GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© SANS Institute 2004,

SANS Intrusion Detection In Depth
GCIA Practical Assignment

Version 3.2

Joseph Anthony B de los Santos

April 24,2002

1
As part of GIAC practical repository.

Author retains full rights.

Table of Contents

Assignment Part 1- Describe the State of Intrusion Detection 2
Bro: A promising open-source NIDS 2
Abstract 2
Introduction to Bro 4
Benefits of the Bro Network Intrusion Detection System 5
Major Shortcoming of the Bro System 7
Structure of Bro 7
Future directions of the Bro NIDS 9
Final Thoughts on Bro 10
References 10

Assignment Part 2- Network Detects 11

NetworkDetect # 1 — DNS named version request 11

Network Detect # 2 - Linuxconf Remote Buffer Overflow Scan 18

Network Detect # 3 — Fast Distributed FTP scan 22

Assignment Part 3- Analyze This 26
Executive Summary 27
List of top 10 Detects 27
Brief Description of the TOP 10 list of detects 28
A. Alert Analysis 37
B. Scans Analysis 41
C. OOS Analysis 45
Meaningful relationships 53
Insights 54
Defensive Recommendation 55
Description of the Analysis Process 56
Appendix A 57
References 62

Describe the state of Intrusion Detection

Abstract

Bro (short for Big Brother) is described as a stand alone system for detecting
network intruders in real time by passively monitoring a network link over which
the intruders traffic passes. In this paper, what We wish to point out is that Bro is
a promising alternative high-performance open-source NIDS. First we will
discuss a brief overview of what basically an NIDS is, it’s types, then discussing
what Bro NIDS is, it's design and it's benefits, then it's structure and finally

discussing on Bro’s future.

2
© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

With the explosion of e-commerce websites, online banking and other high-
profile applications, it is understandable that organizations should want to avail
themselves of the best possible protection against unauthorized entry. The threat
of network intrusion hangs over any organization that possesses a network that
is open to the outside world. In Essence, we open up the true dangers inherent in
virtually every Internet protocol network, meaning every computer network today
that are used in all sorts of industries.

Because the byword of every modern organization is connectivity, even those
organizations that have no direct Internet presence remain vulnerable to network
attacks and intrusions. Just because you don’t have a Web Site or, equally,
because your site doesn’t feature any e-commerce capabilities, doesn’t make
you immune to the possibility of someone gaining unauthorized access to your
network The fact is, that virtually every organization running anything other than
a perfectly closed loop network is leaving itself open to possible intruder attack.
The process of detecting such attacks is called Network Intrusion Detection. A
good analogy of Network Intrusion Detection System is that of a well-trained
guard dog. Now think of the rooms in your house represents your network and
your fence the firewall. You need to gain access to the outside world and allow
guests, visitors, gain access to your property. Naturally there will be some
uninvited visitors who are not welcome in your property (such as burglars).

Because your guard dog has been trained to sniff out unwanted guests, it sounds
a warning whenever it detects the presence of any unauthorized visitors coming
in. Intrusion Detection systems can sit either in front of the firewall to see who'’s
approaching or behind the firewall to warn of unauthorized entry into the network.
The two types of Network Intrusion Detection systems that We wish to focus on
is those that rely on audit information gathered by the hosts on the network
(Host-Based IDS) and those that operate stand-alone (Network-Based IDS) by
watching network traffic directly and passively using a packet filter. (There are
other technologies aside from Host-based and Network-based as well). However,
for the purposes of this discussion we will only focus on stand-alone Network-
Based IDS sometimes called Monitors. Though monitors have limited information
than systems with audit trails, the major advantage of the former is that they can
be added to a network without requiring any changes to the hosts on the
network. This advantage is very significant for monitoring a collection of
hundreds or even thousands of hosts. Network Intrusion Detection Systems
typically use two basic approaches in detecting an attack, Again, there may be
others but for the purposes of this discussion we will only focus on two types of
approaches: Anomaly-based and Signature-based. Anomaly-based involves the
system learning what type of traffic is normal. Once a model of normal traffic
behavior has been created, alerts are generated for any traffic not considered
normal behavior. While these systems are theoretically able to catch any
intrusion, in practice they are very difficult to implement. The distinction between
normal traffic against anomalous traffic is ambiguous. A correct system would
need to learn what is considered normal and not normal. It’s like our guard dog

3
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

personally checking and interviewing everyone before letting anyone in. In
network traffic terms, from all the headers of the IP packets it captures going
towards the network, it filters out all known legal traffic. The main advantage of
anomaly-based over signature-based is that an anomaly-based technique sees
all the traffic running into the network, there are far fewer places to hide malicious
code. However, the more popular approach is using signature-based, meaning
they operate similar to a virus scanner by searching for a known signature for
each specific intrusion event. Signature-based approach is based on a rule set or
policy. This policy defines exactly what should be considered malicious traffic. A
policy can be composed of simple string patterns which are known to appear in
attacks, such as "/bin/sh" or they can be complete programming scripts written to
analyze each packet and determine its intentions. The downside to a signature
based or rule-based system is that it can rarely identify new attacks, but they are
significantly easier to implement than anomaly-based.

Introduction to Bro

Bro is a powerful open-source signature-based network intrusion detection
system developed by Vern Paxson of Lawrence Berkeley National Laboratory.
Bro takes the traditional rule-based approach to intrusion detection, but adds a
stateful programming interface to create policies for analyzing traffic. Bro is an
automated network-based intrusion detection system that examines data as it
passes through a network. Bro then analyzes this data looking for patterns of
attack activity and network data can be recorded for a more comprehensive
analysis. Bro is basically divided into two pieces that are independently written of
each other, the event engine and policy. The engine is written in C++ and is
considered the core of the system. It promiscuously monitors the traffic and
prepares the data to be analyzed based on the directives of the policies. These
policies provide flexibility in what kind of analysis can be done on the traffic. For
example, the policy can search for known malicious strings such as /bin/sh,
meaning trying to spawn a shell and so on. Actually, Bro contains a number of
prewritten policies included in the distribution which can detect may known attack
signatures. However, the policies should be carefully reviewed and customized to
each specific network because including unnecessary policies put extra load on
the monitor. An important feature of the policies is that they have their own
dynamic memory allocations in which the state of a protocol can be stored. Thus
enabling Bro to recognize syn floods, port scans and so on. These functions are
not available in strictly pattern matching systems which make Bro highly flexible.
Bro is different from other similar systems because of its flexibility and
extensibility.

Bro was designed from scratch with a clear separation between the technical
mechanisms that pick apart the network stream, and the policy that determines
how to interpret and react to particular network events. This allows Bro to adapt
quickly to the changes in the network environment because Bro searches for
what is referred to as attack signatures. Since Bro is so flexible, it can be

4
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

configured to detect attack signatures that take many forms. Essentially, an
attack signature can be any pattern of activity in network traffic that would likely
appear as part of an attack or in accessing a compromised system. In most
circumstances, Bro doesn't even need to look at a network connection to know
there's something weird going on. It can tell just from summary information about
a connection or series of connections. For instance: Bro is able to detect a
horizontal scan, meaning when one host attempts connections to the same port
on many other hosts over a very short period of time usually in seconds apart.
Bro can immediately react to these since there's no legitimate reason for this kind
of activity to occur. Multiple authentication failures to a particular service over a
short period of time may also usually indicate an attack. Depending on what
service and what systems are involved, Bro may take immediate action or simply
alert security personnel.

In other circumstances, Bro needs to look deeper inside connections and
examine the actual data passing through the network. For instance: There are
certain commands that almost never appear in an interactive session unless the
system has been or is being compromised. Since hackers rarely write their own
tools, Bro can frequently identify telltale prompts or other text generated by well-
known hacking tools. These are just a few examples of what Bro can detect.
Unfortunately, much like virus signatures, the nature of attack signatures is rather
hard to pin down since new attack and unknown signatures are found regularly.
According to Mr. Craig Lant, Head of Computer Security at Berkeley, who uses
Bro as their NIDS at the university, when Bro detects a possible attack it issues
an alert to the security personnel. It may also begin collecting additional data for
further analysis such as logs of interactive sessions. Furthermore, Bro can take
independent action such as dropping the questionable connection or denying
further connections from the attacking site. It's the responsibility of security
personnel to follow up on these incidents by examining the data recorded by Bro
as well as any other relevant data available. If it's clear that there was a
successful attack, the departmental security contact for the affected computers
will be contacted and advised as to what action is necessary. If it is determined
that the affected computers pose a serious and immediate threat to other
computers on the network, the affected computers may have their network
access blocked. Once their systems have been secured or protected from further
abuse, the site from which the attacks originated may be contacted along with
other outside agencies like CERT.

Benefits of the Bro Network Intrusion Detection System

One major problem with Monitoring is that it usually comes hand in hand with
potential privacy violations meaning confidential data may be collected and
examined by the system. Since Bro is automated, no human ever sees the data
examined by Bro. (Unless it’'s data connected with some sort of suspicious
activity).

5
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Policies used in regards to privacy are different from one organization to the next.
UC Berkeley for example, has its own privacy and confidentiality policy.
(http://www.ucop.edu/ucophome/policies/ec/) Their policy requires that their
campus annually report on data that are accessed without user’s content and
that the data never leaves the system where it’s collected, which are physically
and electronically secured. Policies are different because there is no right to
privacy in the U.S. similar to right to free speech. In fact privacy isn’t even
mentioned in the constitution.

High-Load Monitoring- The ability to handle large amounts of data transfer rates
and traffic without packet drops is extremely important because an intruder could
defeat the NIDS by flooding the network with extraneous packets, thus avoiding
detection.

Real-Time Notification- If an attack (attempted or successful) is detected quickly
then timely response can be provided, such as try to trace back the attacker,
minimizing damage, preventing further break-ins and initiate full recording of all
of the attacker’s network activity.

Decoupling mechanism from policy- Separating the data filtering, event
identification and policy reactions to the events results in a cleaner software
design, easier implementation, and more straightforward maintenance.
Extensibility- Because of the enormous number of different kinds of network
attacks, together with the continuous discovery of new vulnerabilities waiting to
be exploited, requires that Bro have the ability to rapidly add new attack scripts to
its library. Consequently, Bro can be upgraded in small and easily debugged
increments.

Ability to ward off attacks- Assumption that the monitor might likely be attacked,
Sophisticated attackers will likely probe for weaknesses in intrusion detection
systems themselves. Fortunately, Bro has to some degree the ability to ward off
some of these attacks such as overload and crash.

Overload- The goal of the attack is to overburden the monitor to the point where
it fails to keep up with the traffic it must process. When it does fail the monitor will
then start dropping packets and thus will be unable to detect attacks which
normally it would detect. The result is an evasion of the Network Intrusion
Detection System. To develop an overload attack against Bro, the attacker only
needs to look at it's source code, especially looking at its structure (Below) to see
how to increase the data flow. One way is to send packets that match the packet
filter; another, packet streams that in turn generate events; and a third, events
that lead to logging to disk. The first is easy since Bro’s libpcap filter is fixed. The
second and third is a bit more difficult to accomplish assuming that the attacker
has no access to the policy scripts since the attacker does not know what events
lead to logging. Also, to help defend against overload attacks, Bro’s event engine
generates a net_stats_update event. The value of this event gives some
information on the number of packets received,dropped, etc Thus, Bro scripts at
least have some basic information available to them to determine whether the
monitor is becoming overloaded.

6
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Crash- One type of crash attacks aim to knock the monitor out completely out of
action by causing it to fault due to coding error. Effect can be immediate and
violent but the end result is also an evasion of the NIDS. Bro provides two
features to aid in defending this type of crash attacks. First, the event engine
maintains a timer that expires every T seconds. (watchdog, not part of Bro but
rather a Unix Alarm). Upon expiration, the watchdog handler checks to see
whether the event engine has failed to finish processing the packet (and
subsequent events) it was working on T seconds before. If so, watchdog timer
logs this and then terminates the monitor process. This feature is coupled with
another feature, the script that runs Bro also detects if it unduly exits, and if so,
logs this fact and executes a copy of tcpdump that records the same traffic the
monitor would have captured, meaning crash attacks are logged and it does not
allow a subsequent intrusion attempt to go unrecorded.

Major Shortcoming of the Bro system

Whenever new attacks are discovered, policies must be written immediately for
Bro to be able to detect it. Unfortunately, keeping up to date with this is very
difficult to achieve. The best solution to this is to have well-written generalized,
customized policies which can catch a multitude of suspicious behavior. For
example, if there is a new buffer overflow attack for a web server, the policy
might not recognize this new type of attack but it should detect an unusually large
amount of binary data in the HTTP GET packet being received if the policy
written was generalized enough.

Structure of Bro

7
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Reaktime notification

E Polizy script)
i Record to disk

8

Policy Seript Interp reter

E Bwant control T Bvant straam
i)

Event Engine

! Tepdump fitar T Fitered packet stream
¢

libpeap

Packet stream

At Bro’s lowest level function, Bro uses libpcap, a utility to extract packets from
the network. This decouples the main intrusion detection functionality of Bro from
the networking details. This also allows a significant fraction of the packets
entering the network to be rejected at a low level. Thus libpcap will capture all
packets associated with the application protocols of which Bro is currently aware
of such as portmapper, finger, ftp, telnet.

The next layer is the event engine that performs several integrity checks on the
packet headers. If the header is mal-formed, an event identifying the problem is
generated, and the header is discarded. The engine is written in C++ and
promiscuously monitors network traffic and prepares it to be analyzed based on
the directives of the policies. A check is then performed to determine if the full
contents of the packet should be recorded (usually if the full packet was
analyzed), if only the packet's header information should be recorded (usually if
only the TCP flags were analyzed), or if nothing should be recorded (if no
processing was done).

Events are generated from this process and placed on a queue (First In-First-
Out) to be checked by the policy script interpreter located in the third layer. The
policy script interpreter is written in a customized Bro language that uses strong
typing to provide explicit support for packet header content such as port and
domain and other constructs to support networking concepts. The interpreter

8
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

binds event values to the code for the event handler and then interprets the code.
Executing the code may result in generating further events, logging real-time
notifications, or recording data.

Essentially, when a packet arrives it begins the analysis of the engine by
recombining the stream of fragments if necessary and evaluating special
characters such as backspace key, delete and so on. Once the stream has been
rebuilt, Bro then attempts to parse the packets based on the protocols it can
recognize. Each protocol is defined with a set of functions which are used to
parse the data then Bro passes control from the engine to the policies where
intrusion analysis takes place. All applicable policies are passed various specific
parameters and executed. The functions in the policies analyses the traffic and
then creates alerts and log files of suspicious traffic.

To add new capability to Bro, one needs to identify the events associated with
the protocols of the application, and write corresponding event handlers to
extend the functionality of the policy script interpreter. According to Mr. Vern
Paxson, this decoupling of events from their handlers improves Bro's
extensibility.

