
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GIAC Level Two–Intrusion Detection in Depth

GCIA Practical Assignment–SANS 2002 Great Lakes
Practical Assignment Version 3.2–Revised May 20th 2002

By

Aaron T. Hackworth

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TABLE OF CONTENTS

ASSIGNMENT 1: DESCRIBE THE STATE OF INTRUSION DETECTION ..1

ADVANTAGES OF DISTRIBUTED AGENTS FOR NETWORK INTRUSION DETECTION AND ANALYSIS..............................1
WE’RE SURROUNDED...1
TRADITIONAL TECHNOLOGIES..1
AN EYE WITNESS AT EVERY EVENT ...2
SYNERGIES FROM THE COLLECTIVE VIEWPOINTS..2
TRACKING THE ATTACKER ...2

Track the MAC...3
Attack Source Isolation using TTL values ..5

CURRENT STATE OF DISTRIBUTED IDS ..6
FUTURE POSSIBILITIES...6

Do you speak my language? ..6
Monitoring the Internet ...7

CONCLUSION...7
REFERENCES ..8

ASSIGNMENT 2: NETWORK DETECTS ...9

DETECT #1–CRAFTED PACKETS FROM LIMITED BROADCAST ADDRESS TO LPD PORT...9
DETECT #2–SPIDA WORM ...16
DETECT #3–CONNECTION ATTEMPTS TO TCP PORT 0 ..20

ASSIGNMENT 3: ANALYZE THIS– “PEER TO PEER PRESSURE”..26

EXECUTIVE SUMMARY..26
DATA FILES USED FOR THIS ANALYSIS...27

Description of Files ...27
DATA ANALYSIS ..27

Alert Activity..27
Top 10 Alert Sources...28
Top 10 Alert Destinations ...28
Alert Ranking by Count and Direction ..29
Alert Descriptions and Analysis...30

Scanner Activity ...55
Top 10 Scanner Source Addresses ...55
Top 10 Scanned Destination Addresses ...55
Top Scanned Ports ..55
Scanner Summary ...56

Out of Spec Activity ..58
Top 10 OOS By Source Address..58
Top 10 OOS By Destination...58
OOS Summary ...59

EXTERNAL SOURCE ADDRESS INFORMATION ..61
SUMMARY OF INTERNAL HOSTS AND POSSIBLE SERVICES...65
HIGH LEVEL SECURITY ISSUES..66

Link Graph ..68
DEFENSIVE RECOMMENDATIONS ..70
OVERALL ANALYSIS PROCESS ..71
EXAMPLE OF PERL SCRIPT USED FOR ANALYSIS...72
LIST OF REFERENCES ..74

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1

Assignment 1: Describe the State of intrusion detection

Advantages of Distributed Agents for Network Intrusion Detection and Analysis

We’re Surrounded

With the number of security threats on the rise, the struggle to maintain a safe network
environment for your organization’s business is a battle that is heating up. Whether you
have a small single segment network or a global network composed of hundreds of sites,
the number attacks on your IT assets continues to grow at an alarming rate, nearly
doubling each year [1]. To control the risk these attacks pose, you harden your
perimeter, secure your hosts using best practices and deploy Intrusion Detection Systems
to watch the entry points into our networks. The issue is thattoday’s attacks don’t always
use the front door. They often times invite themselves in through unsecured lab
connections, links to external business partners, email, or remote access VPN
connections, completely bypassing your firewall and network IDS sensors. There is also
the increasing problem associated with mobile workers who take their laptops home or on
the road and connect them to the Internet, only to come back to work the next day and
hook into your “secured” network.All of this adds up to attacks coming at you from all
directions and an increase in the difficulty of blocking and monitoring intrusions.

Traditional Technologies

Traditional network based IDS systems can be a powerful weapon in detecting misuse of
our network resources but they are only effective if the packets we are interested in cross
the path of their sensors. This limited field of vision can result in many attacks not being
seen, especially those that are sourced from inside your network.

One strategy to address the “field of vision”issue is to turn to Host Intrusion Detection
based systems. HID systems install on the individual hosts you want to monitor, so they
are always in the right place, but they also have shortfalls in design and deployment that
leave us not seeing the whole picture. First, HID agents are generally deployed only to
the centralized servers in an organization and not to user workstations. The idea that all
of your valuable data resides on the central servers is increasingly flawed thinking. Who
among us doesn’t have some critical document or other data on their laptop? An attack
on these decentralized resources can be a serious blow to an organization’s operations if
data is lost or worse, if control of the workstation is lost so that it can be used as an
internal launching board for other attacks. A second issue with most HID systems is that
they focus almost entirely on detecting events related to the individual host’s applications
and operating system, using log analysis as their primary means of detection. So while
the HID systems are in the right place to see the attacks, they often are not focusing on
the right data to make the detect.

To see the whole picture, we need a host based IDS deployment model with agents that
focus on collecting and analyzing network based data. Using distributed agents for
network IDS can help up cover our blind spots.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2

An Eye Witness at Every Event

Placing the network IDS module on the host means you always see what the target sees.
There is no “back door” path that can be used to evade the IDS if it is in-line with the
network stack. It also means that as your assets move, your IDS sensors automatically
move with them. A model like this auto adjusts as people work from home, on the road,
or in different office locations in your company.

Another strong advantage of this proximity to the host is that it neutralizes the
effectiveness of some of today’s more popular firewall and IDS evasion techniques like
fragmentation and encryption by allowing us to asses packets after fragment re-assembly
and possibly even after decryption. There will always be ways to evade detection, but
taking these two powerful techniques away from the attackers represents a step forward.

Being at the target host also means you can see how the host responds to a stimulus.
Did it send any information back to the attacker or just silently drop the packet? Knowing
what the response was can help you determine the intent of the packet and the success
of the attack. Seeing what went back to the source of the stimulus also provides you with
insight into what the attacker may now know about your host. This can be valuable in
determining your exposure factor or deciding what to look for in the future.

Synergies from the Collective Viewpoints

Using a distributed agent model can allow you to see through the eyes of many different
hosts. This high density distribution allows you to correlate scans and attacks that you
may not have seen before. An example would be a SYN scan from an internal host
against an internal network segment. A traditional network IDS deployment probably
would not see this activity at all, due to the internal nature of the traffic, and your HID
systems may not be looking for these kinds of network level events. Monitoring for
network events at the host, we will see a single SYN packet come to a port. If the host is
listening on the port, it will respond with a SYN ACK, if not, a RST should be sent back.
Either way, we have a stimulus and a response. In the case of a SYN ACK being sent,
we expect to receive an ACK back, but what if this never comes? That constitutes
suspicious behavior and could be flagged. A SYN to a closed port in and of itself is
strange and could also raise a flag. Obviously, you would not want to alert on each
individual event like this, but if you could see that 100 hosts across your enterprise
reported a similar event in a relatively brief period of time the scanning attempt would now
be in clear focus and you could begin to make informed decisions about how to react.

Having hundreds or even thousands of these “electronic eyes” on the network can also
help us by revealing the data from different vantage points. Such a diverse perspective
can give new meaning to network data in the hunt for the source of a stealthy attacker.

Tracking the Attacker

A common technique employed by attackers to avoid being tracked is to send their
malicious packets out with an incorrect source IP address, a technique known as IP
spoofing [2]. Obviously this won’t work for attacks where the attacker needs a reply to the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3

initial sender, but not all attacks require a reply. There are Denial of Service attacks and
backdoors like Mixter’s Q [3] that don’t need any response to be effective. The receipt of
the traffic at the destination host canbe all it takes to complete the attacker’s goal.Even
network scanning can be accomplished using a spoofed source IP address through
techniques like the“idle host scan”[4]. In situations like these, we still would like a way to
determine where on our network the attack is originating from. In these cases, having
many vantage points from which to collect data can give new value to data like the source
MAC address and IP TTL in hunting the source and stopping attackers.

Track the MAC

On Ethernet networks, 6 Byte source and destination MAC addresses are included in
every frame that is transmitted on the network. The source MAC uniquely identifies the
network card that transmitted the frame and the destination MAC identifies the next hop
network card that should receive the frame. The issue with using this data to track
attackers is that MAC addresses are only relevant for local segment transmissions so
once a packet passes through a router, the source MAC changes to the MAC address of
the routers egress interface and the destination MAC changes to the MAC of the next hop
network interface. The result is that after one hop through a router, the source MAC no
longer identifies the specific source computer that sent the packet. This is information we
can use to our advantage if we can make our detects at various points in the network.

Visibility of Attacker MAC and TTL at Different Points in the Network

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4

Consider an attacker on the 10.10.10.0/24 segment in the diagram above. He would like
to perform a network scan of our internal systems from inside our network. The IDS
sensor monitoring our Internet and DMZ ingress connections would not be able to detect
this activity because routing would not allow any of the scans packets to cross a link that
the sensors are monitoring. Not knowing where our sensors are located, the attacker
also decides he will spoof his source IP to avoid detection. This presents him with the
problem of monitoring for replies to his scanning queries but as mentioned above, this
issue can be overcome in a number of ways including being located on a non-switched
segment, tapping the lines somewhere, ARP poisoning or flooding attacks on the switch,
… Catching this attacker will require clues to be collected and an alarm to go off. This is
where the distributed IDS agent running on Host A comes into the picture.

As the attacker scans, he will begin raising flags on our sensor agents located around the
various network segments. Eventually, enough of these flags will signal an alert at the
central correlation engine and the packet headers and other information that triggered the
flag at the hosts could be requested for central analysis. Agents that are separated from
the attacker’s network segment by routers would see the spoofed IP address and the
MAC address of the egress interface of their segment router. However, a sensor agent
running on the attackers network segment (Host A above or any other active agent on the
same segment as the attacker), would see the attacker’s real MAC value when his
scanning or attack packets arrived. If we are clever in our agent or analysis engine
design, we could also monitor for and detect spoofed MAC addresses from the local
segment.

If we determine that the source IP of a received packet is local to our subnet then as our
agent examines the reply to that packet it can also examine our ARP cache (or send an
ARP request) for the MAC address that matches the source IP in the attacker’s packet. If
the arriving MAC didn’t match the MAC we got on reply to this query or if we got no ARP
reply for the original source IP, we could draw some conclusions about validity of the
source address on the packets we received. There are occasions where this might lead
to false alerts, but a single sensor’sdata combined with data from other systems that
raised similar flags can help us filter out the false positive noise and see the attacks in
clear focus. If a machine receives a packet from a remote subnet source IP and it reports
a source MAC that does not match a router interface for your LAN segment, you can
again tell that the attacker is spoofing a remote IP address and is actually local to the
subnet the detect happened on. Advanced analysis of this kind would require the host’s
IDS agent to maintain state, but it would not cause the same load issues as maintaining
state at centralized network IDS sensors because you only need to maintain the state for
a short period of time and only for the individual PC where the agent is running. The
value of this kind of data is that we can determine if an attack is coming from the local
subnet. Having enough agents around the network will allow us to see the subnet that
the attack came from and track the attacking host back to a particular switch port or desk
and shut them down.

There is one additional clue to be had from the MAC address. If the attacker’s real MAC
address was sent out with the attacking/scanning packets, we may be able to determine
the attacker’s hardware type. Thefirst 3 bytes of the MAC address represent the vendor

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5

that manufactured the NIC card. Information on vendor MAC codes can be found at
http://standards.ieee.org/regauth/oui/oui.txt. Seeing a source MAC registered to a
particular vendor can help you focus on the types of devices that could be the source.
For example, you would not look for a Dell laptop if the MAC was registered to Hewlett
Packard. This is of course of less useful to us if the MAC is registered to a vendor that is
a mass producer like 3Com or Intel, but it still has value as an additional piece of
intelligence data we can use to fight the battle.

Attack Source Isolation using TTL values

A second piece of IP packet data that has increased value under this model is the IP TTL.
This value is set in the IP when a packet is created at the sending host. At each hop in
the network, the TTL value is decreased by one. When the value finally reaches 0, the
packet is discarded by the device and an ICMP error message is sent back to the source
IP address that is set in the IP header field [5]. This TTL mechanism is intended to
prevent packets from getting stuck in routing loops and just bouncing around your
network forever, but if we can collect enough packets at different points in the network,
we can use this value to close in on the proximity of an attacker on our network.

Different hosts set the TTL value to different initial values when they construct a packet to
be sent out. Even in the event of a crafted packet, not all malicious code randomizes this
initial TTL so if you can determine the original value of the TTL then you may also be able
to determine the number of hops (i.e. routers) that the packet traveled through to get to
your sensor agent. Other tracking techniques using ICMP TIMEX packets’TTL values
have been used in the past to track attackers to sections of the Internet [6], but in the
case of a private networks with agents on all or nearly all subnets, you can use the TTL in
the original packets to identify the proximity or even the exact segment of the attacking
host. If the attacking computer uses a non-random TTL then agents reporting in the
highest TTL values would be the ones closest to the source. Having at least one agent
on each segment could positively identify the segment that the attack was originated from
because these would report the highest TTL value of all sensors (the initial TTL). Having
two or more agents on a segment could also be used to detect randomized TTL values.
If packets were received from the same IP but with significantly different TTL values, you
can infer that there is either a serious routing issue that needs to be dealt with or
someone is trying to manipulate this value. This kind of analysis presents a more
computationally expensive task for a central analysis engine, but it is within the realm of
possibility.

Even if you didn’t happen to have a PC running your IDS agent on the same segment,
you should still be able to close in on the attacker by getting samples from segments
further away from the attacker. An agent seeing ttl = x on one side of a router and an
agent seeing ttl = x-1 on the opposite side of a router can eliminate all networks on the
side of the router where ttl = x-1 as the source. This can help you close in on the attacker
and work towards isolating them to a single subnet.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6

Once you have the exact segment or some directional vectors to work with, you can use
packet sniffing devices or other switch statistics to track and isolate the attacker’s
location.

A final benefit of capturing TTL data is its benefit towards detecting the attackers OS type.
OS fingerprinting is the use of network stack characteristics to determine the host OS
type that generated a packet. One characteristic that varies between IP stack
implementations is the initial TTL value [7]. While this statistic alone is far from
conclusive, it can help you narrow the field of possibilities and that adds to the clues that
ultimately help you in hunting the hacker.

Current State of Distributed IDS

Currently available products that have made the most progress in the area of distributed
agent IDS are from the personal firewall software vendors. Vendors like Symantec, with
their Client Security solution, and ISS with their acquisition of BlackICE, have begun to
integrate intrusion detection capabilities with personal firewall products. These products
can make detects, stop the attack and report information about the events to a centralized
data store for further correlation or analysis. These products and others like them are
powerful computer security tools and represent a strong start at what I believe will be a
key element to the future of IDS systems.

The primary issue with the current product releases is that they are still applying
traditional IDS thinking and not fully leveraging the power of their unique distribution
architecture and proximity to the client. The detect engines are primarily based on
signature matches at the local PC and don’t tend to report enough detailed data or use
that data for central correlation of network events from multiple PCs. In the example of a
single SYN packet to port 80 across each individual host, these systems would not detect
that a mapping effort was taking place. We need to see a shift to focusing on network
events and “big picture”thinking if the true power of the distributed agent design is to be
realized.

Future Possibilities

Do you speak my language?

Attackers share code, tips, and tricks. They also mentor each other and work together to
exploit your vulnerabilities. To effectively defend against this, we need our security
devices and our community to work together. This involves sharing information and tools
in a timely manner. A good start down this path would be the development and adoption
of a standards based reporting language for IDS systems. This is needed for complete
internal coverage as well as for sharing of data across organizational boundaries.

Internally, implementation of a standard reporting language would enable your firewall,
routers, switches, server, PCs, printers, etc. to all report in to a single IDS data store for
event correlation. On the people side, it would ease the sharing of information and tools
with peers and government agencies to help track and stop attacks in cyberspace. Other
areas of security are adapting standards based languages for their reporting and/or

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

7

message passing (ex. SAML and the dozens of other XML based tagging languages) and
the IDS community should make this move as well.

Monitoring the Internet

An area where distributed network IDS agents could have a potentially huge impact is in
monitoring of the Internet. The success of distributed computing projects like
Distributed.NET [8] and SETI@Home [9], demonstrate that thousands of people are
willing to donate their space CPU cycles to a cause. Why shouldn’t this “cause”be
monitoring and reporting anomalous activity on the Internet? An agent model like the one
deployed by SETI@Home, where the agents would turn on as a screen saver, could be
applied as an IDS sensor. When these agents activated, they could check in, get their
signatures and instructions from a central console and go to work.

On the Internet, having agents around the globe that could report centrally for analysis
and correlation would help us detect attacks, profile them and isolate their sources more
quickly. This kind of early warning system might allow other participants enough time to
prepare for attacks before they reach their network and they are exploited. The end result
would be better security and cost savings for everyone in cyberspace.

Collection of attacker data from thousands of Internet connections could also help our
profiling efforts. TTL values from these locations could possibly help narrow the search
for an attacker to a particular ISP, Country, City, or even street address. This combined
with existing techniques and proximity of the first alerts, could be valuable in our attempts
to find the IP spoofers.

With the increase in the number of Cable and xDSL connections, there are millions of
hosts in every address space imaginable connected to the Internet 24x7. These
computers are not always in use and their spare cycles and vantage points could be used
to help secure the Internet. It may even be possible to embed IDS agent code in the
firmware of cable/DSL modems, home routers or other access devices. This way, even if
the computers are off, the IDS sensors and the hunt for the attackers would still be on.

Conclusion

Further development of distributed IDS agents for network intrusion detection will expand
the ability to monitor for attacks, especially from internal threats. Their position at the
targeted hosts allows them to see more and reduce the effectiveness of many IDS
evasion techniques. As the numbers and locations of deployed sensor agents grows, the
collective view from many network locations can allow the Security Analyst to see the
attacks more clearly and also to track the attackers more accurately.

All IDS technologies have strengths and weaknesses. The strengths of each model
should be capitalized on, but the weaknesses can be compensated for by using a
blended IDS approach. The ability to implement this blended approach will become more
viable as a common event reporting standard is developed and implemented by industry
vendors. This will be the key to centralized collection from all IDS and other network
sources and will help to enable powerful centralized event correlation and analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

8

Finally, the development of lightweight non-intrusive agents that exist in communications
hardware such as home routers, modems, NIC or as software agents on host systems
will continue to increase our electronic vision across our organization or possibly even the
entire Internet. This expanded coverage would enable more detects, faster detects and
improve on techniques for tracking attackers like TTL analysis and/or MAC address
examination. While 100% coverage and “real time” reaction may be impossible to attain,
these kinds of tools and the additional information collection by them help us move much
closer to this goal than we have ever been before.

References

[1] CERT/CC Statistics 1988-2002 < http://www.cert.org/stats/cert_stats.html>

[2] Zwicky, Elizabeth D, et all - Building Internet Firewalls 2nd Edition. June 2000 p98-100

[3] Mixter http://mixter.warrior2k.com

[4] Erik J. Kamerling - The Hping2 Idle Host Scan. February 26, 2001
<http://rr.sans.org/audit/hping2.php>

[5] Stevens, Richard W. TCP/IP Illustrated, Volume 1 The Protocols, 1994 Addison
Wesley p.36.

[6] Northcutt, Stephen and Judy Novak. Network Intrusion Detection, An Analysts
Handbook 2nd Edition. Indianapolis, IN: New Riders Publishing, 2000. pp 360-361.

[7] Max Vision http://www.whitehats.com/library/passive/

[8] http://www.distributed.net/

[9] http://setiathome.ssl.berkeley.edu/

Jai Sundar Balasubramaniyan, Jose Omar Garcia-Fernandez, David Isacoff, Eugene
Spafford, Diego Zamboin. Architecture for Intrusion Detection Using Autonomous
Agents. Coast Technical Report 98/05. June 11, 1998.
<http://www.cerias.purdue.edu/about/projects/aafid/>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9

Assignment 2: Network Detects

Detect #1–Crafted Packets from limited broadcast address to LPD port

Relevant packets from tcpdump capture

21:22:52.144488 255.255.255.255.31337 > 226.185.171.177.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 8ed3!)
22:25:01.194488 255.255.255.255.31337 > 226.185.58.58.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 4b!)
23:24:04.174488 255.255.255.255.31337 > 226.185.27.146.515: R [bad tcp cksum
908d!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 20f2!)
00:03:13.214488 255.255.255.255.31337 > 226.185.159.127.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 9b05!)
00:22:40.204488 255.255.255.255.31337 > 226.185.236.129.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 4e03!)
00:37:04.194488 255.255.255.255.31337 > 226.185.156.239.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 9d95!)
00:58:01.254488 255.255.255.255.31337 > 226.185.231.7.515: R [bad tcp cksum
8d90!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 527f!)
01:03:37.194488 255.255.255.255.31337 > 226.185.92.82.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum de32!)
01:27:46.254488 255.255.255.255.31337 > 226.185.7.58.515: R [bad tcp cksum
908d!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 354a!)
01:48:28.254488 255.255.255.255.31337 > 226.185.142.214.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum abae!)
02:16:28.234488 255.255.255.255.31337 > 226.185.212.79.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 6635!)
03:35:07.234488 255.255.255.255.31337 > 226.185.9.30.515: R [bad tcp cksum
8e8e!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 3268!)
04:02:31.264488 255.255.255.255.31337 > 226.185.85.228.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum e4a0!)
04:38:22.284488 255.255.255.255.31337 > 226.185.137.228.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum b0a0!)
04:41:31.284488 255.255.255.255.31337 > 226.185.95.129.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum db03!)
06:00:52.284488 255.255.255.255.31337 > 226.185.66.66.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum f842!)
06:05:04.334488 255.255.255.255.31337 > 226.185.129.157.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum b8e7!)
06:29:52.314488 255.255.255.255.31337 > 226.185.114.198.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum c7be!)
06:56:22.294488 255.255.255.255.31337 > 226.185.226.106.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 581a!)
07:16:16.364488 255.255.255.255.31337 > 226.185.25.1.515: R [bad tcp cksum
8e8e!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14,id 0, len 43, bad cksum 2285!)
07:20:37.324488 255.255.255.255.31337 > 226.185.63.24.515: R [bad tcp cksum
8d90!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum fa6e!)
08:01:43.344488 255.255.255.255.31337 > 226.185.153.179.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum a0d1!)
08:09:13.354488 255.255.255.255.31337 > 226.185.125.167.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum bcdd!)
08:24:10.374488 255.255.255.255.31337 > 226.185.79.169.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum eadb!)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10

09:33:10.374488 255.255.255.255.31337 > 226.185.243.222.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 46a6!)

