
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1

Intrusion Detection:
New Tools and Existing Theory

Marcus Wu
GCIA Practical version 3.3

Submitted: January 23, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2

Assignment #1: Describe the State of Intrusion Detection4
Applying Support Vector Machines to Intrusion Detection4

Introduction..4
SVM: A definition ...5
How SVMs work ..5
Support Vector Machines as an IDS..6
The Speed of an SVM ...6
The Accuracy of an SVM...7
The Future of Learning Algorithms in Intrusion Detection........................8
Implementations of the SVM algorithm..8
References ..8

Assignment #2: Three Network Detects...9
Detect #1 Frontpage author.exe ..9

Source of Trace...9
Detect Was Generated By...10
Probability Source Address was Spoofed..11
Description of the Attack..11
Attack Mechanism ...12
Correlations ... 12
Evidence of Active Targeting...12
Severity ...12
Defensive Recommendation ...13
Multiple Choice Question...13
References .. 13

Detect #2 /etc/passwd access attempt ..14
Source of Trace...14
Detect Was Generated By...14
Probability Source Address was Spoofed..15
Description of the Attack..15
Attack Mechanism ...15
Correlations ... 15
Evidence of Active Targeting...16
Severity ...16
Defensive Recommendation ...17
Multiple Choice Question...17

Detect #3 IRC Nick Changes ...18
Source of Trace...18
Detect Was Generated By...19
Probability Source Address was Spoofed..20
Description of the Attack..20
Attack Mechanism ...21
Correlations ... 21
Evidence of Active Targeting...22
Severity ...22
Defensive Recommendation ...22
Multiple Choice Question...23

Assignment #3: Analyze This...23
Executive Summary... 23

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3

Files Analyzed ... 23
Highest Occurring Detects ...24

High port 65535 tcp - possible Red Worm - traffic25
Watchlist 000220 IL-ISDNNET-990517 ...26
SMB Name Wildcard ...27
spp_http_decode: IIS Unicode attack detected27
TFTP - External UDP connection to internal tftp server.........................28

Top Ten Talkers -- Alerts ...30
Top Ten Talkers -- Scans ..32
Top Ten Talkers -- OOS ..33
External Sources of Interest ..34
Graphical Comparison of Source and Destination TCP Ports 39
Insights into Internal Machines ..40
Defensive Recommendations ..41
References ..41

Appendix A: Tools used for "Analyze This!" ... 42

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4

Assignment #1: Describe the State of Intrusion Detection

Applying Support Vector Machines to In trusion Detection

Introduction

Intrusion detection is a time consuming process. It can be so time consuming
that it cannot be done without the help of software. So far, programs have
been developed to detect intrusions based on patterns and signatures or by
looking for deviations from the normal pattern of network traffic and system
operations. These programs are commonly known as intrusion detection
systems.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5

Unfortunately, current intrusion detection systems are not perfect. As
intrusion detection systems find anomalies, they report them as events. The
events reported by intrusion detection systems may not truly signify hostile
action; these events are known as false positives. Intrusion detection is
known to be subject to many false positives because anomolous traffic often
looks very similar to normal, authorized traffic.

As more research is done in the area of IDS, intellegent algorithms are being
created to eliminate many false positives. In "Support Vector Machines -
Background and practice," Panu Erasto states "In many fields of science,
computer science in particular, automatic learning from examples is a long-
standing goal." An algorithm that could learn from example would prove to be
a formidable intrusion detection system. One such algorithm which attempts
to learn from example is called support vector machines or SVM.

SVM: A definition

The support vector machine is a classification and regression algorithm.
Classifying data into groups is a very difficult task to topple. Support vector
machines attempt to classify data points into groups by determining what side
of a hyperplane a point of data exists on. A hyperplane is similar to a two
dimensional plane, except that it exists in more than three dimensions. As a
SVM is trained, it determines optimal hyperplanes which can separate the
data points into the classes or categories it is told that they belong to. After
the SVM is trained, it still learns from additional datapoints by altering or
moving the hyperplanes that it already has. Thus, SVMs can cope with data
for which it has never seen and can improve on its own accuracy.

How SVMs work

Support vector machines are trained on a set of data points for which the
trainer knows the correct classification. The data set is comprised of data
points with a number of attributes. For instance, if we were classifying areas
of three dimensional space, the attributes we would use are the x , y, and z
coordinates. Each attribute that comprises a data point is called a dimension;
thus, in the previous example the axis x,y, and z would be the three
dimensions of each data point. The SVM would use those attributes to
determine a hyperplane that could separate the data. A very simple example
could be that a room is divided into two parts. Random coordinates from the
room were recorded along with what side of the room those coordinates were
in. After training the SVM, it would be able to tell you what side of the room
any given point were in. This sounds very simple, but immagine a room that

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

6

existed in twelve dimensional space which was divided into 100 parts: an
SVM could still classify points in the room to its 100 sections, given that it was
trained well. The previous example of a room in three dimensional space was
very simplistic, since classification was based on sides of a room, the
separation between classes is obvious. The support vector machine
algorithm can handle cases where classification is not on a clear linear plane.
To limit the scope of this document, details on how the support vector
machine algorithm handles linearly inseparable cases will not be discussed.

Support Vector Machines as an IDS

The task of deciding whether data received over a network constitutes an
attempt at information gathering or an attempt at compromising security,
whether successful or not, is a difficult task. Even an experienced intrusion
analyst may mis-categorize an event if a detail is missed. If a program is to
be used to assist the intrusion analyst, it must be very accurate, and it must
be very fast in order for it to handle the volume of a busy network. Support
vector machines can meet both of those requirements. In "Suport Vector
Machines -- Backgrounds and Practice, Panu Erasto describes the increasing
need to use learning algorithms, "Also, in recent years the amount of
information that has to be processed has exploded and there is a growing
need to extract structure from the data instead of just storing it." Erasto goes
on to say, "Morevoer, if one is able to capture some dependence in the data
this knowledge can be used to predict future situations."

Using support vector machines would decrease the amount of traffic an
intrusion analyst would be required to review. SVMs would give a
classification as to the type of event and reduce the number of false positives
seen by traditional IDSs. Support vector machines would give more time to
the intrusion analyst to understand an attack and determine its source; it
therefore has the potential to prevent attacks from having as harsh of a
consequence. Intrusion analysts with more time to respond to malicious
traffic would be able to put more effort into listing their attackers at dshield or
using their time to research the history of their attackers and the strategy of an
attack. As networks get faster and larger, support vector machines grow in
appeal as a way to reduce the number of false positives an intrusion analysist
would have to look at in order to free their hands for more important parts of
their occupation, namely research. Staying on top of intrusion detection is all
about understanding both old and new vulnerabilities and attacks. Learning
algorithms such as SVMs may give intrusion analysists the time they need to
understand old attacks while researching newer ones.

The Speed of an SVM

As more consideration is given towards using support vector machines in a
production environment, one question that gains importance is, "How fast are
support vector machines?" In "Intrusion Detection Using Support Vector
Machines", while giving reasons to experiment with SVMs in intrusion

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

7

detection, the author states, "...as real time performance is of primary
importance to intrusion detection systems, any classifier that can potentially
outrun neural networks is worth considering." The algorithm for support
vector machines was developed to handle massive amounts of data in
reasonable amounts of time. It can handle such a large amount of data that
researchers in the field of Bioinformatics are using it to classify large amounts
of microarray gene expression data. Intrusion detection systems also see
quite a bit of data on a single network. Support vector machines have proven
their ability to process streams of data in the field of robotics where they were
used to recognize objects within live video. On another note, support vector
machines would not necessarily need to look at all of the data being sent and
recieved on a network. A current IDS like snort could be used to detect
anomolous traffic while the SVM could be used to further filter and classify the
events in order to make the job of the intrusion analyst easier and faster.
While this would lower the SVM's ability to encounter new information in order
to learn new attack patterns, it would still be able to learn new signatures
installed to the IDS in order to eliminate false positives.

The Accuracy of an SVM

Accuracy of learning algorithms has always been scrutinized, especially in
areas such as intrusion detection. It is not a trivial thing to trust a learning
algorithm to something as important as network security. Much would have to
be known about the accuracy of SVMs before they could be used in
production within an intrusion detection solution. Support vector machines
have been known to reach very high accuracies if they were trained well,
being as close as within ten percent of being perfect. In a paper by Sriniva
Mukkamala, he stated, "The testing set consisting of 6980 data points with 41
features, received 99.50% accuracy, with a total runtime of 1.63 sec." The
following graph is from Mukkamala's paper and illustrates his results.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

8

SVMs can adjust their hyperplanes as they come into contact with new data in
orderto make themselves more accurate as time wears on. For the field of
intrusion detection, one could train an SVM to bias classification towards
being hostile to compensate for its slightly imperfect accuracy by making it
alert more easily. These facts about the SVM algorithm have lead to its use in
network intrusion detection systems. University research shows that the
accuracy of SVMs reach and surpass that of neural networks.

The Future of Learning Algorithms in Intrusion Detection

As networks grow faster and more information is transferred over networks,
Support vector machines and other learning algorithms will gain a stronger
foothold in intrusion detection. I do not believe that any learning machine will
ever completely handle intrusions for a network because as fast and accurate
as they are, people like to have the decision responsibility in what ultimately is
decided as hostile and what actions are taken to protect themselves. Also, as
the methods of detecting any attack get more complicated, it has been seen
that the attacks themselves become more complicated and difficult to detect.
Learning algorithm technology has not been in practice long enough for any
prediction as to how easily it may be tricked. While it is accurate at
recognizing objects in live video or recognizing genes within DNA, Those sets
of data are not engineered by anyone in such a way as to try to trick the
algorithm. It is almost guaranteed that information gathering and attack
techniques will be developed to attempt to get past learning algorithms.

Implementations of the SVM algorithm

While the support vector machine algorithm is relatively new to many fields
including intrusion detection, I have found that there are many existing
implementations of the algorithm. Here are two open source versions
available for Unix/Linux.
libsvm - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
svmlight - http://www.cs.cornell.edu/People/tj/svm_light/

libsvm includes Java source, so it can run on any system that has a Java
runtime environment. The downloadable archive also contains C++ source
and Windows binaries.

svmlight was developed on Solaris 2.5 with gcc. It also compiles on SunOS
3.1.4, Solaris 2.7, Linux, IRIX, Windows NT, and Powermac. Svmlight is free
for scientific use.

References

Erasto, Panu. "Support Vector Machines - Backgrounds and Practice." 2001.
URL: http://ethesis.helsinki.fi/julkaisut/mat/rolfn/lt/erasto/supportv.pdf.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

9

Janoski, Mukkamala, and Sung. "Intrusion Detection Using Neural Networks
and Support Vector Machines." May 2002. URL:
http://www.cs.nmt.edu/~IT/papers/hawaii7.pdf.

Janoski, Mukkamala, and Sung. "Intrusion Detection Using Support Vector
Machines." 2002. URL:
http://www.cs.nmt.edu/~IT/papers/hpccsandiagofinal.pdf.

Brown, Michael et al. "Knowledge-based Analysis of Microarray Gene
Expression Data Using Support Vector Machines." January 4, 2000. URL:
http://www.cse.ucsc.edu/research/compbio/genex/genex.html.

Chang and Lin. "LIBSVM -- A Library for Support Vector Machines." URL:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Thorsten, Joachims. "SVMlight Support Vector Machine." URL:
http://www.cs.cornell.edu/People/tj/svm_light/.

Assignment #2: Three Network Detects

Three network detects are analyzed in this assignment. The first two were
captured in real-time by an IDS. The first two were captured during an actual
web server attack. The last detect was obtained from the incidents.org
tcpdump binary logs.

