
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical
NIDS Change Management & Version Control, Network Detects, and
Log Analysis

Bill M. Shinn
Practical Assignment v3.1

September 20, 2002

SANS 2002, Orlando, FL
April 1st- 7th, 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 2 Bill M. Shinn

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 3 Bill M. Shinn

Assignment 1 - State of Intrusion Detection 5
Abstract 5
Introduction 5
Challenges 6
Goals and Requirements 8
Recommendations 9
Technical Recommendations 15
Conclusion 24

Assignment 2 - Three Network Detects 27
Detect 1 - Radware’s Linkproof & Nmap TCP Scan False Positives 28

Detect Trace Logs 28
Source of Trace 30
Detect was generated by 30
Probability the source address was spoofed 31
Description of the attack 34
Attack mechanism 36
Correlations 38
Evidence of active targeting 38
Severity 39
Defensive Recommendations 39
Multiple Choice Question 40

Detect 2 - VPN Policy Violator - Disabled Split Tunneling Saves the Day 42
Detect Trace Logs 42
Source of Trace 42
Detect was generated by 42
Probability the source address was spoofed 42
Description of the attack 43
Attack mechanism 45
Correlations 45
Evidence of active targeting 46
Severity 46
Defensive Recommendations 47
Multiple Choice Question 47

Detect 3 - DDoS Shaft SYNflood - Weak, Anomaly or Backscatter? 49
Detect Trace Logs 49
Source of Trace 61
Detect was generated by 61
Probability the source address was spoofed 62
Description of the attack 63
Attack mechanism 64
Correlations 64
Evidence of active targeting 65
Severity 65

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 4 Bill M. Shinn

Defensive Recommendations 66
Multiple Choice Question 66

Assigment 3 - Analyze This! 69
Executive Summary 69
Log Files Analyzed 69
Prioritized Detects 70

Compromised or Malicious Hosts within University Network 70
Attack Participants within University Network 73
False Positives and Irrelevant Alerts or Scan 73

“Top Talkers” 75
Quantitative Alert Analysis 75
Quantitative Scan Analysis 79

Significant Relationship/Link Graphing Technique - 12.151.57.37 &
MY.NET.88.245 80
Critical External Hosts 84
Out of Spec Packets 88
Defensive Recommendations 91
Methodology 92

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 5 Bill M. Shinn

Writing Conventions

To aid the reader in quickly differentiating content, the following conventions are used
throughout this practical:

Normal text appears in 12-point TrueType Times New Roman font.

Hostnames and interface names appear in 10-point TrueType Times New Roman Bold font.

Captions to diagrams, in-line hyperlinks, bibliographic citations and other excerpts appear in 9 or
10-point TrueType Times New Roman font.

Command text and file names appear in 10-point TrueType Courier
New font.

Log files and network traces appear indented in 8-point Times New Roman font.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 6 Bill M. Shinn

Assignment 1 - State of Intrusion Detection
A Change Management and Version Control Workflow for Production Snort NIDS
Sensors

Abstract

This paper defines a comprehensive change management and version control workflow for
maintaining policies on production Snort IDS sensors. Beginning with a theoretical discussion of
the challenges and goals for incorporating Network Intrusion Detection Systems in enterprise
change and version control processes, an argument is advanced for careful control of NIDS
signature and configuration file deployment. Both procedural and technical recommendations are
presented to guide organizations through critical phases of sensor policy management, from
development to deployment, accounting for roll back and remediation.

Introduction

This paper outlines the basic requirements of a comprehensive change management and
version control workflow for policies on production Snort IDS sensors. Consistently, one
of the challenges faced in administering Snort sensors is updating and deploying the latest
signatures and configuration files throughout the enterprise Network Intrusion Detection
System (NIDS), while preserving local control and the granular signature details inherent
in a finely-tuned sensor. This paper is intended to help an organization consider the
impact of a NIDS on its operational environment prior to implementation, or to assist
organizations already confronting recurring issues with NIDS management.

Even the best change control procedures and the most dynamic version control systems
may not account for the unique demands of a NIDS, where integrity of data-in-transit,
timely testing and deployment, and access controls are of paramount importance.
Beginning with a broader theoretical discussion of the challenges and goals in change
management and version control applied to network intrusion detection, this paper
concludes with a practical workflow that can be employed to overcome obstacles, while
still meeting clearly defined objectives.

At the foundation of the challenges involved in maintaining a NIDS is the day-to-day
operation that must take place to maintain a working set of configuration files and
signatures deployed to each sensor. These files compose a policy that must limit false-
positive alerts, while detecting the latest exploits applicable to the network being
monitored. Building several sensors, installing a default set of signatures, and attaching
them to the LAN is relatively simple. Deploying sensors in a managed data center where
multiple, geographically dispersed departments and levels of management are responsible
for different functional areas of a production environment is a significantly more
challenging task. Beyond initial deployment is the constant revision and fine-tuning
required for protection of information assets in which the NIDS is designed to assist. This
revision and constant change must be conducted according to the procedures standard to
an organization and designed to minimize disruption and account for the enterprise’s
workforce and budget resources.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 7 Bill M. Shinn

This paper assumes that any enterprise advanced enough to consider and implement a
NIDS has addressed, or is actively addressing, the requirement for a robust change
control system for its production/operations environment.1,2 Such a system can be large or
small in scale, from simple forms and log books, to relational databases and wireless
notification systems, but it should account for each critical system in the enterprise. The
identification of critical systems is relative to each organization, but minimally includes
network devices such as switches, routers, and firewalls upon which an organization’s
connectivity and security depend; servers responsible for hosting corporate web sites or
enterprise applications; and hosts running data warehousing, ERP or CRM applications.
Workstations, management hosts internal to an IT group, and development LANs may or
may not be included in the formal “production” controls. This paper also assumes that
version control is in place for all code developed within the enterprise and for
configuration files required by critical applications and servers. These are rather large
assumptions…

While a NIDS offers detection, and sometimes prevention, of attacks, the best security
comes from careful systems management and resistance to the unknown. Moreover,
without holistic change management, remediation from attack is almost impossible as no
accurate baseline of the system configuration prior to compromise exists. Working from
the above assumptions, the real challenge then comes from applying and adapting these
existing change management and version control procedures to a newer concept such as
NIDS.

Although an oversimplified view, many traditional change controlled production
environments govern a workflow in which developers or vendors write code and build
packages, management approves deployment, systems administrators or mainframe
operators deploy or install the package, then an Operations team or support desk monitor
the application in production - this cycle continues with the reporting of errors and feature
requests from Operations or users to developers or engineers. The contemporary NIDS
does not fit well in this model, without adjustment, for a number of reasons.

Challenges

No Clear “Ownership” of Sensors between Security and Operations
The “ownership” of a NIDS sensor, depending on the organization, may not be clearly
defined - “ownership” meaning responsibility and accountability for the daily operation
and life-cycle of a system. Security Analysts and Security Managers are the owners of the
information produced by the sensor, but may not be tasked with the constant monitoring
of the sensor (network connectivity, disk space, log rotation, creating accounts, etc), nor
the installation and maintenance of the required packages on each sensor (ssh, mysql
client, libpcap, etc.). Prior to the rollout of each NIDS sensor, the ownership of
maintenance and monitoring tasks must be clearly defined and incorporated into daily
schedules, budgets, and change control procedures.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 8 Bill M. Shinn

To illustrate, which department is responsible for proposing configuration changes to a
NIDS sensor? Which team or individual is tasked with testing the change on a lab sensor
prior to turnover into production? Which department actually implements the change?
The answer to this question may depend on the type of change, and certainly upon the
structure of an organization. For an upgrade or patch to stunnel or OpenSSH, the
organizational knowledge may reside in the Operations department. For an upgrade to the
Snort program or the signatures, the Security Analysts may want to compile the code
themselves and edit .rules files manually. Who owns each task is not as important as
ensuring that someone owns the task and is equipped with the training and resources to
manage it.3

No Clear Separation of Roles between “Development” and Operations
The separation of roles and responsibilities between developers and Operations staff - the
core of many change control models - is blurred when applied to NIDS. Additionally
complicated are the access rules applied to a sensor, as “developers” are (or should be)
typically restricted from accessing production hosts. Inherent in NIDS deployments, is
the “niche knowledge” required to maintain a working policy. If the Security Analyst is
seen as a “developer” of signatures and sensor policy, there should logically be a member
of the operations staff that deploys the “code” (signatures and .conf files). In most Snort
deployments, however, the Security Analyst probably logs directly into the sensor and
either uploads, or directly edits the Snort signatures because he or she is the only person
who knows how. Depending on the Snort setup, this person may also need root access to
restart the daemon. This is a classic problem, not just with IDS, but with all applications
requiring the direct support of a developer with a highly specified skill set. While many
organizations may “hand-off” a product to an Operations team equipped with
programmers capable of troubleshooting run-time errors, an Operations teams may not be
equipped with a dedicated Security Analyst empowered and trained to fix a rule
producing 1000 false-positives every 5 seconds. 4

This is compounded by the lack of a versioning system for Snort policies which
accommodates the many changes an organization should make in fine-tuning and
maintaining signatures and configuration files.5 Granted, that both the current and stable
distributions of the Snort signatures can be tracked using CVS, but this alone does not
provide a mechanism for an organization to test, modify, package, and deploy the
updated signatures to production sensors.

Additional Security & Audit Requirements of NIDS Sensors
Placing additional stress on change management systems is the heightened burden of
proof imposed upon IDS data used in forensic, and the commensurate integrity required
of such systems producing this data - forcing organizations to severely limit access to IDS
sensors. This is at odds with the needs of many IT departments to cross-train their
employees as a hedge against employee turnover or downsizing, and to provide adequate
coverage during second or third shifts. Organizations must now introduce levels of access
control, accountability, and procedural controls acceptable to the scrutiny of IT audits
which may increasingly include examination of NIDS implementation and management.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 9 Bill M. Shinn

Change management practices and version control processes which include NIDS must
also provide proper evidence that rule set integrity is not compromised, that access to
sensors and their data is logically controlled by job function, and that changes to a
production IDS environment are authorized and controlled.

Goals and Requirements

In response to these challenges, any proposal of a comprehensive workflow for change
management and version control of Snort NIDS sensors must meet a lengthy list of goals
and requirements:

Always have available, and ready for review, the current version of the stable •
signature and configuration files from the official Snort distribution. Although every
change to the official Snort stable rule set is not applicable to every environment,
every Snort deployment should have signatures at its disposal to detect the latest
exploits and to incorporate enhancements to signatures. This should be considered
“pristine” source code and never be placed into production without testing and
alteration to an operational environment. For instance, signatures applying to
Microsoft SQL should not be deployed to protect Oracle-only environments, as this
can only burden Snort without the benefit of intrusion detection.6 Also, as each sensor
should be running a policy fine-tuned and trimmed to the monitored network, each
policy will typically have different variables in snort.conf.

Any change management and version control system should provide notification •
when the official stable rule set distribution changes, or when an analyst or member of
security team submits a change proposal from testing to be deployed onto the
production sensors.

A fundamental feature of change management procedures is preserving the ability to •
review and approve changes to all sensor policies before introducing into production
or Operations environment. This approval should come from at least two parties: the
department or person(s) tasked with testing and certifying that a change will not
disrupt the production sensor; but also from the party responsible for accepting and
turning over the change in production. Accountability, acceptance, and “buy-in” are
critical. How this approval takes place - using managers’ signatures or log timestamps,
for instance - can be taken from existing change management systems, but should
occur. 7

Separate, but equal, from the approval process - a NIDS change management •
workflow must include change control documentation which outlines the change that
will be made, in addition to the approval itself. This must accompany the approval
process so that management or those accountable are aware of the actual change. A
reference to a log book entry detailing the proposed change, to a tracking system
ticket, or to documentation of the actual change (file printout) are all sufficient as long

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 10 Bill M. Shinn

as the review takes place.8

This documentation affords the opportunity for review, but also journals the changes
to a sensor so that any required remediation can take place. This step mitigates risk of
improper sensor operation caused by deployment of unintended signature or
configuration file changes, allowing the suspect change to be isolated and rolled back.

Primarily the role of a version control system, a comprehensive workflow for NIDS •
management must mitigate risk of improper sensor operation caused by multiple
analysts editing common rule sets in a distributed environment. This version control
system, distinct from, but integral to the change control process, must allow for
concurrent work on the same policies by multiple analysts. This system enforces the
need to approve changes before turnover, as all parties must commit their changes
prior to release.

Change and version management are fundamentally designed to prevent disruptions •
and to allow timely remediation from improper sensor configuration. This objective
requires more than just the previously mentioned documentation: a build and
deployment process allows roll back to previous versions of deployed “code”… in the
case of a sensor policy, this “code” is the signatures and configuration files.

A robust workflow should enforce separation of roles between Security Analysts or •
Engineers and the Systems Administrators or Operations staff. This philosophy
assumes a great deal about the organizational structure and workforce resources of an
IT department, and that distinct job titles exist to fulfill each roles. In many
environments, the Systems Administrator is the Security Analyst and perhaps the one-
person Operations team as well. In small- to medium-sized enterprises, the distinction
is no less important as the “small shop” can better account for time-on-task and
resource hours when these roles are kept separate…at least conceptually.9

The workflow should be standardized throughout the enterprise to allow quick and •
seamless addition of new sensors. Any change management and version control
systems needs to scale properly for a large number of sensors.

Any system must result in the smooth transition between development, testing and
production environments. The fast-paced nature of changes to production Snort NIDS
sensors can tax any change control system that fails to account for the unique needs of
NIDS operational requirements, even systems which account for emergency changes.
Increasing the number of change control windows for NIDS sensors may alleviate some
of the burden on the system, as long as the approval, acceptance, and turnover procedures
are clearly defined.

A proactive workflow that is widely recognized and accepted by all parties involved in
NIDS management can elevate the perceived importance of NIDS to that of other

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 11 Bill M. Shinn

traditional production systems, deserving of in-depth monitoring, change control
procedures, and resources.

Recommendations

Combining manual tasks and automation services, the workflow recommended in this
paper attempts to leverage the most productive, affordable tools available to manage
Snort sensors, regardless of platform availability. While potentially daunting at first, the
tools defined are relatively trivial to set up (or may already be in use), and once
established allow the workflow to scale properly to a large number of sensors. The role of
each tool is described later in the more technical section of this recommendation. Sections
of the recommendation can benefit from overall refinement and most likely require
adaptation to a particular environment. Although this recommendation attempts to meet
each of the goals described above, every environment is different due to resource
limitations, technical capacity, or commitment.

The tools used to manage an official distribution of the Snort rule set, modify it for a
given environment, obtain approval and ensure documentation, and deploy (or roll back)
a build are illustrated in Figure 1.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 12 Bill M. Shinn

Figure 1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 13 Bill M. Shinn

Below, I define in greater detail the several positions or individuals within an organization
responsible for particular portions of the recommended NIDS change management and
version control workflow. As mentioned previously, each play a key role, and
intentionally hold separate responsibilities to enhance access control and divide labor. In
some cases, one person may occupy all of these roles; the purpose is to identify the
separation of roles required for a meaningful workflow. Again, in small to medium
organization, one person fulfilling each role can still divide their time and functions evenly
and preserve the integrity of the process.

Security Manager
This position or individual is responsible for identifying and justifying each sensor,
working with the network engineering staff to determine the best placement on the
network, and acting as a liaison between the Security Analysts and the Operations team or
administrators. In the day-to-day tasks described in this workflow, the manager is
responsible for setting up the IDS Policy Manager to account for all sensors. The manager
uploads this information to a central repository and keeps the information up to date,
adding and removing sensors when required. The Security Manager also ensures the
availability of the other tools required for the success of the workflow.

The Security Manager holds the additional role of downloading the Official Snort
signature distribution. The Security Manager receives notification whenever an Analyst
proposes a change to the signatures or configuration files on production sensors. If the
official signatures change, the Manager notifies the Analysts of the change so the updates
can be reviewed and incorporated into testing and development. If an Analyst commits a
proposed change to the central repository, the Manager reviews the change and initiates
the change control procedures required to update the build on the production sensor.
Once released, documented, and approved from the change control process, the Manager
(or a delegate) builds the release package that is distributed to Operations for turnover to
the production sensors.

Security Analyst
In this workflow, the analyst is not only tasked with interpreting events of interest
produced by the NIDS, but is responsible for adapting "vendor" signatures to the
proprietary environment of an organization. This position builds custom local signatures,
refines the official Snort signatures and configuration files for optimum performance and
applicability, and submits these efforts for rollout on the production network. This
position works closely with the Security Manager to define the security needs of each
business environment. Through either direct contact, or using the Security Manager as a
liaison, the Analyst closely tracks changes to the production network (servers, switches,
firewalls, ports, etc.) that may impact the operation or performance of the NIDS. If the
Analyst is also responsible for regular penetration and vulnerability assessment, the data
produced from these events can be used to track changes to the network and adjust NIDS
policies accordingly.10

Operations or Administration Staff

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 14 Bill M. Shinn

These positions are responsible for the administration of the sensor machines themselves.
They update software and keep the machines running according to best practices (latest
security patches to software, most recent libraries, adding and managing accounts, etc.),
in addition to monitoring the availability and performance of the sensors. After release
from change control, the Operations team is responsible for installing the latest
build/package which updates the Snort policy. The Snort binaries, beyond the scope of
this paper, are tested by the Analysts in a lab environment, and then turned over to
production in a similar manner as the policies.

Finally, prior to the technical portion of this paper, each step of the policy change control
process is depicted in Figure 2. The workflow process generally begins with the
Development phase for new Snort deployments, but if your enterprise is adopting a
change management workflow, or applying one to NIDS for the first time, the
“beginning” of the cycle is relative to the progress or state of your deployment.

The first question one might ask is why, in a well-designed change control and version
management workflow, are roll back and remediation identified as critical processes? It is
assumed that in the life of every NIDS deployment, improper configurations and/or
incorrectly authored signatures will be deployed more than once. Despite every best effort
in development and testing, signatures deployed to monitor a production network may
not produce the desired result, returning too many false positives or resulting in false
negatives when confronted with a comprehensive test against the NIDS. At all cost, resist
the overwhelming urge to "fix-on-the-fly" and simply bypass all the controls, log into the
production sensor, and simply "tweak" the signature or policy setting. Proper roll back
according to procedure is perhaps the most difficult, yet most important, step in change
and version control for NIDS sensors. To preserve any separation of responsibilities
between Analysts (a.k.a - “developers”) and the Operations staff, and to preserve the
integrity of access controls, proper roll back and remediation involve removing the most
recent build of the production policy and signature set, and restoring the last known-good
installation - continuing the cycle. The Security Manager works with management peers
on the Operations side to enforce these practices.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 15 Bill M. Shinn

Figure 2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 16 Bill M. Shinn

Technical Recommendations

As shown in Figure 1, the technical requirements of the workflow involve a number of
tools installed on several distinct sets of hosts:

Management Server - A central repository running a web server, CVS with the cvslog •
notification script, package management tools such as RPM, and an SSH daemon.
Security Manager Workstation - A Windows 2000 or XP workstation with CVSNT, •
OpenSSH for Windows, regdmp.exe and regini.exe from the Windows 2000
Resource Kit and IDS Policy Manager. Version 5.6 of the Windows Script Host is
required.11

Security Analyst Workstation - A Windows 2000 or XP workstation with CVSNT, •
OpenSSH for Windows, regdmp.exe and regini.exe from the Windows 2000
Resource Kit and IDS Policy Manager. Version 5.6 of the Windows Script Host is
required.
Snort Sensors - The Snort sensors can be running on almost any platform compatible •
with the build/packaging system you choose.

Endnotes referencing required and optional tools are inserted as each tool is discussed;
the home page or download location for each application, and referral to useful
documentation, is provided. Most projects have very apparent links to download
locations and additional documentation resources. Every effort has been made to include
configuration information specific to this workflow.

Management Server Setup

This server can be any platform capable of hosting the applications and accounts as
described below. This device can be the same server hosting other centralized Snort
management applications such as ACID or SnortSnarf, but can certainly be hosted
separately. Depending on the separation of resources within any given IT department, the
tools below may already exist somewhere in your infrastructure and only require minor
changes to accommodate these requirements.

Install and configure SSH Daemon and Accounts

The Security Manager and each of the Security Analysts will need a login account on the
management server hosting the CVS modules described below. As both CVS operations
and any required interactive logins take place using SSH, each account could have an
RSA key generated, and the public key placed in the
/home/username/.ssh/authorized_keys file for each user. This adds an additional
layer of security and convenience to the procedures. Private keys, if they don’t already
exist, can be distributed off-line.12,13,14

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 17 Bill M. Shinn

Install and configure CVS Repository

Many resources on this subject exist, and if your network already has a CVS server you
may request or provision access and space for use by this workflow.15,16,17,18 This CVS
server can reside on nearly any platform, but each Security Analyst and the Security
Manager will need account access on this server, with the ability to add CVS modules
delegated to at least the Security Manager.

To take advantage of the change notification features described in this workflow, which
greatly enhances the management of sensor policies, the CVS server should be of the
*nix variety with Perl, diffstat, and sendmail installed. The cvslog script, which provides
this notification feature, requires these applications for functionality.19 Prior to creating the
CVS module for each sensor and the official distribution, install and configure cvslog
according its instructions. Again, this is not required, but without it notification of
changes to the policies will not take place. Ideally, configure the loginfo file required by
cvslog to send full diff’s during each notification, as this provides very granular detail of
changes.

