
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

IInnttrruussiioonn DDeetteeccttiioonn:: IInn--DDeepptthh AAnnaallyyssiiss

Johnny Calhoun
GIAC GCIA Practical version 3.3

Submitted: January 8, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

Assignment #1: Describe the State of Intrusion Detection..4

Revealing the Insecurities of Wireless Networks ...4
Introduction ...4
Background ...5
Identifying the Problem ...5
Wireless Intrusion Detection..5
Countermeasures ...6
References for this Assignment..7

Assignment #2: Three Network Detects...8
Detect #1: Banner Grabbing ..8

Source of Trace ...8
Detect was Generated by ...8
Probability the Source Address was Spoofed ...9
Description of the Attack ...9
Attacking Mechanism..9
Correlations ...10
Evidence of Active Targeting ..11
Severity ...11
Defensive Recommendation ..11
Multiple Choice Question ..12

Detect #2 Apache Chunked Encoding Worm...13
Source of Trace ...13
Detect was Generated by ...13
Probability the Source Address was Spoofed ...14
Description of Attack...14
Attack Mechanism...15
Correlations ...16
Evidence of Active Targeting ..17
Severity ...17
Defensive Recommendation ..18
Multiple Choice Question ..18

Detect #3 The XMAS Scan..19
Source of Trace ...19
Detect was Generated By...19
Probability Source Address was Spoofed ...19
Description of Attack...19
Attack Mechanism...19
Correlations ...20
Evidence of Active Targeting ..21
Severity ...21
Defensive Recommendation ..21
Multiple Choice Test Question ..21
References for this Assignment..22

Assignment #3 Analyze This ...23
Executive Summary...23

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

List of Analyzed Files.. 23
Prioritized Detects ...24
Incomplete Packet Fragments Discarded.. 25
spp_http_decode: IIS Unicode attack detected ...26
SMB Name Wildcard .. 27
SUNRPC highport access! ...27
TFTP – External UDP Connection to Internal TFTP Server28
Registration Information for 24.90.124.187 ...29
Registration Information for 212.113.174.194..29
CGI Null Byte Attack Detected..31
Relational Analysis Process ...31
Top Talkers ...33
Registration information for 213.115.19.12: ..34
Registration Information for 130.161.220.212: ..36
Out of Spec..36
Insights about Internal Machines ...37
Registration Information for 128.121.97.106: ..37
Defensive Recommendations ...39
References for this Assignment..40

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

Assignment #1: Describe the State of Intrusion Detection

Revealing the Insecurities of Wireless Networks

IInnttrroodduuccttiioonn

With the ever-increasing popularity of wireless technologies, new threats have
emerged in the information security arena. Wireless Local Area Networks, also
known as WLANs, are beginning to become more and more widespread. This
can be attributed to ease of installation and maintenance as compared to a wired
LAN, no more long cable runs or cutting holes in walls. This ease comes at a
price; WLANs pose a serious security risk. Carelessly configured access points
and wireless routers can become a “welcome-all” gateway into a wired network,
and for this reason has become the latest hacker playground. A misconfigured
WLAN can easily become a springboard for a larger attack and that is what I
intend to show.

Hackers can determine where WLANs are physically located and how they are
configured via a technique known as “wardriving.” Wardriving consists of driving
around in an automobile while using a laptop equipped with a wireless card to
detect any wireless access points in the surrounding area. Depending on the
type of wardriving tool used, the two most common, Kismet for Linux users or
Netstumbler for Windows users, it is possible to gather information about your
network from afar. The very aspect of a “wireless” network makes it a danger
from a security standpoint; this is due to the fact that no physical access is
needed for an intruder to access the network, thus making the job of sniffing
packets or capturing sensitive data much easier for an intruder. Normally, with a
wired network access to layer 1 is protected by locked doors, and limited by a
physical cable, but with wireless networks there is no such protection.

The location of the access point can also escalate the risk involved, if the access
point is located behind the firewall, then the very presence of a firewall becomes
non-existent, thus giving an attacker instant access via wireless connection to the
internal network, which is the last place we want an unauthorized user. Consider
the following diagram:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

In the above diagram, from www.airdefense.net, we see the danger that
improperly placed access points can have on a network. The access points are
connected directly to the internal network and may possibly be granting
unauthorized access to an intruder positioned outside in the parking lot.

BBaacckkggrroouunndd

Access Points are not the only threat, peer-to-peer WLANs known as “ad hoc”
networks and rouge access points can also affect the overall security of the
network. Ad hoc networks are composed only of WLAN cards and do not require
any wireless access point or authentication scheme in order to establish a
connection. Rouge access points are access points that are put into use without
authorization. These are not the only problems faced when deploying a wireless
LAN, many access points come with a preset default configuration that is
insecure, and so configurations must also be considered potentially harmful.
Most are set up without WEP (Wired Equivalent Privacy) enabled, which means
there is no encryption. Default passwords, default SSIDs and allowing open
broadcast SSIDs are also common insecurities. The default configuration alone
can allow any user with a wireless card to access the wireless network without
any authentication, and also grants them the ability to sniff network traffic using
tools like tcpdump and ethereal. At times the only authentication in place is MAC
address based filters, which is weak because MAC addresses can be spoofed
easily. This can lead to identity theft and connection hijacking where an attacker
takes control over a pre-established connection without authentication, and this
can be done even if security measures such as IPSEC and WEP are already in
place.

IIddeennttiiffyyiinngg tthhee PPrroobblleemm

The obvious problem is that an intruder, via an incorrectly configured wireless
access point, can easily gain instant remote access to a network. Access to a
wireless network can be abused in many ways. One such abuse is unauthorized
access to a private Internet connection. An attacker could also use the insecure
WLAN as a springboard to launch other attacks. There are several tools that can
aid an attacker in gathering information and possibly compromise hosts within
that network. There are tools available that can enable a wireless card to act as
mobile access point, which can lead to a malicious user posing a valid access
point by spoofing the MAC address of the real access point and also sending
disassociations to the access points.

WWiirreelleessss IInnttrruussiioonn DDeetteeccttiioonn
The current approach to IDS in wireless LANs is two tiered – looking for wireless

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

attacks and looking for IP based attacks. The wireless IDS focuses primarily on
wireless attacks and does not perform IP-based intrusion detection. If we want to
watch for IP-based attacks, then we simply put a NIDS at the wireless AP choke
point. That will take care of most attacks, the ones your IDS has signatures for,
but does not protect against wireless attacks. The NIDS cannot detect wireless
attacks, so a wireless NIDS implementation is therefore needed. One such
implementation is by Airdefense (www.airdefense.net).

A wireless network will require both IDS technologies to provide proper visibili ty
and coverage. The wired NIDS cannot detect any wireless based attacks or
wireless threats including: rogue access points, soft access points, ad hoc
networks, sniffers, netstumbler probes or kismet users to name a few. Basically,
a wired NIDS is useless against wireless attacks, but can detect wireless born IP
based attacks once it hits the wire.

The wireless IDS can detect the above mentioned attacks as well as provide
minimal Intrusion Prevention, such as trapping a signal, and forcing a
disassociation. The Airdefense solution also provides for health monitoring of
wireless devices as an added benefit.

CCoouunntteerrmmeeaassuurreess

There are various ways of defeating wireless security measures, so a layered
approach must taken in order to properly secure a WLAN. WLANs create an
interesting problem in that as security professionals we have to deal with the
normal security threats in addition to all the new threats that wireless
technologies bring to the table. We must remain vigilant on both fronts and
monitor each with precision and accuracy. We must also aggregate events from
both wired NIDS and wireless NIDS and correlate them to ensure maximum
visibility, and with both in place we can begin to build a strong security
infrastructure. I have designed a diagram below of what a secure wireless
infrastructure might look like, and if properly implemented can become a secure
foundation for a wireless network environment.

Wireless Laptop
Firewall

WIDS NIDSAP Internal LAN

WLAN

There are also other measures that can be put into to place to further increase
the security of the wireless network. A technique known as RF signal shaping
can be used to “directionalize” the RF signals emitted from the access point.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

One way this can be accomplished is to use directional antennas. Also, because
signals can bleed over beyond your perimeter, consider reducing the power of
the access point, as to weaken the signal so that it spans a smaller distance.
Physical security is sometimes just as important.

Although WEP can be broken using tools such as airsnort and WEPcrack, it is
still a good idea to have it in place. The reason for this is because it takes a lot of
packets to be captured before the crack can be performed, an attacker is more
likely to move on to the next target if he sees a WEP enabled network. This is
similar to a burglar moving on to the next house where the owners don’t lock the
doors.

Another commonplace security measure is to place a VPN over the wireless link
and to use strong mutual authentication. While the management and control
frames can still be seen using this solution, if WEP is broken, the IP contents will
not be readable due to encryption. This creates one more level of security and
causes an intruder a lot more work in order to compromise the network. With the
widespread use of wireless these days, an attacker is prone to ignore your
network if you have WEP, and IPSEC enabled, and is likely to move on to the
next network down the street.