Detect #1 Frontpage author.exe

Source of Trace

This trace was taken from a snort device that picked up on Frontpage
author.exe accesses to a corporate web server. The layout of the network
basically consists of a DMZ where the web server is located and a Snort IDS
in place.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

10

Detect Was Generated By

The snort alerts for this detect:

[**] [1:952:5] WEB-FRONTPAGE author.exe access [**]

[Classification: access to a potentially vulnerable web application]

[Priority: 2]

11/27-10:17:50.569847 200.148.107.128:1171 -> xxx.xx.81.10:80

TCP TTL:110 TOS:0x0 ID:58130 IpLen:20 DgmLen:428 DF

AP Seq: 0x1DC02A Ack: 0x1EF54BE0 Win: 0x5AC TcpLen: 20

POST /_vti_bin/_vti_aut/ author.exe HTTP/1.1..Date: Wed, 27 Nov 2

002 15:28:41 GMT..MIME-Version: 1.0..User-Agent: MSFrontPage/4.0

..Host: www.xxxxxxxxx.com..Accept: auth/s icily..Content-Length:

58..Content-Type: application/x-www-form-urlencoded..X-Vermeer-C

ontent-Type: application/x-www-form-urlencoded..Connection: Keep

-Alive....method=open+service%3a4%2e0%2e2%2e2611&service%5fname=

%2f.

[**] [1:952:5] WEB-FRONTPAGE author.exe access [**]

[Classification: access to a potentially vulnerable web application]

[Priority: 2]

11/27-10:45:04.226604 200.211.14.23:62333 -> xxx.xx.81.10:80

TCP TTL:112 TOS:0x0 ID:46436 IpLen:20 DgmLen:428 DF

AP Seq: 0x13EC8E4 Ack: 0x360C379D Win: 0x5B4 TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

11

Figure 2.1.1 - Snort alerts for Frontpage Author.exe accesses

It looks like our attacker has found a web server running Microsoft Frontpage
4.0 extensions. The attacker has attempted to use a known vulnerability in a
possibly misconfigured host which would allow overwriting of files in the web
root through posting to author.exe.

The Snort signature which generated this alert is below:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB -
FRONTPAGE author.exe access";flags:A+; urico ntent:"/_vti_bin/_ vti_aut/author.exe"; nocase;
classtype:web-application-activity; sid:952; rev:5;)

This signature alerts when /_vti_bin/_vti_aut /author.exe appears within a request
sent to a web server on a web port.

Probability Source Address was Spoofed

The probability that the source address was spoofed in this attack is low.
HTTP requests are sent over an established TCP connection which would
mean that the attacker had to complete the three-way handshake before
making its request.

Description of the Attack

author.exe has a vulnerability that, if not configured correctly would allow a
remote user to connect to the web server's FrontPage extensions and gain full

POST /_vti_bin/_vti_aut/ author.exe HTTP/1.1..Date: Wed, 27 Nov 2

002 13:51:30 GMT..MIME-Version: 1.0..User-Agent: MSFrontPage/4.0

..Host: www.xxxxxxx.com..Accept: auth/sicily..Content-Length:

58..Content-Type: application/x-www-form-urlencoded..X-Vermeer-C

ontent-Type: application/x-www-form-urlencoded..Connection: Keep

-Alive....method=open+service%3a4%2e0%2e2%2e2611&service%5fname=

%2f.

[**] [1:952:5] WEB-FRONTPAGE author.exe access [**]

[Classification: access to a potentially vulnerable web application]

[Priority: 2]

11/27-13:21:50.999167 200.158.156.222:1237 -> xxx.xx.81.10:80

TCP TTL:110 TOS:0x0 ID:3021 IpLen:20 DgmLen:453 DF

AP Seq: 0x12827466 Ack: 0xB978E901 Win: 0x5AC TcpLen: 20

POST /_vti_bin/_vti_aut/ author.exe HTTP/1.1..Date: Wed, 27 Nov 2

002 18:29:42 GMT..MIME-Version: 1.0..User-Agent: MSFrontPage/4.0

..Host: www.xxxxxxxx.com..Accept: auth/s icily..Content-Length:

58..Content-Type: application/x-www-form-urlencoded..X-Vermeer-C

ontent-Type: application/x-www-form-urlencoded..Connection: Keep

-Alive..Cache-Control: no-cache....method=open+service%3a4%2e0%2

e2%2e3717&service%5fname=%2f.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

12

access to the web server's web root directory. This would give the attacker
the necessary access to accomplish web page defacement. Part of the full
description of this attack (http://www.xato.net/Reference/webfolders.txt)
describes using FrontPage webfolders:

"Essentially when you add a new WebFolder, Explorer wil l send a Post request to
/_vti_bin/_vti_aut/author.dll (among others), which is installed
as a part of the Fr ontPage Server extensions. So when you are using WebFolders, you are
really just using the FrontPage Server extensions. If as an anonymous user you do not have
read and execute access to that f ile, the server try to get an NTLM or Basic authentication
from you. If any of those credentials succeed, you will now have a new WebFolder mapped
to the remote server's web root."

Attack Mechanism

There were several accesses to author.exe from three different sources. The
first two sources were probably just scanning for vulnerable web servers. The
last source actually exploited the vulnerability and defaced the web page. All
three of the sources were determined to be Brazilian in origin. Although the
accesses were from different sources, the effort was probably coordinated
between them. The three sources may have all been compromised hosts
operated by the same attacker.

Correlations

Since the author.exe accesses came from different sources, any informational
scans done previous to the attack have a higher probability of coming from an
additional source owned by the same attacker or group of attackers. It would
be difficult to pinpoint a specific probe or scan to this attack if it did come from
a different source.

Evidence of Active Targeting

This attack was targeted towards that specific web server. It was probably
subject to a broader scan which highlighted the web server as a potential
victim. After the system was determined to be vulnerable, multiple addresses
were used to attack it to help conceal the identity of the attacker and to try to
confuse anyone attempting to determine the cause of the defacement.

Severity

The following formula is used to calculate severity:

(Target's Criticality + Lethality of Attack) -(System Defense + Network Defense)

Criticality This attack was targeted at a web server. It is not as

important to the network as a firewall or similar device, but is
an important part of a corporate network.

3

Lethtality The system's web root has been compromised. This allows 4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

13

Criticality This attack was targeted at a web server. It is not as
important to the network as a firewall or similar device, but is
an important part of a corporate network.

3

for the attacker to deface the main site. It also allows for
executables to be sent and for his own custom ASP pages to
be executed.

System A correct configuration of the FrontPage extensions would
easily solve this problem, unfortunately this was not the case

1

Network While this traffic cannot be blocked by a firewall since the
server is a production web server, IDS was in place which
detected the attack.

3

When these values are plugged into our severity formula, we get a result of 4:
Severity = (3 + 4) - (1 + 3) = 3

Defensive Recommendation

The best countermeasure for this type of attack is just to not use FrontPage
web server extensions. If they are absolutely required, be sure to configure
the file ACLs to highly restrict access to its modules. An article from Microsoft
listed in the Resources for this detect describes how to set up the ACLs. One
note is to use NTFS as the file system as opposed to FAT. FAT does not
support full ACLs. If the system has already been compromised, no logs are
created for the actions of the attacker. The options given to the attacker for
compromising the host are so broad that a compromised host may have
trojans installed that would be very difficult to detect. I would recommend a
complete reinstall of the operating system for any system that is compromised
with this particular exploit.

Multiple Choice Question

Which of the following is not true about most windows based web servers?
A) Front page has executable access to many system dlls
B) Attacking a production web server through FrontPage will not be stopped
by a firewall.
C) The permissions of the web author are usually greater than those given
to IUSR_MACHINE.
D) A default FrontPage setup will protect everyone from author.dll based
attacks.

The correct answer is D. Default FrontPage setups are vulnerable to
author.dll based attacks. A, B, and C are all true statements on most
Windows based web servers.

References

Sozni. "webfolders.txt" -- a description of author.exe vunerability. URL:
http://www.xato.net/Reference/webfolders.txt.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

14

Microsoft. “Frontpage Security on IIS Systems.” URL:
http://www.microsoft.com/technet/archive/office/office97/reskit/fp98serk/SECU
RITY.asp.

Detect #2 /etc/passwd access attempt

Source of Trace

Here is the Snort trace for this detect:

The first trace matched Snort signatures for a /etc/passwd retrieval attempt.
The second trace was matched as a cmd.exe access shortly after the passwd
retrieval attempt. No other activ ity from the attacker matched a Snort
signature or was recorded by the web server. These attacks were directoed
towards a web server on a DMZ with Snort IDS.

Detect Was Generated By

The Snort signatures which matched the events look for traffic to a web server
on web server ports which contain the content of /etc/passwd or cmd.exe
respectively.

Many well known exploits and vulnerabilities rely on accesses to these two
files, however they are not often considered related to each other.

The Snort signatures which matched these events are below:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB -MISC
/etc/passwd"; flags:A+; content:"/etc/ passwd"; nocase; classtype:attempted-recon; sid:1122;
rev:4;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB -IIS
cmd.exe access"; flags:A+; content:"cm d.exe"; nocase; classtype:web-application-attack;

[**] [1:1122:4] WEB-MISC /etc/passwd [**]
[Classification: Attempted Information Leak] [Priority: 2]
01/19-07:40:06.982612 200.34.237.254:2601 -> xxx.xxx.73.8:80
TCP TTL:116 TOS:0x0 ID:6547 IpLen:20 DgmLen:177 DF
AP Seq: 0xC22E3CF Ack: 0x527A5768 Win: 0x2238 TcpLen: 20

HEAD /../ ../../../../../../../. ./../../etc/passwd?/c+dir+c:\ /%2
E%2E/%2E%2E/%2E%2E/etc/passwd

[**] [1:1002:5] WEB-IIS cmd.exe access [**]
[Classification: Web Application Attack] [Priority: 1]
01/19-07:40:35.348475 200.34.237.254:2638 -> xxx.xxx.73.8:80
TCP TTL:116 TOS:0x0 ID:38804 IpLen:20 DgmLen:214 DF
AP Seq: 0xC22E599 Ack: 0x52F76B48 Win: 0x2238 TcpLen: 20

HEAD /_mem_bin/..% 5c../..%5c../..%5c../w innt/system32/cmd.exe?/c
+dir+c:\ r+c:\ HTTP/1.0..Host: xxx.xxx.73.8..Content -Type: text/
html; charset=UTF -8..Content-Length: 164

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

15

sid:1002; rev:5;)

Probability Source Address was Spoofed

Both signatures that were matched indicate that an http connection was
made. In both cases, a full TCP three way handshake had to have been
completed making it very unlikely that the source address had been spoofed.

Description of the Attack

Both accesses to /etc/passwd as well as to cmd.exe require escaping the http
server's web root directory. Most web servers will prevent this type of activity,
however it has been discovered that some http servers are vulnerable to be
tricked into escaping the web root directory if URI encoding is used.

Attack Mechanism

The web server may accept these URLs depending on what order they are
decoded and checked for path traversals. Consider the following:

%2E translates to '.'
/%2E%2E/%2E%2E/%2E%2E/etc/passwd tra nslates to /../../../etc/passwd

While both of those are equivalent URLs, the order in which they are
authorized and decoded could allow the URL to be processed. For instance,
if the URL is checked for path traversals before it is decoded, the URL will
pass through the URL check. If the URL is decoded first, when it is checked
for path traversals it will not pass through the URL check.

An attack using this sort of URI encoding trick entirely depends on the http
server checking for path traversals before decoding the URL.

Looking further into the attacks, I noticed that /etc/passwd was passed
parameters. The parameters translate out to /c dir c:\. This is something you
would expect to see after an attempt to access cmd.exe to try to list the
contents of the root directory. Appending those parameters to a /etc/passwd
access seems rather pointless. This leads me to believe that this attack was
scripted and configured improperly.