Install and configure ViewCVS and an HTTPS server

Installation of both a web server and ViewCVS are well beyond the scope of this paper. 20

Both provide an important piece of the management workflow outlined in this paper, and
while not vital, their absence will make the change control reporting and remediation
processes much more difficult. ViewCVS offers an easy-to-use interface for generating
change control documentation for presentation to a change control committee or for use
in the approval process.

The SSL-secured web server hosting ViewCVS will display the CVS modules used in this
management workflow. The only setup of ViewCVS proprietary to this recommendation
is ensuring that ViewCVS points to the correct CVSROOT path which includes the modules
for each sensor, the module for the official Snort rules distribution, and the module for the
IDS Policy Manager registry settings that need to be installed on all participating
workstations. Access to this web or virtual directory on the server should be limited to
Security Analysts and the Security Manager.

Package Building Tools

You will need package building software compatible with the build platform and the
sensors. In the testing environment for this workflow, both the management server
platform and the sensors ran on Red Hat 7.x hosts, so RPM was used exclusively.21 With
adjustment and the right skill sets, the packaging could occur on Debian and Solaris
platforms as well, or even using a solution such as OpenPKG.22,23 At a minimum, the
Security Manager will need rights on this server to create packages; should the Manager

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 18 Bill M. Shinn

delegate this responsibility, the Security Analysts will also require access to these tools.

Once the signatures and configuration files developed and refined by Analysts are
released from the change control process, the approved release of each policy is checked
out from CVS and a package is built for installation to the sensor in question.24,25,26,27 The
process of creating packages takes place on this server or any other workstation with
sensor-compatible build tools. As building a policy package does not require anything to
be compiled; only a standard set of file manipulation tools is required. If your
organization runs Snort on Win32 platforms, additional research needs to be conducted
on building packages for these systems.

While almost all of the CVS commands required for managing the sensor policies using
IDS Policy Manager on workstations has been scripted into ipmadmin.vbs,28 some
knowledge of CVS is useful for building the packages. Building and using policy
packages is described in greater detail following the discussion of setting up the
workstations.

Security Manager Workstation Setup

Install and Configure CVSNT & Network Simplicity OpenSSH for Windows

Follow the standard installation instructions for both applications.29,30 For CVSNT, choose
the custom installation option. Select to install only the command line client, password
protocol, and external command protocol. For OpenSSH, install client utilities only and
be sure to run ssh-keygen from the c:\Program Files\NetworkSimplicity\ssh
directory, which will generate the required .ssh subdirectory. Please any private RSA
keys required to log into the central server in C:\Program
Files\NetworkSimplicity\ssh\.ssh. Also be sure to connect from the command
line to the central server at least once so the fingerprint is added to the known_hosts file
successfully and to ensure the connection works properly.

Ensure that the following are permanently added to your path:

c:\”Program Files”\”CVS for NT”
c:\”Program Files”\NetworkSimplicity\ssh

Installing ipmadmin.vbs

From the command shell or Windows Explorer, change to the root of the drive (or other
optional location) and create a directory titled ipmadmin for the ipmadmin.vbs script to
run from. Copy the script to this location:

>mkdir c:\ipmadmin
>copy [x:\ | \\]path\to\ipmadmin.vbs c:\ipmadmin

Open the file in a text editor and modify the required and optional user variables

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 19 Bill M. Shinn

necessary to customize the script to your environment.

Install and Configure IDS Policy Manager

Follow the standard installation procedures.31 Do not configure any sensors or policies at
this time. In the C:\ipmadmin directory, create one subdirectory entitled official and
another subdirectory for each of the sensors you wish to manage (naming each policy
with the sensor's host name is a helpful convention. Use only the host name, not the
FQDN as the “.” cannot be used to name the CVS modules based on the sensor policy
names). For instance:

C:\ipmadmin\official
C:\ipmadmin\sensor1
C:\ipmadmin\sensor2

During the initial setup, you will need to populate each policy folder with signatures and
configuration files before entering additional details in IDS Policy Manager (IDS Policy
Manager requires that snort.conf be present before it will create the policy). If you are
deploying sensors for the first time, you can untar the snortrules-stable.tar.gz file
from Snort.org into each directory (moving the files from the default “rules” subdirectory
to the root of the policy’s folder), or if you are bringing existing sensors into this
workflow, you can copy the current production signatures and configuration files into the
appropriate directory for that sensor policy (each time another sensor is taken under
management, a new directory will need to be created to hold the policy). In this workflow,
keeping all signature and configuration files in one directory simplifies management - just
ensure that the RULES_PATH variable in snort.conf reflects that all signatures are in the
same directory. Similarly, because in this workflow snort.conf is maintained using
CVS with all other files, it’s easier to install this file to the same location on the sensors as
the signatures, being careful to start the Snort daemon with -c switch pointed at the right
path to snort.conf (e.g. - /usr/local/snort). This differs from many Snort
installations where snort.conf is in the /etc or /usr/local/etc directories.

Using IDS Policy Manager according to the instructions, create the policy for each sensor
in your network. By default, IDS Policy Manager creates its own “Official” policy - delete
this and create your own with using the path above. This workflow does not use the
"Sensors" tab of IDS Policy Manager as this is used to upload directly to the sensors; in
this workflow, policies are reviewed, release packages are built, then the packages are
turned over into production by Operations staff.

The Add New Policy dialog in IDS Policy Manager allows you to choose the Policy Name,
again use the DNS host name or a standard naming convention consistent with the folder
names - it is very important that the folder names and the names of the policies match, as
this will coincide with the names of the CVS modules for each sensor policy. Specify the
location(s) of the policy as:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 20 Bill M. Shinn

C:\ipmadmin\official\snort.conf
C:\ipmadmin\sensor1\snort.conf
C:\ipmadmin\sensor2\snort.conf

Enter a description of the sensor that will help identify its placement or role. For your
actual sensor policies, change the Update Policy From > Policy Location selection to
"Local." This will expose the Policy Name drop-down list; choose "official". Leave all
other settings to their defaults.

Initialize the CVS module for IDS Policy Manager Settings

From the command shell

>cd c:\ipmadmin
>cscript ipmadmin.vbs /c

When this is run, the Visual Basic script retrieves all IDS Policy Manager values from the
registry, using tools from the Windows 2000 Resource Kit, and stores them in the
following file:

c:\ipmadmin\ipmsettings\ipmsettings.reg.

The command also runs, automatically, the following CVS command that creates a CVS
module to host the registry settings for IDS Policy Manager. These settings are
redistributed throughout the network to each Security Analyst:

>cvs -d :ext:username@cvsserver.yourcorp.com:/path/to/cvsroot /
import /ipmadmin ipadmin ipadmin_0-1

Finally, create a CVS module for the official distribution and each sensor policy:

>cscript ipmadmin.vbs /s official /p /r n_n_n
>cscript ipmadmin.vbs /s sensor1 /p /r n_n_n
>cscript ipmadmin.vbs /s {sensor policy name} /p /r n_n_n

This /r switch followed by a tag is required when importing files into a CVS module for
the first time. The naming convention is based on the major Snort release number,
followed by the minor release, followed by the release of the signatures in your enterprise.
According to this convention, the official signatures and configuration files are “release
zero”. The script adds additional variables as it runs, so the resulting tag in CVS is {sensor
policy name}-policy_{snort major version}_{snort minor version(s)}_{policy release
number}. By example, a sensor policy named “watchdog” using a policy for Snort
version 1.9, the tag in CVS would be watchdog_policy-1_9_0 for the initial import. If the
sensor were still running Snort version 1.8.6, the value passed to the /r switch could be
1_8_6_0, resulting in a CVS tag of watchdog_policy-1_8_6_0. This naming convention
allows for an easy transition to the build process where RPM packages will be named for

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 21 Bill M. Shinn

the release tag in CVS for each policy.

When sensors are added to the network, the Security Manager configures them locally in
IDS Policy Manager as before, and then uses the following command to reflect the
changes in the central repository:

>cscript ipmadmin.vbs /e

Security Analyst Client Setup

Install CVS for NT and Network Simplicity OpenSSH on Windows using the instructions
for the Security Manager, taking care to add the applications to your path, generate keys
and test connections in the same fashion. Also complete the instructions for copying the
ipmadmin.vbs Visual Basic script to the workstation, using the same path used to set up
the Manager’s workstation and setting any user-specific variables in the script.

Installing and Configuring IDS Policy Manager

Because the Security Manager has already configured the IDS Policy Manager settings,
and uploaded the settings to CVS - along with the official and any existing policies - the
Analyst need only check out the latest settings using the CVS functionality built into
ipmadmin.vbs.

Install IDS Policy Manager using the standard install process. Following the installation,
run the following from the command line (the final command switch is a lower-case “L”
as in “local”):

>cd c:\ipmadmin
>cscript ipmadmin.vbs /i
>cscript ipmadmin.vbs /l

This command sequence checks out the “ipmsettings” module from the central CVS
repository and imports the registry settings for the policies configured by the manager -
this eliminates the need for an Analyst to set up each policy locally and ensures that all
policies are configured the same throughout the organization. The final command
displays the sensor policies configured by the Manager that were downloaded from the
CVS repository. The Security Analyst reviews the list of policies, then checks out those in
need of refinement. Prior to checkout, the signature and configuration files in the policy
can be reviewed in ViewCVS.

Editing Policies and Submitting Changes

Use the following commands to check out a specified sensor policy into a working
directory:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 22 Bill M. Shinn

>cd c:\ipmadmin
>cscript ipmadmin.vbs /s {sensorname} /cco

After checking out one or more policies from CVS, those policies are available to use in
IDS Policy Manager. Using the rich graphical interface, make changes to the policy as
required. Import official signatures from the working directory created by checking out
the “official” distribution module from CVS. Add .rules files using the tools available
within IDS Policy Manager - this ensures that the include statements within snort.conf
are updated; however, when adding a file, also issue the following command to specify
that the file should be uploaded to the CVS repository during the next commit:

>cd c:\ipmadmin
>cscript ipmadmin.vbs /s {sensorname} /ca {filename.rules}

To remove a file, first use the tools within IDS Policy Manager, but also delete the file
from the local file system, then issue the following command to schedule the file to be
removed from CVS during the next commit.

>cd c:\ipmadmin
>cscript ipmadmin.vbs /s {sensorname} /cr {filename.rules}

When complete, issue the following from the command-line:

>cd c:\ipmadmin
>cscript ipmadmin.vbs /s {sensor policy name} /cci

This will commit the changes to CVS - first prompting for comment in a text editor - and
notify the Security Manager (and those set up to receive notifications in cvslog) of the
change. When satisfied that a checked out set of files constitutes a viable release for
production, issue the following to tag the files with a release number:

>cd c:\ipmadmin
>cscript ipmadmin.vbs /s {sensorname} /t /r n_n_n

In this case, the value of the /r switch is the release number using the same naming
conventions discussed earlier. Using ViewCVS, a Security Manager or other interested
parties, can easily create documentation for change control review based on the
differences between files tagged with the release number and those currently in
production (based on the last deployed release number in the repository).

Updating the “official” Module

Because each File > Save in IDS Policy Manager modifies the date on all files checked
out to a working directory, this can create some confusion as to which files actually
changed during a CVS commit. Although this is easily resolved by reviewing diff’s of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 23 Bill M. Shinn

each version, it is best to avoid this confusion with the official Snort distribution.
Therefore, using CVS commands directly preserves the idea of “pristine sources” that
vital to CVS. To update the stable rules, download the most current stable distribution,
unpack it (this can be done from any platform, but Linux usually has these utilities
available). In this example, the update occurs from the Security Manager’s home
directory on the central server):

$wget http://www.snort.org/dl/rules/snortrules-stable.tar.gz
$tar xzvf snortrules-stable.tar.gz
$cvs -d /path/to/cvsroot checkout official
$ls official > official.list
$ls rules > rules.list
$diff rules.list official.list > snort.diff
$mv rules/* official
$rmdir rules

If files were removed or added from the official distribution, you need to add or remove
them from the CVS working directory explicitly. To perform this, you will need to know
which files were in the “official” working directory prior to overwriting them with the new
stable release and must also have a way to determine which files are no longer included in
the official distribution. That is why, following each update from Snort.org, the difference
file is created between the newly unpacked files and those currently in the repository. By
reviewing the contents of snort.diff, you will know which files to manually remove
from CVS (first deleting the file, then issuing the cvs remove command) and which to
add (using the cvs add command). This review could probably be scripted, but since the
addition or removal of files from the stable distribution is fairly infrequent, there is only
an occasional need to pass the required CVS commands manually. Once the working
directory for the official distribution is up to date, commit it to the repository:

$cvs -d /path/to/cvsroot commit official

Build Process

In order to build a package to deploy each sensor policy, a source “distribution” and an
RPM .spec file need to be created from which to build the final package. After concluding
the change control approval process, the release number is used to checkout the approved
instance of the policy and set up the naming conventions for the RPM package. In the
example, a package is being created for a sensor named “watchdog” running Snort
version 1.9. Release “1” of the sensor policy is being deployed; operations take place
from the Security Manager’s home directory (~secmanager):

$cvs checkout -r watchdog_policy-1_9_1 watchdog
$tar -cf watchdog_policy-1_9_1.tar watchdog
$tar -f watchdog_policy-1_9_1.tar --delete watchdog/CVS*
$cvs release -d watchdog

Depending on the access rights configured on the management server, the following may
need to be performed as root:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 24 Bill M. Shinn

mv ~secmanager/watchdog_policy-1_9_1.tar /
/usr/src/redhat/SOURCES/
cd /usr/src/redhat/SPECS
vi watchdog_policy.spec

Add the following to the .spec file, noting that the install path may vary depending on the
sensor configuration and platform, as may the default variables used by RPM. Also note
that the “release number” used to tag the sensor policy is the last number in the “Version”
entry below; the “Release:” number in an RPM .spec file is specific to the release of this
RPM package, not the software being packaged:

Summary: Snort Policy
Name: watchdog_policy
Version: 1_9_1
Release: 1
Copyright: GPL
Group: Applications/IDS
Source0: %{name}-%{version}.tar
Packager: Security Manager
BuildRoot: %{_builddir}/%{name}-root

%description
Snort signatures and configuration files for corporate sensor
watchdog

%prep
rm -rf $RPM_BUILD_ROOT/watchdog

%setup -n watchdog
%build

%install
mkdir -p $RPM_BUILD_ROOT/usr/local/snort
install $RPM_BUILD_DIR/watchdog/*
$RPM_BUILD_ROOT/usr/local/snort
%clean
rm -rf $RPM_BUILD_ROOT
rm -rf $RPM_BUILD_DIR/sentry3
%files
%defattr(600,snort,snort)
/usr/local/snort

Once the .spec file is complete, build the package and review the contents (copying the
.spec is optional):

rpm -bb -vv watchdog_policy.spec
rpm -qlp ../RPMS/i386/watchdog_policy-1_9_1.i386.rpm
cp watchdog_policy.spec ~secmanager
exit

Optionally - Store the .spec file in CVS for later modification.

$ cvs -d /path/to/cvsroot checkout watchdog

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 25 Bill M. Shinn

$ mv watchdog_policy.spec watchdog
$ cd watchdog
$ cvs add watchdog_policy.spec
$ cd ..
$ cvs -d /path/to/cvsroot commit watchdog

Copy the RPM to a standard location on the sensor. The command below is run from the
build server by a member of the Operations team, this eliminates the need for the Security
Analysts or Security Manager to have an account on each sensor (enforcing separation of
duties and divided access controls).

$ scp /usr/src/redhat/RPMS/i386/watchdog_policy-1_9_1 /
operations@watchdog.yourcorp.org:/home/operations/RPMS

Finally, a member of the Operations team installs or upgrades the package on the sensor,
using normal RPM commands, and restarts the Snort process. Verification that the
change took place can be reported with file and system integrity tools, in addition to the
built-in RPM query functions. If problems occur and remediation is required, simply use
the “upgrade” features built in to RPM to roll back to the last known good configuration.
For example, if you upgraded from watchdog_policy-1_9_1-1 to watchdog_policy-1_9_2-
1 and wanted to roll back, issue the following command on the sensor:

#rpm -Uvh --oldpackage watchdog_policy-1_9_1-1.i386.rpm

When a new release of the sensor policy is required and approved, repeat the packaging
process, substituting the correct Snort version and policy release number.

Conclusion

While the tools used in the Technical Recommendation section assist the process of
change management and version control, by no means are they exhaustive or required for
a meaningful workflow. In some environments, or for some Managers and Analysts,
other tools or methods are preferred; the importance is the process itself. Until IDS
vendors incorporate change management and version control, which maintains and
accounts for the large degree of customization inherent in NIDS deployments, tools and
practices such as those in this paper are required to create a robust system for reducing
the risk of improperly configured sensor policies.

Most organizations practice at least minimal change management of critical security
devices such as firewalls; and often include the security offered by such devices when
marketing their products and services. If the security of your organization is part of its
overall business and marketing strategy, and your partners and clients rely on claims of a
well-implemented NIDS when making business commitments, then a NIDS deserves at
least the same level of controls as other systems. Without the configuration integrity,
scalability, and remediation capacity offered by the added layer of a comprehensive

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 26 Bill M. Shinn

change management and version control workflow, the potential effectiveness of Network
Intrusion Detection Systems is limited.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 27 Bill M. Shinn

Assignment 2 - Three Network Detects

Network Diagram - This diagram depicts the network used for all three detects.

Figure 1: Network Diagram

Summary of hosts and devices:

edge.mycorp.com - Cisco 2500 series router using standard anti-spoofing ACLs
nids1.mycorp.com - Snort 1.86 IDS sensor on RedHat Linux 7.2. Promiscuous interface is not assigned an IP address.
border.mycorp.com - CheckPoint Firewall-1 with three interfaces. int0 faces the public Internet, int1 faces a protected
DMZ hosting only the mail relay and the connection to the Corporate LAN, and int2 provides the default gateway for the
public DMZ hosting a corporate web server.
webserver.mycorp.com - Windows NT Server 4.0, SP6a running IIS 4.0 hosting a public web site.
nids2.mycorp.com - Snort 1.86 IDS sensor on RedHat Linux 7.2. Promiscuous interface is not assigned an IP address.
mailgateway.mycorp.com - Windows 2000 Server, SP3 running an SMTP Virtual Server and GFI MailEssentials for
anti-virus and other email filtering. This relays mail to the internal network.
interior.mycorp.com - Checkpoint Firewall-1 with two interfaces. int1 faces the protected DMZ and int0 provides the
egress point for the internal corporate network.
vpnserver.mycorp.com - Windows 2000 Server, SP3 providing RRAS services to VPN clients. Connections are
tunneled through the firewalls and terminated at this server. VPN clients are assigned an address on the 172.16.40.0/24
subnet and use the VPN server’s secondary IP address as a default gateway for the tunneled connection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 28 Bill M. Shinn

Detect 1 - Radware’s Linkproof & Nmap TCP Scan False Positives

Detect Trace Logs

Snort alerts from nids1.mycorp.com

Jun 6 12:37:32 nids1.mycorp.com snort[31510]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.130.21:80 -> 192.168.2.4:80
Jun 6 12:37:32 nids1.mycorp.com snort[31510]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.135.21:80 -> 192.168.2.4:80

Jun 13 08:10:10 nids1.mycorp.com snort[2025]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.130.21:80 -> 192.168.2.4:80
Jun 13 08:10:10 nids1.mycorp.com snort[2025]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.135.21:80 -> 192.168.2.4:80

Jun 25 15:24:26 nids1.mycorp.com snort[783]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.130.21:80 -> 192.168.3.3:25
Jun 25 15:24:26 nids1.mycorp.com snort[783]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.135.21:80 -> 192.168.3.3:25

Jun 28 08:39:58 nids1.mycorp.com snort[10281]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.130.21:80 -> 192.168.2.4:80
Jun 28 08:39:58 nids1.mycorp.com snort[10281]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.135.21:80 -> 192.168.2.4:80

Snort logs from nids1.mycorp.com

[**] SCAN nmap TCP [**]
06/06-12:37:32.176220 199.197.130.21:80 -> 192.168.2.4:80
TCP TTL:53 TOS:0x0 ID:3897 IpLen:20 DgmLen:40
A* Seq: 0x3FD Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/06-12:37:32.206220 199.197.135.21:80 -> 192.168.2.4:80
TCP TTL:52 TOS:0x0 ID:3900 IpLen:20 DgmLen:40
A* Seq: 0x3FF Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/13-08:10:10.271059 199.197.130.21:80 -> 192.168.2.4:80
TCP TTL:53 TOS:0x0 ID:45533 IpLen:20 DgmLen:40
A* Seq: 0x378 Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/13-08:10:10.311059 199.197.135.21:80 -> 192.168.2.4:80
TCP TTL:52 TOS:0x0 ID:45536 IpLen:20 DgmLen:40
A* Seq: 0x37A Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/25-15:24:26.890538 199.197.130.21:80 -> 192.168.3.3:25
TCP TTL:53 TOS:0x0 ID:41685 IpLen:20 DgmLen:40
A* Seq: 0x3D3 Ack: 0x0 Win: 0x578 TcpLen: 20