1. Source of Trace: http://www.incidents.org/logs/Raw/2002.5.3

2. Detect was generated by: tcpdump capture and manual analysis. According to the
information at intrusion.org, these captures were triggered by a Snort rule. If this is true,
the rule was most likely the rule listed below or a derivative of it. This rule was taken from
the backdoor.rules file which is included in the snortrules-current.tar available for
download at http://www.snort.org

alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q access";
flags:A+; dsize: >1; reference:arachnids,203; sid:184; classtype:misc-activity; rev:3;)

3. Probability the source address was spoofed: Nearly 100% - Reasons for this
conclusion include:

 The source address is the limited broadcast address. This is commonly used as a
destination address for DHCP and other local network services that need to send a
broadcast to their local subnet before they have their IP configuration, but it should
never appear as a source address.

 For a TCP connection to form, a 3-way handshake between the source and
destination IP would be required. This is not possible with this source address
because:

o TCP is point to point and 255.255.255.255 is not an individual host address.
o The source address is not routable and the ttl = 14. Unless the initial ttl =

14 (i.e. the packet was sourced from the same segment), there is no
chance that a connection could ever complete.

There is a very low probability that this is a third-party effect because of the following:

 The original packets would have needed to be spoofed from the 226.185/16
multicast address space to 255.255.255.255. While that may be possible, the
hosts that received the packets to 255.255.255.255 would respond from their own
individual IP if at all.

There is further evidence detailed in the next section (Description of Attack) to support the
theory that these are crafted packets, giving further weight to the argument that the
source IP is not true.

4. Description of Attack: This attack generates packets with the following characteristics:

 Source IP Address = 255.255.255.255 (Limited Broadcast Address)
 Source TCP Port = 31337 (spells ELEET in “Hacker” speak)
 Destination Networks are from the IANA reserved Multicast space (This may be

the result of address obfuscation in the dump file, if not; using multicast for

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11

distribution is a brilliant attack distribution scheme.). The fact that there are various
multicast addresses as the destination address for these packets may indicate that
the attacker is looking for addresses that are currently being forwarded through the
target network(s) multicast backbone.

 Destination TCP Port = 515 (usually associated with LPD / printing services)
 IP ID is always set to 0
 RST / ACK flags are set (this may be an attempt to pass packet filters or firewalls)
 Acknowledgement Number = 0 (For a normal RST packet, this should equal the

Sequence number of the packet that caused the RST + 1)
 Packet has 3Bytes of data in it. The data is = “cko”
 The attack is averaging a packet about every 29 minutes but not at specific

intervals. The longest delay between these packets was around 1 hour 19
minutes. The shortest time was around 3 minutes 9 seconds. There were never
more than 4 in a single hour of this log. This timing could be the result of:

o Segment where the traffic was captured could be the path to end networks
that are joining and leaving multicast groups that match the packets.

o Could be an attempt to avoid IDS detection (although doubtful because of
the other overt qualities of the packets)

o A manually executed attack
o We may not be seeing all of the attack packets. Given an expanded time

window (past and future packets), we may be able to form a better
conclusion on why the timing is the way it is or begin to see full coverage of
the address space.

These packets were most likely detected on an Ethernet segment because the
Frames are padded to 46Bytes as dictated in RFC 894 (A Standard for the
Transmission of IP Datagrams over Ethernet Networks)

External References to an older version of this attack include:

 Whitehats - arachNIDS Reference: IDS203/TROJAN_TROJAN-ACTIVE-Q-TCP -
< http://www.whitehats.com/info/IDS203>

 CVE Reference Number: CAN-1999-0660 (NOTE: No CVE Exists for this attack
but there was a CAN (Candidate) entry proposed on August 4th, 1999)

Source code the latest version of Q can be found at the author’s web site
(http://mixter.warrior2k.com/). The site also contains an excellent paper on backdoor
theory based on the Q concept.

5. Attack Mechanism: (Stimulus / Communications to Backdoor)

This attack is sending crafted packets sourced from the limited broadcast address to IP
addresses in the multicast ranges. The packet headers indicate that they are bound for
port 515/tcp which is normally used for LDP printing services.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12

A definite purpose for this attack is hard to determine. The most likely possibility is that
the attacker is looking for or sending instructions to Backdoor Q or a similar backdoor.

Q consists of a client and a server. The server lives on the compromised host. It is often
set up to hide itself completely or to disguise itself as another process so that it is hard to
detect with commands like ‘ps’. The Q daemon can be set up to ignore OS signals
making it hard to kill as well. It has the capability to listen on a RAW socket which allows
it to receive commands from the attacker and possibly do something without needing to
complete the TCP 3-way handshake, without having a valid/reachable source address to
respond to, and without binding to a specific socket. Some implementations for this
backdoor include the ability to encrypt the instructions sent to it. This can make the intent
of the packet payloads very hard to determine. The “cko” we are seeing in the trace
above could be a wake-up command or almost anything else.

6. Correlations:
Sage, John - May 13, 2002 - http://www.incidents.org/archives/intrusions/msg11889.html

These packets all seems to be directed at port 515/tcp but other similar scans have seen
this directed at port 80 as shown in the report documented by John Sage at:
http://www.incidents.org/archives/intrusions/msg11889.html

Date: Mon, 13 May 2002 13:52:08 -0700
From: John Sage <jsage@xxxxxxxxxxxxxx>
Subject: LOGS: ACID Incident Report 05/10/02

/* Let's see if I've got it together enough
to submit these on a regular basis, once again */

Subject: ACID Incident Report 05/10/02
From: ACID Alert <acid@xxxxxxxxxxxxxx>

Generated by ACID v0.9.6b21 on Mon May 13, 2002 13:12:04

#(114 - 3) [2002-05-10 08:18:37] TCP to 80 http
IPv4: 216.17.51.149 -> 12.82.141.69

hlen=5 TOS=0 dlen=43 ID=0 flags=0 offset=0 TTL=18 chksum=912
TCP: port=9203 -> dport: 80 flags=***A*R** seq=0

ack=0 off=5 res=0 win=0 urp=0 chksum=5089
Payload: length = 3

000 : 63 6B 6F cko

p0f:

[Fri May 10 08:10:50 2002] 216.17.51.149 [15 hops]: Windows 2000 (9)
+ 216.17.51.149:9203 -> 12.82.141.69:80 (timestamp: 2817765 @1021043450)
[Fri May 10 08:11:00 2002] 216.17.51.149 [15 hops]: Windows 2000 (9)
+ 216.17.51.149:9203 -> 12.82.141.69:80 (timestamp: 2817765 @1021043460)

The fact that a backdoor like Q can listen on a RAW socket makes the destination port
arbitrary. As long as Q is listening for packets that match a specific signature, it can act

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

13

off a packet bound for any destination port. Good ports to pick for the client commands
would be ports commonly allowed through firewalls or routers (like 80/tcp for web traffic).

7. Evidence of Active Targeting: The packets all appear to be directed at a specific type of
backdoor. The packets are all directed to port 515, but this may be arbitrary.

8. Severity Ranking: Because these are directed to multicast addresses, It is unknown
what types of systems will actually receive the packets. Without more information we
have to assume the worst. Assigning a value from 0 to 5 for each of the following
elements, this attack is ranked as follows:

 Criticality = 5 (System importance is unknown so we must assume the worst)
 Lethality = 5 (If this is Backdoor.Q or a variant, it could be a full system

compromise including installation of a root kit making it hard to detect and cleanup)
 System Countermeasures = 0 (We don’t know the system’s response)
 Network Countermeasures = 0 (Unless this detect was captured outside the

firewall, then the packets made it into the network. Since network architecture and
defenses where this was captured are unknown, we must assume the worst.)

 Overall Severity Score = (5 + 5)–(0 + 0) = 10

9. Defensive Recommendations: Block all packets with source IP addresses of
255.255.255.255 at your firewall. As a general rule, you should block all packets entering
your network that are sourced from broadcast addresses of any kind including limited
broadcast, net directed broadcast (both all 1’s and all 0’s in the host field), any local
addresses and all other reserved address spaces as defined in the IETF draft located at
http://www.ietf.org/internet-drafts/draft-manning-dsua-08.txt. This should help to limit the
amount of spoofed packets that make it into your network. In most cases, it is also wise
to block packets that have a broadcast destination address.

Since these packets are directed to multicast addresses, we don’t know which host will
see them. Routers usually control the distribution of multicast traffic and only deliver it to
segment that have host officially participating in the multicast broadcast. This means that
if there is a multicast enabled hosts listening on a particular segment, the packet should
be forwarded to that segment. This means different segments may see this traffic as
legitimate multicast hosts come online and drop off. Since wecan’t tell who will see them,
we need to check all hosts for backdoor applications. Remember that these backdoors
often hide or disguise themselves as other applications so a thorough verification of the
running services will be necessary to make sure they are what they appear to be and
nothing more. Be careful on this step. If Q is running, the attacker will have had root
level access to the system and a root kit may be installed. You might not be able to trust
what you see from ifconfig, ps, lsof, …

Check the multicast routing configuration in your network. Improper multicast
configuration could result in routers forwarding these packets out interfaces even if there
are no hosts participating in a multicast group for the address. Even if the routing is
properly configured, this could have been a carefully thought out plan to distribute the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

14

packets across multiple segments at once, especially if the timing of these packets
matched a large multicast event on the network like a web or audio cast to all employees.

If these packets came to use via the public MBone, then consider if you really want to
allow this kind of traffic into your organization. This is a policy issue that needs to be
reviewed.

10. Multiple Choice Question:
In the following tcpdump output, the length field on the following packet is 43Bytes but the
packet has 46Bytes of data in it. Why?

09:33:10.374488 255.255.255.255.31337 > 226.185.243.222.515: R [bad tcp cksum
8f8f!] 0:3(3) ack 0 win 0 [RST cko] (ttl 14, id 0, len 43, bad cksum 46a6!)
0x0000 4500 002b 0000 0000 0e06 46a6 ffff ffff E..+......F.....
0x0010 e2b9 f3de 7a69 0203 0000 0000 0000 0000zi..........
0x0020 5014 0000 facd 0000 636b 6f00 0000 P.......cko...

a) The length field is crafted and is causing tcpdump to show incorrect information
b) The physical media’s minimum frame length required 3 Bytes of padding
c) The actual number of Bytes in an IP packet must be padded to a multiple of 8
d) None of the above

Answer: b (Ethernet requires a minimum frame size of 46Bytes. If this is not met by
the packet, additional 0’s are padded to the end to meet the requirement.)

Questions and Answers from posting to Intrusion.org:

Q: What are some of the backdoors that listen on port 31337?

A: The most famous backdoor that listens on this port is Back Orifice, a popular
backdoor for the Windows NT operating system. Some others are listed in the
Intrusion Detection FAQ located at
http://www.sans.org/newlook/resources/IDFAQ/oddports.htm

Q: What is running on port 515/tcp and what is LPD?

A: Port 515/tcp is a port that is commonly used for the Line Printer Daemon (LPD)
service. The purpose of this service is to accept print jobs from client hosts running
and Line Printer Requestor (LPR) client and then control an assigned printer to print
the documents. If a system is a print server then this would be a normal port to be
listening on a host. If it were not a print server, this still might be listening as a lot of
poorly configured systems load the LPD daemon by default.

Q: What kind of host usually gets infected with backdoor Q?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15

A: UNIX and other UNIX like OS(s).

Q: How can I tell if a backdoor is running on my system?

A: This is a tough question that is probably best left to a professional trained in
incident response and system forensics. My best advice would be to turn this over to
that kind of specialist. Short of that, some things that a system admin could check
would include:

Check if there is anything listening on port 515/tcp on the target system. On most
systems, this can be accomplished using the "netstat -pan | grep :515" command. If it
is, you will see something like:

tcp 0 0.0.0.0:515 0.0.0.0:* LISTEN 9871/lpd Waiting

The 9871 in front of the slash is the process ID. You can now do a ps -ae | grep lpd
and look for any other process IDs. If they are there, you might want to unload all
instances of lpd and see if it still shows up in your ps -ae list. A source code analysis
of the latest version of Q reveals that I can start Q using another name. This lets it
hide under an alias and the output of the ps command will show the alias. If you stop
all legit versions of lpd and one is still showing up, this could indicate that something
else is masquerading.

Since Q may not listen on 515, but rather on a RAW socket, you can try to use the lsof
(list open files) command to check for a RAW socket. Use the command: lsof | grep '
sock ' to see if there are any that have unidentified protocol listed. This can indicate
an open RAW socket. NOTE: List open files can detect open network sockets
because *NIX based systems basically treat every device (including the network card)
as a file for I/O purposes.

Finally, a test that might help you detect Q on the system would be to check if the
network card is in promiscuous mode. Some versions of ifconfig can tell you this in
the output. To do this, simply type“ifconfig”at the command line and look for
PROMISC or something else in the output to indicate that the card is in promiscuous
mode. Some versions of ifconfig do not report this so you can not rely on this test
100%.

The last thing to remember with these tests is that they might not turn anything up
even if you are compromised. If Q is really present, the attacker that put it there might
have also installed a root kit and replaced the standard versions of lsof, ifconfig, and
other tools that could have been used to detect its presence. Only a trained computer
forensics specialist could determine this for you. A properly configured tool like
tripwire may also help you detect the presence of a root kit but at this point it would be
too late to try to install it. These tools are best installed at system build time because

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

16

once a system has been running “in the wild”, we are unable to be 100% sure about
the integrity of its files.

Q: Should the machine be isolated, disconnected, reformatted? Should the user be
questioned? What should the typical Incident Response be for the highest level?

A: Reaction to this kind of“unknown”is a decision that each organization would have
to make for themselves. Some would justifiably shut off and disconnect of targeted
hosts until a full forensics investigation could be completed. This could be a high cost
to the business, but if the (probability of the target actually being infected) x (potential
financial loss if a successful attack occurs) >= a dollar figure higher than the business
impact of the shutdown, then by all means they should hedge their risk and shut it
down. In the end, the right decision is all about risk management principals and the
dollars and sense of the individual situation.

Detect #2–Spida Worm

This detect was pulled from my firewall logs just a few days after the Spida Worm
was reported by CERT. These logs show an active attempt by compromised
systems to further spread the infection.

Log Files: These logs were generated by a Netscreen-5XP hardware firewall. Log file
format is:

Date Time Action Source IP:Source Port->Destination IP:Destination Port Duration of event Application

==
Self Log, (Current system time: Fri, 31 May 2002 10:48:56)

==

Date Time Action Source->Destination Duration Application
2002-05-31 07:27:18 Deny 66.253.1.12:1528->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 07:27:12 Deny 66.253.1.12:1528->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 07:27:09 Deny 66.253.1.12:1528->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 03:56:17 Deny 202.97.172.28:4372->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 03:56:11 Deny 202.97.172.28:4372->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 03:56:08 Deny 202.97.172.28:4372->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 01:44:25 Deny 64.240.169.45:3265->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 01:44:19 Deny 64.240.169.45:3265->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 01:44:16 Deny 64.240.169.45:3265->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 00:04:45 Deny 12.250.75.23:1667->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 00:04:38 Deny 12.250.75.23:1667->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 00:04:35 Deny 12.250.75.23:1667->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 23:14:33 Deny 209.139.209.132:4132->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 23:14:27 Deny 209.139.209.132:4132->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 23:14:24 Deny 209.139.209.132:4132->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 19:24:24 Deny 211.219.21.34:4497->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 19:24:18 Deny 211.219.21.34:4497->a.b.c.d:1433 0 sec TCP PORT 1433

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

17

2002-05-30 19:24:15 Deny 211.219.21.34:4497->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 15:19:32 Deny 64.221.130.82:2012->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 15:19:26 Deny 64.221.130.82:2012->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 15:19:24 Deny 64.221.130.82:2012->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 14:22:08 Deny 213.21.158.19:2039->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 14:22:01 Deny 213.21.158.19:2039->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 14:21:58 Deny 213.21.158.19:2039->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 13:53:30 Deny 64.76.134.162:1512->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 13:53:24 Deny 64.76.134.162:1512->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 13:53:21 Deny 64.76.134.162:1512->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 10:47:58 Deny 210.21.226.49:1383->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 10:47:52 Deny 210.21.226.49:1383->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-30 10:47:49 Deny 210.21.226.49:1383->a.b.c.d:1433 0 sec TCP PORT 1433

1. Source of Trace: Cable modem connected to public Internet at my home.

2. Detect was generated by: NetScreen 5-XP Firewall (The firewalls external interface
was replaced by the IP address a.b.c.d in the logs entries above).

3. Probability the source address was spoofed: There is almost no possibility that the
source addresses were spoofed. The purpose of the packets is a SYN scan for systems
running MS SQL on port 1433/tcp in hopes of generating a SYN ACK response. The next
step is to complete the 3-way handshake and exploit a common weakness on the remote
systems. To receive this SYN ACK response and continue with the attack, the source IP
must be alive and reachable. There are a few possible ways to circumvent this
requirement but they require a great deal of expertise and are highly unlikely in this case.

As further proof that the source addresses were not spoofed, I was able to contact
individuals responsible for some of the addresses in my logs. After they checked their
systems they confirmed that they had found the infection and executed cleanup.

4. Description of Attack: This attack generates packets with the following characteristics:

 Source IP Address = Real IP of an infected system
 Source TCP Port = My logs all show the use of various an ephemeral ports
 Destination IP Address = Semi-Sequential through classful network ranges
 Destination TCP Port = 1433 (Commonly used for MS-SQL Server)
 Initial SYN Packets hoping to generate a SYN ACK response
 (3) attempts from each source address using standard TCP timeout retry values

(initial packet then 3 seconds later then 6 seconds later). There is no final attempt
12 seconds after the (3) tries.

External references:

 CERT® Incident Note IN-2002-04
o <http://www.cert.org/incident_notes/IN-2002-04.html>

 CVE reference number: CAN-2002-0154 (Candidate for CVE list)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18

5. Attack Mechanism (Stimulus / Trying to Connect to SQL Server to spread worm):

The packets we can see here are a SYN Scan for MS SQL server running on 1433/tcp
(the default port). If the packets reach a host with this server running, it will generate a
SYN ACK and then the attacker will send an ACK to complete the 3-way handshake.
Once the connection is established, the attacker will attempt to access the SQL Server
instance using the‘sa’account(SQL’s administrative account) and a blank password (a
common installation error with MS SQL Server). If successful, the Spida Worm will
spread to the new victim and the compromise is complete. The newly infected system
also becomes an attacker looking for other systems to infect.

6. Correlations: CyberArmor personal firewall logs on my laptop (which is connected to
the Internet via a separate direct ISP connection) also detected these signatures.

CyberArmor Log format
=====================
EventID Date Time Action Protocol Direction SrcIP/SrcPort DstPort

0009705d 2002/05/29 07:36:50 Deny Alarm TCP Inbound 139.130.220.94/1760 1433
0009705e 2002/05/29 07:36:50 Deny Alarm TCP Inbound 139.130.220.94/1760 1433
0009705f 2002/05/29 07:36:53 Deny Alarm TCP Inbound 139.130.220.94/1760 1433
00097060 2002/05/29 07:36:53 Deny Alarm TCP Inbound 139.130.220.94/1760 1433
00097061 2002/05/29 07:37:00 Deny Alarm TCP Inbound 139.130.220.94/1760 1433
00097062 2002/05/29 07:37:00 Deny Alarm TCP Inbound 139.130.220.94/1760 1433
00097071 2002/05/29 10:24:35 Deny Alarm TCP Inbound 61.136.9.50/3026 1433
00097072 2002/05/29 10:24:35 Deny Alarm TCP Inbound 61.136.9.50/3026 1433
00097073 2002/05/29 10:24:38 Deny Alarm TCP Inbound 61.136.9.50/3026 1433
00097074 2002/05/29 10:24:38 Deny Alarm TCP Inbound 61.136.9.50/3026 1433
00097075 2002/05/29 10:24:44 Deny Alarm TCP Inbound 61.136.9.50/3026 1433
00097076 2002/05/29 10:24:44 Deny Alarm TCP Inbound 61.136.9.50/3026 1433

The fact that this attack was seen directed at my laptop brings up an important point
about the use of a perimeter firewall as your only network defense.

If a remote laptop is infected and then connects to your internal network, the attack is now
coming from the inside and your firewall has no effectiveness against it.

7. Evidence of Active Targeting: This is not active targeting against a specific machine,
but it is clearly a search for a server running on port 1433/tcp. (Most likely MS-SQL)

8. Severity Ranking: Assigning a value from 0 to 5 for each of the following elements, this
attack is ranked as follows:

 Criticality = 1 (No systems on this network that are running MS SQL Server. The
general purpose of the systems at this location is for personal research and home
use.)

 Lethality = 5 (If the attack were to be successful, the system would be
compromised. Accounts would be made available for re-entry to the system and
valuable data about the database structure on the host could be obtained.)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

19

 System Countermeasures = 5 (There are no database servers installed on the
network and personal firewall software is blocking these packets)

 Network Countermeasures = 4 (Perimeter firewall is blocking this traffic)
 Overall Severity Score = (2 + 5)–(5 + 4) = -2

9. Defensive Recommendations:

Firewalls should block inbound traffic to 1433/tcp unless absolutely necessary for
operations. Unless your operations require connections to this port on remote hosts, the
firewalls should also block outbound traffic to 1433/tcp so that if your site does get
infected, you can not spread it to other systems. If traffic to 1433/tcp is required then it
should be allowed on a host specific basis where possible.

MS SQL Server and/or related software should not be installed without a specific
operational need. If this software must be run, the“sa”account should be securely
configured and regular security audits should be done to check the current security state.
When installing the application, all recommended security guidelines should be followed.
These guidelines can be located at Microsoft’s website at the following URL(s):

http://www.microsoft.com/sql/techinfo/administration/2000/security.asp
http://www.microsoft.com/sql/evaluation/features/security.asp

All anti-Virus signatures should be kept up to date.

Additional information on assessment of the issue, patches and cleanup is available from
CERT at http://www.cert.org/incident_notes/IN-2002-04.html.

10. Multiple Choice Question:

In the following log file output, what is the attacker most likely looking for?