Correlations

A Google search resulted in several matches to the path traversal type of
attack. A few pages worth visiting are:

http://www.iss.net/security_center/advice/Intrusions/2000645/default.htm
http://cert.uni-stuttgart.de/archive/intrusions/2002/11/msg00004.html
http://archives.neohapsis.com/archives/snort/2002-10/0875.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

16

The last of those is an archive of the incidents.org mailing list in which the the
poster states his opinion that the /etc/passwd access is the result of a
misconfigured script. This reinforces my ideas about the attack.

Evidence of Active Targeting

It seems that in our case, the attacker does not know whether the server is
running a Unix system or a Windows system. The attack may have been part
of a broad scan for vulnerable web servers. If the attack had been directed, a
simple http header grab or an attempt to retrieve an inexistent document
could have easily been used to return information regarding the type of server
as well as the version. Since the attack attempted to retrieve a Unix
password file as well as access a windows executable, it would be safe to
assume that the attacker knows very little about the web server.

An attacker attempting a directed attack would most likely research their
target and only attempt those attacks for which the victim would most likely be
vulnerable. This would save the attacker's time as well as preventing
extraneous IDS alerts. The alerts observed here were quite the opposite: the
web server was not vulnerable to either attack, and the the attacker obviously
did not even know what operating system the web server was running on.

Furthermore, the /etc/passwd access was given parameters as if the attacker
were trying to execute it in a similar fasion to cmd.exe. Not only does the
attack look undirected, but it also looks clumsy and foolish.

Severity

The following formula is used to calculate severity:

(Target's Criticality + Lethality of Attack) -(System Defense + Network Defense)

Criticality This attack was targeted at a web server. It is not as

important to the network as a firewall or similar device, but is
an important part of a corporate network.

3

Lethtality The system is not vulnerable to this attack. Either the current
build is not vulnerable or the software has been patched
against the particular exploit or attack.

1

System Network IDS was in place and detected the activity, and the
http server software was not vulnerable to the attack.

4

Network The traffic observed cannot be blocked by a firewall since it is
on a valid port destined for a valid web server.

1

When these values are plugged into our severity formula, we get a result of 4:
Severity = (3 + 1) - (4 + 1) = -1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

17

Defensive Recommendation

Double check to make sure that any web servers on your network are the
latest versions available and that they have all applicable patches applied.
Microsoft security bulletin MS00-078 describes the directory traversal
vulnerability and provides patches:
http://www.microsoft.com/technet/security/bulletin/ms00-078.asp

Testing can be done to check for vulnerability to path traversal techniques to
the web server by sending those requests to your web server manually. Many
available web server vulnerability scanners will check for susceptibility to such
path traversals.

Multiple Choice Question

%E0%81%9C is the URI encoding for which common ASCII character?
A) \
B) /
C) ?
D) ;

The correct answer is A. %E0%81%9C is the three byte encoding for \.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

18

Detect #3 IRC Nick Changes

Source of Trace

First of all, here are the offending snort alerts:

These alerts were obtained from the tcpdump binary logs located at
http://www.incidents.org/logs/Raw/. This detect was discovered in the file
2002.10.14 and related detects continue in 2002.10.17. The listings below
are taken from the tcpdump binary logs that were produced by tcpdump
running against both the 2002.10.14 and 2002.10.17 files.

[**] [1:542:8] CHAT IRC nick change [**]

[Classification: Misc activity] [Priority: 3]

11/14-15:59:25.476507 170.129.50.120:61599 -> 217.8.139.18:6667

TCP TTL:123 TOS:0x0 ID:1429 IpLen:20 DgmLen:56 DF

AP Seq: 0xADB829FB Ack: 0xF76B24A6 Win: 0x3C30 TcpLen: 20

[**] [1:542:8] CHAT IRC nick change [**]

[Classification: Misc activity] [Priority: 3]

11/14-15:59:25.956507 170.129.50.120:61599 -> 217.8.139.18:6667

TCP TTL:123 TOS:0x0 ID:1479 IpLen:20 DgmLen:56 DF

AP Seq: 0xADB82CA7 Ack: 0xF76B2A82 Win: 0x4038 TcpLen: 20

[snip]

[**] [1:542:8] CHAT IRC nick change [**]

[Classification: Misc activity] [Priority: 3]

11/14-16:00:41.446507 170.129.50.120:61626 -> 66.159.16.174:6667

TCP TTL:123 TOS:0x0 ID:9284 IpLen:20 DgmLen:56 DF

AP Seq: 0xB8903557 Ack: 0xA6EF79E Win: 0x3E93 TcpLen: 20

[**] [1:542:8] CHAT IRC nick change [**]

[Classification: Misc activity] [Priority: 3]

11/14-16:00:41.736507 170.129.50.120:61626 -> 66.159.16.174:6667

TCP TTL:123 TOS:0x0 ID:9320 IpLen:20 DgmLen:56 DF

AP Seq: 0xB8903602 Ack: 0xA6EF90F Win: 0x3D22 TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

19

Figure 2.3.1 - Snort alerts from 2002.10.14

Figure 2.3.2 - Snort alerts from 2002.10.17

The previous listings were obtained by running:

$ /usr/sbin/tcpdump -X -n -r $file src host 170.129.50.120 and \(
dst port 6667 or dst port 7000 \)

These options look for traffic originating from 170.129.50.120 and destined for
two common irc server ports.

Detect Was Generated By

This detect was found using a Snort Intrusion Detection System version 1.9.0
build 209. The alerts were generated by running Snort with parameters to tell

2002.10.14

15:59:25.476507 170.129.50.120.61599 > 217.8.139.18.6667: P 2914527739:2914527755(16) ack
4150994086 win 15408 (DF)
0x0000 4500 0038 0595 4000 7b06 b916 aa81 3278 E..8..@.{.....2x
0x0010 d908 8b12 f09f 1a0b adb8 29fb f76b 24a6 )..k$.
0x0020 5018 3c30 3523 0000 4e49 434b 2052 3030 P.<05#..NICK.R00
0x0030 7465 442d 3030 340a teD-004.
15:59:25.956507 170.129.50.120.61599 > 217.8.139.18.6667: P 684:700(16) ack 1501 win
16440 (DF)
0x0000 4500 0038 05c7 4000 7b06 b8e4 aa81 3278 E..8..@.{.....2x
0x0010 d908 8b12 f09f 1a0b adb8 2ca7 f76b 2a82 ,..k*.
0x0020 5018 4038 2893 0000 4e49 434b 2052 3030 P.@8(...NICK.R00
0x0030 7465 442d 3030 340a teD-004.
15:59:26.316507 170.129.50.120.61599 > 217.8.139.18.6667: P 1368:1384(16) ack 3001 win
16440 (DF)
0x0000 4500 0038 05f3 4000 7b06 b8b8 aa81 3278 E..8..@.{.....2x
0x0010 d908 8b12 f09f 1a0b adb8 2f53 f76b 305e /S.k0^
0x0020 5018 4038 200b 0000 4e49 434b 2052 3030 P.@8....NICK.R00
0x0030 7465 442d 3030 340a teD-004.

2002.10.17

03:50:28.956507 170.129.50.120.65037 > 216.12.211.209.7000: P 4216235350:4216235371(21)
ack 2038236175 win 16116 (DF)
0x0000 4500 003d ce83 4000 7b06 a85f aa81 3278 E..=..@.{.._..2x
0x0010 d80c d3d1 fe0d 1b58 fb4e a556 797d 040f X.N.Vy}..
0x0020 5018 3ef4 256e 0000 4e49 434b 205b 5356 P.>.%n..NICK.[SV
0x0030 4344 505d 2d58 4443 432d 3335 0a CDP]-XDCC-35.
03:50:29.126507 170.129.50.120.65037 > 216.12.211.209.7000: P 73:94(21) ack 133 win 15984
(DF)
0x0000 4500 003d ce99 4000 7b06 a849 aa81 3278 E..=..@.{..I..2x
0x0010 d80c d3d1 fe0d 1b58 fb4e a59f 797d 0493 X.N..y}..
0x0020 5018 3e70 2525 0000 4e49 434b 205b 5356 P.>p%%..NICK.[SV
0x0030 4344 505d 2d58 4443 432d 3335 0a CDP]-XDCC-35.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

20

it to read the tcpdump binary data and write the alerts to a mysql database. A
modified snort.conf was used to allow snort to make use of signatures that are
not commonly enabled. A simple script was used to run snort against all of
the raw tcpdump format logs found at incidents.org. The script is listed in
figure 2.3.3.

Figure 2.3.3 - Script used against incidents.org tcpdump format logs

After the alerts were stored into the database, a web page interface, ACID
version 0.9.6b22, was used to view the alerts based on many different criteria.

Probability Source Address was Spoofed

The packets analyzed in this detect are part of an established TCP
connection. Chances that these packets are spoofed is highly unlikely.
Although the initial TCP three way handshake was not captured by the snort
ruleset that originally logged the data, we can be reasonably sure that the
data was not spoofed.

Description of the Attack

The alerts first caught my eye because they were part of a connection to an
IRC server which is considered a haven for mischievous characters. The
initial Snort alert is not very alarming, but as I looked down the list of the alerts
in ACID, I noticed that there are quite a few name changes and they all are
timestamped within a second of each other. Some of them being within the
same second. Those name changes were abnormally fast, and probably
signify a script being used, so I took a closer look at the alerts.

When actually viewing one of the alerts, I quickly noticed the nick that the user
was requesting, "R00teD-004." Rooted is a term used by hackers that they
use to refer to a system on which the administrator account has been
compromised. While that name as an IRC nick does not mean that the host in
concern has been compromised, it certainly is alarming. Another thing to note
is the appearance of numbers at the end of the nick. The numbers make me
feel as though the nick is a script-generated nick and that there may be a
R00teD-001 through R00teD-003 and possibly -005 and on.

Looking across all of the alerts generated from the file 2002.10.14, the nick
remains constant, but the name changes are very frequent in time. This leads
me to believe that maybe the script chooses its name based on what nicks
are available, and that it keeps checking for lower numbered nicks open in a
brute force type method. The problem is that it's always requesting the same

#!/bin/bash
for file in `ls 2002*`
do
 snort -o -d -c /home/riptide/giacdetectdata/rules/snort.conf -r $file
done

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

21

nick. Possibly, the algorithm is not very smart and submits a nick change for
its current nick if a new nick is not available. It is common for trojans and
scripts to be programmed quickly with little regard for efficiency.

After the host has its nick escapade in 2002.10.14, it doesn't show up until the
file 2002.10.17. At this point, the host connects back to IRC, but to a different
server. This time it chooses "[SVCDP]-XDCC-35" as its nick. The XDCC in its
name signifies that the client is an XDCC bot. Dslreports.com hosts a
frequently asked questions on their server about Internet Relay Chat. The
frequently asked questions states the following in regards to XDCC bots:

http://www.dslreports.com/faq/4493

Although no other packets are captured in the logs at incidents.org, I feel that
it is safe to assume that the host in concern has a compromised account,
possibly root, which is being used to connect to IRC as an XDCC bot.

Attack Mechanism

It is unknown how the internal host was compromised to begin with. Some
Gnutella connections were found to have been made prior to the host
connecting to IRC. It is possible that a file received from Gnutella was a
trojan. Once the system was connecting to IRC, it seems as though it was
stopped, and reconfigured as an XDCC bot. This leads me to think that the
original compromising attack was not a directed, human driven attack; if it
were, the host would probably have been configured as the XDCC bot the first
time. It is unknown what events took place during the reconfiguration of the
bot. Whether other hacker utilities were installed at this time is unkown.

Correlations

After looking for additional network traffic originating from the compromised
host near the time of it being compromised, many Gnutella connections are
seen. Perhaps a file retrieved from Gnutella is responsible for compromising
the host.