=+

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 29 Bill M. Shinn

[**] SCAN nmap TCP [**]
06/25-15:24:26.920538 199.197.135.21:80 -> 192.16.3.3:25
TCP TTL:54 TOS:0x0 ID:41688 IpLen:20 DgmLen:40
A* Seq: 0x3D5 Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/28-08:39:58.912724 199.197.130.21:80 -> 192.168.2.4:80
TCP TTL:53 TOS:0x0 ID:16918 IpLen:20 DgmLen:40
A* Seq: 0x363 Ack: 0x0 Win: 0x578 TcpLen: 20

[**] SCAN nmap TCP [**]
06/28-08:39:58.952724 199.197.135.21:80 -> 192.168.2.4:80
TCP TTL:54 TOS:0x0 ID:16921 IpLen:20 DgmLen:40
A* Seq: 0x365 Ack: 0x0 Win: 0x578 TcpLen: 20

=+

Snort alerts from nids2.mycorp.com

Jun 6 12:38:20 nids2.mycorp.com snort[24288]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.130.21:80 -> 192.168.2.4:80
Jun 6 12:38:20 nids2.mycorp.com snort[24288]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.135.21:80 -> 192.168.2.4:80

Jun 13 08:11:10 nids2.mycorp.com snort[27809]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.130.21:80 -> 192.168.2.4:80
Jun 13 08:11:10 nids2.mycorp.com snort[27809]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.135.21:80 -> 192.168.2.4:80

Jun 28 08:41:00 nids2.mycorp.com snort[2056]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.130.21:80 -> 192.168.2.4:80
Jun 28 08:41:00 nids2.mycorp.com snort[2056]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.135.21:80 -> 192.168.2.4:80

Snort logs from nids2.mycorp.com

[**] SCAN nmap TCP [**]
06/06-12:38:20.891121 199.197.130.21:80 -> 192.168.2.4:80
TCP TTL:52 TOS:0x0 ID:3897 IpLen:20 DgmLen:40
A* Seq: 0x3FD Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/06-12:38:20.921121 199.197.135.21:80 -> 192.168.2.4:80
TCP TTL:51 TOS:0x0 ID:3900 IpLen:20 DgmLen:40
A* Seq: 0x3FF Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/13-08:11:10.221121 199.197.130.21:80 -> 192.168.2.4:80
TCP TTL:52 TOS:0x0 ID:45533 IpLen:20 DgmLen:40
A* Seq: 0x378 Ack: 0x0 Win: 0x578 TcpLen: 20

=+
[**] SCAN nmap TCP [**]
06/13-08:11:10.261121 199.197.135.21:80 -> 192.168.2.4:80
TCP TTL:51 TOS:0x0 ID:45536 IpLen:20 DgmLen:40
A* Seq: 0x37A Ack: 0x0 Win: 0x578 TcpLen: 20

=+

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 30 Bill M. Shinn

[**] SCAN nmap TCP [**]
06/28-08:41:00.282303 199.197.130.21:80 -> 192.168.2.4:80
TCP TTL:52 TOS:0x0 ID:16918 IpLen:20 DgmLen:40
A* Seq: 0x363 Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/28-08:41:00.322303 199.197.135.21:80 -> 192.168.2.4:80
TCP TTL:53 TOS:0x0 ID:16921 IpLen:20 DgmLen:40
A* Seq: 0x365 Ack: 0x0 Win: 0x578 TcpLen: 20

=+

Source of Trace

All related traces and log files were gathered from my corporate network. The above
traces were gathered from Snort IDS sensors nids1.mycorp.com and nids2.mycorp.com
pictured in the diagram which begins Assignment 2. nids1.mycorp.com is intended to
capture traffic before it is filtered by border.mycorp.com and runs a customized rule set
excluding many attacks against services, applications, and systems not present in our
environment. This balances Snort’s performance with the ability to “see who is
knocking,” assess the general level of threat at our network edge, and detect new attack
patterns which may be filtered by the first firewall. The second IDS sensor,
nids2.mycorp.com runs a far more sensitive, refined rule set designed to account for firewall
rules and acceptable traffic patterns in the public DMZ.

Detect was generated by

This detect was generated by the two sensors running Snort version 1.86, an open source
network intrusion detection system. The alerts and logs were generated in response to the
following rule entered in scan.rules, a rule in the snortrules-stable.tar.gz32

standard distribution:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap TCP"; flags:A; ack:0; reference:arachnids,28;
classtype:attempted-recon; sid:628; rev:1;)

The format of the rule tells Snort what action to take based on the criteria of a packet. The
rule “header” starts with the action - “alert” in this case - which will send the event to the
alert output subsystem, rather than the logging output facility, then manage the alert
based on additional configuration directives. Following the action, the protocol type is
specified. Also specified in the header are the source address and port, direction of the
traffic, and the destination address and port pair. Variables are used when possible and
specified globally in Snort’s configuration file.

In the case of nids1.mycorp.org, the $HOME_NET destination variable includes all subnets
included in the network diagram. The $HOME_NET variable from nids2.mycorp.com is limited
to the public DMZ subnet address of 192.16.2.0/24.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 31 Bill M. Shinn

Following the rule header, the rule options provide additional criteria for packet analysis.
The rule is designed to capture and alert on traffic generated by nmap, a widely used open
source port scanning tool written by Fyodor available at http://www.insecure.org/nmap. While
the tool generates a variety of crafted packets designed to map networks for live hosts,
probe hosts for available services, and fingerprint operating systems, this particular rule
detects the nmap “ACK scan.” This scan employs a TCP packet with the least significant
bit in the high-order nibble of the 13th byte offset in the header set to 0x0, with no other
flags set - in simple terms, only the ACK flag is set. In order for the packet to trigger the
alert rule, the TCP acknowledgement number in the 8th-11th bytes offset must also have a
value of zero. This traffic is anomalous and constitutes an event of interest; a normal
packet has a non-zero value for the acknowledgement number - the 4-byte
acknowledgement number field should contain the next sequence number the sender
expects to receive.33 As the initial SYN packet in session establishment occupies one
sequence number, a packet with only the ACK flag should never have an
acknowledgment number with a zero value. The “ack” field in the Snort rule options is
present uniquely for detection of this scanning tactic.34 However, as demonstrated in
Description of the Attack below, nmap does not seem to set the acknowledgement
number to zero any longer.

Both sensors output alerts a the local syslog facility, log packets to Snort’s default logging
directory by source IP address, and log to a MySQL database visible through an ACID
management interface on an out-of-band network (not shown in diagram) inaccessible
from any other subnet.

Probability the source address was spoofed

Based on additional information and the conclusion detailed below, I am certain that the
source address was not spoofed and that, in fact, this is entirely a false positive. At the
time of the initial detect, however; no such certainty was available, and the normal
investigation process for such a reconnaissance attempt was required.

Had reconnaissance ultimately been the intent of this packet, as is typical of nmap
scanning attacks as described under Description of the Attack below, the sender or
attacker would hope to gain information about the firewall rule set or host availability
within our network perimeter, necessitating return traffic and a legitimate source IP
address. Moreover, using TTL comparison techniques, we can determine whether the
return path to the source address takes the same number of hops as the arriving packet
from the trace. Although these values can be altered by the attacker, we can make an
educated guess about the likelihood of spoofing and potentially narrow the possibilities
of originating platforms.35 In this case, the TTL of the arriving packets are as follows:

Date NIDS Sensor 199.197.130.21 199.197.135.21

6/6/2002 nids1.mycorp.com 53 52

nids2.mycorp.com 52 51

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 32 Bill M. Shinn

6/13/2002 nids1.mycorp.com 53 52

nids2.mycorp.com 52 51

6/17/2002 nids1.mycorp.com 53 52

nids2.mycorp.com 52 51

6/25/2002 nids1.mycorp.com 53 54

nids2.mycorp.com - -

6/28/2002 nids1.mycorp.com 53 54

nids2.mycorp.com 52 53

Depending on the IP implementation of the operating system generating the packets, the
default initial TTL will vary. A trace from our public DMZ to the source IP addresses from
the detects, taken on 06/06/2002, reveals the number of hops required to reach the source:

tracert 199.197.130.21

Tracing route to 199.197.130.21 over a maximum of 30 hops

1 <1 ms * <1 ms border.mycorp.com [192.168.2.1]
2 2 ms 2 ms 2 ms 192.168.1.1
3 * * * Request timed out.
 4 * * * Request timed out.
5 * * * Request timed out.
6 * * * Request timed out.
7 * * * Request timed out.
8 * * * Request timed out.
9 * * * Request timed out.
10 * * * Request timed out.
11 * * * Request timed out.
12 * * * Request timed out.
13 21 ms 24 ms 24 ms 199.197.130.21

Trace complete.

tracert 199.197.135.21

Tracing route to 199.197.135.21 over a maximum of 30 hops

 1 <1 ms * <1 ms border.mycorp.com [192.168.2.1]
2 2 ms 2 ms 2 ms 192.168.1.1
3 * * * Request timed out
4 * * * Request timed out.
5 * * * Request timed out.
6 * * * Request timed out.
7 * * * Request timed out.
8 * * * Request timed out.
9 * * * Request timed out.
10 * * * Request timed out.
11 * * * Request timed out.
12 25 ms 49 ms 49 ms 199.197.135.21

Trace complete.

To reach 199.197.130.21 required 13 hops; reaching 199.97.135.21 required 12 hops. By
adding these values to the TTLs of the packet captured by nids2.mycorp.com on 06/06/2002,
we arrive at the estimated initial TTL values:

6/6/2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 33 Bill M. Shinn

199.197.130.21 199.197.135.21

TTL of captured packet 52 51

Hops to source from target 13 12

Best Guess Initial TTL Value 65 63

Similar results were obtained for each of detect. Both values, accounting for potentially
different routes taken by the trace packet and the captured packet, are very close to 64 -
the initial TTL for many Unix-variant IP implementations36,37,38,39. The likelihood that the
source address was spoofed is decreased based on this correlation between arriving TTL
and a most likely initial TTL value of 64, as an actual host responds to the trace at the
expected distance vector.

Also decreasing the likelihood of the spoof, and increasing the likelihood that this is a
false positive, is the ARIN registration information and the fact that the “attacker” is client
business partner:

Search results for: 199.197.130.21

OrgName: Corning Incorporated
OrgID: CORNIN

NetRange: 199.197.128.0 - 199.197.255.255
CIDR: 199.197.128.0/17
NetName: CORNING-CBLK
NetHandle: NET-199-197-128-0-1
Parent: NET-199-0-0-0-0
NetType: Direct Assignment
NameServer: NS1.CORNING.COM
NameServer: NS2.CORNING.COM
NameServer: NS3.CORNING.COM
NameServer: NS4.CORNING.COM
Comment:
RegDate: 1994-04-20
Updated: 2001-01-29

TechHandle: ZC107-ARIN
TechName: Corning Incorporated
TechPhone: +1-607-974-9000
TechEmail: dnsadmin@corning.com

ARIN Whois database, last updated 2002-09-17 19:05
Enter ? for additional hints on searching ARIN's Whois database.

OrgName: Corning Incorporated
OrgID: CORNIN

NetRange: 199.197.128.0 - 199.197.255.255
CIDR: 199.197.128.0/17
NetName: CORNING-CBLK
NetHandle: NET-199-197-128-0-1
Parent: NET-199-0-0-0-0
NetType: Direct Assignment
NameServer: NS1.CORNING.COM
NameServer: NS2.CORNING.COM
NameServer: NS3.CORNING.COM

I was left with the conclusion that either someone was scanning our network with

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 34 Bill M. Shinn

spoofed addresses and not wanting to see the results of the scan (because they would not
receive any packets in response), or that someone within Corning, Inc’s address space
was actually scanning us and thought they would avoid discovery, or that I would not call
their administrators. More likely however, I determined that the packet was probably not
spoofed; but probably not a scan either.

Description of the attack

The ACK scan (-sA flag) option using nmap can be used to map out firewall rule sets and
network exposure by determining which ports are filtered, and whether a firewall is truly
stateful.40,41 The scan sends a packet with only the ACK flag set, which should receive a
reset (RST bit set in 13th byte offset of the TCP header) packet in response from an
unscreened host. Even if the port is open in the firewall, with no established session, the
host should send a RST packet according to protocol42,43. When launched against a truly
stateful firewall, the firewall should drop the packet on the floor, leaving the scanner to
timeout and report the port as filtered (or possibly unreachable if ICMP is also blocked
and/or nmap was used with the -P0 switch to avoid sending an ICMP echo request before
scanning the target list). As this scan only sends a packet with the ACK bit set, it is not
designed to tell if a port is open, which would require a three-way handshake - simply
whether the firewall blocks the traffic or allows it to pass through.

However, despite the Snort alert and usual measured concern over nmap scans, several
things make this detect a much more interesting event.

First, the non-ephemeral source port, and the reflexive source and destination ports of 80
in all of the detects (except two, which will become clear later) are of interest. The source
port can be set with the -g flag in nmap, and might allow an attacker to simulate a
response to an HTTP connection from an internal client expecting an ACK packet from
port 80 (typically this tactic is used with UDP port 53 or TCP port 20 to simulate return
DNS or ftp-data traffic).44 However, no outbound HTTP connection requests should
occur from our DMZ that would necessitate a response from port 80 (nor would the client
port be 80), which made this immediately interesting, independent of all the other factors.
This tactic raised my concerns a little as the sophistication of the “attack” increased, or at
least my level of confusion increased.

A second anomaly discovered in these packets is the interleaving IP identification
numbers of each packet pair. By “packet pair,” I mean each set of captured packets to the
same host, at the same approximate time. The 4th and 5th bytes offset of the IP packet
header, reported in the snort log as “ID”, always increment by a value of 3, but arrive
from different source addresses. While I am not sure of the mathematical probability, I
highly doubt that two distinct hosts would consistently use the same pattern and nearly
identical IP ID values when there are 65,535 possible values - needless to say, it’s pretty

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 35 Bill M. Shinn

unlikely. This brought me to the conclusion that this was one host with multiple interfaces
using the same IP stack - or one interface, alternating spoofed addresses, but this idea is
addressed previously.

Finally, the most concerning factor about these packets is that nids2.mycorp.com logged
them at all. While these packets are not of great concern at the network edge, if logged by
nids1.mycorp.com, but I had - quite falsely - assumed that the perimeter firewall was stateful
and should therefore drop these packets. Further reading of Lance Spitzer’s paper, cited
previously, explains why this packet made it through. It seems that prior to Firewall-1 4.1
SP2, Firewall-1 allows an un-established ACK packet to reach a screened host.45 In
response, the host would then send a RST - giving away not only the presence of the
host, but revealing unfiltered firewall ports without an attacker completing a connection
that can be logged by TCP Wrappers, Firewall-1, or other such facilities. As follows from
this discovery, the perimeter firewall is clearly not running a version of Firewall-1 later
than, or including SP2 (don’t worry it’s already the first item in the Defensive
Recommendations). To confirm this theory, I ran two test nmap scans, one from internal
network, which must pass through the fully patched and up to date version of Firewall-1
4.1 - internal.mycorp.com - and another test from an external network as the Internet would
see my corporate network through the older version. Not surprisingly, the results confirm
the failure of pre-SP 2 Firewall-1 to block the packet. That is not a revelation, but more
interestingly, we will see that the Snort rule itself is the cause of this false positive, and
quite possibly a false negative as well.

The results of the scan coming from the corporate LAN show that internal.mycorp.com
allows nmap’s normal connection (full handshake) scan to pass to port 80, but blocks the
ACK scan packet, returning the result that the port is “filtered” as seen in both the second
nmap result and the Firewall-1 log:

#nmap -P0 -p 80 -sT 192.168.3.2

Starting nmap V. 2.54BETA34 (www.insecure.org/nmap/)
Interesting ports on webserver.mycorp.com (192.168.3.2):
Port State Service
80/tcp open http

Nmap run completed -- 1 IP address (1 host up) scanned in 0 seconds

nmap -P0 -p 80 -sA 192.168.3.2

Starting nmap V. 2.54BETA34 (www.insecure.org/nmap/)
Interesting ports on webserver.mycorp.com (192.168.3.2):
Port State Service
80/tcp filtered http

Nmap run completed -- 1 IP address (1 host up) scanned in 36 seconds

Firewall-1 on internal.mycorp.com drops the packet using the following logging format:

ID / Date /Time / Interface /Origin / Type / Action /Dest Port /SourceAddr / DestinationAddr
Proto / Rule /Source Port / Information

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 36 Bill M. Shinn

"6983" "16Jul2002" "15:19:16" "int0" "internal.mycorp.com" "log" "drop" "http" "scanner.mycorp.com" "192.168.2.4"
"tcp" "0" "37739" " reason: unknown established TCP packet"

"6984" "16Jul2002" "15:19:22" "int0" " internal.mycorp.com " "log" "drop" "http" " scanner.mycorp.com "
"192.168.2.4" "tcp" "0" "37740" " reason: unknown established TCP packet"

"6985" "16Jul2002" "15:19:28" "int0" " internal.mycorp.com " "log" "drop" "http" " scanner.mycorp.com "
"192.168.2.4" "tcp" "0" "37741" " reason: unknown established TCP packet"

"6986" "16Jul2002" "15:19:34" "int0" " internal.mycorp.com " "log" "drop" "http" " scanner.mycorp.com "
"192.168.2.4" "tcp" "0" "37742" " reason: unknown established TCP packet"

"6990" "16Jul2002" "15:19:40" "int0" " internal.mycorp.com " "log" "drop" "http" " scanner.mycorp.com "
"192.168.2.4" "tcp" "0" "37743" " reason: unknown established TCP packet"

"6991" "16Jul2002" "15:19:46" "int0" " internal.mycorp.com " "log" "drop" "http" " scanner.mycorp.com "
"192.168.2.4" "tcp" "0" "37744" " reason: unknown established TCP packet"

By contrast, the nmap ACK scan from the Internet returns the expected - and unfortunate
result that the port is unfiltered, as shown in the nmap results and the tcpdump output
(with -tvn flags set). It’s acceptable that the port is open, as this is a publicly accessible
web server, but the fact that the illegal packet scan succeeds in reconnaissance is
concerning.

nmap -sA -T Insane -vvv -p 80 -g 80 webserver_public_ip.mycorp.com

Starting nmap V. 2.54BETA34 (www.insecure.org/nmap)
Host (webserver_public_ip.mycorp.com) appears to be up ... good.
Initiating ACK Scan against (webserver_public_ip.mycorp.com)
The ACK Scan took 0 seconds to scan 1 ports.
The 1 scanned port on (webserver_public_ip.mycorp.com) is: UNfiltered

Nmap run completed -- 1 IP address (1 host up) scanned in 5 seconds

Below is the result of a tcpdump filter listening in the DMZ at the same time the above
test scan was launched:

tcpdump -i eth2 -tnXxvvv 'host giachopeful.internet.com'
tcpdump: WARNING: eth2: no IPv4 address assigned
tcpdump: listening on eth1

giachopeful.internet.com.80 > 192.168.2.4.80: . [tcp sum ok] 2926051331:2926051331(0) ack 543427167 win 1024
(ttl 30, id 46656, len 40)
0x0000 4500 0028 b640 0000 1e06 1ec9 xxxx xxxx E..(.@......BB.o
0x0010 coa8 02040050 0050 ae68 0003 2064 0a5f P.P.h...d._
0x0020 5010 0400 0a3f 0000 0000 0000 0000 P....?........

192.168.2.4.80 > giachopeful.internet.com.80: R [tcp sum ok] 543427167:543427167(0) win 0 (ttl xx, id 34214, len
40)
0x0000 4500 0028 85a6 0000 xx06 ed62 coa8 0204 E..(.......b....
0x0010 xxxx xxxx 0050 0050 2064 0a5f 2064 0a5f BB.o.P.P.d._.d._
0x0020 5004 0000 91f3 0000 0301 0017 0000 P.............

This clearly shows the source host giachopeful.internet.com sending the ACK probe with
spoofed source port and the webserver responding with a reset packet. Again, this is not
breaking news - and is expected behavior - given that the Firewall-1 version is not really
maintaining state. What caught my attention is that the acknowledgement number in this
test scan has a non-zero value of 543427167 (0x20640a5f). This discovery means that not
only did the Snort rule trigger a false positive in the original detect trace; but that this rule
in particular does not really detect the nmap TCP ACK scan - not from this version of
nmap (2.54BETA34) at least - resulting in a false negative from my test scan.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 37 Bill M. Shinn

Attack mechanism

In this case, there was no attack mechanism, but rather an anomaly mechanism. The
probes in this detect were eventually determined to be the “normal” behavior of a
Radware Linkproof device designed to provide the best route to requests from hosts
behind such a device.

In an initial effort to determine the source of the packet, I conducted the following search
on Google.com - “nmap tcp scan port 80 ack” and followed the thread on the
Incidents.org mailing list archives titled “RE: Anyone else seeing TCP ACKs on port 80? -
Not LION Worm.”46 This thread discussed similar Snort detects in the context of a load
balancers, but the packets in my detect were different than the signature behavior and
patterns in Chris Brenton’s discussion.

