as shown in the figure below.

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING Delphi-Piette Windows";
content:"|50696e67696e672066726f6d2044656c|"; itype:8; depth:32; reference:arachnids,155; sid:372;
classtype:misc-activity; rev:4;)

Figure 4 - Snort ICMP Delphi-Piette Rule

1.5 So You Found a Ping. What Now?

Using WinDump’s “–X” option for printing both hex and ASCII translations of the packet,
“-n” to not convert IP addresses to names, “-vv” for extra verbose output, and a special
filter to only display icmp data from this particular IP, I decoded the packet again. The
data in the packet revealed a surprising ASCII translation of the PING message which
precisely correlated back to the content string in the Snort rule, as shown in the
underlined portion below.

18:06:47.847936 some.bad.guy.ip > my.local.ip.net: icmp: echo request (ttl 46, id 35287, len 84)
0x0000 4500 0054 89d7 0000 2e01 8417 xxxx xxxx E..T........xxxx
0x0010 xxxx xxxx 0800 5096 0200 c8bc 5069 6e67 xxxx..P.....Ping
0x0020 696e 6720 6672 6f6d 2044 656c 7068 6920 ing.from.Delphi.
0x0030 636f 6465 2077 7269 7474 656e 2062 7920 code.written.by.
0x0040 462e 2050 6965 7474 6520 2020 2020 2020 F..Piette.......
0x0050 2020 2020

Figure 5 - WinDump ASCII Dump of ICMP Ping

Following this packet came an echo reply from the machine in question, which
happened to be a local Windows 2000 server. Some quick web research on “Delphi”
and “Piette” turned up the web site “Overbyte – Freeware by Frank Piette”. Available
from this site was a product called ICS, or Internet Connection Suite, which is described

8 Whitehat.
9 Whitehat.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

as “various Internet components and applications…distributed as freeware with full
source code for all Delphi and C++Builder versions.”10 According to the site, one of the
standard, pre-built components is “TPing” which provides “ICMP Ping support. You can
Ping a host and get the resulting info.”

Having a background in software engineering, the wheels in my mind began to draw
upon the possibility that someone could have built an application on top of this suite of
tools for more malevolent purposes. I started to wonder if this person attempted more
upon the network than just ping the fileserver. I searched the alerts files for the foreign
IP address. There were no further alerts containing that source, but was there more
than what Snort was telling me?

1.6 That Sinking Feeling

Using WinDump once again, I built a filter to show a text dump of all packets coming
from or going to the external IP address that had pinged my network. I knew that there
was something wrong when the text output, which should not have been more than one
or two kilobytes, turned out to be eight megabytes of data. This was much more than a
single ping.

1.6.0 Port 3389: The Second Volley

The text file showed that immediately following the initial ping (within 1 second of the
response from the server) a TCP SYN packet was sent to port 3389, as the trespasser
attempted to establish a connection. The server responded with a SYN-ACK,
acknowledging that something was listening on that port and ready to accept
connections. The hacker’s machine gracefully responded with a TCP ACK packet one
second later, thus completing the TCP three-way handshake and practically eliminating
the possibility that this IP address was being spoofed. Roughly one minute later, the
local server responded with an RST packet, closing the connection. The transaction is
shown in the figure below.

18:06:48.432833 some.bad.guy.ip.2699 > my.local.ip.net.3389: S [tcp sum ok]
1809622998:1809622998(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 110, id 35347, len 48)

18:06:48.433019 my.local.ip.net.3389 > some.bad.guy.ip.2699: S [tcp sum ok]
1920898890:1920898890(0) ack 1809622999 win 17520 <mss 1460,nop,nop,sackOK> (DF) (ttl 128, id
5035, len 48)

18:06:49.019275 some.bad.guy.ip.2699 > my.local.ip.net.3389: . [tcp sum ok] 1:1(0) ack 1 win 17520
(DF) (ttl 110, id 35421, len 40)

18:07:49.411456 my.local.ip.net.3389 > some.bad.guy.ip.2699: R [tcp sum ok]
1920898891:1920898891(0) win 0 (DF) (ttl 128, id 5332, len 40)

Figure 6 - TCP Connection to Port 3389

10 Piette.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

Checking my trusty Neohapsis ports list, I found that port 3389 belongs to Microsoft
terminal services.11 Just to verify this information, I checked the Microsoft support
network, which confirmed that terminal services does indeed use that port.12 Being
familiar with this particular server, I was well aware that it was running terminal services.

1.6.1 Paging NetBIOS: Please Pick Up the White Courtesy Phone

According to the WinDump log file, two seconds after sending the ACK packet
completing the three-way handshake on the terminal services port, the attacker
attempted to connect to port 139. The Neohapsis ports list identifies this port as a host
for a number of possible Trojans including Chode, God Message Worm, Msinit, Netlog,
Network, Qaz, Sadmind, and SMBRelay.13 Additionally, port 139 over TCP is well
known as the host for the Microsoft Windows NetBIOS session service. Microsoft’s
support web site officially lists port 139 as handling the following services: directory
replication, event viewer, file sharing, logon sequence, pass through validation,
performance monitor, printing, registry editor, server manager, trusts, user manager,
WinNT diagnostics, WinNT secure channel (Q150543)14 and nbsession (Q204279). 15

The local server kindly responded with a SYN-ACK packet and again the attacker reset
the connection. This transaction is shown in the figure below.

18:06:51.908697 some.bad.guy.ip.2700 > my.local.ip.net.139: S [tcp sum ok]
1809807568:1809807568(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 110, id 35796, len 48)

18:06:51.908873 my.local.ip.net.139 > some.bad.guy.ip.2700: S [tcp sum ok]
1921816835:1921816835(0) ack 1809807569 win 17520 <mss 1460,nop,nop,sackOK> (DF) (ttl 128, id
5042, len 48)

18:06:52.459715 some.bad.guy.ip.2700 > my.local.ip.net.139: R [tcp sum ok]
1809807569:1809807569(0) win 0 (ttl 110, id 35859, len 40)

Figure 7 - TCP Connection to Port 139

At the same time that this was happening, a TCP connection was attempted to port 135,
with similar results. Port 135, according to the Neohapsis list, hosts DCE endpoint
administration and NCS local location broker.16 On the other hand, Microsoft’s support
site lists port 135 as handling: DHCP manager, DNS administration, and WINS
manager on Windows NT as well as managing client/server communications, exchange
administrator, and remote procedure calls on Microsoft Exchange Server (which this
particular server happened to be running).17 To recap, in six seconds the attacker had
at a bare minimum learned that the host was alive, running Microsoft terminal services,
NetBIOS and that it possibly acted as an exchange sever with no connections to these
ports blocked into or out of the host network, but that was only the beginning.

11 Neohapsis.
12 Microsoft Product Support Services. (Q150543).
13 Neohapsis.
14 Microsoft Product Support Services. (Q150543).
15 Microsoft Product Support Services. (Q204279).
16 Neohapsis
17 Microsoft Product Support Services. (Q150543).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

1.7 Houston, We Have a Problem

Probably what were the most significant connections came next in the WinDump logs.
Starting within a second of the connection attempts to ports 139 and 135 respectively
came another connection attempt to port 139 and one to port 445. Upon establishment
of the three-way handshake to port 139, a NetBIOS session was immediately requested
(confirmed through RFC1002 that the proper flag setting for a NetBIOS session request
is 0x8118). The response from the server contained flag 0x82, which again according to
RFC1002 is the proper response for a “positive session response”. This transaction is
shown below:

18:06:52.597170 some.bad.guy.ip.2721 > my.local.ip.net.139: S [tcp sum ok]
1811733967:1811733967(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 110, id 35876, len 48)

18:06:52.597334 my.local.ip.net.139 > some.bad.guy.ip.2721: S [tcp sum ok]
1922094127:1922094127(0) ack 1811733968 win 17520 <mss 1460,nop,nop,sackOK> (DF) (ttl 128, id
5046, len 48)

18:06:53.105577 some.bad.guy.ip.2721 > my.local.ip.net.139: P [tcp sum ok] 1:73(72) ack 1 win 17520
>>> NBT Packet
NBT Session Request
Flags=0x81000044
Destination=*SMBSERVER NameType=0x20 (Server)
Source=INTRA NameType=0x00 (Workstation)
(DF) (ttl 110, id 35932, len 112)

18:06:53.105793 my.local.ip.net.139 > some.bad.guy.ip.2721: P [tcp sum ok] 1:5(4) ack 73 win 17448
>>> NBT Packet
NBT Session Granted
Flags=0x82000000
(DF) (ttl 128, id 5048, len 44)

Figure 8 - NetBIOS Session Establishment Packets

The hacker then reset the connection. On port 445 however, a connection was
established and data began to flow back and forth. This was evident in the series of
packets which followed with both the PSH and ACK flags set traveling in both directions
as shown below (only a small sampling is provided to illustrate the point.):

18:06:52.606805 some.bad.guy.ip.2720 > my.local.ip.net.445: S [tcp sum ok]
1811672593:1811672593(0) win 16384 <mss 1460,nop,nop,sackOK> (DF) (ttl 110, id 35875, len 48)

18:06:52.606981 my.local.ip.net.445 > some.bad.guy.ip.2720: S [tcp sum ok]
1922139918:1922139918(0) ack 1811672594 win 17520 <mss 1460,nop,nop,sackOK> (DF) (ttl 128, id
5047, len 48)

18:06:53.116539 some.bad.guy.ip.2720 > my.local.ip.net.445: . [tcp sum ok] 1:1(0) ack 1 win 17520 (DF)
(ttl 110, id 35934, len 40)

18:06:53.140644 some.bad.guy.ip.2720 > my.local.ip.net.445: P [tcp sum ok] 1:138(137) ack 1 win 17520
(DF) (ttl 110, id 35938, len 177)

18 Network Working Group, p.29.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

18:06:53.141354 my.local.ip.net.445 > some.bad.guy.ip.2720: P [tcp sum ok] 1:179(178) ack 138 win
17383 (DF) (ttl 128, id 5050, len 218)

Figure 9 - Connection Established and Data Transfer on Port 445

Flipping back to the Neohapsis list, we find that port 445 handles Windows 2000 server
message block (SMB) communication.19 Microsoft refers to this port as running “direct
hosted ‘NetBIOS-less’ SMB traffic” on Windows 2000. Microsoft claims that using SMB
in this fashion allows “simplification in transport of SMB, removal of WINS and NetBIOS
broadcast as a means of name resolution, and standardization of name resolution on
DNS for file and printer sharing”.20

The specifics of the data transfer moves us out of the incident analysis and detection
scope of this paper and into incident handling. That said, I will summarize this
connection and the string of subsequent connections to port 445 over the course of
several hours by stating that the Windows domain user names, groups, machine names
and shared files were enumerated and transferred to the attacking IP. A total of twelve
megabytes of information was acquired from the network.

1.8 Lessons Learned–Detecting and Preventing Future Attempts

1.8.0 Firewall Policy Change Recommendations

The first and most obvious problem on this network was the lack of an adequate firewall
policy. Todd Sabin, a member of the RAZOR team at BindView, gave a presentation on
“Windows 2000, Null Sessions and MSPC” in which he stated that the default firewall
rules should be to deny any access not specifically authorized. Sabin also
recommended that the following ports, several of which were seen in this attack, should
be blocked: 135/UDP/TCP, 137/UDP, 138/UDP, 139/TCP, 445/TCP and 593/TCP.21

Additionally, it would have been helpful to block external ICMP pings and their
associated responses at the firewall. Had these measures been in place, these
particular vulnerabilities could not have been exploited in this fashion.

1.8.1 Network Intrusion Detection Updates

The traffic, as shown within this paper does not violate the rules of the RFCs, which
pertain to NetBIOS and SMB. Thus it is my recommendation to create a network
intrusion rule that detects the end packet of the TCP three-way handshake from an
external network as well as any SMB data being sent into or out of the network. In
Snort, the way to achieve this would be:

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg: "LOCAL ALERT External
WIN2K SMB Access"; flags:A+;)

19 Neohapsis.
20 Microsoft Product Support Services. (Q315267).
21 Sabin, p.21.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

Figure 10 - Recommended Additional Snort SMB Traffic Rule

This rule has been tested against this particular attack and generated a significant
number of positive alerts, which would have lent weight to the situation in a real-time
environment.

Another technique, which I strongly recommend, is the use of IP watch lists. An IP
watch list is a rule set up to fire an alert if a specific IP address or range of IPs are seen
upon your network. A sample rule from this incident would be:

alert tcp some.bad.guy.ip any -> any any (msg: "WATCHLIST Previous Successful
Hacker";)

Figure 11 - Snort IP Watch List Example

This rule will ensure that even if our hacker is not doing anything particularly suspicious,
Snort will inform us so as to be aware. Also note that this rule only encompasses TCP
traffic. It can be duplicated to include UDP and ICMP packets as necessary. We
certainly want to know if our hacker returns.

1.8.2 Disabling NetBIOS Over TCP/IP

Microsoft presents several different knowledgebase archives that explain how to disable
NetBIOS over TCP/IP. Two of which are:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q204279 and
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q315267.

However, Microsoft does present a warning about performing this operation. Both of
these articles state that “the Windows-based computer will be unable to communicate
with earlier operating systems using SMB traffic.”22

1.8.3 Microsoft Baseline Security Analyzer

Microsoft also provides a free baseline security analyzer, which can aid in ensuring your
machines are properly patched and secured. It is available via the web at:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/
mbsahome.asp.

1.9 Conclusions

The size of your network and the sensitivity of your data are not the only factors that
need to be taken into consideration when determining if a hacker might be interested in
your network. To recap, this particular network had no sensitive data and ten to fifteen
machines, sharing an Internet connection. Have no doubt that if you have machines
connected to the Internet, someone is interested in them. You should consider them at

22 Microsoft Product Support Services. (Q315267).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

risk and a potential tool for someone else to use for purposes other than those which
you have intended.

Setting up a network intrusion detection system and knowing the typical traffic you
should be sending into and out of your network lends a great deal in understanding and
determining when something is wrong or out of the ordinary. As illustrated in this paper
however, we must ensure that we do not become complacent and fail in our duty to
pursue even those small anomalies that seem to be benign. Complacency almost
caused me to miss a successful hack of a network, all because the attacker only set off
a single, seemingly benign Snort alert. The entire attack was found because it began
with nothing more than a ping.

1.10 Works Cited

Microsoft Product Support Services. “Windows NT, Terminal Server, and Microsoft
Exchange Services Use TCP/IP Ports (Q150543).” 8 August 2001. URL:
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q150543 (4 June 2002).

---. “Direct Hosting of SMB Over TCP/IP (Q204279).” 22 December 2001. URL:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q204279 (4 June
2002).

---. “The Advantages of Direct Hosting of SMB over TCP/IP (Q315267).” 24 January
2002. URL: http://support.microsoft.com/default.aspx?scid=kb;en-us;Q315267
(13 June 2002).

Neohapsis. “Ports List.” 12 June 2002. URL: http://www.neohapsis.com/neolabs/neo-
ports/ (4 June 2002).

Network Working Group. “RFC 1002: PROTOCOL STANDARD FOR A NetBIOS
SERVICE ON A TCP/UDP TRANSPORT: DETAILED SPECIFICATIONS.”
March, 1987. URL: http://www.ietf.org/rfc/rfc1002.txt?number=1002 (13 June
2002).