I was unable to find any anomolous traffic between the time that the first set of
IRC name changes occur and when the XDCC bot is started.

Very little was known about this particular compromise. The only thing I had
to work from were the nick changes. It was difficult to find anything to
correlate with. I did searches on Google for the irc nicks that I saw, but they
were not specific enough to pick up anything that I could say for sure was the
same irc script or trojan.

 Q: What's an XDCC? (#4493)
 A: With IRC in full swing, XDCC bots are common sights in channels these days. An XDCC
is a bot that has certain packets uploaded to it. These packets may be anything from the
recent game to a good movie. XDCCs are usually r00ted (hacked), and transfer at very high
speeds because they are on fast lines.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

22

Evidence of Active Targeting

From the information I gathered, it does not look as if the host was targeted
until it was reconfigured as an XDCC bot. The original compromise was
probably the result of a widely sent trojan which may have originated from one
of the host's many Gnutella connections.

Severity

The following formula is used to calculate severity:

(Target's Criticality + Lethality of Attack) -(System Defense + Network Defense)

Criticality The type of host is most likely an end user system probably

running a form of windows.
1

Lethtality The system is compromised to an unknown extent. Access to
a shell is probable.

4

System No host based IDS or personal firewall appeared to be in
place.

1

Network None of the traffic observed seemed to be hindered by any
defensive mechanisms in place

1

When these values are plugged into our severity formula, we get a result of 4:
Severity = (1 + 4) - (1 + 1) = 3

Defensive Recommendation

I would recommend blocking IRC traffic at the firewall as well as Gnutella and
other peer-to-peer applications. These serv ices are mostly unproductive in a
business oriented network, and should not be used. A network usage policy
should be in place to inform end users of these restrictions.

It is unknown whether virus scanning software is in use on the host and also
unknown whether the trojan or XDCC bot would be detected by a virus
scanner, but I would recommend a strong virus solution if one is not in place.

For some situations, you might configure Snort Flex Resp to send RSTs to
both ends of the connection when certain signatures are matched.
Unfortunately, the signature which matched in this circumstance was just a
nick change. Closing the connection on IRC nick changes prevent most users
from connecting to IRC and would almost be equivalent with blocking all IRC
connections. Also, the IRC nick change signature is not a rule which is
enabled by default. It would probably not be enabled on most networks since
it would be the source of a lot of noise.

In a University situation, I would keep all sensitive computers within a more
secure, trusted network. Any systems not under any central administration
like computers within dorms should be kept on an untrusted network with a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

23

firewall and IDS in place between them the trusted network.

While it might not be possible to block this sort of traffic to all systems, it can
be prevented from having an adverse affect on parts of the network that can
be controlled. Some users in the untrusted section of the network may still
want some protection from this sort of thing, and for that I would suggest
having information available to those users about choices of v irus software
and personal firewalls.

Multiple Choice Question

What ports do Internet Relay Chat servers commonly Listen on?
A)6667-7000
B)6667
C)6660-7000
D)9999

The correct answer is C. A is too restrictive on the low range. B is just the
most common single port. D is not a common port used to connect to IRC
servers.

Assignment #3: Analyze This

Executive Summary

There is a large amount of data that needs to be analyzed in this part of the
assignment. The tools chosen can either greatly increase the amount of hand
work, or greatly decrease it. Since the Snort ruleset which generated these
alerts is a mostly default ruleset, there will probably be a lot of noise produced
in the alerts. The trick in intrusion detection is finding tools that can give the
analyst a view of the data which will give insight into the trends in the alert
data while also allowing easy ways to find information about individual alerts.

In this part of the practical, I used a few scripts to help me process and format
the data in a way that it could be easily analyzed. I used a PHP script to
parse the alerts files and insert to a Snort database to use with the ACID web
page interface. I also used perl and shell scripts from Steven Drew practicals
to parse scans and oos data.

Files Analyzed

In this third assignment, five consecutive days of Snort logs were to be
chosen to be analyzed. I chose the logs covering the period from January 15,
2003 to January 19, 2003. These logs were generated by an unknown
version of Snort, and a ruleset which is described as "fairly standard" in the
assignment description.

The alert files I chose for analysis are shown below:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

24

alert.030115 15541059 bytes
alert.030116 16325085 bytes
alert.030117 17887897 bytes
alert.030118 24985274 bytes
alert.030119 23281720 bytes

The scans files I chose for analysis are as follows:

scans.030115 33369113 bytes
scans.030116 35388075 bytes
scans.030117 43519917 bytes
scans.030118 97265545 bytes
scans.030119 91232263 bytes

Finally, the out of spec files I chose are these:

OOS_Report_2003_01_15_21827 798723 bytes
OOS_Report_2003_01_16_30391 696323 bytes
OOS_Report_2003_01_17_22332 890883 bytes
OOS_Report_2003_01_18_6261 348163 bytes
OOS_Report_2003_01_19_19130 317443 bytes

Highest Occurring Detects

These are the events which I found to be the most prevalent in the alert files.
I also include the first and last occurance time of the events as well as how
many unique source and destination addresses are observed triggering the
specific signature. This information was easily gathered from the ACID web
interface to the Snort database which I added all of the events from the alert
files to. ACID had to be reconfigured slightly to show more signatures under
the most frequent alerts report. I did this by modifying the acid_conf.php.

Signature Total # # Src's # Dest's First Last
1 High port 65535 tcp - possible Red

Worm - traffic
78606
(39%)

192 187 2003-01-15
00:00:16

2003-01-19
23:46:02

2 Watchlist 000220 IL-ISDNNET-990517 35073
(17%)

72 91 2003-01-15
00:04:04

2003-01-19
23:45:15

3 SMB Name Wildcard 25708
(13%)

768 925 2003-01-15
00:00:14

2003-01-19
23:30:15

4 spp_http_decode: IIS Unicode attack
detected

22414
(11%)

517 678 2003-01-15
00:30:59

2003-01-19
23:45:37

5 TFTP - External UDP connection to
internal tf tp server

21043
(10%)

7 3 2003-01-15
00:07:10

2003-01-19
23:17:55

6 High port 65535 udp - possible Red
Worm - traffic

3865
(2%)

158 144 2003-01-15
00:03:49

2003-01-19
23:33:27

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

25

7 Possible trojan server activity 2529
(1%)

28 47 2003-01-15
13:49:15

2003-01-19
19:19:51

8 Incomplete Packet Fragments
Discarded

2390
(1%)

19 17 2003-01-15
21:14:47

2003-01-19
16:40:01

9 spp_http_decode: CGI Null Byte attack
detected

1897
(1%)

47 80 2003-01-15
08:27:16

2003-01-19
22:54:38

10 IDS552/web-iis_IIS ISAPI Overflow ida
nosize

1722
(1%)

1494 645 2003-01-15
00:03:54

2003-01-19
19:02:13

You may notice that there is a dramatic decrease in the total number of alerts
between the fifth and sixth most frequent alerts. That looks like a good place
to draw the line. The top five most frequent alerts will be analyzed further.

High port 65535 tcp - possible Red Worm - traffic

This signature matched 78606 times. That's a total of 39% of all alerts. There
were 192 different source addresses and 187 unique destination addresses
observed associated with this Snort signature.

Since I am not particularly familiar with this specific signature, I decided to
look the Snort signature up, and see how it triggers. Unfortunately, I could not
find this signature in my rules files, so I downloaded an earlier version of the
rules. I could not find this signature in any of the rulesets I downloaded, so I
dis some searching on Google, and discovered that the Red worm has been
renamed to Adore worm.
I still could not find signatures for the Adore worm, but after more searching
on Google, I discovered http://www.sans.org/y2k/adore.htm which gives a full
description of the worm. Within this description, it states:
"Adore then runs a package called icmp. With the options provided with the
tarball, it by default sets the port to listen too, and the packet length to watch
for. When it sees this information it then sets a rootshell to allow connections."
Another document on the Adore worm located at
http://www.sans.org/rr/threats/mutation.php states that once the icmp program
recieves a packet, it opens a backdoor on TCP to port 65535. This is the
traffic that the signature that captured these events is looking for.
This worm is a pretty nasty one, so attention should be paid to these alerts.
These are all of the MY.NET IP addresses involved with these alerts:
MY.NET.84.151 MY.NET.88.193 MY.NET.104.204
MY.NET.108.34 MY.NET.198.220 MY.NET.91.252
MY.NET.114.88 MY.NET.88.165 MY.NET.150.215
MY.NET.6.40 MY.NET.87.7 MY.NET.118.6
MY.NET.84.193 MY.NET.91.104 MY.NET.113.4
MY.NET.150.16 MY.NET.29.3

Many of these may be false positives because 65535 is a valid high port for
the return port of outgoing traffic. These alerts could be falsely generated if
that port was chosen for returning traffic and the firewall is stateless or looses
state.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

26

Although some of these may be false positives, MY.NET.84.151 also appears
on the Top Ten Talkers list. I would recommend using the Adorefind script
located at:
http://www.ists.dartmouth.edu/IRIA/knowledge_base/tools/adorefind.htm to
find out whether any of these hosts is truly infected with Adore(Red) worm.
Watchlist 000220 IL -ISDNNET-990517

This signature matched 35073 times. That's a total of 17% of all alerts. There
were 72 different source addresses and 91 unique destination addresses
observed associated with this Snort signature.

Once again, this is another signature for which I know nothing about. Looking
through all of the Snort rules I have turned up nothing for this signature, so
once again I rely on Google. According to a quick Google search and Brian
Coyle's GCIA practical, Watchlists alert to traffic coming or going to a certain
IP range.Looking at the number of unique source and destination IP
addresses that are involved with these events is very revealing. There are
only 72 sources and 91 destinations. This information further supports that
the rule that generated these events is looking for traffic to a specific range of
IP addresses.

This could alert to any sort of traffic to the range within the signature, so I
looked at what the majority of the traffic was based on the ports used. The
most prevalent ports were 25, 80, 1214, and 6346. Ports 25 and 80 are well
known and frequently used ports, but 1214 and 6346 are not well known. After
looking up what services use ports 1214 and 6346, it became obvious why
there was so much traffic alerting to this signature: they are used for common
peer to peer file sharing software. Port 1214 is commonly used for Kazaa,
and port 6346 is commonly used for Gnutella.

While peer to peer file sharing networks are not considered exploits
themselves, many files transferred over them may contain trojans or viruses.
In addition, these file sharing networks tend to be used to transfer files whose
contents usually break copywrite and piracy laws. Not only are they most
likely illegal, but they are also normally very large in size and would severely
reduce available bandwidth. My detect #3 was probably a direct result of a
user downloading software from Gnutella which was packaged with a trojan
horse.

Peer to peer file sharing application usage should be kept to a minimum or
stopped completely. If it can be blocked completely on your network, I
recommend it. If it cannot be blocked, keep the accesses to file sharing
networks on an untrusted segment of your network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

27

SMB Name Wildcard

This signature matched 25708 times. That's a total of 13% of all alerts. There
were 768 different source addresses and 925 unique destination addresses
observed associated with this Snort signature.

This is another rule that I could not find in my current Snort ruleset. This one
is a little easier to guess at, though. The rule symbolises an attempt to
access SMB services from an external address into the network which Snort
was running on. The Snort signature would probably look something like this:

alert udp any any -> $HOME_NET 137 (msg:"SMB Name Wil dcard";
content:"CKAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA|0000|";)

A post on the Snort-users mailing list,
http://archives.neohapsis.com/archives/snort/2000-08/0289.html explains that
such requests are used to obtain the names of remote systems' in their
netbios configuration. If the probe succeeds, the attacker can then mount
shared drives on the system that responded.