RReeffeerreenncceess ffoorr tthhiiss AAssssiiggnnmmeenntt
Airdefense Wireless Security
www.airdefense.net

Linux Security Article
www.linuxsecurity.com/feature_stories/wireless-kismet.html

Kistmet Wardriving Tool
www.kismetwireless.net

Airsnort WEP cracking Tool
airsnort.shmoo.com

Netstumbler Wardriving Tool
www.netstumbler.com

Google Search Engine
www.google.com

HostAP
hostap.epitest.fi

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

Assignment #2: Three Network Detects

For this assignment I have analyzed three detects. The first detect was one I
discovered on the incidents mailing list and responded to, it is a simple detect,
but is still worthy of an in-depth analysis. The second detect was captured in
real-time during an actual attack on a web server. The third detect was taken
from the incidents.org raw log files.

Detect #1: Banner Grabbing

Most attacks and exploits are platform dependent, meaning they only work on a
select group of platforms and servers. Attackers can find out information about a
server in plain view, such as visiting the website of a victim and looking for
slogans such as, “powered by Redhat Linux” or by sending a simple crafted
“GET” request to a web server on port 80. The technique of sending crafted
packets to a served port in an effort to extract information is known as "Banner
Grabbing." Telneting to a web server on port 80 and submitting "GET x
HTTP/1.0" can reveal lots of useful information to an attacker, such as the
operating system, type of web server and version numbers. Some worms, such
as the sadmind worm, take advantage of this feature when identifying vulnerable
hosts. Below is such a detect generated by snort:

SSoouurrccee ooff TTrraaccee
The following trace was taken from the incidents mailing list. An administrator
reported seeing strange log entries and was curious to what they were and if
anyone else had seen the same type of activity. Although the layout of the
network is unknown, we can safely presume that this machine is a web server in
the DMZ.

DDeetteecctt wwaass GGeenneerraatteedd bbyy
This detect looks to be generated by an Apache web server due to the
similarities in the logging format:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

213.165.144.xxx - - [12/Oct/2002:05:40:01 -0500] "GET /sumthin HTTP/1.0" 404 1086 "-" "-"
 213.165.144.xxx - - [12/Oct/2002:05:40:01 -0500] "GET /sumthin HTTP/1.0" 404 1086 "-" "-"
 213.165.144.xxx - - [12/Oct/2002:05:40:01 -0500] "GET /sumthin HTTP/1.0" 404 1086 "-" "-"
 213.165.144.xxx - - [12/Oct/2002:05:40:01 -0500] "GET /sumthin HTTP/1.0" 404 1086 "-" "-"
213.165.144.xxx - - [12/Oct/2002:05:40:01 -0500] "GET /sumthin HTTP/1.0" 404 1086 "-" "

The “GET” request was logged due to the fact that an error was returned. In this
particular case a 404 error was returned, which is generally a sign that a page
cannot be found, but it also returns headers with valuable information back to the
requestor. The format of the log is as follows:

<Source Address> <Date><Time> <Details>

PPrroobbaabbiilliittyy tthhee SSoouurrccee AAddddrreessss wwaass SSppooooffeedd
It is highly unlikely that the source address was spoofed. This is because the
attack is soliciting some type of response from the victim host, and also because
HTTP communicates over TCP, which requires that the three-way handshake be
completed in order for a connection to be established and communications to
take place. So if this address were spoofed, the results would be returned to the
spoofed host and not the original sender. It is possible to hijack TCP sessions,
but unlikely in this instance because the level of sophistication involved is out of
context with this simple attack. The nature of this attack does not indicate
spoofing activity.

DDeessccrriippttiioonn ooff tthhee AAttttaacckk
This is an information gathering attempt against a web server. The technique
used is known as banner grabbing and the purpose of this attack is to gain
information about the server that may be used in a future attack. While this is a
very quiet probe, it is still important that attention is paid to it, because it can be a
tip-off to an up and coming larger and more threatening attack.

AAttttaacckkiinngg MMeecchhaanniissmm
In this attack an attacker is simply trying to gain information about a web server,
such as the type of web server (Apache, IIS. Etc.) and Operating System type.
The attack is very simple and is launched by merely formatting a URL such that
an error is spawned, or to just telnet the web server on port 80 (HTTP) and craft
a GET request that will return HTTP header information.

As a case study of how this attack works, let’s take a look at an excerpt from a
recent post to the incidents mailing list that I found and responded to that deals
with Banner Grabbing.

Upon analyzing this post I recalled several similar events that I have seen
previously that used banner grabbing as a pre-attack scan before launching
some sort of attack. Being the nice guy that I am, I figured I should post to the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

list describing what was occurring. The full post can be found here:
http://online.securityfocus.com/archive/75/295887/2002-10-18/2002-10-24/2

 Post follows:

“This looks to be a banner grabbing attempt on your web servers. A lot of
scanners/worms will do this in an attempt to find out what type of web server you are
running and compare it against a list of vulnerable servers for some particular exploit.
The /sumthin is placed within the GET command to trigger a 404 error, which in turn
reveals valuable information about your server back the requestor. If the information
returned by your server is useful to the scanner/worm you may see other exploits in the
near future targeted towards your box. For a more practical example, consider the
sadmind worm which issues the following request for this purpose: "GET x HTTP/1.0."
If you want to see what is returned by your box, simply telnet to your server on port 80
and issue the same request and hit ENTER twice. You should see something similar to:

[root@webserver root]# telnet 127.0.0.1 80
Trying 127.0.0.1 ...
Connected to 127.0.0.1.
Escape character is '^]'.
GET /sumthin HTTP/1.0

HTTP/1.1 404 Not Found
Date: Thu, 17 Oct 2002 11:21:35 GMT
Server: Apache/2.0.40 (Unix)
Content-Length: 286
Connection: close
Content-Type: text/html; charset=iso-8859-1

. . . and probably some 404 HTML error code too

Notice how it revealed the Web Server type, Version and OS it runs on.

I would consider this type of activity as an information gathering attempt . . .

So as you can see, there is a lot of information to be gathered easily from a web
server by simply crafting a GET request.

CCoorrrreellaattiioonnss
As stated in the quote above, a correlation was made between the detect used
for this analysis and a previous snort alert I have dealt with that was triggered by
the sadmind worm. As a comparison let’s now take a look at a sample Snort
alert that triggers on the sadmind worm:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

Sadmin Worm Probe - SNORT IDS
[**] [1:1375:5] WEB-MISC sadmind worm access [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/03-22:32:07.164902 x.95.120.252:59768 -> x.18.0.10:80
TCP TTL:236 TOS:0x0 ID:40385 IpLen:20 DgmLen:58 DF
AP Seq: 0xCECED6A7 Ack: 0x97721E37 Win: 0x25BC TcpLen: 20
[Xref => http://www.cert.org/advisories/CA-2001-11.html]

GET x HTTP/1.0

This alert is very similar to the detect being analyzed in several ways. First of all,
both destination or victim machines are web servers and the targeted port is 80.
Also, the GET requests essentially perform the same function, they trigger an
error that returns valuable information.

EEvviiddeennccee ooff AAccttiivvee TTaarrggeettiinngg
There is not enough evidence to support the idea of host based active targeting.
A scan for an open port 80 was probably launched across a large number of
Internet addresses prior to this detect being triggered. Then after the scan
returned the results, the scope of targeting was narrowed.

SSeevveerriittyy
We can calculate severity using the following formula:

(Target's Criticality + Lethality of Attack) - (System Defense + Network Defense)

Criticality 4 This was directed towards a web server.
Lethality 1 Information Gathering in nature, not an exploit
System Defense 4 OS assumed up to date with relevant patches
Network Defense 1 This is web traffic firewalls and routers do not block

Now that we have assigned values to the four aspects of severity, let us now
calculate the severity of this attack: Severity = (4 + 1) – (4 + 1) = 0

Due to the lack of lethality of this attack, the severity is low. This is more of an
information gathering attempt than an actual exploit driven attack.

DDeeffeennssiivvee RReeccoommmmeennddaattiioonn

The best way to combat an attack that gathers valuable information about your
host is to turn off the mechanism that reveals such information. In the particular
case we can adjust our web server so that its footprint is not displayed. On an
Apache web server the way to stop this is to add the following line to the
apache.conf file:

ServerSignature Off

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

By adding the above to your configuration, less information is freely given to an
attacker.

MMuullttiippllee CChhooiiccee QQuueessttiioonn
213.165.144.xxx - - [12/Oct/2002:05:40:01 -0500] "GET /sumthin HTTP/1.0" 404 1086 "-" "-"
 213.165.144.xxx - - [12/Oct/2002:05:40:01 -0500] "GET /sumthin HTTP/1.0" 404 1086 "-" "-"
 213.165.144.xxx - - [12/Oct/2002:05:40:01 -0500] "GET /sumthin HTTP/1.0" 404 1086 "-" "-"
 213.165.144.xxx - - [12/Oct/2002:05:40:01 -0500] "GET /sumthin HTTP/1.0" 404 1086 "-" "-"
213.165.144.xxx - - [12/Oct/2002:05:40:01 -0500] "GET /sumthin HTTP/1.0" 404 1086 "-" "

Based on the above detect, what is the “404” indicative of:

a) 404 connection attempts
b) type 404 connection
c) HTTP error code
d) IP ID number

The correct answer is c.