==
Self Log, (Current system time: Fri, 31 May 2002 10:48:56)

==

Date Time Action Source->Destination Duration Application
2002-05-31 07:27:18 Deny e.v.i.l:1528->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 07:27:12 Deny e.v.i.l:1528->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 07:27:09 Deny e.v.i.l:1528->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 03:56:17 Deny h.a.c.k:4372->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 03:56:11 Deny h.a.c.k:4372->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 03:56:08 Deny h.a.c.k:4372->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 01:44:25 Deny w.o.r.m:3265->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 01:44:19 Deny w.o.r.m:3265->a.b.c.d:1433 0 sec TCP PORT 1433
2002-05-31 01:44:16 Deny w.o.r.m:3265->a.b.c.d:1433 0 sec TCP PORT 1433

a) Workstations running Windows XP
b) Gopher Servers
c) MS SQL Servers

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

20

d) Systems infected with Backdoor Q

Answer: c–MS SQL Server

Detect #3–Connection Attempts to TCP Port 0

Relevant packets from tcpdump capture

17:36:44.664488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.45955 > 46.5.76.25.0: S [bad tcp cksum
b4fa (->adf3)!] 1771847888:1771847888(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:36:47.654488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.45955 > 46.5.76.25.0: S [bad tcp cksum
b4fa (->adf3)!] 1771847888:1771847888(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:36:53.654488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.45955 > 46.5.76.25.0: S [bad tcp cksum
b4fa (->adf3)!] 1771847888:1771847888(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:37:05.654488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.45955 > 46.5.76.25.0: S [bad tcp cksum
b4fa (->adf3)!] 1771847888:1771847888(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:37:21.894488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.46104 > 46.5.76.25.0: S [bad tcp cksum
3877 (->3170)!] 1806416559:1806416559(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:37:24.894488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.46104 > 46.5.76.25.0: S [bad tcp cksum
3877 (->3170)!] 1806416559:1806416559(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:37:30.894488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.46104 > 46.5.76.25.0: S [bad tcp cksum
3877 (->3170)!] 1806416559:1806416559(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:37:42.894488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.46104 > 46.5.76.25.0: S [bad tcp cksum
3877 (->3170)!] 1806416559:1806416559(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:37:53.894488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.46246 > 46.5.76.25.0: S [bad tcp cksum
6735 (->602e)!] 1842645306:1842645306(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:37:56.894488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.46246 > 46.5.76.25.0: S [bad tcp cksum
6735 (->602e)!] 1842645306:1842645306(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:38:02.914488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.46246 > 46.5.76.25.0: S [bad tcp cksum
6735 (->602e)!] 1842645306:1842645306(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

21

17:38:14.894488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.46246 > 46.5.76.25.0: S [bad tcp cksum
6735 (->602e)!] 1842645306:1842645306(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:38:25.894488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.46380 > 46.5.76.25.0: S [bad tcp cksum
f317 (->ec10)!] 1883896412:1883896412(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:38:28.894488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.46380 > 46.5.76.25.0: S [bad tcp cksum
f317 (->ec10)!] 1883896412:1883896412(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:38:34.894488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.46380 > 46.5.76.25.0: S [bad tcp cksum
f317 (->ec10)!] 1883896412:1883896412(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

17:38:46.894488 IP (tos 0x0, ttl 47, id 0, len 52) 211.47.255.22.46380 > 46.5.76.25.0: S [bad tcp cksum
f317 (->ec10)!] 1883896412:1883896412(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)bad
cksum 667 (->ff5f)!

1. Source of Trace: http://www.incidents.org/logs/Raw/2002.6.7

2. Detect was generated by: tcpdump capture and manual analysis. According to the
information at intrusion.org, these captures were triggered by a Snort rule. If that is true,
the rule was most likely the rule listed below or a derivative of it. This rule was taken from
the bad-traffic.rules file that is included in the snortrules-current.tar that is available for
download at http://www.snort.org

alert tcp $EXTERNAL_NET any <> $HOME_NET 0 (msg:"BAD TRAFFIC tcp port 0
traffic"; sid:524; classtype:misc-activity; rev:3;)

Relevant packets were pulled from the file using tcpdump. Output above was generated
with the following command:

tcpdump -nvr 2002.6.7 ‘tcp[2:2]=0’

3. Probability the source address was spoofed: Low - These packets were probably the
result of user error or a programming mistake, but exploring the possibility that they had a
malicious purpose; the possible uses would be an attempt to connect to a service running
on port 0 or a host scan. In either case, the packet’s sender needs a response to
accomplish their goal so the source is not likely spoofed.

The fact that each group of packets sends (4) packets and they are spaced at the 3, 6, 12
TCP back-off intervals further supports the case that the sender was looking for a
response but not getting it.

4. Description of Attack: Received 4 groups of packets with the following characteristics:

 IP Version = 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

22

 IP Header Len = 20 Bytes
 DiffServ Bits = 0
 Total Length = 52 Bytes (20 for IP Header, 32 for TCP Header, 0 Bytes of Data)
 Source IP Address = 211.47.255.22
 IP Identification = 0
 IP Flags = DF (Don’t Fragment)
 Fragment Offset = 0
 TTL = 47
 Header checksum does not compute properly (This could indicate crafting or it

could be a result of address obfuscation in the tcpdump file)
 Source TCP Port = Ephemeral Ports (Increasing source port numbers for each

attempt looks normal)
o 45955 for first group of packets
o 46104 for second group of packets
o 46246 for third group of packets
o 46380 for fourth and final group of packets

 Destination Address = 46.5.76.25
 Destination TCP Port = 0 (Very unusual. This port is reserved according to TCP/IP

standards and should not be used by any service–This is what triggered the
Snort Rule)

 SYN flag is set for each packet. This probably indicates one of two things:
o A connection attempt is being made or
o The attacker wants to illicit a RST response

 Packets ISN (values look normal–No fixed increase between attempts):
o 1771847888 for first group of packets
o 1806416559 for second group of packets
o 1842645306 for third group of packets
o 1883896412 for fourth and final group of packets

 Packet has 0 Bytes of data. (This is normal for an initial SYN packet)

At first sight of the destination port 0/tcp, this looks like it might be the work of hping2. A
closer look at the timing of the packets, source ports, initial sequence numbers and TCP
options show that this is probably not the work of hping2.

 The detect show (4) groups of (4) packets each. Each group comes at different
intervals.

o First packet of first group arrives at 17:36:44 then we see 3 more packets in
the group at 3, 6 and 12 second intervals. This is not the default behavior
of hping2. Its default is to send packets at 1 second intervals or at some
other specific (but fixed) interval. This timing looks like an actual connection
attempt from a client. I was able to generate a similar capture by using the
command “telnet x.x.x.x 0” command. It sent the first packet and then 3
more on the standard TCP back-off intervals or 3,6,12 seconds.

o Second Group of packets arrive at 17:37:21–about 21 seconds after the
last packet of group 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

23

o Third group arrives at 17:37:53–about 11 seconds after the last packet of
group 2

o Fourth group arrives at 17:38:25–about 11 seconds after the last packet of
group 3

o These intervals are closer together but not steady. The 11 second intervals
are not enough time to squeeze another 3,6,12 attempt to another host in
there so I don’t think the delay was due to some automated scanner trying
another host before coming back to our host. To me, the timing indicates
that these packets were manually initiated and not part of an automated
scan or attack attempt.

 The SYN packets have TCP options set. Examination of the source code for
hping2 (available at http://www.hping.org/) shows that only the TCP timestamp
option is supported in the packets it generates. You may be able to use the
RAWIP mode and inject the options manually, but this is probably not what we are
looking at. The options being present add further weight to the argument that this
is some sort of client attempting a connection to port 0.

 The source ports of these packets (45955, 46104, 46246 and 46380 as shown
above in Section 4–Description of Attack) are normal source ports for a client
connecting to a remote host. They are increasing on each attempt and at what
looks like a normal rate. Again, an examination of the source code for hping2
shows us that it does not behave in this way. If you do not manually specify the
source port, it will be chosen randomly according to the following formula (1024 +
rand() % 2000). This formula will always generate an initial source port between
1024 and 3023. Also, the source port stays constant for each of the 4 packets in
each grouping. With hping2, unless a fixed port is specified, the source port will
increment by one on each successive packet.

 Finally, the initial sequence numbers sent in the packets are not random. They are
the same ISN for each packet in a cluster and they look like normally increasing
ISN values. Unless a specific TCP sequence number is specified, hping2
generates a random sequence number for each packet it sends.

5. Attack Mechanism (Stimulus / Attempting TCP Connect() to 0/tcp):

Multiple connection attempts to port 0/tcp at regular TCP (3/6/12) retry intervals.

So if it is not hping2, what is sending connection requests to TCP port 0? I believe this
traffic is the result of user error or a programming mistake.

 Client configuration error–An improperly configured client application (examples:
user typed “telnet 46.5.76.25 0” either on purpose or accidentally, user accidentally
set ftp client to connect to port 0, etc …). Some operating systems will notallow
this, but others, like Linux, will.

 A poorly written proxy or NAT device that the user is traversing is causing the
destination port to go to 0.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24

If this command were not a mistake on the part of the user, then it was someone either
goofing around, trying to force an IDS alert or trying to illicit a RST packet from the host
as a very overt technique for checking if the host is alive or not.

Some more remote possibilities for what could be happening here include:

 User has a broken IP stack that is sending traffic to port 0 through programming
error. This is unlikely with most of today’s operating systems, but it is a possibility.

 User has a custom client that tries to connect to a backdoor listening on tcp port 0
or even a backdoor listening in promiscuous mode (see analysis of Mixter’s
backdoor Q for more information). I rank this as a very low possibility based on the
fact that most IP stacks should not allow a service to bind to this port and modern
firewalls would block this traffic. Odds are also low that this is an attempt to
communicate with an agent listening in promiscuous mode because there would
be no need to send 4 packets on TCP back-off intervals for this kind of message
passing. Also, there is no data in the packet so unless it was a trigger based on
the packet header signature, there is no message to listen for.

 An unknown or customized scanning tool generated these packets.
 I found reference on the Internet that some IRIX systems can listen on tcp port 0.

Although I doubt this is the case, I have not been able to confirm or refute the
statement. If the destination host is an IRIX system we should consider this.

Bottom line is this is believed to be fairly benign traffic generated out of user or
programming error.

6. Correlations:
A search of June 2002 log files located at http://www.incidents.org/logs/Raw/ turned up
this pattern in the following logs.

 2002.6.3
 2002.6.5–2002.6.7
 2002.6.9–2002.6.17

Outside of these log files and other students’practical posts (which came from the same
pool of source files), I have found no other posted detects of this pattern. There are other
attack patterns that go to TCP port 0, but I turned up no other posts that matched the
signature in the other areas like tcp options, etc.

7. Evidence of Active Targeting: This is clearly active targeting. All packets are all
destined for the same host and port.

8. Severity Ranking: It is unknown what types of systems these targets are and without
more information or access to the targeted hosts, we have to assume the worst.

 Criticality = 5 (System importance is unknown so assume the worst)
 Lethality = 1 (Odds are extremely low that there is a service listening on port 0)
 System Countermeasures = 3 (The systemdoesn’t appear to be responding to

the connect request. This is shown by the 4 packets on 3, 6, 12 second TCP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

25

back-off times. This is still a 3 because we have some element of the unknown to
contend with.)

 Network Countermeasures = 0 (Unless this detect was captured outside the
firewall, then the packets made it into the network. Since network architecture and
defenses where this was captured are unknown, we must assume the worst.)

 Overall Severity Score = (5 + 1)–(3 + 0) = 3

9. Defensive Recommendations:

 Firewall should block packets with source or destination tcp port equal to 0.
 Inform the target host’s system administrator and ask them to check the targeted

host just to be sure there really is nothing running on that port or any other
anomalous behavior on the system. While we believe this is highly unlikely, due
diligence dictates that we should at least have a look.

 Notify the source address owner. They may be able to locate the problem and
correct it or, if this really is an attack, shut down the connection.

10. Multiple Choice Question:

In the following tcpdump output, what is special about the timing of the packet arrivals?

16:36:44.664488 IP 211.47.255.22.45955 > 46.5.76.25.0: S 1771847888:1771847888(0)
win 5840 <mss1460,nop,nop,sackOK,nop,wscale 0> (DF)
16:36:47.654488 IP 211.47.255.22.45955 > 46.5.76.25.0: S 1771847888:1771847888(0)
win 5840 <mss1460,nop,nop,sackOK,nop,wscale 0> (DF)
16:36:53.654488 IP 211.47.255.22.45955 > 46.5.76.25.0: S 1771847888:1771847888(0)
win 5840 <mss1460,nop,nop,sackOK,nop,wscale 0> (DF)
16:37:05.654488 IP 211.47.255.22.45955 > 46.5.76.25.0: S 1771847888:1771847888(0)
win 5840 <mss1460,nop,nop,sackOK,nop,wscale 0> (DF)

a) Timing indicates a SYN Flood attack
b) Timing indicates a “low and slow” IDS evasion technique
c) Timing indicates normal TCP back-off
d) Timing indicates each packet was individually generated using manual a technique

Answer: c (Timing indicates normal TCP back-off)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

26

Assignment 3: Analyze This– “Peer to Peer Pressure”

Executive Summary
This report represents an analysis of the GIAC University site security based on network
Intrusion Detection System logs from the five day period Oct. 10, 2002–Oct 15, 2002.

Once the details of the log entries were investigated, the majority of the activity appears
to be “noise”from Peer to Peer applications, online gaming and a poorly configured IDS
rulebase. While these don’t represent malicious attacks against University resources,
they do raise questions around appropriate use of resources and effectiveness of the IDS
logs as a security tool.

In addition to the “noise”, there were several log entries that paint a picture of attempted
system compromise, DoS attacks, scanning and virus activity. While these can not be
confirmed without additional information, there is enough evidence to raise suspicions to
a level that warrants further investigation. Where alert entries are suspicious on their
own, the analysis and recommendations are provided with the details of the alert.
Correlations of events and other general security concerns are detailed in the “High Level
Security Issues” sectionof this report. A high level summary of the alert and scanning
activity is also included here for your reference.

Alerts
There were 902,201 alerts generated by
the IDS system. The top 10 alerts
generated are displayed here. See the
“Alert Ranking by Count and Direction”
section for a complete list of alerts.

Scanning
There were 2,669,298 packets that caused
scanning alarms to be generated. Most of
scanning alerts were false positives
generated by Peer to Peer file sharing.
Other commonly “scanned”ports were web
services (80), tcpmux (1), Counterstrike
(27005), DNS (53), FTP (21), HTTPS (443)
and TELNET (25). Additional analysis of
the scanning data can be found in the
Scanner Activity section of this report.

Recommendations
Where appropriate, specific security suggestions are listed with the detailed analysis of
individual alerts or scanning events. Some of these include IDS tuning suggestions to cut
down on the number of“noise” related alerts and allow the security staff to better focus on
real issues. In addition, high level suggestions for improving overall site security are
provided in the“Defensive Recommendations”section of this report.

Top 10 Alerts
Possible Red Worm - traffic
IIS Unicode attack detected
CS WEBSERVER - external web traffic
Watchlist 000220 IL-ISDNNET-990517
SMB Name Wildcard
SUNRPC highport access!
FTP DoS ftpd globbing
SYN-FIN scan!
CGI Null Byte attack detected
Queso fingerprint

Top 10 Scanned Ports 6257

80

1214

4665

1

27005

53

21

443

25

Others

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

27

Data Files Used for This Analysis

Alert Files Scans Out Of Spec Captures
Alert.021011.gz scans.021011.gz OOS_Report_2002_10_11_21861.txt
Alert.021012.gz scans.021012.gz OOS_Report_2002_10_12_29999.txt
Alert.021013.gz scans.021013.gz OOS_Report_2002_10_13_9575.txt
Alert.021014.gz scans.021014.gz OOS_Report_2002_10_14_21815.txt
Alert.021015.gz scans.021015.gz OOS_Report_2002_10_15_13854.txt

Description of Files

The files used for this analysis were obtained from http://www.incidents.org/logs and
represent data collected between the dates of October 11th, 2002 and October 15th, 2002.

For each day, there is one file from each of the following three categories:
 Alerts–These represent alerts generated by matching the SNORT signatures.
 Scans–These represent output from Snort’sscan pre-processor and are meant to

show host and port scanning activity.
 Out Of Spec –These files contain data on captured packets that have strange or

invalid characteristics. An example would be a packet with an illegal TCP flag
combination such as SYN and FIN set in the same packet.

Some of the entries in the provided files were incomplete or incorrectly formatted. To
normalize the data, the files were filtered through regular expressions using PERL script.
As the scripts located entries that could not be recovered, the data was separated out of
the main data file and placed in a separate log for manual analysis. These unrecoverable
entries amounted to less than 1% of the entire sample set and upon manual examination,
proved to be immaterial to the analysis process because the information was either
redundant, as in the case of a port scan entry that showed up in both Alerts and Scans, or
not related to an actual attack.

Data Analysis

Alert Activity

In general, the alerts fell into one of 4 categories. Noise from peer to peer traffic, noise
from online gaming, noise from poorly configured or out of data IDS rules and finally,
alerts that legitimately signaled possible security issues.

The following sections provide detailed analysis of each alert as well as some ranking
based on number of times an alert was seen and the most frequent source and
destination IP addresses for the alerts.

Even though several of the top alerts, talkers and destinations are the result of false
positives, listing them by number of detects was selected to illustrate the magnitude of the
false alerts at the site. Details of all alerts can be found in the “Alert Ranking …” and the
“Alert Description and Analysis” sectionsof this report.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

28

Top 10 Alert Sources

Source IP Primary Alert Type(s) for Source
Total
Count

24.59.33.240 High port 65535 tcp - possible Red Worm - traffic 379887
MY.NET.83.146 High port 65535 tcp - possible Red Worm –traffic

High port 65535 udp - possible Red Worm–traffic
371819

MY.NET.85.74 IIS Unicode attack detected 24614
212.179.83.64 Watchlist 000220 IL-ISDNNET-990517 12388
MY.NET.84.133 IIS Unicode attack detected 4571
128.8.120.85 SUNRPC highport access! 3166
152.101.81.195 SYN-FIN scan! 3063
66.77.73.144 CS WEBSERVER - external web traffic 2808
MY.NET.152.22 IIS Unicode attack detected 2583
212.179.97.145 Watchlist 000220 IL-ISDNNET-990517 2029

Top 10 Alert Destinations

Destination IP Primary Alert Type(s) for Destination
Total
Count

MY.NET.83.146

RedWorm
x86 setgid
x86 setuid 380141

24.59.33.240
RedWorm
CS Webserver External Web Traffic 371362

MY.NET.100.165
CS Webserver External Web Traffic
CS Webserver External FTP Traffic 21078

207.200.86.66 IIS Unicode Attack 12400

207.200.86.97
IIS Unicode Attack
Possible RedWorm 12396

MY.NET.114.88

Watchlist 000220 IL-ISDNNET-990517
NMAP Ping
WinVNC 12377

218.55.184.152 IIS Unicode Attack 6893

MY.NET.100.158

FTP DoS GLOB
SYN-FIN
Watchlist 000220 IL-ISDNNET-990517
x86 setgid(0)
IDS552/web-iis_IIS ISAPI Overflow ida nosize
IIS Unicode Attack 3744

MY.NET.99.205
SUN RPC Highport Access from 128.8.120.85:22 (normal SSH)
(1) SYN-FIN Scan alert 3167

211.115.212.150 IIS Unicode Attack 2247

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

29

Alert Ranking by Count and Direction

Direction of Attack
Attack Out->In In->In In->Out Out->Out Total

High port 65535 tcp - possible Red Worm - traffic 380225 10 371764 5 752004
spp_http_decode: IIS Unicode attack detected 3707 60467 64174
CS WEBSERVER - external web traffic 20923 1 20924
Watchlist 000220 IL-ISDNNET-990517 20005 20005
SMB Name Wildcard 19253 19253
SUNRPC highport access! 5488 5488
FTP DoS ftpd globbing 3735 3735
SYN-FIN scan! 3063 3063
spp_http_decode: CGI Null Byte attack detected 1 2539 2540
Queso fingerprint 2355 2355
IDS552/web-iis_IIS ISAPI Overflow ida nosize 2188 2188
High port 65535 udp - possible Red Worm - traffic 764 1170 1934
Incomplete Packet Fragments Discarded 1015 17 1032
External RPC call 964 964
Watchlist 000222 NET-NCFC 963 963
EXPLOIT x86 NOOP 618 618
Port 55850 tcp - Possible myserver activity - ref. 010313-1 139 163 302
MYPARTY - Possible My Party infection 190 190
connect to 515 from outside 184 184
Null scan! 182 182
Tiny Fragments - Possible Hostile Activity 160 160
CS WEBSERVER - external ftp traffic 149 149
EXPLOIT x86 setuid 0 136 136
IRC evil - running XDCC 123 123
NMAP TCP ping! 104 104
SMB C access 94 94
TCP SRC and DST outside network 68 68
Port 55850 udp–Possible myserver activity - ref. 010313-1 7 41 48
EXPLOIT x86 setgid 0 46 46
Possible trojan server activity 22 21 43
TFTP - Internal UDP connection to external tftp server 26 6 32
External FTP to HelpDesk MY.NET.70.49 17 17
External FTP to HelpDesk MY.NET.70.50 13 13
Bugbear@MM virus in SMTP 8 5 13
TFTP - External TCP connection to internal tftp server 8 5 13
RFB - Possible WinVNC - 010708-1 6 4 10
Attempted Sun RPC high port access 7 7
TFTP - External UDP connection to internal tftp server 6 6
HelpDesk MY.NET.70.49 to External FTP 4 4
HelpDesk MY.NET.70.50 to External FTP 4 4
EXPLOIT NTPDX buffer overflow 3 3
HelpDesk MY.NET.83.197 to External FTP 2 2
ICMP SRC and DST outside network 2 2
Back Orifice 1 1
DDOS TFN client command BE 1 1
DDOS shaft client to handler 1 1
External FTP to HelpDesk MY.NET.83.197 1 1
Fragmentation Overflow Attack 1 1
Probable NMAP fingerprint attempt 1 1

TOTAL ALERT DETECT COUNT 903201

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

30

Alert Descriptions and Analysis

This section describes each alert type seen in the five day period. The descriptions cover
alert classification, log samples of the alert type, a summary of the alert in general and an
assessment of the threat with recommendations for the current case. References are
also provided where appropriate to help clarify the information covered in each alert.