Looking further into the traffic, I noticed that each source address probed
about 60 or more times to different destinations within the MY.NET network.
These alerts probably were generated from attackers who were searching for
systems that they could abuse through netbios. These probes are
informational in nature, but if any information is returned, it will most likely be
used to compromise the filesystem of the systems which have been
configured to allow any guests to access the filesystem. Even if write access
is not permitted on any shares found, it may be possible to retrieve email,
email server passwords, copywrited software, and any other information that
the hacker may deem worthy. Shared filesystems are not the only available
targets to a potential hacker. Many other devices and medias can be shared
over netbios.

Tod Beardsley reported a high number of occurances of these alerts in his
practical as well, but he dismisses it as normal NetBIOS name resolution on
the internal network since most of his alerts were generated from the internal
network. Unfortunately, this is not the case for us this time. I believe that
between the time he wrote his practical and now, the alert had been modified
to only alert to external addresses connecting to the internal network.

SMB attempts and scans to MY.NET from the outside and from so many
different sources is rather daunting. I would ensure that this is not a problem
by configuring a firewall or border router to drop any attempted traffic destined
to port 137.

spp_http_decode: IIS Unicode attack detected

This signature matched 22414 times. That's a total of 11% of all alerts. There

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

28

were 517 different source addresses and 678 unique destination addresses
observed associated with this Snort signature.

This signature indicates that the http_decode preprocess of Snort didn't like
some of the unicode representations of characters that it found within traffic to
a web server. According to John Berkers on the Snort-users mailing list,
"These events are sometimes triggered by visiting sites that use multi-byte
characters such as Simplified Chinese etc."

After looking through the sources and destinations for many of the alerts, I did
notice that many of them were destined to web servers external to MY.NET.
Those accesses directed towards external web servers are likely to be
triggering the preprocessor trigger because of character sets for languages
like Chinese which use multiple bytes as John Berkers pointed out.

This preprocessor seems to be quite noisy, and consideration might be put
towards disabling it to avoid distracting the analyst from true attacks.
However, on the other side of the argument, the signature for this event is a
rather important one if any IIS servers are running on MY.NET. Perhaps
looking into tuning it to be a bit less noisy would be a better so lution. As noisy
as this signature is right now, even if a true attack were to occur which this
signature would catch, it would be difficult to separate and diagnose it when it
is mixed in with all of the other noise.

Further analyzing these events, I looked up the hostnames of many of the
external web servers which were accessed from internally to generate some
of the events in question. Many of the hostnames were hosts known to offer a
lot of streaming media. Without additional information like raw network dumps
of the traffic, it is difficult to say for sure, but I believe that streaming media
from web pages may also cause this signature to trigger on a false positive.

There is still the traffic inbound to MY.NET web servers which triggered the
signatures to consider. There are still the same causes of false positives that
can be considered for the inbound traffic, however s ince the traffic is inbound,
I would pay more attention to it. Perhaps the rule can be completely disabled
if all inbound traffic for this signature was found to be false possitives. A
closer look at exactly what causes the signature to be triggered should be
taken before any decision is made. In either case, this is a very noisy
signature, and should definitely be at least tuned.

TFTP - External UDP connection to internal tftp server

TFTP connections from external hosts to internal TFTP servers probably
should not happen. TFTP stands for Trivial File Transfer Protocol. It is a
simplified FTP protocol, but should not be treated as an FTP. TFTP does not
offer any security features, whereas FTP does. Allowing TFTP access to
internal servers is a highly risky thing to do. Even only allowing access to
specific files might be a problem since no authorization is performed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

29

It seemed rather unlikely that a TFTP server was running on MY.NET allowing
external connections. Most TFTP servers exist on internal networks to allow
diskless workstations to boot or within cable ISPs to allow their cable modems
to retrieve the correct configuration. Most people who wish to allow others to
retrieve files from them will run an FTP and give user accounts to individuals
or allow anonymous access to the ftp.

To satisfy my curiosity in this TFTP traffic, I looked at the external addresses
requesting the TFTP service. After looking at the sources and destinations, it
seemed that most of the traffic was from addresses in MY.NET destined for
192.168.0.253. This address is a private IP address which is normally used
on an internal network. It seems unlikely that anyone would spoof traffic to a
TFTP server since it is used for file transfers, and a response would be
necessary to receive any files. Instead, I believe that Snort picked it up
because it was not configured to understand that 192.168.0.0/16 is an internal
network, assuming that there is a subnetwork connected to MY.NET which
uses that addressing scheme.

There are two actual external addresses which attempt to access TFTP on
MY.NET. Those addresses are 63.251.39.161 and 63.210.198.194. Looking
further into those addresses, I do a whois on 63.251.39.161 which returns as
Kenneth Copeland Ministries. This seemed rather odd. I wanted further
information about this host, so I attempted to access it through a browser
hoping that it would be running a web server so that I could gain more
information about the host who attempted to access a TFTP on MY.NET.

Accessing this server through a web browser had an interesting effect: I was
prompted with a dialog telling me that I was accessing a file with a mime type
of video/x-ms-asf. Now, I'm getting somewhere. This seems to be a
streaming media server. I decided to attempt to access the other IP address
in the same fashion to see if the results would agree. At this point, I was
confronted with a web page labeled "PEC CardSaver Administration Panel."
This was an interesting development. What is a PEC CardSaver? A quick
search on Google answered that question for me. PEC stands for Parwan
Electronics Corporation, and CardSaver is one of their products which is
described as, "Voice over IP Pre-paid Calling." I found yet another form of
streaming media. It would be my guess that both of these external hosts'
streaming media servers had somehow created a connection which triggered
the signature for a TFTP connection.

I'm glad that it looks as if there are no TFTP servers present accepting
external connections on MY.NET, but further research should be done
concerning the two external addresses. It should be confirmed that the
streaming media is what causes that signature to trigger. Perhaps catching
the traffic while it is in occurance on the network could be a possible next
step.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

30

Top Ten Talkers -- Alerts

Here is a list of the top ten source addresses based on all of the events found
in the alert files over the period for our analysis.

Src IP address Total # Unique Alerts Dest. Addr.
1MY.NET.84.151 31845 2 138
2212.179.1.145 13901 1 1
3217.136.73.54 6724 1 2
4212.179.107.228 6055 1 4
580.200.225.161 5916 7 3
6MY.NET.111.235 4238 1 1
7MY.NET.111.232 4235 1 1
8MY.NET.111.219 4198 1 1
9MY.NET.111.231 4193 1 1

10MY.NET.111.230 4174 1 1

Now, here is the list of top ten destination addresses based on all of the
events found in the alert files over the period of our analysis.

Dest IP address Total # Unique Alerts Src. Addr.
1MY.NET.84.151 39955 9 141
2192.168.0.253 21039 2 6
3MY.NET.113.4 15953 7 23
4217.136.73.54 4841 1 1
580.200.225.161 4757 2 2
6MY.NET.88.193 4516 1 30
7MY.NET.105.204 3790 6 8
8MY.NET.84.193 3730 7 14
962.147.242.129 3141 1 1

10MY.NET.90.212 2858 1 4

Further analysis of these top talkers is necessary. Although it is expected that
internal systems would talk to each other more than external systems would
talk to us, that traffic should be valid traffic. Alerts generated through internal
systems can be significant of trojans, worms, misconfigurations, and
unauthorized services. External systems on this list should also be
scrutinized. External systems are generally considered untrusted: a high
number of events from them should be paid attention to. These high talkers
are probably either a very noisy signature or a true attack of some kind. On
another note, just because these systems are noisy, do not let them take your
focus away from other important events. A web server can be defaced or
otherwise compromised with only a few signatures catching the malicious
events. On a production network, the signatures should be tuned to prevent
noisy signatures from talking as much so that real attention can be paid to
those events that represent true attacks.

Lets start with the external addresses listed in the source top talker list. The
addresses we're looking at are 212.179.1.145, 217.136.73.54,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

31

212.179.107.228, and 80.200.225.161.

212.179.1.145: A quick search in ACID can easily tell us that all of the traffic
coming from this address or going to it is related to the Watchlist 000220 IL-
ISDNNET-990517 signature. Looking back at that traffic, we remember that
it's mostly peer to peer file sharing protocols, so lets move on.

217.136.73.54: Another search in ACID, and I have discovered that all traffic
originating or destined from this address was labeled as High port 65535 tcp -
possible Red Worm - traffic by Snort. This was also covered as one of the
highest occuring detects. Since all of the traffic with this host alerted under
the same signature, and that signature signifies the traffic produced by a
pretty nasty worm, I would definitely check out the MY.NET hosts it connects
to for infections with this particular worm. I will look further into this host under
the external sources of interest section. If it is discovered that the hosts that it
accesses on our network are infected with the Adore worm, an abuse email
should be sent, the systems infected with the worm should be analyzed for
further exploitation. Additionally, if one of those hosts were infected with the
worm, an attacker was on the MY.NET network already. Further analysis of
possible damage/exploitation on the network should be done.

212.179.107.228: Yet again, I do a search for this IP address in the list of
alerts in ACID and discover that there is only one signature which alerts for
this host. That signature is Watchlist 000220 IL-ISDNNET-990517. For this
source, I discovered that all of the source ports were port 80. After
discovering this, I checked to see if that host indeed runs a web server.
Loading that address in my web browser produced a page with only the text,
"w5.incredimail.com." Doing a nameserver lookup on that domain name gives
me 212.179.107.241 which is most probably on the same network. I then
check www.incredimail.com which comes out to 212.179.107.226. Seeing
that incredimail owns IP addresses on either side of the one producing the
alerts, it's safe to assume that incredimail also owns the one that did produce
the alerts. It is probable that those alerts were nothing but web traffic being
triggered by the watchlist.

80.200.225.161: This time ACID reports multiple signatures for this address.
These signatures are: High port 65535 tcp - possible Red Worm - traffic, Null
scan!, NMAP TCP ping!, SUNRPC highport access!, Probable NMAP
fingerprint attempt, EXPLOIT x86 NOPS, and TFTP - External TCP
connection to internal tftp server. These look like some alarming events, so
we will look into this source some more. Most of these alerts are
informational in nature, and most of them access ports 1 and 135. The TFTP
connections are interesting because the ones seen on UDP ports did not look
malicious. These are associated with an IP address that looks like it has been
doing some scanning and may have accessed a Red worm infected host.
Most of the traffic from this host falls under the Red worm signature. It would
be wise to look into the destinations for any Red worm activity originating from
this host to see if they are infected. This host will be further looked into under

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

32

external sources of interest.

This is the end of the list of top talkers for the sources, but there are still some
destinations which are external to MY.NET which are external. Lets take a
look at what systems have been noisy destinations. The destinations we see
are: 192.168.0.253, 217.136.73.54, 80.200.225.161, and 62.147.242.129.
192.168.0.253 is a private address which we have already discovered is the
source for a lot of TFTP traffic, so we strike this address from the list.

217.136.73.54 and 80.200.225.161: This address has already been talked
about as a source address. Looking at ACID again, the same signatures are
seen from when they were talked about as source addresses. The state must
not have been considered or was lost when Snort recorded the events from
these sources.

62.147.242.129: This host only appears with one signature: High port 65535
tcp - possible Red Worm - traffic. After looking into the alerts which have this
host as a source or a destination, all of them have a common trait. They all
are connecting to MY.NET.84.151. MY.NET.84.151 is also the number one
source IP address listed in the top talkers lists, so this destination host should
definitely be paid attention to. I will look further into this host under the
external sources of interest section. If it is discovered that the hosts that it
accesses on our network are infected with the Adore worm, an abuse email
should be sent, the systems infected with the worm should be analyzed for
further exploitation.
Top Ten Talkers -- Scans

Here is a list of the top ten source addresses based on all of the events found
within the scans files over the period of five days.