Error code 404 is used to signify an error in processing an HTTP request, in this
particular case, to report that a page was not found. Code 404 is not the only
error code there are many others, and they can be signs that someone is doing
something bad on your web server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

Detect #2 Apache Chunked Encoding Worm

SSoouurrccee ooff TTrraaccee

This trace was taken from a snort device that alerted on a chunked-encoding
attack against a corporate web server. Again, the layout basically consists of a
web server in a DMZ with Snort IDS in place.

DDeetteecctt wwaass GGeenneerraatteedd bbyy
This detect was generated by the Snort Intrusion Detection System:

[**] [1:1809:1] WEB-MISC Apache Chunked-Encoding worm attempt [**]
[Classification: Web Application Attack] [Priority: 1]
09/19-17:29:34.682304 x.129.81.40:3838 -> xxx.244.39.70:80
TCP TTL:49 TOS:0x0 ID:33935 IpLen:20 DgmLen:1500 DF
A* Seq: 0xA84B2AD8 Ack: 0x9608144F Win: 0x8218 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1353816199 2264210294
[Xref => http://www.securityfocus.com/bid/4474]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0079]
[Xref => http://www.securityfocus.com/bid/5033]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0392]

POST / HTTP/1.1..Host: Unknown..X-CCCCCCC: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA
AAA
AAA
AAA
AAA
AAAhGGGG..1.PPP
P..$.SPP1.1........1.....r....D$..|$.u.1..D$..D$d$..D$..D$..D$..T$..T$...$1..]..1..,$s'1.PPPP..$T..$..$..$..$QP....
XXXXX<Ot.XXA....1.PQP1..Z...D$..|$..u.1.P..$..4$.hBLE*h*GOB....PS..PP....1.Phn/shh//bi..PS..PQSP.;...
..XCCCCCC:AA
AAA
AAAAAAAAAAAAAAAAAAA

As we begin our analysis of this alert we see that the attacker has found a web
server and has attempted to compromise this host via a known vulnerability
within the Apache implementation. The format of a snort alert is as follows, and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

describes the connection in detail:

Timestamp Source:Port -> Destination:Port
<Protocol> <TimeToLive> <TypeOfService <IP ID> <IPHeaderLength> <PacketLength> <[options]>
<flags> <SequeneceNumber> <AckValue> <WindowSize> <TcpHeaderLength>
<TCP Options>

Below is the Snort signature that alerted on this event:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC Apache
Chunked-Encoding worm attempt"; flow:to_server,established; content:"CCCCCCC\:
AAAAAAAAAAAAAAAAAAA"; nocase; classtype:web-application-attack; reference:bugtraq,4474;
reference:cve,CAN-2002-0079;reference:bugtraq,5033; reference:cve,CAN-2002-0392; sid:1809; rev:2;)

This signature alerts on established (Ack or more flags - A+) ingress traffic
destined for a web server on a web port, in this case port 80, with the content of:
"CCCCCCC:AAAAAAAAAAAAAAAAAAA."

PPrroobbaabbiilliittyy tthhee SSoouurrccee AAddddrreessss wwaass SSppooooffeedd
It is unlikely that the source was spoofed in this attack, due to the fact that a
response is expected. HTTP connections are established via the TCP three-way
handshake, therefore making it extremely difficult for an attacker to pull off a
successful spoofing attack. Also, by examining proof-of-concept code*, there
does not seem to be any mechanism for spoofing the source.

DDeessccrriippttiioonn ooff AAttttaacckk
The foundation of all websites is the web server. Each day web servers all over
the world are constantly scanned for vulnerable services, applications,
backdoors, and not to mention the lethal worms that probe massive numbers of
hosts looking for various types of insecurities and try to exploit them. It is for this
reason much time must be spent in aggregating and correlating web server logs
with NIDS logs. See the chart below for relational comparisons of port 80 scans
compared to other massive scans that sweep across cyberspace.

* http://online.securityfocus.com/bid/5033/exploit/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

As you can see in the above chart, from dshield.org, port 80 is the most common
port scanned on the Internet today. Although the graph only represents one day
of scans, repeated visits to dshield.org reveals that port 80 scans are the most
prevalent over a longer time span, though at times the list is topped by other
ports that correspond to the latest vulnerability. Many worms target web servers,
including CodeRed, Nimda, sadmind, and the Apache Chunked Encoding worm.

The following excerpt is from http://www.iss.net/security_center/static/9249.php
and describes the vulnerability is greater detail:

“Apache HTTP Server versions 1.2.2 and later, 1.3 up to and including 1.3.24, and 2.0
up to and including 2.0.36 are vulnerable to a heap buffer overflow in the mechanism
that calculates the size of "chunked" encoding. Chunked encoding is a process by which
a client generates a variable sized "chunk" of data and notifies the Web server of the
data's size before transferring it, so that the Web server can allocate a buffer of the
correct size. The Apache HTTP Server has a software flaw that misinterprets the size of
incoming data chunks. A remote attacker can use this vulnerability to overflow a buffer
and execute arbitrary code or cause a denial of service against the affected Web server.”

The following, taken from http://online.securityfocus.com/bid/5033/discussion,
gives us a few more details:

“When processing requests coded with the 'Chunked Encoding' mechanism, Apache fails
to properly calculate required buffer sizes. This is believed to be due to improper
(signed) interpretation of an unsigned integer value. Consequently, several conditions
may occur that have security implications. It has been reported that a buffer overrun and
signal race condition occur. Exploitation of these conditions may result in the execution
of arbitrary code.”

This attack comes in the form of a worm that scans the Internet for vulnerable
web servers, then it proceeds to exploit the server via the chunked encoding
vulnerability. If the exploit attempt is successful, then the worm will upload a
copy of itself in the form of a uuencoded file named “.uua” to the victim. With the
new file in place, located in the /tmp directory, the file is uudecoded into a binary
file called “.a.” The new file can then be executed to begin searching for more
hosts to infect.

AAttttaacckk MMeecchhaanniissmm
The lifecycle of this attack is: scan, exploit, transfer and listen. The worm begins
by scanning the Internet for web servers. This is accomplished by sending an
legit HTTP request to the web server, and observing the header that comes
back. If the header matches the list of vulnerable apache implementations,
notice implementation because this attack is only known affect certain operating
systems, FreeBSD in particular. When vulnerable servers are found they are
stored for later use. Next, it attempts to exploit the web servers that were found

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

by the scan via the chunked encoding vulnerability. Then, the worm transfers a
uuencoded copy of itself (.uua) to the /tmp directory infecting of the victim.
Lastly, it listens on UDP port 2100 for control packets to ok the launch of the new
worm. A graphical diagram of this activity can be found at
http://www.idefense.com/Intell/CI063002.html.

CCoorrrreellaattiioonnss
The following alert was triggered by Snort in the midst of a broad scan that was
focusing on Apache web servers.

[**] [1:1807:1] WEB-MISC Transfer-Encoding: chunked [**]
[Classification: Web Application Attack] [Priority: 1]
09/19-17:29:36.001811 x.129.81.40:3838 -> x.244.39.70:80
TCP TTL:49 TOS:0x0 ID:34088 IpLen:20 DgmLen:510 DF
AP Seq: 0xA84BA748 Ack: 0x9608144F Win: 0x8218 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1353816331 2264210427
[Xref => http://www.securityfocus.com/bid/4474]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0079]
[Xref => http://www.securityfocus.com/bid/5033]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0392]

..X-AAAA
: ..
X-AAAA: ..
......X-AAAA: ..
............X-AAAA: ..
..................X-AAAA:
........................Transfer-Encoding: chunked....5..BBBBB..
ffffff6e..

Below are logs that were taken from a router that alerted on scans across
multiple hosts on port 80 from the same host as the snort alert:

Sep 19 20:17:43 xxx.117.106.65 2096595: %SEC-6-IPACCESSLOGP: list 101 denied tcp
61.129.81.40(3791) -> xxx.244.39.75(80), 1 packet
Sep 19 20:17:43 xxx.117.106.65 2096596: %SEC-6-IPACCESSLOGP: list 101 denied tcp
61.129.81.40(3792) -> xxx.244.39.76(80), 1 packet
Sep 19 20:17:43 xxx.117.106.65 2096597: %SEC-6-IPACCESSLOGP: list 101 denied tcp
61.129.81.40(3793) -> xxx.244.39.77(80), 1 packet
Sep 19 20:17:43 xxx.117.106.65 2096598: %SEC-6-IPACCESSLOGP: list 101 denied tcp
61.129.81.40(3794) -> xxx.244.39.78(80), 1 packet
Sep 19 20:17:43 xxx.117.106.65 2096599: %SEC-6-IPACCESSLOGP: list 101 denied tcp
61.129.81.40(3795) -> xxx.244.39.79(80), 1 packet

In the above log entries, which correlates with the Snort IDS detect, we can
determine several things about this scan by analyzing it as a whole and then
breaking it down piece by piece. As we look at the whole trace we see that the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

attacker is scanning the Internet for victim hosts, which means that this is
probably the initial recon phase of an attack. I say “probably” because the
probes are getting blocked by the screening router list 101 denied tcp, because of
this we only know that there was an attempted connection, we do not know what
the intent of the connection was. The destination ports are all the same, which
tells me that this attacker is scanning for hosts that accept connections on port
80, in other words a web server. I also see that the destination IP addresses are
incrementing with each scan, as well as incrementing source port numbers,
which is indicative of host scanning activity. By correlating these logs and alerts
we can begin to see how the attack was structured. First a large number of hosts
were scanned for open port 80. Then, once it was determined which of these
hosts were web servers, the attack was launched. It should also be noted that
since this is an attack that only affects apache web servers, more
reconnaissance probably took place before the attack to determine which type of
web server was running on this host. This information could have easily been
determined by using the banner grabbing technique discussed in detect #1.