In attempt to find additional evidence, I reviewed web server logs on webserver.mycorp.com
for the source CIDR block (199.197.x.x/16) in the detects. The server is Internet
Information Server and uses the following logging format (the time on the web server
differs from the time on nids1.mycorp.com by approximately -2:00 minutes, and differs
from nids2.mycorp.com by -1:13 minutes):

UTC Time / Source IP Address / Client to Server Method / Client to Server URI-stem / Server to Client Status

#Date: 2002-06-06 01:01:27
#Fields: time c-ip cs-method cs-uri-stem sc-status

16:39:33 199.197.135.1 GET /Default.htm 200
16:39:33 199.197.135.1 GET /images/01.jpg 200
16:39:33 199.197.135.1 GET /images/08.jpg 200
16:39:33 199.197.130.1 GET /images/22.jpg 200

Above we see a host from the same registered network making very normal requests to
our default page on this site. Curious, but almost relieved, I sent an email inquiry to the
address in the ARIN registration and received the following response:

From: DNSTech [DNSTech@corning.com]
Sent: Tuesday, June 25, 2002 15:14
To: me@mycorp.com
Subject: RE: ACK scans from 199.197.130.21 & 199.197.135.21

Bill,

The traffic you are seeing is not an attack, but rather an effect of Corning's multiple ISP load balancing.

In the United States, Corning uses two ISPs for its main Internet access, UUNet (199.197.130.0/24) and Time-Warner
(199.197.135.0/24). In order to load-balance outgoing and incoming traffic, we use intelligent load-balancing appliances
from Radware Corporation (http://www.radware.com/). These devices, called Linkproofs, also provide Network Address
Translation (NAT) for all outgoing connections as well as Corning's eCommerce servers. The Linkproofs are assigned an
IP address of 199.197.130.21 for UUnet traffic, and 199.197.135.21 for Time-Warner traffic. All of Corning's usual
connections (web, email, etc.) will come from either 199.197.130.1 or 199.197.135.1.
…
For outgoing connections, the Linkproofs maintain a list of which circuit is best to use for access to specific Internet
sites. The sites are those most recently accessed. When a connection is initiated to an Internet address that is not in the
Linkproof's internal list, the Linkproof sends several probes (at least a PING and one for the protocol being used) down
each ISP's circuit. It uses the results to determine which is the best circuit to use. Barring any ISP outages, that result

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 38 Bill M. Shinn

also is maintained for a period of time so that subsequent connections can use it.

For incoming connections a similar algorithm is followed, though in this case the result is reflected in the ordering of
addresses returned by DNS lookups of Corning addresses (e.g. www.corning.com).

An additional benefit of these devices is the removal of a need for BGP4. This results in savings in hardware (less
complex routers are required) and staffing (Corning does not have to staff for BGP4 knowledge).

I realize that in today's Internet environment, there is a constant threat of attack from unknown sources. What your site is
reporting is one or more of these traffic/load probes. I hope I have alleviated any fears or suspicions that these probes
are malicious in nature. They are not malicious and will only occur when needed for Corning traffic that is directed at
your site.

Regards,
Security Administrator
Corning Incorporated47

While this is a very cordial reply, as if to add insult to my false positive, nids2.mycorp.com
logged the alert pair seen in the trace logs on 6/25 at the same time I received his email
reply, this time with the LinkProof probing port 25 on our mail gateway to determine the
fastest route for his message. With this new information, I correlated the alert with the
logs from our mail scanner. GFI MailEssentials uses the following format for the log
below (there is a large difference in the timestamp on the email and a -2:11 minute
difference between the mail gateway and nids2.mycorp.com):

Date / Time / Event Type / Sender / Recipient /Total Size (in bytes) / Subject

"2002-06-25","15:26:35","-","DNSTech@corning.com","me@mycorp.com","7920"," RE: ACK scans from
199.197.130.21 & 199.197.135.21"

The device works in two ways. When an Internet client stimulates the LinkProof with a
request to a server behind the device; the LinkProof then finds the best path back to the
requester using techniques similar to those in Brenton’s discussion above and in the
Corning administrator’s reply.

When a client behind a LinkProof, typically on a network with multiple Internet points-of-
presence (two carriers), makes a request to one of our web servers - as is the case with this
detect, the Linkproof device intercepts the clients request and probes the destination over
the redundant links to determine the fastest or least-cost route. Based on these probes,
using what are clearly anomalous packets designed to traverse firewalls and get the fastest
confirmed route to the destination host, the request is then routed over the preferred
carrier. This explains the interleaving IP identification numbers discussed previously, the
IP stack from the same device, but it uses two interfaces, one on each carrier.

This works in a similar, but inverse, way to Speedera ICMP packets as described by Joe
Stewart below, but rather than ICMP echo requests, Radware uses more “tricky” packets.

“The true source of the pings is Speedera.net's "Global Traffic Management" system. It isn't a random or sequential sweep
of the net; the pings only occur when you make a DNS lookup request for one of their load-balanced cache customers'
websites They then use the latency results of the distributed pings to return the IP address of the cache with the fastest
route to you. For example. if you connect to any one of the below nameservers using nslookup, and request the address
for 'www.speedera.com', your IDS should instantly pick up pings from several servers at once to your IP address.”48

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 39 Bill M. Shinn

Correlations

The events of interest mentioned by Robert Wagner in his incidents.org post mentioned
above are very similar in stimulus-response behavior. Similar traffic and explanations are
offered by John Benninghoff and Javier Romero in the GIAC Report archives.49 Also
providing a similar report was Lawrence Baldwin in a different GIAC report, although
none of these reports or packet traces seem to exhibit the reflexive source and destination
reports witnessed in the probes to my webservers.50

Evidence of active targeting

Knowing that this is not a malicious event, the “targeting” becomes less threatening, but
certainly the anomalous packets were directed at our public web server. Fortunately, the
targeted traffic was intended to provide the best response to our Internet content.

Severity

Determining severity is complicated in this case; if I based this on the actual detect, an
nmap ACK scan, the lethality would be higher than if I determined severity based on the
final outcome of my research. In my calculation, I ultimately decided to use the final
outcome in the calculation - a probe by a load balancer which never would have entered
our DMZ through truly stateful firewall, using an anomalous packet with good intentions.

Criticality This server is a public web server hosting non-sensitive data
and no proprietary data. Compromise of this host would
result in little lost business or operational integrity. However,
our marketing programs and public communication to clients
depends on this server. As always, DMZ host compromise is
very concerning, creating a springboard in the perimeter; but
in this case an nmap attack alone could not compromise the
host.

3

Lethality As the “attack” did in fact succeed, this attack was not lethal,
but did return to proper reconnaissance. Had this been an
actual nmap scan, the lethality would still be minimal as only
information is determined. Because this information reveals
holes in the firewall, however, the lethality should be
increased.

2

System Countermeasures This system has all recent patches installed, runs no
unnecessary services, has excellent anti-virus agents, and is
under very close monitoring by additional host-based security
agents. As this is a public web server, port 80 must remain
open and accessible, so naturally there is some level of
exposure to the unknown.

5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 40 Bill M. Shinn

Network Countermeasures Because these detects came unimpeded through the not-so-
stateful firewall, there was no active network defense against
this probe. However, the presence of the NIDS sensors
provides at least minimal countermeasures in the ability to
detect and remediate the scan. Moreover, as most
compromise tactics require a session and full TCP
connection, the firewall would block full connections to non-
HTTP ports as part of the installed rule set. To this particular
attack, however, there was little defense in place.

1

Severity (Criticality 3 + Lethality 2) -
(System Countermeasures 5 + Network Countermeasures 1)

-1

Defensive Recommendations

Although this traffic is innocent in its intent, and is designed to provide low cost,
intelligent load balancing, a network configuration which allows this device to function
best is also vulnerable to reconnaissance attempts such as the nmap ACK scan. As a
result, the CheckPoint Firewall-1 device was immediately slated for a much needed
upgrade.

Also of note is the false positive generated by Snort. False positives distract the analyst
(as quite clearly shown here) and could potentially result in disguise of a malicious attack
or scan. Although removing the ACK scan rule from Snort would prevent this false
positive, a sensor would no longer detect the original ACK scan with an
acknowledgement number with a zero value. Perhaps other methods can be used, at least
in our network, to reduce false positives from LinkProof (other than awareness by the
analyst) without introducing the risk of false negatives, such as better implementation or
configuration of Snort’s stream4 preprocessors, designed to detect port scans which
exploit session state problems.

Finally, the time should be synchronized among all network hosts, such as the web
server, NIDS sensors, firewalls, and mail relay hosts. Correlating events in this incident
was not complicated as the volume of data was limited and easily extracted. In a more
complex attack, with thousands of insertion attacks, evasion techniques, and multiple
source addresses, “every (milli) second counts” in terms of correlation and analysis.
Although this recommendation is not an active defense, it provides an analyst with a great
deal of insight.

Multiple Choice Question

Based on the alerts and logs below (and on next page) generated from a standard
installation of Snort version 1.8.6, what might indicate that these scans are coming from
the same host, despite the different source IP addresses? Do not assume that you are
seeing all the packets generated by hosts, only those triggering alerts in Snort.

The close correlation in the time stamps, network address and destination IP a)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 41 Bill M. Shinn

address.
The incrementing pattern seen in the TCP sequence numbers and IP ID fields.b)
These traces are of packets generated from two different hosts.c)

Snort alerts from nids1.mycorp.com

Jun 6 12:37:32 nids1.mycorp.com snort[31510]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.130.21:80 -> 192.168.2.4:80
Jun 6 12:37:32 nids1.mycorp.com snort[31510]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.135.21:80 -> 192.168.2.4:80

Jun 13 08:10:10 nids1.mycorp.com snort[2025]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.130.21:80 -> 192.168.2.4:80
Jun 13 08:10:10 nids1.mycorp.com snort[2025]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.135.21:80 -> 192.168.2.4:80

Jun 25 15:24:26 nids1.mycorp.com snort[783]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.130.21:80 -> 192.168.3.3:25
Jun 25 15:24:26 nids1.mycorp.com snort[783]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.135.21:80 -> 192.168.3.3:25

Jun 28 08:39:58 nids1.mycorp.com snort[10281]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.130.21:80 -> 192.168.2.4:80
Jun 28 08:39:58 nids1.mycorp.com snort[10281]: [1:628:1] SCAN nmap TCP [Classification: Attempted Information
Leak] [Priority: 2]: <eth1> {TCP} 199.197.135.21:80 -> 192.168.2.4:80

Snort logs from nids1.mycorp.com

[**] SCAN nmap TCP [**]
06/06-12:37:32.176220 199.197.130.21:80 -> 192.168.2.4:80
TCP TTL:53 TOS:0x0 ID:3897 IpLen:20 DgmLen:40
A* Seq: 0x3FD Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/06-12:37:32.206220 199.197.135.21:80 -> 192.168.2.4:80
TCP TTL:52 TOS:0x0 ID:3900 IpLen:20 DgmLen:40
A* Seq: 0x3FF Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/13-08:10:10.271059 199.197.130.21:80 -> 192.168.2.4:80
TCP TTL:53 TOS:0x0 ID:45533 IpLen:20 DgmLen:40
A* Seq: 0x378 Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/13-08:10:10.311059 199.197.135.21:80 -> 192.168.2.4:80
TCP TTL:52 TOS:0x0 ID:45536 IpLen:20 DgmLen:40
A* Seq: 0x37A Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/25-15:24:26.890538 199.197.130.21:80 -> 192.168.3.3:25
TCP TTL:53 TOS:0x0 ID:41685 IpLen:20 DgmLen:40

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 42 Bill M. Shinn

A* Seq: 0x3D3 Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/25-15:24:26.920538 199.197.135.21:80 -> 192.16.3.3:25
TCP TTL:54 TOS:0x0 ID:41688 IpLen:20 DgmLen:40
A* Seq: 0x3D5 Ack: 0x0 Win: 0x578 TcpLen: 20

=+

[**] SCAN nmap TCP [**]
06/28-08:39:58.912724 199.197.130.21:80 -> 192.168.2.4:80
TCP TTL:53 TOS:0x0 ID:16918 IpLen:20 DgmLen:40
A* Seq: 0x363 Ack: 0x0 Win: 0x578 TcpLen: 20

[**] SCAN nmap TCP [**]
06/28-08:39:58.952724 199.197.135.21:80 -> 192.168.2.4:80
TCP TTL:54 TOS:0x0 ID:16921 IpLen:20 DgmLen:40
A* Seq: 0x365 Ack: 0x0 Win: 0x578 TcpLen: 20

=+

The correct answer is, b) The incrementing pattern seen in the TCP sequence numbers
and IP ID fields.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 43 Bill M. Shinn

Detect 2 - VPN Policy Violator - Disabled Split Tunneling Saves the Day

Detect Trace Logs

Checkpoint Firewall-1 on internal.mycorp.com logged the following drops using this logging
format:

ID / Date /Time / Interface /Origin / Type / Action /Dest Port /SourceAddr /
DestinationAddr Proto / Rule /Source Port / Information

"1173" "17Jun2002" "15:40:12" "int0" "internal.mycorp.com" "log" "drop" "4773" "66.24.175.38" "66.69.4.10" "tcp"
"0" "http" "firewall" " reason: unknown established TCP packet"

"1973" "17Jun2002" "16:24:52" "int0" "172.16.0.1" "log" "drop" "3656" "66.24.175.38" "211.202.8.106" "tcp" "0"
"SQL_1433" "firewall" " reason: unknown established TCP packet"

"2619" "17Jun2002" "17:01:42" "int0" "172.16.0.1" "log" "drop" "14150" "66.24.175.38" "61.188.179.127" "tcp" "0"
"SQL_1433" "firewall" " reason: unknown established TCP packet"

"4476" "17Jun2002" "19:35:54" "int0" "172.16.0.1" "log" "drop" "49912" "66.24.175.38" "213.26.98.143" "tcp" "0"
"http" "firewall" " reason: unknown established TCP packet"

Source of Trace

The trace logs above were logged on the internal interface of the Checkpoint Firewall-1
host internal.mycorp.com shown in the diagram at the beginning of Assignment 2. Of
particular note is that the source addresses are not from the same subnet used for any
internal network.

Detect was generated by

The detect was generated as part of the normal logging facilities on our Checkpoint
Firewall-1 hosts. These logs are reviewed regularly throughout each day to detect rule set
or policy violations, and to troubleshoot network configuration errors and other
connectivity issues. These drops were exported during one of these standard reviews.

Probability the source address was spoofed

I almost missed these packets in the standard review of the firewall logs, as the source
addresses were from external sources and they were dropped in the firewall, something I
see all the time from border.mycorp.com . Because home cable modem networks in our area
use these addresses, I am almost too used to seeing 66.24.0.0/16 source addresses port
scanning our public IP block. However, the filter I had in place at the time to show all
packets with a source port of 1433 nearly made me spill my coffee, as no packets
(accepted or dropped) should leave our network from this source port. Given the threat
levels to Microsoft SQL at the time, this filter was key to ensuring we were not infected.
The next bell went off when I noticed that neither the source, nor the destination
addresses belonged to any part of our network. Having now captured my full attention, I
first wondered if this was an attempt at exploiting some crafty strict-source routing attack
against another party, incorrectly using our network as a hop. I dismissed this
immediately as the perimeter router does not allow such attacks, nor would it route these

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 44 Bill M. Shinn

addresses into the internal network.

On closer examination, I was further alarmed when I noticed that the internal firewall had
logged these packets. I surmised initially that the there was a problem with our perimeter
firewall that was letting in atypical and very dangerous packets. I dismissed this notion
because there is no route to the destination addresses via the internal network; the packets
would simply be ignored by the perimeter router and border.mycorp.com. Moreover, I am
not sure what an attacker would gain by scanning an address not in our address range, by
traversing our network - if that were somehow possible. My first, and untrained,
inclination was to immediately assume that these addresses were spoofed by an inside
host and directed to targets outside the corporate boundaries. However, tracing back to
the host for conducting passive fingerprinting would not work and do little good as there
are no routes internally between these networks required to gather a hop count or trace.
My last possibility was that someone had a very poorly configured client workstation on
the internal network.

Before determining if the addresses were spoofed, I needed to determine the stimulus and
response and how this was even possible in terms of routing. Ultimately, the addresses
were not spoofed, as we see below, and the packets are a result of a VPN user with both
an improperly configured connection (according to procedure) and a lack of awareness
about VPN safety and guidelines - probably my fault as the resident security analyst and
trainer.

Description of the attack

In the first packet dropped by Firewall-1, 66.24.175.38 (xxx-66-24-175-38.xxx.rr.com)
attempts to send a response to packet to what appears to be a client port of 4733 at
66.69.4.10 (cs66694-10.satx.rr.com) from source port 80. At this point, I am wondering how
this is even possible on our internal network, and I am thankful that the firewall is
dropping the packets. Although I cannot be certain without higher fidelity logs with which
to correlate, the host at 66.69.4.10 most likely sent a packet to xxx-66-24-175-38.xxx.rr.com
with the SYN flag set in an attempt to probe for, or connect to, an open web server and
xxx-66-24-175-38.xxx.rr.com is responding to stimuli. Whether the response contains a
SYN/ACK or a RST is uncertain from the Checkpoint logs as the entire TCP packet
header is not logged, so I cannot determine if the ports are actually open on the host xxx-
66-24-175-38.xxx.rr.com. However, the information field in the logs reading “unknown
established TCP packet” leads me to believe at least the ACK bit was set in the reply, so
perhaps this target does have an open web server.

The apparent responses to stimuli continue from xxx-66-24-175-38.xxx.rr.com to additional
hosts.51 While the time intervals appear random, all fall within a four hour period.

Response from port 1433 to 211.202.8.106 -
OrgName: Asia Pacific Network Information Centre
CIDR: 210.0.0.0/7

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 45 Bill M. Shinn

Response from 1433 to 61.188.179.127
OrgName: Asia Pacific Network Information Centre
CIDR: 61.0.0.0/8

These are most likely responses to attempted connections to Microsoft SQL Server’s
default TCP/IP port, as 1433 is the default service port and scans against this port were
running constantly in the Internet during this time (see Correlations below). Similar to
the HTTP port scan, the host at xxx-66-24-175-38.xxx.rr.com was most likely sent a packet
with the SYN flag set to the destination port 1433 and is responding to this stimulus.
Again, we cannot be certain whether the second part of the TCP session establishment
was returned from xxx-66-24-175-38.xxx.rr.com, or whether a RST was sent, in any case,
fortunately for the victim the packet was dropped at the firewall.

Finally, another packet with a port 80 source address:

Response from port 80 to 213.26.98.143
OrgName: RIPE Network Coordination Centre
CIDR: 213.0.0.0/8

All the probes come from foreign addresses, and as our business has no clients in either
Asia or Europe, we can presume that this is not benign traffic.

How was the traffic getting into our LAN in the first place, as we do not share address
space with any of the source or destination hosts in the logs? Because we have remote
users on the Time-Warner Cable Road Runner service that VPN into the corporate
network, and the source address in all packets is that of a RoadRunner client, I searched
the remote access and security logs to correlate login times with the times of the probes.

Event Type: Information
Event Source: Router
Event Category: None
Event ID: 20142
Date: 6/17/2002
Time: 13:39:42
User: N/A
Computer: vpnserver.mycorp.com
Description:
The user mycorp.com\vpn_user has connected and has been successfully authenticated on port VPNx. Data sent and

received over this link is strongly encrypted.

Event Type: Information
Event Source: Router
Event Category: None
Event ID: 20048
Date: 6/17/2002
Time: 20:40:46
User: N/A
Computer:
Description:
The user mycompany.com\vpn_user connected on port VPNx on 06/17/2002 at 01:39pm and disconnected on

06/17/2002 at 08:40pm. The user was active for 421 minutes 4 seconds. 3635468 bytes were sent and
7147776 bytes were received. The port speed was 100000000. The reason for disconnecting was user
request.

When asked, this user was connected to the corporate LAN using VPN over RoadRunner

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 46 Bill M. Shinn

and did not have a personal firewall in place or running as is required by corporate
security guidelines. Fortunately, the Windows 2000 VPN connection settings specified
that the host use the VPN connection as the default gateway, rather than the LAN
connection to their Road Runner gateway. This is the opposite of the concept know as
split tunneling and in this case proved to be a crucial defense, given the lack of a personal
firewall. The VPN users connect over the Internet to vpnserver.mycorp.com and are assigned
an IP address from that server with access the Corporate LAN via the tunnel. When a
probe from an Internet source hits the client machine via the public Road Runner
interface, the response is directed out the VPN gateway’s assigned IP address (as the
setting specifies), through the tunnel to the LAN, but retains the Internet address assigned
by the cable company to the VPN user. As is the case here, these source addresses are
dropped by the internal Checkpoint interface.52

Had split tunneling been enabled (had the client used RoadRunner for the default
gateway, not the VPN connection), any probe of the remote computer would have been
successful without a firewall for the VPN client. The probes to tcp port 1433 on the VPN
user are particularly terrifying as this user happened to be a programmer with MS SQL
running on his VPN client computer. The computer was well patched, and a strong “sa”
password was assigned, but the results could have been devastating. Additionally, if the
user had not been connected to the corporate LAN via the VPN tunnel, the default
gateway would have been the local RoadRunner connection. I have little doubt that this
computer was scanned when not connected to the corporate, but escaped compromise
only due to frequent patching.

