
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia


©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC GCIA Practical version 3.3 

The PacketShaper's® Impact on 
Intrusion Detection Practice 
  
Carl Gibbons  
  
4 February 2003  
  
Part 1, The PacketShaper's Impact on Intrusion Detection Practice 
Part 2, Network Detects 
Part 3, ``Analyze This'' 
  

 

Part 1 

The PacketShaper's® Impact on Intrusion 
Detection Practice 
Contents:  

• Introduction  
• Background Material  

o Definitions of Quality of Service  
o Yet Another "Tragedy of the Commons"  
o The "Commons" Under New Management  

• Getting Nitty-Gritty With the PacketShaper  
o Where the Wild Things Are  
o The PacketShaper as a "Message Massager"  
o Bandwidth Allocation  
o Experiments with tcpdump Reveal the Effects of Rate Policies  

• Other PacketShaper Tricks  
o Class Based Packet Capturing  
o PacketShaper Event Notification  
o Charts and Graphs  
o Stanford's Packeteer Listserv  

• References  

Introduction 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Packeteer®, Inc. (Packeteer[1]), a seven-year-old company headquartered in 
Cupertino, California, markets a quality of service (QoS) network device called 
PacketShaper. It is a bandwidth management tool which has become very 
popular and widely deployed. The device is commonly placed at a network's 
perimeter, to manage Internet traffic. Its operating system software, called 
PacketWiseTM, detects TCP and other protocols' flows, tries to identify the service 
represented by each data flow, and allocates bandwidth among the flows, based 
on policies configured by an administrator. To accomplish its task, it actually 
alters certain header fields of some of the packets it manages.  
  
This paper addresses some of the ways this device affects a security 
professional's work. I hope to:  

1. explain PacketShaper workings to security professionals, and packet 
analysts in particular,  

2. assist intrusion analysts who, like me, not only use a NIDS (network 
intrusion detection system) but also use their "packet jockey" skills to care 
for a PacketShaper,  

3. show how the PacketShaper complements a NIDS.  

Many of the same traffic identification techniques used by intrusion analysts are 
used internally by the PacketShaper, other Packeteer products, and other 
vendors' QoS products. Intrusion detection efforts may be enhanced when these 
tools augment analysts arsenals. Along with firewalls and routers, they are 
another element of an organization's network countermeasures against 
undesirable traffic. Also, when analyzing network traces, an analyst should have 
a correct understanding of the PacketShaper's mechanisms, and how it perturbs 
traffic.  
  
Other traffic management products on the market include Sitara Networks® 
QoSWorks appliance (Sitara Networks), Lightspeed Systems Total Traffic 
Control software (Lightspeed Systems), and Allot Communications NetEnforcer® 
devce (Allot Communications). There are also efforts to provide open-source 
QoS technologies in the Linux kernel. (Dawson) I have never used any of these, 
so this paper centers on the product familiar to me, the PacketShaper. 
Nevertheless, some of the intrusion detection issues examined here may be 
relevant to environments where any of these products are deployed.  
  
Before examining the impact of this device on intrusion detection, let's consider 
where devices like the PacketShaper fit into the bigger picture.  

Background Material 

Definitions of Quality of Service 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The acronym QoS refers generally to data delivery protocols or technologies with 
the following properties:  

1. they identify and prioritize different kinds of transmitted data by some kind 
of distinguishing characteristic,  

2. they use these priorities to decide how to deliver different kinds of traffic, 
and  

3. they are judged by how well they ensure proper delivery of higher priority 
data.  

In real world networks, concrete goals must stand in the place of these abstract 
properties. Such goals answer corresponding questions:  

1. What applications have higher priority network traffic? What 
characteristics distinguish these applications' data?  

2. How should the high priority data be delivered? (In rapid bursts? In steady, 
more predictable flows?) 

3. What constitutes acceptable results? (Fastest possible delivery? No lost or 
retransmitted packets?) 

Eric D. Siegel defines QoS as "a somewhat vague term referring to the 
technologies that classify network traffic and then ensure that some of that traffic 
receives special handling." (Siegel, p 4) 
   
The definition of QoS is also subject to perspective. Will iam C. Hardy defines 
both intrinsic and perceived QoS, where the former represents the point of view 
of the designer or operator of a network, and the latter the point of view of the 
network's users and customers. He cites as an example his work with a certain 
voice network. It had great intrinsic QoS, with fidelity so high that background 
hiss was virtually eliminated. But it had poor perceived QoS, because without 
some background hiss the users often mistook silence as a sign of disconnected 
calls. (Hardy, p 6) This is a useful distinction to consider in data networks as well. 
Different users have different opinions about what kind of traffic is important. 
Quality of service may become a zero-sum game, in which one application 
improves only at the expense of another application. Peer-to-peer file traders and 
online computer game players usually find their quality of network service 
diminish after network administrators deploy a PacketShaper and configure it to 
throttle or deny their bandwidth-hungry applications.  
  
QoS also refers to academic studies surrounding these principles and 
technologies. For example, traffic marking, queuing, availabi lity measurements, 
and service level guarantees are all studied in QoS circles. It's a very broad field. 
With so many approaches and facets that may affect intrusion detection work, 
let's narrow our focus, beginning with an oversimplified characterization of the 
problem that a PacketShaper solves.  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Yet Another ``Tragedy of the Commons'' 

By default, flows over a TCP/IP network are treated equally; that is, routers, 
switches, and other network devices do their best to deliver all pieces of data to 
their intended destinations, without discrimination. The literature calls this "best 
effort" service. (Kilkki, pp 44-53; Siegel, p 3) 
  
Example: best effort gives leisure web surfing the same priority as revenue-
generating secure transactions. What happens when there aren't enough bits-
per-second for both bandwidth-hungry recreational applications and mission 
critical traffic? 
  
The "Tragedy of the Commons" (Disenchanted) is an economic parable about a 
green field where everybody may graze their livestock toll-free, so everybody 
does, and overgrazing spoils the common field for everybody. When competing 
applications exhaust their limited shared bandwidth, we call it network 
congestion. It is the tragedy of the commons played on an electronic stage: 
"bandwidth overgrazed." Demand exceeds supply. Packets get dropped. Packets 
need to be retransmitted. Effective throughput of the congested network 
decreases. With all traffic getting best-effort service, the network pipe has been 
ruined for everybody.  

The ``Commons'' Under New Management 

One escape from the tragedy is overprovisioning (Siegel, 193), which means, 
purchase more bandwidth. This is the least complicated solution, but usually very 
expensive.  
  
To continue our rudimentary point of view: instead of treating all packets as 
equals, find a way to determine which packets are mission critical 
communications and which are optional luxuries, and when facing competitive 
congestion, deliver the important packets and delay the unimportant ones. This is 
what the PacketShaper's traffic shaping technology accomplishes. Bandwidth 
investments, under this approach, grow proportionally to the needs of mission 
critical applications, instead of in proportion to the burgeoning appetites of all 
applications combined. Therefore, budget forecasters tend to find this approach 
more cost effective than overprovisioning. (This may explain Packeteer's 
uncharacteristic corporate success compared to other Internet technology 
companies' struggles during the recent market downturn.) 
  
Real-world networks have much more complicated situations than this 
oversimplified good-traffic versus bad-traffic example. Nevertheless, the 
principles illustrated in the example are sound.  

Getting Nitty-Gritty With the PacketShaper 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Where the Wild Things Are 

A PacketShaper is inserted in the path of the network traffic to be managed. One 
of its interfaces is oriented to the "outside" network, the other "inside." Michael 
Nancarrow expressed a fear shared by many that the PacketShaper potentially 
introduces "another point of failure" in the network stream. (Nancarrow) This fear 
of a layer-one security vulnerability is utterly unfounded. Unlike a firewall, which 
"fails closed," a PacketShaper "fails open." When shut down or powered off, the 
PacketShaper's interfaces close their circuits into a "hardware pass-through" 
mode. The machine can actually be unplugged without disrupting connectivity.  
  
The first property of QoS, identification and classification, is handled 
automatically by the PacketShaper's Traffic Discovery feature. Traffic Discovery 
mode can be toggled on or off. (Packeteer also sells a similar product called 
PacketSeeker that also discovers and classifies traffic, but does not control 
flows.)  
  
Internally, a PacketShaper keeps a data structure of discovered and configured 
traffic classes, called a traffic tree. Here's how this data structure is represented 
visually in the device's web user interface:  
  

         

 

         

Figure: PacketShaper traffic tree  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
  
It is actually two trees; one root class is called /Inbound and the other 
/Outbound. Each flow falls into exactly one of these two categories, depending 
on whether an outside or inside host initiated the flow. Under these two base 
traffic classes fall other subclasses, or hierarchies of classes. Also, there is an 
"Enable Discovery" attribute that can be cleared or set on a class to make that 
class discovery enabled. It is set by default for the two root classes.  
  
When Traffic Discovery mode is turned on, new subclasses automatically appear 
under discovery enabled classes, as traffic is inspected and identified. For 
example, after it sees an inside host exchange a few NTP datagrams with an 
outside time server, a new subclass /Outbound/NTP will be created under a 
discovery enabled /Outbound base class. Traffic that the PacketShaper does 
not know how to classify goes into a subclass named Default.  
  
I have found it useful to turn off the Enable Discovery toggle in the root classes, 
and instead create discovery enabled /Inbound/AutoDiscovered and 
/Outbound/AutoDiscovered subclasses with a rule to match all IP traffic. 
Then when I see a class appear that I want to manage, such as 
/Outbound/AutoDiscovered/NTP, I use the PacketShaper's web user 
interface to move the subclass to another part of the /Outbound class tree. 
Also, with this configuration the PacketShaper never tries to classify non-IP 
traffic, but instead just relegates it to the /Inbound/Default and 
/Outbound/Default.  
  
The Traffic Discovery feature provides empirical evidence of the types of traffic 
that actually flow over a network. This is handy data for configuring or tuning the 
rule-sets/signatures of an intrusion detection system. For example, an intrusion 
analyst may have disabled a rule that generates alerts for a traffic type deemed 
not applicable to the protected network. If the PacketShaper discovers that traffic 
type, it may induce the analyst to re-enable that rule.  
  
The white paper TCP Rate Control and Alternatives lists several criteria that a 
PacketShaper (or PacketSeeker) can use to identify and classify traffic. 
(Packeteer[2], p 7-8) Some of these criteria have counterparts in tcpdump filter 
expressions (also known as BPF filters) used by packet analysts to identify 
traffic. The following table shows some examples:  
  

Packet property:  Possible corresponding 
tcpdump filter 

primitives:  
Protocol  ip, arp, icmp, tcp, udp, 

ip proto  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

IP precedence bits  ip[1]  

Port number  port  

IP address  host  

MAC address  ether host  

Source/destination  src, dst  
Subnet  net  

Travel direction 
(inbound/outbound)  

ether dst, ether src  

 
  
However, a PacketShaper is also able to delve into packet's payloads and 
decode many application layer protocols. This is sometimes called "layer seven" 
traffic inspection, referring to all possible layers in the OSI model. (Jupitermedia) 
Some of these traffic properties include URLs, mime types, Oracle databases, 
and Citrix published applications. These are difficult or impossible to identify 
using tcpdump filter expressions, but there are other packet analysis tools such 
as Ethereal (Ethereal) that employ application layer decoding technology.  
  
John Cupps noted the advantage of application layer identification in managing 
bandwidth-hungry peer-to-peer music sharing traffic: "...through the use of seven-
layer classifications, Packetshaper limits incoming and outgoing traffic traveling 
through dynamically assigned ports. MP3s, the media file type used with 
Napster, requires this seven-layer classification..." (Cupps)  
  
Furthermore, the PacketShaper notices when uncharacteristic traffic travels over 
a well known port. For example, it only classifies a TCP flow over port 80 as part 
of the HTTP subclass if it notices HTTP protocol in the application layer. If it finds 
something other than HTTP flowing over port 80, it classifies it differently. For 
example, I have seen Traffic Discovery create a subclass 
Discovered_Ports/TCP_Port_80 for port 80 traffic that it did not know how 
to classify. Also, it can detect some applications that encapsulate or tunnel their 
data within HTTP, and classify that traffic by the application that produced it 
instead of lumping it in with the rest of the HTTP class. An example of this is 
traffic produced by recent versions of Kazaa. (Sharman Networks)  
  
Also, it follows port hopping applications. These start communicating over some 
port, but during a conversation make new connections over other ports or 
protocols to continue their transactions. Examples include FTP (Bell) and 
RealNetworks (RealNetworks) products. It can even follow transactions that try 
and hide by hopping to unpredictable ports (but it does not always succeed in 
following some port hopping applications).  
  
A PacketShaper can also differentiate traffic from hosts in different speed ranges; 
for example, it can be configured to detect dial-up analog modem users and 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

classify their traffic separately from high-speed hosts.  
  
Finally, other QoS technologies such as Differentiated Services (IETF[1]; see 
also Kilkki) and MPLS (IETF[2]) may be used to mark packets for special 
handling by switches and routers. A PacketShaper can identify and classify traffic 
by these marks as well, and can also participate on a class-by-class basis by 
setting diffserv code values in IP headers' TOS bytes.  
  