EEvviiddeennccee ooff AAccttiivvee TTaarrggeettiinngg
This scenario does not display evidence of active targeting. A stated before, a
broad range of IP addresses were scanned prior to this attack being launched, so
on the second go round this was a just a host that happened to fall within a
predetermined criteria for exploitation, in other words it was a potentially
vulnerable web server. Also because this exploit is primarily worm driven, there
is no human element involved to focus this attack, but I am sure that this could
be performed with altered or derivative code.

SSeevveerriittyy
We can calculate severity using the following formula:

(Target's Criticality + Lethality of Attack) - (System Defense + Network Defense)

Criticality

4

This was an attack on a web server. While a
successful attack against a web server can be
embarrassing, it does not get a 5 because it does not
affect the network as bad as a firewall or DNS hack.

Lethality
4

It may be possible to execute arbitrary code or DOS,
thereby altering the contents of the webpage or
bringing the box down completely

System Defense 4 Operating System and patches were up to date, this
platform was not vulnerable to this attack

Network Defense
1

Due to nature of attack, and the server being in the
DMZ, firewalls and routers do not help much because
web traffic is allowed to pass.

Now that we have assigned values to the four aspects of severity, let us now

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

calculate the severity of this attack: Severity = (4 + 4) – (5 + 1) = 2

DDeeffeennssiivvee RReeccoommmmeennddaattiioonn

The best counter measure for this attack is to patch any vulnerable systems
referred to in the advisories. Available patches should be applied as soon as
possible. Also due to the fact that headers are used in this attack, it would be
wise to disable this mechanism. Which should be an easy change to the apache
configuration file, and was noted in the previous detect. If the host is already
infected, to eradicate the worm simply remove the .uua and .a files from the tmp
directory and kill the running worm process.

MMuullttiippllee CChhooiiccee QQuueessttiioonn
Which port does the Apache Chunked Encoding Worm Listen for Control
Packets?

a) UDP 2100
b) TCP 2100
c) UDP 2001
d) TCP 2001

The correct answer is a. A newly infected machine will send out a single UDP
packet to its infector, and will listen on UDP port 2100 for two UDP “control”
packets before it begins to scan for other hosts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

Detect #3 The XMAS Scan

SSoouurrccee ooff TTrraaccee
The following detect was taken from the raw logs located at
http://www.incidents.org/logs/Raw/. The logs are in a tcpdump binary format.
The particular log that the detect originated from was 2002.8.23. The logs below
were taken from the Snort alert file that was produced by the 2002.8.23 raw log
through snort:

[**] [1:1228:1] SCAN nmap XMAS [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/23-14:38:46.316507 xxx.74.249.65:61621 -> xxx.61.16.19:601
TCP TTL:50 TOS:0x0 ID:55961 IpLen:20 DgmLen:60
U*PF Seq: 0x417A1598 Ack: 0x0 Win: 0x800 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => arachnids 30]

DDeetteecctt wwaass GGeenneerraatteedd BByy
The detect was generated by the Snort Intrusion Detection System version 1.9.0
build 209. The alerts were produced by using Snort to read the binary logs and
write the alerts to a specified log directory using the FULL alert format. The
following command was issued, snort –c /root/rules/snort.conf –r 2002.8.23 –l
log –N –A full, and the alert file was generated.

PPrroobbaabbiilliittyy SSoouurrccee AAddddrreessss wwaass SSppooooffeedd
The packets contained in this detect could easily be spoofed because there is no
initial connection or TCP three way handshake involved. But, because the attack
is information gathering in nature, and a response is needed it is unlikely that the
source address has been spoofed.

DDeessccrriippttiioonn ooff AAttttaacckk
This is an information gathering attack that probes a victim host in an effort to
solicit a response that can identify various details about that host. This is often a
pre-attack warning that someone is targeting a specific type of host. One such
detail includes the type of operating system running on the host, which is most
often the case. The reason for identifying the operating system from the
attackers point of view is to find out if that particular host is vulnerable to a
specific attack. For example, an IIS exploit does not work on an Apache
machine, and a Unix attack doesn’t work on a Windows host, so identifying the
OS of the target is a critical step in compromising a host.

AAttttaacckk MMeecchhaanniissmm
The attacking mechanism in this detect is to set the PUSH, FIN, and URG flags
in the TCP header in an attempt to gather a response from the victim host. Now

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

this is harmless to the host, but it does help to discriminate between the different
OS TCP stacks. A Solaris TCP stack may respond in one manner, while an
OpenBSD host will respond completely different or may not respond at all. This
technique is known as OS fingerprinting and the tool most commonly used is
nmap*, the Network Mapper. Often an XMAS scan, characterized by the UPF
flags being set will often be accompanied by other nmap scans such as a TCP
scan, that attempts connections across multiple ports to determine the state of
that port, whether it be open, closed, or filtered. If we take a look at a tcpdump
capture we can the three flags set that indicate this is an XMAS tree scan:

[root@laptop log]# tcpdump -Xn -r 2002.8.23 host xxx.74.249.65 and dst port 601
14:38:46.316507 xxx.74.249.65.61621 > xxx.61.16.19.601: FP 1098519960:1098519960(0) win 2048 urg
0 <wscale 10,nop,mss 265,timestamp 1061109567 0,eol>
0x0000 4500 003c da99 0000 3206 fad8 734a f941 E..<....2...sJ.A
0x0010 c63d 1013 f0b5 0259 417a 1598 0000 0000 .=.....YAz......
0x0020 a029 0800 c3a2 0000 0303 0a01 0204 0109 .)..........
0x0030 080a 3f3f 3f3f 0000 0000 0000 ..????......

0xA029 = 1010000000101001b

If we analyze the hex output in the above traffic dump we can see the URG,
PSH, and FIN flags set:

4 bit
Header

Reserved
Bits (6) URG ACK PSH RST SYN FIN

1010 000000 1 0 1 0 0 1

It is the combination of conflicting flags that cause each operating system to
return differently. The FIN and PSH flags should never be set at the same time,
and with the addition of the URG flag the stack is sure to be confused.

CCoorrrreellaattiioonnss
While analyzing the alert fi le produced by snort, I saw the following detect which
has the same source address as our attacker. This attacker seems to be
gathering information about several hosts on this network.

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/23-14:38:54.356507 xxx.74.249.65:61618 -> xxx.61.16.19:21
TCP TTL:50 TOS:0x0 ID:42919 IpLen:20 DgmLen:60
A* Seq: 0x4AC38CDD Ack: 0x0 Win: 0x800 TcpLen: 40
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => arachnids 28]

I also posted my analysis to the intrusions@incidents.org mailing list but I did not

* http://www.insecure.org/nmap/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

receive any replies as of the date of the submission of this paper. My post to the
list can be found here:
http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00026.html

EEvviiddeennccee ooff AAccttiivvee TTaarrggeettiinngg
There seems to evidence of active targeting due to the fact the attacker has
focused on a particular host and is further probing the host in an effort to identify
open ports and the Operating System type.

SSeevveerriittyy
We can calculate severity using the following formula:
(Target's Criticality + Lethality of Attack) - (System Defense + Network Defense)

Criticality 1 The type of host is unknown
Lethality 1 This is only an attempt to gather information, it does

not affect the host, or attempt to exploit any weakness
System Defense

1
Not much can be done to defend against this attack
since the target is essentially the TCP stack, which is
written into the OS code

Network Defense 2 Filtering Routers, Firewalls

When we plug these values into the severity formula we get a result of –1:
Severity = (1 + 1) – (1 + 2) = -1

We have a severity of –1, so this attack does not seem appear to be a big threat,
only a simple probe to gather information, but should be recognized as a red flag
that an attack may be up and coming in the near future.

DDeeffeennssiivvee RReeccoommmmeennddaattiioonn
The best defense for this attack is to have a stateful Firewall in place, such as
Checkpoint FW1. A stateful firewall is one that is enabled with stateful packet
analysis capabilities; each connection is tracked and any packet that does not
belong to an established connection is dropped by the firewall. So with a stateful
firewall in place, an XMAS scan will be dropped, and will not reach any machine
protected by the firewall.