Attack mechanism

Although impossible to determine without better logs, we can make educated guesses
about the attack mechanisms based on the time of year. The VPN client did have a web
server and had Microsoft SQL Server 2000 installed. While there are no packet traces to
confirm to presence of Code Red, Nimda, other more recent port 80 attacks, or the SQL
attacks widely discussed, and summarized in CERT/CC Incident Note IN-2002-04 (such
as Spida, SQLsnake, and Digispid), the correlation below makes these likely suspects. I
am not racing to conclusions without first reviewing some hex, but I don’t see any
legitimate reasons for hosts from Asia or Europe to connect to SQL Servers on a home
user’s computer.53

The attack would could have been devastating if the VPN user’s system were not
properly secured. If these were in fact Spida scans, and the victim’s computer were
compromised, his computer could be used as a launch pad for encrypted attacks into our
network. At a minimum, the worm would have attempted to spread itself into the
corporate LAN.

Correlations

The 1433 port scans dramatically increased throughout the Internet following the full

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 47 Bill M. Shinn

disclosure of the open “sa” password vulnerabilities and
dissemination of the corresponding attack techniques designed to exploit this, and
other, vulnerabilities54,55. From nids1.mycorp.com alone, between May 20th, 2002 and Aug
31st, 2002. I captured 4373 unique scans to port 1433 from the 211.0.0.0/8 CIDR block
using Snort’s portscan preprocessor. Analysis on port 1433 scans from the this IP range
was conducted using command line tools, such as grep to pass all entries in Snort’s
portscan.log on nids1.mycorp.com with 1433 as the destination port to a text file, then
filtering those again for “211.”. After the data was checked for validity, I ran a wc -l on
the file to determine the number of scans. This only accounts for scans to 1433 which
attempt connections to more than 4 hosts in under 3 seconds, which is the thresholds
passed to Snort’s portscan preprocessor. The actual number is potentially higher, and the
number of scans to port 1433 from all sources was 24074 for the same period as above.

Between August 18th and August 31st the Internet Storm Center at www.dshield.org
reported between 7-23% of the total logged activity as having port 1433 as a source or
destination port.56

Evidence of active targeting

Again, not assuming anything, but with the correlation of the source network addresses
and the volume of scans, I can safely classify this as an automated scan, rather than an
attack with keen awareness of the victim. Had the attack succeeded, we may well have
seen more targeted packets and traffic between an attacking host and the victim VPN
client machine. To the extent that port 1433 is the specific target port, as well as the port
80 probes, there is a small degree of specificity in the attack, even without a unique,
isolated attempt to compromise our employee’s home computer.

Severity

Criticality This target host is a VPN client owned by a home user. While
compromise of this system itself is inconvenient to his
workflow, it would not in itself compromise the corporate
LAN. However, because this system has an encrypted tunnel
to the LAN and perhaps there is corporate data on his home
computer, the level of criticality is increased.

2

Lethality If the attack had succeeded, and assuming the probes were
worms attempting to compromise SQL server, the game is
over for this host as the attacker could execute commands
using SQL privileges - probably system level permissions.

5

System Countermeasures This system had all recent patches installed and strong “sa”
account password. Unnecessary services were accessible to
the Internet (I see this as a system problem since the employee
does not need to make SQL Server available to the Internet)
and should have been disabled. Additionally, a web server is
also running which could have made this host a great launch
pad. Despite the patches, the system configuration is risky.

2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 48 Bill M. Shinn

Network Countermeasures The fact that split tunneling was disabled, and all packets
were sent to and blocked by the corporate firewall, was the
only real network countermeasure in place. Had the
compromise gone beyond the VPN client to a host in the
LAN, the countermeasures would have increased, as we
employ firewalls and NIDS at the network edge.

2

Severity (Criticality 3 + Lethality 2) -
(System Countermeasures 5 + Network Countermeasures 1)

1

Defensive Recommendations

Clearly, routing filters and access lists needed to be configured on the remote access VPN
server. For no reason should this server ever route a packet without a source address
assigned from the DHCP pool reserved for remote clients.

A NIDS sensor on the internal network, while expensive in terms of performance and
signature set tuning could at least be run with a minimal signature set to alert on illegal
addressing, or even reset sessions and attempted sessions with illegal IP source addresses.
As all internal traffic is switched, such a sensor would need to meet considerable
performance requirements and have proper placement and visibility to the LAN.
Alternately, placing the VPN server and a sensor with no IP address together on the same
hub, but sharing a dedicated switch port (like a little bonsia tree sticking out of the switch)
would allow the sensor to at least see the decrypted VPN traffic as it enters the LAN. The
performance hit on the VPN server is mitigated as no other addressable hosts share that
collision domain. This dedicated sensor could maintain a refined, stricter rule set and even
employ Snort’s FlexResponse feature (requiring an address, however); and as the traffic
is generated only by employees, the impact of incorrectly knocking down connections is
mitigated.

While the placement of a VPN concentration server inside a corporate LAN is an option,
better placement of the VPN and remote access services would add an additional layer of
security to the corporate LAN as the traffic could be decrypted before passing through the
IDS sensor(s) at the network edge and the corporate firewalls.57

The non-technical solution to this problem was raising awareness of more recent changes
to remote access security guidelines and requirements. The employee was informed that
he needed a personal hardware firewall supplied by the company to sit between his
remote office computer and the unscreened Time Warner network. With a firewall in
place, the risk of split tunneling is greatly mitigated, as little unsolicited traffic can enter
the user’s remote LAN. This improves performance for the user if split tunneling is used,
but still allows them access to the corporate LAN. If required, additional connection
settings or proxy access through the corporate LAN can still be employed, by disabling
split tunneling and forcing all connections through the VPN gateway when connected.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 49 Bill M. Shinn

Finally, an enforceable requirement that all users working from home do so using a
company issued computer with a client certificate, standard system image, and centralized
patch configuration for the host would allow more granular management of connected
clients.

Multiple Choice Question

Based on the diagram shown at the beginning of Assigment 2, and assuming that all
pictured firewalls and routers are properly configured with egress and ingress filters, what
could allow the condition where the host addresses shown in the CheckPoint FW-1 logs
below are seen in the logs from the internal firewall, generated on the internal interface.
The host addresses are neither in use, nor routable on the internal network?

Address spoofing from an internal user.a)
Improperly configured VPN clients with split tunneling disabled.b)
An improperly configured external firewall, or connection to an external network c)
not shown on the diagram is allowing the packets through.

ID / Date /Time / Interface /Origin / Type / Action /Dest Port /SourceAddr /
DestinationAddr Proto / Rule /Source Port / Information

"1173" "17Jun2002" "15:40:12" "int0" "internal.mycorp.com" "log" "drop" "4773" "66.24.175.38" "66.69.4.10" "tcp"
"0" "http" "firewall" " reason: unknown established TCP packet"

"1973" "17Jun2002" "16:24:52" "int0" "172.16.0.1" "log" "drop" "3656" "66.24.175.38" "211.202.8.106" "tcp" "0"
"SQL_1433" "firewall" " reason: unknown established TCP packet"

"2619" "17Jun2002" "17:01:42" "int0" "172.16.0.1" "log" "drop" "14150" "66.24.175.38" "61.188.179.127" "tcp" "0"
"SQL_1433" "firewall" " reason: unknown established TCP packet"

"4476" "17Jun2002" "19:35:54" "int0" "172.16.0.1" "log" "drop" "49912" "66.24.175.38" "213.26.98.143" "tcp" "0"
"http" "firewall" " reason: unknown established TCP packet"

The correct answer is, b) Improperly configured VPN clients with split tunneling disabled.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 50 Bill M. Shinn

Detect 3 - DDoS Shaft SYNflood - Weak, Anomaly or Backscatter?

Detect Trace Logs

Generated by ACID v0.9.6b21 on Sat September 28, 2002 15:12:57

--
#(1 - 125128) [2002-09-16 19:10:36] [arachNIDS/253] DDOS shaft synflood
IPv4: 129.125.6.238 -> 192.168.2.x
hlen=5 TOS=0 dlen=40 ID=43887 flags=0 offset=0 TTL=15 chksum=35807
TCP: port=80 -> dport: 80 flags=******S* seq=674711609 ack=1980849715 off=5 res=0 win=61774 urp=7003
chksum=10594
Payload: none
--
#(1 - 125129) [2002-09-16 19:11:36] [arachNIDS/253] DDOS shaft synflood
IPv4: 129.125.6.238 -> 192.168.2.x
hlen=5 TOS=0 dlen=40 ID=38861 flags=0 offset=0 TTL=15 chksum=40834
TCP: port=80 -> dport: 80 flags=******S* seq=674711609 ack=29000125 off=5 res=0 win=42465 urp=7694
chksum=49898
Payload: none
--
#(1 - 125130) [2002-09-16 19:12:44] [arachNIDS/253] DDOS shaft synflood
IPv4: 129.125.6.238 -> 192.168.2.x
hlen=5 TOS=0 dlen=40 ID=41125 flags=0 offset=0 TTL=15 chksum=38568
TCP: port=80 -> dport: 80 flags=******S* seq=674711609 ack=1636742653 off=5 res=0 win=12403 urp=10290
chksum=39454
Payload: none
--
#(1 - 125131) [2002-09-16 19:14:04] [arachNIDS/253] DDOS shaft synflood
IPv4: 129.125.6.238 -> 192.168.2.x
hlen=5 TOS=0 dlen=40 ID=55599 flags=0 offset=0 TTL=15 chksum=24091
TCP: port=80 -> dport: 80 flags=******S* seq=674711609 ack=824787806 off=5 res=0 win=15440 urp=38238
chksum=50198
Payload: none
--
#(1 - 125132) [2002-09-16 19:15:21] [arachNIDS/253] DDOS shaft synflood
IPv4: 129.125.6.238 -> 192.168.2.x
hlen=5 TOS=0 dlen=40 ID=997 flags=0 offset=0 TTL=15 chksum=54631
TCP: port=80 -> dport: 80 flags=******S* seq=674711609 ack=109718580 off=5 res=0 win=6877 urp=4009
chksum=20234
Payload: none
--
#(1 - 125133) [2002-09-16 19:16:17] [arachNIDS/253] DDOS shaft synflood
IPv4: 129.125.6.238 -> 192.168.2.x
hlen=5 TOS=0 dlen=40 ID=57227 flags=0 offset=0 TTL=15 chksum=63941
TCP: port=80 -> dport: 80 flags=******S* seq=674711609 ack=1240821363 off=5 res=0 win=32658 urp=43410
chksum=51909
Payload: none

The packets continue for each live host in our public address range, with no clear pattern
to the IP ID field, no change to the arriving TTL, and no apparent pattern to the
acknowledgement or sequence numbers. Corresponding events for the same packets
appear in the ACID console and Snort alert logs for nids2.mycorp.com which again logged
the attack against hosts placed in the public DMZ.

Source of Trace

All related traces and log files were gathered from nids1.mycorp.com on the same corporate
network as the previous attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 51 Bill M. Shinn

Detect was generated by

This detect was generated by the sensor(s) running Snort version 1.86, an open source
network intrusion detection system. The ACID alerts and logs forwarded to MySQL and
ACID from Snort were generated in response to the following rule in ddos.rules, a rule
in the snortrules-stable.tar.gz58 standard distribution:

alert tcp $HOME_NET any <> $EXTERNAL_NET any (msg:"DDOS shaft synflood"; flags:S; seq: 674711609;
reference:arachnids,253; classtype:attempted-dos; sid:241; rev:2;)

To review this rule using the format from Detect 1, the rule header tells Snort to use the
alert subsystem to alert and log any traffic, in any direction where $HOME_NET is part of
the source or destination IP pair. Any source or destination port would trigger the alert.
The rule options specify that the SYN flag in the 13th byte offset must be set, with no
other flags set. The signature TCP sequence number in the 4th-7th bytes offset of the TCP
header must carry a value of 674711609.

Probability the source address was spoofed

Most DDoS attacks, particulary SYN flood attacks operate and thrive based on lack of an
open connection. This not only consumes resources, but also allows the source address to
be spoofed without consequence to the attacker. The attack does not require a response
from the client as a DDoS attack is not intended to gain privilege or gather information.
Given these goals, it is highly likely that the source address is spoofed. However, because
Shaft works according to the attacker-handler-agent model (described and cited below),
there is little consequence to the actual person launching the attack if, in fact, the real
source IP address is used in the attack, and consequently discovered - usually they would
just lose that “agent” host as soon as the incident is reported and the compromised, or
“owned,” agent is taken off-line.

I was unable to complete a trace back to the source address, which doesn’t mean it was
spoofed (they could be blocking traces upstream), but the IP address returns the following
information on SamSpade:

whois -h magic bruno.astro.rug.nl
whois -h whois.domain-registry.nl rug.nl

Rights restricted by copyright. See
http://www.domain-registry.nl/whois.php

Domain name:
rug.nl (first domain)

Organisation:
Rijksuniversiteit Groningen
Landleven 1
9747 AD GRONINGEN

Administrative Contact:
Robert Janz

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 52 Bill M. Shinn

Phone: +31 50 3633402
E-mail: postmaster@rug.nl

Technical Contact:
Robert Janz

 Phone: +31 50 3633402
E-mail: rugmail@rc.rug.nl

Registrar:
SURFnet B.V.
Radboudkwartier 273
3511 CK UTRECHT

Domain Nameservers:
ns1.rug.nl 129.125.4.6
ns2.rug.nl 129.125.4.13
ns1.surfnet.nl 192.87.106.101

Domain first registered: 01-01-1980
Record last updated: 24-05-2000
Record maintained by: NL Domain Registry

A trace from RIPE NCC also returned no valid results or live hosts.

traceroute to 129.125.6.238 (129.125.6.238), 64 hops max, 40 byte packets
1 g002.sinrtr.ripe.net (193.0.0.14) 0.236 ms 0.191 ms 0.174 ms
2 g0027.nikrtr.ripe.net (193.0.0.145) 0.408 ms 0.407 ms 0.372 ms
3 BR2.Amsterdam1.surf.net (193.148.15.34) 0.456 ms 0.471 ms 0.456 ms
4 PO12-0.CR2.Amsterdam1.surf.net (145.145.166.5) 0.501 ms 0.406 ms 0.441 ms
5 PO0-0.AR5.Groningen1.surf.net (145.145.163.18) 4.297 ms 4.227 ms 4.195 ms
6 rug-router.Customer.surf.net (145.145.2.2) 4.179 ms 4.207 ms 4.150 ms
7 * * *
8 * * *

Assuming this is a Shaft DDOS attack, and that the attacker would like to preserve as
many agents as possible, I would calculate the risk of the address being spoofed as very
high.

Description of the attack

Normally, this attack consists of one or more attackers controlling many, many machines
infected with a Trojan backdoor allowing the attacker to execute commands on the
compromised host. The attacker, or sometimes an intermediate handler, instructs the
agent to flood the victim with enough data to either consume all available bandwidth, or
consume all resources on the victim host by forcing it to process a seemingly endless
stream of packets. The attacker is made anonymous by either employing the agent drones
to “do the dirty work” and take the blame, or by further obfuscating the addresses
through spoofing59.

Attack mechanism

The attack mechanism is described with great care and detail by Dietrich, Long, and
Dittrich in their December 2000 paper.60 Essential, an attacker controls any number of
handlers, sending control messages using letter-shifting “encryption” upon which actions
are taken. Depending on the control message sent, any variety of packet floods are issued

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 53 Bill M. Shinn

against the target. Accounting for the correlations cited below, and the limited nature of
the attack, perhaps Heymen’s assessment is correct that the attacker was confused about
the number of shaft handlers under his or her control.

Another theory, used to possibly explain the limited number of packets, is the “reflection”
concept advanced by Kenneth Brown in response to Heyman’s post.61 For this to be true,
however, the packets would need the SYN and ACK bits set in the TCP header, not just
the SYN flag. This is also true if we assume that these packets are the result of
backscatter. Moreover, unless someone is (not so cleverly) using the signature TCP
sequence number in a new style of attack or port scan, the sequence number would be
incremented by a count of one if these packets were backscatter.

Correlations

Leigh David Heymen posted very similar behavior on the incidents.org mailing list.62 In
this post 750 “shaft” SYN packets arrived in the course of three days, with a slower rate
of transmission than our detect. These packets, at least the ones posted to the list, were all
sent to port 22, whereas our detect was on port 80. Also, the source ports are seemingly
randomized in Heymen’s detect, unlike the reflexive source ports in this detect. The
window size is static and the source IP addresses also change. These packets correlate
only due to the slow nature and the signature TCP sequence number.

Evidence of active targeting

This is quite possibly the most difficult part of this detect to determine. As the packets all
have only the SYN bit set, it seems as though the attack was initiated against our network
directly. However, as the packets are directed at the entire public address range, which is
certainly possible with DDoS, it is likely that only more critical or vulnerable servers
would be targeted. As all hosts on in our public address space do not offer port 80
services, the effect of a full attack would be limited as non-port 80 hosts would simply
reset, whereas a more directed attack at only port 80 servers might generate more traffic as
the complete TCP handshake would be attempted. It seems that this attack is more of a
probe.
Severity

Criticality This target in this detect was our entire /25 subnet. Had the
attack used the traditional Shaft techniques, it would have
impacted the Internet point-of-presence for the entire
company. While backup plans, circuits, and continuity plans
are in place Internet access is highly critical to the efficient
operation of our business.

5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 54 Bill M. Shinn

Lethality If the attack had succeeded in launching a Distributed Denial
of Service attack, this could have consumed all of our
available bandwidth - the final blow, so to speak. However,
given the quick detection, and if all packets would have been
launched with reflexive source ports and/or similar TCP
sequence numbers, cooperation with our ISP upstream to
enable committed access rate limitations would have been
trivial. Even disabling port 80 traffic at the ISP headend
would allow us to continue conducting most critical Internet
business.

3

System Countermeasures A massive DDoS attack against our servers would be very
difficult to defend. While some critical services sit behind
very fast reverse proxy devices, limited bandwidth to the
Internet would make most systems unavailable.

1

Network Countermeasures Our relationship with our provider includes contingencies for
DDoS attacks and can be easily implemented based on known
signatures such as these. The local perimeter network is not
resilient to such an attack at this point, but alternate - albeit,
much slower - connectivity is available.

3

Severity (Criticality 5 + Lethality 3) -
(System Countermeasures 1 + Network Countermeasures 3)

4

Defensive Recommendations

In this case, luck seemed to be the best defense - lucky for us that the attacker did not
have more handler’s under his or her control. Other strategies include verification of rate
limiting procedures with your ISP before an attack happens, RFC 1918 address filtering at
the network edge, ingress and egress filtering to prevent address spoofing and to prevent
your organization from participating in DDoS attacks, and simply understanding how the
attacks occur.63

Multiple Choice Question

The following logs generated by a Snort NIDS sensor were forward to you from ACID
version v0.9.6b21. Remembering that shaft DDoS attacks have a signature TCP sequence
number of 674711609, these packets are the extent of those logged for this source address
and this attack signature. Which of the following answers best describes this event?

The attacker controlling the shaft DDoS network intended to attack your network, a)
but did not have as many handlers as thought under his or her control.
This is backscatter from an attack on another network, using your address space to b)
spoof the attack.
This event could be part of a larger DDoS attack against many networks, and your c)
sensor is not seeing the entire attack.
Both a) and c) could best explain this event.d)

--
#(1 - 125128) [2002-09-16 19:10:36] [arachNIDS/253] DDOS shaft synflood
IPv4: 129.125.6.238 -> 192.168.2.x

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 55 Bill M. Shinn

hlen=5 TOS=0 dlen=40 ID=43887 flags=0 offset=0 TTL=15 chksum=35807
TCP: port=80 -> dport: 80 flags=******S* seq=674711609 ack=1980849715 off=5 res=0 win=61774 urp=7003
chksum=10594
Payload: none
--
#(1 - 125129) [2002-09-16 19:11:36] [arachNIDS/253] DDOS shaft synflood
IPv4: 129.125.6.238 -> 192.168.2.x
hlen=5 TOS=0 dlen=40 ID=38861 flags=0 offset=0 TTL=15 chksum=40834
TCP: port=80 -> dport: 80 flags=******S* seq=674711609 ack=29000125 off=5 res=0 win=42465 urp=7694
chksum=49898
Payload: none
--
#(1 - 125130) [2002-09-16 19:12:44] [arachNIDS/253] DDOS shaft synflood
IPv4: 129.125.6.238 -> 192.168.2.x
hlen=5 TOS=0 dlen=40 ID=41125 flags=0 offset=0 TTL=15 chksum=38568
TCP: port=80 -> dport: 80 flags=******S* seq=674711609 ack=1636742653 off=5 res=0 win=12403 urp=10290
chksum=39454
Payload: none
--
#(1 - 125131) [2002-09-16 19:14:04] [arachNIDS/253] DDOS shaft synflood
IPv4: 129.125.6.238 -> 192.168.2.x
hlen=5 TOS=0 dlen=40 ID=55599 flags=0 offset=0 TTL=15 chksum=24091
TCP: port=80 -> dport: 80 flags=******S* seq=674711609 ack=824787806 off=5 res=0 win=15440 urp=38238
chksum=50198
Payload: none
--
#(1 - 125132) [2002-09-16 19:15:21] [arachNIDS/253] DDOS shaft synflood
IPv4: 129.125.6.238 -> 192.168.2.x
hlen=5 TOS=0 dlen=40 ID=997 flags=0 offset=0 TTL=15 chksum=54631
TCP: port=80 -> dport: 80 flags=******S* seq=674711609 ack=109718580 off=5 res=0 win=6877 urp=4009
chksum=20234
Payload: none
--
#(1 - 125133) [2002-09-16 19:16:17] [arachNIDS/253] DDOS shaft synflood
IPv4: 129.125.6.238 -> 192.168.2.x
hlen=5 TOS=0 dlen=40 ID=57227 flags=0 offset=0 TTL=15 chksum=63941
TCP: port=80 -> dport: 80 flags=******S* seq=674711609 ack=1240821363 off=5 res=0 win=32658 urp=43410
chksum=51909
Payload: none

The correct answer is, d) Both a) and c) could best explain this event.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 56 Bill M. Shinn

Assigment 3 - Analyze This!