Future Directions of the Bro NIDS

Bro is still in alpha stage which means that it is still under development, but
according to the author, “Bro has operated continuously since April 1996 as an
integral part of our site's security system. It initially included only general TCP/IP
analysis; as time permitted, we added the additional modules discussed in § 6,
and we plan to add many more. Presently, the implementation is about 22,000
lines of C++ and another 1,900 lines of Bro (about 1,650 lines of which are
““boilerplate" not specific to our site). It runs under Digital Unix, FreeBSD, IRIX,
SunOS, and Solaris operating systems. It generates about 40 MB of connection
summaries each day, and an average of 20 real-time notifications, though this
figure varies greatly. While most of the notifications are innocuous (and if we
were not also developers of the system, we would suppress these), we not
infrequently also detect break-in attempts. Operation of the system has resulted
so far in 4,000 email messages, 85 incident reports filed with CIAC and CERT, a
number of accounts deactivated by other sites, and a couple incidents involving
law enforcement.

In addition to developing more application analysis modules, we see a number of
avenues for future work. As discussed above, compiling Bro scripts and devising
mechanisms to distribute monitoring across multiple CPUs have high priority. We
are also very interested in extending BPF to better support monitoring, such as
adding lookup tables and variable-length snapshots. Another interesting direction
is to add some "teeth” to the monitoring in the form of actively terminating
misbehaving connections by sending RST packets to their endpoints, or
communicating with intermediary routers. This form of ““reactive firewall" might fit

9
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

particularly well to environments like ours that need to strike a balance between
security and openness.”

At present Bro monitors four applications: finger, ftp, portmapper, and telnet.
Adding new applications to Bro is according to the author, "quite straightforward,
a matter of deriving a C++ class to analyze each connection's traffic, and
devising a set of events corresponding to the significant elements of the
application [R31].” Bro runs under several UNIX variants and is used as part of
the lab's security system. As of 1998, Bro's operation had resulted in the filing of
85 CIAC and CERT/CC incident reports. Bro experiences no packet loss on a
FDDI network carrying 25mbs traffic with analysis loads of peaking at about 200
packets/second.

Final Thoughts on Bro

Bro is publicly available in source-code form (see http://www-nrg.ee.lbl.gov/bro-
info.html for release information). In the hopes that it will both benefit the
community and in turn benefit from community efforts to enhance it.

Bro is an extremely well written, well-thought out network intrusion detection
system. It has the functionality of most major NIDS, as well as a unique
programmability which few others possess.

Since it is still in development, it means that it needs to have a lot more policies
to catch current attacks but these policies will come with time. It is expected that
they will be completed before it’s official release.

References

http://www.sei.cmu.edu/publications/documents/99.reports/99tr028/99tr028chap0
2.html

http://istpub.berkeley.edu:4201/bcc/Winter2001/sec.bro.html

http://istpub.berkeley.edu:4201/bcc/Nov Dec2000/sec.whatsnext.html

http://www.itsecurity.com/papers/proseql.htm

http://www.cc.gatech.edu/~zhangtao/mini3.pdf

http://www.usenix.org/publications/library/proceedings/sec98/paxson.html

http://www.icir.org/vern/bro-alpha-doc.html

http://www.cc.gatech.edu/people/home/scarlata/papers/scarlata.7001.ids.ps.gz.

! Bro: A system for detecting Network Intrudersin real-time, Vern Paxson bro-usenix98-revised.ps
2 http://wwuw.itsecurity.com/papers/prosegl.htm

10
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.cpsr.org/program/privacy/p3p-fag.html#why

http://www.aclu.org/students/slprivacy.html

Assignment 2 Network Detects

Network Detect # 1 DNS named version reguest

23:11:04.884488 217.131.173.220.2839 > 226.185.188.10.domain: 4660
[b2&3=0x80] TXT CHAOS)? version.bind. (30)

=4=+=F=+=F=+=+=+=+=F=+=F=+=F=+=F =+ =4 =+ =+ =+ ==+ ==+ =+ =+=4=+=
+=+=4+=+=4+=+=+

05/26-23:11:04.884488 217.131.173.220:2839 -> 226.185.188.10:53
UDP TTL:48 TOS:0x0 ID:41677 IpLen:20 DgmLen:58

Len: 38

12340080000100000000000007766572 A4........... ver

73 69 6F 6E 04 62 69 6E 64 00 00 10 00 03 sion.bind.....

=4=4=+=F=+=F=+=+=F+=+=F=+=F=F+=F=+=F=F+=+=F=+=F=F+=F=F+=F=F+=+=4=+=
+=+=+=+=+=+=+

1.Source of Trace:

This trace came from http://www.incidents.ora/logs/Raw/2002.4.26

2.Detect Generated By:

Looks like it was captured by snort in tcpdump binary format. If snort, the alert
that could have triggered this would look something like

alert udp $EXTERNAL_NET any -> $HOME_NET 53 (msg:"DNS BIND Version
Request"; content:"VERSION"; nocase;)

3.Probability that the source address was spoofed:

Source address is probably not spoofed or is very low since the attacker is
performing reconnaissance by requesting the version of DNS being used. If the
source address were spoofed then the attacker will not be able to get any useful
information since the return traffic will not go back to him. However, it can still be
spoofed if the return traffic can somehow be sniffed by the attacker (sort of like
man-in-the-middle)

11
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Victim----Attacker----Spoofed_host

This would only be useful during recon. The reason being to try and divert the
attention of the security personnel by making them go after the spoofed host and
therefore hide their real IP’s (for the time being anyway, until they launch the
follow-up attack) because after recon the attacker would likely launch a follow-up
actual attack and at that time spoofing will no longer be available since he would
need a legitimate connection in order to complete the attack like a buffer overflow
(root access) for example that spawns a shellcode.

Seems to look like attacker comes from superonline in turkey.
Whois 217.131.173.220

% This is the RIPE Whois server.

% The objects are in RPSL format.

% Please visit http://www.ripe.net/rpsl for more information.

% Rights restricted by copyright.

% See http://www.ripe.net/ripencc/pub-services/db/copyright.html
inetnum: 217.131.0.0 - 217.131.255.255

netname: TR-SUPERONLINE-980319

descr: Provider Local Registry

country: TR

admin-c: MSO14-RIPE

admin-c: GB3469-RIPE

admin-c: OK955-RIPE

tech-c: GB3469-RIPE

tech-c: OK955-RIPE

tech-c: MSO14-RIPE

tech-c: ABK13-RIPE

status: ALLOCATED PA

notify: hostmaster@superonline.net
changed: hostmaster@ripe.net 20010122
source: RIPE

mnt-by: RIPE-NCC-HM-MNT

changed: hostmaster@ripe.net 20010528
changed: hostmaster@ripe.net 20010601
route: 217.131.128.0/17

descr: SUPERONLINE-AS

origin: AS6822

notify: muratoz@superonline.net

mnt-by: SOL-NET

changed: muratoz@superonline.net 20011220
source: RIPE

person: Murat Selahattin Oz

address: Buyukdere Cad.Yapi Kredi Plaza
address: A Blok 80620

address: Yeni Levent

12
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

address:
phone:
fax-no:
e-mail:
nic-hdl:

changed:

source:
person:
address:
address:
address:
address:
address:
phone:
fax-no:
e-mail:
nic-hdl:

changed:

source:
person:
address:
phone:
fax-no:
e-mail:
nic-hdl:

changed:

source:
person:
address:
address:
address:
address:
address:
phone:
fax-no:
e-mail:
e-mail:
nic-hdl:

changed:

source:

Istanbul - Turkey
+90 212 2700890
+90 212 2702231
muratoz@superonline.net
MSO14-RIPE
muratoz@superonline.net 20000301
RIPE
Gokhan Borat
Superonline
Buyukdere Cad. Yapi Kredi Plaza
A Blok 80620
Yeni Levent
Istanbul - Turkey
+90 212 270 0890
+90 212 270 2231
gborat@superonline.net
GB3469-RIPE
muratoz@superonline.net 20010123
RIPE
Osman Kazdal
OK
+00 000 000 0000
+00 000 000 0000
oskab3@hotmail.com
OK955-RIPE
oska53@hotmail.com 20020327
RIPE
Abidin Kahraman
Superonline
Buyukdere Cad. Yapi Kredi Plaza
A Blok 80620
Yeni Levent
Istanbul - Turkey
+90 212 270 0890
+90 212 270 2231
kahramana@superonline.net
abidin.kahraman@superonline.net
ABK13-RIPE

kahramana@superonline.net 20001021

RIPE

4 .Description of the attack:

DNS or Domain Name Server is a distributed database that is used by

applications to map between hostnames and IP addresses and to provide email
routing information. DNS can use either TCP or UDP procotol for its messages.

© SANS Institute 2004,

13

As part of GIAC practical repository.

Author retains full rights.

The most commonly used implementation of the DNS is called BIND (Berkeley
Internet Name Domain server). BIND is used on the majority of name serving
machines on the Internet and has a resolver library that provides the standard
APIs for translation between domain names and Internet addresses. Older
versions of BIND have a number of vulnerabilities in them that could easily be
compromised that could allow attackers to gain root. In our logs we see attacker
requesting the DNS version number from the intended victim. This is actually a
reconnaissance and not an attack but this type of activity would see leading to an
attack. From the logs, there was one more reconnaissance attempt to get the
DNS version number by the same attacker to a different host 34 minutes after the
first reconnaissance attempt. A search of “bind” at cve.mitre.org yields the
following vulnerabilities that could be exploited but the most notable ones are the
buffer overflows which allows execution of arbitrary code that can gain root
access.

There are 24 CVE entries or candidates that match your search.

CVE version: 20020625

‘Name |Description

CVE-

1999- |Inverse query buffer overflow in BIND 4.9 and BIND 8 Releases.
0009

CVE- , : I : -

1999. Denial of Service vulnerability in BIND 8 Releases via maliciously
0010 formatted DNS messages.

CVE- . . e .
“oao |Denial of Service vulnerabilities in BIND 4.9 and BIND 8 Releases via
1999-

~~..~ |CNAME record and zone transfer.

0011

CVE-

1999- |DNS cache poisoning via BIND, by predictable query IDs.

0024

CVE- |When compiled with the -DALLOW_UPDATES option, bind allows
1999- |dynamic updates to the DNS server, allowing for malicious modification
0184 |of DNS records.

CVE- |The LDAP bind function in Exchange 5.5 has a buffer overflow that
1999- |allows a remote attacker to conduct a denial of service or execute
0385 commands.

CVE-
1999- |Buffer overflow in BIND 8.2 via NXT records.
0833

CVE-
1999- |Denial of service in BIND named via malformed SIG records.
0835

‘CVE— |Denial of service in BIND by improperly closing TCP sessions via

14
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1999- |so_linger.

0837
CVE' . . H H H n " £
1990. Denial of service in BIND named via consuming more than "fdmax" file
0848 descriptors.
CVE-
1999- |Denial of service in BIND named via maxdname.
0849
CVE-
1999- |Denial of service in BIND named via naptr.
0851

named in BIND 8.2 through 8.2.2-P6 allows remote attackers to cause a
CVE- : , .
2000- denial of service by making a compressed zone tra_nsf_er (ZXFR) request
0887 and performing a name service query on an authoritative record that is

not cached, aka the "zxfr bug."

CVE- |named in BIND 8.2 through 8.2.2-P6 allows remote attackers to cause a
2000- |denial of service by sending an SRV record to the server, aka the "srv
0888 |bug."

OpenSSH SSH client before 2.3.0 does not properly disable X11 or

CVE- agent forwarding, which could allow a malicious SSH server to gain
2000- .) .
1169 access to the X11 display and sniff X11 events, or gain access to the
== |ssh-agent.
CVE-
2001 Buffer overflow in transactlon.3|gnatur¢ (TSIG) handling code in BIND 8
0010 allows remote attackers to gain root privileges.
CVE- 3 . .
2001 Buffer overflovv_ in nslool_<u_pCompIa|n function in BIND 4 allows remote
0011 attackers to gain root privileges.
CVE- .
2001 BIND 4 and BIND 8 allow remote attackers to access sensitive
——— |information such as environment variables.
0012
CVE- . e . .
2001 Format string vulnerability in r_lslookupq_)mplaln function in BIND 4
0013 allows remote attackers to gain root privileges.

dnskeygen in BIND 8.2.4 and earlier, and dnssec-keygen in BIND 9.1.2
CVE- : . o
2001 and garller, set insecure permissions for a HMAC-MD5 sha}red secret
0497 key file used for DNS Transactional Signatures (TSIG), which allows

attackers to obtain the keys and perform dynamic DNS updates.

CVE- |CGl.plin Bugzilla before 2.14.1, when using LDAP, allows remote
2002- |attackers to obtain an anonymous bind to the LDAP server via a request
0007 |that does not include a password, which causes a null password to be

15
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

‘ |sent to the LDAP server.
** CANDIDATE (under review) ** named in ISC BIND 4.9 and 8.1 allows

—fg‘glg local users to destroy files via a symlink attack on (1) named_dump.db
1499 when root kills the process with a SIGINT, or (2) named.stats when

SIGIOT is used.

** CANDIDATE (under review) ** ISC BIND 9 before 9.2.1 allows
CAN- |remote attackers to cause a denial of service (shutdown) via a
2002- |malformed DNS packet that triggers an error condition that is not
0400 |properly handled when the rdataset parameter to the
dns_message_findtype() function in message.c is not NULL.

** CANDIDATE (under review) ** Buffer overflow in the DNS resolver

_(23(/)\0I\2I code in libc and libbind, as derived from ISC BIND, allows remote
0651 malicious DNS servers to cause a denial of service and possibly

execute arbitrary code via the stub resolvers.

5. Attack Mechanism:

The attack worked by sending a UDP packet with the DNS message flag setting
of query set and waiting for a response back to the query. If this type of query
was allowed and the version was returned to the attacker, he can now research
what vulnerabilities that version contains and exploit them. BIND has a feature
where its database contains a CHAOS/TXT resource record with the name
“Version.Bind”. If somebody queries this record, the version of the BIND software
will be returned. From our logs, we see:

23:11:04.884488 217.131.173.220.2839 > 226.185.188.10.domain: 4660
[02&3=0x80] TXT CHAOS)? version.bind. (30)

The attacker requesting the BIND version from the intended victim, if the victim
was running BIND and the query was allowed to go through, there would
normally be a response like 22:34:44.573408 226.185.188.10.53 >
217.131:173.220 14049*- 1/0/0 CHAOS) TXT 9.1.1 (48) (DF)

saying there was one answer and version was 9.1.1 but in our case, there was
none but this doesn’t mean that there were no replies because snort has a
preprocessor ignore-hosts $DNS_SERVERS that lets snort ignore traffic from
these servers treating them like legitimate traffic, of course you can always write
a custom snort rule to catch this. 4660 is the identification number to match
response to request, b2&3=0x80 looks like a filter for bytes 2 & 3 that contains a
hex value of 80 (1000 0000 binary). Bytes 2 and 3 of the DNS header contain the
flags field. Since we are looking for a value of 1000 0000, only the QR field is set
meaning the message is a query. Todd Beardsley asks, “Why does the attacker
go to all this trouble figuring out the version number and why not just try to throw
all exploits available at the target and hope one works?” The answer is it's too

16
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

noisy and it's easier to map vulnerable machines via application fingerprinting
and then sending specific exploits.

6.Correlations:

A search on Google for this particular IP address yielded nothing. However, Jeff
Holland reported a similar DNS Named Version Request in his practical but his
was followed by the TSIG buffer overflow attempt. (because his DNS server
responded, ours did not) Our logs however, only show the DNS named version
request by the attacker. Also, DNS version requests are quite common.