It's appropriate to declare at this point that the PacketShaper is not an intrusion 
detection system, even though it sports this wide array of traffic recognition 
abilities that are also attractive in an IDS. Nevertheless, these abilities can 
complement an IDS, by filtering or focusing the traffic scenarios an intrusion 
analyst might want to investigate. 

The PacketShaper as a ``Message Massager'' 

Traffic management corresponds to the second property of QoS, prioritized data 
delivery. The primary method used by the PacketShaper to control identified and 
classified flow is traffic shaping, or rate control of TCP connections. The 
technique only applies to TCP traffic, but since the vast majority of Internet traffic 
uses TCP anyway, it is very effective.  
  
To understand this technique, let's review the "best effort" flow control 
mechanisms of TCP, sliding windows and slow start.  
  
Two bytes at offset 14 of every TCP segment header advertize a dynamic 
window size, measured in bytes. This is how the receiver tells the sender how 
much buffer space it has available. As the buffer fills, the window size narrows. If 
the buffer is exhausted, the window size is zero, and the sender must stop 
transmitting. As the receiver processes the data in the buffer, buffer space is 
freed, the window size widens, and the sender may transmit more data.  
  
Slow start refers to the rate at which the receiver acknowledges transmitted TCP 
segments. After the three-way handshake that starts a connection, the sender 
transmits only one segment and waits for an acknowledgement. After that, the 
sender may trasmit two segments, and wait for another acknowledgement. If all 
went well, the sender may transmit three or perhaps four segments before 
waiting for the acknowledgement. The sender keeps increasing and measuring 
the number of segments it transmits between acknowledgements, until the 
receiver acknowledges none or only some of a transmission; then the sender 
reduces the amount of data it sends between acknowledgements, to avoid 
causing network congestion. For a thorough discussion of sliding windows and 
slow start, see Stevens' chapter on TCP Bulk Data Flow. (Stevens, pp 275-286)  
  
Despite the adjective in the term "slow start," best-effort delivery of TCP 
segments tends to ramp up bandwidth usage very quickly; after all, the 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

algorithms work at high CPU and network speeds.  
  
To regulate this phenomenon, the PacketShaper alters the sliding windows in 
TCP flows. It intercepts every data receiver's acknowledgement packet, and if it 
determines that the window size in the packet would cause a bandwidth hogging 
burst from the sender, or in other words, the window size is too large for a 
properly paced transmission, it crafts a new acknowledgement packet with a 
fraction of the original's window size. It passes that crafted acknowledgement 
along to the sender instead. The sender transmits enough segments to fill the 
reduced advertized window, and the PacketShaper detects this flow. Then after a 
measured delay determined by a predictive scheduling algorithm, it crafts 
another acknowledgement packet for the sender. The sender transmits more 
data, and the PacketShaper measures another delay, and the process continues. 
The TCP Rate Control and Alternatives white paper discusses this algorithm in 
more detail. (Packeteer[2], pp 8-10) Packeteer holds a patent on the mechanism.  
  
Siegel provides the following illustration. It depicts a visual example of four 
acknowledgements with 2000-byte window sizes, crafted by a PacketShaper to 
replace and pace an 8000-byte advertized window size. He also notes that "rate 
control is considered by some to meddle with the operation of TCP in a way that 
violates the spirit of the TCP specification. Nevertheless, it is in widespread and 
successful use." (Siegel, p 187)  
  

 
Figure: TCP rate control illustration (Siegel, p187)  

 
  
The PacketShaper uses other methods to regulate non-TCP protocols. Another 
Packeteer white paper, UDP Traffic Management (Packeteer[3]), has some 
discussion on this topic.  
  
Siegel described bucket techniques for queuing and regulating traffic. One of 
these is "leaky bucket:"  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

"The leaky bucket can be used to create a constant-rate traffic flow 
from a varying rate flow, as the input rate to the leaky bucket can 
vary, but the output rate of the leaky bucket is a constant. The 
capacity of the bucket determines how much excess data can be 
buffered before data packets must be discarded." (Siegel, p 184)  

He also explains about a variation called token bucket, (Siegel, pp 184-185), and 
reports that "stand-alone boxes, such as those from ... Packeteer, implement 
traffic shaping using the bucket technologies as well as by using class-based 
shaping or rate control." (Siegel, p 252)  

Bandwidth Allocation 

Just as the PacketShaper implements the first principle of QoS with its Traffic 
Discovery mode, it implements the second principle with its Traffic Shaping 
mode, which may also be toggled on or off.  
  
For each class in the traffic tree, two mechanisms are available to control traffic 
matching that class and limit its bandwidth. When Shaping mode is turned on, 
the PacketShaper enforces these mechanisms' controls on each flow.  
  
The first is called a policy. If a policy is set for a class, that policy applies to every 
traffic flow belonging to that class. There are five policies to choose:  

• Discard: disallow that traffic by throwing away all packets belonging to 
that class. 

• Never-Admit: disallow that traffic but return an error code, or in the case 
of web traffic, redirect it. 

• Ignore: allow that traffic and don't meddle with it. 
• Priority: allow that traffic and rank its importance. Priorities range 

between 0 (lowest) and 7 (highest). If a policy is not set for a class, it 
inherits a Priority 3 policy by default. 

• Rate: allow that traffic and control it so that bursty traffic is smoothed. 
Rate policy settings may include a guaranteed rate (minimum bandwidth), 
a priority (0-7) at which flows' bursts may obtain more bandwidth, and a 
burst limit (maximum bandwidth). 

The other mechanism is called a partition. These do not affect flows individually, 
but instead guarantee and/or limit the bandwidth of all flows in a class (or of all 
flows in a subtree of classes). Because partitions are specified using two rates, a 
guarantee (minimum) and a limit (maximum), they are easily confused with rate 
policies. Remember that policies apply to individual flows, but partitions control 
the aggregate of all flows in a class. The base classes /Inbound and 
/Outbound have default partitions with interesting values. The default guarantee 
rate is "uncommitted," meaning that traffic in the class is not guaranteed any 
bandwidth, but may receive whatever portion isn't already committed to other 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

traffic classes. The default limit rate is "none," meaning that aggregate traffic 
speed is not limited, except by the maximum speed allowed by the network or 
medium.  

Experiments with tcpdump Reveal the Effects of Rate Policies 

I set up an experiment to see the effects of traffic shaping at the packet level, and 
noticed some patterns that analysts may use to identify PacketShaper adjusted 
traffic. For a baseline trace of default "best-effort" traffic behavior, I set up two 
machines on an "Inside" LAN. One computer was a Unix FTP server, and the 
other was a laptop running the Windows 98 command line FTP client. I 
transferred a file from and to (using ftp commands GET and PUT) the ftp server, 
and recorded the transfers at both ends, using tcpdump version 3.7.1 on the 
server and WinDUMP version 3.6.2 on the laptop.  
  
Note: in the WinDUMP traces that follow, the timestamps are occasionally 
skewed by slightly more than nine hours. I cannot explain these random hiccups 
in timestamps, but others have noted irregularities in WinDUMP timestamps as 
well. For example, see Matt Scarborough's response to Robin Stubbs' November 
2001 "windump timezone gotcha" thread on the intrusions@incidents.org mailing 
list. (Scarborough; Stubbs)  
  
Here is what the GET transfer looked like to the laptop's WinDUMP:  
  
01:44:18.570220 ftpserver.20 > laptop.1044: S 362227150:362227150(0) 
win 24820 <mss 1460> (DF) 
10:46:39.591066 laptop.1044 > ftpserver.20: S 976616:976616(0) ack 
362227151 win 9324 <mss 1332> (DF) 
10:46:39.592203 ftpserver.20 > laptop.1044: . ack 1 win 25308 (DF) 
10:46:39.599155 ftpserver.20 > laptop.1044: P 1:1333(1332) ack 1 win 
25308 (DF) 
01:44:18.711256 laptop.1044 > ftpserver.20: . ack 1333 win 9324 (DF) 
10:46:39.736799 ftpserver.20 > laptop.1044: . 1333:2665(1332) ack 1 win 
25308 (DF) 
10:46:39.740415 ftpserver.20 > laptop.1044: P 2665:3997(1332) ack 1 win 
25308 (DF) 
10:46:39.742175 laptop.1044 > ftpserver.20: . ack 3997 win 9324 (DF) 
10:46:39.747158 ftpserver.20 > laptop.1044: . 3997:5329(1332) ack 1 win 
25308 (DF) 
10:46:39.750754 ftpserver.20 > laptop.1044: . 5329:6661(1332) ack 1 win 
25308 (DF) 
10:46:39.754141 ftpserver.20 > laptop.1044: P 6661:7993(1332) ack 1 win 
25308 (DF) 
10:46:39.755884 laptop.1044 > ftpserver.20: . ack 7993 win 9324 (DF) 
10:46:39.820269 ftpserver.20 > laptop.1044: . 7993:8193(200) ack 1 win 
25308 (DF) 
10:46:39.822438 ftpserver.20 > laptop.1044: . 8193:9525(1332) ack 1 win 
25308 (DF) 
10:46:39.825813 ftpserver.20 > laptop.1044: . 9525:10857(1332) ack 1 
win 25308 (DF) 
10:46:39.829180 ftpserver.20 > laptop.1044: . 10857:12189(1332) ack 1 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

win 25308 (DF) 
10:46:39.830926 laptop.1044 > ftpserver.20: . ack 12189 win 9324 (DF) 
... 
10:46:39.954086 laptop.1044 > ftpserver.20: . ack 34101 win 1132 (DF) 
01:44:18.936347 laptop.1044 > ftpserver.20: . ack 34101 win 5512 (DF) 
01:44:18.941262 ftpserver.20 > laptop.1044: . 34101:35433(1332) ack 1 
win 25308 (DF) 
10:46:39.965262 ftpserver.20 > laptop.1044: . 35433:36765(1332) ack 1 
win 25308 (DF) 
10:46:39.968634 ftpserver.20 > laptop.1044: . 36765:38097(1332) ack 1 
win 25308 (DF) 
10:46:39.971301 ftpserver.20 > laptop.1044: F 38097:38797(700) ack 1 
win 25308 (DF) 
10:46:39.972403 laptop.1044 > ftpserver.20: . ack 38798 win 816 (DF) 
01:44:18.954401 laptop.1044 > ftpserver.20: . ack 38798 win 5196 (DF) 
01:44:18.993511 laptop.1044 > ftpserver.20: . ack 38798 win 9324 (DF) 
01:44:19.016312 laptop.1044 > ftpserver.20: F 1:1(0) ack 38798 win 9324 
(DF) 
01:44:19.017326 ftpserver.20 > laptop.1044: . ack 2 win 25308 (DF) 
  
and to the server's tcpdump:  
  
10:46:51.701738 ftpserver.20 > laptop.1044: S 362227150:362227150(0) 
win 24820 <mss 1460> (DF) 
10:46:51.702991 laptop.1044 > ftpserver.20: S 976616:976616(0) ack 
362227151 win 9324 <mss 1332> (DF) 
10:46:51.703211 ftpserver.20 > laptop.1044: . ack 1 win 25308 (DF) 
10:46:51.706364 ftpserver.20 > laptop.1044: P 1:1333(1332) ack 1 win 
25308 (DF) 
10:46:51.843493 laptop.1044 > ftpserver.20: . ack 1333 win 9324 (DF) 
10:46:51.843991 ftpserver.20 > laptop.1044: . 1333:2665(1332) ack 1 win 
25308 (DF) 
10:46:51.844189 ftpserver.20 > laptop.1044: P 2665:3997(1332) ack 1 win 
25308 (DF) 
10:46:51.854067 laptop.1044 > ftpserver.20: . ack 3997 win 9324 (DF) 
10:46:51.854360 ftpserver.20 > laptop.1044: . 3997:5329(1332) ack 1 win 
25308 (DF) 
10:46:51.854544 ftpserver.20 > laptop.1044: . 5329:6661(1332) ack 1 win 
25308 (DF) 
10:46:51.854707 ftpserver.20 > laptop.1044: P 6661:7993(1332) ack 1 win 
25308 (DF) 
10:46:51.867863 laptop.1044 > ftpserver.20: . ack 7993 win 9324 (DF) 
10:46:51.868091 ftpserver.20 > laptop.1044: . 7993:8193(200) ack 1 win 
25308 (DF) 
10:46:51.868244 ftpserver.20 > laptop.1044: . 8193:9525(1332) ack 1 win 
25308 (DF) 
10:46:51.868408 ftpserver.20 > laptop.1044: . 9525:10857(1332) ack 1 
win 25308 (DF) 
10:46:51.868585 ftpserver.20 > laptop.1044: . 10857:12189(1332) ack 1 
win 25308 (DF) 
10:46:51.942897 laptop.1044 > ftpserver.20: . ack 12189 win 9324 (DF) 
... 
10:46:52.065871 laptop.1044 > ftpserver.20: . ack 34101 win 1132 (DF) 
10:46:52.068664 laptop.1044 > ftpserver.20: . ack 34101 win 5512 (DF) 
10:46:52.069006 ftpserver.20 > laptop.1044: . 34101:35433(1332) ack 1 
win 25308 (DF) 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

10:46:52.069361 ftpserver.20 > laptop.1044: . 35433:36765(1332) ack 1 
win 25308 (DF) 
10:46:52.069624 ftpserver.20 > laptop.1044: . 36765:38097(1332) ack 1 
win 25308 (DF) 
10:46:52.069835 ftpserver.20 > laptop.1044: F 38097:38797(700) ack 1 
win 25308 (DF) 
10:46:52.084172 laptop.1044 > ftpserver.20: . ack 38798 win 816 (DF) 
10:46:52.086411 laptop.1044 > ftpserver.20: . ack 38798 win 5196 (DF) 
10:46:52.125646 laptop.1044 > ftpserver.20: . ack 38798 win 9324 (DF) 
10:46:52.148598 laptop.1044 > ftpserver.20: F 1:1(0) ack 38798 win 9324 
(DF) 
10:46:52.148898 ftpserver.20 > laptop.1044: . ack 2 win 25308 (DF) 
  
Except for the befuddled WinDUMP timestamps, the traces match up perfectly, 
and demonstrate TCP's "slow start" algorithm: one segment and an 
acknowledgement, two more segments and an ack, three and an ack, etc. The 
transactions are rapid, too: less than 80 milliseconds between successive 
laptop's acknowledgements. By the time we reach the end of the transfer, we see 
the sliding window algorithm demonstrated: the laptop acknowledges 
progressively larger windows as it processes the data it has received. The FTP 
PUT behaved predictably similarly.  
  