Executive Summary

Contracted by the University to analyze five consecutive, typical days of network
intrusion detection system log files, the findings contained in this final deliverable
emphasize two key areas of concern. Primarily, the hosts and services under active
compromise or attack are discussed with the goal of identifying the most critical areas for
immediate remediation. As a second field of concern, the vast quantity of irrelevant alerts
and scans logged by the intrusion detection system are examined with the objective of
increasing the fidelity of the logs, while retaining the ability to detect legitimate attacks.
Fundamentally, the report concludes the following -

Several systems within the University network have been compromised. These compromised •
systems present a level of risk and exposure unacceptable to best security practices and require
immediate remediation. Regardless of the criticality of these hosts, the compromised state presents
a risk to external networks and other, perhaps more critical systems.
The Snort network intrusion detection system generating the University’s log files requires •
proactive management of the signature and configuration files deployed to the sensors. Improving
the reporting accuracy by tuning it to the monitored networks will enhance awareness of attack
conditions, aid analysts in making distinctions among real and irrelevant alerts, and increase the
efficiency of analysis. In total, 2,038,172 alert or scan entries were logged by Snort during the
reporting period. Even with automated correlation tools, this quantity makes the task of meaningful
analysis substantially more difficult for human analysts.

Qualitatively and quantitatively significant relationships between hosts and network
patterns are isolated when necessary to highlight particular security risks or defensive
possibilities; as are correlations with external research or results of previous analysis
efforts contracted by the University. Finally, defensive recommendations and the
methodology used to enhance relational analysis complete the presentation.

Log Files Analyzed

Three sets of log files spanning the period of June 11th, 2002 through June 15th, 2002 were
analyzed according to the scope of work agreed upon between the University and this
analyst. The files were generated by one or more Snort intrusion detection sensors
listening at key points on the University’s network. It is unknown whether the logs were
generated by more than one sensor and combined, or if they were generated by a single
sensor. The alert log files contain entries generated by specific Snort signatures, where the
scan log files are generated by Snort’s pre-processors. The out-of-spec log files contain
Snort traces of packets which do not meet protocol standard or somehow defy the rules
of normal network behavior.

Alert files
Size (bytes) Filename

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 57 Bill M. Shinn

17,253,046
12,937,967
19,537,545
19,349,046
10,439,117

alert.020611.gz
alert.020612.gz
alert.020613.gz
alert.020614.gz
alert.020615.gz

Scan files
Size(bytes) Filename
24,516,007
18,028,165
27,031,631
26,575,222
17,422,461

scans.020611.gz
scans.020612.gz
scans.020613.gz
scans.020614.gz
scans.020615.gz

Out-of-spec files
Size(bytes) Filename

3,407
261

3,558
2,701

839

oos_Jun.11.2002.gz
oos_Jun.12.2002.gz
oos_Jun.13.2002.gz
oos_Jun.14.2002.gz
oos_Jun.15.2002.gz

Prioritized Detects

The first part of this section details the alerts, or alert patterns, which may indicate the
presence of compromised or highly vulnerable hosts - such as those hosting Trojans or
backdoors. The reporting then identifies the University’s hosts which are potentially
responsible for attacks against other systems. This is presented early in the report to bring
attention to items for timely remediation. The last part of this section details the highest
priority false positives or irrelevant alerts which require the immediate attention of those
tasked with administration of the University’s Snort sensors.

Compromised or Malicious Hosts within University Network

These hosts are potentially under the control of an attacker and contact should be
established with the system owners at once to begin assessing damage and outlining
remediation strategies. Rebuilding systems from a clean system state and eliminating
vulnerabilities before bringing the systems online is paramount.

MY.NET.5.83•

This host is potentially infected by the Ramen worm or SubSeven Trojan. Additional
detail, including the hex output from Snort’s logs would be required to isolate the actual
form of compromise. One of several things is possible based on the alerts below: a) The
host is infected with the SubSeven Trojan and is being compromised by internal hosts, or
b) It is also possible that the host MY.NET.5.83 offers services not on a standard service
ports and these hosts coincidentally connected to it using a client port of 27374, which
Snort alerts as potential Trojan activity. More recent versions of Snort signatures might
allow this traffic to be more carefully isolated, rather than simply alerting on the port.
Other hosts in the log files were listed as alerting on this event as well, but only a single
packet and most likely on a coincidental client port. These log files however, provide a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 58 Bill M. Shinn

more likely scenario worthy of investigation.

06/13-01:48:06.236288 [**] Possible trojan server activity [**] MY.NET.5.19:27374 -> MY.NET.5.83:8262
06/13-01:48:06.236358 [**] Possible trojan server activity [**] MY.NET.5.83:8262 -> MY.NET.5.19:27374
06/13-01:48:06.236446 [**] Possible trojan server activity [**] MY.NET.5.19:27374 -> MY.NET.5.83:8262

06/15-12:57:46.456028 [**] Possible trojan server activity [**] MY.NET.5.88:27374 -> MY.NET.5.83:8907
06/15-12:57:46.456096 [**] Possible trojan server activity [**] MY.NET.5.83:8907 -> MY.NET.5.88:27374
06/15-12:57:46.456163 [**] Possible trojan server activity [**] MY.NET.5.88:27374 -> MY.NET.5.83:8907
06/15-12:57:46.457923 [**] Possible trojan server activity [**] MY.NET.5.88:27374 -> MY.NET.5.83:8907
06/15-12:57:46.466941 [**] Possible trojan server activity [**] MY.NET.5.83:8907 -> MY.NET.5.88:27374
06/15-12:57:46.467404 [**] Possible trojan server activity [**] MY.NET.5.88:27374 -> MY.NET.5.83:8907
06/15-12:57:46.479632 [**] Possible trojan server activity [**] MY.NET.5.83:8907 -> MY.NET.5.88:27374
06/15-12:57:46.481586 [**] Possible trojan server activity [**] MY.NET.5.88:27374 -> MY.NET.5.83:8907

06/15-12:57:47.859351 [**] Possible trojan server activity [**] MY.NET.5.88:27374 -> MY.NET.5.83:7938
06/15-12:57:47.859435 [**] Possible trojan server activity [**] MY.NET.5.83:7938 -> MY.NET.5.88:27374
06/15-12:57:47.859509 [**] Possible trojan server activity [**] MY.NET.5.88:27374 -> MY.NET.5.83:7938
06/15-12:57:47.859767 [**] Possible trojan server activity [**] MY.NET.5.88:27374 -> MY.NET.5.83:7938

06/15-14:54:59.561458 [**] Possible trojan server activity [**] MY.NET.70.177:27374 -> MY.NET.5.83:7938
06/15-14:54:59.561559 [**] Possible trojan server activity [**] MY.NET.5.83:7938 -> MY.NET.70.177:27374
06/15-14:54:59.561759 [**] Possible trojan server activity [**] MY.NET.70.177:27374 -> MY.NET.5.83:7938
06/15-14:54:59.561991 [**] Possible trojan server activity [**] MY.NET.70.177:27374 -> MY.NET.5.83:7938
06/15-14:54:59.562417 [**] Possible trojan server activity [**] MY.NET.5.83:7938 -> MY.NET.70.177:27374

MY.NET.151.90•

This host can be classified as potentially malicious and/or potentially compromised, given
the patterns of traffic seen below (perhaps someone experimenting with system attacks).
Although some alerts may simply be false positives based on the packet content, the
pattern of alerting justifies investigation.

06/14-11:09:48.363626 [**] NIMDA - Attempt to execute cmd from campus host [**]
MY.NET.151.90:1075 -> 207.46.235.150:80

06/12-05:51:44.316386 [**] IRC evil - running XDCC [**] MY.NET.151.90:2344 -> 66.28.132.168:6667
06/12-06:01:46.164054 [**] IRC evil - running XDCC [**] MY.NET.151.90:2675 -> 66.62.70.248:6667
06/12-06:41:44.482526 [**] IRC evil - running XDCC [**] MY.NET.151.90:3974 -> 64.246.34.181:6667

06/13-10:09:42.566935 [**] High port 65535 tcp - possible Red Worm - traffic [**] MY.NET.28.2:38976 -
> MY.NET.151.90:65535

06/13-10:09:42.788594 [**] High port 65535 tcp - possible Red Worm - traffic [**]
MY.NET.151.90:65535 -> MY.NET.28.2:38976

12.151.57.37 & MY.NET.88.245 - See Significant Relationship/Link Graphing •
Technique section for more detail on these hosts.

Attack Participants within University Network

The subnets listed in the table below contain compromised hosts and require the same
remediation process outlined above. In addition to the information security risk and
exposure associated with system compromise, the following networks contain hosts that
are active, unwilling participants in Unicode manipulation attacks against other hosts

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 59 Bill M. Shinn

running Microsoft Internet Information Server:

Subnet
Address

Number of Attacking
Hosts

MY.NET.153.0 54
MY.NET.150.0 3
MY.NET.151.0 3
MY.NET.152.0 20
MY.NET.88.0 12

The following two hosts also participate in such attacks:

MY.NET.10.89
MY.NET.83.90

Any alerts for iis_http_decode: IIS Unicode attack detected with a source address present
in the University’s address space warrants attention as these hosts are most likely infected
with either Code Red or Nimda. The host should be scanned for open ports not
authorized or typical of systems in the address spaces noted above. Follow up with a
system owner or administrator is required, and serious consideration of the Defensive
Recommendations should be conducted.

False Positives and Irrelevant Alerts or Scan

Under normal circumstances, a properly configured IDS sensor will always produce false
positives. For instance, signatures designed to alert to the presence of a Trojan, a
backdoor service, or DDoS client will often trigger based on the destination port. As part
of coincidental TCP behavior, occasionally these signatures alert on the client port of an
established, legitimate connection. Similar conditions occur based on content rules.
However, there is an important difference between a signature which alerts erroneously
and one that alerts according to expected behavior. The University has enabled many
signatures without careful consideration of its security policy throughout the IDS
deployment process. Moreover, many of the signatures configured on the University’s
sensor(s) simply report on normal packet or network behavior, such as ICMP traceroute.
While not exhaustive, the University must carefully reconsider the implications of alerting
on the following signatures, based on incident handling procedures and the security
policy (those in bold demand particular consideration):

INFO Inbound GNUTella Connect accept
WEB-IIS Unauthorized IP Access Attempt
ICMP Destination Unreachable (Protocol Unreachable)
ICMP traceroute
INFO Napster Client Data
WEB-MISC 403 Forbidden
WEB-FRONTPAGE _vti_rpc access
INFO FTP anonymous FTP
WEB-IIS _vti_inf access

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 60 Bill M. Shinn

ICMP Echo Request Windows
ICMP Destination Unreachable (Communication Administratively Prohibited)
INFO Inbound GNUTella Connect
INFO Outbound GNUTella Connect
ICMP Router Selection
ICMP Fragment Reassembly Time Exceeded

The answer to whether these signatures should remain in deployment should be based on
the planned response to such alerts. In some cases, the data is useful for correlation and
trending, and in other cases it may be purely statistical or anecdotal. However, especially
with regard to peer-to-peer file sharing activity, anonymous FTP, or normal ICMP traffic,
if the security policy allows a particular behavior, the NIDS should not be tasked with
alerting on it; nor should the University’s analysts be burdened with sorting through the
irrelevant alerts. In many cases, the alerts can be refined and distributed across subnets so
more critical hosts are “watched” closely for atypical patterns

“Top Talkers”

In this section, the top ten network conditions (alerts or scans) are analyzed by purely
quantitative means. First, alerts with the highest count are identified and briefly explained;
followed by the greatest frequency of source IP-destination port pairs in the scan data. In
some cases, the alerts or hosts mentioned overlap with analysis elsewhere in the report;
the purpose is to simply draw additional attention to these events based on their
frequency. This analysis was conducted prior to completion of the Prioritized Detects
section and proved an essential aid to the analysis process - narrowing the scope of this
assessment. Identifying by quantity also isolates potential false positives, irrelevant alerts
or scans, and improperly configured hosts.

Quantitative Alert Analysis

Alert Signature Quantity
SMB Name Wildcard 47748
SNMP public access 45846
spp_http_decode: IIS Unicode attack detected 44360
INFO Possible IRC Access 21951
ICMP Echo Request L3retriever Ping 21936
MISC Large UDP Packet 15403
INFO MSN IM Chat data 8083

SMB Name Wildcard •

Sample alert log entry:

06/11-10:00:43.644109 [**] SMB Name Wildcard [**] MY.NET.152.45:137 -> MY.NET.11.7:137
06/11-10:00:43.645215 [**] SMB Name Wildcard [**] MY.NET.11.7:137 -> MY.NET.152.45:137

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 61 Bill M. Shinn

The default Snort signature logs an alert based on the content of the packet, in addition to
the presence of the reflexive ports. On a Microsoft Windows based networks, this
reflexive port traffic is normal and is used for host name resolution and file share access.
If seen from an external network address space, concern is justified, as the packet could
indicate reconnaissance attempts. However, in the log data, no alerts were generated from
outside sources. Assuming that all the hosts on the MY.NET.x.x subnets require access to
shared resources, these alerts are irrelevant from security perspective. If the subnets (or
host addresses) captured in the alert logs have no legitimate reason to issue NetBIOS
name queries, additional investigation may be required. Adjusting this signature on the
IDS sensor is addressed in the defensive recommendations.

SNMP Public Access•

Sample alert log entry:

06/11-12:00:03.935638 [**] SNMP public access [**] MY.NET.70.177:1106 -> MY.NET.5.31:161
06/11-12:00:03.941484 [**] SNMP public access [**] MY.NET.70.177:1106 -> MY.NET.5.31:161
06/11-12:00:03.952514 [**] SNMP public access [**] MY.NET.70.177:1106 -> MY.NET.5.31:161

Snort’s signature logs the alert on the presence of the word “public” in the content of the
packet, in addition to the destination port 161. In later versions of Snort, separate rules
exist for both TCP and UDP traffic.

This signature and the resulting alerts provide an excellent tool for auditing community
strings that have not been changed from their defaults. The remediation tasks associated
with this alert are suggested in the Defensive Recommendations section below, but as
none of the source IP addresses logged by this signature originate outside the University,
the risk posed by default SNMP community strings is slightly mitigated. However, given
the size and unmanaged nature of most of the network, a risk of compromise or
reconnaissance from internal sources is very high.

spp_http_decode: IIS Unicode attack detected•

Sample alert log entry:

06/11-09:50:51.464676 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.153.169:3840 -> 211.233.28.192:80
06/11-09:50:51.464676 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.153.169:3840 -> 211.233.28.192:80
06/11-09:50:51.502972 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.153.169:3840 -> 211.233.28.192:80

Snort’s http_decode preprocessor listens for packets sent to standard http ports (or those
configured in snort.conf and converts Unicode character strings into their ASCII
equivalents for inspection. Due to the popularity and seemingly endless stream of
Unicode-based attacks originating from Code Red variants and Nimda infected hosts, this
protection is essential for complete packet analysis and should remain enabled to detect
new Unicode tactics, even if all systems are patched. When this preprocessor is invoked,
an alert is sent regardless of whether the corresponding rule sets for Code Red, Nimda,
and others are enabled.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 62 Bill M. Shinn

Connecting to the Internet guarantees that packets scanning for hosts vulnerable to these
attacks will continue to enter the University’s network. Although vendor patches are
widely available to prevent the immediate risk of these known attacks, a layered defensive
approach is provided in the Defensive Recommendations section.

INFO Possible IRC Access•

Sample alert log entry:

06/12-00:43:58.558080 [**] INFO Possible IRC Access [**] MY.NET.151.90:4282 -> 66.28.132.168:6667
06/12-00:44:31.371202 [**] INFO Possible IRC Access [**] MY.NET.151.90:2037 -> 64.246.34.181:6667

Snort detects this, and many other chat and instant messaging packets, based primarily on the
destination port of 6667. Although many vulnerabilities have been released surrounding IRC and
IM clients, the activity or access is not necessarily a security breach. As always, the security
policy of the site (in this case the University) determines the severity of this alert. In highly
controlled network environments, such activities are strictly prohibited; in other settings the focus
on intellectual freedom encourages instant message exchange. Regardless, the University
should clearly define its policy in this matter, and then pursue actions to mitigate the risk inherent
to allowing these applications, such as user education and more restrictive firewall policies.

Security aside, these technologies can impact network performance if overused. The
workstation at MY.NET.151.90 is generating a great deal of IRC Traffic. 21923 of the 21951
(99.87 %) alerts for this activity are generated from this host.

ICMP Echo Request L3retriever Ping•

Sample alert log entry:

06/11-10:00:43.643800 [**] ICMP Echo Request L3retriever Ping [**] MY.NET.152.45 -> MY.NET.11.7
06/11-09:52:15.205569 [**] ICMP Echo Request L3retriever Ping [**] MY.NET.152.250 -> MY.NET.11.6
06/11-09:52:21.708638 [**] ICMP Echo Request L3retriever Ping [**] MY.NET.152.177 -> MY.NET.11.7

This traffic is generally caused by one of two conditions. The first is when the network is
scanned by L3’s Retriever scanner, in which case the goal of the “attack” is reconnaissance.
More likely however, is that Microsoft Windows 2000 hosts are present on the network, as the
ICMP packet from these hosts shares the same payload and properties. Given the overlap
between the 91 source hosts listed with this alert (all internal and in the subnets probably
assigned to the University’s users), and the 180 hosts listed under the SMB Name Wildcard
alerts, the likelihood of overt scanning with L3’s tool is unlikely.

MISC Large UDP Packet•

Sample alert log entry:

06/11-17:35:25.287208 [**] MISC Large UDP Packet [**] 10.16.2.:3973 -> MY.NET.150.209:3238
06/11-17:35:25.642819 [**] MISC Large UDP Packet [**] 10.16.2.:3973 -> MY.NET.150.209:3238
06/11-17:35:26.016947 [**] MISC Large UDP Packet [**] 10.16.2.:3973 -> MY.NET.150.209:3238

Snort generates these alerts on UDP datagrams larger than 4000 bytes. Almost
universally, these alerts are triggered by download of streaming media or large stored

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 63 Bill M. Shinn

media (such as Pulp Fiction on DVD) from external sources. Most of these alerts are
generated by users of the University network downloading either legitimate or pirated
media. See the Critical External Addresses section for additional examples.

INFO MSN IM Chat data•

Sample alert log entry:

06/11-10:02:36.199166 [**] INFO MSN IM Chat data [**] MY.NET.88.146:1100 -> 64.4.12.158:1863
06/11-09:55:01.541995 [**] INFO MSN IM Chat data [**] MY.NET.88.146:1098 -> 64.4.12.158:1863
06/11-10:05:49.122710 [**] INFO MSN IM Chat data [**] MY.NET.88.146:1100 -> 64.4.12.158:1863
06/11-10:06:46.757251 [**] INFO MSN IM Chat data [**] 64.4.12.158:1863 -> MY.NET.88.146:1100
06/11-10:07:02.483385 [**] INFO MSN IM Chat data [**] 64.4.12.158:1863 -> MY.NET.88.146:1100

Snort generates these alerts in response to the presence of port 1863 in the packet. The
analysis of this traffic is similar to that regarding IRC access. If this activity is acceptable
to the University, then the Snort signature set should be refined to not alert on this traffic,
or to do so for only sensitive hosts or subnets.

Quantitative Scan Analysis

All scans listed in the table below are UDP scans. The top ten Source IP/Source Port -
Destination IP/Destination Port pairs are provided. Notice that only two source hosts
generate all the scans logged.

Source IP Address Source Port Destination IP Address Destination Port Quantity
12.151.57.37 0 MY.NET.88.245 0 15257
12.151.57.37 1795 MY.NET.88.245 1140 4544
12.151.57.37 516 MY.NET.88.245 1588 3778
MY.NET.5.89 1111 MY.NET.200.112 161 2588
MY.NET.5.89 1111 MY.NET.200.218 161 2551
12.151.57.37 2196 MY.NET.88.245 1248 2527
MY.NET.5.89 1111 MY.NET.200.110 161 2443
MY.NET.5.89 1111 MY.NET.200.36 161 2409
MY.NET.5.89 1111 MY.NET.200.210 161 2394
MY.NET.5.89 1111 MY.NET.200.217 161 2380

Port 161 UDP Scans (SNMP)•

In addition to six of the top ten relationships above, the host at MY.NET.5.89 is
responsible for 494,152 entries as a source host with source port 1111. All of these scans
are directed at UDP port 161, constituting 27% of all scans. For the logging period, even a
network highly monitored using snmp queries for performance and fault, this number
seems excessively high. If this were legitimate traffic, out of all the scan packets
generated, some would find open ports and theoretically send information requests and
be detected by the standard Snort signatures (as “public” seems to be the string used

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 64 Bill M. Shinn

throughout the network). This host is either improperly configured, monitoring a very
larger number of hosts with SNMP queries, or using a tool such as PROTOS64 to generate
packets in hopes of targeting or testing vulnerable SNMP systems.