There is also a new worm called Lion Worm (Thanks to Paul Asadoorian for this
information) that tries to exploit BIND TSIG vulnerability. This worm uses randb
to generate class B addresses and pscan to scan random class B internet
address space and sets up to listen to port 27374 and feeds it to a webpage and
sends out outgoing email to huckit@china.com with the /etc/password and
/etc/shadow files. More information is at http://www.incidents.org/react/lion.html.

A Snort rule to detect lion is alert UDP $SEXTERNAL any -> $INTERNAL 53
(msg:"IDS482/named-exploit-tsig-infoleak™; content: "|AB CD 09 80 00 00 00 01
00 00 00 00 00 00 01 00 01 20 20 20 20 02 61]";)

We do not appear to be infected with this worm since the packet dump does not
have the content: "|JAB CD 09 80 00 00 00 01 00 00 00 00 00 00 01 00 01 20 20
20 20 02 61]";) which would indicate a lion signature.

7.Evidence of active targeting:

The fact that there were only two hosts (226.185.188.10 and 226.185.227.124)
that were targeted by the attacker in the log files instead of a range of address
suggests that these two hosts were actively targeted as opposed to doing a
general scanning of an entire network looking for open DNS ports.

8.Severity:
Criticality- Since DNS servers are critical machines criticality is set to 5.

Lethality- Reconnaissance activity is not considered lethal because this is just an
information-gathering attempt. Lethality is set to 2.

System Countermeasures- Looking at the logs, it is hard to say what kind of
system countermeasures are in place. System Countermeasures is set to 1.

Network Countermeasures- DNS servers are usually located outside an
organization’s firewall. Assuming target did not respond (However, if DNS
servers were included in the snort preprocessor ignore-hosts $DNS_SERVERS,

17
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

then it will be most likely that snort would not show the replies. Network
Countermeasures is set to 3.

(Criticality + Lethality) — (System Countermeasures + Network
Countermeasures) = Severity
6G+2)-(1+3)=3

9. Defensive Recommendation:

Make sure that all patches are up to date. Always upgrading to the latest BIND
version is always good but that is easier said than done. Configuring the BIND
software to not return the version when queried to do so is a good start.

Add line: options { version "Operation Not Permitted”;} to named.conf to hide the
real version of bind Or you could use djbdns instead. Djbdns can be snagged at:
http://cr.yp.to/djbdns.html

Also contacting Superonline and asking, reporting the offending IP address is
also a good idea.

10. Multiple Choice Questions:
In this trace

23:11:04.884488 217.131.173.220.2839 > 226.185.188.10.domain: 4660
[02&3=0x80] TXT CHAOS)? version.bind. (30)

What does the hex value “0x80” convert to in binary?

A.1111 0000

B. 1000 1000

C. 1000 0000

D. 0101 1000

ANSWER: C- First we change each hex digits into 4 bits each. Hex 8 is equal to
1000 in binary and hex 0 is equal to binary 0000.

Top Three Questions:

1. Donald Smith-“Imagine you have a dns box behind your ids. Do you log every
packet it sends? Not normally. Would your IDS system (snort)

have logged a packet for a dns reply? Would it ever log a dns reply if your dns
box was listed in the snort.conf file?”

Answer- if your dns box was listed in

the snort.conf file under preprocessor ignore-hosts (Essentially to reduce the
number of false alerts of portscans generated by legitimate traffic from your dns
servers) then my answer is no. Snort would not log any traffic from these servers

18
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

because it would think all traffic were valid not unless you create a custom snort
rule to log specific dns replies.

2. Tod Beardsley- “Why does the attacker go to all this trouble figuring out
versionnumbers in the first place? Wouldn't it be easier to just throw every BIND
exploit under the sun at the target and hope one works?

Answer- Because its to “noisy”. It's generally easier to use specific exploits if the
machine is vulnerable rather than wasting time trying it on non-vulnerable
systems. Also, a failed buffer overflow attempt could cause a segfault meaning
the daemon will die until its restarted so if you blindly use a wrong exploit, you
might just cause the process to quit so if a hacker wants to get into your
machine, it is in his best interest that he use the right exploit first.

3.Allen Witt- “Was there any evidence of similar activity from other hosts in in the
data? An aspect not covered in the SANS training that I'm seeing on the nets that
| monitor is distributed recon from multiple hosts using the same methodology.
The hosts can be from the same logical network or multiple unrelated networks.
A few smart hackers are doing this with 'bots to reduce the chance that they'll be
detected, and to avoid identification when detected.”

Answer: Yes. There was one other coming from the same attacker but directed to
a different host 34 minutes after the first reconaissance attempt. You are correct
that there are a lot of hackers out there that try to be as "noisy" as possible in the
hope of swamping the ids with lots of alerts so that the security personnel would
either be overwhelmed or would pay less attention to these and therefore be able
to evade being detected when they do actually launch an attack. There was one
hacking group that | read (forgot their name) that automates their scanning of
target network for weeks and essentially try to be as noisy as possible via cron
jobs before launching an attack. The poor security personnel became lax and
didnt realize it until it was too late. However it is highly unlikely that the attacker in
this log is using this same methodology since as | said there was only two
different detects logged (34 minutes apart) but they can also use this
methodology to be “stealthy” such as using multiple unrelated IP addresses with
the same exploit and same tool with consistent timings for the relationships.

Network Detect # 2 Linuxconf Remote Buffer Overflow Scan

Mar 31 19:09:35 hosth snort[75541]:

spp_portscan: PORTSCAN DETECTED from 203.85.30.129
Mar 31 19:09:41 hosth snort[75541]: spp_portscan:
portscan status from 203.85.30.129: 14 connections

across 14 hosts: TCP(14), UDP(0)

Mar 31 19:09:47 hosth snort[75541]: spp_portscan:

19
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

End of portscan from 203.85.30.129

Mar 31 19:09:34 203.85.30.129:1542 -> A.B.C.30:98 SYN **S*x***
Mar 31 19:09:34 203.85.30.129:1545 -> A.B.C.33:98 SYN **Sk*k*
Mar 31 19:09:38 203.85.30.129:1710 -> A.B.C.197:98 SYN **S*¥**
Mar 31 19:09:38 203.85.30.129:1714 -> A.B.C.201:98 SYN **Srx***
Mar 31 19:09:38 203.85.30.129:1717 -> A.B.C.204:98 SYN **S*¥**
Mar 31 19:09:38 203.85.30.129:1720 -> A.B.C.207:98 SYN **Srx***
Mar 31 19:09:38 203.85.30.129:1727 -> A.B.C.214:98 SYN **Sx***
Mar 31 19:09:38 203.85.30.129:1728 -> A.B.C.215:98 SYN **Skx***
Mar 31 19:09:38 203.85.30.129:1731 -> A.B.C.218:98 SYN **S*¥**
Mar 31 19:09:36 203.85.30.129:1748 -> A.B.C.235:98 SYN **Skx***

1. Source of trace:

This trace came from http://www.incidents.org/archives/y2k/040200.htm

2. Detect was generated by:

Probably Snort. The initial messages in the logs come from the Snort portscan
preprocessor. This preprocessor logs the start and end of portscans from a
single source IP to the portscan.log file. As we can see, this includes the ports
scanned, how many connection attempts, the number of hosts scanned as well
as the type of scan. Snort also has an alerts file (snort.alert) which contains the
alert message, date and time stamp, source IP and port, Dest IP and port,
protocol and IP flags. The snort portscan preprocessor logs detected portscans
to the snort.alert file. The portscan.log file which is different from the alerts file
contains a more detailed log of the portscans which tells which ports were hit and
the IP flags used. For example,

Mar 31 19:09:35 hosth snort[75541]:

spp_portscan: PORTSCAN DETECTED from 203.85.30.129

This is a portscan logged by the snort portscan preprocessor to the snort alerts
file (above). If you wanted to see more detailed explanation about this portscan,
you would look at the portscan.log file which would contain a more detailed entry
for this. (see below)

Mar 31 19:09:34 203.85.30.129:1542 -> A.B.C.30:98 SYN **S***xx

The signature that could have fired in the alerts file should be similar to:

alert TCP $SEXTERNAL_NET any -> $HOME_NET 98 (msg: " Possible Linuxconf
Scan”; flags: S;)

3. Probability that the source address was spoofed:

20
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

It is highly unlikely that the source address is spoofed because the attacker is
trying to gain some useful insight, there is no advantage in spoofing the source
address else there is a risk of not gathering any useful information. It could
probably still be spoofed if the return traffic can somehow be sniffed by the
attacker (see description on DNS Named Version request above # 3 for more
details on how this could work)

4. Description of attack:

This scan is directed at TCP port 98 which is associated with Linuxconf.
Linuxconf is a sophisticated administration tool used for system configuration by
various Linux distributions most notably RedHat. Linuxconf is important because
it Is a configuration utility, meaning it is capable of doing configuration tasks such
as adding users, deleting users, etc and it is an activator, meaning it can
activate/deactive services that are running on your machine. Linuxconf is
basically involved at different points in the operation of your machine but if it can
be exploited to gain root, then that is the most important thing to an attacker. A
search of the cve website produces some interesting results.

There are 5 CVE entries or candidates that match your search.
CVE version: 20020309

Name Description
Buffer overflow in linuxconf 1.11r11-rh2 on Red Hat Linux 5.1 allows
CVE-1999-1327 local users to gain root privileges via a long LANG environmental
variable.

linuxconf before 1.11.r11-rh3 on Red Hat Linux 5.1 allows local users to

CVE-1999-1328 overwrite arbitrary files and gain root access via a symlink attack.

vpop3d program in linuxconf 1.23r and earlier allows local users to

CVE-2001-0143 overwrite arbitrary files via a symlink attack.

** CANDIDATE (under review) ** Linuxconf on Red Hat Linux 6.0 and
CAN-1999-1348 earlier does not properly disable PAM-based access to the shutdown
command, which could allow local users to cause a denial of service.

** CANDIDATE (under review) ** Buffer overflow in Linux linuxconf
CAN-2000-0017 package allows remote attackers to gain root privileges via a long
parameter.

The most dangerous one is the remote buffer overflow attacks (CAN-2000-0017)
and (CVE-1999-1327) where remote attackers can gain root via execution of
arbitrary code.

5. Attack Mechanism:

The attack works by sending a packet with the SYN flag on to try and elicit a
response if any hosts are listening on port 98 on the A.B.C.0/24 subnet. Note that

21
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the reconnaissance scanning was done pretty fast for the 14 hosts so this was
probably from an automated tool. This is a stimulus by the hostile IP looking for
open TCP port 98. The packets do not appear to be crafted since the source
ports increment and a legitimate flag is set (SYN), normal behavior for an initial
TCP connection. There are a number of vulnerabilities that exist for linuxconf
according to CVE but the most dangerous one is the remote buffer overflow
vulnerability allowing for a remote creation of a shell on the target machine.
According to Alepht1, “The vulnerability may be in the program's handling of
HTTP headers.”. From what | have read there is an exploit code available
somewhere where it uses a http post statement to tcp port 98 to overflow the
buffer, unfortunately none so far in the security community had been able to use
this exploit code successfully.

6. Correlations:

Comments on cve.mitre.org regarding Linuxconf and bugtrag mailing list have
consistently reported that scans have took place for TCP port 98 for several
months such as http://www.sans.org/y2k/032601.htm and
http://www.sans.org/y2k/060100-1400.htm

7. Evidence of active targeting:

The attacker is searching for open Linuxconf port 98 on the A.B.C.0/24 subnet.
Since the A.B.C.0/24 subnet has been targeted means that there is a strong
evidence of active targeting of the network.

8. Severity:

Criticality- The importance of the host is not known (for all we know it could be
also be webserver) but there has been no evidence that the exploit works,
Criticality is set to 4.

Lethality- Reconnaissance attempts are not lethal. It just gives some useful
insight that can be used later. Lethality is set to 2.

System Countermeasures- Looking at the logs, it is hard to say what kind of
system countermeasures are in place. System Countermeasures is set to 1.

Network Countermeasures- Assuming that there is a firewall in place blocking the
scans and the IDS caught the traffic. Also, perhaps only the stimuli was shown
on the logs meaning logs had probably been previously sanitized since this may
be normal procedure to most organizations. Network Countermeasures is set to
3.

? http://marc.theai msgroup.com/? =bugtrag& m=94580196627059& w=2

22
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(Criticality + Lethality) — (System Countermeasures + Network
Countermeasures) = Severity
4+2)-(1+3)=2

9. Defensive Recommendation:

Checking machines that run linuxconf and determining if linuxconf is required to
be running on them be patched up to date else disable linuxconf. Denying traffic
coming from the outside towards port 98 is also a nice solution since we do not
see any good reason for system configurations to be done remotely. Locally is
probably acceptable but | am strongly against it and highly dangerous since
linuxconf runs as root and has a web interface that allows anyone to login via
http://yourmachine:98, so anybody can use that and try to guess the root
password.

10. Multiple Choice Questions:

Buffer Overflows are due to:

A). It's a type of port scanning by sending a packet with the SYN/FIN flag set on
B). Not enough memory

C). Program or process tries to store more data in a buffer than it was intended to
hold, normally because input is not checked.