Next, I created classes /Inbound/experiment and /Outbound/experiment on the 
PacketShaper, with host rules that matched the IP address of the FTP server 
(similar in principle to a "host ftpserver" tcpdump filter). I configured a rate 
policy of "38400 fixed" (38.4kpbs allotted bandwidth, no bursting beyond this 
rate) on these experiment classes. Then I placed the laptop on a network 
"Outside" of the PacketShaper, and repeated the FTP transfers. Here's what 
WinDUMP recorded:  
  
22:24:08.225940 ftpserver.20 > laptop.1041: S 963321960:963321960(0) 
win 24820 <mss 1380> (DF) 
07:26:27.877701 laptop.1041 > ftpserver.20: S 9494537:9494537(0) ack 
963321961 win 9324 <mss 1332> (DF) 
22:24:08.228115 ftpserver.20 > laptop.1041: . ack 1 win 1380 (DF) 
22:24:08.234390 ftpserver.20 > laptop.1041: P 1:1333(1332) ack 1 win 
2760 (DF) 
22:24:08.384244 laptop.1041 > ftpserver.20: . ack 1333 win 9324 (DF) 
22:24:08.522543 ftpserver.20 > laptop.1041: P 1333:2665(1332) ack 1 win 
2760 (DF) 
22:24:08.683950 laptop.1041 > ftpserver.20: . ack 2665 win 9324 (DF) 
22:24:08.808167 ftpserver.20 > laptop.1041: P 2665:3997(1332) ack 1 win 
2760 (DF) 
22:24:08.984830 laptop.1041 > ftpserver.20: . ack 3997 win 9324 (DF) 
22:24:09.093952 ftpserver.20 > laptop.1041: P 3997:5329(1332) ack 1 win 
2760 (DF) 
22:24:09.284782 laptop.1041 > ftpserver.20: . ack 5329 win 9324 (DF) 
22:24:09.379567 ftpserver.20 > laptop.1041: P 5329:6661(1332) ack 1 win 
2760 (DF) 
22:24:09.484759 laptop.1041 > ftpserver.20: . ack 6661 win 9324 (DF) 
22:24:09.665250 ftpserver.20 > laptop.1041: P 6661:7993(1332) ack 1 win 
2760 (DF) 
22:24:09.784708 laptop.1041 > ftpserver.20: . ack 7993 win 9324 (DF) 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

22:24:09.947919 ftpserver.20 > laptop.1041: P 7993:8193(200) ack 1 win 
2760 (DF) 
22:24:09.950554 ftpserver.20 > laptop.1041: P 8193:9325(1132) ack 1 win 
2760 (DF) 
07:26:29.603767 laptop.1041 > ftpserver.20: . ack 9325 win 9324 (DF) 
22:24:10.233569 ftpserver.20 > laptop.1041: P 9325:9525(200) ack 1 win 
2760 (DF) 
22:24:10.236124 ftpserver.20 > laptop.1041: P 9525:10657(1132) ack 1 
win 2760 (DF) 
07:26:29.889387 laptop.1041 > ftpserver.20: . ack 10657 win 9324 (DF) 
... 
22:24:15.966114 ftpserver.20 > laptop.1041: . 35433:36765(1332) ack 1 
win 2760 (DF) 
22:24:16.088746 laptop.1041 > ftpserver.20: . ack 36765 win 9324 (DF) 
22:24:16.252627 ftpserver.20 > laptop.1041: . 36765:38097(1332) ack 1 
win 2760 (DF) 
22:24:16.388703 laptop.1041 > ftpserver.20: . ack 38097 win 9324 (DF) 
22:24:16.537217 ftpserver.20 > laptop.1041: FP 38097:38797(700) ack 1 
win 25308 (DF) 
07:26:36.190752 laptop.1041 > ftpserver.20: . ack 38798 win 8624 (DF) 
22:24:16.539367 laptop.1041 > ftpserver.20: F 1:1(0) ack 38798 win 8624 
(DF) 
22:24:16.540729 ftpserver.20 > laptop.1041: . ack 2 win 25308 (DF) 
  
and tcpdump:  
  
07:26:40.815999 ftpserver.20 > laptop.1041: S 3154602740:3154602740(0) 
win 24820 <mss 1460> (DF) 
07:26:40.817886 laptop.1041 > ftpserver.20: S 9494537:9494537(0) ack 
3154602741 win 1332 <mss 1332> (DF) 
07:26:40.818118 ftpserver.20 > laptop.1041: . ack 1 win 25308 (DF) 
07:26:40.821023 ftpserver.20 > laptop.1041: P 1:1333(1332) ack 1 win 
25308 (DF) 
07:26:41.108866 laptop.1041 > ftpserver.20: . ack 1333 win 1332 (DF) 
07:26:41.109153 ftpserver.20 > laptop.1041: P 1333:2665(1332) ack 1 win 
25308 (DF) 
07:26:41.394596 laptop.1041 > ftpserver.20: . ack 2665 win 1332 (DF) 
07:26:41.394859 ftpserver.20 > laptop.1041: P 2665:3997(1332) ack 1 win 
25308 (DF) 
07:26:41.680356 laptop.1041 > ftpserver.20: . ack 3997 win 1332 (DF) 
07:26:41.680629 ftpserver.20 > laptop.1041: P 3997:5329(1332) ack 1 win 
25308 (DF) 
07:26:41.965991 laptop.1041 > ftpserver.20: . ack 5329 win 1332 (DF) 
07:26:41.966251 ftpserver.20 > laptop.1041: P 5329:6661(1332) ack 1 win 
25308 (DF) 
07:26:42.251717 laptop.1041 > ftpserver.20: . ack 6661 win 1332 (DF) 
07:26:42.252007 ftpserver.20 > laptop.1041: P 6661:7993(1332) ack 1 win 
25308 (DF) 
07:26:42.537404 laptop.1041 > ftpserver.20: . ack 7993 win 1332 (DF) 
07:26:42.537628 ftpserver.20 > laptop.1041: P 7993:8193(200) ack 1 win 
25308 (DF) 
07:26:42.537775 ftpserver.20 > laptop.1041: P 8193:9325(1132) ack 1 win 
25308 (DF) 
07:26:42.823099 laptop.1041 > ftpserver.20: . ack 9325 win 1332 (DF) 
07:26:42.823322 ftpserver.20 > laptop.1041: P 9325:9525(200) ack 1 win 
25308 (DF) 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

07:26:42.823483 ftpserver.20 > laptop.1041: P 9525:10657(1132) ack 1 
win 25308 (DF) 
07:26:43.108885 laptop.1041 > ftpserver.20: . ack 10657 win 1332 (DF) 
... 
07:26:48.553487 ftpserver.20 > laptop.1041: . 35433:36765(1332) ack 1 
win 25308 (DF) 
07:26:48.839538 laptop.1041 > ftpserver.20: . ack 36765 win 1332 (DF) 
07:26:48.839852 ftpserver.20 > laptop.1041: . 36765:38097(1332) ack 1 
win 25308 (DF) 
07:26:49.125961 laptop.1041 > ftpserver.20: . ack 38097 win 1332 (DF) 
07:26:49.126257 ftpserver.20 > laptop.1041: FP 38097:38797(700) ack 1 
win 25308 (DF) 
07:26:49.130594 laptop.1041 > ftpserver.20: . ack 38798 win 1332 (DF) 
07:26:49.131555 laptop.1041 > ftpserver.20: F 1:1(0) ack 38798 win 8624 
(DF) 
07:26:49.131753 ftpserver.20 > laptop.1041: . ack 2 win 25308 (DF) 
  
The PacketShaper starts its meddling with the very first SYN: it reduces the FTP 
server's Maximum-Segment-Size TCP option from 1460 to 1380.  
  
The laptop always advertizes a window size of 9324, but the PacketShaper 
changes it to 1332 during the three-way handshake. Note that the reduced 
window is the same as the laptop's unchanged Maximum-Segment-Size option.  
  
At the end of the three-way handshake, it also reduces the server's advertized 
window size from 24820 to 1380. Notice that value also matches the server's 
reduced Maximum-Segment-Size, and that it creeps the server's window size up 
to 2760 during the connection.  
  
Also, the laptop's acknowledgements have been paced at about 286 milliseconds 
apart, so the PacketShaper hit the bandwidth target of 38400 bits per second 
pretty closely. Doing the math to calculate the resulting bandwidth:  

eight bits per byte × 1332 bytes per ack ÷ 286 ms per ack 
  = 37258 bits per second.  

When the FIN packets arrive, there's no more need to shape traffic, so those 
packets' window sizes are left unchanged in both directions.  
  
The PacketShaper does a similar job for the FTP PUT file transfer. The laptop's 
WinDUMP sees: 
  
22:24:23.129437 ftpserver.20 > laptop.1042: S 3870297829:3870297829(0) 
win 24820 <mss 1380> (DF) 
07:26:42.782890 laptop.1042 > ftpserver.20: S 9509443:9509443(0) ack 
3870297830 win 9324 <mss 1332> (DF) 
22:24:23.131606 ftpserver.20 > laptop.1042: . ack 1 win 1380 (DF) 
22:24:23.148238 laptop.1042 > ftpserver.20: . 1:1333(1332) ack 1 win 
9324 (DF) 
22:24:23.434707 ftpserver.20 > laptop.1042: . ack 1333 win 1380 (DF) 
07:26:43.089592 laptop.1042 > ftpserver.20: . 1333:2665(1332) ack 1 win 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

9324 (DF) 
22:24:23.720577 ftpserver.20 > laptop.1042: . ack 2665 win 1380 (DF) 
07:26:43.375523 laptop.1042 > ftpserver.20: . 2665:3997(1332) ack 1 win 
9324 (DF) 
22:24:24.006221 ftpserver.20 > laptop.1042: . ack 3997 win 1380 (DF) 
07:26:43.661203 laptop.1042 > ftpserver.20: P 3997:5329(1332) ack 1 win 
9324 (DF) 
22:24:24.292030 ftpserver.20 > laptop.1042: . ack 5329 win 1380 (DF) 
... 
07:26:51.091385 laptop.1042 > ftpserver.20: P 38629:38797(168) ack 1 
win 9324 (DF) 
22:24:31.483052 ftpserver.20 > laptop.1042: . ack 38797 win 1380 (DF) 
07:26:51.137428 laptop.1042 > ftpserver.20: F 38797:38797(0) ack 1 win 
9324 (DF) 
22:24:31.484934 ftpserver.20 > laptop.1042: . ack 38798 win 1380 (DF) 
22:24:31.531139 ftpserver.20 > laptop.1042: F 1:1(0) ack 38798 win 
25308 (DF) 
07:26:51.185523 laptop.1042 > ftpserver.20: . ack 2 win 9324 (DF) 
  
and the server's tcpdump:  
  
07:26:55.720973 ftpserver.20 > laptop.1042: S 3156559273:3156559273(0) 
win 24820 <mss 1460> (DF) 
07:26:55.722934 laptop.1042 > ftpserver.20: S 9509443:9509443(0) ack 
3156559274 win 1332 <mss 1332> (DF) 
07:26:55.723170 ftpserver.20 > laptop.1042: . ack 1 win 25308 (DF) 
07:26:55.743130 laptop.1042 > ftpserver.20: . 1:1333(1332) ack 1 win 
2664 (DF) 
07:26:55.743357 ftpserver.20 > laptop.1042: . ack 1333 win 25308 (DF) 
07:26:56.031313 laptop.1042 > ftpserver.20: . 1333:2665(1332) ack 1 win 
2664 (DF) 
07:26:56.075427 ftpserver.20 > laptop.1042: . ack 2665 win 25308 (DF) 
07:26:56.317302 laptop.1042 > ftpserver.20: . 2665:3997(1332) ack 1 win 
2664 (DF) 
07:26:56.365451 ftpserver.20 > laptop.1042: . ack 3997 win 25308 (DF) 
07:26:56.602831 laptop.1042 > ftpserver.20: P 3997:5329(1332) ack 1 win 
2664 (DF) 
07:26:56.645400 ftpserver.20 > laptop.1042: . ack 5329 win 25308 (DF) 
... 
07:27:04.031205 laptop.1042 > ftpserver.20: P 38629:38797(168) ack 1 
win 2664 (DF) 
07:27:04.075392 ftpserver.20 > laptop.1042: . ack 38797 win 25308 (DF) 
07:27:04.077082 laptop.1042 > ftpserver.20: F 38797:38797(0) ack 1 win 
9324 (DF) 
07:27:04.077310 ftpserver.20 > laptop.1042: . ack 38798 win 25308 (DF) 
07:27:04.123526 ftpserver.20 > laptop.1042: F 1:1(0) ack 38798 win 
25308 (DF) 
07:27:04.125170 laptop.1042 > ftpserver.20: . ack 2 win 9324 (DF) 
  
This time, WinDUMP sees the server's window reduced to 1380 throughout, and 
the tcpdump sees the laptop's window creep up to 2664. Again, the FIN packets 
are passed through unmolested.  
  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I repeated these FTP PUT and GET experiments with different file sizes and 
different PacketShaper Rate policies, and found these behaviors repeated:  

• During the three way handshake, the PacketShaper reduced window sizes 
to match Maximum-Segment-Sizes.  