Novak, Judy. “IP Behavior II: Frag men ta tion.” SANS Network Intrustion In-Depth.
2000, 2001: 3-4.

Northcutt, Stephen, et al. Intrusion Signatures and Analysis. Indianapolis: New Riders
Publishing, January 2001. 2.

Piette, Frank. “Products: ICS.” Overbyte: Freeware by Frank Piette. URL:
http://overbyte.alexid.fr/frame_index.html?redirTo=/products/ics.html (4 June
2002).

Politecnico di Torino. “WinDump: tcpdump for Windows.” 28 March 2002. URL:
http://windump.polito.it/ (3 June 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

----. “Windump Manual.” Windump: tcpDump for Windows. 14 March 2002. URL:
http://windump.polito.it/docs/manual.htm (3 June 2002).

Roesch, Martin. “Intrusion Detection Snort Style.” SANS Network Intrusion In-Depth.
2000, 2001: 39.

Roesch, Martin, et al. “More Info About Snort.“ Snort - The Open Source Network
Intrusion Detection System. URL: http://www.snort.org/about.html (4 June 2002).

Sabin, Todd. “Windows 2000, Null Sessions and MSPC.” February 2001. URL:
http://razor.bindview.com/publish/presentations/files/nullsess.ppt (4 June 2002).

Whitehat. “IDS155/ICMP_PING DELPHI-PIETTE WINDOWS.”arachNIDS - The
Intrusion Event Database. URL: http://www.whitehats.com/info/IDS155 (4 June
2002).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

2 Network Detects

2.0 Detect #1–DNS Spoof False Positive

2.0.0 Event Trace

The following is the Snort alert to be analyzed:

[**] [1:254:2] DNS SPOOF query response with ttl: 1 min. and no authority [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
05/31-14:19:33.347677 my.external.dns.server:53 -> 192.168.15.100:2689
UDP TTL:117 TOS:0x0 ID:32888 IpLen:20 DgmLen:76
Len: 56

Figure 12 - Snort DNS Spoof Alert

Below is the correlating WinDump output of the event to be analyzed:

14:19:33.347677 my.external.dns.server.53 > 192.168.15.100.2689: [udp sum ok] 1 q: A?
www.google.com. 1/0/0 www.google.com. A 216.239.33.101 (48) (ttl 117, id 32888, len 76)

0x0000 4500 004c 8078 0000 7511 b6ed xxxx xxxx E..L.x..u...xxxx
0x0010 xxxx xxxx 0035 0a81 0038 1cbf 0001 8180 xxxx.5...8......
0x0020 0001 0001 0000 0000 0377 7777 0667 6f6fwww.goo
0x0030 676c 6503 636f 6d00 0001 0001 c00c 0001 gle.com.........
0x0040 0001 0000 003c 0004 d8ef 2165<....!e

Figure 13 - DNS Spoof Packet

2.0.1 Source of Trace

The source of this event was a Windows NT and Windows 2000 network using a single
class-C reserved IP addressing scheme locally with no firewall. This local network
connected to remote office DNS servers via a frame relay. The remote network used
multiple public class-C IP addresses. The overall traffic on the local network was
consistently low.

2.0.2 Detect Was Generated By

The alert for this event was generated by Snort version 1.86 with the DNS rules set last
updated May 8, 2002. WinDump logs provided correlating data and an audit trail of
packet traces for this event. The particular rule triggered by this packet is listed in figure
14. This particular Snort rule was written by Johan Augustsson in response to malicious
uses of Dug Song’s dsniff application which he stated produced two oddities
(http://archives.neohapsis.com/archives/snort/2001-01/0034.html):“1. [Dsniff] sends at
least two identical responses at a rapid pace. 2. The answers ‘Time to live’ (not the IP -
TTL) is set to 1 minute - very short time.”

alert udp $EXTERNAL_NET 53 -> $HOME_NET any (msg:"DNS SPOOF query response with ttl\: 1 min.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

and no authority"; content:"|81 80 00 01 00 01 00 00 00 00|"; content:"|c0 0c 00 01 00 01 00 00 00 3c 00
04|"; classtype:bad-unknown; sid:254; rev:2;)

Figure 14 - Snort DNS Spoof Rule

As stated in the “Source of Trace” section above, the DNS server in question was
actually part of the corporate WAN and not a part of the local LAN. Even though it was
considered to be a trusted system, it was external to the local network and thus was not
set in Snort’s $HOME_NET variable, which lists internal IP addresses and ranges. This
was done intentionally to ensure that in the event the frame relay or the remote DNS
server were compromised, the traffic would still be monitored by Snort and the on-site
analyst alerted to any suspicious activity.

The Snort alert can be broken down as follows:

Alert Message Name
[**] [1:254:2] DNS SPOOF query response with ttl: 1 min. and no authority [**]

Alert Message Classification
[Classification: Potentially Bad Traffic] [Priority: 2]

Timestamp
05/31-14:19:33.347677

Source IP Address : Port
my.external.dns.server:53

Traffic Flow
->

Dest IP Address : Port
192.168.15.100:2689

Protocol
UDP

Time To Live
TTL:117

Type of Service
TOS:0x0

IP ID
ID:32888

Header Length
IpLen:20

Datagram Length
DgmLen:76

UDP Header Length
Len: 56

Figure 15 - Snort DNS Spoof Alert Format

2.0.3 Probability the Source Address was Spoofed

Low. Given that the external server is a known system on the WAN and DNS traffic is
expected from that machine, it is unlikely that the source address was spoofed.

2.0.4 Description of Attack

Based upon the Snort alert from Figure 15, we learn that the packet in question was an
inbound UDP packet from a machine that was not part of the internal network. The
offending packet originated from port 53, which is used for DNS communications and
was bound for ephemeral port 2689 on the destination machine. It is difficult to garner
further information about the attack without turning to the WinDump logs for correlation.

Analyzing the full packet decode of the DNS response, we see that there are two
separate content sections which were matched by the Snort rule (as underlined in the
figure below):

14:19:33.347677 my.external.dns.server.53 > 192.168.15.100.2689: [udp sum ok] 1 q: A?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

www.google.com. 1/0/0 www.google.com. A 216.239.33.101 (48) (ttl 117, id 32888, len 76)

0x0000 4500 004c 8078 0000 7511 b6ed xxxx xxxx E..L.x..u...xxxx
0x0010 xxxx xxxx 0035 0a81 0038 1cbf 0001 8180 xxxx.5...8......
0x0020 0001 0001 0000 0000 0377 7777 0667 6f6fwww.goo
0x0030 676c 6503 636f 6d00 0001 0001 c00c 0001 gle.com.........
0x0040 0001 0000 003c 0004 d8ef 2165<....!e

Figure 16 - DNS Spoof Content of Interest

Reviewing pages 26-28 of RFC 1035, “Domain Names –Implementation and
Specification” (http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1035.html), the first content
section decodes as shown in Figure 17. Because DNS response flags are set at the bit
level, it is necessary to further break down some portions of this content from
hexadecimal notation into binary notation.

DNS Response Flags 0x8180 = 1000 | 0001 | 1000 | 0000

Query Response 1 = Response Packet

Type of Query 0000 = Standard Query

Authoritative Answer 0 = Non-authoritative answer

Truncation 0 = No truncation

Recursion Desired 1 = Recursion is desired

Recursion Available 1 = Recursion is available

Reserved for Future Use 000

Response Code 0000 = No error condition

Number of Entries in the
Question Section

0001 = 1 entry

Number of Resource Records
in the Answer Section

0001 = 1 entry

Number of Resource Records
in the Authority Records
Section

0000 = No entries

Number of Resource Records
in the Additional Records
Section

0000 = No entries

Figure 17 - DNS Spoof Packet Decode for Content Section #1

From this data, we learn that this packet claims to be the response to a query initiated
from the local machine. Since we have an audit trail with WinDump, we can build an
appropriate filter to verify this fact.

14:19:33.307343 192.168.15.100.2689 > my.external.dns.server.53: [udp sum ok] 1+ A?
www.google.com. [|domain] (ttl 128, id 40288, len 60)

0x0000 4500 003c 9d60 0000 8011 8f15 xxxx xxxx E..<.̀...…xxxx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

0x0010 xxxx xxxx 0a81 0035 0028 5804 0001 0100 xxxx...5.(X.....
0x0020 0001 0000 0000 0000 0377 7777 0667 6f6fwww.goo
0x0030 676c 6503 636f 6d00 0001 0001 gle.com.....

Figure 18 - DNS Query Packet Decode

As shown above, the connection was indeed initiated from the local machine. This
appears to be a valid DNS query and response, which implies that the triggered Snort
alert may be a false positive.

Continuing with the analysis, the second content section of interest is the response
record portion of the offending packet. It decodes as follows:

Name: c00c

Type: 0001 = DNS Query Type A

Class: 0001 = IN

Time to Live (in seconds): 0000 003c = 1 minute

RDLength (length in octets): 0004 = 32 bits

Rdata : d8ef 2165 = (IP Address 216.239.33.101)

Figure 19 - DNS Spoof Packet Decode for Content Section #2

A quick check of the Arin Whois network on “216.239.33.101” returns that the IP
address belongs to Google.com. Using our audit trail and checking the original DNS
query initiated, we can confirm that Google.com was the requested lookup. Therefore,
it stands to reason that this traffic was not malicious and we are dealing with a false
positive stemming from a server that had a non-authoritative answer to the DNS request
and a very low time to live for the DNS response.

2.0.5 Attack Mechanism

According to a newsgroup post made by Johannes Erdfelt, a network security
professional for Mindspring Enterprises, DNS spoofing is simply “tricking the DNS
system into believing [a] domain name is something other than it really is.” His article,
entitled “Everything you ever wanted to know about DNS Spoofing” can be found at:
http://www.the-project.org/admins/0797/msg00070.html.

DNS spoofing is accomplished by causing a machine that has initiated a DNS lookup to
accept falsified information. This information will then be used by the requestor to direct
the client to the site of the malicious users’ choice. In his paper “The Achilles Heel of
DNS,” (http://rr.sans.org/DNS/achilles.php) Christopher Irving writes at length about
DNS security, stating:

“…the DNS protocol has virtually no authentication method built into it.
There is nothing in the protocol that provides a means to ensure that the
requesting client is who it says it is or that the replying name server is a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

real name server. The message headers of a DNS query and response
do contain a 16-bit identification field but it is mostly used for matching
queries with responses. If an attacker can successfully predict future
values of the identification number, he could fool a DNS client into
accepting a false reply as the real one”

There are several purposes for which malicious users would want to spoof a DNS
query. By setting up mock sites that appear to be the same as the actual sites and then
redirecting traffic to the fake site, malicious hackers can trick unsuspecting users into
providing passwords, credit card information, or other sensitive information. This
information can be harvested and then used against the site or the user at a later time.
DNS spoofing attacks could also be used for political means by redirecting users away
from legitimate political sites to sites brandishing anything from negative content and
commentary about individual candidates, parties, or platforms to pornographic and other
sundry material.

2.0.6 Correlations

According to the Dshield.org list of top 10 ports attacked at the time of this writing
(http://www.dshield.org/topports.html), port 53 is the sixth most attacked port. This
shows the importance and criticality of investigating suspicious DNS traffic.

Similar traffic which generated the same Snort alert:
RPG. “[Snort-users] help with "DNS SPOOF" incidents.” Snort-users Mailing List. 30
May, 2001. URL: http://www.geocrawler.com/mail/thread.php3?subject=%5BSnort-
users%5D+help+with+%22DNS+SPOOF%22+incidents&list=4890

Information about DNS spoofing and the particular rule fired by Snort:
Augustsson, Johan. “Identifying dnsspoff.” 5 January 2001. URL:
http://archives.neohapsis.com/archives/snort/2001-01/0060.html (17 June 2002).

More information about DNS spoofing:
Patrick, Michael.“Has Your Domain Been Hijacked Lately?” 15 February 2001. URL:
http://rr.sans.org/DNS/hijacked.php (18 June 2002).

Information on the security problems with DNS:
Irving, Christopher. “The Achilles Heel of DNS.” 2 August 2001. URL:
http://rr.sans.org/DNS/achilles.php (17 June 2002).

Information on the DNS standard:
Mockapetris, P. “RFC 1035: DOMAIN NAMES - IMPLEMENTATION AND
SPECIFICATION.” November 1987. URL: http://www.cis.ohio-state.edu/cgi-
bin/rfc/rfc1035.html (17 June 2002).

Mitre Common Vulnerabilities and Exposures listings correlating to DNS spoofing:
CVE-1999-0024– “DNS cache poisoning via BIND, by predictable query IDs.”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

CVE-2000-0335– “The resolver in glibc 2.1.3 uses predictable IDs, which allows a local
attacker to spoof DNS query results.”
CVE-2000-0517– “Netscape 4.73 and earlier does not properly warn users about a
potentially invalid certificate if the user has previously accepted the certificate for a
different web site, which could allow remote attackers to spoof a legitimate web site by
compromising that site's DNS information.”

2.0.7 Evidence of Active Targeting

Given that the request was initiated by a local machine to the remote DNS server, this
alert was legitimate, active targeting of the local machine.

2.0.8 Severity

Criticality: 1–The local machine is an end-user workstation and is not providing any
DNS services to the network.

Lethality: 1–Had this been an actual, successful attack against the end-user
workstation, ramifications and damage would have been minimal. Given that the user
was searching for Google.com, it is unlikely that if the site were hijacked the user could
have been duped into submitting sensitive information. The larger concern at that point
would be the security of the remote DNS server and the frame relay between the sites.

System Countermeasures: 4–This end-user workstation was a Windows NT
operating system which was patched regularly, running only necessary services, and
up-to-date anti-virus software. A maximum security rating of 5 for the system could be
achieved by implementing a host-based firewall.

Network Countermeasures: 1–There was no firewall in place. The router allowed
most traffic through, as it assumed a trusted relationship over the frame relay to the
remote site. There was a sniffer and a network intrusion detection system running on
the local network, but these were not active countermeasures.

Severity = (1+1)–(4+1) = -3

2.0.9 Defensive Recommendations

With the exception of a host-based firewall, this particular system is well maintained.
The network however, is severely lacking in security. Preferably a firewall should be
implemented. If a firewall is not going to be installed, then the router should be
reconfigured to narrow the inbound and outbound traffic to only that which is necessary.

2.0.10 Multiple Choice Test Question

14:19:33.347677 my.external.dns.server.53 > 192.168.15.100.2689: [udp sum ok] 1 q: A?
www.google.com. 1/0/0 www.google.com. A 216.239.33.101 (48) (ttl 117, id 32888, len 76)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

0x0000 4500 004c 8078 0000 7511 b6ed xxxx xxxx E..L.x..u...xxxx
0x0010 xxxx xxxx 0035 0a81 0038 1cbf 0001 8180 xxxx.5...8......
0x0020 0001 0001 0000 0000 0377 7777 0667 6f6fwww.goo
0x0030 676c 6503 636f 6d00 0001 0001 c00c 0001 gle.com.........
0x0040 0001 0000 003c 0004 d8ef 2165<....!e

In the above DNS packet, the 0x81 in the 30th byte offset represents which of the
following DNS flag sets?

a. Inverse Query / Response Packet
b. Standard Query / Response Packet
c. Inverse Query / Query Packet
d. Standard Query / Query Packet

The correct answer is b. Standard Query / Response Packet.