D). When the Window size is 0x404

Answer: C

Network Detect # 3 Fast Distributed FTP Scan

10/26-06:59:12.559492 208.184.11.192:53290 -> www.xxX.yyy.4:21
TCP TTL:118 TOS:0x0 ID:629 IpLen:20 DgmLen:48 DF

FeekkxS* Seq: OXCCFD871B Ack: O0xO Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

10/26-06:59:12.572921 216.132.188.188:4275 -> www.xxx.yyy.10:21
TCP TTL:48 TOS:0x0 1D:8363 IpLen:20 DgmLen:44

eekkxS Seq: O0x2BOF9F0 Ack: Ox0 Win: 0x1C84 TcpLen: 24

TCP Options (1) => MSS: 1460

10/26-06:59:12.653053 208.184.11.192:53291 -> www.xxx.yyy.14:21
TCP TTL:118 TOS:0x0 ID:632 IpLen:20 DgmLen:48 DF

ekkxkS Seq: OXCCFE7532 Ack: OxO Win: 0x4000 TcplLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

10/26-06:59:12.735977 216.161.238.129:2740 -> www.xXx.yyy.12:21

23
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TCP TTL:115 TOS:0x0 1D:35245 IpLen:20 DgmLen:44 DF
reekkxS Seq: 0x98C0740C Ack: OxO Win: 0x2000 TcpLen: 24
TCP Options (1) => MSS: 1460

10/26-06:59:12.793004 204.101.16.163:2754 -> www.xXxX.yyy.16:21
TCP TTL:49 TOS:0x0 1D:44376 IpLen:20 DgmLen:44

FeekkxS* Seq: 0x114C54B0 Ack: OxO Win: 0x1C84 TcpLen: 24
TCP Options (1) => MSS: 1460

10/26-06:59:12.835849 216.158.34.123:1422 -> WWW.XXX.yyy.9:21
TCP TTL:117 TOS:0x0 1D:34740 IpLen:20 DgmLen:44 DF
eekkxS Seq: 0xX5613CFBO Ack: OxO Win: 0x2000 TcpLen: 24
TCP Options (1) => MSS: 1460

10/26-06:59:15.059068 216.145.95.3:1171 -> www.xxX.yyy.8:21
TCP TTL:56 TOS:0x0 1D:21880 IpLen:20 DgmLen:44

FeekkxS* Seq: OXA1DEO310 Ack: OxO Win: 0x1C84 TcpLen: 24
TCP Options (1) => MSS: 1460

10/26-06:59:17.129919 208.184.11.192:53298 -> www.xXXX.yyy.6:21
TCP TTL:118 TOS:0x0 1D:667 IpLen:20 DgmLen:48 DF

eekkxS Seq: OXCD1628E9 Ack: 0xO Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

10/26-06:59:17.163196 216.124.39.10:3749 -> www.xXxX.yyy.2:21
TCP TTL:113 TOS:0x0 1D:24128 IpLen:20 DgmLen:44 DF
FeekkxS* Seq: 0x118ADB90 Ack: OxO Win: 0x2000 TcpLen: 24
TCP Options (1) => MSS: 1460

1. Source of Trace:

This trace came from http://www.incidents.org/archives/intrusions/msg01549.html

2. Detect was generated by:

Detect looks like it was captured with snort. If snort, the default snort portscan
preprocessor should be able to capture this else it would have to be tweaked a
little such as (Maybe this’ll work but | never tried it):

portscan: detect a variety of portscans

portscan preprocessor by Patrick Mullen <p_mullen@Ilinuxrc.net>

This preprocessor detects UDP packets or TCP SYN packets going to
one port in less than two seconds. "Stealth” TCP

packets are always detected, regardless of these settings.

preprocessor portscan: SHOME_NET 1 2 portscan.log

24
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.Probability that the source address was spoofed:

The probability that the source address was spoofed is highly unlikely because
the attacker is trying to gain some useful insight. Scan data would require return
packet to verify that the socket is open. It seems like there are probably several
unique source IP’s by looking at Time to live fields, TCP options and
Identification fields. For example, looking at 216.132.188.188 it has a ttl value of
48 (upper limit on the number of routers through which a datagram can pass
which is initialized by the sender to some value), 216.158.34.123 has a different
ttl of 117 and so is 216.145.95.3 which has a ttl value of 56, and so on. Also IP ID
numbers are significantly apart meaning different hosts has sent these
datagrams (because ID field is normally incremented by one each time a
datagram is sent). 216.132.188.188 has an ID number of 8363, 216.158.34.123
has a greater number of ID of 34740 while 216.145.95.3 has an ID of 21880 and
so on. Finally we check if they do come from different network blocks via Arin
whois database. 208.184.11.192 comes from abovenet communications,
216.132.188.188 is choice one communications, 204.101.16.163 is worldlinx
telecommunications, 216.158.34.123 belongs to DCA.net (Consult Dynamics,
Inc), and so on.

4. Description of attack:

Network scan are in a range of IP’s in the www.xxx.yyy.0/24 subnet and are
milliseconds apart using 24 and 28 bytes. The logs show SYN attempts to TCP
port 21 associated with ftp (File Transfer Protocol), the Internet standard for file
transfer. There are a number of possible matches (174 cve entries) at
cve.mitre.org when the string ‘ftp’ is searched but the most likely attacks following
this reconnaissance are site exec attacks that can gain root access, buffer
overflow attacks which allows execution of arbitrary code that can also gain root
access. Below are some of FTP vulnerabilities that can be exploited via site exec
commands and buffer overflows as seen from http://cve.mitre.org/cqi-
bin/cvekey.cqgi?keyword=ftp.

CVE-1999-0219
CVE-1999-0349
CVE-1999-0368

CVE-1999-0080
CVE-1999-0955

CVE-1999-0097
CVE-2000-0573

CVE-2001-0318

5. Attack Mechanism:

The attack works by sending a packet with the SYN flag on to try and elicit a
response if any hosts are listening on port 21 on the www.xxx.yyy.0/24 subnet.

25
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Note that the scanning was done also pretty fast probably by an automated tool.
This is a stimulus by the hostile IP’s looking for open TCP port 21. The packets
do not appear to be crafted since the source ports increment for the same source
IP and a legitimate flag is set (SYN), normal behavior for an initial TCP
connection.

6. Correlations:

Chris Calabrese discussed a similar detect in his GCIA practical and according to
him, he was able to find plenty of other attacks that come from these same net
blocks and that these net blocks are often used by attackers. However, He
mentioned that the “packets we’re seeing are initial login attempts” and payloads
of 24 and 28 bytes” which We do not agree to since these packets are SYN
packets, meaning the initial login attempts will even be tried until the three-way
handshake has been completed. We do not understand what he meant by 24
and 28 bytes of payload since TCP will not have any payload since the packets
only contain IP and TCP headers.

7. Evidence of active targeting:

The scans were fairly accurate, destined for port 21 on the www.xxx.yyy.0/24
subnet. Since the www.xxx.yyy.0/24 subnet has been targeted means that there
is a strong evidence of active targeting of the network but not a specific host on
that network.

8. Severity:

Criticality- FTP servers are fairly critical systems so criticality would probably be
high. Criticality is set to 4.

Lethality- Reconnaissance gathering is not lethal. Lethality is set to 2.

System Countermeasures- Looking at the logs, it is hard to say what kind of
system countermeasures are in place. System Countermeasures is set to 1.

Network Countermeasures- Assuming that there is a firewall in place blocking
the scans and the IDS caught the traffic. Also, perhaps only the stimuli was
shown on the logs meaning logs had probably been previously sanitized since
this may be normal procedure to most organizations. Network Countermeasures
is set to 3.

(Criticality + Lethality) — (System Countermeasures + Network
Countermeasures) = Severity
(4+2)-(1+3)=2

9. Defensive Recommendation:

26
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Auditing for systems that are running ftp and keeping them patched up to date
and putting the offending IP’s in the watchlist to monitor would be a good start.

10. Multiple Choice Test Question:

In the trace below, how many TCP options are enabled?

10/26-06:59:17.129919 208.184.11.192:53298 -> www.xxXX.yyy.6:21
TCP TTL:118 TOS:0x0 ID:667 IpLen:20 DgmLen:48 DF

FeekkxS* Seq: OXCD1628E9 Ack: 0xO Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

A. 48

B. 28

C.4

D. 1460

Answer: C- There are 4 TCP options in this trace namely Maximum Segment
Size of 1460 bytes, No Operation, No Operation and Selected
Acknowledgement.

Assignment # 3 Analyze This
Introduction:

We have been asked to perform a security audit for GIAC University. GIAC has
provided us with data from a Snort Intrusion Detection System that uses a fairly
standard ruleset. With this data, we must analyze and evaluate GIAC University’s
information security. GIAC also has required us for inclusion in the report:

A list of the files chosen for analysis. At least five days’ worth of “scans”, “alerts”,
and “oos” (Out of Spec) files shall be used.

An overview or executive summary of our analysis.

A list of detects prioritized either by severity or number of occurrences and a brief
description of these.

A "top talkers" list: The top ten talkers, in terms of detects.

A list of five external source addresses and registration information about these
addresses, explained why we chose these.

Correlations from previous analysts’ reports (numbered 209 and above).

A link graph and analysis of OOS files.

Any insights into internal machines such as compromise or possible dangerous
or anomalous activity.

Defensive recommendations.

27
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A description of our analysis process, the steps used when performing the
analysis.

Meaningful analysis identifying relationships between the different computers that
generated logs

Executive Summary:

We have finished conducting our analysis of the data supplied by GIAC
University and has determined that there are some problems that need to be
addressed, potentially compromised hosts, violations of sound security policies,
and firewall and IDS ruleset configurations. This report will detail the investigation
of the top 10 alerts reported during the data capture period, and defensive
recommendations will also be given.

We feel that our ability to analyze GIAC University’s security posture was
handicapped because we were not provided with some important information
such as network topology, the actual rulesets and Giac University’s Security
policies.

This report aims to provide the University with a picture of all intrusion attempts
that occurred between March 24-28 2002 over a five-day period. The goal is to
identify systems that exhibit signs of system compromise, identify successful and
unsuccessful intrusion attempts. The following log files were used for the
analysis.

Alerts 00S Scans

alert.020323 |oos Mar.24.2002 |Scans.020323
alert.020324 |oos Mar.25.2002 |Scans.020324
alert.020325 |oos_Mar.26.2002 |Scans.020325
alert.020326 |oos Mar.27.2002 |Scans.020326
alert.020327 |oos Mar.28.2002 |Scans.020327

List of top 10 Detects shown using SnortSnarf prioritized by number of

occurrences:
. . , . # # # Detail

Priority | Signature (click for sig info) Alerts | Sources | Dests | link

N/A SMB Name Wildcard 57280 |131 115 Summary
N/A SNMP public access 40021 |21 146 Summary
N/A connect to 515 from inside 34435 |55 4 Summary
n/A | /CMP Echo Request 28323 |90 12 | Summary

L3retriever Ping

28
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

N/A MISC Large UDP Packet 22187 |14 7 Summary

spp_http_decode: 1IS Unicode

N/A attack detected

8555 |78 427 Summary

N/A INFO MSN IM Chat data 4462 |64 64 Summary

N/A INFO Inbound GNUTella 4248 | 3485 8 Summary
Connect request

ICMP Echo Request Nmap or

N/A HPING2

3717 61 5 Summary

Watchlist 000220 IL-ISDNNET-
N/A 990517 2915 |13 6 Summary

Brief Description of the TOP 10 list of detects

1. SMB name wildcard- This is a standard netbios name retrieval query. These
alerts are triggered when Windows machines send often exchange these queries
as part of filesharing protocol to determine netbios names when only IPS are
known. This type of query can gather important information such as workstation
name, domain, and a list of currently logged users. TCP and UDP port 137 is the
port used for Netbios name service that could also reveal unprotected windows
shares.

Since the SMB name wildcard alerts were triggered from sources coming from
MY.NET and destined for MY.NET, these are highly possible to be legitimate
traffic and are due to the windows machines browsing the network. Changing the
rule to reflect the source address as being !$SHOME (or whatever variable for the
internal network) but still be able to log those sources outside of MY.NET would
make a lot of false positives go away. Also performing an audit into what these
machines are actually sharing and who is accessing it is also a good idea.

Here are some of the logs captured:

03/23-00:00:16.241347 [**] SMB Name Wildcard [**] 192.170.11.6:137 ->
192.170.152.14:137
03/23-00:01:22.027366 [**] SMB Name Wildcard [**] 192.170.11.6:137 ->
192.170.152.11:137

2. SNMP public access- Depending on the nature of these machines providing
SNMP data, this could be legitimate traffic. As best practice, the use of “public”
community string should be avoided and filtering out SNMP at the border router
since there were no recorded probes from outside of MY.NET is a good idea.
Here are some of the logs:

29
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

03/23-00:16:45.653951 [**] SNMP public access [**] 192.170.70.177:1068 ->
192.170.5.31:161
03/23-00:16:45.666947 [**] SNMP public access [**] 192.170.70.177:1068 ->
192.170.5.31:161

TCP and UDP port 161 is the port used for SNMP. However, SNMP has been
historically plagued with a lot of vulnerabilities such as:

‘Name |Description

—%/9% All records in a WINS database can be deleted through SNMP for a
0294 denial of service.

—CVE- 1 n TAIl T H
1999- The SNMP default community name publ_lc_ is not p_roperly _remov_ed in
0472 NetApps C630 Netcache, even if the administrator tries to disable it.

CVE- |Memory leak in SNMP agent in Windows NT 4.0 before SP5 allows
1999- remote attackers to conduct a denial of service (memory exhaustion)
0815 via a large number of queries.

CVE- |snmpd server in cmu-snmp SNMP package before 3.3-1 in Red Hat
1999- [Linux 4.0 is configured to allow remote attackers to read and write
1335 sensitive information.

—g(;/OEO The Nautica Marlin bridge allows remote attackers to cause a denial of
0221 service via a zero length UDP packet to the SNMP port.

CVE- |The Netopia R9100 router does not prevent authenticated users from
2000- |modifying SNMP tables, even if the administrator has configured it to do
0379 SO.

CVE- |The snmpd.conf configuration file for the SNMP daemon (snmpd) in
2000- |HP-UX 11.0 is world writable, which allows local users to modify SNMP
0515 configuration or gain privileges.

Buffer overflow in OverView5 CGI program in HP OpenView Network
CVE- |Node Manager (NNM) 6.1 and earlier allows remote attackers to cause
2000- |a denial of service, and possibly execute arbitrary commands, in the
1058 SNMP service (snmp.exe), aka the "Java SNMP MIB Browser Object ID
parsing problem."

CVE- Buffer overflow in Solaris snmpXdmid SNMP to DMI mapper daemon
2001- |allows remote attackers to execute arbitrary commands via a long
0236 "indication” event.

CVE-

2001-
0487

AIX SNMP server snmpd allows remote attackers to cause a denial of
service via a RST during the TCP connection.

30
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In summary, an audit of machines running SNMP is advisable to make sure they
are patched up to date.

3. Connect to 515 from inside- The connect to 515 from inside alert is triggered
when a host from MY.NET connects to port 515 to MY.NET also. Port 515 for
both TCP and UDP is associated with printer spooler or Ipr service which
basically queus print jobs. We can see that source and destinations are within
MY.NET and could be legitimate print servers since most of the alerts for these
destinations were connect to 515 from inside (A few had SMB name wildcard
and L3retriver ping aside from connect to 515 from inside, see above and below
for further discussions on these). However, there are a number of vulnerabilities
that exist for the printer service such as:

Name Description

%_ Buffer overflow in BSD-based Ipr package allows local users to gain
0032 root privileges.

CVE- , .

1999. Buffer overflow in BSD and linux Ipr command allows local users to
0335 execute commands as root through the classification option.

CVE- Ipr on SunOS 4.1.1, BSD 4.3, A/UX 2.0.1, and other BSD-based
1999- operating systems allows local users to create or overwrite arbitrary
1102 files via a symlink attack that is triggered after invoking Ipr 1000 times.
CVE- teTeX filter before 1.0.7 allows local users to gain privileges via a
2001- symlink attack on temporary files that are produced when printing .dvi

0906 files using lpr.

CAN- ** CANDIDATE (under review) ** ** REJECT ** Duplicate of CVE-
1999- 1999-0032 ** REJECT ** Buffer overflow in Linux Ipr command gives
0020 root access.

Here’s a sample of the logs:

03/23-15:16:12.408761 [**] connect to 515 from inside [**¥] 192.170.153.125:3880
->192.170.150.198:515

03/23-15:16:12.424077 [**] connect to 515 from inside [**¥] 192.170.153.125:3880
->192.170.150.198:515

Changing the rule to reflect the source address as being !$HOME (or whatever
variable for the internal network) would make the false positives go away. Also

performing an audit if these machines are authorized spoolers is not a bad idea
and making sure they are patched up to date.