• The number of segments transmitted between acknowledgements 
decreased.  

• The PacketShaper delayed and paced acknowledgement packets.  
• FIN packets were transmitted unmolested.  

So let's try to extrapolate from this experiment. What if we are studying some 
TCP traffic, and we suspect it has been managed by a PacketShaper, but we 
don't know for certain that such a device intervened? The following evidence 
might reveal the PacketShaper:  

• Look for window sizes in FIN packets that are larger than the window 
sizes advertized throughout the connection they terminate.  

• Look for evidence of pacing by examining timestamps between ACK 
packets, or counting the transmitted segments between ACKs.  

• In a three-way handshake, look for a window size that matches an "mss" 
size.  

The first property, large window sizes in FIN packets, is probably the most 
reliable tip-off. Note that since a PacketShaper changes initial TCP window sizes 
and sometimes interferes with the MSS TCP option in SYN packets, these values 
may not be reliable for use in passive OS fingerprinting analysis. (Miller; see also 
Passive Fingerprinting, Honeynet Project) However, I never noticed the 
PacketShaper tweak the window size of the first (SYN) packet in a three-packet 
handshake.  

Other PacketShaper Tricks 

Three PacketShaper features, packet capture, event notification, and graphical 
reporting, are illustrated here with real-world examples drawn from my own 
network security experiences.  

Class Based Packet Capturing  

Late in 2002 Packeteer added a packetlog command to the PacketShaper's 
PacketWise operating system software, version 5.3. It is used to log the packets 
matching a set of traffic classes to a libpcap (tcpdump format) file in the 
PacketShaper's internal storage, which must be transferred (via FTP) to a 
workstation for analysis. A troubleshooting tool intended to be used at the 
direction of Packeteer technical support professionals, it is also a boon to 
intrusion analysts.  
  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Although it can log a very brief interval of all traffic by specifying that the root 
classes /Inbound and /Outbound be logged, It is more helpful when an event of 
interest is identified with traffic classes at leaves of the traffic tree. In particular, it 
gives an analyst an avenue for studying the traffic that the PacketShaper does 
not know how to classify and lumps into a default class such as 
/Inbound/Default. (Note: if /Inbound/AutoDiscovered is configured to log IP 
traffic, as explained above, then /Inbound/Autodiscovered/Default contains 
unclassified IP traffic and /Inbound/Default contains non-IP traffic.)  
  
The following real-world example illustrates this feature.  
  
For both inbound and outbound traffic, the PacketShaper I work with 
automatically created classes AutoDiscovered/DiscoveredPorts/UDP_Port_7674. 
Although there is a Sun Microsystems product that uses UDP port 7674, I 
suspected that this was actually traffic from a peer-to-peer application.  
  
I used packetlog to capture a few thousand packets from this traffic class, and 
examined the traffic using ethereal. (My favorite tool, tcpdump, gives 'snaplen of 
0 rejects all packets' errors on PacketShaper packetlog traces, so for these I use 
ethereal instead.)  
  
The port 7674 traffic consisted of small, rapidly transmitted datagrams, with only 
about ten to thirty bytes of payload in each UDP packet. Most of the data looked 
like gibberish, but a very few packets happened to contain the names of some 
contemporary popular musicians and their song titles in readable ASCII.  
  
I proposed applying the same policies to this class that we applied to the other 
peer-to-peer file trading applications; the packetlog output gave me 
circumstantial evidence to support that proposal.  

PacketShaper Event Notification  

The event commands may be used to define up to 32 events. An event is a 
condition that the PacketShaper can measure periodically, such as bandwidth 
used by a traffic class exceeding a certain rate, or traffic latency exceeding a 
certain time interval. When the condition becomes true, the event triggers an 
action, which may be either an SNMP trap, an email, or a syslog message.  
  
Several times, a person unaffiliated with the university gained unauthorized 
access to one of our computing labs, and used a lab computer to upload 
objectionable material over the internet via HTTP. The PacketShaper's event 
notification feature was one of the tools we used to apprehend the trespasser. 
One of my colleagues created a subclass of /Outbound/HTTP that matched the 
perpetrator's upload URLs, applied a policy to control bandwidth on that 
subclass, and created an event to send email when uploads happened. The 
campus police peacefully took the uploader into custody.  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

  
PacketShaper events are no substitute for a true intrusion detection system, but 
for a small number of high priority events of interest, they make excellent 
correlative data, especially if the PacketShaper is properly configured to 
synchronize its clock with an NTP server.  

Charts and Graphs 

The reporting capabilities of the PacketShaper's web user interface are useful to 
intrusion analysts as well. For example, the "SQL Slammer" worm attacks on 25 
January 2003 were automatically classified by our PacketShaper as 
/Inbound/AutoDiscovered/DiscoveredPorts/UDP_Port_1434. That made it easy 
to visualize the impact of the worm on our border traffic:  
  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure: PacketShaper graphs of "SQL Slammer" border traffic  
  
We noted from these graphs that the worm had never consumed more than 
about 3 Mbps of our inbound bandwidth at its peak, and at that peak more than 
2,500,000 worm datagrams per second were handled by our border router. We 
verified that the router CPU handled that peak load without any strain, that the 
firewall was still blocking port 1434 traffic, and most importantly, that there was 
no outbound worm traffic on port 1434.  
  
Satisfied that our network countermeasures were adequate, we turned our 
attention to more important matters, such as finding and patching potentially 
vulnerable machines inside the perimeter. We counted ourselves fortunate that 
we didn't contribute to the outbreak, nor suffer from it very much.  

Stanford's Packeteer Listserv 

I would like to acknowledge all who participate in the packeter-edu mailing list 
(SUNet) hosted by Stanford University, for their help and insights. A frequent 
topic on the list is management of peer-to-peer traffic, notably Kazaa (Sharman 
Networks), whose protocols change frequently, apparently for the purpose of 
defeating the PacketShaper's Traffic Classification and Shaping mechanisms.   

References 

Allot Communications. "Allot - bandwidth management, QoS, service level 
agreement, Internet filter." Home page. 2003. URL:http://www.allot.com/ (29 Jan. 
2003)  
  
Bell, Mansel. "Securing an Anonymous FTP Server in Solaris 8 with WU-FTPD." 
SANS Info Sec Reading Room. 30 Mar. 2002. 
URL:http://www.sans.org/rr/protocols/anonymous_ftp.php (29 Jan. 2003)  
  
Cupps, John. "How to Identify and `Contain' Some of the Information Security 
Problems Created by Unique Business Environments." SANS Info Sec Reading 
Room. 10 Aug. 2001. 
URL:http://www.sans.org/rr/casestudies/infosec_problems.php (29 Jan. 2003)  
  
Dawson, Terry. "Traffic Shaping." The O'Reilly Network. Linux Devcenter. 24 
Aug. 2000. 
URL:http://linux.oreillynet.com/pub/a/linux/2000/08/24/LinuxAdmin.html (29 Jan. 
2003)  
  
Ethereal. "The Ethereal Network Analyzer." Home page. 25 Jan. 2003. 
URL:http://www.ethereal.com/ (29 Jan. 2003).  
  
Disenchanted. "Tragedy of the commons." Disenchanted Dictionary. 2000-2002. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

URL: http://www.disenchanted.com/dis/lookup?node=1218 (29 Jan. 2003)  
  
Hardy, William C. QoS Measurement and Evaluation of Telecommunications 
Quality of Service. Chichester, England: John Wiley & Sons, Inc., 2001.  
  
Honeynet Project. "Know Your Enemy: Passive Fingerprinting." 4 Mar. 2002. 
URL: http://project.honeynet.org/papers/finger/ (29 Jan. 2003)  
  
IETF[1]. "Differentiated Services (diffserv) Charter." Internet Engineering Task 
Force Working Groups. 9 Sep. 2002. 
URL:http://www.ietf.org/html.charters/diffserv-charter.html (29 Jan. 2003)  
  
IETF[2]. "Multiprotocol Label Switching (mpls) Charter." Internet Engineering 
Task Force Working Groups. 27 Jan. 2003. 
URL:http://www.ietf.org/html.charters/mpls-charter.html (29 Jan. 2003)  
  
Jupitermedia Corporation. "Webopedia: The 7 Layers of the OSI Model." 
Webopedia. 2003. URL:http://www.webopedia.com/quick_ref/OSI_Layers.asp 
(29 Jan. 2003)  
  
Kilkki, Kalevi. Differentiated Services for the Internet. Macmillan Technology 
Series. Indianapolis, IN: Macmillan Technical Publishing, 1999.  
  
Lightspeed Systems. "Lightspeed Systems - Take Control of Your Network." 
Home page. 2003. URL:http://www.lightspeedsystems.com/ (29 Jan. 2003)  
  
Miller, Toby. "Passive OS Fingerprinting: Details and Techniques." SANS 
Institute. 2001-2002. URL:http://www.incidents.org/papers/OSfingerprinting.php 
(29 Jan. 2003)  
  
Nancarrow, Michael. "Protecting your Internal Systems from a Compromised 
Host." SANS Info Sec Reading Room. 26 Mar. 2002 
URL:http://www.sans.org/rr/casestudies/host.php (29 Jan. 2003)  
  
Packeteer[1]. "Packeteer Home." Home page. 2003. 
URL:http://www.packeteer.com/ (29 Jan. 2003)  
  
Packeteer[2]. "TCP Rate Control and Alternatives." Packeteer White Paper 
Series. May 2002. 
URL:http://www.packeteer.com/solutions/resources/TcpRateControl.pdf (29 Jan. 
2003)  
  
Packeteer[3]. "UDP Traffic Management." Packeteer White Paper Series. May 
2002. 
URL:http://www.packeteer.com/solutions/resources/UDPTrafficManagement.pdf 
(29 Jan. 2003)  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

  
RealNetworks, Inc. "RealSystem Firewall Support." RealNetworks Service and 
Support. URL:http://service.real.com/firewall/ (29 Jan. 2003)  
  
Scarborough, Matt. "Re: windump timezone gotcha." E-mail, 
intrusions@incidents.org. 13 Nov 2001. 
URL:http://www.incidents.org/archives/intrusions/msg01736.html (29 Jan. 2003)  
  
Sharman Networks. "Kazaa." Home Page. 2002. URL:http://www.kazaa.com/ (29 
Jan. 2003).  
  
Siegel, Eric D. Designing Quality of Service Solutions for the Enterprise. New 
York, NY: John Wiley & Sons, Inc., 2000.  
  
Sitara Networks. "Sitara Networks: QoS solutions for enterprise and service 
provider markets." Home page. 2003. URL:http://www.sitaranetworks.com/ (29 
Jan. 2003)  
  
Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Addison Wesley Professional 
Computing Series. Reading, MA: Addison Wesley Longman, Inc., 1994.  
  
Stubbs, Robin. "windump timezone gotcha." E-mail, intrusions@incidents.org. 7 
Nov 2001. URL:http://www.incidents.org/archives/intrusions/msg01681.html (29 
Jan. 2003)  
  
SUNet. "SUNet Systems Networking Lists Packeteer Archives." Stanford 
University. 2001-2002. URL: http://www.stanford.edu/group/networking/netlists/ 
(29 Jan. 2003)  
  

Part 2 

Network Detects 
NETWORK DETECT 1: 

A compromised internal host attempts to flood an external host with IP protocol 
255 packets. 

1. Source of Trace:  

This occurred at my place of employment (a university campus) in August 2002. 
  
The network topology looks like this: 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

faculty host ----- Switch ----- Switch ----- Campus 
Firewall 
                            ^ 
                     (backbone link) 

 
where the backbone link is Gigabit Ethernet, and all others are 
FastEthernet. 
 
    
 
    

     2. Detect Generated by:  

 
A colleague found a switch interface carrying traffic far exceeding 
expected volume. He saw this occur more than once, each time for 
intervals 
lasting several minutes. We identified the hosts behind that switch 
interface, 
and began to monitor traffic; I saved the monitored traffic 
in a tcpdump binary file. At that time, we had not yet deployed an 
intrusion 
detection system. 
 