2.1 Detect #2–ICMP Source Quench

2.1.0 Event Trace

The following are the Snort alerts to be analyzed:

[**] [1:477:1] ICMP Source Quench [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
05/17-07:53:47.313120 192.168.20.10 -> 192.168.50.88
ICMP TTL:254 TOS:0x0 ID:58692 IpLen:20 DgmLen:56
Type:4 Code:0 SOURCE QUENCH

[**] [1:477:1] ICMP Source Quench [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
05/17-07:53:49.393151 192.168.20.10 -> 192.168.50.88
ICMP TTL:254 TOS:0x0 ID:59061 IpLen:20 DgmLen:56
Type:4 Code:0 SOURCE QUENCH

[**] [1:477:1] ICMP Source Quench [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
05/17-07:53:52.194037 192.168.20.10 -> 192.168.50.88
ICMP TTL:254 TOS:0x0 ID:59564 IpLen:20 DgmLen:56
Type:4 Code:0 SOURCE QUENCH

Figure 20 - Snort ICMP Source Quench Alerts

Below is the correlating WinDump output of the event to be analyzed:

07:53:47.313120 192.168.20.10 > 192.168.50.88: icmp: source quench for 192.168.50.88.5518 >
192.168.40.8.691: [|tcp] (DF) (ttl 126, id 30802, len 64) (ttl 254, id 58692, len 56)

0x0000 4500 0038 e544 0000 fe01 5692 xxxx xxxx E..8.D..xxxx
0x0010 xxxx xxxx 0400 309a 0000 0000 4500 0040 xxxx..0.....E..@
0x0020 7852 4000 7e06 721a xxxx xxxx xxxx xxxx xR@.~.r.xxxxxxxx
0x0030 158e 02b3 6313 5011c.P.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

07:53:49.393151 192.168.20.10 > 192.168.50.88: icmp: source quench for 192.168.50.88.5518 >
192.168.40.8.691: [|tcp] (DF) (ttl 126, id 30816, len 64) (ttl 254, id 59061, len 56)

0x0000 4500 0038 e6b5 0000 fe01 5521 xxxx xxxx E..8......U!xxxx
0x0010 xxxx xxxx 0400 309a 0000 0000 4500 0040 xxxx..0.....E..@
0x0020 7860 4000 7e06 720c xxxx xxxx0c6d 3205 x`@.~.r.xxxxxxxx
0x0030 158e 02b3 6313 5011c.P.

07:53:52.194037 192.168.20.10 > 192.168.50.88: icmp: source quench for 192.168.50.88.5518 >
192.168.40.8.691: [|tcp] (DF) (ttl 126, id 30829, len 64) (ttl 254, id 59564, len 56)

0x0000 4500 0038 e8ac 0000 fe01 532a xxxx xxxx E..8......S*xxxx
0x0010 xxxx xxxx 0400 309a 0000 0000 4500 0040 xxxx..0.....E..@
0x0020 786d 4000 7e06 71ff xxxx xxxx xxxx xxxx xm@.~.q.xxxxxxxx
0x0030 158e 02b3 6313 5011c.P.

Figure 21 - ICMP Source Quench Packets

2.1.1 Source of Trace

The source of this event was a Windows and Linux hybrid network using a single class-
C reserved IP addressing scheme that connected to a mail server on the WAN via
frame relay. The remote network used multiple public class-C IP addresses.
192.168.20.10 was a border router on the far end of the WAN. 192.168.50.88 was a
Windows 2000 machine on the LAN. 192.168.40.8 was the remote mail server.

2.1.2 Detect Was Generated By

The alert for this event was generated by Snort version 1.86 with the ICMP rules set last
updated October 30, 2001. WinDump logs provided correlating data and an audit trail of
packet traces for this event. The particular rule triggered by this packet is listed in figure
22.

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Source Quench"; itype: 4; icode: 0;
classtype:bad-unknown; sid:477; rev:1;)

Figure 22 - Snort ICMP Source Quench Rule

As stated in the “Source of Trace” section above, the mail server was part of the
corporate WAN and not a part of the local LAN. Even though it was considered to be a
trusted system, it was external to the local network and thus was not set in Snort’s
$HOME_NET variable, which lists internal IP addresses and ranges. This was done
intentionally to ensure that in the event either the frame relay or the mail server were
compromised, the traffic would still be monitored by Snort and the on-site analyst
alerted to any suspicious activity.

The Snort alert can be broken down as follows:

Alert Message Name
[**] [1:477:1] ICMP Source Quench [**]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

Alert Message Classification
[Classification: Potentially Bad Traffic] [Priority: 2]

Timestamp
05/17-07:53:47.313120

Source IP Address
192.168.20.10

Traffic Flow
->

Dest IP Address
192.168.50.88

Protocol
ICMP

Time To Live
TTL:254

Type of Service
TOS:0x0

IP ID
ID:58692

Header Length
IpLen:20

Datagram Length
DgmLen:56

ICMP Type & Code
Type:4 Code:0 SOURCE QUENCH

Figure 23 - Snort ICMP Source Quench Alert Format

2.1.3 Probability the Source Address was Spoofed

None. As shown in the correlating audit trail below, the TCP three-way handshake had
already been completed and data was passing between the two before the source
quench message was received.

07:38:47.204994 192.168.50.88.5518 > 192.168.40.8.691: P [tcp sum ok] 456:480(24) ack 1 win 17520
(DF) (ttl 128, id 28181, len 64)

07:38:47.411999 192.168.40.8.691 > 192.168.50.88.5518: . [tcp sum ok] 1:1(0) ack 480 win 17040 (DF)
(ttl 117, id 25520, len 40)

07:43:47.228209 192.168.50.88.5518 > 192.168.40.8.691: P [tcp sum ok] 480:504(24) ack 1 win 17520
(DF) (ttl 128, id 29109, len 64)

07:43:47.518257 192.168.40.8.691 > 192.168.50.88.5518: . [tcp sum ok] 1:1(0) ack 504 win 17016 (DF)
(ttl 117, id 31246, len 40)

07:48:47.251443 192.168.50.88.5518 > 192.168.40.8.691: P [tcp sum ok] 504:528(24) ack 1 win 17520
(DF) (ttl 128, id 30003, len 64)

07:48:47.491793 192.168.40.8.691 > 192.168.50.88.5518: . [tcp sum ok] 1:1(0) ack 528 win 16992 (DF)
(ttl 117, id 36168, len 40)

Figure 24 - Data Transfer Packet Trace

2.1.4 Description of Attack

Based upon the Snort alert in Figure 23, we are told that we are dealing with ICMP
traffic coming from a border router on the WAN, bound for a machine inside the LAN.
The border router is attempting to inform the LAN machine that it needs to slow down in
the sending of traffic to some machine on the WAN.

Double-checking this information in the WinDump packets logged, we find that all three
packets contain a 0x01 in the 9th byte offset field. This confirms that the protocol was
set for ICMP. Starting in the 20th byte offset, we find 0x0400. These two bytes refer to
the ICMP type (0x04) and the ICMP code (0x00). Together they lead us to believe that
we are looking at an ICMP source quench message.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

RFC 792, “INTERNET CONTROL MESSAGE PROTOCOL”
(http://www.faqs.org/rfcs/rfc792.html pgs 10-11) tells us that the internet header and 64
bits of the original data causing this packet should be included as part of the source
quench message. Therefore, we pull from the correlating WinDump logs this data
contained within all three packets. It appears as shown in the figure below:

Packet #1 (07:53:47.313120)

4500 0040 7852 4000 7e06 721a xxxx xxxx
xxxx xxxx 158e 02b3 6313 5011

Packet #2 (07:53:49.393151)

4500 0040 7860 4000 7e06 720c xxxx xxxx
xxxx xxxx 158e 02b3 6313 5011

Packet #3 (07:53:52.194037)

4500 0040 786d 4000 7e06 71ff xxxx xxxx
xxxx xxxx 158e 02b3 6313 5011

Figure 25–ICMP Source Quench Additional Data

Decoding the information available, we first notice that in the 8th byte offset we find
0x7e, which gives us a high time to live value of 126. According to Project Honeynet’s
list of operating system fingerprints (http://project.honeynet.org/papers/finger/traces.txt),
the default time to live value for a Microsoft Windows 2000 machine is 128. We can
thus confirm that the traffic is being spoofed, these packets only traveled the expected
two hops through the LAN router and out to the WAN router. In the 9th byte offset, we
see 0x06. This tells us that the protocol of the packets the LAN machine was sending
was TCP.

Jumping down to the TCP portion of these packets, we shall skip the source and
destination ports momentarily and look at the 24th through 27th byte offsets. In all three
packets we find 0x6313 and 0x5011. These octets represent the TCP sequence
number of the packet. Given that all three are the same, combined with the spacing
over time, we can infer that this is most likely a series of retries.

Moving back to the 20th through 23rd byte offsets, we find 0x158e and 0x02b3 in all
three packets. These four octets tell us the source and destination ports are 5518 and
691, respectively. 5518 is an ephemeral port, and according to the Neohapsis ports list
(http://www.neohapsis.com/neolabs/neo-ports/neo-ports.csv), no standard applications
or Trojans utilize it. The destination port of 691 for both TCP and UDP however, is
listed as handling MS Exchange routing (msexch-routing). Thus, it would appear the
alerts were triggered on expected TCP traffic through the WAN border router,
appropriately directed for the external Microsoft Exchange mail server.

The more important question to ask at this point should be what caused the WAN
border router to become overloaded? Unfortunately, correlating data from a sensor
monitoring the traffic traveling to and from the WAN border router is not available.
While it is entirely possible that the WAN border router just became overloaded with the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

amount of normal traffic it was receiving, the network in question typically generated
very little traffic. Thus, I am more inclined to believe that it was subjected to a denial of
service attack.

2.1.5 Attack Mechanism

The intended purpose of ICMP source quench messages, as described in RFC 792, is
to be used as a method by which routers can inform hosts of a need to slow down the
speed with which they are sending data. This can be triggered by a full or nearly full
buffer capacity on the router. It continues on to state that routers may send one source
quench packet for each packet it receives. The sending host should then reduce its
sending rate until it no longer receives these messages.

If used maliciously, ICMP source quench messages with spoofed IP addresses are a
simple means of a denial of service attack. In the case of the network in this example, if
someone were able to tap into the frame relay, they could spoof the IP address of the
border router on the WAN and send ICMP source quench messages to the border
router on the LAN. This would cause the LAN border router to slow any
communications going out over the WAN, which in this case included mail, DNS, and
file exchanges.

2.1.6 Correlations

Information on Handling Network Congestion in TCP/IP:
Nagle, John. “RFC 896: Congestion Control in IP/TCP Internetworks” January 1984.
URL: http://www.faqs.org/rfcs/rfc896.html (23 June 2002).

Information on ICMP and Source Quench Standards:
Network Sorcery, Inc. “ICMP type 4, Source quench message.” URL:
http://www.networksorcery.com/enp/protocol/icmp/msg4.htm (22 June 2002).

Postel, J. “RFC 792: INTERNET CONTROL MESSAGE PROTOCOL” September 1981.
URL: http://www.faqs.org/rfcs/rfc792.html (23 June 2002).

Wollman, Garrett. “ICMP source quench - deprecated?” net@FreeBSD.org Mailing List
July 2001. URL:
http://docs.freebsd.org/cgi/getmsg.cgi?fetch=90138+0+archive/2001/freebsd-
net/20010722.freebsd-net (23 June 2002).

Other Examples of Source Quench Alerts:
Cyberarmy Project, The. “SnortSnarf signature page – ICMP Source Quench” June
2002. URL: http://www.cyberarmy.co.kr/snort/sig/sig11.html (22 June 2002).

Vianna, Vinicius. “ICMP Source Quench - Can it be some flood attack?” Neohapsis
Incidents Mailing List. September 2000. URL:
http://archives.neohapsis.com/archives/incidents/2000-09/0017.html (22 June 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

Source Quench as a Denial of Service Attack:
Oquendo, J. “Theories on new DoS Attacks v.1.”URL: http://www.antioffline.com/TID/
(22 June 2002).

Source Quench Evidence of a DOS Attack:
Bleek, Thomas. “[FW1] intrusion/scan with icmp-source-quench?” FW-1 Mailing List.
July 1999. URL: http://www.shmoo.com/mail/fw1/jul99/msg00408.html (23 June 2002).

There are currently no CVE entries involving generalized ICMP source quench attacks.

2.1.7 Evidence of Active Targeting

The traffic came from the WAN border router and was destined for a machine on the
local LAN attempting to communicate with a mail server on the WAN. The packets
were indeed actively targeted for the LAN machine, but they are legitimate. The larger
question is whether or not the WAN border router was actively subjected to a denial of
service attack, which cannot be determined with the available evidence.

2.1.8 Severity

There are two different scenarios here for which we can calculate the severity. The first
is the severity of a source quench attack against the LAN machine and the second is a
denial of service attack against the WAN border router.

2.2.9.1 Severity of a Source Quench Attack Against the LAN Machine

Criticality: 1–The LAN machine is an end-user workstation.

Lethality: 2–Assuming that the LAN machine noted and respected the ICMP source
quench message, that individual workstation could have had its ability to gain email and
web access significantly impacted.

System Countermeasures: 4–This end-user workstation was a Windows 2000
operating system which was patched regularly, running only necessary services, and
up-to-date anti-virus software. A maximum security rating of 5 for the system could be
achieved by implementing a host-based firewall.

Network Countermeasures: 1–There was no firewall in place. The router allowed
most traffic through, as it assumed a trusted relationship over the frame relay to the
remote site. There was a sniffer and a network intrusion detection system running on
the local network, but these were not active countermeasures.

Severity of Source Quench Attack Against the LAN Machine = (1+2)–(4+1) = -2

2.2.9.2 Severity of a Source Quench Attack Against the WAN Border Router

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

Criticality: 5– The WAN border router provides access to the company’s DNS,
secondary DNS, mail server, intranet web servers and corporate file sharing for LAN
users.

Lethality: 4–90% of the work performed on the LAN required access to remote
customers web sites, intranets, FTP servers, terminal services, database servers and
mail servers. All of this data funneled through a single router. From a LAN perspective
this is more likely a lethality of 5, but from an overall corporate view the lethality of
DoSing the router would only affect one branch of users and thus be only a 4.

System Countermeasures: 1–The router itself was not overly secure. It was not
using secure or encrypted password schemes and passed this information in clear text
down along the frame relay. The router was allowing most traffic to pass through. The
operating system was not up to date and logging was either not enabled or not checked.

Network Countermeasures: 1–There was no firewall in place. The router allowed
most traffic through, as it assumed a trusted relationship over the frame relay to the
remote site. There was a sniffer and a network intrusion detection system running on
the local network, but these were not active countermeasures.

Severity of Source Quench Attack Against the LAN Machine = (5+4)–(1+1) = 7

2.1.9 Defensive Recommendations

Because of the highly severe nature of a successful attack against the WAN border
router or the LAN border router, it is recommended that:

a. Update the router’s operating system
b. Enable secure passwords
c. Enable logging
d. Allocate personnel to monitor logs
e. Establish firewalls inside the network and significantly restrict access

If possible, it would also seem prudent to establish IPSec or VPN communications
between the two routers. This way, if the frame relay was to become compromised it
would be possible to have another layer of security protecting data.