31
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4. ICMP Echo Request L3retriever Ping-Varied information | found on this type
of ping could be caused by the following:

A. - L3 Networks security scanner called Retriever 1.5, now owned by Symantec
uses this type of characteristic for ping. This legitimate security tool is used by
security professionals for scanning their own network (hopefully) for authorized
security assessment. However, Hackers can also use this tool to scan other
networks maliciously. From the logs, there were two destination IPS not
belonging to MY.NET, one was:

03/25-14:53:44.946399 [**] ICMP _Echo Request L3retriever Ping [**]
192.170.153.163 -> 129.22.134.36
03/25-14:53:47.379004 [**] ICMP _Echo Request L3retriever Ping [**]
192.170.153.163 -> 129.22.134.36

Whois 129.22.134.36
Case Western Reserve University
(NET-CWRUNET)
Campus Communications Network - Network Services
Crawford Hall, Room 426
Cleveland, OH 44106
us

Netname: CWRUNET
Netblock: 129.22.0.0 - 129.22.255.255

Coordinator:
Gumpf, Jeffrey A (JAG3-ARIN) Gumpf@INS.CWRU.EDU
(216) 368-2982

Domain System inverse mapping provided by:

NS.CWRU.EDU 129.22.4.1
NS2.CWRU.EDU 129.22.4.3
NCNOC.NCREN.NET 192.101.21.1

Record last updated on 22-Oct-1999.
Database last updated on 14-Jul-2002 19:59:49 EDT.

B. It could also mean that the L3retriever ping was caused by another reason,
such as this type of ping can be caused by plain w2k host talking to w2k domain
controllers. This was correlated by Joshua Wright and John Berkers at the snort-
users mailing list. (http://www.mcabee.org/lists/snort-users/Aug-
01/msg01234.html) Here are some more of the logs:

32
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

03/23-00:00:02.008798 [**] ICMP _Echo Request L3retriever Ping [**]
192.170.152.158 -> 192.170.11.6

03/23-00:00:16.239659 [**] ICMP _Echo Request L3retriever Ping [**]
192.170.152.14 -> 192.170.11.6

5. MISC Large UDP Packet- This type of alert could be caused by the quotes
around the rule for example,

alert udp '$HOME_NET any -> $HOME_NET any (msg:"IDS247 - MISC - Large
UDP Packet"; dsize: ">800";)

Removing the quotes around the >800 should make the false positives go away.
However, The new rulesets have already been updated to fix this problem. The
thread on this discussion could be found at
http://archives.neohapsis.com/archives/snort/2000-06/0330.html

Perhaps GIAC university is still using an old ruleset that does not yet correctly
address this problem. Also, according to Debrata Dash, large UDP traffic can
also be associated with streaming media.
(http://www.incidents.org/archives/intrusions/msg03704.html)

Here are some of the logs,

03/26-12:15:05.906469 [**] MISC Large UDP Packet [**] 66.28.104.154:1608 ->
192.170.153.153:3783

03/25-15:10:14.730738 [**] MISC Large UDP Packet [**] 140.142.8.72:2031 ->
192.170.153.157:2876

03/25-15:33:44.995952 [**] MISC Large UDP Packet [**] 202.101.232.110:1354 -
>192.170.153.159:1304

All of the source IP’s were external to MY.NET and it would be wise to find out if
MY.NET destinations (MY.NET.153.153,MY.NET.153.157 and MY.NET.153.159)
have any connections to IP addresses 66.28.104.154 (cogent
communications),140.142.8.72 (NorthWestNet Network Operations Center) and
202.101.232.110 (CHINANET Jiangxi province network Data Communication
Division China Telecom) respectively. These can provide us insight into what
could these Misc Large UDP packets be. Denying traffic from these sources
would be a good preventive measure until things can be sorted out that these are
indeed legitimate traffic.

6. spp_http_decode: 1IS Unicode attack detected- There were a lot of alerts for
IIS Unicode attack detected such as:

03/26-08:33:49.665025 [**] spp_http_decode: IIS Unicode attack detected [**]
192.170.153.197:1137 -> 207.68.162.250:80

03/26-08:36:31.193540 [**] spp_http_decode: IIS Unicode attack detected [**]
192.170.153.197:1245 -> 211.32.117.27:80

33
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

03/26-08:36:32.741165 [**] spp_http_decode: IIS Unicode attack detected [**]
192.170.153.197:1256 -> 211.233.29.233:80

This type of alert tries to identify hostile traffic by interpreting unicode data as an
attempt to obfuscate an attack. Based on the varying distribution of source and
destination addresses these alerts appear to be false positives. These alerts
were probably triggered by visiting sites that uses multibyte characters such as
traditional Chinese, simplified Chinese, Korean, Japanese. Making sure that your
signatures are up to date and using —unicode with the http_decode preprocessor
may reduce the number of false positives. The URL/URI's will still be normalised
and directory traversal signatures and others will still be able pick up actual
attacks. More correlation on this common false alert can be found at:
(http://archives.neohapsis.com/archives/snort/2001-08/0528.html)

However, It could also indicate that a host is infected with code red worm. A lot of
sources for these alerts come from MY.NET and might indicate that these
sources are infected with code red as correlated by Philip Stadler in his practical.
It is suggested that these MY.NET hosts be checked for code red worm and
cleaned if necessary.

192.170.153.197 192.170.153.177
192.170.153.127 192.170.153.115
192.170.152.19 192.170.153.111
192.170.153.154 192.170.153.107
192.170.88.162 192.170.153.114

7. INFO MSN IM Chat data- Messenger Service used by Hotmail members.
These can be considered miscellaneous activity. The logs show that these alerts
were generated by MY.NET hosts communicating with hotmail chat servers and
vice versa.

03/27-14:06:48.942286 [**] INFO MSN IM Chat data [**] 192.170.153.177:4945 -
> 64.4.12.156:1863

03/27-14:07:10.138600 [**] INFO MSN IM Chat data [**] 192.170.153.177:4945 -
> 64.4.12.156:1863

03/27-14:07:14.044689 [**] INFO MSN IM Chat data [**] 192.170.153.177:4945 -
> 64.4.12.156:1863

03/25-11:49:52.762014 [**] INFO MSN IM Chat data [**] 64.4.12.158:1863 ->
192.170.150.242:1209

03/25-11:50:13.692981 [**] INFO MSN IM Chat data [**] 64.4.12.158:1863 ->
192.170.150.241:1273

Whois 64.4.12.156

Search results for: 64.4.12.158

34
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MS Hotmail (NETBLK-HOTMAIL)
1065 La Avenida
Mountain View, CA 94043
us

Netname: HOTMAIL
Netblock: 64.4.0.0 - 64.4.63.255

Coordinator:
Myers, Michael (MM520-ARIN) icon@HOTMAIL.COM
650-693-7072

Domain System inverse mapping provided by:

NS1.HOTMAIL.COM 216.200.206.140
NS3.HOTMAIL.COM 209.185.130.68
NS2.HOTMAIL.COM 216.200.206.139
NS4.HOTMAIL.COM 64.4.29.24

Record last updated on 15-Jul-2002.
Database last updated on 15-Jul-2002 20:00:47 EDT.

GIAC University should decide on a policy whether to allow this type of activity to
occur or if not, deny traffic to port 1863.

8. INFO Inbound GNUTella Connect request- This alert is associated with
“‘GNUTella” protocol allowing file sharing on port 6346 of any host connected to
the GNUTella network. GNUtella allows you to share any files you want to
everyone connected to the GNUTella network or download or search for files you
want. Basically, it is a mini search engine and file serving system in one. The
GNUTella protocol works different from a client-server type in that clients become
servers and servers become clients all at once, accomplished by creating a sort
of distributed environment. Like, acting as a server to people who want the files
on your machine, and you act as a client to access files on other people's
machines. Logs show that a couple of MY.NET hosts are participating in sharing
their files to the GNUTella Network namely:

192.170.153.45 192.170.153.1/8
192.170.153.159 192.170.150.209
192.170.153.196 192.170.152.21
192.170.153.191 192.170.88.194

IT would depend on GIAC University if this type of file sharing is accepted. If Not,
Denying traffic to port 6346 would be a start.

35
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9. ICMP Echo Request Nmap or HPING2- ICMP echo requests are normally
used for mapping networks to get additional information of destination networks.
A lot of implementations of the PING program create unique echo request
packets that can be associated with the signature of the Nmap or HPING2
programs (Among others). These two programs can be used to scan for open
ports on hosts by permitting protocol parameters to be set as command line
options. Here are some of the logs:

03/23-00:00:19.632134 [**] ICMP _Echo Request Nmap or HPING2 [**]
192.170.152.21 -> 192.170.11.6

03/23-01:56:22.656324 [**] ICMP _Echo Request Nmap or HPING2 [**]
192.170.152.21 -> 192.170.11.6

03/23-00:45:00.210690 [**] ICMP _Echo Request Nmap or HPING2 [**]
192.170.152.169 -> 192.170.11.7

03/27-14:56:45.672717 [**] ICMP _Echo Request Nmap or HPING2 [**]
192.170.88.212 -> 207.46.131.30

03/27-14:57:06.080930 [**] ICMP _Echo Request Nmap or HPING2 [**]
192.170.88.212 -> 207.46.131.30

The logs show that all source addresses were from MY.NET destined to most
hosts in the MY.NET network and three external destination hosts namely:
Microsoft, Absolute software and Hewlett Packard. Microsoft for example, does
not let icmp echo requests or responses through their firewall and the logs that
were captured were probably from nmap used to portscan Microsoft with the —P0
or —PT80 option. Note that source address can be spoofed since both nmap and
hping2 programs have an option to spoof source address but if source IP’s were
spoofed one reason could be to fill up the IDS logs to try and hide the real
attacks.

10. Watchlist 000220 IL-ISDNNET-990517- Watchlist alerts are generated by all
traffic originating from 212.179.X.X destined for MY.NET. This means that these
hosts placed on the watchlist for surveillance possibly because of suspicious
activity. Below are some of the sample log files captured

03/25-15:26:45.192070 [**] Watchlist 000220 IL-ISDNNET-990517 [**]
212.179.35.118:80 -> 192.170.153.181:2531

03/25-15:26:45.193368 [**] Watchlist 000220 IL-ISDNNET-990517 [**]
212.179.35.118:80 -> 192.170.153.181:2531

The netblock 212.179.0.0 through 212.179.255.255 belongs to the IL-ISDNNET-
990517 for ISDN Net, Ltd in Israel:

% This is the RIPE Wholis server.

% The objects are in RPSL format.

% Please visit http://www.ripe.net/rpsl for more information.
% Rights restricted by copyright.

36
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum:
netname:
descr:
country:
admin-c:
tech-c:
tech-c:
tech-c:
status:
mnt-by:
changed:
changed:
changed:
source:

route:
descr:
origin:
notify:
mnt-by:
changed:
source:

person:
address:
address:
address:
phone:
e-mail:
nic-hdl:
changed:
source:

212.179.0.0 - 212.179.255.255
IL-ISDNNET-990517
PROVIDER
IL
NP469-RIPE
TP1233-RIPE
Z\V140-RIPE
ES4966-RIPE
ALLOCATED PA
RIPE-NCC-HM-MNT
hostmaster@ripe.net 19990517
hostmaster@ripe.net 20000406
hostmaster@ripe.net 20010402
RIPE

212.179.0.0/17
ISDN Net Ltd.
AS8551
hostmaster@isdn.net.il
AS8551-MNT
hostmaster@isdn.net.il 19990610
RIPE

Nati Pinko
Bezeq International
40 Hashacham St.
Petach Tikvah Israel
+972 3 9257761
hostmaster@isdn.net.il
NP469-RIPE
registrar@ns.il 19990902
RIPE

Most of the traffic were destined for ports 2561,2587,1434,2144,2531,2750. Of

all the ports the most known for a number of vulnerabilities is port 1434,
associated with MS-SQL. Here are some of the vulnerabilities of MS-SQL

There are 70 CVE entries or candidates that match your search.

CVE version: 20020625

2002-
0567

** CANDIDATE (under review) ** Oracle 8i and 9i with PL/SQL
package for External Procedures (EXTPROC) allows remote attackers
to bypass authentication and execute arbitrary functions by using the
TNS Listener to directly connect to the EXTPROC process.

© SANS Institute 2004,

37
As part of GIAC practical repository.

Author retains full rights.

CAN- |** CANDIDATE (under review) ** Oracle Oracle9i database server
2002-19.0.1.x allows local users to access restricted data via a SQL query
0571 |using ANSI outer join syntax.

** CANDIDATE (under review) ** WorkforceROI Xpede 4.1 allows
remote attackers to execute arbitrary SQL commands and read,
modify, or steal credentials from the database via the Qry parameter
in the sprc.asp script.

CAN-
2002-
0581

MY.NET.153.120 should be audited if MS-SQL should be running and make sure
that it is patched up to date.

Criteria Used for Alerts, Scans and OOS - To be considered a “TopTalker”, large
number of alerts must be triggered with the prospective host as the source
address. Note: MY.NET is replaced with “192.170” since snortsnarf would fail to
process if the default “MY.NET” is used.

A. Alert Analysis

Top 10 Talkers

Count Src IP Address Top Alerts

20905 192.170.70.177 SNMP Public Access

17756 192.170.11.6 SMB Name Wildcard

10805 66.28.104.154 Misc Large UDP Packet

9663 192.170.11.7 SMB Name Wildcard

6203 140.142.8.72 Misc Large UDP Packet

5604 192.170.153.125 Connect to 515 from
Inside

5238 192.170.150.198 SNMP Public Access

3229 192.170.153.197 Spp_http_decode: IIS
Unicode Attack Detected

3148 192.170.153.115 Connect to 515 from
Inside

3000 192.170.153.120 Connect to 515 from
Inside

We will focus on 4 interesting IP address in the top talkers list above (See
Bolded), two that is external to MY.NET and two hosts from MY.NET.

1. Whois information for 66.28.104.154:

Cogent Communications (NETBLK-COGENT-NB-0000)
1015 31st Street, NW
Washington, DC 20007
us

Netname: COGENT-NB-0000

38
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Netblock: 66.28.0.0 - 66.28.255.255
Maintainer: COGC

Coordinator:
Cogent Communications (ZC108-ARIN) noc@cogentco.com
+1-877-875-4311

Domain System inverse mapping provided by:

AUTH1.DNS.COGENTCO.COM 66.28.0.14
AUTH2.DNS.COGENTCO.COM 66.28.0.30

ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
Reassignment information for this block can be found at
rwhois.cogentco.com 4321

All queries from this IP address account for 10805 counts of “MISC Large UDP
Packet” alerts. Source ports and destination ports constantly change with no
distinguishable pattern but all of them are above the 1024 reserved port
numbers. Large UDP packets can be associated with streaming media, denial of
service or use of a covert channel. Since, Cogent Communications is an ISP for
service providers and commercial end users, | am guessing it's streaming media
of some sort. See article below:
(http://cert.uni-stuttgart.de/archive/intrusions/2002/03/msg00071.html)

2. Whois information for 140.142.8.72
NorthWestNet Network Operations Center (NET-UW-SEA)
Academic Computing Center
3737 Brooklyn NE
Seattle, WA 98105
us

Netname: UW-SEA
Netblock: 140.142.0.0 - 140.142.255.255
Maintainer;: UWND

Coordinator:
University, Of Washington (OWU2-ARIN) noc@CAC.WASHINGTON.EDU
206-543-5128

Domain System inverse mapping provided by:
HANNA.CAC.WASHINGTON.EDU 140.142.5.5

MARGE.CAC.WASHINGTON.EDU 140.142.5.13
NS.UNET.UMN.EDU 128.101.101.101

39
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Record last updated on 17-Mar-2000.
Database last updated on 14-Jun-2002 20:01:02 EDT.