   
 
 The tcpdump log  
 revealed a steady stream of outgoing packets: 
 
 
   
  

 

13:07:09.303325 0:d0:b7:90:1a:98 0:50:b:6a:2c:0 0800 1474: 

 
 xxx.xxx.192.249  

> 211.13.169.33:  ip-proto-255 1440 
 

 13:07:09.303567 0:d0:b7:90:1a:98 0:50:b:6a:2c:0 0800 1474: 

 
 xxx.xxx.192.249  

> 211.13.169.33:  ip-proto-255 1440 
 

 13:07:09.303687 0:d0:b7:90:1a:98 0:50:b:6a:2c:0 0800 1474: 

 
 xxx.xxx.192.249  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

> 211.13.169.33:  ip-proto-255 1440 
 

 13:07:09.303807 0:d0:b7:90:1a:98 0:50:b:6a:2c:0 0800 1474: 

 
 xxx.xxx.192.249  

> 211.13.169.33:  ip-proto-255 1440 
 

 13:07:09.303934 0:d0:b7:90:1a:98 0:50:b:6a:2c:0 0800 1474: 

 
 xxx.xxx.192.249  

> 211.13.169.33:  ip-proto-255 1440 
 

 13:07:09.304046 0:d0:b7:90:1a:98 0:50:b:6a:2c:0 0800 1474: 

 
 xxx.xxx.192.249  

> 211.13.169.33:  ip-proto-255 1440 
 

 13:07:09.304167 0:d0:b7:90:1a:98 0:50:b:6a:2c:0 0800 1474: 

 
 xxx.xxx.192.249  

> 211.13.169.33:  ip-proto-255 1440 
 

 13:07:09.304286 0:d0:b7:90:1a:98 0:50:b:6a:2c:0 0800 1474: 

 
 xxx.xxx.192.249  

> 211.13.169.33:  ip-proto-255 1440 
 

 13:07:09.304407 0:d0:b7:90:1a:98 0:50:b:6a:2c:0 0800 1474: 

 
 xxx.xxx.192.249  

> 211.13.169.33:  ip-proto-255 1440 
 

 ... 

 
 
 
  
 
I used tcpdump's -X option to 
find that the payloads were almost, but not quite, uniform. 
(Unfortunately, I failed to increase the default snap length 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

when I obtained the tcpdump binary logfile, so I cannot share 
the entire payloads.) 
 
 
 
  
  

 

13:07:09.303325 xxx.xxx.192.249 > 211.13.169.33:  ip-proto-255 1440 
 

0x0000   4500 05b4 0e09 0000 fdff xxxx xxxx c0f9        

E............... 
 

0x0010   d30d a921 aaaa aaaa aaaa aaaa aaaa aaaa        

...!............ 
 

0x0020   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        

................ 
 

0x0030   aaaa aaaa aaaa aaaa 60dc aaaa aaaa aaaa        

........`....... 
 

0x0040   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        

................ 
 

0x0050   aaaa                                           

.. 
 

13:07:09.303567 xxx.xxx.192.249 > 211.13.169.33:  ip-proto-255 1440 
 

0x0000   4500 05b4 0061 0000 fdff xxxx xxxx c0f9        

E....a.......... 
 

0x0010   d30d a921 aaaa aaaa aaaa aaaa aaaa aaaa        

...!............ 
 

0x0020   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        

................ 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0x0030   aaaa aaaa aaaa aaaa 01a5 aaaa aaaa aaaa        

................ 
 

0x0040   aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa        

................ 
 

0x0050   aaaa                                           

.. 
 

... 

 
  
 
Measurements of traffic at our WAN link 
confirm that this traffic did not escape through 
the border router, so the attempted DoS was unsuccessful. However, 
we did not detect any ICMP protocol unreachable messages from the 
border 
router. 
 

3. Probability that the source address was spoofed: 

 
 None; we identified the attacking host. 
 
  

     4: Description of attack: 

 
 This is "out of spec" (OOS) traffic, 
 and it represents an attempted denial-of-service  
 (DoS) attack against cdn01.cdn.apinetland.net. 
 
   
 
In every IPv4 packet, the byte at offset 9 
identifies the protocol encapsulated  
in the packet. The most common protocl numbers are 1 (ICMP), 6 (TCP),  
and 17 (UDP). But this traffic has a protocol number of 255. In  
the document "Protocol Numbers" at 
http://www.iana.org/assignments/protocol-numbers, 
the Internet Assigned Numbers Authority (IANA) lists assignments and 
technical references  
for protocol numbers 0 through 134. Protocols 135 through 254 are 
"unassigned,"  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

and 255, the highest possible protocol number, is identified as 
"reserved." 
 
   
 
 These packets have large payloads (1440 bytes); each packet uses 
slightly  
less than Ethernet's MTU. And they are sent very rapidly; the above 
trace 
shows 8 packets detected in a one-microsecond span.  Some arithmetic: 
eight 
bits per byte times 1440 bytes per packet times 8000 packets per second 
reckons at 92,160,000 bits per second; add overhead and it appears that 
the attack completely saturated the 100Mbps of 
bandwidth available to the host. 
 

5. Attack mechanism 

 
These are crafted packets. Tools are freely 
available for packet crafting and injection. 
For example, hping2 (http://www.hping.org) (hping) 
can be made to create protocol 
255 traffic, using a command such as 
hping2 --rawip --ipproto 255 $target; 
there are other options for specifying data payload size and injection 
interval. 
Packet injection tools may also be created from scratch using a C 
compiler. 
 
  
 
During incident handling and forensics on the attacking host, we found 
logfile 
evidence indicating a remote compromise. 
However, we did not find any rootkits, nor did we 
find the tool used to craft these packets. 
 

6. Correlations: 

 
It's possible that this was part of a distributed denial-of-service 
against 
the target, or in other words, that hosts at other sites 
were attempting the same attack concurrently. 
 
  
 
Alefiya Hussain and others at the University of Southern California 
presented 
a discussion entitled "A Method for Differentiating DDoS Attacks" as 
part 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

of a Computer Communications course (http://netweb.usc.edu/cs551/) 
(Papadopoulos), in which 
they identify a distributed denial-of-service against a .usc.edu 
machine 
by 28 attackers using protocol 255 packets. At the time of this 
writing, 
the Microsoft Power Point document of their presentation is available 
at 
 http://netweb.usc.edu/cs551/slides/alefiya.ppt. (Hussain) 
 
  
 
Crist J. Clark also noted some IP protocol 255 traffic in the wild, and 
posted 
an email about it on 11 July 2002 (archived at 
http://lists.jammed.com/incidents/2002/07/0068.html) (Clark). 
But the traffic he saw had a different payload; he found ICMP traffic 
embedded in the payload of the protocol 255 traffic. 
 
    

    7. Evidence of active targeting: 

 
   This was not a random scan, and no stealth was attempted; this was a 
very 
noisy attack aimed at a specific target. 
 
  
 
 
DNS identifies the destination host 211.13.169.33 
as "cdn01.cdn.apinetland.net," and 
http://www.apnic.net/apnic-bin/whois2.pl (APNIC Whois) identifies this 
as a Hitachi netBusiness Ltd. address. 
 
    

    8 Severity:  

 
 Criticality:  (3) 
The compromised host was a server used by a former 
faculty member in his research work. The faculty member was no longer 
with the university, and the host no longer served a critical function. 
However, 
he had requested and obtatined a hole in the campus firewall so that 
off-campus 
clients could access it, and when he left the university, the breach 
was 
not closed. Ability to access the host through a firewall increases 
its otherwise low criticality score. 
 
Lethality: (5) The attack consumed all of its local bandwidth and a 
significant amount of the bandwidth on one of the backbone links. Were 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

it not for network countermeasures, the attack would also have consumed 
all 
of the expensive bandwidth at the WAN link, and probably would have 
dissipated 
bandwidth at the intended target as well. 
 
System Countermeasures: (1) The compromised host remained online and 
neglected for a considerable period. 
 
Network Countermeasures: (3) The border router prevented the attack, 
but an out-of-date firewall configuration allowed the compromise that 
enabled 
the attack attempt. 
 
  
 
Criticality + Lethality - System Countermeasures - Network 
Countermeasures 
= 4; this event was worthy of our time and effort. 
 
    

    9: Defensive recommendation: 

 
   The campus firewall configuration and policies should be regularly 
audited. 
For every "hole" poked through the firewall for a server, a person 
responsible 
for maintaining that server should be contacted regularly to discuss 
its 
potential vulnerabilities. The border router configuration regarding 
ICMP 
protocol unreachable packets should also be reviewed; ICMP protocol 
unreachable 
packets may be a desirable diagnostic feature, but we don't desire they 
be 
abused by attackers for protocol mapping reconnaissance. (It appears 
this 
attack did not produce any protocol unreachable messages.) 
 

10: Multiple choice test question: 

 
   An IP protocol number of 255 represents what kind of traffic? 
 
 
 
a) Packets of other IP protocols, such as ICMP or TCP, are embedded 
in the payload of protocol 255 packets. 
 
b) Datagrams of IPv6 protocols transmitted via IPv4 must be embedded 
in the payload of protocol 255 packets. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

c) Distributed Denial-of-Service traffic. 
 
d) Protocol ID 255 is reserved by the Internet Assigned Numbers 
Authority 
(IANA); so any such traffic is not valid. 
 
 
  
 
answer: d. 
 

 References 

 
 
APNIC Whois. "Query the APNIC Whois Database." 
Asia Pacific Network Information Centre. 
URL:http://www.apnic.net/apnic-bin/whois2.pl (29 Jan. 2003) 
 
 
  
 
Clark, Crist J.  "Protocol 255." E-mail to SecurityFocus Online 
INCIDENTS 
mailing list, archived at lists.jammed.com. 11 Jul. 2002. 
URL:http://lists.jammed.com/incidents/2002/07/0068.html (29 Jan. 2003) 
 
 
  
 
hping. Home Page. 
URL:http://www.hping.org/ (29 Jan. 2003) 
 
  
 
 
Hussain, Alefiya, et. al. "A Method for Differentiating DDoS Attacks." 
Microsoft PowerPoint presentation document, 
course material, University of Southern California. Fall 2002. 
URL:http://netweb.usc.edu/cs551/slides/alefiya.ppt (29 Jan. 2003) 
 
  
 
 
IANA. "Protocol Numbers." Internet Assigned Numbers Authority. 
URL:http://www.iana.org/assignments/protocol-numbers (29 Jan. 2003) 
 
  
 
 
Papadopoulos, Christos. 
"Computer Communications." Course Material, University of 
Southern California. Fall 2002. 
URL:http://netweb.usc.edu/cs551/ (29 Jan. 2003) 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
  
 
    

     NETWORK DETECT 2: 
 
 A UDP flood from a compromised host shuts down the WAN link. 
 Subsequent incident handling finds the code responsible for the 
attack. 
 
 
 

     1. Source of Trace:  

 
 This occurred at my place of employment (a university campus) 
 in September 2002. 
 
  
 
The network topology looks like this: 
 

 
Unix server  
  || 
  || 
  || 
 Switch ----- Switch ----- FW 
          ^                |  
    (backbone link)        | 
                           | 
                         Shaper ----- Router ----- ISP and 
internet 
                                  ^            ^  
                               (sensor)    (WAN link) 

 

 
(Legend: The Unix host sports two Gigabit Ethernet interfaces. 
The backbone link consists of two 1000BaseX fiber lines, 
for a total bandwidth of 2000Mbps. 
The WAN link is a 30Mbps portion of a 155Mbps ATM circuit. 
The rest of the links are 100Mbps Fast Ethernet.  The "FW" is our 
firewall, and the "Shaper" 
is a PacketShaper® traffic management device from 
Packeteer®, 
Inc. (Packeteer) It employs 
technology to classify each traffic flow, and shape traffic 
so that our mission cricital applications don't have their 
bandwidth depleted by lower priority flows.) 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
    
 
Here is a narrative of the incident: 
 
    
 
A month had passed since the SANS Beyond Firewalls conference and 
training week, and I was busy getting my "newbie" feet wet, trying 
to set up a SHADOW 
NIDS (SHADOW). During an evening of working from home, 
my terminal sessions became unresponsive (up to a minute between 
typing a character and seeing it echo back to me on the screen). 
 
  
 
The University's ISP provides a diagnostic web site with 
traffic graphs (similar to the popular MRTG graphs) (Oetiker and Rand). 
I checked and found that our outbound traffic rate at the 
WAN link was pegged at 30Mbps, our maximum. 
It stayed that way for about ten minutes. 
I telephoned and alerted my network operations colleagues. 
 
  
 
When the WAN link was usable again, I quickly started a 
tcpdump -w $logfile -i $sensor_interface 
process, to sniff all of the campus border link traffic 
in case it happened again. It happened again. The second 
attack succeeded in overwhelming and crashing the campus 
firewall, effectively closing the WAN link completely for a 
short time (a second firewall was configured in an "automatic 
failover" configuration, and the second unit took about a minute 
to activate). 
 
  
 
Meanwhile, the network gurus traced this second traffic tsunami 
to a particular host. It was our main Unix server, the 
most powerful machine on campus: 
four very fast processors, 
two 1000BaseX network interfaces, 
many software packages (including compilers) installed, 
and tens of thousands of student, faculty, and staff shell accounts. 
 