MMuullttiippllee CChhooiiccee TTeesstt QQuueessttiioonn
Which TCP flags will be set in a XMAS Scan Packet?

a) SYN and FIN
b) SYN, ACK, PSH
c) ACK, PSH, and URG
d) URG, PSH, and FIN

The answer is d. The URG, PSH, and FIN packets are the indication of an nmap
XMAS scan.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

RReeffeerreenncceess ffoorr tthhiiss AAssssiiggnnmmeenntt

SANS Institute
Courseware: “IDS Signatures and Analysis”

Incidents Mailing List
http://online.securityfocus.com/archive/75/

CERT® Advisory CA-2001-11 sadmind/IIS Worm:
http://www.cert.org/advisories/CA-2001-11.html

CERT® Advisory CA-2001-11 sadmind/IIS Worm
www.cert.org/advisories/CA-2002-17.html

Apache HTTP Server chunked encoding heap buffer overflow
http://www.iss.net/security_center/static/9249.php

SecurityFocus Chunked Encoding Information
http://online.securityfocus.com/bid/5033/discussion/

iDefense analysis of chunked encoding worm
http://www.idefense.com/Intell/CI063002.html

My Post to Incidents
http://online.securityfocus.com/archive/75/295887/2002-10-18/2002-10-24/2/

Dshield
http://www.dshield.org

Snort SID Lookup Utility
http://www.snort.org/snort-db/sid.html

Google Search Engine
http://www.google.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

Assignment #3 Analyze This
EExxeeccuuttiivvee SSuummmmaarryy
Our job as analysts is ultimately to find the proverbial needle in the haystack.
Throughout this assignment many false positives will arise. The false positives
can be thought of as the hay. The needle or needles are the events that interest
us, such as alerts that indicate possible compromise or worms, Trojans, and
other malicious activity.

Part of the analysis process is to weed out the false positives, so that a better
analysis can be made of what is left behind. Most of the traffic in this assignment
can be redirected to /dev/null. The snort configuration, if properly configured can
help us in attaining this goal. By disabling signatures of known false positives we
can “lighten the load.”

Although some traffic seems to be malicious at first, by applying the simple
analysis method, introduced in the Relational Analysis Process section, we can
determine quickly and efficiently if this is the case. Some of this traffic would
never be seen if certain security measures were put into place, these are be
discussed in the Defensive Recommendations section.

The logs files were massive, in part to single alerts that are logged many times.
A small group of hosts are responsible for most of the alerts and can be found in
the Top Talkers Section. As we begin to dive into the analysis, remember,
“Needle in the Haystack!”

LLiisstt ooff AAnnaallyyzzeedd FFiilleess
For this assignment I chose to analyze the log files from December 4th through
December 8th 2002. Below is a list of those files:

alert.021204
alert.021205
alert.021206
alert.021207
alert.021208

For simplicity I chose to concatenate all these alert files into one complete file,
which I named alert.all.

scans.021204
scans.021205
scans.021206
scans.021207
scans.021208

I also chose to concatenate these files into one file, which I named scans. all.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

OOS_Report_2002_12_04_19685
OOS_Report_2002_12_05_32638

OOS_Report_2002_12_06_552
OOS_Report_2002_12_07_22540
OOS_Report_2002_12_08_23488

Just like the other two sets of files, I also chose to concatenate all the Out of
Spec files into one file as well, unambiguously named OOS.all.

It should be noted that the Snort Portscan Preprocessor events were removed
from the alert files, due to the fact that the University supplied me with the scans
files. Tod Beardsley also did the same in his paper, which can be found here:
http://www.giac.org/practical/Tod_Beardsley_GCIA.doc

PPrriioorriittiizzeedd DDeetteeccttss
In this section I will be analyzing events that have appeared in the alert files more
than 10000 times. When I aggregated the summaries of the events into one fi le
and summed∗ the unique ones, I found which events were being triggered the
most. Ten thousand occurrences seemed to be a good cut-off point when I
looked at the output, due to the fact that there was a gap of around five thousand
to the next noisiest in line. So, if the squeaky wheel gets the grease, then the
noisy alerts will be getting the analysis. Lets take a look at the top alerts and
number of occurrences from the previously mentioned output:

Incomplete Packet Fragments Discarded 166105
 spp_http_decode: IIS Unicode attack detected 63466
 SMB Name Wildcard 61249
 SUNRPC highport access! 27267
 TFTP - External UDP connection to internal tftp server 25646
 spp_http_decode: CGI Null Byte attack detected 11135

Below is what these alerts look like relationally when compared graphically:

∗ cat alert.all | awk –F’\\[**\\]’ ‘{print $2}’ | sort | uniq –c | sort -rn

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

166105

63466 61249

27267 25646

11135

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Most Common Alerts

 Incomplete Packet Fragments Discarded

 spp_http_decode: IIS Unicode attack detected

 SMB Name Wildcard

 SUNRPC highport access!

 TFTP - External UDP connection to internal tftp server

 spp_http_decode: CGI Null Byte attack detect ed

IInnccoommpplleettee PPaacckkeett FFrraaggmmeennttss DDiissccaarrddeedd
Reported: 166105 times

12/05-05:32:35.349925 [**] Incomplete Packet Fragments Discarded [**] MY.NET.190.100:0 -> 209.81.41.149:0
12/05-05:32:35.458140 [**] Incomplete Packet Fragments Discarded [**] MY.NET.190.100:0 -> 209.81.41.149:0
12/05-05:32:35.509138 [**] Incomplete Packet Fragments Discarded [**] MY.NET.190.100:0 -> 209.81.41.149:0
12/05-05:32:35.625318 [**] Incomplete Packet Fragments Discarded [**] MY.NET.190.100:0 -> 209.81.41.149:0
12/05-05:32:35.733063 [**] Incomplete Packet Fragments Discarded [**] MY.NET.190.100:0 -> 209.81.41.149:0

Summary:
This event was by far the noisiest of all the alerts, and is triggered because
packet fragments were detected, but not all the packets arrived, therefore the
stream could not be reassembled. After an exhaustive search through the log
files for a stimulus for this activity, none was found, but I did notice that each
connection that triggered this alert had both a source and destination port of 0.
This activity could be due to several things, possibly a misconfiguration or a
router corrupting packets. But it could also be crafted packets designed for a
DOS since obviously the OS stacks were not designed to accept connections on
this port or to create a connection with 0 as the source port. Obviously there is a
problem with connections that utilize port 0, either as a source or a destination,
which is not specified in the TCP RFC.*

I think this alert is just noise and the signature should be tuned or disabled. It
comprised the majority of all alerts combined and was mostly triggered by
internal host MY.NET.190.100. It seems as if this has been an ongoing issue
because the alerts showed up across all five days worth of data. If this activity

* http://www.rfc-editor.org/rfc/rfc793.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

continues to occur I would investigate this host further to see why this is
occurring.

Correlations:
David Jenkins mentions this in his paper** but only briefly.

sspppp__hhttttpp__ddeeccooddee:: IIIISS UUnniiccooddee aattttaacckk ddeetteecctteedd
Reported: 63466 times

 spp_http_decode: IIS Unicode attack detected [**] MY.NET.53.60:4720 -> 210.219.197.27:80
 spp_http_decode: IIS Unicode attack detected [**] MY.NET.53.60:4720 -> 210.219.197.27:80
 spp_http_decode: IIS Unicode attack detected [**] MY.NET.53.60:4720 -> 210.219.197.27:80
 spp_http_decode: IIS Unicode attack detected [**] MY.NET.53.60:4720 -> 210.219.197.27:80
 spp_http_decode: IIS Unicode attack detected [**] MY.NET.53.60:4720 -> 210.219.197.27:80
 spp_http_decode: IIS Unicode attack detected [**] MY.NET.53.60:4720 -> 210.219.197.27:80

Summary:
According to John Berkers***: “The http_decode preprocessor normali[z]es any
unicode representations of characters and then passes them back to snort for
matching against rules. If a particular pattern of unicode characters is
detected the ISS Unicode attack event is logged, (no, that's not a spelling
error, it doesn't only affect MS IIS, the vuln was first discovered by ISS
guys). You can turn them off by specifying -unicode and -cginull after the
http_decode thusly:
preprocessor http_decode: 80 -unicode -cginull

These events are sometimes triggered by visiting sites that use multi-byte
characters such as Simplified Chinese etc. ”

This was the second most reported attack, and can be lethal on an unpatched
system. This is just one of the many known path traversal type attacks that
exploit a system via path traversal vulnerability in the IIS server. After examining
the log files a little closer I noticed that a lot of different hosts were generating
this event, which means one of two things, either these hosts are all operated by
malicious users or these events are just false positives. I chose the latter. It
looks like web traffic to a particular site that has content that the preprocessor
doesn’t like and is alerting on it. Also, there seems to be no pattern or previous
scans to indicate that these alerts are malicious. I would consider tuning this
alert or disabling it altogether as it generates only noise at this time. One of the
other noise makers, the CGI Null Byte attack also seems to be a false positive. I
would consider tuning that alert as well for the same reason as tuning the
Unicode alert.

** http://www.giac.org/practical/David_Jenkins_GCIA.doc
***http://archives.neohapsis.com/archives/snort/2001-08/0075.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

Correlations:
Matthew Richards analyzes the IIS Unicode attack is his GCIA practical located
here: http://www.giac.org/practical/matthew_richard_gcia.doc.