Traffic is similar to the above except the ephemeral source port of 2031 change
and destination port of 2876 does not change. Port 2876 is associated with sps-
tunnel. However, a search of sps-tunnel did not yield any interesting results.

3. MY.NET.153.125

This source is generating 5470 alerts on connect to port 515 from inside. Port
515 of the Unix Printer service has a tradition of high severity vulnerabilities
(root). However, the destination host looks like it's a valid print server. This host
is also generating alerts on spp_http_decode: 1IS Unicode attack detected (137)
and spp_http_decode: CGI null byte attack detected (2) which | believe are false
positives. Why false positives? For example, this traffic

03/25-14:32:43.006310 [**] spp_http_decode: IIS Unicode attack detected [**]
192.170.153.125:4984 -> 211.233.28.70:80

whois 211.233.28.70

remarks: This IP address space has been allocated to KRNIC.
remarks: For more information, using KRNIC Whois Database
remarks: whois -h whois.nic.or.kr

remarks: This information has been partially mirrored by APNIC from
remarks: KRNIC. To obtain more specific information, please use the
remarks: KRNIC whois server at whois.krnic.net.

mnt-by: MNT-KRNIC-AP

changed: hostmaster@nic.or.kr 20020610

source: KRNIC

person: Hanju Kim

country: KR

phone: +82-2-6446-6407

fax-no: +82-2-6446-6499

e-mail: hankim@daumcorp.com

nic-hdl: HK4035-KR

remarks: This information has been partially mirrored by APNIC from
remarks: KRNIC. To obtain more specific information, please use the
remarks: KRNIC whois server at whois.krnic.net.

mnt-by: MNT-KRNIC-AP

changed: hostmaster@nic.or.kr 20020610

source: KRNIC

We see its registered from Korea. Unicode attacks are mostly just false positives
or could also indicate code red worm activity. There is a more lengthy

40
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

explanation on this subject and defensive recommendations in my brief

description of detects above. (See # 6 on brief description of top ten detects)

4. MY.NET.153.197

Again a lot of alerts (2260) are generated from spp_http_decode: 1IS Unicode

attack detected. A whois on one of the destination IP’s yield:

Korea Internet Information Service V1.0 (created by KRNIC, 2001.6)
200134 7¢,0 2A11AT" A °3Y,+E Whois Y4-°A%2° ! Al éCI°i AOY%A'TU.
query: 211.32.117.27

ENGLISH

KRNIC is not ISP but National Internet Registry similar with APNIC.

Please see the following end-user contacts for IP address information.

IP Address :211.32.116.0-211.32.119.255
Network Name : DACOM-KIDC

Connect ISP Name : BORANET

Connect Date : 19991015

Registration Date : 20000601

[Organization Information]
Orgnization ID : ORG105718

Org Name : DACOM
State : SEOUL
Address : 261-1 Nonhyun-dong Kangnam-gu

As we see, it’s basically the same thing as what triggered the alert above (either

code red worm or just false positive (see explanation above or # 6 on brief

description of top ten detects).

Top ten Alert Destination IPS

Count Dest IPs Top Alerts

37834 192.170.11.6 SMB Name Wildcard
and
ICMP L3Retriever
Ping

34416 192.170.150.198 Connect to 515 from
Inside

20718 192.170.11.7 SMB Name Wildcard

and ICMP L3Retriever

41

© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

Ping

10878 192.170.153.153 Misc Large UDP
Packet

7236 192.170.150.195 SNMP Public Access

6204 192.170.153.157 Misc Large UDP
Packet

4751 192.170.153.159 Misc Large UDP
Packet

4152 192.170.5.248 SNMP Public Access

3510 192.170.152.109 SNMP Public Access

3474 192.170.5.96 SNMP Public Access

Top 10 Alert Destination Ports

Count Port # Purpose
57280 137 Netbios
40021 161 Snmp
34435 515 Printer
20088 192.170.11.6 See explanation
11070 192.170.11.7 See explanation
10494 80 Http, www
6234 2876 Sps-tunnel
4805 6346 Gnutella
2225 1863 Msn
2176 1304 Boomerang

Explanation: These are return messages caused ICMP. No ports existed for
these types of messages. There were a lot of ICMP echo request (NMAP or
HPING2 and L3Retriever) pings all coming from internal MY.NET machines.
According to the Whitehats website, L3Retriever pings are associated W2k
Machines talking to W2k domain controllers. The rest of the services seem
normal except that I could not find any meaningful information (search on
Google) on SPS-Tunneling and Boomerang on what they are for.

B. Scans Analysis

TOP TEN Talkers

Count Source IP Address
691153 MY.NET.11.8
411714 MY.NET.60.43
156547 MY.NET.150.113
44966 MY.NET.150.143
24696 MY.NET.6.52
21698 MY.NET.152.21
20955 MY.NET.6.50
42

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

18407 MY.NET.6.49
18194 64.124.157.32
16541 MY.NET.6.45

MY.NET.11.8 is the number 1 top talker in the list and indicates mass scans to
various hosts in the MY.NET network destined to ports 1346, 1347 and 137 using
UDP. With that mind, we have decided to illustrate the scope of MY.NET.11.8’s
scanning activity on MY.NET network using a simple Link graph.

MY.NET.11.8

MY.NET

Port 1347

Port 1346

’

Port 1346

Port 1345

Port 137

’

Port 1347

Port 137

Here are some of the logs:

MY.NET.11.8 Port 1347

TO

MY.NET port 1346

Mar 23 00:00:04 000.111.11.8:1347 -> 000.111.152.46:1346 UDP
Mar 23 00:00:05 000.111.11.8:1347 -> 000.111.152.215:1346 UDP
Mar 23 00:00:06 000.111.11.8:1347 -> 000.111.152.15:1346 UDP

MY.NET.11.8 Port 1346

TO MY.NET Port 1347

Mar 24 16:41:37 000.111.152.179:1346 -> 000.111.11.8:1347 UDP
Mar 24 16:41:42 000.111.152.247:1346 -> 000.111.11.8:1347 UDP

MY.NET.11.8 Port 1345

MY.NET.11.8 Port 137

© SANS Institute 2004,

TO MY.NET Port 1346

Mar 26 15:03:22 000.111.11.8:1345 -> 000.111.152.16:1346 UDP
Mar 26 15:49:23 000.111.11.8:1345 -> 000.111.152.171:1346 UDP
Mar 26 16:22:26 000.111.11.8:1345 -> 000.111.152.16:1346 UDP

To MY.NET.5.50 Port 137

Mar 27 15:55:10 000.111.11.8:137 -> 000.111.5.50:137 UDP
Mar 27 15:55:13 000.111.11.8:137 -> 000.111.5.50:137 UDP
Mar 27 16:07:17 000.111.11.8:137 -> 000.111.5.50:137 UDP

43
As part of GIAC practical repository. Author retains full rights.

MY.NET.11.8 source ports are 1347,1346,1345 and 137. The first three are all
over 1024 and therefore can be considered “emphemeral”. However, destination
port 1347 is associated with bbn-mmc (Multi-Media conferencing), 1346 (Alta
Analytics License Manager), (btw, 1345 VPJP has something to do with Multi-
Media. See

http://archives.neohapsis.com/archives/incidents/2000-11/0033.html for more
details) Port 137 is associated with Netbios name server and it looks like
MY.NET.11.8 is just querying a Netbios nameserver (MY.NET.5.50). We can see
that packets destined for ports 1346 and 1347 are milliseconds apart and uses
UDP suggesting that traffic may be some sort of syncronization Conferencing.
Using “grep” to count the number of occurances, there was around 691143
counts for scanning of port 1346, 9942 counts for port 137 and 10 counts for port
137.

On the other hand, MY.NET.60.43 seems to be an NTP server (network Time
protocol) since the source port is 123, commonly associated with NTP. Here are
some of the logs:

Mar 23 01:04:41 000.111.60.43:123 -> 000.111.153.207:1526 UDP
Mar 23 01:04:43 000.111.60.43:123 -> 000.111.153.161:1624 UDP
Mar 23 01:04:43 000.111.60.43:123 -> 000.111.153.184:1785 UDP
Mar 23 01:04:45 000.111.60.43:123 -> 000.111.153.149:1496 UDP
Mar 23 01:04:45 000.111.60.43:123 -> 000.111.153.193:1489 UDP
Mar 23 01:04:52 000.111.60.43:123 -> 000.111.153.197:1506 UDP
Mar 23 01:04:52 000.111.60.43:123 -> 000.111.153.200:1644 UDP
Mar 23 01:04:53 000.111.60.43:123 -> 000.111.153.140:1755 UDP
Mar 23 01:04:53 000.111.60.43:123 -> 000.111.153.177:1453 UDP

NTP is a UDP based protocol to syncronize clocks of networked computers. NTP
has a buffer overflow vulnerability wherein an attacker can execute shellcode.
(http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0414)

Name |CVE-2001-0414

Buffer overflow in ntpd ntp daemon 4.0.99k and earlier (aka xntpd
Description |and xntp3) allows remote attackers to cause a denial of service and
possibly execute arbitrary commands via a long readvar argument.

Miika Turkia discussed a very well written white paper on the subject of ntpd
exploit in his practical. It is very hard to tell if these logs were actual attacks or
false positives on MY.NET.60.43 because we do not see the packet dump if it
contains the sequence number 2 and data length of zero which are used to query
for the internal variables of the NTP server with corresponding values that can
execute shellcode. To detect an actual attack on the NTP server, one way is to
check for NOP machine instruction in the command part of the NTP control

44
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

message since normal NTP traffic do not have these values. A custom snort rule
that could be used is:

alert udp any any -> $SHOME_NET 123 (msg: "ntpd exploit attempt";
content:"|16|";offset:0;depth:1;content:"|90|"; offset:12;depth:32;)

This rule checks that it is an NTP control message and if command contains
NOP. Updating to the latest version of NTP and/or keeping up to date with
patches is also a good idea. If there are no patches available, adding “restrict
default ignore” to ntp.conf and “restrict MY.NET.60.43 nomodify” can be a quick
fix. (this setting denies queries from the NTP server but syncing is still possible,
since source address can be spoofed making it look like the attack came from
the server itself)

MY.NET.150.113 and MY.NET.150.143 are scanning for hosts running the
edonkey2000 P2P file sharing system* which listens to incoming TCP
connections at port 4662 and incoming UDP connections on port 4665. Here’s a
small excerpt from the scans logs that shows what | mean:

Mar 27 23:06:21 MY.NET.150.143:3665 -> 61.216.201.133:4662 SYN******S*
Mar 27 23:06:23 MY.NET.150.143:3667 -> 61.224.10.228:4662 SYN ******S*
Mar 27 23:06:34 MY.NET.150.143:1057 -> 140.122.197.182:4665 UDP

Mar 27 23:06:34 MY.NET.150.143:1057 -> 150.162.165.8:4665 UDP

Mar 27 23:06:35 MY.NET.150.143:1057 -> 129.125.148.105:4665 UDP

Mar 27 23:06:35 MY.NET.150.143:1057 -> 129.194.101.117:4665 UDP

Mar 27 23:06:35 MY.NET.150.143:1057 -> 195.112.128.222:4665 UDP

Mar 23 00:01:03 000.111.150.113:1257 -> 194.109.18.201:4665 UDP

Mar 23 00:01:04 000.111.150.113:1257 -> 62.226.96.110:4665 UDP

Mar 23 00:01:05 000.111.150.113:1257 -> 80.130.249.225:4665 UDP

Mar 23 00:01:11 000.111.150.113:1989 -> 80.3.202.112:4662 SYN ******S*
Mar 23 00:01:11 000.111.150.113:1990 -> 141.156.237.157:4662 SYN ******S*

While MY.NET.6.52, MY.NET.6.50, MY.NET.49 and MY.NET.6.45 seems to be
mounting remote AFS mounts on various university systems, MY.NET.152.21
seems to be scanning for GNUTella services (port 6346) on various hosts
outside the MY.NET network and 64.124.157.32 seems to be scanning only one
host MY.NET.153.46 for open ports using UDP. Whois 64.124.157.32

Abovenet Communications, Inc. (NETBLK-ABOVENET)
50 W. San Fernando Street, Suite 1010
San Jose, CA 95113
us

Netname: ABOVENET

* http://homepage.ntlworl d.com/robin.d.h.wal ker/cmtips/p2p.html

45
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Netblock: 64.124.0.0 - 64.125.255.255
Maintainer: ABVE

Coordinator:
Metromedia Fiber Networks/AboveNet (NOC41-ORG-ARIN)
Noc@ABOVE.NET
408-367-6666
Fax- 408-367-6688

Domain System inverse mapping provided by:

NS.ABOVE.NET 207.126.96.162
NS3.ABOVE.NET 207.126.105.146

ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE

Record last updated on 27-Apr-2001.
Database last updated on 19-Jun-2002 20:01:03 EDT.

Note: SPP_portscans in the alerts file also matched the top 10 talkers in the
scans files.

C. OOS ANALYSIS

Top Ten Talkers

Count Source IP Address
29 80.133.124.114
213.169.245.41
128.97.84.53
80.145.117.134
80.144.189.160
62.31.125.225
61.216.83.124
61.198.200.52
217.82.123.75
213.3.191.240

IS

RRRRR RPN

There were 29 counts of out of spec packets sent by source IP 80.133.124.114
destined for MY.NET.150.113 port 1214.

80.133.124.114 comes from an ISP in Germany. It’s interested in
MY.NET.150.113 at port 1214 because MY.NET.150.113 seems to be offering
filesharing service called KAZAA. It looks like legitimate traffic except that this
machine sets the reserved bits: The EOL is a delimiter and may be used as a
padding for NOP. With TTLs at 39 and random TCP sequence numbers but
otherwise well-formed packets, this would seem to indicate the use of ECN

46
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(explicit congestion notification) bits from the source rather than as a malicious
crafted packet from queso mapping attempt.

=4=4=+=F=+=F=+=+=F+=+=F=+=F=F+=F=+=F=F+=+=F=+=F=+=F=F+=F=F+=+=4=+=
+=+=+

03/28-06:44:37.146162 80.133.124.114:3687 -> MY.NET.150.113:1214

TCP TTL:39 TOS:0x0 ID:19815 DF

21S**** Seq: 0X96BB59AE Ack: O0xO Win: 0x16B0

TCP Options => MSS: 1412 SackOK TS: 5321 0 EOL EOL EOL EOL

=4=+=F=+=F=+=+=+=+=F=+=F=+=F =+ =F =+ =4 =+ =+ =+ ==+ ===+ =+=4=+=
+=+=4+

03/28-06:47:29.683553 80.133.124.114:3837 -> MY.NET.150.113:1214
TCP TTL:39 TOS:0x0 ID:125 DF

21S***** Seq: OXAO9B58EO Ack: 0xO Win: 0x16B0

TCP Options => MSS: 1412 SackOK TS: 22685 0 EOL EOL EOL EOL

=4=+=F=+=F=+=+=+=+=F=+=F=+=F =+ =+ =+ =4 =+ =+ =+ =4 =+ ==+ =+=F=+=4=+=
+=+=4+

The next top talker with only 4 counts is a machine seems to be sending illegal
packets (see flags) to only one host, MY.NET.152.21 at port 6346. Port 6346 is
associated with another filesharing service called GNUTella but as we can see
while the syn bit is set (among others) acknowledgement number is greater than
zero so there is evidence of mangling of packet headers. There is a correlation to
this with the demon net router incident were a router in demon.net was
performing a mangling of packet headers possibly due to stress in heavy traffic
loading. We also see the big “jumps” of ID number in a small amount of time (see
below, from ID 408 to ID being 5784 to 8618) suggesting this machine was pretty
busy. Given the pattern of these packets, this would seem to be more likely
reason than malicious packet crafting as the cause.