Port 123 UDP Traffic (NTP)•

Not shown in the table above, the scan logs report 266,607 UDP scans from
MY.NET.60.43 with a source port of 123. Clearly this host can be excluded from the port
scan preprocessor as this is simply Network Time Protocol data in transit.

Significant Relationship/Link Graphing Technique - 12.151.57.37 & MY.NET.88.245

So much traffic was generated between these two hosts (as seen in the Quantitative Scan
Analysis table) on a variety of ports, that additional investigation techniques were
required to analyze the relationship. Because the source was external, a lookup on ARIN
was conducted in attempt to classify the system or network.

Search results for: ! NET-12-151-56-0-1

OrgName: ATLIGHTSPEED
OrgID: LSPD

NetRange: 12.151.56.0 - 12.151.63.255
CIDR: 12.151.56.0/21
NetName: A-LIGHT112-56
NetHandle: NET-12-151-56-0-1
Parent: NET-12-0-0-0-1
NetType: Reallocated
Comment:
RegDate: 2001-10-11
Updated: 2002-08-22

TechHandle: JM2923-ARIN
TechName: McCoy, Jeff
TechPhone: +1-720-264-2029
TechEmail: jmccoy@atlightspeed.com

Nothing exceptionally meaningful was determined from revealing the owner of the
address space. Visiting the website of www.atlightspeed.com actually redirected the
analyst to http://www.fortrust.biz/ a managed services and platform provider of IT
services. The company offers consulting and integration services, in addition to hosting
and LAN administration.

In processing the data between these two hosts, we see multiple port scans to several
ports on the University host MY.NET.88.24 from 12.151.57.37. As the port relationships
are discussed using samples, they are revealed on the link graph following the log section.

15257 UDP packets to port 0 on MY.NET.88.245. :

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 65 Bill M. Shinn

Jun 11 09:50:44 12.151.57.37:0 -> MY.NET.88.245:0 UDP
Jun 11 09:50:48 12.151.57.37:0 -> MY.NET.88.245:0 UDP
Jun 11 09:50:51 12.151.57.37:0 -> MY.NET.88.245:0 UDP
Jun 11 09:50:56 12.151.57.37:0 -> MY.NET.88.245:0 UDP
Jun 11 09:50:58 12.151.57.37:0 -> MY.NET.88.245:0 UDP

4544 UDP Packets to port 1140 on MY.NET.88.245:

Jun 14 07:42:51 12.151.57.37:1795 -> MY.NET.88.245:1140 UDP
Jun 14 07:43:28 12.151.57.37:1795 -> MY.NET.88.245:1140 UDP
Jun 14 07:43:30 12.151.57.37:1795 -> MY.NET.88.245:1140 UDP

3778 UDP Packets to port 1588 on MY.NET.88.245:

Jun 11 14:10:09 12.151.57.37:516 -> MY.NET.88.245:1588 UDP
Jun 11 14:10:11 12.151.57.37:516 -> MY.NET.88.245:1588 UDP
Jun 11 14:10:52 12.151.57.37:516 -> MY.NET.88.245:1588 UDP

2527 UDP packets to port 1248 on MY.NET.88.245:

Jun 13 07:46:41 12.151.57.37:2196 -> MY.NET.88.245:1248 UDP
Jun 13 07:46:54 12.151.57.37:2196 -> MY.NET.88.245:1248 UDP
Jun 13 07:46:57 12.151.57.37:2196 -> MY.NET.88.245:1248 UDP
Jun 13 07:47:01 12.151.57.37:2196 -> MY.NET.88.245:1248 UDP

SnortSnarf reported 6 different signatures where 12.151.57.37 is present as a source.

1 instances of TFTP - Internal UDP connection to external tftp server
1 instances of TFTP - External UDP connection to internal tftp server

06/11-15:27:18.758436 [**] TFTP - Internal UDP connection to external tftp server [**] 12.151.57.37:69 -> MY.NET.88.245:86
06/14-11:52:08.377086 [**] TFTP - External UDP connection to internal tftp server [**] 12.151.57.37:27906 ->

MY.NET.88.245:69

1 instances of Attempted Sun RPC high port access

06/11-15:38:49.171438 [**] Attempted Sun RPC high port access [**] 12.151.57.37:1 -> MY.NET.88.245:32771

5 instances of EXPLOIT NTPDX buffer overflow
06/11-11:21:35.467492 [**] EXPLOIT NTPDX buffer overflow [**] 12.151.57.37:1029 -> MY.NET.88.245:123
06/13-10:19:16.381417 [**] EXPLOIT NTPDX buffer overflow [**] 12.151.57.37:2057 -> MY.NET.88.245:123
06/14-08:05:43.636738 [**] EXPLOIT NTPDX buffer overflow [**] 12.151.57.37:123 -> MY.NET.88.245:123
06/14-08:44:48.036290 [**] EXPLOIT NTPDX buffer overflow [**] 12.151.57.37:123 -> MY.NET.88.245:123
06/14-10:46:33.056678 [**] EXPLOIT NTPDX buffer overflow [**] 12.151.57.37:1109 -> MY.NET.88.245:123

315 instances of High port 65535 udp - possible Red Worm - traffic 65

06/11-10:10:55.249738 [**] High port 65535 udp - possible Red Worm - traffic [**] 12.151.57.37:65535 ->
MY.NET.88.245:65280

06/11-10:11:40.741014 [**] High port 65535 udp - possible Red Worm - traffic [**] 12.151.57.37:65535 ->
MY.NET.88.245:65532

06/11-10:13:07.869829 [**] High port 65535 udp - possible Red Worm - traffic [**] 12.151.57.37:65535 ->
MY.NET.88.245:65532

06/11-10:15:08.828512 [**] High port 65535 udp - possible Red Worm - traffic [**] 12.151.57.37:65535 ->
MY.NET.88.245:65535

06/11-10:17:09.740839 [**] High port 65535 udp - possible Red Worm - traffic [**] 12.151.57.37:65535 ->
MY.NET.88.245:65280

2129 instances of AFS - Off-campus activity
06/11-09:50:37.543001 [**] AFS - Off-campus activity [**] 12.151.57.37:7000 -> MY.NET.88.245:7001
06/11-09:51:05.489616 [**] AFS - Off-campus activity [**] 12.151.57.37:7000 -> MY.NET.88.245:7001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 66 Bill M. Shinn

06/11-09:51:26.942677 [**] AFS - Off-campus activity [**] 12.151.57.37:7000 -> MY.NET.88.245:7001
06/11-10:02:20.335881 [**] AFS - Off-campus activity [**] 12.151.57.37:7000 -> MY.NET.88.245:7001

SnortSnarf reported 1 signature where 12.151.57.37 is present as a destination.

87 instances of ICMP Fragment Reassembly Time Exceeded

06/11-11:16:35.362557 [**] ICMP Fragment Reassembly Time Exceeded [**] MY.NET.88.245 -> 12.151.57.37
06/11-11:16:36.367106 [**] ICMP Fragment Reassembly Time Exceeded [**] MY.NET.88.245 -> 12.151.57.37
06/11-11:16:41.370621 [**] ICMP Fragment Reassembly Time Exceeded [**] MY.NET.88.245 -> 12.151.57.37
06/11-11:16:47.380422 [**] ICMP Fragment Reassembly Time Exceeded [**] MY.NET.88.245 -> 12.151.57.37

The presence of port 7001 and NTP on the same system may indicate the presence of an
AFS server. This can be correlated (although not to the same host) with analysis
performed by Tod Beardsley in his GCIA practical.66 However, if in fact the host at
12.151.57.37 is used to provide managed services, the sensor needs be adjusted to limit
the number of irrelevant or false positives.

The alerts indicating the presence of a possible Red Worm and a buffer overflow attempt,
on a host generating this much traffic between only one other host, certainly warrants
investigation to see if the host has definitely been compromised. Contacting the system
owner and checking system log files is required for a conclusive statement about this
relationship.

Critical External Hosts

This section aggregates several additional external hosts or networks worthy of
extraordinary mention. As an output from the previous quantitative analysis, these hosts
or networks require additional measures such as reporting to Internet Service Providers
and system owners, access control lists or firewall rules dedicated to prevention, or other

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 67 Bill M. Shinn

measures. A brief justification for “honorable mention” is included with each report.

65.92.145.85 - Excessive Code Red or Nimda Attacks•

551 instances of WEB-MISC Attempt to execute cmd
614 instances of spp_http_decode: IIS Unicode attack detected

Registration information retrieved from Dshield.org

65.92.145.85
HostName: HSE-Montreal-ppp337094.sympatico.ca
DShield Profile: Country: CA
Contact E-mail: ip_prov@bellglobal.com
Total Records against IP:
Number of targets:
Date Range: to
Ports Attacked (up to 10): Port Attacks

Fightback: not sent
Whois:
CustName: Nexxia HSE
Address: 87 Ontario Street West Montreal Quebec H2X 1Y8
Country: CA
RegDate: 2001-02-16
Updated: 2001-02-16

NetRange: 65.92.128.0 - 65.92.223.255
CIDR: 65.92.128.0/18, 65.92.192.0/19
NetName: NEXHSE7-CA
NetHandle: NET-65-92-128-0-1
Parent: NET-65-92-0-0-1
NetType: Reassigned
Comment:
RegDate: 2001-02-16
Updated: 2001-02-16

OrgName: Bell Canada
OrgID: LINX

NetRange: 65.92.0.0 - 65.95.255.255
CIDR: 65.92.0.0/14
NetName: BELLNEXXIA-10
NetHandle: NET-65-92-0-0-1
Parent: NET-65-0-0-0-0
NetType: Direct Allocation
NameServer: NS3.BELLGLOBAL.COM
NameServer: NS4.BELLGLOBAL.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2001-01-02
Updated: 2002-04-03

TechHandle: PD135-ARIN
TechName: Daoust, Philippe
TechPhone: +1-800-450-7771
TechEmail: noc@in.bell.ca

OrgTechHandle: SYSAD1-ARIN
OrgTechName: Sys Admin
OrgTechPhone: +1-613-785-0886
OrgTechEmail: ip_prov@bellglobal.com

OrgName: Bell Canada
OrgID: LINX

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 68 Bill M. Shinn

Address: Toronto ON K1G-3J4
Country: CA
Comment:
RegDate: 1990-03-09
Updated: 2002-10-04

AdminHandle: SYSAD-ARIN
AdminName: Sys Admin
AdminPhone: +1-613-785-0886
AdminEmail: ip_prov@bellglobal.com

TechHandle: SYSAD1-ARIN
TechName: Sys Admin
TechPhone: +1-613-785-0886
TechEmail: ip_prov@bellglobal.com

202.102.249.118 - Excessive Large UDP packets to MY.NET.88.140:2469•

5810 instances of MISC Large UDP Packet

This IP address, when passed to Google.com was listed on many, many other streaming
media sites, primarily http://www.jummpa.com/StreamChane.htm, a site specializing in
pirated intellectual property. Clearly this is “normal” traffic for a university (especially the
fraternities, if any). However, it constitutes a risk to bandwidth availability and is typical
of other IP addresses listed in this alert category. If concerned, the University could block
these IP addresses in firewalls or routers, but many other sites/servers exist on any
number of given UDP ports.

Registration information retrieved from Dshield.org

HostName: 202.102.249.118
DShield Profile: Country:
Contact E-mail:
Total Records against IP:
Number of targets:
Date Range: to
Ports Attacked (up to 10): Port Attacks

Fightback: not sent
Whois: inetnum: 202.102.249.0 - 202.102.249.255
netname: ZZTB-MIB
country: CN
descr: Zhengzhou Telecom bureau Multimedia Information Bureau,

Zhengzhou city, Henan Provice
450052

admin_c: LZ33-AP
tech_c: LZ33-AP
remarks:
mnt_by: MAINT-CHINANET-HA
changed: zhail@email.online.ha.cn 20010302
status: ALLOCATED PORTABLE
source: APNIC
notify:
mnt_lower:
rev_srv:
start: 3395746048
end: 3395746303
diff: 255

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 69 Bill M. Shinn

person: Liping Zhong
address: Henan Multimedia Information Bureau

70, Nong Ye Road
ZhengZhou, Henan 450002
CN

country: CN
phone: +86-371-3962276
fax_no: +86-371-3962068
e_mail: antispam@public.zz.ha.cn
nic_hdl: LZ33-AP
mnt_by: MAINT-NULL
changed: zhail@email.online.ha.cn 20001124
source: APNIC
remarks:

140.142.8.71- Excessive Large UDP packets to MY.NET.153.159:2259•

5810 instances of MISC Large UDP Packet

This IP address, when passed to GEEKTOOLS.com returned the information below.
Most likely another media server, but with potentially a more legitimate purpose (from an
academic perspective at least), demonstrating the risk in wholesale blocking or rejection of
streaming media packets.

OrgName: University of Washington
OrgID: UWND

NetRange: 140.142.0.0 - 140.142.255.255
CIDR: 140.142.0.0/16
NetName: UW-SEA
NetHandle: NET-140-142-0-0-1
Parent: NET-140-0-0-0-0
NetType: Direct Allocation
NameServer: HANNA.CAC.WASHINGTON.EDU
NameServer: MARGE.CAC.WASHINGTON.EDU
NameServer: NS.UNET.UMN.EDU
Comment:
RegDate: 1990-04-24
Updated: 2000-03-17

Additional information can be obtained from setting a workstation’s default name server
to that listed above:

>nslookup
Default Server: myisp’s.dns.server
Address: 192.168.1.x

> server hanna.cac.washington.edu
Default Server: hanna.cac.washington.edu
Address: 140.142.5.5

> 140.142.8.71
Server: hanna.cac.washington.edu
Address: 140.142.5.5

Name: media-wm-1.cac.washington.edu
Address: 140.142.8.71

Out of Spec Packets

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 70 Bill M. Shinn

The amount of data in the OOS files was manageable and could be visually correlated to
return at least some meaningful results. Primarily, the host at MY.NET.150.209 is running
a peer-to-peer file sharing program such as Bearshare or Morpheus or GNUtella. Again,
the severity of this knowledge depends on the University’s security policy. What is
interesting about this detect, however, is the way in which either the application’s socket
implementation, or the host’s TCP/IP stack is corrupting the packets. Frequently, tools
like nmap and other OS fingerprinting application will intentionally generate this traffic to
see how a host responds. In this case, it seems that the application simply generates
several packets with random TCP flags and option set.

:06/12-00:39:40.957085 193.6.40.86:55089 -> MY.NET.150.209:6346
-TCP TTL:48 TOS:0x0 ID:13257 DF
-21S***** Seq: 0xABA41371 Ack: 0x0 Win: 0x16D0
-TCP Options => MSS: 1460 SackOK TS: 2629816 0 EOL EOL EOL EOL
--
-=+
:06/12-00:39:43.957516 193.6.40.86:55089 -> MY.NET.150.209:6346
-TCP TTL:48 TOS:0x0 ID:13258 DF
-21S***** Seq: 0xABA41371 Ack: 0x0 Win: 0x16D0
-TCP Options => MSS: 1460 SackOK TS: 2630116 0 EOL EOL EOL EOL
--
-=+
:06/12-21:20:30.868375 24.112.58.210:2656 -> MY.NET.150.209:6346
-TCP TTL:114 TOS:0x0 ID:10611 DF
-*1SFRPAU Seq: 0x690547 Ack: 0xF2A70AEA Win: 0x5018
-22 38 EF 63 00 00 89 1A 46 26 CA E8 23 98 FF AE "8.c....F&..#...
--
-=+
:06/12-21:23:55.685430 24.112.58.210:2656 -> MY.NET.150.209:6346
-TCP TTL:114 TOS:0x0 ID:11922 DF
-2*SFRPAU Seq: 0x54D2CF3 Ack: 0x6B0AF3 Win: 0x5018
-TCP Options => EOL EOL
-=+
:06/12-21:24:24.400833 24.112.58.210:2656 -> MY.NET.150.209:6346
-TCP TTL:114 TOS:0x0 ID:25238 DF
-21SF***U Seq: 0xA6054D Ack: 0xD6210AF4 Win: 0x5018
-TCP Options => EOL EOL SackOK
--
-=+
:06/12-21:25:35.910653 24.112.58.210:2656 -> MY.NET.150.209:6346
-TCP TTL:114 TOS:0x0 ID:34207 DF
-*1SF**AU Seq: 0x54F Ack: 0x294B0AF5 Win: 0x5018
-TCP Options => EOL EOL

Another packet seen in the OOS files demonstrates the use of Explicit Congestion
Notification, as seen in the use of the reserved TCP flags. Although it is possible to use
Quality of Service options on newer platforms, this is unusual to see in a TCP packet from
a host, which - given the destination port 80 - is probably generating the traffic, rather
than a router that might use ECN.

06/11-21:30:35.373910 68.80.114.202:1250 -> MY.NET.5.96:80
TCP TTL:108 TOS:0x0 ID:12297 DF
21SF*P*U Seq: 0x5B3064 Ack: 0x2169 Win: 0x5010
TCP Options => EOL EOL EOL EOL EOL EOL SackOK

This may be an attempt at OS fingerprinting, or perhaps the indication of a Trojan port,
where unusual TCP options are used to communicate between hosts. Port 1269 was listed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 71 Bill M. Shinn

as a possible Trojan port during a Google search.

06/13-17:39:58.851407 64.4.124.151:3193 -> MY.NET.88.165:1269
TCP TTL:113 TOS:0x0 ID:52404 DF
21**R**U Seq: 0xBCCA1D8 Ack: 0x7D86 Win: 0x5010
0C 79 04 F5 0B CC A1 D8 00 00 7D 86 04 E4 50 10 .y........}...P.
79 34 A9 3E 00 00 C2 31 19 C0 20 0F B0 1A 62 7A y4.>...1.. ...bz
F3 93 ..
=+
06/13-17:46:22.699466 64.4.124.151:0 -> MY.NET.88.165:3193
TCP TTL:113 TOS:0x0 ID:61990 DF
21**RP*U Seq: 0x4F50D80 Ack: 0x1D87D87 Win: 0x5010
3C EC 50 10 7B 30 F7 71 00 00 3E FA 61 41 AF A4 <.P.{0.q..>.aA..
76 86 A2 1B F5 D2 v.....

=+
06/13-17:54:54.956901 64.4.124.151:4 -> MY.NET.88.165:3193
TCP TTL:113 TOS:0x0 ID:65215 DF
21**R*** Seq: 0x4F50FC7 Ack: 0x31D87D88 Win: 0x5010
TCP Options => EOL EOL EOL EOL EOL EOL SackOK SackOK SackOK EOL Opt 53 Opt 53 Opt 53 Opt 53

Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53
Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53

=+
06/13-18:00:01.789438 64.4.124.151:3193 -> MY.NET.88.165:1269
TCP TTL:113 TOS:0x0 ID:21275 DF
21**R**U Seq: 0x11122 Ack: 0xD1D87D89 Win: 0x5010
TCP Options => EOL EOL

=+
06/13-18:16:02.185414 64.4.124.151:3193 -> MY.NET.88.165:1269
TCP TTL:113 TOS:0x0 ID:1338 DF
21**RP*U Seq: 0x1566B78C Ack: 0x7D8C Win: 0x5010
TCP Options => EOL EOL Opt 23 (3): 1FFC Opt 252

=+
06/13-18:18:59.662527 64.4.124.151:3193 -> MY.NET.88.165:1269
TCP TTL:113 TOS:0x0 ID:15215 DF
*1SF**** Seq: 0x163141D8 Ack: 0x7D8D7EAC Win: 0x5010
0C 79 04 F5 16 31 41 D8 7D 8D 7E AC 00 83 50 10 .y...1A.}.~...P.
78 30 9D E1 00 00 C7 DE 40 04 C4 CE 52 1C DE 7D x0......@...R..}
=+
06/13-18:36:41.669086 64.4.124.151:3193 -> MY.NET.88.165:1269
TCP TTL:113 TOS:0x0 ID:37288 DF
21**RP*U Seq: 0x1ADFD1D8 Ack: 0x927D90 Win: 0x5010
TCP Options => EOL EOL

Based on the presence of such strange packets, an external search for this host was
conducted. The results likely lead to a home user, as indicated by the “DSL DHCP Range
in the GEEKTOOLS.com output.

Ntelos North Cisco DSL DHCP Range #2 CFW-64-4-124-NNC (NET-64-4-124-0-1)
 64.4.124.0 - 64.4.124.255

Ntelos Inc. NTELO-BLK-2 (NET-64-4-96-0-1)
 64.4.96.0 - 64.4.127.255

Defensive Recommendations

Harden Host and Perimeter Defenses

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 72 Bill M. Shinn

The spp_http_decode preprocessor and similar Snort signatures which detect Nimda •
and the Code Red variants should be used in conjunction with an application layer
firewall with integrated content inspection tools designed to detect and block malware
and attacks similar to the Unicode-style attacks witnessed on the University’s
network. This strategy reduces the introduction of malicious http code into the
environment (by blocking it at the network edge), and enhances the fidelity of Snort’s
logs by reducing irrelevant alerts.

Ensure that hosts on the network are updated with a quality virus engine and loaded •
with the latest virus signatures.