  
 
The system administrator on duty 
identified the offending process (it was consuming most of the CPU 
cycles on one of the four processors) and its owner's UID. 
That account's files were made available to the network security 
team. 
Syslog evidence indicated that the account was being used by somebody 
other than its owner. 
 
    
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The tcpdump log revealed a steady stream of outgoing packets. 
(Regretfully, I neglected to increase tcpdump's default snap length.) 
 
 
   
  

 

21:03:48.207061 attacker.4246 > victim.53:  12594 op6+$ 
[b2&3=0x3334] [14136a] [13622q] [14640n] [49au][|domain] 
(DF) 
 

0x0000  4500 004d ae33 4000 1c11 a37c atta cker         
E..M.3@....|.... 
 

0x0010  .vic tim. 1096 0035 0039 6fbb 3132 3334         
.......5.9o.1234 
 

0x0020  3536 3738 3930 0031 3200 3132 3300 3132         
567890.12.123.12 
 

0x0030  3334 0031 3233 3435 0031 3233 3435 3600         
34.12345.123456. 
 

0x0040  3132 3334 3536 3700 3132 3334 35          
1234567.12345 
 

21:03:48.207176 attacker.4246 > victim.53:  12594 op6+$ 
[b2&3=0x3334] [14136a] [13622q] [14640n] [49au][|domain] 
(DF) 
 

0x0000  4500 004d ae38 4000 1c11 a377 atta cker         
E..M.8@....w.... 
 

0x0010  .vic tim. 1096 0035 0039 6fbb 3132 3334         
.......5.9o.1234 
 

0x0020  3536 3738 3930 0031 3200 3132 3300 3132         
567890.12.123.12 
 

0x0030  3334 0031 3233 3435 0031 3233 3435 3600         
34.12345.123456. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0x0040  3132 3334 3536 3700 3132 3334 35          
1234567.12345 
 

 
 

  

 
...and many many thousand more packets like these.  (The source 
and destination IP addresses have been anonymized; I cannot divulge 
either at this time. An IRC server operated at the off campus 
destination IP address.) 
 
 
 
   

     2. Detect Generated by:  

 
Tcpdump, version 3.6.2. 

     3. Probability source address was spoofed:  

 
None. In the narrative of the attack, the source address 
in the packets is censored, but that address was not spoofed. 
Furthermore, egress filtering is configured on the border router 
to prevent packets spoofing non-DU addresses from escaping. 

     4: Description of attack: 

 
 
 This was a DNS UDP flood attack, 
 and it represents a successful denial-of-service  
 (DoS) attack. 
 
 
  
 
 
 Prior to the attack, the perpetrator gained unauthorized access 
 to an account on the Unix host, and downloaded and compiled 
 the exploit code. We are of the opinion that the perpetrator 
 stole, guessed, or cracked the account's password.  
 
 
 
 
  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 5. Attack mechanism 

 
 
These are crafted packets, sent as rapidly as possible to waste 
bandwidth. 
Since they use UDP port 53, the same as DNS, the PacketShaper 
classified 
this traffic as mission critical, so the attacker succeeded in wasting 
all 
of our WAN link bandwidth. 
 

6. Correlations: 

 
 
The compromised account contained a subdirectory named " /" (space) 
containing two files. One was the attacker's executable, and the other 
was 
the C source file the attacker used to build the executable. 
Using the name of the source file as a search key, 
Google 
found sites 
offering downloads of the exploit code, and mailing list 
archives containing messages from victims of this exploit. 
 
  
 
 
 
The following comment and code excerpts are from the C source file. 
It compares well with the sample exploit code demonstrated in 
the SANS Intrusion Detection In-Depth course materials. 
(Note: 
remember that SANS and 
GIAC want to serve security professionals, 
not the "black hat" community that we combat. Although publishing 
the entire code here would be educational, 
I have decided to err on the side of confidentiality. 
In the spirit of 
our Code of Ethics (GIAC), I have 
included here only short excerpts that correlate with this detect, and 
avoided publishing complete working exploit code. I have also removed 
the author's names and aliases from the code.) 
 
 
 
  
 
(Excerpt 1) This C comment snippet brings to mind the stereotypes many 
of us imagine about black hat community members. The author modestly 
claims 
it would deplete 70% of our bandwidth; it did worse. 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/* 
###########################################################
################## 

 
        ...[snipped]... 

 
   # It's better than stealth or nestea , teardrop or 
something else ..  
trust me .. i know that .     #  
   # Sorry , but if u wanna spoof the adress  
se only 127.0.0.1 , so ..... it's the only one who work. # 
   # , and this program use 90% of CPU, and 70 % of ur 
Band.... that's all  

 
        ...[snipped]... 

 
*/ 

 
 
 
 
(Excerpt 2) In our case, the source address was not spoofed, 
but it looks like the tool's author wanted to provide that capability: 
 

 
   printf("Kick your ass %s,with flood on port %d spoofed 
as %s\n", server,  
port, spoof); 
   printf("Flooding ... \n"); 
   hp = gethostbyname(server); 
   if (hp==NULL) { 
      printf("Unknown host: %s\n",server); 
      exit(0); 
   } 

 
 
(Excerpt 3): More network code. 
SOCK_DGRAM correlates with the UDP protocol in the attack. 
 

 
   thesock = socket(AF_INET, SOCK_DGRAM, 0); 

 
 
(Excerpt 4): part of the code used to craft datagram payload: 
 

 
   switch (c1)  
                {                       
                 case '1' : flood_STRING="1234567890"  
; break ; 
                 case '2' : flood_STRING="12"; break ; 
                 case '3' : flood_STRING="123"; break ; 
                 case '4' : flood_STRING="1234"; break ; 
                 case '5' : flood_STRING="12345"; break ; 
                 case '6' : flood_STRING="123456"; break ; 
                 case '7' : flood_STRING="1234567"; break ; 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

                 case '8' : flood_STRING="12345678"; break 
; 
                 case '9' : flood_STRING="123456789"; break 
; 
                 default  : flood_STRING="1234567890" ; 
break ;   
                }           
 

 
 
(Excerpt 5): An unterminated loop for sending the 
packets out as fast as possible: 
 

 
                       for(;;) 
                       {      
                              send(s, flood_STRING,  
flood_SIZE, 0); 
                        } 
 

 

    7. Evidence of active targeting: 

 
 
All packets in the flood shared the same source and destination IP 
address. 
The perpetrator was either trying to disrupt our service or disrupt an 
IRC 
server at the destination address. I believe both. 
 
 
  
 
 

    8 Severity:  

 
 Criticality: (5) The compromised host was a high profile prize: 
lots of CPU, bandwidth, and shell accounts with access to compilers. 
 
 
Lethality: (5) The attack consumed much of its local bandwidth, 
a good deal of the backbone link bandwidth, and all of the WAN link 
bandwidth (until it crashed the firewall). Furthermore, our 
WAN link actually has more capacity than we pay for, and we are 
expected to police our own traffic and keep our bandwidth usage under 
our contracted cap.  If the attack had exceeded our limit for an 
extended period and cased a breach of contract, we could have been 
liable for hefty overcharges and suffered significant financial harm. 
 
 
System Countermeasures: (2) 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Since it's such an important system, qualified 
personnel were available on call during the incident, and they 
quickly identified the offending account and stopped the attack, 
without 
undue loss of service to the computer's other concurrent users. 
Nevertheless, tens of thousands of shell accounts represent a 
password compromise waiting to happen, and even though the system 
was hardened (patches up to date, tcp_wrappers, quotas, setuid 
programs disabled, etc.), none of those 
efforts stop users from divulging a password or using a weak one. 
Installed compilers exacerbate the risk posed by unauthorized account 
access. 
 
 
Network Countermeasures: (3) 
The PacketShaper 
successfully kept our WAN link bandwidth usage within contract limits, 
but since DNS traffic was configured among traffic with highest 
priority, 
the DNS UDP flood was allowed to consume all of our contracted 
WAN bandwidth. Also, we experienced about a minute of 
complete downtime between the primary firewall's failure 
and the second unit's subsequent activation. 
 
 
  
 
Criticality + Lethality - System Countermeasures - Network 
Countermeasures 
= 5; a serious and sobering event. 
 
    

    9: Defensive recommendations: 

 

•  
• Only grant shell access to users that need it. 
• Only grant compiler access to shell users that need it. 
•  
•  
• Conduct an education campaign 
• regarding the importance of choosing strong passwords 
• and keeping them secret. 
•  
•  
• Measure "normal" DNS traffic bandwidth, decide on a reasonable 
• upper bound for DNS bandwidth, 
• and configure the PacketShaper to enforce this limit. 
•  
•  
• One question that remains unanswered: was this flood responsible 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• for the firewall's failure, or was there some other attack used 
• in tandem that brought down the firewall? Occam's Razor chooses 
• the former, so continue the current automatic failover firewall 
• configuration. 
•  

 
 

10: Multiple choice test question: 

 
   Consider the following (C language) statement from exploit source 
code: 

 

   thesock = socket(AF_INET, SOCK_DGRAM, 0); 

 
and the following excerpt from a Unix system's "manpage" documentation 
for the socket() function: 

 
SYNOPSIS 
       #include <sys/types.h> 
       #include <sys/socket.h> 
 
       int socket(int domain, int type, int protocol); 
 
DESCRIPTION 
       Socket creates an endpoint for communication and 
returns a 
       descriptor. 
... 
       The  socket  has  the  indicated type, which 
specifies the 
       communication semantics.  Currently defined types 
are: 
 
       SOCK_STREAM 
              Provides sequenced, reliable, two-way,  
connection- 
              based  byte streams.  An out-of-band data 
transmis- 
              sion mechanism may be supported. 
 
       SOCK_DGRAM 
              Supports datagrams (connectionless, 
unreliable mes- 
              sages of a fixed maximum length). 

 
  What protocol is most likely used in packets generated by the exploit 
code? 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
 
  
 
a) TCP 
 
b) UDP 
 
c) HTTP 
 
d) SOCKS 
 
  
 
answer: b. 
 
 

References 

 
 
GIAC. "GIAC Code of Ethics." Global Information Assurance 
Certification, 
Advisory Board. URL:http://www.giac.org/COE.php (29 Jan. 2003) 
 
 
  
 
Oetiker, Tobias and Rand, Dave. "MRTG Index Page." Sample graphs, 
Multi Router Traffic Grapher. 
URL:http://www.stat.ee.ethz.ch/mrtg/ (29 Jan. 2003) 
 
 
  
 
Packeteer[1]. "Packeteer Home." Home page. 2003. 
URL:http://www.packeteer.com/ (29 Jan. 2003) 
 
 
  
 
 
SHADOW. "NSWC SHADOW Index." SHADOW Home Page. 
URL:http://www.nswc.navy.mil/ISSEC/CID/ (29 Jan. 2003) 
 
 
  
 
      

     NETWORK DETECT 3: 
 
  A spammer seeking an exploitable mail relay triggers 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

  a pair of "WEB-CGI formmail" alerts. 
   
      
 

     1. Source of Trace: 

 
 
http://www.incidents.org/logs/Raw/2002.10.15,  
 a sanitized tcpdump binary logfile 
 generated  by an undisclosed Snort rule set. 
 Details of the logfile's sanitization are explained at 
http://www.incidents.org/logs/Raw/README. 
 These changes include 
 modified IP addresses of the protected network, 
 modified checksums, and in some cases, 
 censored payloads. We'll see one such payload in this detect. 
 
 
      
 
 By viewing the logfile using 
  tcpdump -en -r 2002.10.15, 
 we can infer a few facts about the network in question. 
 The Snort sensor appears  
 to sit at the border of the 170.129.x.x 
 "class B" network space, because all traffic is between 
 ethernet MAC addresses 00:00:0c:04:b2:33 
 (the router interface for the class B, or "private" hosts) 
 and 00:03:e3:d9:26:c0 
 (the router interface for Internet, or "public" hosts). We'll assume 
that 
 170.129.x.x addresses have been sanitized.  
 