2.1.10 Multiple Choice Test Question

When an ICMP Source Quench packet is sent, the internet header and what number
bits are provided from the original packet is:

a. 16
b. 32
c. 64
d. 128

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

The correct answer is c. 64 bits.

2.2 Detect #3–Network Misconfiguration

2.2.0 Event Trace

This trace is actually a series of events tracked on the network. The detects shown
below are one set of traces in the series that mirrored the behavior of these packets.

The following is the Snort alert to be analyzed:

05/15-04:24:29.046034 [**] [1:473:1] ICMP redirect net [**] [Classification: Potentially Bad Traffic]
[Priority: 2] {ICMP} 172.19.1.1 -> 192.168.79.23

05/15-04:24:29.050017 [**] [1:473:1] ICMP redirect net [**] [Classification: Potentially Bad Traffic]
[Priority: 2] {ICMP} 172.19.1.1 -> 192.168.79.23

05/15-04:24:29.057979 [**] [1:473:1] ICMP redirect net [**] [Classification: Potentially Bad Traffic]
[Priority: 2] {ICMP} 172.19.1.1 -> 192.168.79.23

… (duplicate alerts advancing in milliseconds removed for brevity)

05/15-04:24:29.337950 [**] [1:473:1] ICMP redirect net [**] [Classification: Potentially Bad Traffic]
[Priority: 2] {ICMP} 172.19.1.1 -> 192.168.79.23

05/15-04:24:29.345923 [**] [1:449:4] ICMP Time-To-Live Exceeded in Transit [**] [Classification: Misc
activity] [Priority: 3] {ICMP} 172.19.1.1 -> 192.168.79.23

Figure 26 - Snort ICMP Redirect and TTL Exceeded Alerts

Below is the correlating WinDump output of the event to be analyzed:

04:24:29.046034 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 28, id 59357, len
44) (ttl 254, id 3331, len 56)

04:24:29.050017 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 26, id 59357, len
44) (ttl 254, id 3332, len 56)

04:24:29.057979 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 24, id 59357, len
44) (ttl 254, id 3334, len 56)

04:24:29.065954 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 22, id 59357, len
44) (ttl 254, id 3336, len 56)

04:24:29.073916 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 20, id 59357, len
44) (ttl 254, id 3338, len 56)

04:24:29.081884 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 18, id 59357, len
44) (ttl 254, id 3340, len 56)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

04:24:29.186750 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 16, id 59357, len
44) (ttl 254, id 3342, len 56)

04:24:29.194718 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 14, id 59357, len
44) (ttl 254, id 3344, len 56)

04:24:29.202679 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 12, id 59357, len
44) (ttl 254, id 3346, len 56)

04:24:29.210640 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 10, id 59357, len
44) (ttl 254, id 3348, len 56)

04:24:29.218601 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 8, id 59357, len
44) (ttl 254, id 3350, len 56)

04:24:29.226569 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 6, id 59357, len
44) (ttl 254, id 3352, len 56)

04:24:29.234553 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 4, id 59357, len
44) (ttl 254, id 3354, len 56)

04:24:29.337950 172.19.1.1 > 192.168.79.23: icmp: redirect ext.norton.server.net to net
ext.norton.server.net for 192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 2, id 59357, len
44) (ttl 254, id 3356, len 56)

04:24:29.345923 172.19.1.1 > 192.168.79.23: icmp: time exceeded in-transit for 192.168.79.23.1313 >
ext.norton.server.net.38293: udp 16 [ttl 1] (id 59357, len 44) [tos 0xc0] (ttl 254, id 3358, len 56)

Figure 27–WinDump ICMP Redirect and TTL Exceeded Packets

2.2.1 Source of Trace

The source of this event was a Windows hybrid network using a single class-C reserved
IP addressing scheme that connected to a WAN via frame relay. The remote network
used multiple public class-C IP addresses. 172.19.1.1 was a border router on the far
end of the WAN. 192.168.79.23 was a machine on the LAN. Ext.norton.server.net was
a Norton Antivirus server on the WAN.

2.2.2 Detect Was Generated By

The alert for these events were generated by Snort version 1.86 with the ICMP rules set
last updated October 30, 2001 and the ICMP-INFO rules set last updated October 30,
2001. WinDump logs provided correlating data and an audit trail of packet traces for this
event. The particular rules triggered by these packets are listed in figure 28.

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP redirect net";itype:5;icode:0;
reference:arachnids,199; reference:cve,CVE-1999-0265; classtype:bad-unknown; sid:473; rev:1;)

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Time-To-Live Exceeded in Transit";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

itype: 11; icode: 0; sid:449; classtype:misc-activity; rev:4;)

Figure 28 - Snort ICMP Source Quench Rule

As stated in the “Source of Trace” section above, the Norton Antivirus server and the
border router were part of the corporate WAN and not a part of the local LAN. Even
though they were considered to be trusted systems, they were external to the local
network and thus was not set in Snort’s $HOME_NET variable, which lists internal IP
addresses and ranges. This was done intentionally to ensure that in the event the
frame relay or any remote systems were compromised, the traffic would still be
monitored by Snort and the on-site analyst alerted to any suspicious activity.

The Snort alert, shown in fast alert mode, can be broken down as follows:

Alert Message Time
05/15-04:24:29.046034

Alert Message Name
[**] [1:473:1] ICMP redirect net [**]

Alert Message Classification
[Classification: Potentially Bad Traffic] [Priority: 2]

Protocol
{ICMP}

Source IP Address
172.19.1.1

Traffic Flow
->

Dest IP Address
192.168.79.23

Figure 29 - Snort ICMP Source Quench Alert Format

The associated WinDump data can be broken down as follows:

Alert Message Time
05/15-04:24:29.046034

Source IP Address
172.19.1.1

Traffic Flow
->

Dest IP Address
192.168.79.23:

Protocol
icmp:

ICMP Message Type
redirect

ICMP Message
ext.norton.server.net to net ext.norton.server.net for
192.168.79.23.1313 > ext.norton.server.net.38293: udp 16 (ttl 28, id
59357, len 44)

Time to Live
254

IP Identification
id 3331

Datagram Length
len 56

Figure 30–WinDump ICMP Packet Dump Format

2.2.3 Probability the Source Address was Spoofed

None. While it is not difficult to spoof ICMP packets, the frame relay would have to be
compromised in order to receive a packet that is only one hop away (as evident by the
ICMP time-to-live value of 254). This would imply that the malicious machine or router
were actually on the same segment of the frame relay. It would also be possible, once

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

the number of hops to the LAN machine were known, to craft packets with non-standard
time-to-live values and spoof the WAN border router’s IP address. These packets could
be built in such a way as to appear to only be coming from a single hop away.

Because of the LAN audit trail provided by WinDump however, it was possible to build a
filter to search for the original packet which the ICMP redirect messages claim to have
initiated the communications. The original packet did exist as shown in the figure
below:

04:24:28.977026 192.168.79.23.1313 > ext.norton.server.net.38293: [udp sum ok] udp 16 (ttl 32, id
59357, len 44)

Figure 31 - WinDump UDP Packet Log

2.2.4 Description of Attack

In RFC 792, “INTERNET CONTROL MESSAGE PROTOCOL”
(http://www.faqs.org/rfcs/rfc792.html pgs 12-13), we learn that the “ICMP redirect”
message serves as a gateway or router’s method to inform a host that there is a more
efficient path to use in the future order to get packets to an intended destination. The
router however, still forwards the initial packet on to its proper location. This message
should only be sent by gateway devices.

The same document describes “ICMP time-to-live exceeded in transit”, as a message
sent to the originating host when a gateway finds a packet with a TTL value of “0” or
when a remote host times out on fragment reassembly.

Staring with the Snort alerts, we are only told that the WAN border router is telling the
LAN machine to redirect its traffic over and over again. The time that elapses while this
is happening is approximately one second.

icmp: redirect ext.norton.server.net to net ext.norton.server.net for 192.168.79.23.1313 >
ext.norton.server.net.38293: udp 16 (ttl 28, id 59357, len 44)

Figure 32 - ICMP Redirect Message Specific Information

Focusing on the ICMP redirect message-specific information provided by the WinDump
packet logs, we add to the Snort alert information that the LAN machine was being told
to redirect all traffic to the Antivirus server directly to that machine, as opposed to
through the WAN border router. This implies that the router believes the two machines
are on the same segment. We also learn that this message is in response to a UDP
packet sent to port 38293, which a quick check of the Neohapsis ports list
(http://www.neohapsis.com/neolabs/neo-ports/neo-ports.csv) tells us is the port used for
Norton Anti-Virus Host Discovery. This is in line with traffic we expect to see traveling to
that particular WAN machine.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

Next we note that the IP identification and datagram length of the copied packet in the
ICMP redirect message does not change throughout the entire series. We can also
note the pattern of the time-to-live value of the copied packets. The time-to-live
decrements with every ICMP redirect message. This implies that the WAN border
router kept seeing the packet over and over again. When the time-to-live value finally
expired (reached zero) WinDump logged the ICMP time-to-live exceeded in transit
packet.

What appears to be happening is that the configuration of the WAN border router has
changed. For some reason it now falsely believes that the Anti-virus server is part of
the LAN and the following steps are taking place:

1. As a single packet from the LAN attempts to reach the Anti-virus server, it
passes through the LAN border router and the time-to-live is decremented
by one.

2. The packet reaches the WAN border router, where the time-to-live is
decremented again.

3. The WAN border, incorrectly believing that the Anti-virus server is on the
LAN, sends an ICMP redirect message to the originating LAN host.

4. The ICMP redirect message, since it is destined for the originating LAN
host, passes through the LAN border router and the time-to-live is
decremented by one. This gives us a time-to-live value of 254 in the
ICMP packet.

5. The original redirected packet reaches the LAN border router and is
decremented by one.

6. This router however, knows that the Anti-virus server is on the WAN and
forwards the packet back to the WAN border router.

7. Return to step #2 until the time-to-live value is 0, then send an ICMP time-
to-live exceeded in transit.

This erroneous configuration would indeed generate a pattern similar to the one shown
here. This does not appear to be a direct attack. However, it is possible that this could
be the result of a successful hack and reconfiguration of the WAN border router. The
logs for the WAN border router were not available. As a side observation, this problem
also created a denial of service situation for users on the LAN, whose access to the
WAN were significantly reduced because of the volume of packets traveling back and
forth.

2.2.5 Attack Mechanism

An ICMP redirect attack can be mounted for several reasons. By successfully
convincing a host or router to use an alternate gateway first instead of its intended
gateway, malicious users could sniff traffic off the wire before forwarding it along its
way. A denial of service attack could be accomplished by reconfiguring a host or router
to believe that external addresses are internal to its network, as was the case in this

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

trace or to believe that packets needed to be routed to an internal, non-existent IP
address.

2.2.6 Correlations

Winfreez is a sample tool which uses ICMP redirect messages to create a denial of
service attack. As shown in the figure below (taken from Glenn Pitcher’s post located
at: http://lists.insecure.org/incidents/2002/Apr/0126.html), the Winfreez attack attempts
to reroute the destination IP to a different IP. Additionally, the TTL value of the initial
packet does not change and the IP ID does not remain constant. These are all
significant differences from the information presented in this detect.

04/25/2002 00:23:17.764138 0:60:8:a:69:c1 0:60:8:93:91:c8 ip 70: xxx.xxx.173.2 > xxx.xxx.173.8: icmp:
redirect 10.13.0.1 to host xxx.xxx.173.1 for xxx.xxx.173.8 > 10.13.0.1: icmp: echo request (ttl 126, id
38819, len 84) (ttl 128, id 63088, len 56)
04/25/2002 00:23:17.773256 0:60:8:a:69:c1 0:60:8:93:91:c8 ip 70: xxx.xxx.173.2 > xxx.xxx.173.8: icmp:
redirect 10.13.0.4 to host xxx.xxx.173.1 for xxx.xxx.173.8 > 10.13.0.4: icmp: echo request (ttl 126, id
39075, len 84) (ttl 128, id 63344, len 56)
04/25/2002 00:23:17.774036 0:60:8:a:69:c1 0:60:8:93:91:c8 ip 70: xxx.xxx.173.2 > xxx.xxx.173.8: icmp:
redirect 10.13.0.4 to host xxx.xxx.173.1 for xxx.xxx.173.8 > 10.13.0.4: icmp: echo request (ttl 126, id
39331, len 84) (ttl 128, id 63600, len 56)

Figure 33 - Winfeez Packet Dump

Information on ICMP Redirect Denial of Service Attacks and Windows NT:
Microsoft Product Support Services. “ICMP Redirect Attack Causes Windows NT Server
and Workstation to Hang (Q225344)” 11 June 2002. URL:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q225344 (24 June 2002).

Information on ICMP Redirect Behavior:
Farrow, Rick. “ICMP Stands for Trouble” 15 September 2000. URL:
http://www.networkmagazine.com/article/NMG20000829S0003 (24 June 2002).

Microsoft Product Support Services. “Explanation of ICMP Redirect Behavior
(Q195686)” 10 August 2001. URL:
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q195686 (24 June 2002).

Postel, J. “RFC 792: INTERNET CONTROL MESSAGE PROTOCOL” September 1981.
URL: http://www.faqs.org/rfcs/rfc792.html (23 June 2002).

Mitre Common Vulnerabilities and Exposures listings correlating to ICMP Redirect:
CVE-1999-0265 - ICMP redirect messages may crash or lock up a host.
CAN-1999-1254 - Windows 95, 98, and NT 4.0 allow remote attackers to cause a
denial of service by spoofing ICMP redirect messages from a router, which causes
Windows to change its routing tables.

2.2.7 Evidence of Active Targeting

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

There is no evidence of malicious targeting in this detect.

2.2.8 Severity

Criticality: 1–The LAN machine is an end-user workstation.

Lethality: 1–Had this been a successful, targeted attack against the local LAN system,
it would not have been able to communicate with one of several Norton Anti-virus
servers. There were other Anti-virus servers which acted as backups.

System Countermeasures: 4–This end-user workstation was a Windows 2000
operating system which was patched regularly, running only necessary services, and
up-to-date anti-virus software. A maximum security rating of 5 for the system could be
achieved by implementing a host-based firewall.

Network Countermeasures: 1–There was no firewall in place. The router allowed
most traffic through, as it assumed a trusted relationship over the frame relay to the
remote site. There was a sniffer and a network intrusion detection system running on
the local network, but these were not active countermeasures.

Severity = (1+1)–(4+1) = -3

2.2.9 Defensive Recommendations

If practical, a host-based firewall should be implemented. A network-based firewall
should absolutely be implemented.

2.2.10 Multiple Choice Test Question

According to the ICMP standards, who is authorized to send ICMP redirect messages?

a. Firewalls
b. Hosts
c. Gateways
d. All of the Above

The correct answer is: c. Gateways.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

3 Analyze This

3.0 Executive Summary

Following is a report and summary analysis of the University’s combined intrusion
detection system logs over the five-day periods from 16 June through 20 June, 2002
and 4 April through 8 April, 2002. In total, there were over 6.6 million events logged by
the intrusion detection systems during this period.

Provided in this report can be found the critical alerts of interest and information about
these alerts, the most active IP addresses internally and externally, as well as the most
common services being logged. Amplifying information is provided about a number of
internal and external IP addresses which seem to be demonstrating suspicious activity
on your network. Also contained within this report is a profile of common host and
network services, inferred from the event logs. This list should be provided to your
system administrators to validate that these services are indeed approved and
operating legitimately on the given hosts.