SSMMBB NNaammee WWiillddccaarrdd
Reported: 61249 times

Summary: SMB stands for Server Message Block and is a protocol used for
sharing. SMB provides for the sharing of files, printers and other
communications, especially on Windows machines, and if abused it can be
dangerous from a security standpoint. In the following series of alerts, someone
is attempting to gain NETBIOS information about hosts on the inside:

12/05-01:45:30.756903 [**] SMB Name Wildcard [**] 65.66.16.120:1029 -> MY.NET.133.205:137
12/05-01:45:30.909202 [**] SMB Name Wildcard [**] 65.66.16.120:1029 -> MY.NET.133.206:137
12/05-01:45:31.058159 [**] SMB Name Wildcard [**] 65.66.16.120:1029 -> MY.NET.133.207:137
12/05-01:45:31.207485 [**] SMB Name Wildcard [**] 65.66.16.120:1029 -> MY.NET.133.208:137
12/05-01:45:31.372144 [**] SMB Name Wildcard [**] 65.66.16.120:1029 -> MY.NET.133.209:137

Correlations:
Toshi Iijima mentions this detect briefly in his GCIA practical located here:
http://www.giac.org/practical/Toshi_Iijima_GCIA.doc. Toshi describes this as “a
query for netbios information” and that it should be considered as a recon
attempt from external sources. I agree with this assessment, and would like to
add that any NETBIOS or Windows type file sharing originating outside of the
home network should be considered malicious. When analyzing the traffic
patterns in the alert file I noticed that most of this traffic is originating from the
outside. This traffic is either the result of a misconfiguration on the part of the
source or malicious users scanning for open shares.

SSUUNNRRPPCC hhiigghhppoorrtt aacccceessss!!
Reported: 27267 times

Summary:
This alert is triggered when there is an attempted connection to port 32771.
Generally this is an RPC port on a Solaris system. But can also be the source
port of a connection. This event was mostly triggered by scans to this port from
external machines and Instant Messaging Clients such as Yahoo Messenger and
AOL instant messenger. Some events were actually triggered when a user
checked his Yahoo mail account and the source port was 32771.

The RPC services do not have a good reputation for being secure, and are prone
to scans such as the ones present in the log files.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

12/05-11:14:30.666987 [**] SUNRPC highport access! [**] 213.115.19.12:80 -> MY.NET.100.10:32771
12/05-11:14:30.671145 [**] SUNRPC highport access! [**] 213.115.19.12:80 -> MY.NET.100.10:32771
12/05-11:14:31.312650 [**] SUNRPC highport access! [**] 213.115.19.12:80 -> MY.NET.100.10:32771
12/05-11:14:31.312779 [**] SUNRPC highport access! [**] 213.115.19.12:80 -> MY.NET.100.10:32771
12/05-11:14:31.484090 [**] SUNRPC highport access! [**] 213.115.19.12:80 -> MY.NET.100.10:32771
12/05-11:14:31.487358 [**] SUNRPC highport access! [**] 213.115.19.12:80 -> MY.NET.100.10:32771

The above trace is alarming to me. Usually when a scan is launched, it is across
multiple hosts, but this one is different. The source and destination remain the
same, as if a connection existed between the two. Also notice that the source
port is 80, which is a stealth mechanism to get by the firewall and screening
routers as if this packet was in response to a web page request. That is not the
case because 213.115.19.12 is the stimulus in this connection. I confirm this by
connecting to this host and finding that no web server exists on this host. When I
attempt a connection to port 80, no connection is made, which means there is no
server listening on that port. So that means that this detect is the work of a low
source port scan*. I would investigate the destination host to see if offered any
RPC services, and if so, then shut them down.

TTFFTTPP –– EExxtteerrnnaall UUDDPP CCoonnnneeccttiioonn ttoo IInntteerrnnaall TTFFTTPP SSeerrvveerr
Reported: 25646 times

TFTP - External UDP connection to internal tftp server [**] 63.250.205.15:16883 -> MY.NET.153.137:69
TFTP - External UDP connection to internal tftp server [**] 63.250.205.10:16883 -> MY.NET.153.165:69
TFTP - External UDP connection to internal tftp server [**] 63.250.205.10:16883 -> MY.NET.153.165:69
TFTP - External UDP connection to internal tftp server [**] 212.113.174.194:16883 ->MY.NET.84.198:69
TFTP - External UDP connection to internal tftp server [**] 24.90.124.187:4739 -> MY.NET.177.52:69

Summary:
The above log entries are the only External connections to an internal machine.
At first glance it seems that there are TFTP servers running on several internal
machines but I do not believe this is the case. When I perform a DNS lookup on
the addresses I see why. 63.250.205.15 and 63.250.205.10 actually turn out to
be Yahoo media servers. The lookup returns as wmcontent30.bcst.yahoo.com
and wmcontent13.bcst.yahoo.com respectively . When I connect to that address
via browser, an asf video is attempted to be opened by the browser, but the
connection fails.

The other two addresses resolved to a Road Runner cable modem user (24-90-
124-187.nyc.rr.com) and the other is a host in Portugal(a212-113-174-
194.netcabo.pt). This doesn’t seem normal so I dig deeper by looking up the
registration information for these hosts, and it is l isted below:

* A scan by which low source ports are used in an effort to bypass access control lists and firewall rules;
these can appear to be established connections, but are crafted packets.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

RReeggiissttrraattiioonn IInnffoorrmmaattiioonn ffoorr 2244..9900..112244..118877

OrgName: ROADRUNNER-NYC
OrgID: RRNY

NetRange: 24.90.0.0 - 24.90.255.255
CIDR: 24.90.0.0/16
NetName: ROADRUNNER-NYC-2
NetHandle: NET-24-90-0-0-1
Parent: NET-24-0-0-0-0
NetType: Direct Allocation
NameServer: DNS1.RR.COM
NameServer: DNS2.RR.COM
NameServer: DNS3.RR.COM
NameServer: DNS4.RR.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2001-07-12
Updated: 2002-04-08

TechHandle: ZS30-ARIN
TechName: ServiceCo LLC
TechPhone: +1-703-345-3416
TechEmail: abuse@rr.com

OrgAbuseHandle: ABUSE10-ARIN
OrgAbuseName: Abuse
OrgAbusePhone: +1-703-345-3416
OrgAbuseEmail: abuse@rr.com

OrgTechHandle: IPTEC-ARIN
OrgTechName: IP Tech
OrgTechPhone: +1-703-345-3416
OrgTechEmail: abuse@rr.com

OrgTechHandle: IPCON-ARIN
OrgTechName: IPControl
OrgTechPhone: +1-703-345-3416
OrgTechEmail: tconley@va.rr.com

ARIN Whois database, last updated 2002-12-28 20:00
Enter ? for additional hints on searching ARIN's Whois database.

RReeggiissttrraattiioonn IInnffoorrmmaattiioonn ffoorr 221122..111133..117744..119944
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 212.113.174.0 - 212.113.178.255
netname: TVCABO
descr: TVCABO-Portugal HDI-Datacenter Network
country: PT
admin-c: TVCA1-RIPE
tech-c: TVCT1-RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

status: ASSIGNED PA
remarks: ABUSE REPORTS MUST BE SEND TO ABUSE@TVCABO.PT
notify: tvcabo.adm@tvcabo.pt
mnt-by: ID414-MNT
changed: rfonseca@tvcabo.pt 20020710
source: RIPE

route: 212.113.160.0/19
descr: TVCABO-Portugal
origin: AS12542
notify: rfonseca@tvcabo.pt
mnt-by: ID414-MNT
changed: id@tvcabo.pt 19990823
changed: rfonseca@tvcabo.pt 20020507
source: RIPE

role: TvCabo Admin Contact
address: Avenida 5 de Outubro, 208
address: Edifício Santa Maria
address: 9 andar
address: 1069-203 Lisboa
phone: + 351 217824760
phone: + 351 217914800
fax-no: + 351 217824896
e-mail: tvcabo.adm@tvcabo.pt
trouble: Abuse Reports abuse@tvcabo.pt
trouble: Network Issues tvcabo.tech@tvcabo.pt
admin-c: TVCA1-RIPE
tech-c: TVCT1-RIPE
nic-hdl: TVCA1-RIPE
remarks: TvCabo Administrative Contact
notify: tvcabo.adm@tvcabo.pt
mnt-by: ID414-MNT
changed: rfonseca@tvcabo.pt 20011119
source: RIPE

role: TvCabo Tech Contact
address: Avenida 5 de Outubro, 208
address: Edifício Santa Maria
address: 9 andar
address: 1069-203 Lisboa
phone: + 351 217824760
phone: + 351 217914800
fax-no: + 351 217824896
e-mail: tvcabo.tech@tvcabo.pt
trouble: Abuse Reports abuse@tvcabo.pt
trouble: Network Issues tvcabo.tech@tvcabo.pt
admin-c: TVCA1-RIPE
tech-c: TVCT1-RIPE
nic-hdl: TVCT1-RIPE
remarks: TvCabo Technical Contact
notify: tvcabo.tech@tvcabo.pt
mnt-by: ID414-MNT
changed: rfonseca@tvcabo.pt 20011119
source: RIPE
Aside from the hosts listed in the previous detect log, the majority of these alerts

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

were caused by a connection from an internal machine to a 192.168.0.253
address. While I am unaware of the IP addressing scheme used by the
university, this may be an actual internal to internal connection or the 192.168
address may be a spoofed address. TFTP servers can be dangerous because
no authentication is required. If it is necessary to have tftp servers for some
reason their use should be limited, and have access control lists in place to help.
If there are no tftp servers on the inside and there are pre-existing rules to block
this type of activity, I would consider removing this rule from the signature set.