03/27-15:24:28.649944 213.169.245.41:3800 -> MY.NET.152.21:6346
TCP TTL:110 TOS:0x0 1D:408 DF

2*SF*P*U Seq: Ox3F7473 Ack: 0x20736D61 Win: 0x6564

68 65 61 64 20 77 69 74 68 20 head with

=4=+=F=+=F=+=+=+=+=F=+=F=+=F =+ =+ =+ ==+ =+ =+ ==+ ==+ ==+ =+=4=+=
+=+=4+

03/27-15:24:29.845479 213.169.245.41:3800 -> MY.NET.152.21:6346

TCP TTL:110 TOS:0x0 ID:5784 DF

2*SF*P*U Seq: 0x3F7473 Ack: 0x20736D61 Win: 0x6564

68 65 61 64 20 77 69 74 68 20 head with

47
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

=4=+=F=+=F=+=+=+=+=F=+=F=+=F =+ =+ =+ ==+ =+ =+ ==+ ==+ ==+ =+=4=+=
+=+=4+

03/27-15:28:06.137307 213.169.245.41:3800 -> MY.NET.152.21:6346

TCP TTL:110 TOS:0x0 1D:8618 DF

2*SF*PA* Seq: 0x4143B2 Ack: OXF3660ABC Win: 0x970A

TCP Options => Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt
17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt
17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt
17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17 Opt 17

=4=4=+=F=+=F=+=+=F+=+=F=+=F=F+=F=+=F=F+=+=F=+=F=+=F=F+=F=F+=+=4=+=
+=+=+

03/27-15:29:17.651596 213.169.245.41:3800 -> MY.NET.152.21:6346
TCP TTL:110 TOS:0x0 1D:23472 DF

21SF*P** Seq: 0x410005 Ack: Ox2549DEE5 Win: 0x4A9D

34 CB4A 9D 1C 41 A5 88 BA8F 76 80 01 06 1D 00 4.J..A....v.....

00 00 00 00 6E 37 N7

On March 25,2002 128.97.84.53 was caught in the oos files attempting a
SYN/FIN scan on destination host MY.NET.150.113:4662. Port 4662 is
associated with a lesser known P2P filsharing application called edonkey2000.
There were no reported incidents that edonkey2000 is vulnerable to an exploit
but | am not ruling out that possibility. Furthermore, What is interesting to note is
that there had been no reports on edonkey2000 by the other students in the
GIAC program and/or in any security mailing lists. Putting 128.97.84.53 on the
watchlist or blocking it and verifying the security of MY.NET.150.113 would be
good idea.

=t=4=+=t=+=+=+=+=+=F=+=+=+=+=+=+=+=+=+4=t=+=+=+=+=+=+=+=+=+=+4=
+=+=+

03/25-20:19:25.415397 128.97.84.53:4242 -> MY.NET.150.113:4662

TCP TTL:47 TOS:0x0 1D:28183 DF

2*SF**** Seq: 0xD7266F63 Ack: Ox2E688172 Win: 0xD388

54 5A EO0 9D 09 37 86 81 1A 89 84 BD TZ..7......
=t=4=+=t=+=+=+=+=+=t=+=+=+=+=+=+=+=+=+4=t=+=+=+=+=+=+=+=+=+=+4=
+=+=+

Whois 128.97.84.53

University of California, Los Angeles (NET-UCLANET)
741 Circle Dr South
Los Angeles, CA 90095-1363
us

438
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Netname: UCLANET
Netblock: 128.97.0.0 - 128.97.255.255

Coordinator:
University of California, Los Angeles (NO102-ORG-ARIN)
noc@NOC.UCLA.EDU
+1 310 206 5345

Domain System inverse mapping provided by:

DNS.UCLA.EDU 164.67.128.1
DNS2.UCLA.EDU 164.67.128.2

DNS3.UCLA.EDU 164.67.128.3

NS2.BERKELEY.EDU 128.32.136.12 128.32.206.12

Record last updated on 31-Oct-2000.
Database last updated on 17-Jul-2002 20:01:06 EDT.

While on march 28, another host performing seeming malicious activity was
caught in the oos files initiating a SYN connection to MY.NET.153.210 at port
113 (ident) with the reserved bits on. However, this also looks like of ecn variety
rather than of crafted packet. (see above, explanation on 80.133.124.114)

+=+=+

03/28-14:03:11.864168 128.97.84.53:2075 -> MY.NET.153.210:113

TCP TTL:50 TOS:0x0 ID:58086 DF

21S***** Seq: OXFOB15061 Ack: OxO Win: 0x16D0

TCP Options => MSS: 1460 SackOK TS: 110473863 0 EOL EOL EOL EOL

+=+=+

This particular host seems to be also doing a reconnaissance on
MY.NET.150.113 since it has bogus TCP flags set also (SYN,FIN,RST, A,
Urgent) all at the same time. As I've mentioned before, Port 1214 is associated
with KAZAA. Acknowledgement number is a non-zero value and the seemingly
inverted use of the End of Option List preceding the options could indicate a
crafted packet. IT seems to be a source host coming from a cable company in
Belgium, Germany.

03/27-18:10:02.788706 213.132.137.149:3504 -> MY.NET.150.113:1214
TCP TTL:105 TOS:0x0 ID:10760 DF

*SFR*AU Seq: 0x24977AE Ack: OXE4EA88 Win: 0x5010

TCP Options => EOL EOL EOL EOL

00 00

49
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

These additional detects would seem to indicate hostile intent by
213.132.137.149.

03/27-18:21:07.456878 [**] spp_portscan: PORTSCAN DETECTED from
213.132.137.149

(STEALTH) [**]

03/27-18:21:09.155735 [**] spp_portscan: portscan status from
213.132.137.149:

1 connections across 1 hosts: TCP(1), UDP(0) STEALTH [**]
03/27-18:21:11.202681 [**] spp_portscan: End of portscan from
213.132.137.149:

TOTAL time(0s) hosts(1) TCP(1) UDP(0) STEALTH [**]

Whois 213.132.137.149

% This is the RIPE Whois server.

% The objects are in RPSL format.

% Please visit http://www.ripe.net/rpsl for more information.

% Rights restricted by copyright.

% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 213.132.128.0 - 213.132.143.255

netname: TVD-INTERNET

descr: TVD Internet - UPC Belgium - Chello

descr: ISP - CATV operator Brussels/Leuven

descr: Customer DHCP pools

country: BE

admin-c: TVD-RIPE

tech-c: TVD-RIPE

rev-srv: bruns00.chello.com

rev-srv: bruns01.chello.be

rev-srv: nsl.chello.at

status: ASSIGNED PA

remarks: If you suspect unusual activity originating from this network:
remarks: send relevant logfiles, IP adresses, protocol and port numbers,
remarks: UTC timestamps and other useful information to abuse@chello.be
remarks: in plain ascll text. Do not send HTML, proprietary encodings,
remarks: graphical formats or mime attachments. Improper use of the
remarks: changed attribute is not tolerated.

notify: ripe-notify@tvd.be

mnt-by: AS8733-MNT

changed: steven@tvd.be 20011112

source: RIPE

route: 213.132.128.0/20

50
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

descr: UPC Belgium - Chello Belgium

descr: Cable Internet Provider

origin: AS8733

mnt-by: AS8733-MNT

remarks: If you suspect unusual activity originating from this network:
remarks: send relevant logfiles, IP adresses, protocol and port numbers,
remarks: UTC timestamps and other useful information to abuse@chello.be
remarks: in plain ascll text. Do not send HTML, proprietary encodings,
remarks: graphical formats or mime attachments. Improper use of the
remarks: changed attribute is not tolerated.

changed: steven@tvd.be 20011101

source: RIPE

role: TVD Internet

address: UPC Belgium - Chello Belgium - Radio Public
address: Chazallaan 140

address: 1030 Schaarbeek

address: BELGIUM

phone: +32 2 2400800

fax-no: +32 2 2400800

e-mail: ripe-role@tvd.be

trouble: trouble@tvd.be or +32 2 2400899 (08:00-18:00 UTC)
admin-c: SVS4-RIPE

admin-c: SB9000-RIPE

tech-c: PVES-RIPE

nic-hdl: TVD-RIPE

notify: ripe-notify@tvd.be

mnt-by: AS8733-MNT

changed: steven@tvd.be 19990105

changed: steven@tvd.be 20020301

source: RIPE

It is suggested that the offending IP is reported to the ISP as indicated on their
remarks together with the relevant information so that they make take action and
putting the source IP in the watchlist could be a good idea.

:+:
+=+=+

03/28-15:48:28.582159 0.192.5.106:19169 -> MY.NET.153.191:33376

TCP TTL:112 TOS:0x0 ID:932 DF

2*SF***J Seq: O0x41DCEE70 Ack: 0x1021A743 Win: OXEBCB

3008 1A D557 B8 6F 70 75 70 6B 69 6E 67 2E 64 0...W.opupking.d

65 OA e.

51
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Source address is spoofed, illegal flag combinations and acknowledgement
number is non-zero would indicate a malicious crafted packet. Verifying the
security of MY.NET.153.191 is advised.

Lastly, 61.216.83.124 has sent an xmas packet to MY.NET.150.220 with a non
zero acknowledgement number would indicate a malicious crafted packet also.
Auditing MY.NET.150.220 and checking whatever service may be running on
4662 is a good idea and putting source IP 61.216.83.124 in the watchlist. IP
address resolves to an ADSL subscriber in Taiwan.

=t=4=+=t=+=+=+=+=+=t=+=+=+=+=+=+=+=+=+4=t+=+=+=+=+=+=+=+=+=+=+4=
+=+=+

03/28-23:09:52.462171 61.216.83.124:64835 -> MY.NET.150.220:4662

TCP TTL:107 TOS:0x0 1D:14647 DF

2*SFRPAU Seq: 0OxBAB12DFO Ack: 0OxA4B9 Win: OXACB3

BA B1 2D FO 0000 A4 B9 13 7TFACB3 1469 1C A2 ..-.......... I

0D F3 26 AB 3F A5 13 C9 &2

=4=+=F=+=F=+=+=+=+=F=+=F=+=F =+ =F =+ =4 =+ =+ =+ =4 =+ ==+ =+=F=+=4=+=
+=+=4+

Whois 61.216.83.124

% Rights restricted by copyright. See http://www.apnic.net/db/dbcopyright.html
% (whois6.apnic.net)

inetnum: 61.216.0.0 - 61.219.255.255

netname: HINET-TW

descr: CHTD, Chunghwa Telecom Co.,Ltd.

descr: Data-Bldg.6F, No.21, Sec.21, Hsin-Yi Rd.

descr: Taipei Taiwan 100

country: TW

admin-c: HN27-AP

tech-c: HN28-AP

remarks: Delegated to HiNet for ADSL subscriber.

remarks: This information has been partially mirrored by APNIC from
remarks: TWNIC. To obtain more specific information, please use the
remarks: TWNIC whois server at whois.twnic.net.

mnt-by: TWNIC-AP

changed: hostmaster@twnic.net 20010117

source: APNIC

person: HINET Network-Adm

address: CHTD, Chunghwa Telecom Co., Ltd.
address: Data-Bldg. 6F, No. 21, Sec. 21, Hsin-Yi Rd.,
address: Taipei Taiwan 100

52
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

country:
phone:
phone:
phone:
fax-no:
fax-no:
e-mail:
nic-hdl:
remarks:
mnt-by:
changed:
source:

person:
address:
address:
address:
country:
phone:
phone:
phone:
fax-no:
fax-no:
e-mail:
nic-hdl:
remarks:
mnt-by:
changed:
source:

inethnum:
netname:
descr:
descr:
descr:
country:
admin-c:
tech-c:
remarks:
remarks:
remarks:
mnt-by:
changed:
source:

person:

© SANS Institute 2004,

TW

+886 2 2322 3495

+886 2 2322 3442

+886 2 2344 3007
+886 2 2344 2513
+886 2 2395 5671
network-adm@hinet.net
HN27-AP

same as TWNIC nic-handle HN184-TW
TWNIC-AP
hostmaster@twnic.net 20000721

APNIC

HINET Network-Center

CHTD, Chunghwa Telecom Co., Ltd.

Data-Bldg. 6F, No. 21, Sec. 21, Hsin-Yi Rd.,

Taipei Taiwan 100

TW

+886 2 2322 3495

+886 2 2322 3442

+886 2 2344 3007
+886 2 2344 2513
+886 2 2395 5671
network-center@hinet.net
HNZ28-AP

same as TWNIC nic-handle HN185-TW
TWNIC-AP

hostmaster@twnic.net 20000721
APNIC

61.216.0.0 - 61.217.255.255
HINET-NET

Chunghwa Telecom Data communication Business Group

No.21, Hsin-Yi Rd., sec. 1
Taipei Taiwan
TW
CYK-TW
CYK-TW

This information has been partially mirrored by APNIC from
TWNIC. To obtain more specific information, please use the

TWNIC whois server at whois.twnic.net.
TWNIC-AP

network-adm@hinet.net 20010925
TWNIC

Chung Yung Kang

53
As part of GIAC practical repository.

Author retains full rights.

address: Chunghwa Telecom Data communication Business Group
address: No.21, Hsin-Yi Rd., sec. 1

address: Taipei Taiwan

country: TW

phone: +886-2-2322-3442

fax-no: +886-2-2344-2513

e-mail: cykang@msl.hinet.net

nic-hdl: CYK-TW

remarks: This information has been partially mirrored by APNIC from
remarks: TWNIC. To obtain more specific information, please use the
remarks: TWNIC whois server at whois.twnic.net.

changed: hostmaster@twnic.net 19990924

source: TWNIC

Top Ten Destination Ports

Count Port
30 1214
10 6346
3 4662
1 80
1 33376
1 23
1 1320
1 113

Top Ten Destination IPS

31 MY.NET.150.113
MY.NET.152.21
MY.NET.153.45
MY.NET.153.210
MY.NET.153.191
MY.NET.150.220
MY.NET.5.79
MY.NET.153.196
MY.NET.153.159
MY.NET.150.226

RPIFRPIFPIFPININININ O

Meaningful analysis identifying relationships between the different computers that
generated logs

In order to determine the threats to each host a host profile was built which
formed the basis for the analysis of all data. It identifies hosts that could be
considered prime targets. This profile was built by inferring the purpose of each
host from the attacks that were logged against it. To minimize false positives,
additional analysis was performed on the questionable data.

54
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The TOP 20 alert destination MY.NET hosts and the purposes of each are shown
below. It is recommended that the University review this list to verify the services
running on each host.