Finally, a brief description of the analysis process is provided for your review. Should
you have any questions concerning any of this information, please do not hesitate to
contact us.

3.1 Files to Be Analyzed

Out of Spec Files** Alert Files Scan Files

oos_Apr.4.2002.gz
oos_Apr.5.2002.gz
oos_Apr.6.2002.gz
oos_Apr.7.2002.gz
oos_Apr.8.2002.gz

alert.020616.gz
alert.020617.gz
alert.020618.gz
alert.020619.gz
alert.020620.gz

scans.020616.gz
scans.020617.gz
scans.020618.gz
scans.020619.gz
scans.020620.gz

** These were the most recent Out of Spec files available.

3.2 Network Profile

Following is a profile of services believed to be running on the network, as inferred from
the type and number of alerts destined or originating from each host.

NETWORK AND HOST SERVICE PROFILE
(based upon generated alerts)

SUBNET HOSTS SERVICES
MY.NET.1 2,3,4,5 DNS
MY.NET.2 29 MSSQL
MY.NET.3 54 (Brian B.) FTP

MY.NET.5 19, 67 FTP, MSSQL,
SSH

29 HTTPS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

44 FTP, MSSQL,
SMTP

80 DNS
20, 64 MSSQL
82 DNS, Unix RPC
92, 95-96 HTTP

MY.NET.6 7 FTP, Telnet, rsh
60 Unix RPC
63 FTP
34, 35, 40, 47 SMTP

MY.NET.11 4 FTP
MY.NET.53 33 MSSQL

58 SMTP
MY.NET.60 11, 16, 38-39 FTP

MY.NET.70 40, 50 (HelpDesk), 69 (Beetle.UCS), 90, 181, 215,
218, 225

FTP

133,134 DNS
140, 177, 181 MSSQL
10 FTP, MSSQL,

SSH
80, 149, 180, 198 Gnutella

MY.NET.75 102, 212 FTP, MSSQL
114 DNS

MY.NET.86 19 FTP
108 Gnutella

MY.NET.88 163 FTP
88 DNS
102, 212 MSSQL
215, 240 Gnutella
245 DNS, Unix RPC

MY.NET.97 73, 159 DNS
16, 41, 80, 115, 129, 158, 170, 177, 196, 197 Gnutella

MY.NET.98 111, 146, 149, 188, 194, 228, 238, 242 Gnutella
MY.NET.99 85 FTP

81 Unix RPC
MY.NET.100 157 Gnutella

158 FTP
165 (CS WEBSERVER) FTP, SSH,

HTTP, Finger
203 Unix RPC
217 SMTP (Queso),

HTTP
230 SMTP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

MY.NET.102

2, 4, 9-10, 16-19, 24, 31, 37, 41-42, 51-.59, 64, 67,
72, 74, 76, 84, 87-88, 92, 94-95, 97, 100-118, 122,
125, 128, 132, 135, 141, 145, 153-165, 172-174, 200-
217, 228, 234, 236-237, 239, 248-252

FTP

MY.NET.105 10, 120 FTP
MY.NET.109 96, 101 Unix RPC
MY.NET.110 92 HTTP

110 SMTP
MY.NET.111 21 FTP

140 SMTP
MY.NET.114 56 FTP
MY.NET.116 105 Gnutella
MY.NET.117 10 FTP

25 DNS, Unix RPC
MY.NET.121 30 DNS
MY.NET.130 86 FTP, MSSQL
MY.NET.132 10 FTP
MY.NET.137 7 DNS
MY.NET.139 230 SMTP
MY.NET.143 84 FTP
MY.NET.145 74 FTP
MY.NET.150 98 MSSQL

209 Gnutella
MY.NET.151 14 FTP
MY.NET.153 108, 168, 179 FTP

142, 160 Gnutella
203 Unix RPC

MY.NET.154 27 Unix RPC
MY.NET.157 108 Gnutella

243, 247, 253 FTP, MSSQL
250 Infected with

NIMDA
242 FTP, TFTP or

BackGate
Trojan, IRC

248 HTTP
252 FTP, MSSQL,

IRC
MY.NET.158 53, 75 FTP, MSSQL
MY.NET.162 67, 235, FTP

90 FTP, Gnutella,
HTTP,
PCAnywhere

MY.NET.163 135 DNS
MY.NET.165 20 FTP
MY.NET.167 2 MSSQL

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

MY.NET.168 142 Gnutella
MY.NET.178 168, 199 MSSQL
MY.NET.179 78, 80 SMTP
MY.NET.182 135, 56, 94 Gnutella

MY.NET.185 48 MSSQL,
Gnutella

MY.NET.253 20, 105 FTP
20, 41 MSSQL
41, 43, 51, 53 SMTP
114 MSSQL, HTTP

Figure 34–Network and Host Service Profile

Following is a list of ports used to determine the above Network profile, in conjunction
with review of the alerts to ensure applicability.

 FTP Servers (Ports: 20, 21)
 Telnet Servers (Port: 23)
 Web Servers (Ports: 80, 8080, 1080)
 SMTP Servers (Port: 25)
 Printers (Port: 515) - There were a total of 9123 printer alerts during the reporting

period. 9091 of these alerts originated from IP 211.114.0.252 as it scanned
multiple subnets for printers. 32 of these alerts originated from the broadcast
address of 255.255.255.255, with a source port of 31337 (spelling “eleet” in the
hacker community). Because responses from printers would not have normally
generated alerts, it is impossible to gauge the number of actual printers on the
network.

 MSSQL Servers (Port: 1433)
 DNS Servers (Port: 53)
 Other Servers of Interest

o CS Webservers
o beetle.ucs
o MY.NET.3 54 & 64 (Bryan B.)
o HelpDesk

3.3 Detects By Severity or Number of Occurrences

Out of the 6.6 million events logged (including scans and out-of-spec packets) the
university IDS captured 309 unique alerts over this five-day period. The complete list of
alerts can be found in Appendix B. The following are what I believe to be the most
significant alerts.

3.3.0 Watchlist 000222 NET-NCFC

Number of alerts: 15,677 (16th most frequent alert)
Number of Unique Source IPs: 54
Number of Unique Destination IPs: 59

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

Destination Ports: 54 different destination ports (one per source IP). Primarily
ephemeral with a number of high ports in the 20-64K range. Well-known destination
ports were: 113 (ident authorization service), 21 (FTP and trojans), 23 (telnet and
trojans), 25 (SMTP and trojans), 80 (HTTP and trojans),

Description: Watchlist alerts reference hosts which are known to be problematic. This
watchlist in particular monitors traffic originating from the 159.226.0.0/16 network which
belongs to the Institute of Computing Technology Chinese Academy of Sciences which
is located in Bejing, China.

In addition to the Watchlist alert, 45 other events were logged from this network with the
following six message types:

 CS Webserver–external web traffic
 INFO Inbound GNUTella connect request
 MISC source port 53 to <1024
 NMAP TCP ping!
 SCAN SYN ******S*
 SCAN UDP

Defensive Recommendations: Monitoring of this block of IPs should continue.
Consideration should be given as to whether the entire IP block could be restricted from
accessing the University’s servers.

The University security policy should also be analyzed as to whether to allow inbound
GNUTella requests. If improperly configured, file-sharing tools such as GNUTella,
Kazaa and Morpheus can allow malicious users access to all of the files on a user’s
system.

Correlations: This alert has been documented in the following practicals:
Lorraine Weaver, http://www.giac.org/practical/Lorraine_Weaver_GCIA.zip
Hee So, http://www.giac.org/practical/Hee_So_GCIA.doc
Martha Flick, http://www.giac.org/practical/Martha_Flick_GCIA.zip
Paul Asadoorian, http://www.giac.org/practical/Paul_Asadoorian_GCIA.zip
Chris Lethaby, http://www.giac.org/practical/Chris_Lethaby_GCIA.zip

3.3.1 Watchlist 000220 IL-ISDNNET-990517

Number of Alerts: 12,427 (19th most frequent alert)
Number of Unique Source IPs: 55
Number of Unique Destination IPs: 55
Destination Ports: Various ranging from 1030 to 4789, all ephemeral with the
exception of ports 25 (SMTP and trojans) and 80 (HTTP and trojans). Other well-known
ephemeral ports attempting to connect to were: 6347 (Gnutella) and 1214
(KaZaa/Morpheus/Grokster).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

Description: All 55 unique IP addresses correlate to an Israeli company called ISDN
Net Ltd in the 212.176.0.0/17 subnet. These hosts are well known for malicious activity.
It is interesting to note that each source IP only connected to a single destination IP.
This is indicative of packet crafting.

In addition to the Watchlist alert, 73 other events were logged from this network with the
following six message types:

 ICMP Destination Unreachable (Communication Administratively Prohibited)
 INFO FTP anonymous FTP
 INFO Inbound GNUTella Connect request
 MISC source port 53 to <1024
 SCAN SYN ******S*
 suspicious host traffic

Defensive Recommendations: Monitoring of this block of IPs should continue.
Consideration should be given as to whether the entire IP block could be restricted from
accessing the University’s servers.

The University security policy should also be analyzed as to whether to allow inbound
GNUTella requests. If improperly configured, file-sharing tools such as GNUTella,
Kazaa and Morpheus can allow malicious users access to all of the files on a user’s
system.

Correlations: This alert has been well documented by other GCIA practicals, such as:
Lorraine Weaver, http://www.giac.org/practical/Lorraine_Weaver_GCIA.zip
Hee So, http://www.giac.org/practical/Hee_So_GCIA.doc
Martha Flick, http://www.giac.org/practical/Martha_Flick_GCIA.zip
Paul Asadoorian, http://www.giac.org/practical/Paul_Asadoorian_GCIA.zip
Chris Lethaby, http://www.giac.org/practical/Chris_Lethaby_GCIA.zip

3.3.2 Attempted Sun RPC high port access / SUNRPC highport access!

Number of Alerts: 731 (41st most frequent alert) / 213 (54th most frequent alert)
Number of Unique Source IPs: 274 (4 Internal: MY.NET.100.230, MY.NET.153.164,
MY.NET.6.49, MY.NET.99.120) / 21 (7 Internal: MY.NET.100.40, 85, 203 & 227,
MY.NET.109.101, MY.NET.99.85 & 174)
Number of Unique Destination IPs: 9 (MY.NET.100.203, MY.NET.109.101,
MY.NET.109.96, MY.NET.117.25, MY.NET.153.203, MY.NET.154.27, MY.NET.5.82,
MY.NET.6.60, MY.NET.88.245) / 16 (MY.NET.60.16, MY.NET.82.54, MY.NET.83.13,
15, 20, 23, MY.NET.99.51, 81, 120, MY.NET.100.21, 65, 230, MY.NET.139.42,
MY.NET.179.78, MY.NET.253.53)
Destination Ports: 32771–This port is typically used for remote procedure calls on
Sun Unix systems and is often referred to as the rpc.ghost portmapper port.

Description: Internet Security Systems suggests that many Sun operating system
boxes listen on this port for portmapper calls

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

(http://www.iss.net/security_center/advice/Exploits/Ports/32771/default.htm).
Portmapper provides a list of which remote services are running on which ports. This is
a fairly common exploit, which is often not blocked at the firewall because it is an
ephemeral port.

Portmapper runs on port 111 by default. Checking all logged entries for Sun RPC
highport access from source port 111, two alerts are returned. Both of these alerts
originated from MY.NET.100.230 and were bound for MY.NET.100.203.

A significant amount of this traffic appears destined for machines that have been
inferred to be DNS servers. Traffic bound for these machines seems to be originating
from port 53 (DNS).

Unlike many other practicals, no traffic could be found originating from port 4000,
inferring ICQ connections.

Defensive Recommendations: Each of the 9 internal destination hosts causing this
alert should be checked for whether they respond to requests on port 32771 and
whether or not they are running portmapper. If they indeed are running portmapper and
there is a necessity for it, these machines should be thoroughly checked to ensure no
compromises have occurred. Internal hosts communicating to port 32771 should be
monitored for suspicious traffic.

Externally, UDP traffic to port 32771 should not be allowed through the firewall when it
has not been initiated by a local machine. This is assuming that the firewalls in place
allow stateful detection.

Correlations: This alert has been documented in the following other GCIA practicals,
such as:
CVE-1999-0189, Solaris rpcbind listens on a high numbered UDP port, which
may not be filtered since the standard port number is 111.
Guy Bruneau, http://www.giac.org/practical/Guy_Bruneau_GCIA.doc
Jeffrey Holland, http://www.giac.org/practical/Jeff_Holland_GCIA.doc
Kevin Orkin, http://www.giac.org/practical/Kevin_Orkin_GCIA.doc
Lenny Zeltser, http://www.giac.org/practical/Lenny_Zeltser.htm
PJ Goodwin, http://www.giac.org/practical/PJ_Goodwin_GCIA.doc

3.3.3 SNMP public access

Number of Alerts: 10,271 (20th most frequent alert)
Number of Unique Source IPs: 36 (94% these alerts originated from internal
machines)
Number of Unique Destination IPs: 157
Destination Ports: 161 (SNMP–6th most frequent destination port)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

Description: This non-standard alert implies an attempt to access SNMP services via
the default “public” access string. According to Cisco
(http://www.cisco.com/warp/public/707/cisco-malformed-snmp-msgs-pub.shtml), by
using public community strings, it is possible to bypass SNMP access controls. Cisco
also states that public community string access vulnerabilities can be used to initiate
denial of service attacks.

Defensive Recommendations: Public access strings should not be allowed for SNMP.
Wherever possible, they should be disabled. If it is necessary to have public strings, it
is recommended that the University change the string from the default.

Correlations:
CAN-2002-0012, Vulnerabilities in a large number of SNMP implementations
CAN-2002-0013, Vulnerabilities in the SNMPv1 request handling
Scott Shinberg, http://www.giac.org/practical/Scott_Shinberg.doc
PJ Goodwin, http://www.giac.org/practical/PJ_Goodwin_GCIA.doc
Markus DeShon, http://www.giac.org/practical/Markus_DeShon.html

3.3.4 connect to 515 from outside

Number of Alerts: 9,115 (22nd most frequent alert)
Number of Unique Source IPs: 2 (211.114.0.252, 255.255.255.255)
Number of Unique Destination IPs: 7,324
Destination Ports: 515 (printer, lpdw0rm, Ramen trojan)

Description: IP 211.114.0.252 appears to be scanning a large number of subnets on
the University’s network. This could be a scan for printers, printer vulnerabilities
common to Red Hat Linux operating systems or simply a network-mapping scan.

Defensive Recommendations: Connections to port 515 from sources external to the
network should be blocked at the firewall. Also, anything sent to a broadcast address
from the outside world should be stopped by the router or firewall.

Correlations:
CERT Advisory, http://www.cert.org/advisories/CA-2000-22.html
CAN-2000-0917, Format string vulnerability in LPRng
Jeffrey Holland, http://www.giac.org/practical/Jeff_Holland_GCIA.doc
Lorraine Weaver, http://www.giac.org/practical/Lorraine_Weaver_GCIA.zip
Scott Shinberg, http://www.giac.org/practical/Scott_Shinberg.doc

3.3.5 SMB Name Wildcard

Number of Alerts: 85,891 (5th most frequent alert)
Number of Unique Source IPs: 4,274 (96% originated from external sources)
Number of Unique Destination IPs: 4,170
Destination Ports: 137 (NetBIOS)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

Description: SMB traffic can be used by malicious users to elicit Windows domain
information such as user and host identification.