CCGGII NNuullll BByyttee AAttttaacckk DDeetteecctteedd
Reported: 11135 times

Summary:
This detect is produced by the snort decode preprocessor.

spp_http_decode: CGI Null Byte attack detected [**] MY.NET.153.176:2858 -> 66.129.106.116:80
spp_http_decode: CGI Null Byte attack detected [**] MY.NET.153.176:2858 -> 66.129.106.116:80
spp_http_decode: CGI Null Byte attack detected [**] MY.NET.153.176:2861 -> 66.129.106.116:80
spp_http_decode: CGI Null Byte attack detected [**] MY.NET.153.176:2861 -> 66.129.106.116:80
spp_http_decode: CGI Null Byte attack detected [**] MY.NET.153.176:2861 -> 66.129.106.116:80
spp_http_decode: CGI Null Byte attack detected [**] MY.NET.153.176:2861 -> 66.129.106.116:80
spp_http_decode: CGI Null Byte attack detected [**] MY.NET.153.176:2861 -> 66.129.106.116:80

An alert is produced whenever %00 is contained within a CGI form. The decode
preprocessor sees %00 and decodes it to the NULL character, which can be
used for IDS evasion, since the %00 skews the normal signature. This can be
used in conjunction with path traversal attacks to exploit a host without being
detected by the IDS. Joe Ellis mentions this detect in his practical located here:
http://www.giac.org/practical/Joe_Ellis_GCIA.doc.

According to Joe Ellis, “This alert can trigger many false positives, and can be
turned off by adding the “-cginull” option to the line “preprocessor http_decode: “
in Snort’s alert.ids file.”

Disabling this alert would further help to cut down on the number of false
positives, making the analyst(s) job much less painful. Remember, we are
looking for the needle and not the hay!

RReellaattiioonnaall AAnnaallyyssiiss PPrroocceessss
Naturally some events grab our attention more than others such as the “Possible
Trojan Server activity” alerts. It is with this group of alerts I would like to describe
the process by which I determined which events were possible threats and which
were possible false positives. By going through a process of elimination I started
with 4845 of these alerts and narrowed it down to only 2 alerts that needed more
analysis. First we begin with the elbow grease: grep* for all the alerts with

* grep “Possible Trojan Server” alert.all

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

“Possible Trojan Server” as the summary, this will aggregate all similar events.
This generates 4845 alerts, which is too many to deal with at once so next we
look for false positives and throw those out first. When I begin the analysis of the
output produced by the grep command, I notice that all of these events are
triggered with 27374 as either a source or destination port. Source port 27374 is
associated with the Ramen Worm and destination port 27374 is associated with
the Subseven Trojan.

 Possible trojan server activity [**] 80.62.74.110:27374 -> MY.NET.185.48:6346
 Possible trojan server activity [**] 80.62.74.110:27374 -> MY.NET.185.48:6346
 Possible trojan server activity [**] MY.NET.185.48:6346 -> 80.62.74.110:27374
 Possible trojan server activity [**] MY.NET.185.48:6346 -> 80.62.74.110:27374

To begin weeding out the false positives, I take a look at the above alerts and
notice that 80.62.74.110 seems to be the stimulus for this alert. The Ramen
uses source port 27374, but this isn’t a worm, a worm usually tries to spread
across multiple hosts, but the source is only communicating with one internal
host. The exchange between these two hosts generates 4623 of all “Possible
Trojan” events. Also, notice the destination port of 6346. It appears as if
MY.NET.185.48 is a member of the Gnutella file-sharing network, and is actively
sharing files with other members. That takes care of the majority of the false
positives, so we no longer need see this exchange. To weed out this exchange I
simply add “ | grep –v :6346 “ to the end of my previous command, this will ignore
the Gnutella connections.

With the number of alerts dramatically reduced, I now begin to look for other false
positives and I find them: ports 80, 1214, and 4662. The alerts with port 80
seemed to be web traffic with 27374 as the source port, the port 1214 alerts were
caused by the Kazza / Morpheus file-sharing utility, and 4662 was eDonkey2000,
another file-sharing application. By parsing out the known activity we reduce the
number of alerts down to 2. This makes the analysis process much easier now:

Possible trojan server activity [**] 65.88.96.76:1044 -> MY.NET.135.84:27374
Possible trojan server activity [**] 63.161.29.66:3677 -> MY.NET135.190:27374

Now I search for ports 1044 and 3677 using a port lookup utility** and a search
engine to determine if the ports are associated with any known service, and I
don’t turn up anything. Port 1044 seems suspicious because the OS usually
begins to select source ports at 1024 and increments with each connection, so it
would not take many connections to reach 1044, which can indicate a direct
connection to destination port 27374 on one of the internal machines. But
because there is no response to either of these probes, it is assumed that the
probe was blocked or ignored by the host. So all is well with the “Possible Trojan

** Treachery Unlimited Port Lookup Utility - http://www.treachery.net/security_tools/ports/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

Server” alerts except for the file-sharing-bandwidth-bandits.

So the analysis process looks like this:
1: Aggregate and Correlate similar activity
2: Identify the false positives and filter out with grep –v
3: Group the remaining alerts by port, by source then destination
4: Identify the remaining traffic – port lookup and search engine
5: Determine if connection is a stimulus or a response
6: Determine if malicious

Following the above steps helped to reduce the number of alerts analyzed and
helped identify the noise early on.

TToopp TTaallkkeerrss
Below is a list of the top talkers chosen by the number of alerts generated in the
alerts files over the five day period:

MY.NET.190.100 165850
213.115.19.12 18188
MY.NET.85.74 7257
MY.NET.111.231 5169
MY.NET.111.232 5158
MY.NET.111.235 5144
MY.NET.111.230 5108
MY.NET.111.219 5062
130.161.220.212 4879
MY.NET.106.170 3575

The Top Talkers would look like this graphically:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 34

165 85 0

18 18 8

7257

5 16 9 5 15 8 5144 5 10 8 5062 4879

3575

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

MY.NET.190.100

213.115.19.12

MY.NET.85.74

MY.NET.111.231

MY.NET.111.232

MY.NET.111.235

MY.NET.111.230

MY.NET.111.219

130.161.220.212

MY.NET.106.170

Top Talke rs

Notice that the ceiling of the graph has been adjusted, due to the fact that
MY.NET.190.100 generated so many alerts, this was done so that a visual
comparison could be made among the top talkers.

We have two external addresses that have managed to make their way onto the
Top Talkers list, so lets see who they belong to:

RReeggiissttrraattiioonn iinnffoorrmmaattiioonn ffoorr 221133..111155..1199..1122::

Final results obtained from whois.ripe.net.
Results:
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 213.112.0.0 - 213.115.255.255
netname: SE-CYBER-20000314
descr: Provider Local Registry
country: SE
admin-c: ELO2-RIPE
tech-c: BR3045-RIPE
status: ALLOCATED PA
mnt-by: RIPE-NCC-HM-MNT
mnt-lower: B2-MNT
mnt-routes: B2-MNT
changed: hostmaster@ripe.net 20000314
changed: hostmaster@ripe.net 20000315

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 35

changed: hostmaster@ripe.net 20000316
changed: hostmaster@ripe.net 20001215
changed: lir-help@ripe.net 20011214
source: RIPE

route: 213.112.0.0/14
descr: Broadband Customers in Scandinavia
descr: Please report improper use to abuse@bredband.com
origin: AS8642
notify: noc@bredband.com
mnt-by: B2-MNT
changed: anton.gunnarsson@bredband.com 20001215
changed: tommy.nilsson@bredband.com 20020408
source: RIPE

role: Bredbandsbolaget Rouingregistry
address: Stockholm, Sweden
e-mail: noc@bredband.com
trouble: Abuse related issues is reported
trouble: to abuse@bredband.com
trouble: phone +46 586 65485
admin-c: TN2809-RIPE
tech-c: TN2809-RIPE
admin-c: JN1883-RIPE
tech-c: JN1883-RIPE
admin-c: EB78-RIPE
tech-c: EB78-RIPE
admin-c: NE102-RIPE
tech-c: NE102-RIPE
nic-hdl: BR3045-RIPE
mnt-by: B2-MNT
notify: noc@bredband.com
changed: jonas.nylund@bredband.com 20020418
changed: jonas.nylund@bredband.com 20020425
changed: nicklas.eriksson@bredband.com 20021004
source: RIPE

person: Anders Elo
address: Bredbandsbolaget AB
address: Ingenjorsv. 3
address: S-11743 Stockholm
address: Sweden
phone: +46 8 55632500
e-mail: anders.elo@bredband.com
nic-hdl: ELO2-RIPE
remarks: Please report all abuse related issues to our
remarks: abuse-department, abuse@bredband.com
remarks: +46 586 65485
notify: anders.elo@bredband.com
changed: anders.elo@bredband.com 20010201
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 36

RReeggiissttrraattiioonn IInnffoorrmmaattiioonn ffoorr 113300..116611..222200..221122::

Final results obtained from whois.arin.net.
Results:

OrgName: Technische Universiteit Delft
OrgID: TUD-1

NetRange: 130.161.0.0 - 130.161.255.255
CIDR: 130.161.0.0/16
NetName: DUNET
NetHandle: NET-130-161-0-0-1
Parent: NET-130-0-0-0-0
NetType: Direct Assignment
NameServer: NS1.TUDELFT.NL
NameServer: NS2.TUDELFT.NL
NameServer: NS1.SURFNET.NL
NameServer: NS1.ET.TUDELFT.NL
Comment:
RegDate: 1988-08-26
Updated: 2000-11-10

TechHandle: FD18-ARIN
TechName: Kruijf, Freek
TechPhone: +31 15 2783226
TechEmail: SSC@tudelft.nl

Host 213.115.19.12 seems to be familiar, we seen this host back in the analysis
of the SUNRPC scans.