Src IP address Total # Unique Ports
1MY.NET.84.147 1234942 998
2MY.NET.83.146 930848 104
3MY.NET.70.176 602949 25
4MY.NET.150.213 342787 92
5MY.NET.91.72 264113 24
6MY.NET.114.45 238438 147
7MY.NET.91.252 163525 1652
8MY.NET.88.242 102531 3976
9MY.NET.118.6 84339 650

10MY.NET.106.228 60401 7

Below is the listing for the top ten destination addresses based on the scans
found within all of the scans files retrieved from incedents.org for the five day
period.

Dst IP address Total # Unique Ports
1MY.NET.150.210 14529 12822

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

33

266.177.41.202 3358 2
3217.235.4.236 3309 1
4164.77.214.242 2027 190
566.31.141.55 1948 2
661.103.141.201 1915 1
766.167.13.218 1899 1646
824.82.159.44 1830 1
924.85.157.182 1817 1

10205.207.184.86 1675 3

While I am not going to further investigate these scans, it is interesting to note
the number of unique ports from sources and those targeted on destination
addresses. Also note that the scans were more spread out over destination
addresses whereas with source addresses, a trend can be seen that the
higher number of scans were generated all from addresses within MY.NET.

Top Ten Talkers -- OOS

Here is a list of the top ten source addresses based on all of the events found
within the Out of Spec files over the five day period.

Src IP address Total # Unique Flags
1209.191.132.40 632 2
2148.63.115.208 558 1
3MY.NET.70.183 462 1
4133.11.36.54 298 1
5MY.NET.53.10 295 1
665.214.36.150 283 1
7202.156.131.251 274 1
866.189.101.206 241 86
966.140.25.156 95 1

10209.47.251.30 78 1

Now, here is the listing of the top ten destination addresses for Out of Spec
packets found within the Out of Spec files for the five day period analyzed.

Dst IP address Total # Unique flags
1MY.NET.6.40 1323 3
2MY.NET.1.4 757 1
3MY.NET.117.143 632 2
4MY.NET.153.178 558 1
5MY.NET.130.12 298 1
6MY.NET.117.10 274 1
7MY.NET.84.193 247 86
8MY.NET.84.147 141 2
9MY.NET.99.85 130 1

10MY.NET.88.94 103 9

A lot could be said about all of these packets, and there is a lot that can be
inferred from the low number of unique flag sets that tend to be used specific

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

34

to each source or destination. As I was gathering the information above, I
could not help but to notice that many of the ports that the out of spec packets
were destined for were Gnutella and Kazaa ports. It seems that not only do
file sharing applications have no regard for bandwidth usage and copyright
laws, but they also create a lot of anomolous traffic. Perhaps peer to peer
applications should be treated with the same methods as trojan horses and
worms: they produce all of the same characterist ics and often do result in
infections with trojan horses, worms, and viruses.

External Sources of Interest

The whois for 217.136.73.54 follows. It looks as if this host is connecting to a
host which might be compromised by the Adore worm. If the MY.NET host is
proven to be infected with the Adore worm, the abuse contact listed within this
whois should be contacted and sent an abuse email.

% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/r ipencc/pub-services/db/copyright.html

inetnum: 217.136.0.0 - 217.136.127.255
netname: BE-SKYNET-ADSL1
descr: Belgacom Skynet SA/NV
descr: ADSL Access
country: BE
admin-c: SN2068-RIPE
tech-c: SN2068-RIPE
rev-srv: ns.ripe.net
rev-srv: ns1.skynet.be
rev-srv: ns2.skynet.be
rev-srv: ns3.skynet.be
rev-srv: ns4.skynet.be
status: ASSIGNED PA
mnt-by: SKYNETBE-MNT
changed: ripe@skynet.be 20021125
source: RIPE

role: Skynet NOC administrators
address: Belgacom Skynet SA/NV
address: rue colonel Bourg 124
address: B-1140 Brussels
address: Belgium
phone: +3227061311
fax-no: +3227269311
email: ripe@skynet.be
admin-c: JFS1-RIPE
tech-c: PDH16-RIPE
nic-hdl: SN2068-RIPE
remarks: --
remarks: Abuse notifications to: abuse@skynet.be
remarks: Network problems to: noc@skynet.be
remarks: Peering requests to: peering@skynet.be
remarks: --

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

35

notify: noc@skynet.be
mnt-by: SKYNETBE-MNT
changed: ripe@skynet.be 20010907
source: RIPE

Below is the whois information for 62.147.242.129. It looks as if this host is
also connecting to a MY.NET which might be compromised by the Adore
worm. If the MY.NET host is proven to be infected with the Adore worm, the
abuse contact listed within this whois should be contacted and sent an abuse
email.

% This is the RIPE Whois serve r.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub -services/db/copyright.html

inetnum: 62.147.79.0 - 62.147.255.255
netname: FR-PROXAD-DIALUP
descr: Proxad / Free Telecom
descr: Dynamic pool (dialup)
descr: NCC#2002110278 (45312/45824)
country: FR
admin-c: ACP23-RIPE
tech-c: TCP8-RIPE
status: ASSIGNED PA
mnt-by: PROXAD-MNT
changed: tom@proxad.net 20021118
changed: tom@proxad.net 20021125
source: RIPE

route: 62.147.0.0/16
descr: ProXad network / Free SA
descr: Paris, France
origin: AS12322
notify: ripe-notify@proxad.net
mnt-by: PROXAD-MNT
changed: nhyvernat@corp.free.fr 20010913
source: RIPE

role: Administrative Contact for ProXad
address: Free SA / ProXad
address: 24, rue Emile Menier
address: 75116 Paris
phone: +33 1 56 26 20 00
fax-no: +33 1 49 04 48 71
e-mail: hostmaster@proxad.ne t
trouble: Information: http://www.proxad.net/
trouble: Spam: mailto:abuse@proxad.net
admin-c: RA999-RIPE
tech-c: NH1184-RIPE
tech-c: TP684-RIPE
tech-c: NS496-RIPE
nic-hdl: ACP23-RIPE
notify: ripe-notify@proxad.net
mnt-by: PROXAD-MNT
changed: nhyvernat@corp.free.fr 20010809

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

36

changed: tom@proxad.net 20021125
source: RIPE

role: Technical Contact for ProXad
address: Free SA / ProXad
address: 24, rue Emile Menier
address: 75116 Paris
phone: +33 1 56 26 20 00
fax-no: +33 1 49 04 48 71
e-mail: hostmaster@proxad.net
trouble: Information: http://www.proxad.net/
trouble: Spam: mailto:abuse@proxad.net
admin-c: RA999-RIPE
tech-c: NH1184-RIPE
tech-c: TP684-RIPE
tech-c: NS496-RIPE
nic-hdl: TCP8-RIPE
notify: ripe-notify@proxad.net
mnt-by: PROXAD-MNT
changed: nhyvernat@corp.free.fr 20020626
changed: tom@proxad.net 20021125
source: RIPE

The following is the whois information for 80.200.225.161. This host also
connected to a MY.NET host which may be infected with the Red worm which
is also known as Adore. If the MY.NET host is proven to be infected with this
worm, the ISP should be contacted with an abuse email. Furthermore, this
host also alerted to other scan activity to ports 1 and 135 which should be
detailed in the abuse letter.

% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 80.200.0.0 - 80.200.255.255
netname: BE-SKYNET-20011108
descr: ADSL Customers
descr: Skynet Belgium
country: BE
admin-c: JFS1-RIPE
tech-c: PDH16-RIPE
status: ASSIGNED PA
mnt-by: SKYNETBE-MNT
changed: ripe@skynet.be 20011212
source: RIPE

route: 80.200.0.0/15
descr: SKYNETBE-CUSTOMERS
origin: AS5432
notify: noc@skynet.be
mnt-by: SKYNETBE-MNT
changed: noc@skynet.be 20011116
source: RIPE

person: Jean-Francois Stenuit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

37

address: Belgacom Skynet NV/SA
address: Rue Carli 2
address: B-1140 Bruxelles
address: Belgium
phone: +32 2 706 -1311
fax-no: +32 2 706-1150
e-mail: jfs@skynet.be
nic-hdl: JFS1-RIPE
remarks: --
remarks: Network problems to: noc@skynet.be
remarks: Peering requests to: peering@skynet.be
remarks: Abuse notifications to: abuse@skynet.be
remarks: --
mnt-by: SKYNETBE-MNT
changed: jfs@skynet.be 19970707
changed: ripe@skynet.be 20021125
source: RIPE

person: Pieterjan d'Hertog
address: Belgacom Skynet sa/nv
address: 2 Rue Carli
address: B-1140 Brussels
address: Belgium
phone: +32 2 706 13 11
fax-no: +32 2 706 13 12
e-mail: piet@skynet.be
nic-hdl: PDH16-RIPE
remarks: --
remarks: Network problems to: noc@skynet.be
remarks: Peering requests to: peering@skynet.be
remarks: Abuse notifications to: abuse@skynet.be
remarks: --
mnt-by: SKYNETBE-MNT
changed: jfs@skynet.be 19990415
changed: piet@skynet.be 19991210
changed: piet@skynet.be 20000302
changed: piet@skynet.be 20020329
source: RIPE

This is the whois of 12.91.164.102. While This address was not the source or
destination of any signature I have talked about so far, it did access a
MY.NET IP address on the spooler port(515) several times. The spooler port
is known to be a commonly scanned port and it may be vulnerable to exploits.
http://www.securiteam.com/exploits/5DQ0G000JA.html describes an HP
remote denial of service in which Hewlet Packard printers are vulnerable. If
access to this spooler is not authorized from this host, an abuse letter should
be sent to the contact listed in the whois information.

OrgName: AT&T WorldNet Services
OrgID: ATTW

NetRange: 12.0.0.0 - 12.255.255.255
CIDR: 12.0.0.0/8
NetName: ATT
NetHandle: NET-12-0-0-0-1
Parent:
NetType: Direct Allocation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

38

NameServer: DBRU.BR.NS.ELS -GMS.ATT.NET
NameServer: DMTU.MT.NS.ELS -GMS.ATT.NET
NameServer: CBRU.BR.NS.ELS-GMS.ATT.NET
NameServer: CMTU.MT.NS.ELS -GMS.ATT.NET
Comment: For abuse issues contact abuse@att.net
RegDate: 1983-08-23
Updated: 2002-08-23

TechHandle: DK71-ARIN
TechName: Kostick, Deirdre
TechPhone: +1-919-319-8249
TechEmail: help@ip.att.net

OrgAbuseHandle: ATTAB-ARIN
OrgAbuseName: ATT Abuse
OrgAbusePhone: +1-919-319-8130
OrgAbuseEmail: abuse@att.net

OrgTechHandle: ICC -ARIN
OrgTechName: IP Customer Care
OrgTechPhone: +1-888-613-6330
OrgTechEmail: qhoang@att.com

OrgTechHandle: IPSWI-ARIN
OrgTechName: IP SWIP
OrgTechPhone: +1-888-613-6330
OrgTechEmail: swipid@nipaweb.vip.att.net

ARIN Whois database, last updated 2003 -01-21 20:00
Enter ? for additional hints on searching ARIN's Whois database.

Here is another interesting host: 68.33.105.77. This host is the source for
numberous signatures including: External FTP to HelpDesk MY.NET.70.49(15
times), External FTP to HelpDesk MY.NET.70.50(14 times),
spp_http_decode: IIS Unicode attack detected(410 times), TFTP - External
TCP connection to internal tftp server(160 times), spp_http_decode: CGI Null
Byte attack detected(8 times), External POP to HelpDesk MY.NET.70.49(349
times), PHF attempt(12 times), External POP to HelpDesk MY.NET.70.50(276
times), and External RPC call(113 times). The address 68.33.105.77 resolves
to pcp02102752pcs.towson01.md.comcast.net. The number of alerts for this
host is unusual, so lets find out who we can contact if we find out that any of
these alerts are part of a successful attack.