Defensive Recommendations: Internally, a significant number of these alerts were
logged between MY.NET.152.216–MY.NET.11.7 and MY.NET.11.6–
MY.NET.152.179. These four hosts should be checked for possible NetBIOS
compromises. If NetBIOS is not a necessity on these machines, it should be disabled.

Unless providing external file-sharing services, inbound traffic on ports 135-139 should
be stopped at the firewall.

Correlations:
Jeffrey Holland, http://www.giac.org/practical/Jeff_Holland_GCIA.doc
Lorraine Weaver, http://www.giac.org/practical/Lorraine_Weaver_GCIA.zip

3.3.6 UDP SRC and DST outside network

Number of Alerts: 104,095 (4th most frequent alert)
Number of Unique Source IPs: 66
Number of Unique Destination IPs: 4 (229.55.150.208, 233.28.65.148, 233.28.65.61,
239.255.255.250)
Destination Ports: 1345 (vpjp, sysmond), 1900 (ssdp), 5779 (unknown)

Description: This traffic appears to be spoofed UDP traffic in which someone inside the
network is attempting to appear as the Georgia Institute of Technology, Internet
Assigned Numbers Authority (IANA), The University of Freiburg in Germany, and
Yahoo! Broadcast Services.

All four of the destinations IP addresses correlate to multicast network addresses.

In his GCIA practical, Scott Shinberg suggests that this traffic may in fact be legitimate
streaming media which has been assigned a valid multicast address by the University’s
multicasting system.

Defensive Recommendations: In order to keep users inside the network from
successfully spoofing IP addresses and launching external network denial-of-service
attacks, it is strongly recommended that egress filtering be implemented, if it is not
already.

Use of IDS tagging or a network sniffer would provide full packet decodes of the
spoofed network traffic, which could be used to help track down the offending user(s)
based upon router hops and time to live values.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

If the university does have a multicast system, then given the significant number of
alerts, the university may wish to consider adding the multicast addresses to the home
network in Snort to reduce false positives.

Correlations:
Jeffrey Holland, http://www.giac.org/practical/Jeff_Holland_GCIA.doc
Lorraine Weaver, http://www.giac.org/practical/Lorraine_Weaver_GCIA.zip
Scott Shinberg, http://www.giac.org/practical/Scott_Shinberg.doc

3.4 Top Talkers

Top 10 Source IP Addresses

Rank IP Address # of
Alerts

1 65.107.178.34 376510
2 65.120.161.122 239162
3 65.114.45.134 235415
4 207.162.20.121 194209
5 MY.NET.5.89 175023
6 212.194.136.49 157498
7 80.143.254.161 136486
8 67.68.163.9 134749
9 MY.NET.60.43 112417

10 66.205.196.200 88485
The number of times a particular machine

was logged as the Source IP Address.

Top 10 Destination IP Addresses

Rank IP Address # of
Alerts

1 MY.NET.162.90 2827200
2 MY.NET.157.248 860867
3 MY.NET.157.252 708987
4 MY.NET.157.242 155881
5 233.28.65.148 67848
6 MY.NET.157.243 58290
7 MY.NET.130.69 50793
8 MY.NET.140.9 44897
9 MY.NET.100.165 37337

10 233.28.65.61 31533
The number of times a particular machine
was logged as the Destination IP Address.

Top 10 Source IP Addresses
By Number of Unique Destination IP

Addresses

Rank IP Address
of

Unique
IPs

1 210.83.17.179 26086
2 67.242.168.58 25230
3 202.224.237.106 24028
4 130.75.89.31 21500
5 63.173.94.20 18208
6 217.150.33.178 18202
7 212.182.119.141 17339
8 132.235.75.1 15973
9 68.11.184.35 15478

10 149.169.44.155 14476
The number of unique destination IP

addresses for each IP.

Top 10 Destination IP Addresses
By Number of Unique Source IP

Addresses

Rank IP Address
of

Unique
IPs

1 MY.NET.162.90 14080
2 MY.NET.100.165 7506
3 MY.NET.100.157 4895
4 MY.NET.70.149 4854
5 MY.NET.70.80 3816
6 MY.NET.1.3 3724
7 MY.NET.185.48 3386
8 MY.NET.153.142 3149
9 MY.NET.1.4 2984

10 MY.NET.1.5 2896
The number of unique source IP

addresses seen for each IP.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

Top 10 Destination Ports

Rank Port
Typical

Service on
this Port

of Alerts

1 6346 Gnutella 2773688
2 30200 Unknown 851160
3 80 http 363772

4 6970 GateCrasher
Trojan 311450

5 2062 ICG SWP Port 188998
6 161 SNMP 183521
7 3842 Unknown 157436

8 1082 AMT-ESD-
PROT 134978

9 137 NetBIOS 106092
10 5779 Unknown 99381

The number of alerts targeted at a specific destination port.

3.5 External Source Information

IP Address Information Reason for Inclusion
65.107.178.34 XO Communications (NET-XOXO-BLK-15),

1400 Parkmoor Avenue, San Jose, CA
95126-3429, US

Netname: XOXO-BLK-15
Netblock: 65.104.0.0 - 65.107.255.255
Maintainer: XOXO

Coordinator: DNS and IP ADMIN (DIA-ORG-
ARIN) hostmaster@CONCENTRIC.NET
Phone: (408) 817-2800
Fax: (408) 817-2630

This IP was the top
alert-generating
source IP address,
producing a total of
376,510 alerts.
Communications from
this IP were logged to
the #1 and #2
destination IPs as well
as the #1 machine to
which the most source
IPs were seen.
Additional alerts from
this IP were Inbound
GNUTella connect
requests. Al traffic
was bound for either
ports 30200 or 6346.

210.83.17.179 inetnum: 210.82.0.0 - 210.83.255.255
netname: CNCNET
descr: China Netcom Corp.
descr: New Telecommunication Carrier
Based on IP Backbone
country: CN

This IP sent to the
largest number of
internal IP addresses,
which was a total of
26,086. It is strongly
recommended that

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

admin-c: YZ213-AP
tech-c: YZ213-AP
mnt-by: APNIC-HM
mnt-lower: MAINT-CN-ZM28
changed: hostmaster@apnic.net
20001011
changed: hm-change@apnic.net
20020703
source: APNIC

person: yanping zhao
address: 15/F, Building A, Corporate
Square,No
address: 35 Financial Street,Xicheng
District,
address: Beijing
country: CN
phone: +86-010-88093588
fax-no: +86-010-88091442
e-mail: tech-group@china-netcom.com
nic-hdl: YZ213-AP
mnt-by: MAINT-CN-ZM28
changed: daihy@china-netcom.com
20020618
source: APNIC

this net block
210.82.0.0/16 and
210.83.0.0/16 be put
on a watchlist for
suspicious activity.

65.120.161.122 CENTRAL DISTRIBUTION INC (NETBLK-
Q0115-65-120-161-0), 2832 ROE LANE,
KANSAS CITY, KS 66103, US

Netname: Q0115-65-120-161-0
Netblock: 65.120.161.0 - 65.120.161.127
Coordinator: Donakey, Coy (CD733-ARIN)
coy.donakey@centraldistribution.com
Phone: 913-677-1666

This IP ranked #2 on
the list of top alert-
generating source IPs.
The 239,162 alerts
originating from this IP
were logged as traffic
to internal hosts
deemed suspicious.
The traffic was
primarily bound for
ephemeral port
30200.

65.114.45.134 SELWAY PARTNERS (NETBLK-Q1105-65-
114-45-128), 52 FOREST AVE 2ND FLOOR,
PARAMUS, NJ 07652, US

Netname: Q1105-65-114-45-128
Netblock: 65.114.45.128 - 65.114.45.159

Coordinator: Paulison, Harry (HP178-ARIN)

Ranking #3 on the list
of top source IPs, this
IP logged 235,415
suspicious host alerts
to the #2 ranked
destination host. All
traffic was bound for
port 30200.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

kristeena@comserv1.com
Phone: 973-812-3832

207.162.20.121 Universite du Quebec (NETBLK-UQUEBEC-
CA), 2875 Bld. Laurier, Ste-Foy, Quebec
G1V 2M3, CA

Netname: UQUEBEC-CA
Netblock: 207.162.1.0 - 207.162.50.255

Coordinator: Goutier, Bernard (BG181-
ARIN)
Bernard_Goutier@UQSS.UQUEBEC.CA
Phone: (418)657-4469
FAX: (418)657-2132

The #4 ranked top
alerting source IP
logged 194,209 alerts
to the #3 ranked
destination IP. All
alert messages were
“suspicious host
traffic” and were
bound for ports 2062
and 3899.

© SANS In
stit

ute 2
004, A

uthor r
eta

ins fu
ll r

ights.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

46

3.6 Link Graph

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

3.6.0 Link Graph Analysis

When operating a network as large as the university’s, it is often necessary to be able to
quickly assess large volumes of data in order to rapidly determine potential problem
areas. By presenting the number of unique IP addresses seen by each subnet in
perspective with the number of IDS alert and scan events logged graphically, our
attention is immediately drawn to specific sub-nets of computers. In the graph above,
subnets seeing over 5,000 unique IP addresses or logging over 50,000 alerts over the
5-day period were marked as potentially containing compromised hosts. It should be
noted that it was necessary to scale the events axis of the graph in order to better
understand the data. Thus, the two highest alerting subnets, 157 and 162, are shown
as being off the graph.

The theories behind this link graph are that subnets offering common services, such as
HTTP, FTP, Telnet, SMTP, POP-3, and DNS will likely show up on the graph with a
large number of unique IP addresses (seen in dark blue). If a subnet registers a spike
on the number of unique IPs but should not be offering large-scale common services,
we are immediately alerted to investigate. Without knowing anything about the overall
network and looking at just the unique IPs seen, our attention should be drawn to
subnets 1, 5, 6, 70, 83, 88, 99, 100, 150, 152, 153, 157, 162, 185 and 253.

When the quantity of logged IDS event data is graphed in perspective, we narrow our
focus even further. This is not to say that all networks generating alerts should not be
investigated. A small group of 10 “trojan server activity” messages could be far worse
than 1,000 Windows Pings. For quick reference of the largest potential problems
though, we often fall back on the adage that “more is worse” and look to numbers of
alerts. Thus looking at number of alerts alone, our attention would be drawn to subnets
1, 5, 6, 11, 60, 70, 88, 100, 111, 130, 140, 150, 152, 153, 157, 162, 200 and 253.

Theoretically, if we are seeing a large number of unique IPs into a subnet AND a large
number of alerts, we are more likely to have a problem. Combining these two lists
together, our focus is drawn to subnets: 1, 5, 6, 70, 88, 100, 150, 152, 153, 157, 162,
and 253. Correlating this with our detailed analysis data, ALL of the subnets
represented in this combined list are noted as having one or more possible
compromised hosts in the“Insights into Internal IP”section below.

Obviously this is not a foolproof scheme. However, it can be very helpful in narrowing
focus down to specific problem areas in a relatively short amount of time. Instead of
subnets, it can be very helpful to graph similar data for all hosts within a specific subnet.
This can aid in narrowing down problems from a subnet to an individual host.

3.7 Insights Into Internal Machines

3.7.0 IP: MY.NET.1.3
During the reporting period, this IP logged 20,949 alerts. This machine should be
carefully checked for legitimate DNS usage. All but 300 of the alerts involve either a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

source or destination port (or both) of 53. This includes possible myserver activity, over
14,000 UDP port 53 alerts, and the receiver of possible Red Worm activity (also to port
53).

3.7.1 IPs: MY.NET.5.20 / MY.NET.5.64
Based upon the type and number of alerts logged, these web and ms-sql servers
appear to be compromised to allow remote execution of cmd, ms-sql command shells,
and be susceptible to Unicode attacks. It is recommended that these machines be
taken off the network and all available logs for them be carefully examined.
Additionally, complete virus and Trojan scans should be run. File monitoring software,
such as Tripwire, should be implemented on visible external hosts to ensure that
administrators are made aware if files have been altered without authorization.

3.7.2 IP: MY.NET.5.29
This IP appears to be either offering up information or have a virus installed on port
137. 902 of the 1,402 alerts logged revolve around port 137 access (primarily SMB
Name Wildcard). This machine is receiving a large number of ICMP Destination
Unreachable and MISC Large ICMP messages, which could be indicative of ICMP
tunnel communications or IP spoofing. NetBIOS should be disabled if unnecessary and
should be blocked at the firewall.

3.7.3 IP: MY.NET.5.83
The conversations originating from MY.NET.70.177 bound for this IP logged an average
of 8 SMB public access alerts on port 161 every hour from 00:16 on the 16th through
13:17 on the 17th. The source port of the packets never changed, implying either packet
crafting or a single 37-hour connection. The relationships between these two machines
should be evaluated to determine if NetBIOS is running and is a necessary service.
Both of these machines should be checked for virii and Trojans. Possible SubSeven
Trojan activity was briefly logged between this IP and MY.NET.5.42, which is also on
the list of compromised internal machines.

Another interesting note from the scan events shows that this IP regularly scanned
machines on ports 7938 and 7937. These ports imply that this server may be running
NetWorker backup and recovery Server software, release 5.5 or later.

3.7.4 IP: MY.NET.6.16
During the reporting period, this IP logged 40 SMB Name Wildcard Access events from
6 different external IPs. High ephemeral port traffic bound for local port 8765 (Ultraseek
HTTP) originated from the NET-NCFC watchlist. Traffic to this same port was later
logged from IP 198.200.181.204 as possible Trojan server activity (because it originated
from port 27374). While no common Trojans are listed as using this port, it is possible
that a modified Trojan or some other exploit could be running on this system. This port
is also the default for the Inktomi search engine. NetBIOS should be disabled where
unnecessary.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

3.7.5 IP: MY.NET.6.34
87.5% of the alerts to this IP involved ICMP communications. Primarily, these were
miscellaneous large ICMP packets and destination unreachable messages. All of the
ICMP events logged were from sources external to the network implying one of two
things: 1. This IP address is being spoofed or 2. This IP is actually attempting to
connect to a large number of external hosts to which it is not allowed to connect. Given
the lack of correlating scan events, I am more inclined to believe the former.

The remainder of the traffic to this IP revolved around port 25 (SMTP). If this machine
is offering SMTP services, logs and configuration should be checked for malicious use.
If not, Trojans and virii should be scanned for thoroughly.

3.7.6 IP: MY.NET.157.248

This web server appears on the suspicious host traffic list. It is difficult to analyze
exactly what part of the traffic is suspicious without knowing more about the non-
standard “suspicious host” rule that seems to be prevalent throughout these alerts. If
we assume, based upon the volume of suspicious host alerts, that all traffic is logged
when a machine is considered suspicious, then a large deal of IP spoofing can be
inferred from packets returning from various web server IP addresses with no initiating
requests. Early in the logs, this machine appears to be scanning multiple subnets in
the range of 18.29 for web servers.

Other anomalous traffic to this machine shows IP 161.58.90.250 logged a significant
number of port 80 traffic with this machine as well as a number of IIS Unicode attacks.
Additionally, a large number of packets destined for port 30200 from IPs
65.120.161.122, 65.114.45.134, and 65.107.178.34 as well as traffic to ports 3196 and
30201 traffic from 80.8.81.239 were logged. Given the number of connections, but not
knowing of any service or Trojan that typically runs on these ports, I would recommend
that this machine be thoroughly checked for server software and Trojans running on
these ports.