Alert: Attempted Sun RPC high port access

Log Sample(s):
10/11-19:05:19.036764 [**] Attempted Sun RPC high port access [**] 211.233.25.61:55588 -> MY.NET.84.133:32771
10/12-06:45:07.577690 [**] Attempted Sun RPC high port access [**] 129.6.15.29:37 -> MY.NET.162.67:32771
10/14-07:52:17.726156 [**] Attempted Sun RPC high port access [**] 65.59.116.64:32095 -> MY.NET.151.115:32771
10/15-15:23:22.830211 [**] Attempted Sun RPC high port access [**] 66.28.10.84:0 -> MY.NET.84.198:32771

Summary: Indicates an attempt to connect to Sun RPC portmapper running on port
32771. If a successful connection to an RPC tool can be made, vulnerabilities in these
tools may make it possible to execute commands as root via buffer overflow.

Analysis and Recommendations:
The host MY.NET.157.115 may be compromised. There is a series of alerts surrounding
this host that could indicate the traffic from 65.59.116.64 was part of an attack. A similar
pattern is also seen for host MY.NET.84.198. See the “High Level Security Issues”
section of this report for more information and a diagram of the attack.

The last log entry shown above is also curious. The source port is 0, this not normal
behavior. Our logs had no other scanning attempts from this host, indicating that we are
not seeing noise from a massive scan. The hostname returned from a DNS reverse
lookup indicates that the target machine is probably located in an engineering building.
That means it may very well be a Sun workstation. This combined with the individual
targeting means the alert should be taken seriously and the machine should be checked
for any signs of exploit.

The alert source address (66.28.10.84) did not resolve with NSLOOKUP, but using
visualroute.com turned up the name ntbs4.jumptv.com. A search for this name on
Google revealed the url: http://ntbs4.jumptv.com/thai-hi-safety in another site’s posted
proxy logs. Connecting to this turned up a Thai video cast. This looks like some kind of
TV media server.

The alerts from 129.6.15.29 are harmless replies to MY.NET.162.67 from a NIST time.

In general, externally initiated traffic to 32771 should be blocked at the firewall unless
there is a very strong business case for allowing it. RPC services should also be disabled
where they are not needed.

IDS Suggestion: These alerts appear to be generated based on port number alone.
The IDS rules should be upgraded to look for RPC content in addition to the port
number.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

31

Reference(s):
 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0189

Alert: Back Orifice

Log Sample(s):
10/14-23:32:48.168415 [**] Back Orifice [**] 63.250.205.9:5669 -> MY.NET.152.17:31337

Summary: Back Orifice is a Backdoor that allows remote control of Windows Machines.

Analysis and Recommendations:
This alert doesn’t guarantee a compromised system, but since there was no other detect
of this type in the logs, it does not appear to be peer to peer traffic or someone trolling
around for instances of BO. One packet to one host on that particular port looks targeted
and should raise suspicions. This could be a wake up call for a previously planted
backdoor. Without additional information about the hosts, MY.NET.152.17 should be
checked.

IDS Suggestion: This rule appears to be based on port number only. Replace it with the
newer Back Orifice preprocessor.

Reference:
 ISS Alert–http://bvlive01.iss.net/issEn/delivery/xforce/alertdetail.jsp?id=advise5
 CAN-1999-0660

Alert: Bugbear@MM virus in SMTP

Log Sample(s):
10/11-00:51:59.344562 [**] Bugbear@MM virus in SMTP [**] 195.92.193.19:3736 -> MY.NET.6.40:25
10/11-17:16:14.341249 [**] Bugbear@MM virus in SMTP [**] MY.NET.6.40:42295 -> 65.212.73.209:25

Summary: Worm with keystroke logging and backdoor capabilities. It can disable some
Anti-Virus and Personal Firewall Software. It spreads via email and unprotected file
shares. Signs of infection include connection attempts to other systems file shares and
erratic behavior from LAN printers as it tries to connect to them as file shares.

Analysis and Recommendations:
There were five instances of this alert showing mail leaving the University. This indicates
that a host on the internal network has been exposed. If possible mail headers in the mail
server logs should be reviewed around the time of the alerts. This may give some clues
useful to track down the source of the infected mail messages. This could be useful
towards finding any infected machines.

There were other signs of bugbear attack and possible compromise related to “SMB
Name Wildcard” and “SMB C access” alerts.All Anti-Virus software should be updated.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

32

IDS Suggestion: The best rule I could find for this comes from Shane Williams. If we are
using a less capable rule in our configuration, we should consider upgrading to the
following rule:

alert tcp any any -> any 25 (msg:"Bugbear@MM virus in SMTP";
content:"uv+LRCQID7dIDFEECggDSLm9df8C/zSNKDBBAAoGA0AEUQ+FEN23f7doqAT/dCQk/xWc
EQmDxCTD"; sid:900001; classtype:misc-activity; rev:1;)

Reference:
 http://securityresponse.symantec.com/avcenter/venc/data/w32.bugbear@mm.html
 http://vil.nai.com/vil/content/v_99728.htm
 http://www.sophos.com/virusinfo/analyses/w32bugbeara.html
 Williams, Shane - http://www.mcabee.org/lists/snort-users/Oct-02/msg00067.html

Alert: CS WEBSERVER–external ftp traffic

Log Sample(s):
10/13-10:29:40.669698 [**] CS WEBSERVER - external ftp traffic [**] 213.156.56.135:3828 -> MY.NET.100.165:21

Summary: Records ftp connection events to a particular internal FTP server.

Alert: CS WEBSERVER - external web traffic

Log Sample(s):
10/13-12:08:15.497058 [**] CS WEBSERVER - external web traffic [**] 66.196.73.14:35505 -> MY.NET.100.165:80
10/13-12:08:15.957945 [**] CS WEBSERVER - external web traffic [**] 66.77.73.236:2686 -> MY.NET.100.165:80

Summary: Records http connections to a particular internal web server.

Alert: DDOS TFN client command BE

Log Sample(s):
10/13-13:07:10.944921 [**] DDOS TFN client command BE [**] 130.132.252.244 -> MY.NET.140.9

Summary: DDoS Tool capable of ICMP/SYN/UDP flood and Smurf attacks. TFN can
also have backdoor capabilities. It uses ICMP echo reply messages for communications.

Analysis and Recommendations:
This is a false positive. Both the source and destination hosts for this alert entry are part
of the Active Measurement Project (AMP) project run by the National Laboratory for
Applied Network Research (NLANR). This application generates ping (i.e. icmp) and
traceroute traffic to measure network statistics.

The alert source (130.132.252.244) is an AMP server (amp.its.yale.edu) at Yale U.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

33

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 228. If desired, pass
rules can be configured for the AMP servers.

Reference(s):
 Dittrich, David. The "Tribe Flood Network" distributed denial of service attack

tool. Oct. 21st, 1999 <http://staff.washington.edu/dittrich/misc/tfn.analysis>
 Treurniet, Joanne, September 22, 2000 SANS GIAC Practical Assignment for

GCIA, <http://www.giac.org/practical/JoanneTreurniet.html>
 AMP Information Website - http://sd.wareonearth.com/woe/amp.htm
 NLANR Website - http://moat.nlanr.net/
 arachNIDS IDS184 - http://www.whitehats.com/IDS/184

Alert: DDOS shaft client to handler

Log Sample(s):
10/11-15:08:49.655655 [**] DDOS shaft client to handler [**] 205.188.165.121:80 -> MY.NET.60.88:20432

Summary: Shaft is a DDoS Tool similar to TFN (see “DDOS TFN client command BE”)

Analysis and Recommendations:
Examination of the source port for the sending host shows that this is return traffic from a
web server. There was a single entry in the alert files for this detect.

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 230.

Reference(s):
 http://security.royans.net/info/posts/bugtraq_ddos3.shtml
 arachNIDS IDS254 - http://www.whitehats.com/IDS/254

Alert: EXPLOIT NTPDX buffer overflow

Log Sample(s):
10/14-09:32:18.166442 [**] EXPLOIT NTPDX buffer overflow [**] 195.92.252.254:123 -> MY.NET.111.11:123
10/14-11:48:27.329843 [**] EXPLOIT NTPDX buffer overflow [**] 64.7.192.181:52779 -> MY.NET.88.164:123
10/15-11:28:47.733978 [**] EXPLOIT NTPDX buffer overflow [**] 216.148.215.98:123 -> MY.NET.117.25:123

Summary: Buffer Overflow attack against Network Time Protocol daemon that could
yield root access. This attack can use a spoofed source address.

Analysis and Recommendations:
This is probably streaming media traffic. The alert sources are all Media Servers and the
destinations are all systems that have hostnames registered in DNS that look like they are
in shared areas of the University campus. This probably indicates that they are running
Windows OS and are not vulnerable to this NETDX buffer overflow. If these hosts are
running NTP services then check the version for vulnerabilities. If they exist, fix them and
check for previous exploits. In general, NTP from the outside should be controlled

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

34

through a hierarchy architecture where only one or two devices get NTP data from
external sources. Internal hosts should use authenticated NTP services.

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 312.

Reference(s):
 arachNIDS IDS492 - http://www.whitehats.com/IDS/492
 BugTraq 2540 http://www.securityfocus.com/bid/2540
 Media Server example from log entry above: mms://195.92.252.254/jazzfmstation

Alert: EXPLOIT x86 NOOP

Log Sample(s):
10/11-16:45:34.912390 [**] EXPLOIT x86 NOOP [**] 131.118.254.38:80 -> MY.NET.116.80:4533
10/11-18:34:23.602766 [**] EXPLOIT x86 NOOP [**] 207.172.2.141:46010 -> MY.NET.162.101:16099
10/12-20:27:06.383816 [**] EXPLOIT x86 NOOP [**] 80.15.150.192:3562 -> MY.NET.116.47:35999
10/15-13:47:07.008272 [**] EXPLOIT x86 NOOP [**] 211.157.248.47:3952 -> MY.NET.162.91:1251
10/15-22:01:54.813420 [**] EXPLOIT x86 NOOP [**] 66.156.43.11:1771 -> MY.NET.139.10:1906

Summary: Indicates a pattern matching the Intel x86 NoOP instruction was detected in
the data portion of the packet. This can signal an attempted buffer overflow attack or it
can occur naturally in the transfer of graphics and other binary files. If the traffic is being
returned from a web server or ftp server then the traffic may not be malicious as in the
case of the first log sample listed above.

Analysis and Recommendations:
Examining the port numbers, frequency and timing of the alerts, it is believed that these
are noise from binary transfers involving web sites, ftp sites, or peer to peer file sharing.

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 684.

Reference(s):
Oborn, David - SANS GCIA Practical Assignment
<http://www.giac.org/practical/David_Oborn_GCIA.html#detect4>

Alert: EXPLOIT x86 setuid 0
Log Sample(s):
10/12-13:49:39.479454 [**] EXPLOIT x86 setuid 0 [**] 134.30.102.18:4774 -> MY.NET.185.48:6346

Summary: Attempt to change effective user id on system running on x86 architecture in
an effort to gain higher access privileges.

Analysis and Recommendations:
The Snort rule that detects this exploit looks for the setuid(0) call (“|b017 cd80|"). This
can appear in normal binary transfer and often generate false positives. All of these
alerts appear to involve traffic where this kind of normal binary traffic could occur.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

35

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 650. Carefully
define the $SHELLCODE_PORTS variable in the SNORT configuration.

Reference(s):
 Fiddler, Matthew–May 10th, 2002 - Intrusion Detection In Depth - GCIA Practical

Assignment - Version 3.0 - <http://www.giac.org/practical/Matthew_Fiddler_GCIA.doc>
 Whitehats - 2001 - “IDS436 "SHELLCODE-X86-SETUID0-UDP" -

http://www.whitehats.com/IDS/436

Alert: EXPLOIT x86 setgid 0

Log Sample(s):
10/12-11:16:48.326690 [**] EXPLOIT x86 setgid 0 [**] 24.52.56.240:2789 -> MY.NET.70.176:6699
10/15-15:21:07.933370 [**] EXPLOIT x86 setgid 0 [**] 216.135.160.48:52274 -> MY.NET.137.66:9000

Summary: Attempt to change effective group id on system running on x86 architecture in
an effort to gain higher access privileges.

Analysis and Recommendations:
Like the “Explout x86 setuid 0” alert above, this alert is often the result of false positives
from binary data transfers. The majority of this traffic is to ports associated with file
sharing services. The last entry above is to port 9000/tcp, a default port for IBM’s
WebSphere server. Web servers are a common source of false positives for this rule.

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 649. Carefully
define the $SHELLCODE_PORTS variable in the SNORT configuration.

Reference(s):
Whitehats, 2001 - IDS284 "SHELLCODE-X86-SETGID0" http://www.whitehats.com/IDS/284

Alert(s): External FTP to HelpDesk MY.NET.70.49
External FTP to HelpDesk MY.NET.70.50
External FTP to HelpDesk MY.NET.83.197

Log Sample(s):
10/12-09:48:43.695693 [**] External FTP to HelpDesk MY.NET.70.49 [**] 62.123.114.218:3791 -> MY.NET.70.49:21
10/11-19:39:15.317895 [**] External FTP to HelpDesk MY.NET.70.50 [**] 66.200.47.182:2855 -> MY.NET.70.50:21
10/15-19:19:36.443218 [**] External FTP to HelpDesk MY.NET.83.197 [**] 209.240.169.251:1601->MY.NET.83.197:21

Summary: This rule is specifically to log FTP access to the helpdesk servers.

Alert: External RPC call

Log Sample(s):
10/12-14:08:28.310028 [**] External RPC call [**] 210.46.90.254:57400 -> MY.NET.135.9:111
10/12-17:38:07.606700 [**] External RPC call [**] 24.123.46.10:2328 -> MY.NET.190.92:111

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

36

Summary: This is an attempt to locate RPC services running on a host. If a response is
sent from the host then the attacker can attempt to exploit a number of well documented
vulnerabilities in the RCP services.

Analysis and Recommendations:
The source address 24.123.46.10 in the alerts above appears on DeScan.com as a
known scanner (see reference below). This IP scanned a large set of the internal
address space for port 111 and should be watched carefully.

210.46.90.254 also appeared as a source for this alert. This address is coming from
Harbin Medical College in mainland China. The log activity clearly shows that this IP is
also the source of a scan for this service. It and other addresses from that University
should be watch for further portmapper or other suspicious traffic.

Unless there is a strong organizational reason to allow access to port 111 from external
sources, it should be blocked. RPC services should be disabled where possible.

IDS Suggestion: The rule that generated these alerts appears to be based on port alone.
It should be replaced by more current Snort rules that also examine content. In this case,
we detected the scan, but these kinds of “port only” rules can lead to false positives.

Reference(s):
 http://www.wjsolutions.com/scanner/?curpage=SummaryScan
 http://www.descan.net/searchresults.html?command=specific&source=24.123.46.10

Alert: FTP DoS ftpd globbing

Log Sample(s):
10/15-05:16:06.636217 [**] FTP DoS ftpd globbing [**] 80.11.105.159:2461 -> MY.NET.100.158:21

Summary: This attack works by sending commands with wildcards in it in hopes that
when the expression is expanded, it overflow the heap on the target and cause a denial
or service or allow arbitrary code execution.

Analysis and Recommendations:
The log entries show 3736 entries for this alert from various Internet connections in
Europe. These do appear to be DoS or heap overflow attempts because of the timing
and frequency of the alerts. When the alerts are happening, they are fairly continuous
occurring every 3-15 seconds.

The source IP would not be spoofed because the attack requires a TCP session to be
established and hijacking is not really an option for the duration and number of packets
sent. The source addresses in the alerts are all from ISPs in Brussels, France and
Germany. These addresses should be watched for further activity. The ftp server
software should be checked for vulnerability to these kinds of globbing attacks. The

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

37

target ftp host is also a DNS server. There could be a connection between this and the
reason it was selected as a DoS target.

This attack also requires a login to the ftp server to work. The logs should be examined
to find what account was used for the authentication. This ID, if not anonymous, should
have a mandatory password change. If anonymous, consider disabling this feature.

Reference(s):
 Allen, Jennifer - WU-FTPD Heap Corruption Vulnerability - GCIH Practical

Assignment v2.0. Dec. 2001. < www.giac.org/practical/Jenn_Allen_GCIH.doc>
 CERT - CA-2001-07 - <http://www.cert.org/advisories/CA-2001-07.html>
 Whitehats - IDS487 "DOS-FTPD-GLOBBING"–http://www.whitehats.com/info/IDS487

Alert: Fragmentation Overflow Attack

Log Sample(s):
10/14-05:33:15.354479 [**] Fragmentation Overflow Attack [**] 219.165.170.64:0 -> MY.NET.24.44:0

Summary: I could find no specific references to this particular alert other than the source
code for spp_degrag.c. From a look at the pre-processor source code, I believe this alert
signals when fragments are received beyond the final fragment’soffset + size.

Analysis and Recommendations:
There were other fragment related interactions between these two hosts. Based on the
DNS name returned from a reverse lookup, the target appears to be a web server that
holds student web pages. This kind of high profile host is often the target of scans and
attacks. Watch the source IP and further investigate our internal target for signs of
possible compromise.

Reference(s): Ruiu, Dragos–spp_defrag.c–Snort defrag pre-processor source code

Alert(s):
HelpDesk MY.NET.70.49 to External FTP
HelpDesk MY.NET.70.50 to External FTP
HelpDesk MY.NET.83.197 to External FTP

Log Sample(s):
10/12-09:50:08.471092 [**] HelpDesk MY.NET.70.50 to External FTP [**] MY.NET.70.50:4123 -> 161.69.201.237:21
10/12-12:35:13.033398 [**] HelpDesk MY.NET.70.49 to External FTP [**] MY.NET.70.49:2170 -> 161.69.201.238:21
10/15-08:47:19.523967 [**] HelpDesk MY.NET.83.197 to External FTP [**] MY.NET.83.197:1041 -> 161.69.201.238:21

Summary: Logs FTP access from the helpdesk servers to external FTP servers.

Analysis and Recommendations:
There are 10 entries of this type in the alert logs. 9 of them are to support ftp servers at
Network Associates so this looks like legitimate attempts to get support files from NAI. 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

38

entry was to a Comcast address. The reason for this entry is unknown but does not
appear hostile.

Alert: High port 65535 tcp - possible Red Worm - traffic

Log Sample(s):
10/12-16:15:22.218202 [**] High port 65535 tcp - possible Red Worm - traffic [**] 24.59.33.240:65535 -> MY.NET.83.146:1379
10/12-16:15:22.218501 [**] High port 65535 tcp - possible Red Worm - traffic [**] MY.NET.83.146:1379 -> 24.59.33.240:65535

Summary: Code Red (a.k.a. Adore) is a Worm that attacks vulnerable services and then
installs a backdoor listener as trojaned klogd on 65535/tcp for later use. This can indicate
that a system has been compromised.

Analysis and Recommendations:
MY.NET.83.146 should be investigated for signs of Adore because it had interactions with
214.66.75.113, a host on the telia.com network. There are reports on the Internet at
http://www.rud.dk of hosts from the telia.com domain contacting their web server with an
Adore and Adorev2 signature.

Based on traffic pattern analysis and the host list involved in the traffic, the remainder of
these alerts appears to be file transfer, authentication and peer to peer traffic.

Reference(s):
 SANS - Adore Worm - Version 0.8 - April 12, 2001

<http://www.sans.org/y2k/adore.htm>
 Fiddler, Matthew –May 10th, 2002 - Intrusion Detection In Depth - GCIA Practical

Assignment - Version 3.0 - <http://www.giac.org/practical/Matthew_Fiddler_GCIA.doc>

Alert: High port 65535 udp - possible Red Worm - traffic

Log Sample(s):
10/12-08:38:34.943203 [**] High port 65535 udp - possible Red Worm - traffic [**] 61.26.132.120:65535 -> MY.NET165.24:6257
10/12-08:39:34.014950 [**] High port 65535 udp - possible Red Worm - traffic [**] 68.97.54.51:65535 -> MY.NET.15.24:6257
10/12-08:47:29.496730 [**] High port 65535 udp - possible Red Worm - traffic [**] MY.NET.70.176:6257 -> 68.97.5.51:65535

Summary: Worm that attacks vulnerable services and then installs a backdoor listener as
trojaned klogd on 65535/udp for later use. This can indicate that a system has been
compromised. This worm is also known as Adore. It is not “Code Red”.

Analysis and Recommendations:
Possible Adore issue related to MY.NET.83.146. See Analysis of “High port 65535 tcp -
possible Red Worm–traffic” for more information.

MY.NET.104.178 was looking for SLP services by sending multicast packets to
239.255.255.253 port 427/udp. This kind of false positive is common for rules like this.
The remainder of the traffic is believed to be primarily the work of WinMX and other Peer
to Peer file sharing applications.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

39

Reference(s):
 SANS - Adore Worm - Version 0.8 - April 12, 2001 <http://www.sans.org/y2k/adore.htm>
 Fiddler, Matthew –May 10th, 2002 - Intrusion Detection In Depth - GCIA Practical

Assignment - Version 3.0 - <http://www.giac.org/practical/Matthew_Fiddler_GCIA.doc>

Alert: ICMP SRC and DST outside network

Log Sample:
10/13-17:56:55.171009 [**] ICMP SRC and DST outside network [**] 10.52.188.55 -> 169.254.10.22

Summary: ICMP packets from external source to external destination were detected.

Analysis and Recommendations:
Most likely the result of an improperly configured host or an IP spoof from inside the
network. Properly configured routers will keep this on the local segment.

The 169.254.10.22 destination address is from “Link Local” range defined in RFC 3330.
This range is commonly used operating systems when they do not have a static IP and
can not get a DHCP response. This could indicate an improperly configured host, a
switch port being in the wrong VLAN and not getting DHCP or improperly configured
route that is sending packets to this address range to the IDS sensor. Knowledge of the
IDS sensor may help us better understand these alerts.

IDS Suggestion: Consider the value of this rule. It would be better to eliminate the rule
and perform ingress / egress filtering for these kinds of packets.