 

     2. Detect Generated by: 

 
 
 StillSecure Border Guard (Latis) 
 version 3.2.1, 
 a commercial NIDS/NIPS based on 
 Snort. (Snort) 
 The command was 
 /usr/local/stillsecure/snort/snort 
  -c snort.conf -l snort.logs -r 2002.10.15, 
 with the following key variables set in snort.conf: 
 
            

 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

       var HOME_NET 170.129.0.0/16 
 

       var EXTERNAL_NET !$HOME_NET 
 

       var HTTP_SERVERS $HOME_NET 
 

       var HTTP_PORTS 80 443 
 

 
 The alert instances we shall consider are: 
 
            

     

  [**] [1:884:8] WEB-CGI formmail access [**] 
 

  [Classification: access to a potentially vulnerable web 
application] 

  [Priority: 2]  
 

  11/14-18:09:02.206507 4.63.172.188:2394 -> 
170.129.50.3:80 
 

  TCP TTL:109 TOS:0x0 ID:54336 IpLen:20 DgmLen:347 DF 
 

  ***AP*** Seq: 0x8CE79981  Ack: 0x8EB8E04C  Win: 0x3A98  

  TcpLen:  20 
 

  [Xref => arachnids 226][Xref => cve CVE-1999-0172][Xref 
=> bugtraq 

  1187][Xref => nessus 10076][Xref => nessus 10782] 
 

  
 

  [**] [1:884:8] WEB-CGI formmail access [**] 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

  [Classification: access to a potentially vulnerable web 
application] 

  [Priority: 2]  
 

  11/14-18:21:41.316507 4.63.172.188:3624 -> 
170.129.50.3:80 
 

  TCP TTL:109 TOS:0x0 ID:51292 IpLen:20 DgmLen:347 DF 
 

  ***AP*** Seq: 0xB1A1867E  Ack: 0xBDD0137B  Win: 0x3A98  

  TcpLen:  20 
 

  [Xref => arachnids 226][Xref => cve CVE-1999-0172][Xref 
=> bugtraq 

  1187][Xref => nessus 10076][Xref => nessus 10782] 
 

   

 
 
 and the Snort rule that triggered these alerts is: 
 
              

 

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS 
(msg:"WEB-CGI formmail access"; flow:to_server,established; 
uricontent:"/formmail"; nocase; reference:nessus,10782; 
reference:nessus,10076; reference:bugtraq,1187; 
reference:cve,CVE-1999-0172;  reference:arachnids,226; 
classtype:web-application-activity; sid:884; rev:8;) 

 
 

 
 
 Assuming the relevant snort.conf variables are correct, 
 this rule produces a "WEB-CGI formmail access" alert 
 when web traffic   
 contains the string  
"/formmail" 
 in a URI. The rule is documented with five references: 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

•  http://cgi.nessus.org/plugins/dump.php3?id=10782, 

 

•  http://cgi.nessus.org/plugins/dump.php3?id=10076, 

 

•  http://online.securityfocus.com/bid/1187, 

 

•  http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0172, 
and  

 
  

• http://www.whitehats.com/info/IDS226/. 

 
  We shall use some of these in the analysis that  follows. 
 
    
 
      In this detection instance, the source ephemeral port is 2394 and  
 the  source address is 4.63.172.188, 
 which DNS identifies as a Verizon DSL customer, 
 "tamqfl1-ar2-4-63-172-188.tamqfl1.dsl-verizon.net." 
 We may verify the "/formmail" string in  
 the logged packets' payloads using tcpdump's -X option. 
 Their TCP payloads are identical: 
 
            

 

18:09:02.206507 4.63.172.188.2394 > 170.129.50.3.http: P 

 2363988353:2363988660(307) ack 2394480716 win 15000 (DF) 
 

  0x0000   4500 015b d440 4000 6d06 aadc 043f acbc        

 E..[.@@.m....?.. 
 

  0x0010   aa81 3203 095a 0050 8ce7 9981 8eb8 e04c        

 ..2..Z.P.......L 
 

  0x0020   5018 3a98 df0b 0000 4745 5420 2f63 6769        



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 P.:.....GET./cgi 
 

  0x0030   2d62 696e 2f66 6f72 6d6d 6169 6c2e 706c        

 -bin/formmail.pl 
 

  0x0040   3f65 6d61 696c 3d66 3240 616f 6c2e 636f        

 ?email=f2@aol.co 
 

  0x0050   6d26 7375 626a 6563 743d 7777 772e 5858        

 m&subject=www.XX 
 

  0x0060   5858 5858 5858 2f63 6769 2d62 696e 2f66        

 XXXXXX/cgi-bin/f 
 

  0x0070   6f72 6d6d 6169 6c2e 706c 2672 6563 6970        

 ormmail.pl&recip 
 

  0x0080   6965 6e74 3d73 656e 6469 7078 7831 4079        

 ient=sendipxx1@y 
 

  0x0090   6168 6f6f 2e63 6f6d 266d 7367 3d77 3030        

 ahoo.com&msg=w00 
 

  0x00a0   7420 6168 6f6f 2532 4563 6f6d 266d 7367        

 t.ahoo%2Ecom&msg 
 

  0x00b0   3d77 3030 7420 4854 5450 2f31 2e31 436f        

 =w00t.HTTP/1.1Co 
 

  0x00c0   6e74 656e 742d 5479 7065 3a20 6170 706c        

 ntent-Type:.appl 
 

  0x00d0   6963 6174 696f 6e2f 782d 7777 772d 666f        

 ication/x-www-fo 
 

  0x00e0   726d 2d75 726c 656e 636f 6465 640d 0a55        



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 rm-urlencoded..U 
 

  0x00f0   7365 722d 4167 656e 743a 2047 6f7a 696c        

 ser-Agent:.Gozil 
 

  0x0100   6c61 2f34 2e30 2028 636f 6d70 6174 6962        

 la/4.0.(compatib 
 

  0x0110   6c65 3b20 4d53 4945 2035 2e35 3b20 7769        

 le;.MSIE.5.5;.wi 
 

  0x0120   6e64 6f77 7320 3230 3030 290d 0a48 6f73        

 ndows.2000)..Hos 
 

  0x0130   743a 2077 7777 2e58 5858 5858 5858 580d        

 t:.www.XXXXXXXX. 
 

  0x0140   0a43 6f6e 6e65 6374 696f 6e3a 204b 6565        

 .Connection:.Kee 
 

  0x0150   702d 416c 6976 650d 0a0d 0a                    

 p-Alive.... 
 

        

 
 The datagrams feature an HTTP GET request. The packet payload has been 
 modified  to anonymize a host name; here it appears as www.XXXXXXXX. 
 The request may be easier to study when decoded and formatted in 
plain-text: 
 

   

GET /cgi-
bin/formmail.pl?email=f2@aol.com&subject=www.XXXXX\ 
 

    XXX/cgi-
bin/formmail.pl&recipient=sendipxx1@yahoo.com&m\ 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

    sg=w00t ahoo.com&msg=w00t HTTP/1.1Content-
Type: applica\ 
 

    tion/x-www-form-urlencoded 

 
 

User-
Agent: Gozilla/4.0.(compatible; MSIE 5.5; windows 2000) 

 
 

Host: www.XXXXXXXX 

 
 

Connection: Keep-Alive 

 
 

         

 
 
 RFC 2068 (IETF) 
 describes the HTTP/1.1 protocol. 
 This HTTP GET request has fascinating traits and irregularities: 

•  
• At offset 0xef we see an uncommon client identification in the 

header: 
• "User-Agent:  Gozilla/4.0 (compatible; MSIE 5.5; windows 2000)." 
• Googling 
• for Gozilla/4.0 finds it in many publicly accessible web-usage 

logs and summaries, so it does seem to be widespread in the wild. 
• Google  also finds this "Gozilla" in web access log 
• entries that Waldo Kitty posted to a SpamCop mailman list, 

http://news.spamcop.net/pipermail/spamcop-list/2002-
April/000254.html 

• (Kitty), 
• and others H D Moore posted to a "Mobile Code" mailing list,  
• http://citadelle.intrinsec.com/mailing/current/HTML/ml_mobile_co

de/0487.html (Moore). 
•   Those log entries bear a striking resemblance to this detect, 

so we'll 
• correlate  them in the forthcoming analysis. 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

•   
 

•  
• Gozilla.com (DigitalCandle) sells 
•  a product called Go!zilla, an HTTP client that 
•  downloads many web pages at once.  I obtained 
•  the free download of their version 4.11 and analyzed its 

traffic; 
•  it produces "Mozilla" User-Agent headers. 
•  I did not see it produce any "Gozilla" strings 
•  like the ones in this detect. 
•  (I cannot easily verify whether an earlier 
•  version is responsible for this traffic. My gut feeling 
•  is that Go!zilla is not guilty.) 

 
•     

 
•  
•  
•  A properly formed 
•  request URI terminates with the string HTTP/1.1, 
•  followed by a CRLF sequence (carriage 
•  return  and line feed, hex 0d 0a) 
•  and then request header information strings, if any. 
•  In this payload, look at offset 0xbe. 
•  There is no "0d 0a" between HTTP/1.1 and 
•  the  first request header, "Content-Type: application/x-www-

form-urlencoded." 
•  The logs in the SpamCop and digitaloffense list e-mails 

referenced above 
•  have the same "missing 0d 0a" anomaly; more about this in the 
•  "Correlations" section below.  Buggy HTTP client code probably 
•  causes this. 

 
•     

 
•  
•  
•   The string "w00t" (a 
• "Leet-speak" 
•   spelling for "root") 
•   at offset 0x9d raises a red flag, and the e-mail address 

f2@aol.com 
•   at offset 0x47 is interesting too. 
•   These appear in Kitty's and Moore's posts as well. 
•      

 
•      

 
•  
•  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

•  To see another irregularity, 
•  look at offsets 0x90 and 0xa2; we find the same 17-character 

substring 
•  "ahoo.com&msg=w00t" repeated at these offsets. 
•  (The dot is expanded as its hex code "%2E" in the second 

substring.) 
•  This too could be output from buggy HTTP code, 
•  but I prefer another explanation. 

 
•    

 
•  I believe this 
•  anomaly is an artifact of the packet content anonymization 

algorithm 
•  applied to the 2002.10.15 logfile. 
•  I suspect that XXXXXXXX represents more than eight censored 

characters. 
•  The rest of the URI was decoded 
•  (%2E sequences replaced with dots) and shifted. 
•  But the entire payload contents 
•  were not shifted, just the URI, 
•  leaving the leftover "ahoo%2Ecom&msg=w00t" extant 
•  in the censored packet. 
•   

 
•        

 
•  (Side note: my paranoid brain also wonders if 
•  the GIAC packet sanitizers  take sadistic pleasure in 
•  torturing GCIA candidates with such payload alterations. 
•  If the sanitizer is also the grader evaluating this practical 

detect, 
•  please accept my sincerest apology. <grin!>) 

 
•  

 
      

     3. Probability that the source address was spoofed: 

 
 Unlikely. A three-way TCP handshake was completed prior the client  
 sending this TCP datagram. In the upcoming description of the attack 
we'll  
 also see that the attacker was expecting a useful response 
 to this HTTP GET. 
 The arachnids reference at http://www.whitehats.com/info/IDS226/ 
 also mentions these two facts and agrees that the 
 source address was not spoofed. 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

   

     4: Description of attack: 

 
 The perpetrator seeks a web server offering Matt Wright's FormMail 
 (http://www.scriptarchive.com/formmail.html) (Wright), 
 a CGI script (formmail.pl) web-form to e-mail gateway. 
 The attacker wants to exploit an input 
 validation vulnerability to make FormMail send to any e-mail address. 
 The script 
 then becomes a vehicle for spamming 
 (sending unsolicited bulk e-mail). 
 
        
 
 
 The references in the Snort rule mention other potential 
vulnerabilities 
 as well. 
 The Nessus reference at  
http://cgi.nessus.org/plugins/dump.php3?id=10782  
 identifies this "spamming" vulnerability, 
 but also warns of 
 "file disclosure, environment variable disclosure, and more." 
 The other Nessus reference, 
http://cgi.nessus.org/plugins/dump.php3?id=10076,  
is an older warning; earlier FormMail versions' vulnerabilities 
allowed attackers to execute arbitrary code on the web server. 
The bugtraq reference at 
http://online.securityfocus.com/bid/1187  
discusses the disclosure vulnerabilities, and also lists several 
patches 
available to apply to older versions of FormMail. 
 
  
 
 Nevertheless, the packet data suggests, and correlated data 
 will indicate: this attacker wants to spam, 
 not disclose variables or execute other code. 
 
 
      

    5. Attack mechanism 

 
 
The attacker is expecting a response to this request.  The response 
could 
be an HTTP 404 (not found) or 403 (forbidden) status code, indicating 
that formmail.pl is not available.  But the response could also be an 
HTTP success status code such as 200 (ok), 
and if a vulnerable formmail.pl exists, it looks 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

like it might exploit it to send "w00t" in an e-mail to 
sendipxx1@yahoo.com, 
announcing to the attacker the spammer-friendly FormMail. 
 
  
 
Once a spammer has found a vulnerable formmail.pl, the attacker would 
continue to exploit it to send spam (instead of "w00t") to targeted e-
mail 
addresses (instead of sendipxx1@yahoo.com). 
 