3.7.7 IP: MY.NET.162.90

Apparently this IP has come under previous scrutiny as it is on the “suspicious host alert
list”. Assuming that the host’s services are legitimate, the system does not appear to be
compromised. It should be noted that this IP saw the highest number of unique source
IP addresses in the log files. I believe this is because the host appears to be receiving
the backscatter from IP spoofing, as is evident by the significant number of ICMP
Source Quench, Host and Network Unreachable alert messages from a plethora of
networks.

3.7.8 Additional IPs to Review

In addition to the above-mentioned recommendations, the following IPs should be
reviewed for possible compromises:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

SUBNET HOSTS
MY.NET.1 3
MY.NET.10 55
MY.NET.100 165
MY.NET.110 92
MY.NET.111 140
MY.NET.116 126
MY.NET.117 25
MY.NET.132 37
MY.NET.133 20
MY.NET.143 84
MY.NET.144 52
MY.NET.149 15
MY.NET.150 198, 232, 241
MY.NET.151 95
MY.NET.152 13, 15, 157, 158, 159, 16, 160, 162, 165, 166, 169, 170, 171, 174, 175,

176, 178, 179, 18, 183, 185, 186, 19, 20, 21, 216, 22, 245, 246, 248,
250, 251, 45, 46

MY.NET.153 108, 141, 142, 144, 146, 147, 148, 149, 150, 152, 153, 154, 159, 160,
162, 163, 164, 165, 166, 167, 169, 172, 174, 175, 176, 179, 180, 184,
185, 186, 188, 189, 193, 194, 195, 196, 197, 198, 199, 202, 203, 208,
209, 210, 211

MY.NET.157 250
MY.NET.16 42
MY.NET.163 235
MY.NET.167 87
MY.NET.168 98
MY.NET.178 168, 199, 76
MY.NET.179 35, 78
MY.NET.195 245
MY.NET.199 146, 72
MY.NET.2 177
MY.NET.253 114, 125, 24, 43, 52
MY.NET.53 160, 33, 51
MY.NET.6 40, 45, 48, 49, 50, 51, 52, 53, 60, 7
MY.NET.60 10, 151, 43
MY.NET.70 134, 177, 38
MY.NET.75 114
MY.NET.84 178
MY.NET.88 162, 235, 245
MY.NET.90 15
MY.NET.97 216, 221
MY.NET.98 238, 254
MY.NET.99 238, 254

Figure 35 - Recommended IPs for Review

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

3.8 Analysis Process

I began my analysis by downloading the files from http://www.incidents.org/logs. Right
off the bat, I noticed something odd. The alerts data from 16 June to 20 June jumped
exponentially in terms of the amount of data. This is shown in the chart below.

MB of Data over Time

12.8

183

29.9
13

98.5

9.7

254.9

19.9 12.6
7.5

0

50

100

150

200

250

300

020616 020617 020618 020619 020620

D at e

Alert Data

Scan Data

Figure 36 - Alert and Scan Data Over Time

I checked the calendar to see the specific days of the week and noted that many
schools were preparing to let out for the summer, if they had not already. This could
mean plenty of eager youth with too much time on their hands. These alert and scan
file dates fell on a Sunday through Thursday. The largest set of scan data fell on
Wednesday, followed by the largest amount of alert data on Thursday.

Looking at over 500MB of alert data seemed a pretty daunting challenge, but I was up
to the task. I quickly scanned through the several of the files to see what I was dealing
with. The alerts files, which took up by far the most space, were created with Snort in
fast alert mode in the format of:

Timestamp
06/16-
00:00:02.972487

Alert
[**] ICMP Echo Request L3retriever Ping [**]

Source / Direction / Destination
MY.NET.152.159 ->
MY.NET.11.7

Figure 37 - Snort Fast Alert Output Sample

The scan files were standard Snort portscan output:

Timestamp
Jun 18 13:50:53

Source / Direction / Destination
205.188.228.65:7532 -> MY.NET.85.58:6970

Scan Type
UDP

Figure 38 - Snort Portscan Output Sample

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

For the purposes of larger picture analysis, the word “SCAN” was added to the “Scan
Type” field when preparing the portscan logs for the database.

There were only a total of 33 out-of-spec packets in the five OOS files. It appeared that
they were captured in Snort’s sniffer mode, as shown below:

Timestamp
04/08-14:15:51.056448

Source IP Address : Port
212.211.86.7:23

Traffic Flow
->

Dest IP Address : Port
MY.NET.5.79:23

Protocol
TCP

Time To Live
TTL:20

Type of Service
TOS:0x0

IP ID
ID:39426

TCP Flags
SF**

TCP Sequence ID
Seq: 0xC4BAAFF

TCP Ack
Ack: 0x5AC2A143

TCP Window Size
Win: 0x404

Figure 39 - Snort Out Of Spec Output Sample

I determined that the best approach when dealing with such a large amount of data
would be to get all of the files into a similar format and import them into a database. In
this fashion, it would be possible to quickly review the data in many different ways.

I began by using the Cygwin toolset and removing all portscan data from the alert files.
Given that this information was present in the scan files, I wanted to avoid redundant
data sets. This was accomplished by using the Cygwin toolset for Windows with the
command:

grep–v “spp_portscan” <alert_file> > alert_file_noscan

From there, I set off to write a Perl script which would convert both the alerts and scan
files to a similar delimited file format which could be imported into a database. The
format I had determined to use was:

Month;Date;Time;Alert;Source_IP;Source_Port;Destination_IP;Destination_Port;

Figure 40 - Common Delimited Log Format

It was during the conversion process that I discovered corruption in the alerts file format.
Approximately halfway through the alert data on the 18th of June and continuing through
the 20th, I found a number of lines in which the alerts ran together. It appeared almost
as though there were too many alerts coming in at some points and as multiple sensors
tried to log data, some data was cut off or overwritten. I determined that there were two
courses of action. I could try to manually fix every error, or throw out the erroneous
data. I chose the latter, being that I did not wish to inject flawed data into my analysis.

The criteria for determining a valid alert line was as follows:
1. Line was greater than 50 characters
2. Line was less than 150 characters
3. Line possessed only one traffic direction symbol (->)
4. Line possessed only two Snort Alert symbols ([**])

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

5. The source and destination IP had four dots (x.y.z.a)

Using these criteria to parse the log files, 27,879 alert lines or .5% were determined to
be invalid. This was determined by using the wc command as shown below:

$ cat alert*_noscan | wc–l
5357698

$cat parsed_alert* | wc–l
5329819

$ cat scan* | wc–l
1277500

$cat parsed_scan* | wc–l
1277500

Figure 41 - Parsed Line Count Comparison

Once converted, I concatenated the files together with the command:

cat parsed* > events_list.txt

Just to try and understand how many IP addresses I was dealing with, I wrote another
quick Perl script to grab the source and destination IPs from each parsed alert line and
output them each to their own line in a new file. I then used the unique sort command
to produce a complete list of IP addresses in my events list. The sort command was run
as follows:

cat all_src_dst_ips.txt | sort–u > final_hosts

Doing another line count on the final_hosts file, I learned that I was dealing with 100,385
unique IP addresses. The OOS alerts were considered somewhat apart from the larger
data, as there were only 33 alerts and the timeframe was two months prior.

After several unsuccessful attempts to import the data into mySQL, I fell back on
Microsoft Access and created a linked table from the events_list file. This was probably
a less efficient choice, but it would allow me to adequately perform the queries required
to analyze the data. Checking the number of records in the linked table, I confirmed
that there were 6,607,319 records. This was the same as the number of lines in the
parsed scan and alert files combined.

From here I decided the best course of action would be to try to understand the network
behind the scene. I began to generate SQL queries to view the data in different
formats. These queries included the number of alerts generated by source IP,
destination IP, by source and destination IP pairs, by the number of machines
connected to each IP, the number of machines connected from each IP, and the source
and destination ports for each machine. This generated approximately 40 unique IP
addresses of interest.

Moving to the broader scope, queries were generated to count the total number of alerts
across the network, the number of IPs within each 24-bit subnet that showed up in the
alerts files, and the top destination ports generating alerts. Pulling all of the alerts
targeted for specific destination ports hosting common services (such as FTP, SMTP,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54

SSH, telnet, etc) allowed the construction of a basic network profile. This allowed
identification of “high value” targets running multiple common services and began to
allow the drawing of insights into some of the host machines. As questionable traffic
was found in the generation of the network profile, the IP addresses were noted for
review under the“Insight into Internal IPs”section of the practical.

A search was then done for all IPs generating alerts containing the keywords: Possible
Trojan Server activity, Red Worm, Nimda, Back Orifice, NetMetro, Backdoor, MS-SQL,
and Virus. This pulled together a list of 153 internal IPs in need of investigation. Due to
space constraints, only a small sampling of IPs were chosen to review.

The link graph and associated analysis were done last. Looking at it now, I would
recommend to others analyzing large amounts of data to use the link graph as a starting
point, instead of an ending point.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
55

4 Appendix A

4.1 Automated Rotating of log files in a Windows Environment

Given the volume of information collected, rotating WinDump log files manually is a
significant hassle. At the time of this writing, the current version of WinDump does not
support automated log rotation. In response, I have developed a method to perform this
task using Perl, the Window’s “at” command, “pskill”, a freeware command-line process
killer for windows, and “pulist”, a free command-line process status lister from the
Windows resource center. The script assumes that it is named windump_rotate.pl. It
assumes that both pskill and pulist are in the same directory as the Perl script and that
the WinDump executable is in the system path. Logs will be rotated every hour.

The global section in this script should be configured to your individual environment
prior to execution. To initiate the script, use the “at” command to set the first execution
time. An example of this would be: “at 08:00 Perl c:\home\perl\windump_rotate.pl”.

This script has only been tested on a Windows 2000 platform.

############################
INCLUDES
############################
use Time::localtime;

############################
GLOBALS
############################
$LOG_DIR = "c:\\home\\snort\\log"; # Path to write log files
$ROT_LOC = "c:\\home\\perl\\rotate_windump"; # Location of directory
containing the rotation script
$ROT_EXEC = "$ROT_LOC\\windump_rotate.pl"; # Location of
rotation script
$WD_OPTS = "-s 1500 -n"; # Windump command
line options

############################
SUBROUTINES
############################
sub zero_pad {
$myNum = shift;

if ($myNum < 10) {
$myNum = "0$myNum";

}

return $myNum;
}

############################
MAIN CODE EXECUTION
############################
$i = 0;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
56

Set time variables
$hour = localtime->hour;
$min = localtime->min;
$day = localtime->mday;
$month = localtime->mon;
$year = localtime->year;

Format the date with Zeros to fill the log file name.
$year = sprintf("%02d", $year % 100); # Only want the last two digits of
the year
$month += 1;
$month = zero_pad($month);
$day = zero_pad($day);
$hour = zero_pad($hour);
$min = zero_pad($min);

Scheduled next log rotation
if ($hour == 23) {

$nextHour = 0;
} else {

$nextHour = $hour + 1;
}
$cmd = "at $nextHour:00 perl $ROT_EXEC 1>&2";
system $cmd;

Find old windump process to kill and schedule it to be killed at current
minute +1
open (PROCESS, "$ROT_LOC\\pulist.exe |");
while (<PROCESS>) {

@words = split(" ","$_");
if ("$words[0]" eq "WinDump.exe") {

$nextMin = zero_pad($min + 1);
$cmd = "at $hour:$nextMin $ROT_LOC\\pskill.exe $words[1]

1>&2";
system "$cmd";

}
}

Start new windump program
$newLogFile = "$LOG_DIR\\$year$month$day-$hour$min.cap"; # Timestamp for new
logfile
$wd_exec = "windump $WD_OPTS -w $newLogFile";
exec $wd_exec;

exit;

4.2 Parsing Unique Errors from a Snort Full Alert File

The following script is designed to read in a Snort full alerts file and parse out unique
error messages in a quick text format. It is written in perl and uses the grep command
which is native to *nix systems and can be implemented in Windows environments
through the use of the Cygwin toolset. The $OUT variable should be set to the directory

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
57

where the full alerts file can be located prior to execution. The program looks for
full*.ids, which is the name I typically give my full alerts files.

The script should be executed as: “perl get_summary.pl” Brief usage instructions will be
printed from there.

$DIR = shift; # Specific Summary Directory
$OUT = "/cygdrive/c/home/snort/snort1_86/log"; # Main Logging Directory

if ($DIR) {
chdir "$OUT/$DIR";

$cmd = "grep \"\\[**\\]\" full*.ids | grep -v \"spp_port\" | sort
-u > sum.txt";

exec $cmd;
} else {

print "\nget_sum.pl v1.0\n";
print "Written By: Jason Tant\n\n";
print "USAGE: perl get_sum.pl <alert_dir>\n\n";
print "Where alert_dir is a directory under\n";
print "$OUT\n";
print "containing a full alert file from snort\n";
print "with the title full*.ids\n\n";

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
58

5 Appendix B
5.1 University Log File Alerts

ALERT TIMES
LOGGED ALERT TIMES

LOGGED

suspicious host traffic 4683696 SCAN FULLXMAS **UAPRSF 2
SCAN UDP 854791 SCAN INVALIDACK ***APRS* 2
SCAN SYN ******S* 419769 SCAN INVALIDACK **UA*RS* 2
UDP SRC and DST outside
network 104095

SCAN INVALIDACK *2*A*RSF
RESERVEDBITS 2

SMB Name Wildcard 85891
SCAN INVALIDACK *2*AP*SF
RESERVEDBITS 2

ICMP Destination Unreachable
(Communication
Administratively Prohibited) 70771

SCAN INVALIDACK *2*APR*F
RESERVEDBITS 2

MISC traceroute 41745
SCAN INVALIDACK *2UA**S*
RESERVEDBITS 2

CS WEBSERVER - external
web traffic 35043

SCAN INVALIDACK *2UA*RS*
RESERVEDBITS 2

INFO Inbound GNUTella
Connect request 30853

SCAN INVALIDACK 1*UA**S*
RESERVEDBITS 2

MISC Large UDP Packet 29919
SCAN INVALIDACK 12UA*R*F
RESERVEDBITS 2

ICMP Echo Request Sun
Solaris 24112

SCAN NMAPID *2U*P*SF
RESERVEDBITS 2

ICMP Destination Unreachable
(Host Unreachable) 21720 SCAN NOACK ****P*S* 2
MISC source port 53 to <1024 20525 SCAN NOACK ****PRS* 2
spp_http_decode: IIS Unicode
attack detected 18471 SCAN NOACK **U***S* 2
WEB-MISC prefix-get // 18210 SCAN NOACK **U***SF 2
Watchlist 000222 NET-NCFC 15677 SCAN NOACK **U**R** 2
WEB-MISC Attempt to execute
cmd 15457 SCAN NOACK **U**RS* 2

AFS - Off-campus activity 14386
SCAN NOACK *2**PRS*
RESERVEDBITS 2

Watchlist 000220 IL-ISDNNET-
990517 12427

SCAN NOACK 1****R*F
RESERVEDBITS 2

SNMP public access 10271
SCAN NOACK 1****RS*
RESERVEDBITS 2

INFO MSN IM Chat data 9144
SCAN NOACK 1***P*SF
RESERVEDBITS 2

connect to 515 from outside 9115
SCAN NOACK 1***PR**
RESERVEDBITS 2

ICMP Echo Request L3retriever 8885 SCAN NOACK 1***PR*F 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
59