Comcast Cable Communications, Inc. JUMPSTART -1 (NET-68-32-0-0-1)
 68.32.0.0 - 68.63.255.255
Comcast Cable Communications, Inc. JUMPSTART -BALTIMOR-B1 (NET-68-33-
0-0-1)
 68.33.0.0 - 68.34.127.255

ARIN Whois database, last updated 2003 -01-21 20:00
Enter ? for additional hints on searching ARIN's Whois database.

While this information does not directly give a way to send any abuse email,
going to comcast's web site provides a way.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

39

Graphical Comparison of Source and D estination TCP Ports

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

40

These two graphs illustrate the differences in the port ranges and numbers of
alerts generated per port. Source hosts tend to have a much broader range
of ports used than destinations. The number of alerts within the range from
port 0 to around port 5000 are about the same between destinations and
sources, however source addresses tend to have more alerts generated in the
higher port ranges since source ports are not static.

What is interesting about these graphs is that the shape of the graphs in the
areas that both the source and destination share the port range of 0-5000
seems to be about the same. Both have a higher number of alerts closer to
port 0, but the number of alerts dips down towards the area around port 2500.
The alerts per port then pick back up around port 3000 and then around port
4000, they dip back down again until they are very low around 5000. This
similarity in the graphs may be caused by Snort only seeing the direction that
each packet is going and not the direction the connection was made.
Perhaps if Snort could track connections, a different trend would be seen.

Insights into Internal Machines

Hosts with Adore worm traffic destined for them:
MY.NET.84.151 MY.NET.88.193 MY.NET.104.204
MY.NET.108.34 MY.NET.198.220 MY.NET.91.252
MY.NET.114.88 MY.NET.88.165 MY.NET.150.215
MY.NET.6.40 MY.NET.87.7 MY.NET.118.6
MY.NET.84.193 MY.NET.91.104 MY.NET.113.4
MY.NET.150.16 MY.NET.29.3

While I am sure that not all of these hosts are infected with the Adore worm,
the amount of traffic that some of them produced under the Red worm
signature cannot be ignored. I would look into each of these systems, paying
special regard to those which produced more Red worm alerts to determine if
any of them truly are infected.

Another bit of information that caught my attention is that there were some
hosts connecting to IRC which triggered XDCC bot signatures in Snort. While
XDCC bots are not a 100% guarantee that the host running the bot has been
owned, it can be a good indicator. Doing a listing of unique IP addresses
associated with those alerts in ACID quickly came up with a list of internal
address which were running the XDCC bots.

MY.NET.88.168 MY.NET.150.5
MY.NET.105.48 MY:NET.198.220

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

41

Defensive Recommend ations

As I stated in Detect #3, IRC and peer to peer file sharing applications may
not be something you can block access to on your network, but if they must
be run, it would be a good idea to separate those hosts which must access
such services from the trusted network. An additional firewall and IDS should
be put in place where the two networks join in an effort to protect the trusted
network from the untrusted network.

There seems to be quite a bit of traffic triggering the Red worm signature.
Research should be done on those internal hosts who are related to those
alerts. The internal hosts which are associated with the traffic are lited above
in the Insights into Internal Machines section.

Another thing I noticed, but did not find a place to discuss in this paper was
some traffic entering MY.NET destined for hosts which are not a part of
MY.NET. Some of this traffic was UDP and some was TCP. The IP address
ranges which this traffic was originating from or destined for were all fairly
close. It could be possible that the traffic was spoofed from a machine within
MY.NET, but it would not be able to establish a TCP connection to any host,
nor would it be able to receive any responses to UDP traffic. This could be
significant of a misconfigured host on MY.NET.

References

Fearnow, Matt. "SANS Institute: Adore Worm." April 12, 2001. URL:
http://www.sans.org/y2k/adore.htm.

Dell, Anthony. "Adore Worm - Another Mutation." April 6, 2001. URL:
http://www.sans.org/rr/threats/mutation.php.

Fearnow, Matt. "Adore Worm Detection and Removal Tool." Jan. 7 2003.
URL:http://www.ists.dartmouth.edu/IRIA/knowledge_base/tools/adorefind.htm.

Fyodor. "Re: [Snort-users] What is 'SMB Name Wildcard'." Aug 20 2000. URL:
http://archives.neohapsis.com/archives/snort/2000-08/0289.html.

Rock, John. "HP printers vulnerable to remote DoS (spooler port)."
April 26 2000. URL:http://www.securiteam.com/exploits/5DQ0G000JA.html.

Beardsley, Tod. "Intrusion Detection and Analysis: Theory, Techniques, and
Tools." March 15, 2002. URL:
http://www.giac.org/practical/Tod_Beardsley_GCIA.doc.

Drew, Steven. “Detection In Depth Practical Assignment.” 2001. URL:
http://www.giac.org/practical/Steven Drew_GCIA.doc.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

42

Appendix A: Tools used for "Analyze This!"

While I used some scripts from other students' practicals during the analysis
process for the scans files as well as the out of spec files, I also wrote my own
PHP script for importing the Snort alert log format into a Snort style database.
This made the process of analyzing all of the alerts much easier since ACID's
web interface to the Snort database has many of the searching and sorting
features I needed already built into it.

Below is a listing of all of the scripts I used as well as a short description of
what the script was used for. I appologize for the lack of comments within the
source code.

I should also note that to get the PHP Snort alert log parser working, I had to
modify several variables in php.ini concerning the size of files to allow
submitted in forms as well as memory and time allowed for the processing of
a PHP script. These are not things that should be done on a production web
server or any web server that receives traffic from untrusted sources. The
PHP scripts should probably be converted into Perl so that form submissions
would not be necessary and time spent processing would not be an issue.

This is just a simple html form that I used to submit my logs to the alert log
parser with.

Below is parselog.php which is used to accept the posted file and parse it out.

<form enctype="multipart/form-data" action="parselog.php" method="post">
 <input type="hidden" name="MAX_FILE_SIZE" value="100000000">
 Send this file: <input name="snortLog" type="file">
 <input type="submit" value="Send File">
</form>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

43

<?php
require("snortinserts.php");
// file /home /httpd/htdocs/parselogs/snortlogs/alert.log
print "Parsing ".$_FILES['snortLog']['name']."...
 \n";

if(is_uploaded_file($_FILES['snortLog']['tmp_name']))
{ // ****
 copy($_FILES['snortLog']['tmp_name'], "/home/httpd/htdocs/parselogs/snortlogs/alert.log");
}
else
{
 if(empty($_FILES['snortLog']['name']))
 {
 echo "Please select a file to upload first!";
 }
 else
 {
 echo "Possible file upload attack. Filename: ".$_FILE S['snortLog']['name'];
 echo "
\nYour IP has been logged!
 \n";
 }
 exit;
}

clearstatcache();
if(file_exists("/home/httpd/htdocs/parselogs/snortlogs/alert.log")) // ****
{
 $fd=fopen ("/home/httpd/htdocs/parselogs/snortlogs/alert.log", "r"); // ****
}
else
{
 exit;
}

/**
 Start Parsing Section
 - Modify this section to add support for other log formats.
***/

$logBuffer=fgets($fd, 4096); // get one line

/**
 Session Variables
 - Need stuff in here that Ref may need to clear up after
 parsing(like which team is which, and player ident)
 - Also need anything that will be added to the DB
***/

while(!feof($fd))
{
 if(ord($logBuffer[0])==0 || ord($logBuffer[0])==10 || ord($logBuffer[0])==13)
 {
 $logBuffer=fgets($fd, 4096); // get one line
 continue;
 }
 if(preg_match("/spp_portscan/", $logBuffer, $match))
 {
 $logBuffer=fgets($fd, 4096); // get one line
 continue;
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

44

Next is snortinserts.php. It actually inserts the data to the database.

 {
// print f("Matched: ".$match[1]."
\n");
 $proto=0;
 } else if(preg_match("/(?i)(udp)/", $logBuffer, $match))
 {
// print f("Matched: ".$match[1]."
\n");
 $proto=1;
 } else {
// print f("No match. Assuming TCP
\n");
 $proto=2;
 }
 if(!preg_match("/(^[0 -9][0-9])\/([0-9][0-9])-([0-9][0-9]):([0-9][0-9]):([0-9][0-9]).[0-9]*[]*\[**\][
]([^][*]+)[]\[**\][]([0-9\.MYNET]*):([0-9]*)[]\-\>[]([0-9\.MYNET]*):([0-9]*)$/", $logBuffer,
$match))
 {
 if(!preg_match("/(^[0 -9][0-9])\/([0-9][0-9])-([0-9][0-9]):([0-9][0-9]):([0-9][0-9]).[0-9]*[]*\[**\][
]([^][*]+)[]\[**\][]([0-9\.MYNET]*)[] \-\>[]([0-9\.MYNET]*)$/", $logBuffer, $match))
 {
 printf("Malformed log file entry!: \n");
 printf("$logBuffer
 \n");
 $logBuffer=fgets($fd, 4096) ; // get one line
 continue;
// exit();
 }else{
 $proto=0;
 }
 }
 if(!empty($proto))
 {
 list(, $month, $day, $hours, $min, $sec, $signature, $src, $sport, $dst, $dport)=$match;
 } else {
 list(, $month, $day, $hours, $min, $sec, $signature, $src, $ds t)=$match;
 }
 $date = "03".$month.$day.$hours.$min.$sec;
 switch($proto)
 {
 case 0: //icmp
 inserticmp($date, $signature, $src, $dst);
 break;
 case 1: //udp
 insertudp($date, $signature, $src, $sport, $dst, $dport);
 break;
 case 2: //tcp
 inserttcp($date, $signature, $src, $sport, $dst, $dport);
 break;
 } // end switch
 $logBuffer=fgets($fd, 4096); // ge t one line
 //print $logBuffer."
 \n";
} // end while
print "done.
\n";
/**
 End Parsing Section
***/
fclose($fd);
unlink("/home/httpd/htdocs/parselogs/snortlogs/alert.log");
?>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

45

<?php
if(!defined("_SNORT_INCLUDE_")){
define("_SNORT_INCLUDE_",1);

include("mysql.php");

//return cid
function getlastcid($sid)
{
 $db = new db();
 $db->open("snort", "localhost", "snort", "snort");
 $sql = "select last_cid from sensor where sid=$sid";
 //print "$sql ".date("H:i:s")."
 \n";
 $query=new query($db, $sql);
 $query->getrow();
 $cid=$query->field(0);
 $cid++;
 $sql = "update sensor set last_cid=$cid where sid=$sid";
 $query=new query($db, $sql,1);
 return $cid;
}

function insertevent($sid,$cid,$sig,$date)
{
 $db = new db();
 $db->open("snort", "localhost", "snort", "snort");
 $sql = "insert into event (sid, cid, signature, timestamp) values ($sid, $cid, $sig, '$date')";
 //print "$sql ".dat e("H:i:s")."
\n";
 $query=new query($db, $sql, 1);
}

function insertiphdr($sid,$cid,$src,$dst,$proto)
{
 if(!preg_match("/([MYNET0 -9]*)\.([MYNET0-9]*)\.([MYNET0-9]*)\.([MYNET0-9]*)/", $src,
$match))
 print "Bad src IP!! \"$src\"
\n";
 list(, $one, $two, $three, $four)=$match;
 if($one == "MY") $one = 0;
 if($two == "NET") $two = 0;
 $src_int32 = sprintf("%2x",$one);
 $src_int32 .= sprintf("%2x",$two);
 $src_int32 .= sprintf("%2x",$three);
 $src_int32 .= sprintf("%2x",$four);
 $src_int32 = preg_replace("/ \s/", "0",$src_int32);
 $ip_src = hexdec($src_int32);

 if(!preg_match("/([MYNET0 -9]*)\.([MYNET0-9]*)\.([MYNET0-9]*)\.([MYNET0-9]*)/", $dst,
$match))
 print "Bad dst IP!! \"$dst\"
\n";
 list(, $one, $two, $three, $four)=$match;
 if($one == "MY") $one = 0;
 if($two == "NET") $two = 0;
 $dst_int32 = sprintf("%2x",$one);
 $dst_int32 .= sprintf("%2x",$two);
 $dst_int32 .= sprintf("%2x",$three);
 $dst_int32 .= sprintf("%2x",$four);
 $dst_int32 = preg_replace("/ \s/", "0",$dst_int32);
 $ip_dst = hexdec($dst_int32);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