Alert: IDS552/web-iis_IIS ISAPI Overflow ida nosize

Log Sample(s):
10/15-23:18:26.047102 [**] IDS552/web-iis_IIS ISAPI Overflow ida nosize [**] 61.179.120.45:4839 -> MY.NET.21.114:80

Summary: Signals attempted exploit of Microsoft IIS Index Server with data payloads
larger than the acceptable length (> 239 Bytes). The goal is to exploit an unchecked
buffer and execute arbitrary code. This is a sign of worms like Code Red or NIMDA.

Analysis and Recommendations:
Alert the destination system owners and ensure that any running web servers are
patched or that the Indexing Services are disabled.

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 1243

Reference(s):
 http://www.incidents.org/react/code_redII.php
 http://www.incidents.org/react/nimda.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

40

 Whitehats - IDS552 "IIS ISAPI OVERFLOW IDA" -
http://www.whitehats.com/info/IDS552

 Ellis, Joe–GCIA Practical Assignment v3.0, Intrusion Detection In Depth–May
14th, 2002 - <http://www.giac.org/practical/Joe_Ellis_GCIA.doc>

 Poor, Mike - Intrusion Detection in Depth. GCIA Practical Assignment, v3.0 -
<http://www.giac.org/practical/Mike_Poor_GCIA.doc>

Alert: IRC evil - running XDCC

Log Samples(s):
10/11-04:00:18.915628 [**] IRC evil - running XDCC [**] MY.NET.100.220:1232 -> 66.250.105.173:6667
10/15-00:59:57.756002 [**] IRC evil - running XDCC [**] MY.NET.100.220:4584 -> 64.45.60.200:6667

Summary: Detection of IRC file distribution agent activity.

Analysis and Recommendations:
All entries in logs were from a single internal source (MY.NET.100.220). While
destination port 6667 is commonly used by IRC, it has also been associated with
backdoors including WinSatan, ScheduleAgent, SubSeven, and a host of others. This
could be the result of IRC use, a XDCC bot on the host uploading files to the IRC channel
or a backdoor application. Host should be checked for signs of exploit. If you can
connect to any IRC channels at the destination sites, you may be able to see if your
internal IP shows up on the site as a file share.

If this is an official host, one way to prevent this is to specify what services the host can
connect to from your network. An example of this is not allowing your DMZ web servers
to initiate any outbound request through your firewall. This prevents some attacks from
completing and limits the usefulness of the boxes in case they doget “0wn3d”.

IDS Suggestion: The best rule pair I could find for this comes from Christopher Cramer
and is listed below.
alert tcp any any -> any 6667 (msg:"IRC evil - running XDCC"; content:"To
request a file type"; nocase;)

alert udp any any -> any 6667 (msg:"IRC evil - running XDCC"; content:"To
request a file type"; nocase;)

Reference(s):
 TonikGin–XDCC– An .EDU Admin’s Nightmare” –September 11th, 2002 -

<http://www.russonline.net/tonikgin/EduHacking.html>
 Pest Patrol–About Ports and Trojans–2002–

http://www.pestpatrol.com/Support/About/About_Ports_And_Trojans.asp#portlist
 Cramer, Christopher -

http://www.theorygroup.com/Archive/Unisog/2002/msg00677.html

Alert: Incomplete Packet Fragments Discarded

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

41

Log Sample(s):
10/11-00:24:26.929947 [**] Incomplete Packet Fragments Discarded [**] 216.54.222.175:0 -> MY.NET.53.36:0
10/14-16:01:01.567200 [**] Incomplete Packet Fragments Discarded [**] 202.102.233.93:0 -> MY.NET.163.235:0
10/14-15:52:07.874446 [**] Incomplete Packet Fragments Discarded [**] MY.NET.83.189:0 -> 68.48.137.49:0

Summary: This alert indicates that Snort’s defrag pre-processor has given up on
rebuilding a packet because the final fragment was received but it had not yet received
enough of the original datagram. By current default, it needs to have 50% of a packet
larger than 8K when the final fragment is received or this message will be generated.
This does not mean that the packets did not get to the destination address, just that the
Snort pre-processor gave up on them.

Analysis and Recommendations:
In the complete logs, there are a large number of these alerts coming from external
source addresses directed to internal network hosts. This may be an indication of a DoS
attack against the internal hosts using fragments that never complete. Examination of the
logs shows several packets per minute which would be indicative of a buffer starvation
attempt on the part of the attacker.

Of particular interest are the packets from 219.165.170.64 to MY.NET.24.44. There were
also several alerts of Fragment Overflow attacks related to these two addresses. See
“Fragmentation Overflow Attack” above.

Reference(s):
 Peck, Edward - GCIA Practical Version 3.0–2001 -

<http://www.giac.org/practical/Edward_Peck_GCIA.doc>
 Ruiu, Dragos–Feb. 12th, 2002 -

http://archives.neohapsis.com/archives/snort/2001-02/0320.html

Alert: MYPARTY - Possible My Party infection

Log Sample(s):
10/13-22:43:53.114667 [**] MYPARTY - Possible My Party infection [**] MY.NET.87.185:2869 -> 209.151.250.170:80
10/13-22:43:53.114989 [**] MYPARTY - Possible My Party infection [**] MY.NET.87.185:2869 -> 209.151.250.170:80

Summary: Backdoor that spreads via email worm.

Analysis and Recommendations:
It appears that an old copy of the MYPARTY virus has infected MY.NET.87.185 because
it tried several times to make a connection to the web site 209.151.250.170. This site
was where the original instructions for the virus were held (this site has since been
shutdown). The reason this is believed to be an old copy and not a new infection is that
MYPARTY was only programmed to spread from January 25th to January 29th, 2002.

Check MY.NET.87.185 for signs of infection and ensure all anti-Virus signatures are up to
date on this host.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

42

Reference(s):
 http://its.marquette.edu/virus/alert.html
 Symantec–

http://securityresponse.symantec.com/avcenter/venc/data/w32.myparty@mm.html

Alert: NMAP TCP ping!

Log Sample(s):
10/11-10:16:37.939451 [**] NMAP TCP ping! [**] 12.39.160.31:80 -> MY.NET.83.201:6346
10/11-11:46:27.290685 [**] NMAP TCP ping! [**] 67.36.84.5:80 -> MY.NET.185.48:6346
10/11-12:10:37.496055 [**] NMAP TCP ping! [**] 62.0.34.130:80 -> MY.NET.83.201:6346

Summary: Detection of NMAP Tool Being Used to Scan Hosts. This alert happens when
an ICMP echo request arrives with 0 bytes of data in its payload, a signature of NMAP.

Analysis and Recommendations:
Block inbound ICMP echo request if possible. If possible, you should also configure your
firewall to simulate and maintain state for outbound ICMP echo requests so that only
solicited replies can enter your network.

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 469

Reference(s):
Stearns, William - http://www.sans.org/y2k/practical/william_stearns_gcia.html

Alert: Null scan!

Log Sample(s):
10/11-06:30:15.215561 [**] Null scan! [**] 24.112.24.50:1 -> MY.NET.179.180:1524
10/15-06:59:12.151802 [**] Null scan! [**] 195.46.65.63:0 -> MY.NET.185.48:0

Summary: TCP packets with no tcp flags set were detected. This is a signature of a
scanning attempt. This can also be used in OS fingerprinting attempts.

Analysis and Recommendations:
Because of their destination ports, there were 2 log entries of interests. These were
headed to port 1524, a known port for the backdoor ingresslock. This could represent
someone looking for a previously planted backdoor. MY.NET.179.180 should be checked
for any signs of compromise.

There were also several entries where the source and destination port were 0, this could
indicate the use of hping2.

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 623

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

43

Reference(s):
Chappell, Laura– “Your Being Watched” –March 2001–
<http://www.nwconnection.com/2001_03/pdf31/cybercrm31.pdf>

Alert: Port 55850 tcp - Possible myserver activity - ref. 010313-1

Log Sample(s):
10/11-19:23:03.338610 [**] Port 55850 tcp-Possible myserver activity-ref. 010313-1 [**] MY.NET.6.40:55850 -> 209.236.57.18:25
10/12-00:11:21.807189 [**] Port 55850 tcp-Possible myserver activity-ref. 010313-1 [**] 216.137.26.131:55850 -> MY.NET.185.48:6346
10/12-00:11:21.807539 [**] Port 55850 tcp-Possible myserver activity-ref. 010313-1 [**] MY.NET.185.48:6346 ->216.137.26.131:55850
10/12-23:27:16.268836 [**] Port 55850 tcp-Possible myserver activity-ref. 010313-1 [**] 134.59.10.172:55850->MY.NET.111.214:4662
10/12-23:27:16.376502 [**] Port 55850 tcp-Possible myserver activity-ref. 010313-1 [**] MY.NET.111.214:4662->134.59.10.172:55850
10/14-23:45:09.824842 [**] Port 55850 tcp-Possible myserver activity-ref. 010313-1 [**] MY.NET.6.40:55850-> 63.251.244.194:113
10/15-08:21:39.459997 [**] Port 55850 tcp-Possible myserver activity-ref. 010313-1 [**] 66.180.244.27:55850-> MY.NET.179.78:25

Summary: Myserver is a DDOS tool that uses port 55850. These alerts are an indication
that traffic using this port was detected.

Analysis and Recommendations:
Examination of the port used for the other side of these conversations shows that all
alerts of this type were the result of peer to peer traffic or other normal traffic using 55850
as the ephemeral port.

NOTE: This is TCP traffic and all reference information found on the Internet indicates
that MyServer uses UDP only. I am not sure if this is an oversight on my part or a rule
error in the IDS.

IDS Suggestions: Consider the validity of this rule. If this rule is not needed or can not
be improved, perhaps it should be dropped for clarity in the alert logs.

Reference(s): Lam, Jason - Intrusion Detection in Depth–GCIA Practical Assignment
Version 2.9. <www.giac.org/practical/Jason_Lam_GCIA.doc>

Alert: Port 55850 udp - Possible myserver activity - ref. 010313-1

Log Sample(s):
10/14-02:25:57.857978 [**]Port 55850 udp-Possible myserver activity-ref.010313-1[**] MY.NET.104.66:55850 -> 239.255.255.253:427
10/12-16:50:51.445109 [**]Port 55850 udp-Possible myserver activity-ref.010313-1[**] MY.NET.188.24:55850-> 10.0.1.1:192
10/12-18:23:48.383012 [**]Port 55850 udp-Possible myserver activity-ref.010313-1[**] 137.78.21.22:55850 -> MY.NET.140.9:33485
10/12-20:07:28.208257 [**]Port 55850 udp-Possible myserver activity-ref.010313-1[**] 128.182.61.50:55850-> MY.NET.140.9:33474
10/12-20:07:28.231847 [**]Port 55850 udp-Possible myserver activity-ref.010313-1[**] 128.182.61.50:55850-> MY.NET.140.9:33475
10/12-20:07:28.255228 [**]Port 55850 udp-Possible myserver activity-ref.010313-1[**] 128.182.61.50:55850-> MY.NET.140.9:33476
10/13-06:29:50.915672 [**]Port 55850 udp-Possible myserver activity-ref.010313-1[**] MY.NET.188.24:55850-> 10.0.1.1:192
10/15-01:06:30.005936 [**]Port 55850 udp-Possible myserver activity-ref.010313-1[**] MY.NET.140.9:55850 -> 134.75.30.5:33466
10/15-05:31:22.395664 [**]Port 55850 udp-Possible myserver activity-ref.010313-1[**] MY.NET.90.118:55850-> 10.0.1.1:192
10/15-10:07:36.946014 [**]Port 55850 udp-Possible myserver activity-ref.010313-1[**] 63.250.205.22:46173-> MY.NET.163.125:55850
10/15-10:10:28.009618 [**]Port 55850 udp-Possible myserver activity-ref.010313-1[**] 63.250.205.22:51412-> MY.NET.177.61:55850
10/15-20:13:28.234253 [**]Port 55850 udp-Possible myserver activity-ref.010313-1[**] 211.233.58.229:59717>MY.NET.153.159:55850

Summary: Myserver is a DDOS tool that uses port 55850. These alerts are an indication
that traffic using this port was detected.

Analysis and Recommendations:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

44

Further investigation of hosts MY.NET.163.125, MY.NET.177.61 and MY.NET.153.159
using scanning tools is recommended to determine if there is an active listening agent on
port 55850/udp of these hosts.

Other traffic appears non-malicious - The traffic to 239.255.255.253 port 427 is related to
the Service Locator Protocol and is not malicious. Likewise, the traffic to and from
MY.NET.140.9 is not malicious. This is traceroute traffic form the AMP application
running there (for information on AMP, see information on “DDOS TFN client command
BE” alert above).The traffic to 10.0.1.1:192 is probably an attempt to locate a wireless
access point (see info at http://archive.dbforums.com/181/2002/9/497520 for reference)

IDS Suggestions: Consider the validity of this rule. There were several alerts and we
don’t know if any of them are legitimate. If this rule can not be improved, perhaps it
should be dropped. Pass rules should be installed for the AMP servers to reduce alerts.

Reference(s): Lam, Jason - Intrusion Detection in Depth–GCIA Practical Assignment
Version 2.9. <www.giac.org/practical/Jason_Lam_GCIA.doc>

Alert: Possible trojan server activity

Log Sample(s):
10/13-04:05:08.249704 [**] Possible trojan server activity [**] MY.NET.179.77:80 -> 211.28.96.9:27374
10/13-04:05:08.480481 [**] Possible trojan server activity [**] 211.28.96.9:27374 -> MY.NET.179.77:80
10/13-05:22:13.255792 [**] Possible trojan server activity [**] 213.84.22.18:27374 -> MY.NET.84.147:1214
10/13-05:22:13.256202 [**] Possible trojan server activity [**] MY.NET.84.147:1214 -> 213.84.22.18:27374
10/14-05:30:33.272875 [**] Possible trojan server activity [**] MY.NET.25.21:143 -> 4.35.54.173:27374
10/14-05:30:33.361151 [**] Possible trojan server activity [**] 4.35.54.173:27374 -> MY.NET.25.21:143
10/14-09:21:35.815883 [**] Possible trojan server activity [**] MY.NET.83.201:6346 -> 213.177.137.33:27374
10/14-09:21:35.815963 [**] Possible trojan server activity [**] MY.NET.83.201:6346 -> 213.177.137.33:27374

10/15-14:07:51.188995 [**] Possible trojan server activity [**] 138.16.135.1:27374 -> MY.NET.116.68:7625
10/15-14:07:51.189114 [**] Possible trojan server activity [**] MY.NET.116.68:7625 -> 138.16.135.1:27374
10/15-14:07:54.656084 [**] Possible trojan server activity [**] 138.16.135.1:27374 -> MY.NET.116.68:7625

Summary: This alerts represent traffic to or from port 27374, a common port for backdoor
applications like SubSeven or Ramen worm.

Analysis and Recommendations:
In the alert files, there were two kinds of entries for this alert. The first set of log entries
above represent harmless traffic that just happened to use 27374 as the ephemeral port
when connecting to a web server, KaZaa, an IMAP email server and Gnutella.

The last three entries are more suspicious because I can’t associate the port 7625 with
anything. This appears to be a custom port for an application (possibly file sharing) on
the host, but without more data, we should watch the host's activities to see if they are
controlling a backdoor on the external host. Update the Snort rules to include content.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

45

IDS Suggestion: Rule that generated the alert above seems to fire on traffic to/from port
27374 alone. Upgrade to rules Snort ID 103 and 514, they are more specific and include
content checking.

Reference(s): Graham, Robert http://www.robertgraham.com/pubs/firewall-seen.html

Alert: Probable NMAP fingerprint attempt

Log Sample(s):
10/13-23:04:48.979396 [**] Probable NMAP fingerprint attempt [**] 203.46.103.130:60448 -> MY.NET.53.8:23

Summary: This detects a packet with an invalid TCF flag combination of URG, PSH,
SYN and FIN.

Analysis and Recommendations:
This single entry was directed at port 23 which is used for telnet services. The logs also
show other scan packets from the same source to the same destination. These included
an NMAP TCP ping, a NULL Scan and two SYN packets. This is not legitimate traffic and
represents a recon attempt against the host. It is not harmful in and of itself, but it could
be the start of something more dangerous. Consider adding the source to a watch list.

You should use a stateful firewall or filtering device that stops these kinds of OOS packets
from entering your network.

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 629

Reference(s): http://www.insecure.org/nmap

Alert: Queso fingerprint

Log Sample(s):
10/12-13:25:57.682235 [**] Queso fingerprint [**] 209.116.70.75:58859 -> MY.NET.100.217:25
10/12-13:42:42.317586 [**] Queso fingerprint [**] 66.216.110.139:36534 -> MY.NET.6.40:25
10/12-13:58:32.493569 [**] Queso fingerprint [**] 209.116.70.75:51312 -> MY.NET.100.217:25

Summary: Queso sends 7 specifically crafted packets and then evaluates the responses
to attempt to determine the OS running on the target host. One of the packets sets the 2
high order bits in the TCP flags. This signature helps IDS systems pick up Queso scans.

Analysis and Recommendations:
More and more systems are implementing ECN for congestion notification. As this
becomes more common, this rule with generate an increasing number of false positives.

The traffic shown in the logs represents normal traffic from hosts using the ECN bits. An
example of this is 209.116.70.75. Reverse DNS on this host resolves to vger.kernel.org.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

46

Pointing your web browser to that page brings up in big red letters the message
“TCP/ECN IS ON!”

IDS Suggestion: Consider eliminating this rule. As ECN becomes common, it will
produce more and more false positives.

Reference(s):
 CAN-1999-0454
 http://vger.kernel.org
 Ramakrishnan, K. –RFC 3168 –The Addition of Explicit Congestion Notification

(ECN) to IP–September 2001 - <ftp://ftp.isi.edu/in-notes/rfc3168.txt>

Alert: RFB - Possible WinVNC - 010708-1

Log Sample(s):
10/11-20:32:22.314119 [**] RFB - Possible WinVNC - 010708-1 [**] MY.NET.70.225:5900 -> 68.55.61.117:2659
10/13-15:47:16.170965 [**] RFB - Possible WinVNC - 010708-1 [**] 68.48.21.151:1607 -> MY.NET.83.12:5900

Summary: VNC is a remote control application.

Analysis and Recommendations:
Some classify VNC as an administration tool and others consider it a backdoor. The
difference is whether the host’suser knows what it is being used for. This could
represent a compromised system or something as harmless as help from a helpdesk.

If the use of this tool is not allowed for help desk or other remote work, the internal hosts
should be examined for signs of WinVNC running.

Organization should consider blocking these protocols from outside the network.

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 560

Reference(s):
AT&T Laboratories Cambridge, 1999 - <http://www.uk.research.att.com/vnc/winvnc.html>

Alert: SMB C access

Log Sample(s):
10/15-09:10:16.495464 [**] SMB C access [**] 200.193.200.156:1260 -> MY.NET.190.34:139
10/15-21:42:33.970078 [**] SMB C access [**] 211.0.254.196:2077 -> MY.NET.132.20:139

Summary: These represent attempts to connect to the C$ share on a Windows server.

Analysis and Recommendations:
This share is enabled by default to allow administrative access to the C:\ drive. There are
several worms that look for unprotected C$ shares to spread themselves. Connection to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

47

network shares should not be allowed from outside the firewall. From internal hosts, this
should only be allowed if necessary and the file system on the servers should be
configured to use NTFS with proper permissions set on the files and shares.

When we see this alert immediately after a “SMB Name Wildcard” alert that is part of a
scan, we have a good indication of an attack attempting to exploit unprotected file shares.
An example of this would be the BugBear worm. There were instances of this pattern
seen in the logs. The issue is detailed in the “High LevelSecurity Issues” section.

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 533

References:
 Whitehats - IDS339 "NETBIOS-SMB-C$ACCESS"–

http://www.whitehats.com/info/IDS339

Alert: SMB Name Wildcard

Log Sample(s):
10/11-00:07:11.260858 [**] SMB Name Wildcard [**] 200.53.80.43:1032 -> MY.NET.134.95:137
10/11-00:07:11.704718 [**] SMB Name Wildcard [**] 200.53.80.43:1032 -> MY.NET.134.98:137
10/11-00:07:12.142271 [**] SMB Name Wildcard [**] 200.53.80.43:1032 -> MY.NET.134.101:137

Summary: This represents a NetBIOS scan looking for a status response from NetBIOS
and/or SAMBA hosts.

Analysis and Recommendations:
This alert is common “noise” on many networks, but in the case where the alert sources
are scrolling through our address ranges, the scanning intent is clear. Many of the alerts
in these logs are probably the result of Bugbear or a similar worm. There was an
outbreak of this worm around early October that spread VERY quickly through the
Internet and many organizations internal networks. It is scanning for victims with
unprotected network shares to spread itself.

Don’t leave unprotected shares on your host. Consider blocking these ports at the
firewall or host’spersonal firewall if there is no justification for leaving them open.

Examine the notes under “SMB C Access” for additional information.

Reference(s):
 Alexander, Bryce–Port 137 Scan–May 10th, 2000 -

<http://www.sans.org/newlook/resources/IDFAQ/port_137.htm>
 Alexander, Bryce, SANS–Followup on a Honeypot Catch - 2000 -

<http://www.sans.org/y2k/honeypot_catch.htm>
 CERT - IN-2000-02, CVE-1999-0225, CAN-1999-0495, CAN-2000-0544

Alert: SUNRPC highport access!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

48

Log Sample(s):
10/11-09:00:53.947283 [**] SUNRPC highport access! [**] 64.12.163.214:9898 -> MY.NET.55.70:32771
10/12-07:37:41.454824 [**] SUNRPC highport access! [**] 128.183.252.83:40406 -> MY.NET.163.132:32771
10/13-13:05:50.322968 [**] SUNRPC highport access! [**] 64.71.163.204:888 -> MY.NET.149.49:32771
10/14-02:10:05.535810 [**] SUNRPC highport access! [**] 12.233.125.20:2471 -> MY.NET.21.24:32771
10/14-07:04:24.862470 [**] SUNRPC highport access! [**] 169.229.70.201:39490 -> MY.NET.70.207:32771
10/14-10:51:35.646849 [**] SUNRPC highport access! [**] 64.12.161.185:5190 -> MY.NET.55.59:32771
10/14-13:50:11.165881 [**] SUNRPC highport access! [**] 64.12.25.95:5190 -> MY.NET.168.218:32771
10/14-22:02:20.303909 [**] SUNRPC highport access! [**] 64.12.161.153:5190 -> MY.NET.168.65:32771

Summary: Indicates a connection to port 32771. This is most often used for the SUN
RPC Service and can be utilized to exploit RPC services on a SUN box.