DESTINATION PURPOSE
192.170.11.6 NETBIOS
192.170.150.198 PRINTER
192.170.11.7 NETBIOS
192.170.153.153 PROXY
192.170.150.195 SNMP
192.170.153.157 UNKNOWN
192.170.153.159 GNUTELLA
192.170.5.248 SNMP
192.170.152.109 SNMP
192.170.5.96 SNMP,HTTP
192.170.5.137 SNMP
192.170.5.143 SNMP
192.170.5.31 SNMP
192.170.5.97 SNMP
192.170.5.127 SNMP
192.170.151.114 SNMP FTP
192.170.113.202 SNMP
192.170.5.244 SNMP
192.170.153.45 GNUTELLA
192.170.153.191 FTP,GNUTELLA
192.170.5.50 NETBIOS

Insights into internal machines that could be compromised:

There are a lot of hosts in the alert logs that were scanning other hosts, mostly
in the MY.NET network. The hosts in the table below show those who have had
at least more than 1000 counts of being guilty of “portscanning” in the five-day
period of logs. It is our guess that these machines are compromised/dangerous.
The counts given are for the number of hosts these machines have scanned. It is
our recommendation that this list be used as a starting point in identifying the

correct hosts in the MY.NET that may be compromised.

Count IP Address

106728 192.170.11.8:
95841 192.170.60.43:
11296 192.170.150.113:
5259 192.170.88.212:
4872 192.170.150.143:
4397 192.170.60.43
4339 192.170.150.71:

© SANS Institute 2004,

55

As part of GIAC practical repository.

Author retains full rights.

4278 192.170.150.113
3490 192.170.152.21:
3206 192.170.151.105:
2819 192.170.6.45:
2562 192.170.151.70:
2525 192.170.11.6:
2371 192.170.153.196:
2295 192.170.6.60:
2149 192.170.153.178:
2094 192.170.151.85:
2090 192.170.149.19:
1974 192.170.11.6
1943 192.170.153.159:
1931 192.170.149.11:
1922 192.170.149.43:
1664 192.170.6.53:
1538 192.170.150.143
1510 192.170.6.52:
1491 192.170.153.186:
1431 192.170.88.207:
1418 192.170.153.197:
1401 192.170.11.7:
1367 192.170.153.181.:
1363 192.170.149.12:
1298 192.170.149.56:
1201 192.170.153.157:
1183 192.170.11.7
1154 192.170.6.48:
1115 192.170.152.171:
1107 192.170.6.49:
1049 192.170.88.203:
1029 192.170.152.174:
1012 192.170.88.183:

Defensive Recommendation

The following list above should be taken offline and thoroughly examined for
signs of compromise. If they are compromised, they must be cleaned and before
they are returned to the network, First, their system countermeasures must be

strengthened via up to date patches, installing a host-based IDS and using

remote syslogging can help prevent the hosts succumbing to the same exploits
used and at least correctly detect hosts that become compromised. Installation

and maintenance of a more restrictive firewall policy, usually a “deny-all’

approach and only allow specific services that are necessary in and out of the

© SANS Institute 2004,

56

As part of GIAC practical repository.

Author retains full rights.

network. Furthermore, bogus packets should be instantly dropped by the firewall
(or router) such as:

e Incoming packets outside the firewall that claim to come from the internal
network

e Outgoing packets from inside the firewall that claim to come from outside
the network

e All incoming packets with illegal flags set

e Incoming packets outside the firewall to printer port 515

e Incoming packets outside the firewall to the Netbios ports (port
137,138,139 and 445)

We also recommend that if GIAC University use a stateful firewall (If it's not using
one already). Traditional firewalls only look at individual packets not recognizing
that they are part of a larger whole, such as a connection. Stateful firewalls can
do this, thus being able to check packets if they belong to an established
connection or not. This is important so that incoming TCP packets with the ACK
flag set but do not belong to an established connection can be dropped.

Specific Recommendations would be to refining the rules for large number of
alerts on legitimate traffic such file sharing and instant messaging (if these are
permitted to prevent excessive alerts generated on legitimate traffic but there
should also be user education on network security since these types of
applications offers a conduit where malicious software can enter your network),
SMB name wildcard (SMB alerts and L3Retriever Ping alerts should be triggered
if sources are external to MY.NET destined to MY.NET), SNMP public access
public string should be avoided. We also realize that all traffic from internal users
cannot be assumed not malicious but making sure systems are patched up to
date can offer some form of protection against these malicious internal users.

Description of the Analysis Process

First | downloaded all the necessary files from incidents.org/logs. A total of 15
files were gathered. Five from each of the alerts, scans and oos logs. | chose
those logs that were “complete”, meaning those that had consecutive and
continuous dates for five days and those that were pretty recent. | narrowed it to
log files of March 24-28 2002. Since | was using windows 98 | had to download
additional applications in order to complete my analysis. | wanted to use
snortsnarf and | also figured I'd need to use certain unix tools such as sort, uniq,
grep, etc that were not *unfortunately* available in windows 98. Incidentally,
those unix tools were the main utilities that were used for the bulk of this
analysis. So | downloaded activeperl from activestate’s website activestate.com
and cygwin from cygwin.com. After | set this up, | proceeded to download
snortsnarf from http://www.silicondefense.com/software/snortsnarf/index.htm
After | untarred snortsnarf and downloaded the necessary log files, |
concatenated all of the log files into three large files: alert_final, scan_final and

57
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

oos_final. | then removed duplicate entries. Since snortsnarf “barks” at MY.NET.
entries, | changed them to something that was not used. | then ran snortsnarf on
the alerts file. The full snortsnarf output is at appendix A.

Some examples of Commands that were used in the analysis process

Alerts

1. $ grep "\[\"*\]" alert_final | grep -v spp_portscan | grep -v Tiny\ Fragments
| grep -vICMP\SRC |cut-d™>"-f2|cut-d''-f2|cut-d"' -f2|tr

-d ' " | sort | sort | uniq -c | sort -nr > alert_dstports-test.log

2. $ grep "**\]" alert_all | grep -v spp_portscan | cut-d >'-f2 | cut-d'
"-f2|cut-d"-f1|tr-d''|sort]|sort|uniq-c|sort-nr>aler
t.destips.tester.log

grep "\[**\]" alerts.txt | grep -v spp_portscan | cut -d\] -f 3 | cut-d\--f1 | cut-d: -
f1 | sed s/\ //g >> alerts.srcips.log.unsorted

grep PORTSCAN alerts.txt | cut-d \] -f 2 | cut-d \ -f 6 | sed s/\ //g >>
alerts.srcips.log.unsorted

cat alerts.srcips.log.unsorted | sort | uniq -c | sort -nr > alerts.srcips.log
rm alerts.srcips.log.unsorted

SCANS

#tally number of src ips

' -f1|tr-d"'"|sort]|uniq-c | sort -nr > scan_src_ips_test.log

#tally number of dst ips

"| sort | uniq -c | sort -nr > scan_dst_ips_test.log

#tally number of dst ports

"-f1| tr-d''|sort|uniq-c | sort -nr > scan.dst.ports.log

00S

Tally of dst ips:

grep "..\V.\-.\...\'" oos.txt | cut-d\>-f2|cut-d\:-f1|seds///g]|sort|uniq-c|
sort -nr > 0o0s.dstips.log

Tally of dst ports:
grep "..\.\-.\...\'" oos.txt | cut-d\>-f2|cut-d\:-f2|seds///g]|sort|uniq-c |
sort -nr > oos.dstports.log

58
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Tally of src ips:
grep "..\V.\-.\..\\" oos.txt|cut-d\>-f1|cut-d\ -f2|cut-d\:-f1|seds/N\/g]|
sort | uniq -c | sort -nr > 00s.srcips.log

Appendix A:

SnortSnarf start page

All Snort signatures

SnortSnarf v020516.1

ISiqnature section (217068) ITop 20 source IPs ITop 20 dest IPs

217068 alerts found using input module SnortFilelnput, with sources:
alert_final
Earliest alert at 00:00:02.008798 on 03/23/2002
Latest alert at 23:54:52.240002 on 03/27/2002

. . . o # # # Detall

Priority | Signature (click for sig info) Alerts | Sources | Dests | link

N/A SMB Name Wildcard 57280 | 131 115 Summary
N/A SNMP public access 40021 |21 146 Summary
N/A connect to 515 from inside 34435 |55 4 Summary
N/A :DCI:rI:/éP Echo Request L3retriever 28323 | 90 12 Summary
N/A MISC Large UDP Packet 22187 |14 7 Summary

spp_http_decode: IS Unicode

N/A attack detected 8555 |78 427 Summary
N/A INFO MSN IM Chat data 4462 |64 64 Summary

© SANS Institute 2004,

59
As part of GIAC practical repository.

Author retains full rights.

N/A INFO Inbound GNUTella 4248 | 3485 3 Summary
Connect request
ICMP Echo Request Nmap or

N/A HPING2 3717 |61 5 Summary
Watchlist 000220 IL-ISDNNET-

N/A 990517 2915 |13 6 Summary

N/A IC_:MP Fragment Reassembly 2197 |24 55 Summary
Time Exceeded
High port 65535 udp - possible

N/A Red Worm - traffic 1594 |68 106 Summary

N/A FTP DosS ftpd globbing 1499 |15 2 Summary

N/A INFO Outbound GNUTella 1448 |8 977 Summary
Connect request

N/A WEB-IIS view source via 297 34 1 Summary
translate header

N/A ICMP Router Selection 760 93 1 Summary

N/A WEB-MISC Attempt to execute 755 19 28 Summary
cmd

N/A INFO FTP anonymous FTP 297 7 22 Summary

N/A WEB-FRONTPAGE _vti_rpc 177 71 5 Summary
access

N/A WEB-IIS _vti_inf access 176 71 2 Summary
Port 55850 tcp - Possible

N/A myserver activity - ref. 010313-1 151 6 6 Summary

N/A Watchlist 000222 NET-NCFC 146 2 2 Summary

N/A SCAN Proxy attempt 140 21 39 Summary

N/A Null scan! 138 27 11 Summary

N/A Possible trojan server activity 109 10 10 Summary
ICMP Destination Unreachable

N/A (Communication Administratively | 74 1 1 Summary
Prohibited)

© SANS Institute 2004,

60

As part of GIAC practical repository.

Author retains full rights.

N/A ICMP Echo Request Windows 66 17 5 Summary

N/A INFO - Possible Squid Scan 47 13 8 Summary

N/A NMAP TCP ping! 45 14 6 Summary

N/A INFO Possible IRC Access 43 11 15 Summary

N/A WEB-CGI scriptalias access 34 3 1 Summary

N/A In_complete Packet Fragments 27 4 4 Summary
Discarded

N/A EXPLOIT x86 NOOP 26 15 16 Summary

N/A INFO Napster Client Data 24 2 18 Summary

N/A WEB-MISC 403 Forbidden 18 3 6 Summary

N/A ICMP traceroute 15 8 2 Summary
SCAN Synscan Portscan ID

N/A 19104 14 14 7 Summary

N/A Queso fingerprint 10 9 6 Summary
ICMP Destination Unreachable

N/A (Protocol Unreachable) ? 1 1 Summary

N/A suspicious host traffic 8 6 2 Summary

N/A EXPLOIT x86 setuid 0 7 7 6 Summary
spp_http_decode: CGI Null Byte

N/A attack detected 6 > 3 Summary
WEB-IIS Unauthorized IP

N/A Access Attempt 6 2 4 Summary

N/A TCP SRC and DST outside 5 1 1 Summary
network

N/A EXPLOIT x86 setgid 0 5 5 4 Summary

N/A BAC_KDOOR NetMetro Incoming 5 1 1 Summary
Traffic

N/A WEB-MISC http directory 4 1 1 Summary
traversal

N/A INFO Inbound GNUTella 4 3 3 Summary

© SANS Institute 2004,

61

As part of GIAC practical repository.

Author retains full rights.

Connect accept

N/A EXPLOIT NTPDX buffer Summary
overflow

N/A MISC traceroute Summary

N/A Attempted Sun RPC high port Summary
access

N/A WEB-MISC compag nsight Summary
directory traversal
ICMP Echo Request CyberKit

N/A 2.2 Windows Summary

N/A ICMP Echo Request BSDtype Summary

N/A MISC PCAnywhere Startup Summary

N/A Back Orifice Summary
RFB - Possible WinVNC -

N/A 010708-1 Summary
Port 55850 udp - Possible

N/A myserver activity - ref. 010313-1 Summary

N/A EXPLOIT x86 stealth noop Summary

N/A IDS50/trojan_trojan-active- Summar
subseven [arachNIDS] y

N/A x86 NOOP - unicode BUFFER Summar
OVERFLOW ATTACK y

N/A IDS552/web-iis_IIS ISAPI Summar
Overflow ida nosize [arachNIDS] y
TFTP - Internal UDP connection

N/A Summary
to external tftp server

N/A WEB-MISC prefix-get // Summary

N/A WEB-MISC webdav search Summary
access

N/A WEB-IIS encoding access Summary

N/A SYN-FIN scan! Summary

© SANS Institute 2004,

62

As part of GIAC practical repository.

Author retains full rights.

N/A TFTP - External UDP connection 1 1 1 Summary
to internal tftp server

N/A ICMP Echo Request Sun Solaris |1 1 1 Summary

SnortSnarf brought to you courtesy of Silicon Defense
Authors: Jim Hoagland and Stuart Staniford

See also the Snort Page by Marty Roesch

Page generated at Sun Jun 9 13:22:52 2002

References:

http://www.eecis.udel.edu/~ntp/

http://dshield.org

http://www.activestate.com

Chris Baker GCIA Practical
Chris Calabrese GCIA Practical

http://www.cert.org

http://www.cve.mitre.org

http://www.cygwin.com

http://www.giac.org/GCIA.php

http://www.iana.org/assignments/port-numbers

http://www.silicondefense.com/software/snortsnarf/index.htm

http://www.snort.org/snort-db/all.html

Kyle Haugsness GCIA Practical
Lorraine Weaver GCIA Practical

Stevens, W. Richard. TCP/IP lllustrated, Volume 1

http://www.redhat.com/support/manuals/RHL-6.2-Manual/ref-quide/ch-
sysconfig.html

http://www.solucorp.gc.ca/linuxconf/

63
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.xc.org/jonathan/linuxconf-rh5.1-fag.html

http://www.isc.org/products/BIND/

http://advice.networkice.com/Advice/Intrusions/2000417/default.htm

http://www.rixsoft.com/Knowbuddy/gnutellafag.html#resgnutella

http://www.sans.org/y2k/ecn.htm

http://cr.yp.to/djbdns.html

http://www.incidents.org/react/lion.html

http://www.portsdb.org

http://rr.sans.org

http://www.rff.com

http://www.whitehats.com

http://www.snort.org

http://enterprisesecurity.symantec.com/pdf/retreiv.pdf?PID=na&EID=1

http://www.insecure.org/nmap/

http://www.eaglenet.org/antirez/hping2.html

http://homepage.ntiworld.com/robin.d.h.walker/cmtips/p2p.html

http://marc.theaimsgroup.com/?l=bugtrag&m=94580196627059&w=2

64
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