46

 //print "$ip_src
\n";
 //print "$ip_dst
\n";
 $db = new db();
 $db->open("snort", "localhost", "snort", "snort");
 $sql = "insert into iphdr (sid, cid, ip_src, ip_dst, ip_proto) values ($sid, $cid, $ip _src, $ip_dst,
$proto)";
 //print "$sql ".date("H:i:s")."
 \n";
 $query=new query($db, $sql, 1);
}

function insertudphdr($sid,$cid,$sport,$dport)
{
 $db = new db();
 $db->open("snort", "localhost", "snort", "snort");
 $sql = "insert into udphdr (s id, cid, udp_sport, udp_dport) values ($sid, $cid, $sport, $dport)";
 //print "$sql ".date("H:i:s")."
 \n";
 $query=new query($db, $sql, 1);
}

function inserttcphdr($sid,$cid,$sport,$dport)
{
 $db = new db();
 $db->open("snort", "localhost", "snort ", "snort");
 $sql = "insert into tcphdr (sid, cid, tcp_sport, tcp_dport) values ($sid, $cid, $sport, $dport)";
 //print "$sql ".date("H:i:s")."
 \n";
 $query=new query($db, $sql, 1);
}

function inserticmphdr($sid,$cid)
{
 $db = new db();
 $db->open("snort", "localhost", "snort", "snort");
 $sql = "insert into icmphdr (sid, cid) values ($sid, $cid)";
 //print "$sql ".date("H:i:s")."
 \n";
 $query=new query($db, $sql, 1);
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

47

The scripts use the Muse database abstraction, but I've modified it slightly for
my purposes. The modified version is listed below.

function inserticmp($date, $signature, $src, $dst)
{
 $cid=getlastcid(1);
 $sig=dosignature($signature);
 insertevent(1,$cid,$sig,$date);
 insertiphdr(1,$cid,$src,$dst,1);
 inserticmphdr(1,$cid);
}

function insertudp($date, $signature, $src, $sport, $dst, $dport)
{
 $cid=getlastcid(1);
 $sig=dosignature($signatu re);
 insertevent(1,$cid,$sig,$date);
 insertiphdr(1,$cid,$src,$dst,17);
 insertudphdr(1,$cid,$sport,$dport);
}

function inserttcp($date, $signature, $src, $sport, $dst, $dport)
{
 $cid=getlastcid(1);
 $sig=dosignature($signature);
 insertevent(1,$c id,$sig,$date);
 insertiphdr(1,$cid,$src,$dst,6);
 inserttcphdr(1,$cid,$sport,$dport);
}

}
?>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

48

<?php
if(!defined("_DB_CLASS_")){
define("_DB_CLASS_",1);
/*
My version.
added error checking... errors don't get printed on screen. they are reported
back to the calling script. Usefull when execu ting inserts and things that
don't require any data back except to know if it s ucceeded.
*/
/***

 Abstract DB , MySQL module, version 2.0b3

 Copyright (C) 1998 Muze

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 as published by the Free Software Foundation; either version 2
 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRAN TY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111 -1307, USA.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

49

 for information,comments or bugreports, mail abstractdb@muze.nl

 Changelog:

 v2.0b3 22 jan. 1998
 - db->db() constructor now sets a type variable (db ->type) with the
 default value of 'database_type'.
 - new function query ->error() which returns a description of the last
 mysql error.
 - changed db->nextid() to use autoincrement capabilities of mysql, code
 contributed by Brian Moon.
 - added check $this ->result!=0 in query->getrow
 - added @ on mysql_data_seek in query ->firstrow

 v2.0b2 1 dec. 1998
 - fixed 2 small bugs in db ->nextid() when db_sequence doesn't exist yet.

 v2.0b1 first version with the new interface.

***/

class db {

 var $connect_id;
 var $type;

 function db($database_type="mysql") {
 $this->type="mysql";
 // dl("mysql");
 }

 function open($dat abase="{database}", $host="{host}", $user="{user}", $password="{password}") {
 $this->connect_id=mysql_pconnect($host, $user, $password);
 if ($this->connect_id) {
 $result=mysql_select_db($database);
 if (!$result) {
 mysql_close($this ->connect_id);
 $this ->connect_id=$result;
 }
 }
 return $this->connect_id;
 }

 function lock($table, $mode="write") {
 // FIXME: will this work for other databases, must check
 // for now: mode maybe 'read' or 'write'

 $query=new query($this, "lock tables $table $mode");
 $result=$query->result;
 return $result;
 }

 function unlock() {
 // unlocks any and all tables which this process locked

 $query=new query($this, "unlock tables");
 $result=$query->result;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

50

 return $result;
 }

 function nextid($sequence) {
 // Function returns the next available id for $sequence, if it's not
 // already defined, the first id will start at 1.
 // This function will create a table for each sequence called
 // '{sequence_name}_seq' in the current database.
 // Based on code by Brian Moon.

 $esequence=ereg_replace("'","''",$sequence)."_seq";
 $query=new query($this, "REPLACE INTO $esequence values ('', nextval+1)");
 if ($query->result) {
 $nextid=mysql_insert_id($this ->connect_id);
 } else {
 $query->query($this, "CREATE TABLE $esequence (seq char(1)
DEFAULT '' NOT NULL, nextval bigint(20) unsigned DEFAULT '0' NOT NU LL auto_increment,
PRIMARY KEY (seq), KEY nextval (nextval))");
 // there's no way to check if a create table has succeeded except by trying to insert
 // a new value. Since you don't want an endless loop, a recursive call to
 // nextid should not be made:
 $query->query($this, "REPLACE INTO $esequence VAL UES ('', nextval+1)");
 if ($query->result) {
 $nextid=mysql_insert_id($this ->connect_id);
 } else {
 $nextid=0;
 }
 }
 return $nextid;
 }

 function error() {
 return mysql_errno($this ->connect_id).": ".mysql_error($this ->connect_id);
 }

 function close() {

 // Closes the database connection and frees any query results left .

 if ($this->query_id && is_array($this ->query_id)) {
 while (list($key,$v al)=each($this->query_id)) {
 @mysql_free_result($val);
 }
 }
 $result=@mysql_close($this ->connect_id);
 return $result;
 }

 function addquery($query_id) {
 // Function used by the constructor of query. Notifies the
 // this object of the existance of a query_result for later cleanup
 // internal function, don't use it yourself.

 $this->query_id[]=$query_id;
 }

};

/************************************** QUERY ***************************/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

51

class query {
 var $error;
 var $result;
 var $row;
 var $numfields;

 function query(&$db, $query="", $execonly=0) {
 // Constructor of the query object.
 // executes the query, notifies the db object of the query result to clean
 // up later
 if ($query) {
 if ($this->result) {
 $this ->free(); // query not called as constructor therefore there may
 // be something to clean up.
 }
 $this->result=mysql_query($query, $db ->connect_id);
 $this->error=mysql_errno();
 $this->numfields = 0;
 if(empty($this ->error) && !$execonly)
 {
 $db->addquery($this->result);
 $this ->numfields = mysql_num_fields($this ->result);
 }
 }
 }

 function getincrement() {
 // Gets the insert id for the last insert. (auto increment value)
 return mysql_insert_id();
 }

 function geterror() {
 // Gets the next row for processing with $this ->field function later.
 return $this->error;
 }

 function getrow() {
 // Gets the next row for processing with $this ->field function later.

 if (empty($this ->error) && !empty($this ->numfields)) {
 $this ->row=mysql_fetch_array($this ->result);
 $this ->error=mysql_errno();
 } else {
 $this ->row=0;
 }
 return $this ->row;
 }

 function num_fields() {
 return $this ->numfields;
 }

 function field_name($field) {
//may need to add $this ->error stuff in later
 return mysql_field_name($this ->result, $field);
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

52

Here are some of the scripts I used for processing the scans and oos files.

This script grabs source and destination IP addresses and ports and the

 function field($field) {
 // get the value of the field with name $field
 // in the current row

 $result=$this->row[$field];
 return $result;
 }

 function firstrow() {
 // return the current row pointer to the first row
 // (CAUTION: other versions may execute the query again!! (e.g. for oracle))

 $result=@mysql_data_seek($ this->result,0);
 if ($result) {
 $result=$this ->getrow();
 }
 return $this->row;
 }

 function nthrow($rownum) {
 // set the current row pointer to the nth row
 $result=@mysql_data_seek($this ->result,$rownum);
 if($result) {
 $result=$this->getrow();
 }
 return $this->row;
 }
 function free() {
 // free the mysql result tables

 return @mysql_free_result($this ->result);
 }

};

}
?>

#!/usr/bin/perl -w
while(<>) {
 if (m/([0 -9\.]+|MY\.NET\.[0-9]+\.[0-9]+):([0-9]+) -> ([0-9\.]+|MY\.NET\.[0-9]+\.[0-9]+):([0-
9]+)/)
 {
 $one_line = $_;
 chomp($one_line);
 $_ = <>;
 $_ = <>;
 @blah = split(/ /);
 print "$one_line $blah[0]\n";
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

53

packet flags which caused the packet to be determined as OOS, and formats
it to one line per packet space delimted. A similar script is used for scans.
It is borrowed from Mike Wisener's GCIA practical(recently submitted).

This script was used to find all unique souce and destination IP addresses
within the scans files. This script and the script below were taken from Steven
Drew's GCIA practical, and has been modified slightly.

The above script I used to find all unique source and destination IP addresses
for the OOS files.

This script is what I used to retrieve some of the statistics about the oos and
scans. It is not a polished script; I was modifying it constantly while using it.

#!/bin/bash

Find top sources ips
awk '{ print $1 }' oos.delimited | sort -n | uniq -c | sort -r -n > oos.sourcecount

Find top destination ips
awk '{ print $3 }' oos.delimited | sort -n | uniq -c | sort -r -n > oos.destcount

#!/bin/bash

Find top sources ips
awk '{ print $1 }' oos.delimited | sort -n | uniq -c | sort -r -n > oos.sourcecount

Find top destination ips
awk '{ print $3 }' oos. delimited | sort -n | uniq -c | sort -r -n > oos.destcount

#!/bin/bash

#./scriptname <ip> <file> <source|dest> <count>

if ["${3}" = "source"]
then
 if ["${4}" = "uniq"]
 then
 grep -e "^$1\ [0-9]*" $2 | awk '{ print $2 }' | sort -n | uniq -c | sort -rn | wc -l
 else
 grep -e "^$1\ [0-9]*" $2 | awk '{ print $2 }' | sort -n | uniq -c | sort -rn | head -$4
 fi
else
 if ["${4}" = "uniq"]
 then
 grep -e " $1\ [0-9]*" $2 | awk '{ print $4 }' | sort -n | uniq -c | sort -rn | wc -l
 else
 grep -e " $1\ [0-9]*" $2 | awk '{ print $4 }' | sort -n | uniq -c | sort -rn | head -$4
 fi
fi