Analysis and Recommendations:
With the exception of the entries above, all of these alerts from the (5) days of logs were
from source ports like 22 (SSH), 80 (HTTP) and 21 (FTP), … For these alerts, the
overwhelming likelihood is that they are return traffic from a legitimate session setting off
the alarm. The alerts shown above could represent successful connections and should
be investigated.

RPC services should be disabled if not needed and the associated ports should be
blocked at the firewall. See “High Level Security Issues” section for information on how
this relates to an attack.

IDS Suggestion: This alert appears to be generated based on port number alone.
Replace this rule with more specific Snort rules that also check for content.

Reference(s): CVE-1999-0189

Alert: SYN-FIN scan!

Log Sample(s):
10/11-21:12:42.987754 [**] SYN-FIN scan! [**] 152.101.81.195:21 -> MY.NET.199.250:21
10/11-21:12:43.007479 [**] SYN-FIN scan! [**] 152.101.81.195:21 -> MY.NET.199.251:21
10/11-21:12:43.028977 [**] SYN-FIN scan! [**] 152.101.81.195:21 -> MY.NET.199.252:21

Summary: Detection of TCP packets with both the SYN and FIN TCP Flags set.

Analysis and Recommendations:
This is a scan looking for FTP services running on TCP port 21 (usually FTP). Since this
is an invalid flag combination, we know that these packets are crafted. The logs show
that 152.101.81.195 made 3063 attempts at various hosts on the MY.NET network. No
other source addresses were recorded for this SCAN type.

You should use a stateful firewall or filtering device that stops these kinds of packets from
entering your network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

49

IDS Suggestion: Ensure that the Snort rule is up to date - Snort ID 624

Reference(s):
Chappell, Laura– “Your Being Watched” –March 2001–
<http://www.nwconnection.com/2001_03/pdf31/cybercrm31.pdf>

Alert: TCP SRC and DST outside network

Log Sample(s):
10/12-11:33:35.827091 [**] TCP SRC and DST outside network [**] 192.168.1.101:2268 -> 62.195.94.163:1214
10/14-12:00:24.323264 [**] TCP SRC and DST outside network [**] 10.0.1.2:59443 -> 63.94.193.67:443
10/14-12:03:13.826074 [**] TCP SRC and DST outside network [**] 10.0.1.2:59444 -> 206.64.194.8:80
10/14-12:07:44.325904 [**] TCP SRC and DST outside network [**] 10.0.1.2:59443 -> 63.94.193.67:443

Summary: Indicates that packets were detected with source and destination addresses
that are not part of your defined network.

Analysis and Recommendations:
This could be the results of 3rd party noise from a spoofed scanning attempt, a routing
error or an application configuration error in the case of the top three log entries above. It
could also represent a spoofing attempt from inside your network.

Filter traffic at your border that is not bound for your networks. You should also filter
traffic that is not sourced from an internal network address to prevent your users from
spoofing attacks on other Internet hosts. Check positioning of network sensors and your
home network definitions in your SNORT config.

IDS Suggestion: This rule appears to primarily detect improperly configured hosts or
applications. If you setup ingress/egress filtering, you can consider eliminating this rule.

Alert: TFTP - External TCP connection to internal tftp server

Log Sample(s):
10/13-10:22:19.163790 [**] TFTP - External TCP connection to internal tftp server [**] 80.13.42.234:1838 -> MY.NET.111.194:69
10/13-10:22:19.164057 [**] TFTP - External TCP connection to internal tftp server [**] MY.NET.111.194:69 -> 80.13.42.234:1838
10/14-00:50:32.298070 [**] TFTP - External TCP connection to internal tftp server [**] 12.233.125.20:4766 -> MY.NET.83.150:69
10/14-00:50:32.298111 [**] TFTP - External TCP connection to internal tftp server [**] MY.NET.83.150:69 -> 12.233.125.20:4766
10/14-02:10:06.027625 [**] TFTP - External TCP connection to internal tftp server [**] 12.233.125.20:2531 -> MY.NET.21.24:69
10/14-02:10:06.029202 [**] TFTP - External TCP connection to internal tftp server [**] MY.NET.21.24:69 -> 12.233.125.20:2531
10/14-07:03:55.429941 [**] TFTP - External TCP connection to internal tftp server [**] 169.229.70.201:38498 -> MY.NET.70.207:69
10/15-19:28:25.261128 [**] TFTP - External TCP connection to internal tftp server [**] MY.NET.190.100:69 -> 12.213.46.19:2260
10/15-19:28:27.513531 [**] TFTP - External TCP connection to internal tftp server [**] 12.213.46.19:2260 -> MY.NET.190.100:69

Summary: These alerts record possible connections to the internal TFTP servers from
external systems.

Alert: TFTP - External UDP connection to internal tftp server

Log Sample(s):
10/14-11:39:52.937591 [**] TFTP - External UDP connection to internal tftp server [**] 66.70.17.91:48769 -> MY.NET.111.11:69

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

50

10/14-18:36:48.976645 [**] TFTP - External UDP connection to internal tftp server [**] 64.200.105.51:5005 -> MY.NET.152.163:69
10/15-08:36:28.379563 [**] TFTP - External UDP connection to internal tftp server [**] 65.59.116.64:45555 -> MY.NET.151.115:69
10/15-16:00:24.435966 [**] TFTP - External UDP connection to internal tftp server [**] 66.28.10.84:5510 -> MY.NET.84.198:69
10/15-17:50:57.987857 [**] TFTP - External UDP connection to internal tftp server [**] 63.250.219.188:20802 -> MY.NET.168.253:69

Summary: Records possible connection to the internal TFTP servers from external host.

Analysis and Recommendations:
Buffer overflow attacks often plant only a small program, referred to as a “grappling hook”,
that is responsible to retrieve a larger exploit and install it. This retrieval can be
accomplished with many protocols including TFTP.

This should be investigated. If these are known systems and this is considered valid
activity then updating of the Snort configuration should be considered to avoid these alert
entries. Normally, un-secure services like TFTP should be avoided, especially from
external sources.

These entries combined with other alert log entries for MY.NET.151.115 and
MY.NET.84.198 represent possibly compromised systems. These hosts should be
checked immediately. Seesection on “High LevelSecurity Issues” for additional details.

Alert: TFTP - Internal UDP connection to external tftp server

Log Sample(s):
10/11-22:53:54.382910 [**] TFTP - Internal UDP connection to external tftp server [**] MY.NET.82.2:1075 -> 130.130.21.29:69
10/12-07:54:18.068261 [**] TFTP - Internal UDP connection to external tftp server [**] MY.NET.83.146:6257 -> 219.161.161.86:69
10/12-18:48:50.402100 [**] TFTP - Internal UDP connection to external tftp server [**] 68.14.128.176:69 -> MY.NET.83.146:6257
10/15-08:01:37.824103 [**] TFTP - Internal UDP connection to external tftp server [**] 65.59.116.64:69 -> MY.NET.151.115:8128

Summary: This indicated that an internal host has accessed a TFTP server that is
outside of your network space.

Analysis and Recommendations:
TFTP is not in and of itself harmful, but it is very insecure in that it uses clear text and no
authentication. TFTP is also a common protocol in attacks that use “Grappling Hook”
programs. These are small pieces of code that go out to network resources and retrieve
the real code that the attacker wants to load on the compromised host. These are
popular because of the small amount of code necessary. It makes them easy to deliver
via buffer overflows, worms, etc.

Unless there is a strong organizational case for allowing this kind of traffic, it should be
blocked at the network edge via a stateful firewall. In addition, the internal hosts listed
should be checked for compromise.

These entries combined with other alert log entries shown in the “TFTP - External UDP
connection to internal tftp server” section above, represent possibly compromised
systems. See section on “High LevelSecurity Issues” for additional details.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

51

Alert: Tiny Fragments - Possible Hostile Activity

Log Sample(s):
10/15-12:50:11.222243 [**] Tiny Fragments - Possible Hostile Activity [**] 68.55.87.49 -> MY.NET.168.80
10/15-13:32:00.222801 [**] Tiny Fragments - Possible Hostile Activity [**] 68.83.182.149 -> MY.NET.91.240

Summary: This alarm is triggered by Snort’sminifrag preprocessor when fragments
smaller than the minimum configured threshold are received.

Analysis and Recommendations:
This can represent the use of NMAP, fragrouter or the use of other fragment generating
tools. The purpose is probably to evade IDS detection by breaking up packets that would
match an IDS signature into smaller chunks that would not match.

Check the SNORT minifrag preprocessor config to make sure it is set correctly. If this is
an attack, you can block the source IP or configure your routers / firewall not to pass
fragments. Both of these have risk and would need to be weighed against the value to
the organization. You should also contact the owner of the source IP and inform them of
what you are seeing.

Reference(s):
 http://archives.neohapsis.com/archives/snort/2000-05/0103.html
 CVE-1999-0683, CVE-1999-0804

Alert: Watchlist 000220 IL-ISDNNET-990517

Log Sample(s):
10/11-03:39:25.871028 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.104.119:4438 -> MY.NET.150.113:26963
10/11-04:08:51.229450 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.19.161:15203 -> MY.NET.198.204:1214

Summary: This is a rule setup to monitor traffic coming from a particular network range.
These rules are generally created based on past detects from the network range. This
particular rule looks like it was created on May 17th 1999.

Analysis and Recommendations:
A lot of these detects are to port 1214. This is the default port for KaZaa, a popular peer
to peer file sharing system. These kinds of file sharing systems are notorious for
spreading infected applications so while this is probably normal activity, it can still
represent an indirect security risk.

There was a disproportionate amount of packets to port 2939 from 212.179.83.64
(member of the watch list) port 3871. If resources are available, investigate this
communications and others conversations like it. They may represent the use of non-
standard ports for peer to peer applications, but without additional information, this is hard
to determine.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

52

IDS Suggestion: If this rule was created in 1999, it may no longer be needed. If we still
suspect hosts from this watchlist then blocking these addresses at the firewall may be a
better solution than monitoring their traffic.

Reference(s): Neel, Robert - http://www.giac.org/practical/Robert_Neel.doc

Alert: Watchlist 000222 NET-NCFC

Log Sample(s):
10/15-21:20:22.732984 [**] Watchlist 000222 NET-NCFC [**] 159.226.124.70:1638 -> MY.NET.154.30:80

Summary: This is a rule setup to monitor traffic coming from a particular network range.

Analysis and Recommendations:
Traffic listed in these log entries looks fairly innocuous, but because this identifies traffic
from sources that have been sources of issues in the past, these should be investigated
as resources are available.

IDS Suggestion: If there is no organizational reason to allow communications with these
subnets, a more effective strategy may be to block these ranges at the network perimeter.

Alert: connect to 515 from outside

Log Sample(s):
10/11-03:14:20.480967 [**] connect to 515 from outside [**] 217.83.3.90:1413 -> MY.NET.135.121:515
10/11-03:14:20.489060 [**] connect to 515 from outside [**] 217.83.3.90:1414 -> MY.NET.135.122:515
10/11-03:14:20.496975 [**] connect to 515 from outside [**] 217.83.3.90:1415 -> MY.NET.135.123:515

Summary: Connection attempts to port 515 from hosts outside our network range.

Analysis and Recommendations:
This traffic represents a scan for port 515 which is generally used for printing services
(LPD). These entries represent a scan that is likely trying to locate a host that is
susceptible to a buffer overflow or other exploit on its printing service.

Printing service should not be allowed from external hosts unless there is a strong
organization reason to do so. Block these at the firewall and you will stop the scan as
well. Also be sure to keep all print daemons up to date. Snort rules should be updated to
look for specific exploit content.

Reference(s): CVE-2000-0917 / Bugtraq 1712

Alert: spp_http_decode: CGI Null Byte attack detected

Log Sample(s):
10/11-08:34:19.807413 [**] spp_http_decode: CGI Null Byte attack detected [**] MY.NET.153.146:1915 -> 209.10.239.135:80
10/11-08:34:19.807413 [**] spp_http_decode: CGI Null Byte attack detected [**] MY.NET.153.146:1915 -> 209.10.239.135:80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

53

10/11-08:34:19.807413 [**] spp_http_decode: CGI Null Byte attack detected [**] MY.NET.153.146:1915 -> 209.10.239.135:80
10/11-08:34:19.807413 [**] spp_http_decode: CGI Null Byte attack detected [**] MY.NET.153.146:1915 -> 209.10.239.135:80
10/11-08:34:19.807413 [**] spp_http_decode: CGI Null Byte attack detected [**] MY.NET.153.146:1915 -> 209.10.239.135:80

Summary: This alert is triggers when “%00”is detected in a http request. This can be
valid content in many cases so this rule is highly prone to false positives.

Analysis and Recommendations:
All entries for this alert except one were from internal hosts going to external sites. The
internal hosts that may need further investigation are listed below. These should be
examined because they also triggered IIS Unicode attacks. While this does not
guarantee a true attack is taking place, it does raise a flag that we should investigate.

Suspect Internal Servers (Triggered IIS Unicode and CGI Null Byte Alerts)
MY.NET.80.134 MY.NET.168.62 MY.NET.53.40 MY.NET.153.174
MY.NET.183.23 MY.NET.80.134 MY.NET.168.62 MY.NET.178.78
MY.NET.53.40 MY.NET.183.23 MY.NET.146.17 MY.NET.29.3

IDS Suggestion: Since this is such a common False Positive, you may want to
reconfigure this SNORT preprocessor using the–cginull switch.

Reference(s): Ellis, Joe –GCIA Practical Assignment v3.0, Intrusion Detection In Depth
–May 14th, 2002 - <http://www.giac.org/practical/Joe_Ellis_GCIA.doc>

Alert: spp_http_decode: IIS Unicode attack detected

Log Sample(s):
10/11-01:00:57.366351 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.84.133:1551 -> 211.115.212.50:80
10/11-01:00:57.366351 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.84.133:1551 -> 211.115.212.50:80

Summary: This indicates that Unicode was detected by Snort’s HTTP pre-processor.
This could represent an attempt to use the UNICODE representation of characters to hide
commands or intentions from log files and IDS systems. It has also been a technique
used to include characters that would not normally be processed by the URL decoding
logic at the server, allowing the attacker to traverse directories and execute code. This
technique has been used by various Internet worms.

This can be a common false positive as more and more web sites begin to use Unicode.
This is especially true of web sites that include content in Asian and other languages that
utilize Unicode for their representation.

Analysis and Recommendations:
For alerts where the web server was external to the University, many of the IP addresses
of the servers were registered to sites in Korean. This indicates that any web pages there
are probably in Unicode to support the Korean character sets and would cause this alert
to go off.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

54

For the Inbound attacks, the targets should be examined for signs of exploit. This is an
old vulnerability and all web servers should be patched for this vulnerability.

Some of the internal systems that were targeted in these alerts were HP Printers with
JetDirect cards installed, Cisco wireless access points and other appliance type devices.
It is important to remember that many of these appliance devices run web servers based
on IIS or other popular web server code and can be just as vulnerable to attack as web
servers running on more traditional platforms.

IDS Suggestion: Since this is such a common False Positive, you may want to
reconfigure this SNORT preprocessor using the–unicode switch.

Reference(s):
 Mohan, Potheri - <http://www.giac.org/practical/Potheri_Mohan_GCIH.doc>
 http://archives.neohapsis.com/archives/snort/2001-08/0528.html
 MS Bulletin (MS00-057)
 IIS4.0 Patch:http://www.microsoft.com/ntserver/nts/downloads/critical/q269862/
 IIS 5.0 Patch:http://www.microsoft.com/windows2000/downloads/critical/q269862

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

55

Scanner Activity

Top 10 Scanner Source Addresses

Top 10 Scanner Source IPs
IP Count Reverse DNS Lookup on IP Scan Type

MY.NET.70.176 610490 phaser.ucs.giac.edu UDP and SYN
MY.NET.84.147 566210 engr-84-147.pooled.giac.edu UDP and SYN
MY.NET.165.24 254247 slate.giac.edu UDP and SYN
MY.NET.91.240 152509 Fh-91-240.pooled.giac.edu UDP and SYN
MY.NET.83.146 135804 aciv-83-146.pooled.giac.edu UDP and SYN
MY.NET.198.204 125375 rwd-204.giac.edu UDP and SYN
MY.NET.150.113 98767 ill2.lib.giac.edu UDP and SYN
MY.NET.88.165 92032 lib-88-165.pooled.giac.edu UDP and SYN
MY.NET.111.214 76805 raychen-16.engr.giac.edu UDP and SYN
MY.NET.70.207 68729 Ecs020pc09.giac.edu UDP

Top 10 Scanned Destination Addresses

Top 10 Scanned Destination IPs
IP Count Reverse DNS Lookup on IP Scan Type

204.183.84.240 10979 N/A UDP and SYN
24.120.194.178 7617 cm178.194.120.24.lvcm.com UDP and SYN
12.220.145.126 5620 12-220-145-126.client.insightBB.com UDP and SYN
12.245.31.155 3936 12-245-31-155.client.attbi.com UDP and SYN
68.39.48.75 3694 Bgp599746bgs.midltn01.nj.comcast.net UDP and SYN

MY.NET.70.207 2863 Ecs020pc09.giac.edu UDP and SYN
151.204.131.129 2636 pool-151-204-131-129.ny325.east.verizon.net UDP and SYN
146.115.121.119 2486 146-115-121-119.c3-0.smr-ubr2.sbo-smr.ma.cable.rcn.com UDP and SYN
141.149.54.140 2238 pool-141-149-54-140.ny325.east.verizon.net UDP and SYN
200.52.195.1 2225 customer-GDL-195-1.megared.net.mx UDP

Top Scanned Ports

Top 10 Scanned Ports
Port Count Applications That Commonly Found on These Ports Primary Scan
6257 1211443 WinMX Peer to Peer Application UDP
80 85438 HTTP - Web Services SYN

1214 74779 Kazaa Peer to Peer Application UDP/SYN/VECNA
4665 63180 eDonkey or other Peer to Peer Application UDP

1 49244 TCPMUX - Used for SGI IRIX Systems SYN and UDP
27005 31247 Half-Life Interactive Gaming UDP

53 21704 DNS Domain Name Service UDP and SYN
21 21017 FTP File Transfer Protocol SYN and UDP
443 13941 SSL Web Services SYN
25 11750 SMTP eMail Services SYN and UDP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

56

Scanner Summary

There were a total of 2,669,298 scan events recorded over these 5 days. The majority of
this traffic looks like it is not truly scanning activity but rather alerts generated by Peer to
Peer networking applications such as WinMX, KaZaa, eDonkey and others. This peer to
peer chatter accounts for over 76% of the scan events.

Of the remaining events, there were a few that were of particular interest.

Scan to Port 111–RPC Portmapper

24.123.46.10 and 210.46.90.254 did an extensive scan of hosts looking for port 111/tcp
(portmapper for RPC services). This is a particularly dangerous scan because it is a
targeted search for services with known exploits.

Scan for port 1 (possible attempt to locate IRIX systems)

IRIX systems have several default accounts with no password assigned. There have also
been a number of vulnerabilities identified with services running on these systems.
Around the time of these file captures, there were current advisories for SGI IRIX
including a tooltalk vulnerability that could allow remote command execution or Denial of
Service against vulnerable boxes. Reference information for known SGI vulnerabilities is
listed at SGI’s website. Information on this specific tooltalk vulnerability is listed below:
__

SGI Security Advisory

Title: IRIX ToolTalk rpc.ttdbserverd vulnerabilities
Number: 20021102-01-P
Date: November 6, 2002

Reference: CAN-2002-0677
Reference: CAN-2002-0678
Reference: CERT CA-2002-20
Reference: SGI Security Advisory 19981101-01-A
Reference: SGI BUGS 833473 860031 861480 866829
Fixed in : IRIX 6.5.18 or patch 4669

__

http://www.cert.org/advisories/CA-2002-20.html
http://www.entercept.com/news/uspr/08-12-02.asp

This vulnerability has been assigned the following CVEs:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0677
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0678

Additional CVE entry related to IRIX can be found at
http://www.cert.org/advisories/CA-1995-15.html

Scan to Port 0
Oct 15 00:31:53 65.83.150.166:0 -> MY.NET.185.48:0 NULL ********

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

57

This is most likely the work of hping2. As a general rule, packets with source port 0
should be blocked at the border routers or firewall.

Incoming UDP 137 Scans

There were numerous scan entries that were bound to UDP port 137 on the destination
machine. This is most likely the work of BugBear or some similar Worm that searches for
unprotected windows file shares. This was a very widespread worm and through the five
day period, this site was scanned every day by multiple addresses from the table below.
UDP 137 and the other NetBIOS ports should not be allowed to pass in through the
border firewall unless absolutely required.

Probable BugBear or Similar Worm Attackers
205.125.41.108 61.63.193.73 202.102.142.54 194.153.206.33

203.166.102.129 61.219.65.78 62.82.17.134 80.239.170.161
203.73.193.142 61.164.165.209 62.83.5.49 24.197.148.247
217.225.13.153 62.71.200.194 210.58.252.159 193.248.47.204
165.228.237.15 66.100.114.81 211.222.125.214 210.183.221.23
211.48.217.235 80.62.155.24 61.9.40.80 64.89.86.123
213.97.33.189 211.92.141.222 211.45.26.243 61.202.34.28

210.119.192.108 61.36.119.19 61.124.40.82 211.18.53.139
140.116.60.199 211.195.198.156 143.248.227.69 202.63.168.36
211.205.36.78 62.46.138.216 64.144.9.1 211.221.142.60
202.233.7.197 66.169.253.123 218.18.49.20 61.118.210.172
195.142.62.149 207.164.21.21 212.95.99.142 211.38.60.177

24.83.97.26 200.84.71.52 211.227.157.205 200.206.236.80
61.251.225.13 151.203.164.131 195.175.204.6 80.32.215.206
148.240.99.175 61.197.120.227 61.165.8.75 202.180.97.10
65.67.157.75 148.246.66.20 210.203.98.16 218.226.40.109

211.221.213.169 218.32.92.136 65.93.141.6 200.161.197.9
80.133.129.170 63.207.61.110 194.153.206.33 216.231.61.149
212.64.81.223 211.212.108.172 211.55.145.20 210.123.155.3

FTP Scanner

64.52.4.180 was involved in a mass scan for port 21/tcp (ftp servers). This showed up in
the OOS packet logs.