Ping RESERVEDBITS

ICMP Echo Request BSDtype 6505
SCAN NOACK 12U**R**
RESERVEDBITS 2

ICMP Echo Request Windows 5351 SCAN SPAU **UAP*S* 2
ICMP Destination Unreachable
(Network Unreachable) 5190

SCAN SYNFIN *2****SF
RESERVEDBITS 2

INFO FTP anonymous FTP 3304
SCAN SYNFIN 1*****SF
RESERVEDBITS 2

ICMP Echo Request Nmap or
HPING2 3138

SCAN UNKNOWN *2*A****
RESERVEDBITS 2

MISC Large ICMP Packet 3085
SCAN UNKNOWN *2*A***F
RESERVEDBITS 2

SCAN Proxy attempt 2940
SCAN UNKNOWN *2*A*R**
RESERVEDBITS 2

Queso fingerprint 2455
SCAN UNKNOWN *2UAP**F
RESERVEDBITS 2

SCAN SYN 12****S*
RESERVEDBITS 2324

SCAN UNKNOWN 1**A**S*
RESERVEDBITS 2

ICMP Source Quench 2263
SCAN UNKNOWN 1**AP***
RESERVEDBITS 2

SMB C access 1959
SCAN UNKNOWN 1*UAP**F
RESERVEDBITS 2

CS WEBSERVER - external ftp
traffic 1055

SCAN UNKNOWN 12UA****
RESERVEDBITS 2

ICMP Echo Request Broadscan
Smurf Scanner 916

SCAN VECNA 1***P***
RESERVEDBITS 2

INFO - Possible Squid Scan 876
SCAN VECNA 12U*P***
RESERVEDBITS 2

High port 65535 udp - possible
Red Worm - traffic 831 SCAN XMAS 2

FTP DoS ftpd globbing 804
SCAN XMAS *2U*P**F
RESERVEDBITS 2

Port 55850 tcp - Possible
myserver activity - ref. 010313-
1 792

SCAN XMAS 12U*P**F
RESERVEDBITS 2

Attempted Sun RPC high port
access 731 SYN-FIN scan! 2
IDS552/web-iis_IIS ISAPI
Overflow ida nosize 669

TFTP - Internal UDP connection
to external tftp server 2

Incomplete Packet Fragments
Discarded 536 Virus - Possible scr Worm 2
High port 65535 tcp - possible
Red Worm - traffic 475 WEB-CGI w3-msql access 2
EXPLOIT x86 NOOP 442 WEB-IIS .cnf access 2
WEB-IIS view source via 405 x86 NOOP - unicode BUFFER 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
60

translate header OVERFLOW ATTACK
ICMP Destination Unreachable
(Fragmentation Needed and DF
bit was set) 395 DDOS shaft client to handler 1

ICMP Router Selection 354
External FTP to HelpDesk
MY.NET.70.50 1

ICMP traceroute 350 ICMP Redirect (Network) 1
WEB-MISC http directory
traversal 336 IRC evil - running XDCC 1

Null scan! 234

SCAN - wayboard request -
allows reading of arbitrary files as
http service 1

NIMDA - Attempt to execute
cmd from campus host 214

SCAN FIN 1******F
RESERVEDBITS 1

SUNRPC highport access! 213
SCAN FIN 12*****F
RESERVEDBITS 1

INFO Outbound GNUTella
Connect request 186

SCAN FULLXMAS 1*UAPRSF
RESERVEDBITS 1

WEB-MISC count.cgi access 159
SCAN FULLXMAS 12UAPRSF
RESERVEDBITS 1

SCAN NULL ******** 146 SCAN INVALIDACK **UA**SF 1
WEB-CGI formmail access 133 SCAN INVALIDACK **UA*R** 1
NMAP TCP ping! 122 SCAN INVALIDACK **UA*R*F 1
WEB-MISC Lotus Domino
directory traversal 120 SCAN INVALIDACK **UA*RSF 1
SCAN VECNA ****P*** 116 SCAN INVALIDACK **UAP*SF 1
WEB-CGI rsh access 114 SCAN INVALIDACK **UAPRS* 1

WEB-IIS SAM Attempt 111
SCAN INVALIDACK *2*A**SF
RESERVEDBITS 1

ICMP Fragment Reassembly
Time Exceeded 109

SCAN INVALIDACK *2*A*R*F
RESERVEDBITS 1

WEB-IIS _vti_inf access 107
SCAN INVALIDACK *2*A*RS*
RESERVEDBITS 1

WEB-FRONTPAGE _vti_rpc
access 102

SCAN INVALIDACK *2*AP*S*
RESERVEDBITS 1

WEB-MISC compaq nsight
directory traversal 102

SCAN INVALIDACK *2*APRS*
RESERVEDBITS 1

INFO Outbound GNUTella
Connect accept 87

SCAN INVALIDACK *2UA**SF
RESERVEDBITS 1

Possible trojan server activity 79
SCAN INVALIDACK *2UA*R**
RESERVEDBITS 1

SMTP chameleon overflow 76
SCAN INVALIDACK *2UA*R*F
RESERVEDBITS 1

ICMP Address Mask Request 70
SCAN INVALIDACK *2UAP*SF
RESERVEDBITS 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
61

INFO Napster Client Data 62
SCAN INVALIDACK *2UAPR**
RESERVEDBITS 1

RPC tcp traffic contains bin_sh 60
SCAN INVALIDACK *2UAPR*F
RESERVEDBITS 1

MS-SQL xp_cmdshell -
program execution 52

SCAN INVALIDACK *2UAPRS*
RESERVEDBITS 1

X11 outgoing 52
SCAN INVALIDACK 1**A**SF
RESERVEDBITS 1

INFO Possible IRC Access 48
SCAN INVALIDACK 1**A*R*F
RESERVEDBITS 1

WEB-CGI redirect access 45
SCAN INVALIDACK 1**A*RS*
RESERVEDBITS 1

SCAN INVALIDACK ***A*R*F 39
SCAN INVALIDACK 1**AP*S*
RESERVEDBITS 1

beetle.ucs 37
SCAN INVALIDACK 1**AP*SF
RESERVEDBITS 1

WEB-CGI finger access 36
SCAN INVALIDACK 1**APR*F
RESERVEDBITS 1

EXPLOIT x86 setuid 0 34
SCAN INVALIDACK 1*UA**SF
RESERVEDBITS 1

SCAN Synscan Portscan ID
19104 34

SCAN INVALIDACK 1*UA*RS*
RESERVEDBITS 1

NETBIOS NT NULL session 30
SCAN INVALIDACK 1*UA*RSF
RESERVEDBITS 1

WEB-MISC whisker head 30
SCAN INVALIDACK 1*UAPR**
RESERVEDBITS 1

spp_http_decode: CGI Null
Byte attack detected 29

SCAN INVALIDACK 12*A**SF
RESERVEDBITS 1

EXPLOIT x86 setgid 0 25
SCAN INVALIDACK 12*A*R*F
RESERVEDBITS 1

ICMP Destination Unreachable
(Protocol Unreachable) 24

SCAN INVALIDACK 12*A*RSF
RESERVEDBITS 1

WEB-IIS Unicode2.pl script
(File permission
canonicalization 24

SCAN INVALIDACK 12*AP*S*
RESERVEDBITS 1

BACKDOOR NetMetro
Incoming Traffic 22

SCAN INVALIDACK 12*AP*SF
RESERVEDBITS 1

WEB-MISC nc.exe attempt 22
SCAN INVALIDACK 12*APRS*
RESERVEDBITS 1

WEB-FRONTPAGE
fpcount.exe access 17

SCAN INVALIDACK 12UA*R**
RESERVEDBITS 1

SCAN INVALIDACK ***APR*F 16
SCAN INVALIDACK 12UA*RS*
RESERVEDBITS 1

Notify Brian B. 3.54 tcp 15
SCAN INVALIDACK 12UA*RSF
RESERVEDBITS 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
62

SCAN NOACK *2U**R*F
RESERVEDBITS 14

SCAN INVALIDACK 12UAP*SF
RESERVEDBITS 1

Notify Brian B. 3.56 tcp 13 SCAN NOACK *****R*F 1
WEB-MISC ICQ Webfront
HTTP DOS 13 SCAN NOACK ****P*SF 1
ICMP Echo Request CyberKit
2.2 Windows 12 SCAN NOACK ****PR** 1
WEB-CGI csh access 12 SCAN NOACK ****PR*F 1
MISC PCAnywhere Startup 11 SCAN NOACK ****PRSF 1
Port 55850 udp - Possible
myserver activity - ref. 010313-
1 11 SCAN NOACK **U**RSF 1
Tiny Fragments - Possible
Hostile Activity 11 SCAN NOACK **U*PR** 1
ICMP Parameter Problem
(Unspecified Error) 8 SCAN NOACK **U*PRSF 1
SCAN FIN *2*****F
RESERVEDBITS 8

SCAN NOACK *2**P*S*
RESERVEDBITS 1

WEB-IIS Unauthorized IP
Access Attempt 8

SCAN NOACK *2**P*SF
RESERVEDBITS 1

WEB-MISC 403 Forbidden 8
SCAN NOACK *2**PRSF
RESERVEDBITS 1

ICMP redirect (Host) 7
SCAN NOACK *2U*PR**
RESERVEDBITS 1

WEB-MISC handler access 7
SCAN NOACK *2U*PR*F
RESERVEDBITS 1

ICMP Destination Unreachable
(Destination Host Unknown) 6

SCAN NOACK *2U*PRSF
RESERVEDBITS 1

SCAN UNKNOWN 1**A*R**
RESERVEDBITS 6

SCAN NOACK 1****RSF
RESERVEDBITS 1

WEB-CGI survey.cgi access 6
SCAN NOACK 1***P*S*
RESERVEDBITS 1

SCAN NOACK *2U**R**
RESERVEDBITS 5

SCAN NOACK 1***PRS*
RESERVEDBITS 1

SCAN NOACK 1*U**RS*
RESERVEDBITS 5

SCAN NOACK 1*U***S*
RESERVEDBITS 1

SCAN VECNA *2U*P***
RESERVEDBITS 5

SCAN NOACK 1*U**R**
RESERVEDBITS 1

WEB-FRONTPAGE shtml.exe 5
SCAN NOACK 1*U**RSF
RESERVEDBITS 1

CS WEBSERVER - external
ssh traffic 4

SCAN NOACK 1*U*P*S*
RESERVEDBITS 1

External RPC call 4
SCAN NOACK 1*U*PR**
RESERVEDBITS 1

IDS475/web-iis_web-webdav- 4 SCAN NOACK 1*U*PR*F 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
63

propfind RESERVEDBITS
RFB - Possible WinVNC -
010708-1 4

SCAN NOACK 12***RS*
RESERVEDBITS 1

SCAN INVALIDACK ***AP*S* 4
SCAN NOACK 12**P*S*
RESERVEDBITS 1

SCAN INVALIDACK 12UAPR*F
RESERVEDBITS 4

SCAN NOACK 12**PR*F
RESERVEDBITS 1

SCAN NMAPID 1*U*P*SF
RESERVEDBITS 4

SCAN NOACK 12U***S*
RESERVEDBITS 1

SCAN NOACK *2U**RS*
RESERVEDBITS 4

SCAN NOACK 12U*P*S*
RESERVEDBITS 1

SCAN SPAU *2UAP*S*
RESERVEDBITS 4

SCAN NOACK 12U*PR**
RESERVEDBITS 1

SCAN UNKNOWN 12*A**S*
RESERVEDBITS 4

SCAN NOACK 12U*PR*F
RESERVEDBITS 1

WEB-CGI glimpse access 4
SCAN SPAU 12UAP*S*
RESERVEDBITS 1

WEB-CGI ksh access 4

SCAN SYN ******S*Jun 19
04:15:44 202.224.237.106:4235 -
> MY.NET.254.193:80 SYN
******S* 1

WEB-CGI tsch access 4
SCAN SYN *2****S*
RESERVEDBITS 1

FTP .forward 3 SCAN SYNFIN ******SF 1

SCAN FIN 3
SCAN SYNFIN 12****SF
RESERVEDBITS 1

SCAN INVALIDACK ***A*RS* 3
SCAN UNKNOWN *2***R**
RESERVEDBITS 1

SCAN INVALIDACK *2*APRSF
RESERVEDBITS 3

SCAN UNKNOWN *2*AP***
RESERVEDBITS 1

SCAN INVALIDACK 12UA**S*
RESERVEDBITS 3

SCAN UNKNOWN *2*APR**
RESERVEDBITS 1

SCAN NOACK *****RS* 3
SCAN UNKNOWN *2UAP***
RESERVEDBITS 1

SCAN NOACK **U*P*S* 3
SCAN UNKNOWN 1**A***F
RESERVEDBITS 1

SCAN NOACK *2***RS*
RESERVEDBITS 3

SCAN UNKNOWN 1**AP**F
RESERVEDBITS 1

SCAN NOACK *2**PR**
RESERVEDBITS 3

SCAN UNKNOWN 1*UA****
RESERVEDBITS 1

SCAN NOACK *2U**RSF
RESERVEDBITS 3

SCAN UNKNOWN 12*A*R**
RESERVEDBITS 1

SCAN NOACK *2U*PRS*
RESERVEDBITS 3

SCAN UNKNOWN 12*AP**F
RESERVEDBITS 1

SCAN NOACK 1*U**R*F 3 SCAN UNKNOWN 12UAP*** 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
64

RESERVEDBITS RESERVEDBITS
SCAN NOACK 12***R*F
RESERVEDBITS 3 SCAN VECNA **U****F 1
SCAN NOACK 12U**RSF
RESERVEDBITS 3 SCAN VECNA **U*P*** 1
SCAN UNKNOWN *2*AP**F
RESERVEDBITS 3

SCAN VECNA *2U*****
RESERVEDBITS 1

SCAN UNKNOWN *2UA****
RESERVEDBITS 3

SCAN VECNA *2U****F
RESERVEDBITS 1

SCAN UNKNOWN *2UA***F
RESERVEDBITS 3

SCAN VECNA 1***P**F
RESERVEDBITS 1

SCAN UNKNOWN 12***R**
RESERVEDBITS 3

SCAN VECNA 1*U*****
RESERVEDBITS 1

SCAN VECNA **U***** 3
SCAN VECNA 12U*****
RESERVEDBITS 1

SCAN VECNA *2**P**F
RESERVEDBITS 3

SCAN XMAS 1*U*P**F
RESERVEDBITS 1

SCAN XMAS **U*P**F 3
TFTP - External UDP connection
to internal tftp server 1

WEB-CGI scriptalias access 3 Virus - Possible pif Worm 1
WEB-IIS scripts-browse 3 WEB-CGI archie access 1
Back Orifice 2 WEB-MISC .htaccess access 1
EXPLOIT NTPDX buffer
overflow 2 WEB-MISC ~root 1
FTP passwd attempt 2 WEB-MISC ftp attempt 1

MISC Source Port 20 to <1024 2
WEB-MISC L3retriever HTTP
Probe 1

SCAN FIN *******F 2 WEB-MISC whisker splice attack 1