OOuutt ooff SSppeecc
As I analyzed the OOS.all file I noticed that three particular out of spec
combinations of flags were present:

12****S* 5457
****P*** 1236
******** 1208

These three alone account for 7901 or 98% of the total 8047 OOS packets. The
most common combination had both of the reserved bits set as well as SYN bit.
The second one only has the PSH bit set, but it does not have the ACK bit. The
third one doesn’t have any flags set at all.

Most of the 12S and P packets were caused by file-sharing applications. Two of
the common ones were Kazaa and Morpheus, both of which utilize the Gnutel la
file-sharing network. The protocols are very similar in these utilities and the flag
settings do not adhere to the specifications set forth in the TCP RFC.

Gnutella also contributed to the third combination, but only minimal. This time

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 37

the culprit was destination port 37 or the time protocol. Time updates accounted
for 92% of the total 1208 alerts to this out of spec combination.

Common applications are to blame for most of the OOS alerts. In particular
Gnutella clients and time updates. The remainder of the OOS packets where
mostly one time occurrences and can be attributed to packet corruption.

IInnssiigghhttss aabboouutt IInntteerrnnaall MMaacchhiinneess
Host 130.85.190.100 interests me for several reasons. When I correlate the top
talkers list with the scans list 130.85.190.100 stands out in both. This host
appeared on the top talkers list due to incomplete packet fragments, which
seemed to have something to do with source port 0 to destination port 0 traffic.
That was suspicious enough, and if it were my host I would look into the cause of
that traffic, but when I began to analyze the scans file I noticed that this host was
scanning external hosts for open ports 445 and 139, which are NETBIOS related
ports, which means it was scanning for hosts that had sharing enabled. See logs
below:

Dec 7 06:34:18 130.85.190.100:4269 -> 128.121.97.106:445 SYN ******S*
Dec 7 06:34:18 130.85.190.100:4270 -> 128.121.97.106:139 SYN ******S*
Dec 7 06:34:20 130.85.190.100:4319 -> 128.121.97.108:445 SYN ******S*
Dec 7 06:34:20 130.85.190.100:4320 -> 128.121.97.108:139 SYN ******S*
Dec 7 06:34:20 130.85.190.100:4323 -> 128.121.97.109:445 SYN ******S*
Dec 7 06:34:20 130.85.190.100:4324 -> 128.121.97.109:139 SYN ******S*

Notice how it scans each host for port 445 then for port 139. Just to analyze a
little deeper, it seems that this may be the work of the Opaserv worm, in any
case, let’s take a look at the destination network to see if it would be a worthwhile
target for this scanners hard work:

RReeggiissttrraattiioonn IInnffoorrmmaattiioonn ffoorr 112288..112211..9977..110066::

OrgName: Verio, Inc.
OrgID: VRIO

NetRange: 128.121.0.0 - 128.121.255.255
CIDR: 128.121.0.0/16
NetName: VRIO-128-121
NetHandle: NET-128-121-0-0-1
Parent: NET-128-0-0-0-0
NetType: Direct Allocation
NameServer: NS0.VERIO.NET
NameServer: NS1.VERIO.NET
NameServer: NS2.VERIO.NET
Comment: **
 Reassignment information for this block is
 available at rwhois.verio.net port 4321
 **
RegDate: 2000-07-11
Updated: 2001-09-26

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 38

TechHandle: VIA4-ORG-ARIN
TechName: Verio, Inc.
TechPhone: +1-303-645-1900
TechEmail: vipar@verio.net

OrgAbuseHandle: VAC5-ARIN
OrgAbuseName: Verio Abuse Contact
OrgAbusePhone: +1-800-551-1630
OrgAbuseEmail: abuse@verio.net

OrgNOCHandle: VSC-ARIN
OrgNOCName: Verio Support Contact
OrgNOCPhone: +1-800-551-1630
OrgNOCEmail: support@verio.net

OrgTechHandle: VIA4-ORG-ARIN
OrgTechName: Verio, Inc.
OrgTechPhone: +1-303-645-1900
OrgTechEmail: vipar@verio.net

ARIN Whois database, last updated 2002-12-23 20:00
Enter ? for additional hints on searching ARIN's Whois database.

Rwhois server data:

%rwhois V-1.5:0078b6:00 rwhois.verio.net (Vipar 0.1a. Comments to
vipar@verio.net)
network:Class-Name:network
network:Auth-Area:128.121.64.0/18
network:ID:NETBLK-W042-128-121-97.127.0.0.1/32
network:Handle:NETBLK-W042-128-121-97
network:Network-Name:W042-128-121-97
network:IP-Network:128.121.97.0/24
network:In-Addr-Server;I:NS8629-HST.127.0.0.1/32
network:In-Addr-Server;I:NS8630-HST.127.0.0.1/32
network:IP-Network-Block:128.121.97.0 - 128.121.97.255
network:Org-Name:Verio Web Hosting - San Jose
network:Street-Address:250 Stockton Ave
network:City:San Jose
network:State:CA
network:Postal-Code:95126
network:Country-Code:US
network:Tech-Contact;I:WA577-VRIO.127.0.0.1/32
network:Created:2001-10-05 21:06:45+00
network:Updated:2002-07-17 20:59:03+00

network:Class-Name:network
network:Auth-Area:128.121.64.0/18
network:ID:NETBLK-VRIO-128-121-064.127.0.0.1/32
network:Handle:NETBLK-VRIO-128-121-064
network:Network-Name:VRIO-128-121-064
network:IP-Network:128.121.64.0/18
network:In-Addr-Server;I:NS8629-HST.127.0.0.1/32
network:In-Addr-Server;I:NS8630-HST.127.0.0.1/32
network:IP-Network-Block:128.121.64.0 - 128.121.127.255
network:Org-Name:Verio Web Hosting - San Jose

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 39

network:Street-Address:250 Stockton Ave
network:City:San Jose
network:State:CA
network:Postal-Code:95126
network:Country-Code:US
network:Tech-Contact;I:WA577-VRIO.127.0.0.1/32
network:Created:2001-02-02 20:51:05+00
network:Updated:2002-07-17 20:57:19+00

The scanned host in this example is very interesting, it is the Verio Web Hosting
Company. This company has a big network, an entire class B, with most of
those being active web servers. So the scanning activity does not seem to be
benign at all. This is bad. This host does not seem to be functioning normally in
two cases. It is the source of bad traffic, and is scanning external hosts. This
host should be investigated for compromise.

DDeeffeennssiivvee RReeccoommmmeennddaattiioonnss

Based on the analysis of the university’s log files and with all the noise that is
present, I would consider tuning filters so that more threatening attacks and
probes stand out. The sole purpose in intrusion detection is to find the needle in
the haystack, and the more sensors we have the more haystacks we have. So to
effectively monitor a network we need to cut down the size of each haystack to a
manageable size. This can be done though signature tuning as well as disabling
particular signatures that are known to be noisy or that trigger only false
positives.

I would also recommend that ingress and egress filtering be put into place for all
Windows specific communications, such as file-sharing and domain controller
activity. This can prevent worms that originate on the Internet from infecting
internal hosts. The opaserv worm has been known to do this, and by filtering the
egress traffic, the spread of any worm can also be stopped before reaching other
computers on the outside. This would also block the traffic originating from the
suspicious internal host 130.85.190.100 from reaching its destination.

Assuming that the Snort sensor is inside the firewall, it appears as though crafted
packets are entering the network and getting by the firewall. I would suggest that
stateful packet filtering firewall be but into place. This would drop any packets
that not belong to a connection, or otherwise do not correspond to the
specifications set forth in the TCP RFC, such as crafted packets, and would help
prevent against nmap scans.

In addition to IDS monitoring, the log files for any public servers, such as web,
ftp, dns, mail, etc. should also be aggregated along with the IDS alerts so that a
correlation can be made between the devices to offer more visibility to the
intrusion detection analyst.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 40

RReeffeerreenncceess ffoorr tthhiiss AAssssiiggnnmmeenntt
Tod Beardsley’s GCIA Practical
 http://www.giac.org/practical/Tod_Beardsley_GCIA.doc

Neophasis Archives - John Berkers Unicode Comments
http://archives.neohapsis.com/archives/snort/2001-08/0075.html

Geektools
www.geektools.com

The TCP Request For Comment
http://www.rfc-editor.org/rfc/rfc793.txt

David Jenkins GCIA practical
http://www.giac.org/practical/David_Jenkins_GCIA.doc

Treachery Unlimited Port Lookup Utility
http://www.treachery.net/security_tools/ports/

NMAP Port Scanner
http://www.insecure.org/nmap/

Matthew Richards GCIA Practical
http://www.giac.org/practical/matthew_richard_gcia.doc

Toshi Iijima GCIA Practical
http://www.giac.org/practical/Toshi_Iijima_GCIA.doc.

Joe Ellis GCIA Practical
http://www.giac.org/practical/Joe_Ellis_GCIA.doc.