Miscellaneous Scanning

There were several miscellaneous scans that did not appear to be related to an attack
(ex. MY.NET.165.20 Scanned MY.NET.90.114 looking for open ports, 169.229.70.201
scanned MY.NET.70.201 …). Some of this could have been fire drawn from connections
to IRC channels or P2P networks. These often draw the wrong kind of attention.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

58

Scan alerts from MY.NET.87.50 were the result of an extensive Counterstrike game.
Other than wasting bandwidth, this is harmless traffic from an online gaming event. This
game did however draw some other Out of Spec scanning packets on the host of the
game.

Scanning from host MY.NET.140.179, MY.NET.122.123, MY.NET.149.63, MY.NET.55.87
and MY.NET.55.88 were really the result of AFS file system running on those hosts. All
destination addresses were universities, research laboratories or membrain.com (where
they posted on their website that they were running AFS on the hosts seen in the
communications.).

Out of Spec Activity

Top 10 OOS By Source Address

Source IP OOS Description Count
152.101.81.195 SYN-FIN SCAN 7186
MY.NET.28.2 TCP NULL SCAN / NMAP SCAN 3638
64.52.4.180 SYS SCAN WITH RESERVED BITS SET 3558

209.116.70.75 Telnet connections from Linux Box (ECN bits set) 814
MY.NET.70.183 TCP NULL SCAN 542
200.221.192.194 KaZaa Traffic 485
MY.NET.165.20 NULL SCAN of MY.NET.90.114 (NMAP)–2 Second Scan 207
200.221.192.245 KaZaa Traffic 69
148.65.203.115 Kazaa Traffic 62
148.63.246.3 Kazaa Traffic 55

Top 10 OOS By Destination

Destination IP OOS Description Count

MY.NET.100.217
TELNET TRAFFIC FROM 209.116.70.75 (795 Detects)

SYN-FIN SCAN FROM 152.101.81.195 (1 Detect) 796

MY.NET.91.81

KaZaa TRAFFIC FROM 200.221.192.194 (485 Detects)
KaZaa TRAFFIC FROM 200.221.192.245 (69 Detects)

SYN-FIN SCAN FROM 152.101.81.195 (1 Detect) 555
MY.NET.1.4 NULL TCP FLAGS SET FROM MY.NET.70.183 542

MY.NET.6.40

RESERVED BITS SET IN TCP FLAGS (ECN enabled)
Connections to port 25 (SMTP) and RST packets from attempts to

connect from this host to MY.NET.12.3 (possible attempt to connect to
FreeStyle Chat server or some other service that was not listening) 384

MY.NET.90.114

NULL TCP FLAGS FROM MY.NET.28.2 (1 Detect)
NULL SCAN FROM MY.NET.165.20 (207 Detects)

1 then wait 2 minutes then 206 in 2 seconds. 208

MY.NET.185.48

(1) SYN-FIN SCAN OF PORT 21 FROM 152.101.81.195
(3) SCANS FROM MY.NET.28.2 TO PORT 22

(161) Gnutella packets FROM HOST WITH ECN BITS SET 165

MY.NET.150.133
(62) KaZaa FROM 148.65.203.115
(1) KaZaa FROM 200.221.193.116 63

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

59

MY.NET.84.245

(2) SNAN PACKETS FROM MY.NET.28.2
(1) SYN-FIN SCAN FROM 152.101.81.195 to PORT 21

(55) KaZaa FROM 148.63.246.3 58

MY.NET.168.105

Traffic to port 4662 with ECN bits set. This IP is registered in DNS as a
wireless device. It is most likely a wireless access point and 4662 is
either a mgt or negotiation port for it. The ECN Bits are set because the
boxes are probably running a LINUX kernel with this feature enabled. 52

MY.NET.91.240

OOS Packets from IP registered to a Brazilian ISP
OOS Packets from IP registered to Spacenet
NULL SCAN PACKET FROM 202.52.202.248 27

OOS Summary

Around 5200 of the OOS packets were generated due to the 2 high order bits of the TCP
Flags being set. These two bit were historically reserved and were always set to 0. In
modern IP Stacks however, there is a feature called Explicit Congestion Notification. This
is defined in RFC3168 (ftp://ftp.isi.edu/in-notes/rfc3168.txt). Using this standard, the high
order bits of the TCP Flags can be used to carry information about link congestion. This
information can then be used by the sending and / or receiving host to make adjustments
to the packet transfer parameters as it sees fit. This allows IP to compensate for issues
instead of just dropping packets when link congestion occurs.

As these become more common in IP stacks, this test will need to be removed or it will
generate too many False Positives, alerting you of scans and OS fingerprinting attacks
that are not really happening. In our alert files, this also generated several Queso Scan
alerts that were actually legitimate traffic.

Sample(s):
=+

10/10-00:35:51.188697 216.143.112.105:51002 -> MY.NET.140.2:80
TCP TTL:48 TOS:0x0 ID:38766 IpLen:20 DgmLen:60 DF
12****S* Seq: 0xDC3CB602 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (7) => MSS: 1380 SackOK TS: 80584891 0 NOP NOP NOP NOP

=+

10/10-00:49:22.941544 209.47.251.18:60778 -> MY.NET.6.40:25
TCP TTL:49 TOS:0x0 ID:34423 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x5E07FF5B Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1380 SackOK TS: 382999658 0 NOP WS: 0

=+

In these two packets, you can see a connection to a web server and a connection to an
SMTP mail gateway. Both of these alerted as OOS but are in fact normal traffic. The
source IP address on the mail server is registered to Red Hat, Inc. Linux is one of the
Operating Systems where ECN implementation is becoming popular.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

60

NMAP Scan
On 10/10, it looks like the University did its own NMAP scan from MY.NET.28.2. A check
of the mailing list archives at the University indicates that they do this regularly and from
hosts in this range. You can see NMAP checking for a telnet port in the entries below. It
uses NULL Flags and other strange TCP flag combinations to test for open ports and for
OS fingerprinting.

=+

10/10-14:00:47.685370 MY.NET.28.2:39634 -> MY.NET.10.121:23
TCP TTL:46 TOS:0x0 ID:34569 IpLen:20 DgmLen:60
******** Seq: 0x4215A114 Ack: 0x0 Win: 0x1000 TcpLen: 40
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

=+

10/10-14:00:47.685420 MY.NET.28.2:39635 -> MY.NET.10.121:23
TCP TTL:46 TOS:0x0 ID:65419 IpLen:20 DgmLen:60
**U*P*SF Seq: 0x4215A114 Ack: 0x0 Win: 0x1000 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

=+

SYN FIN Scan for FTP Servers
There were 7186 SYN/FIN Packets sent from 155.101.81.195 to various subnets on the
Universities internal network. Because the packets were all directed at port 21 on the
remote host, this appears to be a scan looking for FTP servers.

SYN/FIN combination is used for various reasons. One is to bypass certain packet filters
that might allow all FIN packets through. Another reason to use SYN/FIN is simply to get
a specific reaction from the remote host without actually opening a connection. This
combination of packets produces different results on different IP stacks, but it is always
an illegal TCP flag combination and is easy to spot.

=+

10/11-20:50:07.763499 152.101.81.195:21 -> MY.NET.7.3:21
TCP TTL:23 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x460B42FE Ack: 0x37DDBC9A Win: 0x404 TcpLen: 20

=+

10/11-20:50:07.784518 152.101.81.195:21 -> MY.NET.7.4:21
TCP TTL:23 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x460B42FE Ack: 0x37DDBC9A Win: 0x404 TcpLen: 20

=+

Don’t Fragment…no wait, More Fragments
This OOS packet showed up from 217.227.143.85 (pD9E38F55.dip.t-dialin.net). The
packets are strange because they have both the Don’t Fragment and the More
Fragments bits set in the IP Header. This is not valid because If the don’t fragment bit
were set on the original packet then there could be no fragment to start with, let alone
MORE of them to come. The purpose of this packet is still unknown. There were not

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

61

enough to cause Denial of service. One possible theory is that this is a mapping
technique where the sender hopes that a fragment will make it through firewalls or packet
filters because it is a fragment and not a complete packet. If it were to get to the
destination host and then no more fragments came, the destination host might send a
ICMP Fragment Reassembly Time Exceeded message and the remote host would know
that machine was alive.

=+

10/12-18:00:01.637274 217.227.143.85 -> MY.NET.150.209
TCP TTL:116 TOS:0x0 ID:53701 IpLen:20 DgmLen:752 DF MF
Frag Offset: 0x0 Frag Size: 0x2DC
2D 88 20 9F 1B 8D CA AA 04 A2 50 38 D4 07 06 11 -.P8....
(data payload of packet omitted for space considerations)

=+

External Source Address Information
The following section includes information on external IP addresses that were involved in
events of interest. For each address the reason it was chosen is listed.

External IP address 209.116.70.75
This address was selected because it was one of the OOS Top Talkers and it showed up
in the alert files as Queso fingerprint alerts. The reason this was flagged as OOS was the
reserved bits were set in the TCP flags. This is common for newer Linux Kernels and
seeing that the address is registered to Red Hat reinforces the fact that this is actually “in-
spec” traffic.

Search results for: ! NET-209-116-70-64-1

CustName: Red Hat, Inc.
Address: 4518 South Miami Blvd. Suite #100 Durham NC 27703
Country: US
RegDate: 2002-09-23
Updated: 2002-09-23

NetRange: 209.116.70.64 - 209.116.70.95
CIDR: 209.116.70.64/27
NetName: INFLOW-18773-5591
NetHandle: NET-209-116-70-64-1
Parent: NET-209-116-68-0-1
NetType: Reassigned
Comment:
RegDate: 2002-09-23
Updated: 2002-09-23

NSLOOKUP RESULTS:
Name: vger.kernel.org
Address: 209.116.70.75

External IP address 64.52.4.180

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

62

This address was selected because was the source for 1546 alerts that indicate a scan
for ftp servers. These appeared in the alert files as Queso fingerprint alerts because the
two high order bits were set in the TCP Flags along with the SYN flag. This represents a
clear reconnaissance attempt against a specific service on our systems. The owner is
Eureka Broadband. Scans from broadband ISPs are fairly common, but we may want to
add the source to a watch list IDS rule since they may have an exploit planned for when
they find a target running ftp.

Search results for: 64.52.4.180

OrgName: Eureka Broadband
OrgID: EBRB

NetRange: 64.52.0.0 - 64.52.255.255
CIDR: 64.52.0.0/16
NetName: EUREKA-BLK1
NetHandle: NET-64-52-0-0-1
Parent: NET-64-0-0-0-0
NetType: Direct Allocation
NameServer: AUTH1.EUREKADNS.NET
NameServer: AUTH2.EUREKADNS.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2000-03-06
Updated: 2001-10-12

NSLOOKUP RESULTS:
Name: nat.64-52-4.180.ip.ebrb.net
Address: 64.52.4.180

External IP address 210.46.90.254
This address was selected because it was scanning all of our hosts for open port 111.
This kind of focused scanning indicates that they probably have an exploit for one of the
RPC services and are looking for a system to use it on. This address is registered to a
University in China so it may be the source of the attack or it may be a system that was
taken over by someone else at another location. Either way, its behavior is clearly hostile
and it should be watched or blocked.

Search results for: 210.46.90.254

inetnum: 210.46.88.0 - 210.46.95.255
netname: HRBMU1-CN
descr: ~{9~6{1uR=?F4sQ'~}
descr: Harbin Medical University
descr: Harbin, Heilongjiang 150086, China
country: CN
admin-c: YH39-AP
tech-c: YH39-AP
notify: address-allocation-staff@net.edu.cn
mnt-by: MAINT-NULL
changed: hostmaster@net.edu.cn 19990903
status: ALLOCATED PORTABLE
source: APNIC

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

63

person: Ying He
address: Department Of Network Center
address: Harbin Medical University
address: Harbin, Heilongjiang 150086, China
phone: +86-451-6680174
e-mail: heying@ems.hrbmu.edu.cn
nic-hdl: YH39-AP
notify: address-allocation-staff@net.edu.cn
mnt-by: MAINT-NULL
changed: hostmaster@net.edu.cn 19990903
source: APNIC

NSLOOKUP RESULTS:
NO INFO

External IP address 217.227.143.85
This address was selected because they were sending us OOS packets. These packets
had both the Don’t Fragment and the More Fragments bits set in the IP header. In
addition, they were initial fragments but there was no final fragment. This is possibly a
mapping technique and more activity could follow. This IP range should be watched.

inetnum: 217.224.0.0 - 217.237.161.47
netname: DTAG-DIAL15
descr: Deutsche Telekom AG
country: DE
admin-c: DTIP-RIPE
tech-c: ST5359-RIPE
status: ASSIGNED PA
remarks: **
remarks: * ABUSE CONTACT: abuse@t-ipnet.de IN CASE OF HACK ATTACKS, *
remarks: * ILLEGAL ACTIVITY, VIOLATION, SCANS, PROBES, SPAM, ETC. *
remarks: **
notify: auftrag@nic.telekom.de
notify: dbd@nic.dtag.de
mnt-by: DTAG-NIC
changed: auftrag@nic.telekom.de 20020108
source: RIPE
route: 217.224.0.0/11
descr: Deutsche Telekom AG, Internet service provider
origin: AS3320
mnt-by: DTAG-RR
changed: bp@nic.dtag.de 20010405
source: RIPE
person: DTAG Global IP-Adressing
address: Deutsche Telekom AG
address: Bayreuther Strasse 1
address: D-90409 Nuernberg
address: Germany
phone: +49 911 68909856
e-mail: ripe.dtip@telekom.de
nic-hdl: DTIP-RIPE
mnt-by: DTAG-NIC
changed: ripe.dtip@telekom.de 20020717
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

64

person: Security Team
address: Deutsche Telekom AG
address: Technikniederlassung Schwaebisch Hall
address: D-89070 Ulm
address: Germany
phone: +49 731 100 84055
fax-no: +49 731 100 84150
e-mail: abuse@t-ipnet.de
nic-hdl: ST5359-RIPE
notify: auftrag@nic.telekom.de
notify: dbd@nic.dtag.de
mnt-by: DTAG-NIC
changed: auftrag@nic.telekom.de 20010321
source: RIPE

NSLOOKUP RESULTS:
Name: pD9E38F55.dip.t-dialin.net
Address: 217.227.143.85

External IP address 24.123.46.10
This address was selected because they were scanning our network on port 111. They
were also listed by DeScan.com as a known scanner. This makes them suspect and the
address should be watched.

Search results for: 24.123.46.10

OrgName: ROADRUNNER-COMMERCIAL-CENTRAL
OrgID: RCCT

NetRange: 24.123.0.0 - 24.123.255.255
CIDR: 24.123.0.0/16
NetName: RR-COMMERCIAL-CENTRAL
NetHandle: NET-24-123-0-0-1
Parent: NET-24-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.BIZ.RR.CO
NameServer: NS2.BIZ.RR.COM
NameServer: DNS4.RR.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2001-09-26
Updated: 2002-04-09

NSLOOKUP RESULTS:
Name: rrcs-central-24-123-46-10.biz.rr.com
Address: 24.123.46.10

DeScan.Com INFORMATION:
http://www.descan.net/searchresults.html?command=specific&source=24.123.46.10

Links off of Road Runners NorthEast Ohio network based on traceroute data returned
from visualroute.com.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

65

Summary of Internal Hosts and Possible Services

This following table lists probable web servers at the site. These are believed to be
running a service on port 80/tcp because we can observe IIS Unicode attacks detected
against the, which require completion of the 3-way handshake to port 80 and also
because of the Queso scan alerts to some of these IPs on port 80. In the case of the
Queso scans, the pattern of the alerts were across many packets to a single host, a
check of the logs show that the alert was due to the ECN bits being set. This is not
abnormal for some newer kernels so the alerts most likely represent normal web traffic.

Probable Web Server on MY.NET
MY.NET.1.201
MY.NET.1.205
MY.NET.5.14
MY.NET.5.92
MY.NET.5.99

MY.NET.10.176
MY.NET.15.227
MY.NET.21.12
MY.NET.21.14
MY.NET.21.17
MY.NET.21.20
MY.NET.21.48
MY.NET.21.47
MY.NET.21.56
MY.NET.21.57
MY.NET.21.58

MY.NET.21.59
MY.NET.21.60
MY.NET.21.61
MY.NET.21.62
MY.NET.21.64
MY.NET.21.69
MY.NET.21.94
MY.NET.22.8

MY.NET.22.36
MY.NET.22.52
MY.NET.22.54
MY.NET.22.67
MY.NET.22.70
MY.NET.22.102
MY.NET.22.103
MY.NET.22.111

MY.NET.27.3
MY.NET.29.11
MY.NET.24.44

MY.NET.179.77
MY.NET.137.66
MY.NET.150.83
MY.NET.145.18
MY.NET.100.15
MY.NET.100.27
MY.NET.100.69
MY.NET.100.71
MY.NET.100.133
MY.NET.100.143
MY.NET.100.145
MY.NET.100.158
MY.NET.100.165

MY.NET.100.187
MY.NET.100.217
MY.NET.100.221
MY.NET.100.251
MY.NET.104.104
MY.NET.104.113
MY.NET.104.114
MY.NET.104.128
MY.NET.104.139
MY.NET.104.145
MY.NET.104.177
MY.NET.104.180
MY.NET.104.213

Additionally, the following table lists other services and the hosts we suspect are running
them. The data that led us to these conclusions is listed in each case. Please note that
this list is only a sample, there were several other hosts and services that could be
mapped based on the data in the logs. Especially in the area of Peer to Peer services. If
additional granularity is needed, the same principals and process used to determine
these hosts and services can be reapplied.

Host Service Why We Think This
MY.NET.137.7

MY.NET.1.2
MY.NET.100.158
MY.NET.113.208

131.118.254.1(Ext)
66.28.32.88(Ext)

DNS Saw reply traffic from PORT 53 in the Scan logs.
Used NSLOOKUP and then set my default server to
this host. IPs responded and answered DNS queries

are listed here.

MY.NET.21.24
MY.NET.83.150
MY.NET.111.194

TFTP Alerts of TCP TFTP Connections in both directions

MY.NET.100.158
MY.NET.70.49
MY.NET.70.50
MY.NET.83.197

FTP FTP GLOB Alert or Custom Rules to monitor ftp traffic.

MY.NET.6.40
MY.NET.145.9

SMTP Queso Fingerprint alerts that were actually mail traffic
with ECN bits set and “Bugbear@MM virus in SMTP”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

66

MY.NET.139.230
MY.NET.144.59
MY.NET.179.78

alerts

MY.NET.25.21 IMAP This host is a mail router and we saw IMAP port traffic
MY.NET.185.48
MY.NET.182.94
MY.NET.86.102
MY.NET.83.201
MY.NET.70.27

Gnutella Connections to it with ECN Bits showed up as Queso

MY.NET.111.214 P2P (eDonkey, etc…) Queso detect to 4662/tcp
MY.NET.84.147
MY.NET.91.81

KaZaa
WinMX

MY.NET.91.81 is running KaZaa. Contents of the
OOS packets show it is sharing copyrighted movies.

MY.NET.70.198
MY.NET.70.176
MY.NET.83.146

IRC Traffic to port this IP on port 6667 and 6669 shows up
in the OOS and Alert logs

MY.NET.55.87
MY.NET.55.88

MY.NET.122.123
MY.NET.140.179
MY.NET.149.63

AFS Scanning logs show alerts from these systems
answering client connection requests

High Level Security Issues

The Alert Descriptions section covers an assessment of possible security issues related
to each alert type. This section covers other high level security concerns that he site
should consider and provides further details for attacks that need correlation of multiple
alerts.

IDS Needs Tuning to reduce False Positives

The majority of the IDS logs represent False Positives or other noise. This indicates a
system that is not properly tuned for its environment. Having this much clutter in the logs
drastically reduces the IDS’s effectiveness as a security tool and could lead to missing
legitimate alerts.

Distribution of Copyrighted Material via Peer to Peer Applications

Several hosts on the network are participating in the sharing of copyrighted materials. In
one example, we could see that the movie “The Count of Monte Cristo” was being
advertised for download. While this kind of activity may not be a security risk per say, it
does present a legal exposure and appropriate use of resources question.

Peer to Peer applications are also notorious for spreading hacked and virus infected
code. This represents another point of entry into the network that completely bypasses
the firewall, email scanners and all other perimeter defenses.

BugBear Activity

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

67

Looking at the Alert files shows a disproportionate number of connection attempts to UDP
port 137 with an occasional follow up to port 139. The pattern of these connection
attempts goes through the IP addresses on a given subnet in what is near sequential
order. This is a strong indication that the scanning machines are infected with the
BugBear virus/worm and are looking for other victims. The internal systems that may be
compromised are ones that showed both a SMB Wildcard alert and a SMB C$ Access
alert. This indicates that the internal host responded to the SMB Wildcard and then the
external host attempted to connect to its C$ Share. If successful, the worm may have
spread itself to the target host.

Possible Infected Internal Hosts (Hosts Showing Both SMB Alerts)
MY.NET.132.20 MY.NET.137.34 MY.NET.190.17
MY.NET.132.22 MY.NET.137.35 MY.NET.190.19
MY.NET.132.24 MY.NET.137.36 MY.NET.190.41
MY.NET.132.26 MY.NET.137.46 MY.NET.190.100

MY.NET.190.102

Each of these systems should be checked for infection. Reverse DNS lookup using
NSLOOKUP on these machineseither turned up no hostname or a name like “pooledxxx-
xx.giac.edu”. This could indicate that they are shared machines in areas such as library
spaces or users personal workstation that are getting DHCP address assignments and
therefore have no name in DNS. These kinds of systems would probably run Windows
and are prime areas where mail might be read and attachments executed. These factors
also make them likely candidates for this infection.

In the alert files, we can see (8) alerts caused by email messages coming into our mail
router at MY.NET.6.40 but more importantly, there are (5) alerts of emails containing the
Bugbear signature exiting our campus mail system. If we trust our IDS rule then these
are clear indications of exposure and infection from BugBear.