Limit False Positives & Irrelevant Alerts

Adjust IDS sensor to limit SMB Name Wildcard alerts. This is normal traffic and •
provides only informative detail. As mentioned previously, if subnets in the alert data
have no legitimate need to host Windows file shares, and sensors can be placed per
subnet or VLAN, then this signature may remain in place, although highly refined in
its placement on the network.

The signatures generating the SNMP Public Access can remain in place if a •
concerted effort is made to change the default community strings throughout the
University’s network. If no effort is to be made, then nothing is gained from capturing
this traffic. As the effort is made to change the strings, a corresponding decrease in the
number of alerts should occur, allowing systems administrators to identify systems
still using the default strings.

The following line should be added to the snort.conf file on the sensor(s) to reduce •
the amount of irrelevant entries in the scan log files generated by normal NTP traffic:

preprocessor portscan-ignorehosts: MY.NET.60.43

Consider implementation of a statistical packet anomaly based intrusion detection •
system to run in conjunction with Snort as another layer of analysis. As these systems
also produce a great deal of detail regarding network traffic patterns, resources above
those currently allocated need to be provisioned for the monitoring of such a system.
While valuable, a system such as this must be closely managed; if the University takes
a more proactive role in managing Snort’s irrelevant alerts, then this is a logical next
step in implementing a layered detection approach.

Upgrade Snort Binaries

As of this writing Snort version 1.9.0 has officially been released. It is highly
recommended that the University test this system in a lab environment, and assuming the
tests are successful, schedule the release for turnover into the production network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 73 Bill M. Shinn

Features such as “flow” and revisions to not only the signature set, but critical
preprocessors as well would enhance the usefulness of Snort as the IDS of choice for the
University.

Methodology

For the alert log files, each file was downloaded to a common directory, renamed with a
.txt extension, and used concatenated with the DOS “copy” command into a single file,
large file. This was done to gain a holistic perspective on the alerts. The file was processed
using SnortSnarf.pl67 to sort the files in a well-organized HTML format. Using Apache
installed on my Windows XP laptop, I reviewed the SnortSnarf output.

c:\>sans3\alerts>copy alert020611.txt+alert020612.txt+alert020613.txt+alert020614.txt+alert020615.txt alerts
alert020611.txt
alert020612.txt
alert020613.txt
alert020614.txt
alert020615.txt

1 file(s) copied.

I attempted to use the SnortSnarf.pl script on the scan files as well; both on each separate
file, and on a file concatenated in the same manner as the alert files, but could not
effectively parse all of the files - even on a very powerful server. As an alternative, I
placed the scan files in a unique directory and used the following sed expression (text is
wrapped from a single line) to convert them into comma separated value (.csv) files:

$ sed 's/\(Jun [0-9]\{2\} [0-9]\{2\}:[0-9]\{2\}:[0-9]\{2\}\)
\([^.]*.[^.]*.[^.]*.[^.]*\)\:\([0-9]\{1,5\}\) \(->\) \([^.]*.[^.]*.[^.]*.[^.]*\)\:\([0-
9]\{1,5\}\) \(.*\)/\1\,\2\,\3\,\5\,\6\,\7/' scans.020612 > scans.020612.csv

The expression turns this:

Jun 11 09:50:01 205.188.228.33:15050 -> MY.NET.151.85:6970 UDP
Jun 11 09:50:00 MY.NET.153.126:2176 -> 61.145.113.82:80 SYN ******S*

into this:
Jun 11 09:50:01,205.188.228.33,15050,MY.NET.151.85,6970,UDP
Jun 11 09:50:00,MY.NET.153.126,2176,61.145.113.82,80,SYN ******S*

Due to the large size of the files, and given that most of the powerful servers in our
organization are Windows-based, I installed Cygwin and ran the sed script within the
Cygwin shell. I then placed the imported the files into a Microsoft SQL database by
creating DTS package which imports the file and creates a table to store the data. This
technique leverages the graphical tools present in Microsoft SQL Enterprise Manager and
very quickly imports the data; all that is required is that the data source is in an easily
parsed format, in this case .cvs. The columns are simply transformed from the text-only
data source into table columns within the database using the CopyColumns
transformation built into SQL. The table can be created with the following script; the data
needs to be imported using DTS:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 74 Bill M. Shinn

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[scans2]') and OBJECTPROPERTY(id,
N'IsUserTable') = 1)
drop table [dbo].[scans2]
GO

CREATE TABLE [dbo].[scans2] (
[ID] [int] IDENTITY (1, 1) NOT NULL ,
[Date] [datetime] NULL ,
[SourceIP] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[SourcePort] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[DstIP] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[DstPort] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[Attack] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

) ON [PRIMARY]
GO

The following SQL queries were used to analyze the scan data68:

scans_SourceIP_Count.sql

SELECT SourceIP, COUNT(*) AS COUNT
FROM dbo.scans2
GROUP BY SourceIP
ORDER BY COUNT DESC

scans_SourceIP_DstPort_Count.sql

SELECT SourceIP, DstPort, COUNT(*) AS COUNT
FROM dbo.scans2
GROUP BY SourceIP, DstPort
ORDER BY COUNT DESC

scans_SourceIP_DstIP_DstPort_Count.sql

SELECT SourceIP, DstIP, DstPort, COUNT(*) AS COUNT
FROM dbo.scans2
GROUP BY SourceIP, DstIP, DstPort
ORDER BY COUNT DESC

scans_SourceIP_SourcePort_DstIP_DstPort_Count.sql

SELECT SourceIP, SourcePort, DstIP, DstPort, COUNT(*) AS COUNT
FROM dbo.scans2
GROUP BY SourceIP, SourcePort, DstIP, DstPort
ORDER BY COUNT DESC

scans_SourceIP_SourcePort_DstIP_DstPort_Attack_Count.sql

SELECT SourceIP, SourcePort, DstIP, DstPort, Attack, COUNT(*) AS COUNT
FROM dbo.scans2
GROUP BY SourceIP, SourcePort, DstIP, DstPort, Attack
ORDER BY COUNT DESC

scans_per_hour_of_day.sql69

SELECT CONVERT(varchar(8),Date,1) AS 'Day',
SUM(CASE WHEN DATEPART(hour,Date) = 0 THEN 1 ELSE 0 END) AS '00:00:00-00:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 1 THEN 1 ELSE 0 END) AS '01:00:00-01:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 2 THEN 1 ELSE 0 END) AS '02:00:00-02:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 3 THEN 1 ELSE 0 END) AS '03:00:00-03:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 4 THEN 1 ELSE 0 END) AS '04:00:00-04:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 5 THEN 1 ELSE 0 END) AS '05:00:00-05:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 6 THEN 1 ELSE 0 END) AS '06:00:00-06:59:59',

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 75 Bill M. Shinn

SUM(CASE WHEN DATEPART(hour,Date) = 7 THEN 1 ELSE 0 END) AS
'07:00:00-07:59:59',

SUM(CASE WHEN DATEPART(hour,Date) = 8 THEN 1 ELSE 0 END) AS '08:00:00-08:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 9 THEN 1 ELSE 0 END) AS '09:00:00-09:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 10 THEN 1 ELSE 0 END) AS '10:00:00-10:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 11 THEN 1 ELSE 0 END) AS '11:00:00-11:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 12 THEN 1 ELSE 0 END) AS '12:00:00-12:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 13 THEN 1 ELSE 0 END) AS '13:00:00-13:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 14 THEN 1 ELSE 0 END) AS '14:00:00-14:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 15 THEN 1 ELSE 0 END) AS '15:00:00-15:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 16 THEN 1 ELSE 0 END) AS '16:00:00-16:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 17 THEN 1 ELSE 0 END) AS '17:00:00-17:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 18 THEN 1 ELSE 0 END) AS '18:00:00-18:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 19 THEN 1 ELSE 0 END) AS '19:00:00-19:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 20 THEN 1 ELSE 0 END) AS '20:00:00-20:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 21 THEN 1 ELSE 0 END) AS '21:00:00-21:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 22 THEN 1 ELSE 0 END) AS '22:00:00-22:59:59',
SUM(CASE WHEN DATEPART(hour,Date) = 23 THEN 1 ELSE 0 END) AS '23:00:00-23:59:59'

FROM Scans2
GROUP BY CONVERT(varchar(8),Date,1)
ORDER BY CONVERT(varchar(8),Date,1)

1 Northcutt, S. et. al. “Chapter 17 - Maintaining a Security Perimeter” Inside Network Perimeter Security:
The Definitive Guide to Firewalls, VPNs, Routers, and Intrusion Detection Systems. New
Riders:Indianapolis, IN. 2003. p. 483-491

2 Kim, Gene & Robson, Chris. “Sudden Production Environments: Confessions and Atonments of an R&D
Manager.” Tripwire, Inc. 23 August 2002. URL:
http://www.tripwire.com/events/archived_seminars/index.cfm? (23 August 2002).

3 Kim, G. & Robson, C. ibid.

4 Kim, G. & Robson, C. ibid. During slide 14 ot the presentation, Robson, quite ironically when viewed
from the perspective of Snort management, uses the phrase “Throwing the pig over the wall” to
describe poorly defined acceptance, hand-off, and turnover procedures.

5 Green, Chris. “Re: [Snort-sigs] Autoupdate snort signature” Snort Users Listserv. 4 October 2002. Archive
URL: http://marc.theaimsgroup.com/?l=snort-sigs&m=103372946400999&w=2 (4 October
2002)

6 While this statement is generally accurate, organization may wish to deploy certain signatures for
statistical purposes, and perhaps to detect attacks from inside their own network using exploits
against systems not present in their production environment (e.g. an exploit against MS IIS from an
Apache-only environment.).

7 Northcutt, S. et. al. ibid.

8 Northcutt, S. et. al. ibid.

9 Kim, G. & Robson, C. ibid.

10 Northcutt, S. et. al. ibid.

11 Windows Script Host 5.6. Microsoft Corporation. Download URL:
http://download.microsoft.com/download/winscript56/Install/5.6/NT5/EN-US/scripten.exe

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 76 Bill M. Shinn

12 OpenSSH Project. URL: http://www.openssh.org. (2 December 2001).

13 University of Washington Department of Genome Sciences. “OpenSSH Public Key Authentication Setup.”
http://cfm.gs.washington.edu/security/ssh/client-pkauth/. (5 September 2002).

14 Byrne, Jason. “SuSE mailinglist: RE: [suse-sparc] startup script for sshd” 8 December 2000. URL:
http://lists.suse.com/archive/suse-sparc/2000-Dec/0036.html. (16 May 2002).

15 Vesperman, Jennifer. “CVS Administration.” O’Reilly Network Linux Devcenter. 3 January 2002. URL:
http://linux.oreillynet.com/pub/a/linux/2002/01/17/cvsadmin.html. (14 August 2002).

16 Vesperman, Jennifer. “Introduction to CVS.” O’Reilly Network Linux Devcenter. 3 January 2002. URL:
http://linux.oreillynet.com/pub/a/linux/2002/01/03/cvs_intro.html. (14August 2002).

17 Concurrent Versions System. URL: http://www.cvshome.org.

18 Francis, Andrew. “Setting up a CVS repository on FreeBSD in 5 minutes.” 13 April 2002. URL:
http://www.sullust.net/docs/quickcvs.html. (3August 2002).

19 Allbery, Russ. cvslog. URL: http://www.eyrie.org/~eagle/software/cvslog/cvslog.html (3 August 2002).

20 ViewCVS Project. URL: http://viewcvs.sourceforge.net/. (12 August 2002).

21 The versions of RPM used in testing were RPM Build 4.0.3 & RPM 4.0.3. These packages are available
on any Red Hat mirror site. Different versions may be required for any particular installation of Red
Hat.

22 Blackman, David. “Debian Package Management, Part 2: A Developer’s Guide.” Linux Journal. 21 June,
2002. URL:http://www.linuxjournal.com/article.php?sid=4610 (1 September 2002).

23 OpenPKG Project. URL: http://www.openpkg.org/ (1 September 2002).

24 Bailey, Edward C. “Chapter 9 - The Philosophy Behind RPM.” Maximum RPM: Taking the Red Hat
Package Manager to the Limit.. Red Hat, Inc.:Durham, NC. 2000. URL: http://www.rpm.org/max-
rpm/ch-rpm-philosophy.html (1 September 2002).

25 Poirier, Dan. “Packaging software with RPM, Part 1; Using RPM on Red Hat Linux 7.1.” November
2001. IBM developerWorks. URL: http://www-106.ibm.com/developerworks/library/l-rpm1/ (1
September 2002).

26 Poirier, Dan. “Packaging software with RPM, Part 2: Building without root, patching software, and
distributing RPMs.” December 2001. IBM developerWorks. URL: http://www-
106.ibm.com/developerworks/library/l-rpm2/ (1 September 2002).

27 Bailey, Edward C. “Chapter 13 - Inside the Spec file; Macros: Helpful Shorthand for Package Builders.”
Maximum RPM: Taking the Red Hat Package Manager to the Limit.. Red Hat, Inc.:Durham, NC.
2000. URL: http://www.rpm.org/max-rpm/s1-rpm-inside-macros.html. (1 September 2002).

28 ipmadmin.vbs. Shinn, Bill (author). Included in practical submission, Bill_Shinn_GCIA.zip.

29 CVSNT Enhanced CVS Server. URL: http://www.cvsnt.com. Download URL:
http://www.cvsnt.org/cvsnt_1.11.1.3.exe (4 August 2002).

30 Network Simplicity OpenSSH on Windows. URL: http://www.networksimplicity.com/openssh (24 April
2002).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 77 Bill M. Shinn

31 Dell, Jeff. IDS Policy Manager version 1.3 Beta 3. URL:
http://www.activeworx.com/downloads/index.htm (2 May 2002)

32 At the time of this writing, the current Snort stable rule set distribution was available at:
http://www.snort.org/dl/rules/snortrules-current.tar.gz

33 Stevens, W. TCP/IP Illustratred, Volume 1: The Protocols. Addison-Wesley:Boston. 1994. p 226-7.

34 Green, C. and Roesch, M. “Chapter 2, Section 2.3.15 Ack” Snort Users Manual: Snort Release: 1.9.x.
SnortUsersManual.pdf. 26 April 2002. URL:
http://www.snort.org/docs/writing_rules/chap2.html#tth_sEc2.3.15 (9 August 2002)

35 Novak, J. Track 3 - Intrusion Detection In-Depth 3.2, 3.3: Network Traffic Analysis Using tcpdump.
SANS Institute. 2002

36 Northcutt, S., Novak, J., and McLachlan, D. Network Intrusion Detection: An Analyst’s Handbook, Second
Edition. New Riders:Indianapolis, IN. 2001

37 Swiss Academic & Research Network, MAP Data Centre. “Default TTL Value in TCP/IP.” April 2001.
URL: http://www.map2.ethz.ch/ftp-probleme.htm. (24 June 2002).

38 Honeynet Project. “Knowing your Enemy: Passive Fingerprinting Identifying remote hosts, without them
knowing.” 4 March 2002. URL: http://www.honeynet.org/papers/finger/ (14 June 2002).

39 Honeynet Project. “List of fingerprints for passive fingerprint monitoring.” 23 May 2000. URL:
http://www.honeynet.org/papers/finger/traces.txt. (14 June 2002).

40 Spitzner, L. “Auditing Your Firewall Setup”. 12 December 2000. URL:
http://www.enteract.com/~lspitz/audit.html. (14 June 2002).

41 Spitzner, L. “Understanding the FW-1 State Table.” 29 November 2000. URL:
http://www.enteract.com/~lspitz/fwtable.html . (14 June 2002).

42 Stevens, W. ibid, p. 226-7, 246-7.

43 Postel, J.B. ed. (Information Sciences Institute, prepared for DARPA). “RFC: 793 Transmission Control
Protocol” September 1981. (Retrieved from URL: http://www.faqs.org/rfcs/rfc793.html on 15
April 2002).

44 Fyodor. “Nmap network security scanner man page.” Date not available (but the man pages are always
included in the nmap distribution. URL: http://www.insecure.org/nmap/data/nmap_manpage.html .
(1 July 2002).

45 Spitzner, L. “Understanding the FW-1 State Table.” ibid.

46 Brenton, C. & Wagner, R. “RE: Anyone else seeing TCP ACKs on port 80? - Not LION Worm.” 26 April
2002. URL: http://www.incidents.org/archives/intrusions/msg08129.html. (25 June 2002).

47 Security Administrator, Corning Incorporated - dnstech@corning.com. “RE: ACK packets from
199.197.130.21 & 199.197.135.21”. Personal email communication. 25 June 2002.

48 Stewart, J. “SANS Global Incident Analysis Center > 12/11/00 - 1200.” 11 December 2000. URL:
http://www.sans.org/y2k/121100-1200.htm. (25 June 2002).

49 Benninghoff, J. & Romero, J. “SANS Global Incident Analysis Center > Report Date: March 14, 2001 -

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 78 Bill M. Shinn

1400.” 14 March 2001. URL: http://www.sans.org/y2k/031401.htm. (25 June 2002).

50 Baldwin, L. “SANS Global Incident Analysis Center > Report Date: April 3, 2001 - 1430.” 03 April 2001.
URL: http://www.sans.org/y2k/040301-1430.htm. (25 June 2002).

51 Results gathered from URL: http://www.geektools.com and http://www.arin.net .

52 Halpern, J., Convery, S, & Saville R. “SAFE VPN: IPSec Virtual Private Networks in Depth.” Cisco
Systems, Inc:San Jose, CA. 16 Aug 2001. URL:
http://www.cisco.com/warp/public/cc/so/cuso/epso/sqfr/safev_wp.htm (1 August 2002).

53 CERT Coordination Center. “CERT Incident Note IN-2002-04: Exploitation of Vulnerabilities in
Microsoft SQL Server.” 23 May 2002. URL: http://www.cert.org/incident_notes/IN-2002-04.html.
(14 July 2002).

54 Microsoft Corporation. “Microsoft Security Bulletin MS02-035: SQL Server Installation Process May
Leave Passwords on System (Q263968). 10 July 2002.
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-
035.asp (22 July 2002).

55 Microsoft Corporation. “Microsoft Security Bulletin MS02-034: Cumulative Patch for SQL Server”. 10
July 2002.
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-
034.asp (22 July 2002).

56 Internet Storm Center. “Port Reports for 1433” URL: http://isc.incidents.org/port_details.html?port=1433
. 01 August 2002). The results were randomly taken for a substantial period of time to demonstrate
the massive number of scans to this port. The highest reports totals came on 20 Aug 2002 with
23% of the total records, to a relative low of 7% of the total records attributed to 1433 on 30 Aug
2002)

57 Northcutt, S. et. al. “Chapter 11 - Design Fundamentals” Inside Network Perimeter Security: The
Definitive Guide to Firewalls, VPNs, Routers, and Intrusion Detection Systems. New
Riders:Indianapolis, IN. 2003. p. 317

58 Snort stable rule set distribution, ibid.

59 arachNIDS. “IDS252/DDOS_DDOS-SHAFT-SYNFLOOD-INCOMING” No date available. URL:
http://www.whitehats.com/info/IDS252 (17 Sep 2002).

60 Dietrich, S., Long, N., & Dittrich, D. “Analyzing Distributed Denial Of Service Tools: The Shaft Case”
Proceedings of the 14th Systems Administration Conference (LISA 2000). USENIX: New Orleans,
LA: December 3-8, 2000. URL:
http://www.usenix.org/events/lisa2000/full_papers/dietrich/dietrich.pdf

61 Brown, K. “RE: Strange “DDOS” traffic.” 27 March 2002. URL:
http://www.incidents.org/archives/intrusions/msg03695.html . (18 Sep 2002).

62 Heyman, L. “Strange “DDOS traffic.” 26 March 2002. URL:
http://www.incidents.org/archives/intrusions/msg03681.html. (18 Sep 2002).

63 Cisco Systems, Inc. “Strategies to Protect Against Distributed Denial of Service (DDoS) Attacks” URL:
http://www.cisco.com/warp/public/707/newsflash.html . 17 February 2002. (23 July 2002).

64 Internet Security Systesm. “PROTOS Remote SNMP Attack Tool.” 4 March 2002.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst Practical Page 79 Bill M. Shinn

http://bvlive01.iss.net/issEn/delivery/xforce/alertdetail.jsp?id=advise110 (July 2002).

65 Dell, J. Anthony. “Adore Worm - Another Mutation” SANS Institute Reading Room. 6 April 2001. URL:
http://rr.sans.org/threats/mutation.php . (9 September 2002).

66 Beardsley, Tod. “Intrusion Detection and Analysis: Theory, Techniques, and Tools.” 8 May 2002. URL:
http://www.giac.org/practical/Tod_Beardsley_GCIA.doc (15 Oct 2002).

67 SnortSnarf. Silcon Defense. Project URL: http://www.silicondefense.com/software/snortsnarf/ (12
November 2001).

68 Newport, Brandon L. “GIAC Training & Certification: Level Two Intrusion Detection In Depth GCIA
Practical Assignment, Version 2.7a” 8 May 2001. URL:
http://www.giac.org/practical/Brandon_Newport_GCIA.zip. (3 June 2002).

69 Wells, Garth. “Counting Transactions per Hour using a Pivot Table.” SQL TEAM.COM. 9 September
2001. URL: http://www.sqlteam.com/item.asp?ItemID=5741 (31 July 2002).