10/11-17:16:14.341249 [**] Bugbear@MM virus in SMTP [**] MY.NET.6.40:42295 -> 65.212.73.209:25
10/12-14:53:13.578638 [**] Bugbear@MM virus in SMTP [**] MY.NET.139.230:2822 -> 64.156.215.5:25
10/12-14:53:25.357489 [**] Bugbear@MM virus in SMTP [**] MY.NET.139.230:2824 -> 64.12.137.89:25
10/12-15:24:18.750691 [**] Bugbear@MM virus in SMTP [**] MY.NET.139.230:2842 -> 128.231.4.227:25
10/15-23:25:23.626264 [**] Bugbear@MM virus in SMTP [**] MY.NET.144.59:55482 -> 128.183.107.56:25

If we could retrieve the message headers from the logs of the mail servers that sent and
received the bugbear infected messages, we might be able to determine what users and
computer sent or received the messages. This could help with tracking infected systems.

To clean up and prevent BugBear and other similar infections, all Anti-Virus software
should be updated. Network shares should be properly protected with both share and file
system permissions. Personal firewall software can also be installed to protect network
shares.

Possible DoS Attempts

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

68

There were two types of possible DoS attempts against internal systems. The first is
related to an ftp glob attack. These alerts were detected directed at MY.NET.100.158
from various hosts in Europe. The second type of DoS attempts were related to IP
fragments. There were various types of alerts including Tiny Fragments sent to
MY.NET.168.80 and MY.NET.91.240, fragments that never completed to several host
and one fragment overflow attempt. These may represent an attempt to shutdown or
hinder the performance of a particular host. These can be stopped by not allowing
fragmentation at the border or by filtering malicious fragments with border devices.

Sun RPC Portmapper Exploit

Link Graph

The following Link Graph illustrates a possible RPC attack against MY.NET.151.115 that
may have resulted in a successful compromise. For comparison, there is a graph of a
similar attack against MY.NET.84.198 that may not have been as successful. Unless
there is a clear explanation for the traffic pattern, a thorough exam of both hosts should
be performed.

In the exchange between 65.59.116.64 (Attacker) and MY.NET.151.115 (Target), we can
see that the Attacker first connects to port 32771 on the Target host. This is a common
port that is used as a portmapper for RPC tools. These are known to have many exploits
including buffer overflow issues that could be used to load grappling hook code that would
then go to the Internet and download more robust exploit code for the attacker’s later use.

After this connection, we can see traffic from Attacker port 65535 to the Target on the
same port. This port combination looks strange as most services should not be listening
on this port. It also raises attention because it is a known port for worms including Adore
(Red Worm). We see two additional packets from the Attacker’s port 65535 to the Target
(one to port 64935 and the second to port 65535). These interactions could have been
commands to the code planted during the original RPC call above.

We assume there was a call out from the Target to port 69/udp on the Attacker because
we see an alert that there is response tftptraffic from the Attacker’s host to the target. In
this attack scenario, this could be for the purposes of code retrieval based on the
interaction we saw between the two hosts earlier.

Finally, we see the attacker making tftp connections to the target’s port 69 (presumably
tftp). This is possibly for retrieval of some collected data or other purposes.

On the right side of the graph, we see a similar observed between 66.28.10.84
(Attacker2) and MY.NET.84.198 (Target2). In this case, the initial RPC call was not seen
until after an initial attempt from Attacker2 on port 65535 to Target2 port 65535. Later in
the week, we see attempted RPC access to Target2 port 32771. This time the packets
are from source port 0, this in an indication that the packets are forged and should not be
trusted. Finally, we see an attempt from Attacker2 to connect to Target2 on port 69/udp.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

69

We assume that the attacker may not know if the exploit to the RPC service worked or
not, and by attempting connection to tftp port, they can check the success or failure.

Further inspection of these hosts is advised to see if there are any inappropriate listening
ports or running services. A file integrity check my also be in order. If these systems
were compromised at this level, a root kit may have been installed.

Host MY.NET.70.207 should be examined

This host had what appeared to be several IIS, RPC and other privilege escalation
attacks launched against it. It also showed up as a heavy port scanner due to a large
number of connections to it on 12203/udp and 12300/udp. It is believed that this system
was hosting an online game (like Medal of Honor) off an on during the week. This may
have drawn hostile attention to it. External host 169.229.70.201 did a fairly
comprehensive port scan of this host. There is no one event that makes me suspicious of
this host, but there area enough individual suspicious events that indicate this host should
be checked for compromise or other dangerous activity.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

70

Defensive Recommendations

Just based on the log entries, it is difficult to judge how secure the perimeter and internal
network segments are. There are however a few recommendations that should be
considered to improve the current security and reduce the probability of future events.

Above all else, all systems on the campus (especially the shared systems) should have
Anti-Virus and Personal Firewall software installed. There are several products that can
be centrally managed and updated so the administrative load is low compared to the
benefit. Just by looking at the logs, we know that there are internal users scanning, using
peer to peer services, hosting online games and possibly launching attacks on internal
hosts. Perimeter firewalls have little effect on these kinds of activities so software that
can protect at the host level would be a powerful addition to the sites security plan.

The second most important security step for this environment is to review of the SNORT
configuration and rule base. There were a lot of what appear to be false positives
generated. The trouble with false positives is that as long as they exist, you don’t know
which ones are real and which ones are false. This means you have to examine every
alert in detail to see if it is legitimate or not. If the number of alerts in an environment is
high, as in this case, you have a serious security issue for the site because it takes
analysis time that could be spent working on real security issues and improvements. The
following actions should be considered at a minimum:

 The IDS rules should be updated to use rules that examine content.
 Pass rules should also be installed for services and systems that we know will set

off rules incorrectly.
 Rules that look for reserved bit set in the TCP flags need to be updated or

removed since this is becoming common practice.
 The Snort http pre-processor may need some adjustments for this environment to

eliminate the Unicode and Null Byte false positives.
 Snort Scan preprocessor should have its thresholds adjusted until the number of
false positives from peer to peer and other “normal” traffic are reduced to a
manageable level.

 IDS config and rules should be reviewed during each site security Audit.

Separate DNS systems should be used for internal and external name resolution. The
DNS information on internal hosts should not be freely available on the public Internet.
Using reverse lookup I was able to collect information that indicated to me where the
physical assets were located and in some instances, what kinds of hardware or services
were associated with those machines. This kind of information is extremely valuable
when planning a socially engineered attack (ex. Sounding convincing with calling the
University helpdesk for information or just walking onto the campus and gaining access to
the physical assets).

Consider installation of Virus scanning software for the email gateways. We saw alerts
that indicated BugBear was entering and leaving the campus mail system. These kinds

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

71

of threats that spread via multiple methods (shares, buffer overflows, email …) can only
be stopped with a multi layer defense strategy that includes virus control, perimeter
defense and hardening of the hosts. Since these blended threats are on the rise, this is
an ounce of prevention that could save several pounds of cleanup down the road.

There were several scans and connection attempts for services with known
vulnerabilities. If there are no legal restrictions prohibiting GIAC University from closing
these ports from the outside, they should consider doing so. Allowing access to what are
often unsecured services from external hosts is a dangerous practice.

As a general rule, all traffic in or out of the network should be blocked at the firewall
unless there is a specific organizational reason to allow it. This will prevent systems from
becoming compromised, limit the usefulness of systems that do become compromised
and help prevent your site from becoming an unknowing launching pad for other attacks.
This network environment is overrun with Peer to Peer applications like KaZaa, Gnutella,
WinMX … This traffic, while wasteful of the University’s resources, in and of itself is not
necessarily dangerous. However, these software swapping grounds are notorious for
having tainted software on them and could become a pathway for virus and other attacks
to enter your network. Another issue with these services is that when you connect to the
other systems your IP is shared. This often times draws the wrong kind of attention from
attackers. Finally, there are legal issues related to the distribution of Copyrighted material
like music, movies and software. Allowing this on your network may create legal
exposure for GIAC University at some point in the future.

The University should carefully review its policy on this kind of traffic. These discussions
should involve legal counsel and the security team. If there are no legal or organizational
barriers, blocking this sort of traffic at the firewall and even on the internal LAN segments
would improve the security of the site and reduce bandwidth consumption. If this is not
an option, an information campaign to share the dangers and methods to defend against
them should be used to help mitigate the risk.

GIAC University should schedule regular audits and vulnerability tests of the firewall,
internal systems and infrastructure. Work spent detecting and correcting vulnerabilities
before they are exploited reduces overall security costs versus the cost to recover should
an exposure get exploited. These exercises should be done at least quarterly, but an
automated system that continuously monitors for vulnerabilities would be preferred.

Finally, cleanup the SCANS files to obfuscate the IP addresses of the University. These
are freely downloadable from incidents.org and that means that the attackers can get
them as well. Using DNS reverse lookup and other tools; I was able to get a lot of
information about the internal network once I knew the real network addresses. This was
helpful for my work, but it would also be helpful for those with malicious intent.

Overall Analysis Process

To perform my analysis of this data, I first had to clean the log files of incomplete or
incorrectly formatted entries. I used regular expressions and PERL scripts to look for all

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

72

entries that did not match the correct format and then corrected them or discarded them
into a separate file. I then reviewed the file with the unrecoverable entries in it by hand.

To process the bulk of the entries, I again turned to PERL’shash features to total up the
data in different ways. I used the same basic script format and just modified the key
structures depending on what data I needed for each run (key on source IP, target IP, by
conversation–which was a combination of source IP and destination IP,… Ineach case,
I used the scripts to total the number of attacks in each category or scans by type and
output the data to CSV format. I also wrote a small script to format the OOS records in
CSV format.

Once the data was in CSV format, I loaded it into an Excel spreadsheet and used the
sorting, filtering and other data analysis tools to view the data in different ways.

When I needed to see more specific details for an IP address or port, I turned to GREP,
FIND and MORE and applied them against the log files.

My basic concept was to get the attacks totaled up and then to look at the individual
attacks one by one to understand what each one was trying to do. Looking at the
sources and destinations ports for each alert and then using DNS to find the nature of the
source and destination host gave insight into whether it was a real attack or a false
positive. Given the volume of data, I had to pick a focus for the analysis. I chose to start
my focus on the scanners. I made this choice based on the general flow that a hacker
goes through to execute a successful attack. They need to do their recon work first so I
figured that if we saw them scanning, then we might see them doing more targeted work
later.

Looking at the top scanners and top sources for alerts helped me see the large amount of
peer to peer traffic that this University has to deal with. It also shed light on a potential
BugBear issue and some online gaming activity at the site. As I discovered the nature of
a certain traffic profile, I used “grep –v “ commands to filter those entries out of the logs.
This allowed me to see the remaining entries with less “noise” as I looked for other signs
of trouble.

As I found possibly compromised systems or other issues in this section of the analysis, I
looked at other alerts and scans related to the hosts involved.

Example of PERL Script Used for Analysis

I wrote this script and then hacked it up as needed to get different data from the files.
Each script was based in one way or another on the basic form below. I am sharing it for
informational purposes only. Hopefully, it will help get some folks started or at least get
some good laughs from real programmers 8-)

countalerts.pl
To use this script, call it and give it the names of your alert files as arguments. The output
will be a list of Source IP Addresses and the number of times they were the source for a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

73

particular alert event. The use of hash of hashes was particularly useful to me to identify
unique elements and to keep the code size down.

Read file and count alerts by name and direction and total
Usage: perl countalerts.pl <file1> <file2> ... <filen> > <outputfile.csv>
Then load into your favorite spreadsheet program for sorting, filtering, ...
while (<>) {
Ignore spp_portscan entries - get from scan files w/ different script!

if (!/spp_portscan/) {
m/(\S+).*] (.*)\[.*] (.*) -> (.*)/;
(my $EventDate, my $EventTime) = split(/-/,$1);
my $EventName = my $Event = $2;
(my $SrcIP, my $SrcPort) = split(/:/,$3);
(my $DstIP, my $DstPort) = split(/:/,$4);

#Set Direction of Attack for recording count
($SrcIP =~ /MY.NET./) ? $Dir="I" : $Dir="O";
($DstIP =~ /MY.NET./) ? $Dir .="I" : $Dir .="O";

$AlertCount{$Event}++;
$DirCount{$Event}{$Dir}++;
$TotalEvents++; }

}

Print Header Row
print"Alert,OI,II,IO,OO,Total\n";

#Output Each Alert Name and the number of times seen
foreach $Eventtype (sort keys %AlertCount) {

print "$Eventtype,";
print "$DirCount{$Eventtype}->{OI},";
print "$DirCount{$Eventtype}->{II},";
print "$DirCount{$Eventtype}->{IO},";
print "$DirCount{$Eventtype}->{OO},";
print "$AlertCount{$Eventtype}\n";

}

#Output Total Alert Count
print"\nTotal Events = $TotalEvents";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

74

List of References

Whitehats - arachNIDS Reference (http://www.whitehats.com)
 TROJAN_TROJAN-ACTIVE-Q-TCP - http://www.whitehats.com/info/IDS203
 DDOS-TFN-CLIENT-COMMAND-BE - http://www.whitehats.com/IDS/184
 DDOS-SHAFT-CLIENT-TO-HANDLER - http://www.whitehats.com/IDS/254
 SHELLCODE-X86-SETGID0 - http://www.whitehats.com/IDS/284
 SHELLCODE-X86-SETUID0-UDP - http://www.whitehats.com/IDS/436
 DOS-FTPD-GLOBBING - http://www.whitehats.com/IDS/487
 NTPDX-BUFFER-OVERFLOW - http://www.whitehats.com/IDS/492
 IIS ISAPI OVERFLOW IDA - http://www.whitehats.com/info/IDS552
 NETBIOS-SMB-C$ACCESS - http://www.whitehats.com/info/IDS339

GIAC Student Practicals
 Treurniet, Joanne, September 22, 2000 SANS GIAC Practical Assignment for GCIA,

<http://www.giac.org/practical/JoanneTreurniet.html>
 Peck, Edward - GCIA Practical Version 3.0–2001 -

<http://www.giac.org/practical/Edward_Peck_GCIA.doc>
 Lam, Jason - Intrusion Detection in Depth–GCIA Practical Assignment Version 2.9.

<www.giac.org/practical/Jason_Lam_GCIA.doc>
 Oborn, David - SANS GCIA Practical Assignment

<http://www.giac.org/practical/David_Oborn_GCIA.html#detect4>
 Fiddler, Matthew–May 10th, 2002 - GCIA Practical Assignment - Version 3.0 -

<http://www.giac.org/practical/Matthew_Fiddler_GCIA.doc>
 Allen, Jennifer - WU-FTPD Heap Corruption Vulnerability - GCIH Practical Assignment

v2.0. Dec. 2001. < www.giac.org/practical/Jenn_Allen_GCIH.doc>
 Ellis, Joe–GCIA Practical Assignment v3.0, Intrusion Detection In Depth–May 14th, 2002

- <http://www.giac.org/practical/Joe_Ellis_GCIA.doc>
 Poor, Mike - Intrusion Detection in Depth. GCIA Practical Assignment v3.0 -

<http://www.giac.org/practical/Mike_Poor_GCIA.doc>
 Neel, Robert - http://www.giac.org/practical/Robert_Neel.doc
 Mohan, Potheri - <http://www.giac.org/practical/Potheri_Mohan_GCIH.doc>
 Stearns, William–2000 - http://www.sans.org/y2k/practical/william_stearns_gcia.html

CERT
 IN-2002-04 - http://www.cert.org/incident_notes/IN-2002-04.html
 CA-1995-15 - http://www.cert.org/advisories/CA-1995-15.html
 IN-2000-02 - http://www.cert.org/incident_notes/IN-2000-02.html
 CA-2001-07 - http://www.cert.org/advisories/CA-2001-07.html

Common Vulnerabilities and Exposures (http://cve.mitre.com)
 CVE-1999-0189 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0189
 CVE-2000-0225 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0225
 CAN-1999-0454 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0454
 CAN-1999-0495 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0495
 CAN-1999-0660 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0660
 CVE-1999-0683 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0683
 CVE-1999-0804 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0804
 CAN-2000-0544 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0544

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

75

 CVE-2000-0917 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0917
 CAN-2002-0154 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0154
 CAN-2002-0677 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0677
 CAN-2002-0678 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0678

Microsoft
 MS-SQL Server Security Information Web Page -

http://www.microsoft.com/sql/techinfo/administration/2000/security.asp
 MS-SQL Server Security Information Web Page -

http://www.microsoft.com/sql/evaluation/features/security.asp
 MS Bulletin MS00-057 - Patch Available for 'File Permission Canonicalization' Vulnerability

- August 10, 2000 - http://www.microsoft.com/technet/security/bulletin/ms00-057.asp
 IIS4.0 Security Update, August 15, 2000 -

http://www.microsoft.com/ntserver/nts/downloads/critical/q269862/
 IIS 5.0 Security Update, August 15, 2000 -

http://www.microsoft.com/windows2000/downloads/critical/q269862

Bugtraq
 BugTraq ID 1712 - http://www.securityfocus.com/bid/1712
 BugTraq ID 576 - http://www.securityfocus.com/bid/576
 BugTraq ID 2540 http://www.securityfocus.com/bid/2540

Additional References
 Entercept - Multi-Vendor Remote Buffer Overflow Vulnerability in CDE ToolTalk Database

Server - http://www.entercept.com/news/uspr/08-12-02.asp
 Mixter - .mixter security web site - http://mixter.warrior2k.com
 Sage, John - May 13, 2002 - http://www.incidents.org/archives/intrusions/msg11889.html
 HPING Web Site - http://www.hping.org/
 ISS Alert–http://bvlive01.iss.net/issEn/delivery/xforce/alertdetail.jsp?id=advise5
 Symantec.com - W32.Bugbear@mm Security Response -

http://securityresponse.symantec.com/avcenter/venc/data/w32.bugbear@mm.html
 McAfee Security - http://vil.nai.com/vil/content/v_99728.htm
 Sophos.com - http://www.sophos.com/virusinfo/analyses/w32bugbeara.html
 Williams, Shane - http://www.mcabee.org/lists/snort-users/Oct-02/msg00067.html
 Dittrich, David. The "Tribe Flood Network" distributed denial of service attack tool. Oct.

21st, 1999 <http://staff.washington.edu/dittrich/misc/tfn.analysis>
 AMP Information Website - http://sd.wareonearth.com/woe/amp.htm
 NLANR Website - http://moat.nlanr.net/
 Sven Dietrich - Analysis of the Shaft distributed denial of service tool - 16 Mar 2000 -

http://security.royans.net/info/posts/bugtraq_ddos3.shtml
 mms://195.92.252.254/jazzfmstation
 Incidents.org - Code Red II Worm Analysis Update–August 7th, 2002 -

http://www.incidents.org/react/code_redII.html
 Incidents.org–Nimda Worm/Virus Report–October 3rd, 2001 -

http://www.incidents.org/react/nimda.pdf
 WJSolutions.com - http://www.wjsolutions.com/scanner/?curpage=SummaryScan
 descan.net -

http://www.descan.net/searchresults.html?command=specific&source=24.123.46.10
 Ruiu, Dragos–spp_defrag.c–Snort defrag pre-processor source code

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

76

 Web site reporting Adore contact from telia.com hosts - http://www.rud.dk
 SANS - Adore Worm - Version 0.8 - April 12, 2001 <http://www.sans.org/y2k/adore.htm>
 TonikGin–XDCC– An .EDU Admin’s Nightmare” –September 11th, 2002 -

<http://www.russonline.net/tonikgin/EduHacking.html>
 Pest Patrol–About Ports and Trojans–2002–

http://www.pestpatrol.com/Support/About/About_Ports_And_Trojans.asp#portlist
 Cramer, Christopher - http://www.theorygroup.com/Archive/Unisog/2002/msg00677.html
 Ruiu, Dragos–Feb. 12th, 2002 - http://archives.neohapsis.com/archives/snort/2001-

02/0320.html
 Marquette University–Virus Alert–October 2002 - http://its.marquette.edu/virus/alert.html
 Symantec.com–W32.Myparty@mm Security Response -

http://securityresponse.symantec.com/avcenter/venc/data/w32.myparty@mm.html
 Chappell, Laura– “Your Being Watched” –March 2001–

<http://www.nwconnection.com/2001_03/pdf31/cybercrm31.pdf>
 Graham, Robert http://www.robertgraham.com/pubs/firewall-seen.html
 Insecure.org - http://www.insecure.org/nmap
 http://vger.kernel.org–reference to site using TCP / ECN
 Bill Manning–May 26th, 2002 - Documenting Special Use IPv4 Address Blocks that have

been registered with IANA/RIR - http://www.ietf.org/internet-drafts/draft-manning-dsua-
08.txt

 Ramakrishnan, K.–RFC 3168–The Addition of Explicit Congestion Notification (ECN) to
IP–September 2001 - <ftp://ftp.isi.edu/in-notes/rfc3168.txt>

 AT&T Laboratories Cambridge, 1999 - <http://www.uk.research.att.com/vnc/winvnc.html>
 Alexander, Bryce–Port 137 Scan–May 10th, 2000 -

<http://www.sans.org/newlook/resources/IDFAQ/port_137.htm>
 Alexander, Bryce, SANS–Followup on a Honeypot Catch - 2000 -

<http://www.sans.org/y2k/honeypot_catch.htm>
 Martin Roesch–Re: [snort] Tiny Fragments - May 14th, 2000 -

http://archives.neohapsis.com/archives/snort/2000-05/0103.html
 John Berkers and Andrew Daviel–[snort-users] group posting–2001 -

http://archives.neohapsis.com/archives/snort/2001-08/0528.html
 Google - www.google.com
 VisualWare Web Site–http://www.visualroute.com
 Snort Web Site–http://www.snort.org
 Martin Roesch, Chris Green - Snort Users Manual v1.9.1 -

http://www.snort.org/docs/writing_rules
 Dragos Ruiu - Snort FAQ v1.8 - http://www.snort.org/docs/faq.html
 American Registry for Internet Numbers–http://www.arin.net
 Réseaux IP Européens–http://www.ripe.net
 Asia Pacific Network Information Center–http://www.apnic.net/
 Stevens, Richard W. TCP/IP Illustrated, Volume 1 The Protocols, 1994 Addison Wesley
 Northcutt, Stephen and Judy Novak. Network Intrusion Detection, An Analysts Handbook

2nd Edition. Indianapolis, IN: New Riders Publishing, 2000
 Northcutt, Stephen et. all.–IDS Signatures and Analysis, Parts 1 and 2–SANS

courseware–2002
 Joakim von Braun–Intrusion Detection FAQ - What port numbers do well-known trojan

horses use? - 2000 - http://www.sans.org/newlook/resources/IDFAQ/oddports.htm