      

    6. Correlations:  

 
 
 Here are some of the apache logs in Waldo Kitty's email: 
 
  

 
wks-65-30-178-154.kscable.com - - [01/Apr/2002:01:48:42 -
0500 
] "GET /cgi-
bin/formmail.pl?email=f2%40aol%2Ecom&subject=www% 
2Ewpusa%2Edynip%2Ecom%2Fcgi%2Dbin%2Fformmail%2Epl&recipient
=I 
bTricksteri%40aol%2Ecom&msg=w00t HTTP/1.1Content-Type: 
applic 
ation/x-www-form-urlencoded" 403 35 "-" "Gozilla/4.0 
(compati 
ble; MSIE 5.5; windows 2000)" 
 
acacdec2.ipt.aol.com - - [01/Apr/2002:04:06:22 -0500] "GET 
/c 
gi-
bin/formmail.pl?email=f2%40aol%2Ecom&subject=www%2Ewpusa%2 
Edynip%2Ecom%2Fcgi%2Dbin%2Fformmail%2Epl&recipient=spackbiz
%4 
0aol%2Ecom&msg=w00t HTTP/1.1Content-Type: application/x-
www-f 
orm-urlencoded" 403 35 "-" "Gozilla/4.0 (compatible; MSIE 
5.5 
; windows 2000)" 
 
clspdslgw2poold71.clsp.uswest.net - - [02/Apr/2002:09:52:12 
- 
0500] "GET /cgi-
bin/formmail.pl?email=f2%40aol%2Ecom&subject= 
www%2Ewpusa%2Edynip%2Ecom%2Fcgi%2Dbin%2Fformmail%2Epl&recip
ie 
nt=elulis%40aol%2Ecom&msg=w00t HTTP/1.1Content-Type: 
applicat 
ion/x-www-form-urlencoded" 403 35 "-" "Gozilla/4.0 
(compatibl 
e; MSIE 5.5; windows 2000)" 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
cm196.37.234.24.lvcm.com - - [03/Apr/2002:21:36:11 -0500] 
"GE 
T /cgi-
bin/formmail.pl?email=f2%40aol%2Ecom&subject=www%2Ewpu 
sa%2Edynip%2Ecom%2Fcgi%2Dbin%2Fformmail%2Epl&recipient=aimj
un 
kie%40yahoo%2Ecom&msg=w00t HTTP/1.1Content-Type: 
application/ 
x-www-form-urlencoded" 403 35 "-" "Gozilla/4.0 (compatible; 
M 
SIE 5.5; windows 2000)" 
 
ip68-12-222-253.ok.ok.cox.net - - [04/Apr/2002:09:20:44 -
0500 
] "GET /cgi-
bin/formmail.pl?email=f2%40aol%2Ecom&subject=www% 
2Ewpusa%2Edynip%2Ecom%2Fcgi%2Dbin%2Fformmail%2Epl&recipient
=s 
tilispamming%40aol%2Ecom&msg=w00t HTTP/1.1Content-Type: 
appli 
cation/x-www-form-urlencoded" 403 35 "-" "Gozilla/4.0 
(compat 
ible; MSIE 5.5; windows 2000)" 
 
msb-ts-slip22.umdnj.edu - - [05/Apr/2002:22:26:08 -0500] 
"GET 
 /cgi-
bin/FormMail.pl?email=lafam&subject=12%2E146%2E166%2E24 
2%2Fcgi%2Dbin%2FFormMail%2Epl&recipient=thisbeastro%40aol%2
Ec 
om&msg=Formmail_Found! HTTP/1.1Content-Type: application/x-
ww 
w-form-urlencoded" 404 225 "-" "Gozilla/4.0 (compatible; 
MSIE 
 5.5; windows 2000)" 

 (Kitty) 

 
 The same anomalies noted in our detect are evident here: missing "0d 
0a" 
 after HTTP/1.1, "msg=w00t" and "f2@aol.com" in most entries, 
 and "Gozilla" User-Agent strings. 
 Also, the sources all seem to be hosts on dial-up, 
 DSL, or Cable broadband networks, just like our detect. 
 All these facts are also true of H D Moore's logs. 
 I won't copy them here, but his e-mail subject line is poignant: 
 "Re: SPAMMERS DELIGHT: as feeble as feeble can be." (Moore) 
 
 
  
 
 These bolster our assessment that this attack represents 
reconnaissance 
by a would-be spammer. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
      
 
 Michael Holstein, GCIA, found a targeted formmail.pl attack featuring 
actual 
spam, and discussed the detect in his practical, 
http://www.giac.org/practical/Michael_Holstein_GCIA.doc. (Holstein) 
 
   
 
 See also 
http://wlofie.dyndns.org/greymatter12/archives/00000011.htm 
 to read a recent (October 2002) rant about these FormMail probes. 
(Wlofie) 
 
 
  
      

    7. Evidence of active targeting: 

 
 
       This packet is part of a general scan, 
looking for vulnerable formmail.pl scripts.  The 
scan is targeted at web servers, but 170.129.50.3 hasn't 
yet been singled out as a vulnerable target begging the 
spammer's further attention.  
 
      

    8 Severity: 

 
 
 Criticality: (3) 
The host is a web server accessible from the public network.  
 
 
 Lethality: (4) 
The protected network may suffer serious consequences, such 
as blocking, blacklisting, or diminished reputation, 
if it harbors a web server that spawns spam.  
 
 
 
 System Countermeasures: (3) 
This is difficult to determine; since we do not 
know any details about the web server's configuration.  This median 
score  
is based only on unfounded speculation that /cgi-bin/formmail.pl does 
not  
exist on this host, or if it does, it is an up-to-date version. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
 
 Network Countermeasures: (2) 
The firewall allows port 80 traffic to this host, so no HTTP-based 
exploits 
will be blocked.  
 
  
 
 Criticality + Lethality - System Countermeasures - Network 
Countermeasures  
= 2.  Concern is in order, but don't panic. 
 
  
 
intrusions@incidents.org feedback: 
archived at  
 
http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00154.html, 
http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00164.html, 
http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00165.html, 
and 
http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00172.html. 
 
 
Daniel Wesserman felt 
that these HTTP GETs are 
so badly formed that they should give HTTP 400 errors, not 404 or 
403, and that this fact makes the detect less lethal. 
I had no reason to doubt Kitty's, Moore's, 
or Wlofie's evidence otherwise, but I did some "telnet to port 80" 
experiments on some of my employer's web servers. 
I discovered that while Mr. Wesserman's observation is true 
of recent Apache servers, some IIS web servers don't really care 
how badly HTTP syntax gets mangled. I have no reason to doubt 
that these probes do in fact find vulnerable scripts on some 
web servers. 
      

    9: Defensive recommendations: 

 
  

 
  

•  Ensure that the web server does not 
•   offer a vulnerable formmail.pl. 

 
  

• Review the web server access and error logs;  analyze any 
additional 

•   "formmail," "Gozilla," or "w00t" substring instances found. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
 
      

    10: Multiple choice test question: 

 
 
Consider the following web server access log entry:  

 
msb-ts-slip22.umdnj.edu - - [05/Apr/2002:22:26:08 -0500] 
"GET 
 /cgi-
bin/FormMail.pl?email=lafam&subject=12%2E146%2E166%2E24 
2%2Fcgi%2Dbin%2FFormMail%2Epl&recipient=thisbeastro%40aol%2
Ec 
om&msg=Formmail_Found! HTTP/1.1Content-Type: application/x-
ww 
w-form-urlencoded" 404 225 "-" "Gozilla/4.0 (compatible; 
MSIE 
 5.5; windows 2000)" 

 
With which of the following Snort alert messages would this entry most 
likely 
correlate? 
 
 
 
a) WEB-CGI formmail access 
 
b) WEB-CGI phf access 
 
c) WEB-ATTACKS /usr/bin/id command attempt 
 
c) WEB-ATTACKS mail command attempt 
 
     
 
       (answer: a) 
 

References 

 
 
DigitalCandle. "Go!Zilla." Home page. 2002. 
URL:http://gozilla.com/ (29 Jan. 2003) 
 
 
  
 
Holstein, Michael. "SANS GCIA Practical Assignment." SANS GIAC. 
URL:http://www.giac.org/practical/Michael_Holstein_GCIA.doc (29 Jan. 
2003) 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
  
 
IETF. "Hyperttext Transfer Protocol -- HTTP/1.1." RFC 2068. Jan. 1997. 
URL:http://www.ietf.org/rfc/rfc2068.txt (29 Jan. 2003) 
 
 
  
 
Kitty, Waldo. "Re: Is open proxies something new (in SpamCop)?" 
E-mail to SpamCop-List. 10 Apr. 2002. 
URL:http://news.spamcop.net/pipermail/spamcop-list/2002-
April/000254.html 
(29 Jan. 2003) 
 
 
  
 
Latis. "StillSecure." Latis Networks home page. 2002. 
URL:http://www.latis.com/ (29 Jan. 2003) 
 
  
 
 
Moore, H D. "Re: SPAMMERS DELIGHT: as feeble as feeble can be." E-mail 
to "Mailing List Mobile Code." 11 Dec 2001. 
URL:http://citadelle.intrinsec.com/mailing/current/HTML/ml_mobile_code/
0487.html (29 Jan. 2003) 
 
  
 
 
Snort. "Snort, The Open Source Network Intrusion Detection System." 
URL:http://www.snort.org/ (29 Jan. 2003) 
 
 
  
 
Wlofie. "formmail is in season." wlofie'z GrayMatter blog. 1 Oct. 2002. 
URL:http://wlofie.dyndns.org/greymatter12/archives/00000011.htm 
(29 Jan. 2003) 
 
 
  
 
Wright, Matt. "Matt's Script Archive: FormMail." 21 Apr. 2002. 
URL:http://www.scriptarchive.com/formmail.html (29 Jan. 2003) 
 
  
 
 

Part 3 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

``Analyze This'' 
 
 
 
To: Director of Network Security, Practical University 
 
From: Carl Gibbons 
 
Subject: Analysis of  30 Dec 2002 - 3 Jan 2003 Snort Logs 
 
 
 

Executive Summary 
 
 
At your instruction, I obtained the files listed below, 
and confirmed that they contain Snort data collected at PU 
between 
Monday 30 December 2002 and Friday 3 January 2003 inclusive. 
 
  
 

 
file name size (bytes) timestamp 
OOS_Report_2002_12_31_10852 665,603   Tue Dec 31 00:05:23 2002 
alert.021230.gz 593,661   Fri Jan 3 05:00:44 2003 
scans.021230.gz 2,695,953   Fri Jan 3 05:00:46 2003 
OOS_Report_2003_01_01_19650 337,923   Wed Jan 1 00:05:17 2003 
alert.021231.gz 2,518,917   Sat Jan 4 05:00:47 2003 
scans.021231.gz 13,579,786   Sat Jan 4 05:01:04 2003 
OOS_Report_2003_01_02_2030 240,643   Thu Jan 2 00:05:23 2003 
alert.030101.gz 2,447,686   Sun Jan 5 05:00:49 2003 
scans.030101.gz 9,849,273   Sun Jan 5 05:01:01 2003 
OOS_Report_2003_01_03_17638 460,803   Fri Jan 3 00:05:21 2003 
alert.030102.gz 1,097,007   Mon Jan 6 05:04:03 2003 
scans.030102.gz 5,079,538   Mon Jan 6 05:04:38 2003 
OOS_Report_2003_01_04_29001 312,323   Sat Jan 4 00:05:19 2003 
alert.030103.gz 1,380,119   Tue Jan 7 05:00:54 2003 
scans.030103.gz 6,035,144   Tue Jan 7 05:01:04 2003 

 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
  
 
 
I have analyzed these  
and organized the attached report as follows. 

  

•  Statistcal Overview 
•    

o  Data volume and distribution 
o    
o  Non-targeted scanning activity by remote hosts 
o    
o  Targeted scanning activity by remote hosts 
o    
o  Alert summary 
o    

•  
•  Top ten events of interest ("top talkers") 
•  

1.  Alerts: Russia Dynamo, 194.87.6.75 <--> MY.NET.105.204 
2.  
3.  Alerts: IIS Unicode attacks, MY.NET.112.204 ---> 

61.236.39.3 
4.  
5.  Alerts: IIS Unicode attacks, 209.196.6.226 ---> 30 PU 

targets 
6.  
7.  Alerts: IIS Unicode attacks, 5 remote hosts ---> 

MY.NET.70.207 
8.  
9.  Alerts: IIS Unicode and Nimda attacks, 
10.                   MY.NET.71.230 ---> 1,569 remote 

targets 
11.  
12.  Alerts: SMB Name Wildcard, 81.50.52.235 ---> 862 PU 

hosts, 
 

13.             and SMB Name Wildcard and SMB C Access, 
14.           ma ny remote and local hosts 
15.  
16.  Alerts: High port 65535 tcp, 72 remote hosts <--> 17 PU 

hosts 
17.  
18.  Alerts: TFTP UDP connections, 5 PU TFTP servers ---> 

192.168.0.253 
19.  
20.  Alerts: Watchlist 000220 IL-ISDNNET-990517, 
21.           many remote and local hosts 
22.  
23.  Scans/OOS: peer-to-peer (P2P) file sharing, 
24.           many remote and local hosts 
25.  

•  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

•  Tools and processes used in this analysis 
•   

o  snort-rep and "Perl Munging." 
o   
o  Post-analysis 
o   

•  

 
Defensive recommendations are included throughout the report 
for each item outlined, 
and for your convenience are marked with boldface 
Defensive recommendation prefixes. 
Your security team should study and verify this report, 
and compare its findings with your own 
and those of your other consultants. 
Thank you! - CG 
 
  
 
 
  
 

 
  
 
 

Statistical Overview 
 
 

Data volume and distribution 

 
 
Table 1: log entries 
 
  
 
 

842,113 entries in alert logs  
43 distinct alert types in alert logs (excluding portscan alerts) 

4,599,575 entries in scan logs 
6,254 entries in "Out-Of-Spec" (OOS) logs  

 
 
   
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Of the alert file entries, 841,985 alerts were processed using 
automated tools, but 148 malformed entries had to be inspected 
manually. 
The malformed entries suggest that 
there may be a problem with your Snort alert logging architecture, 
or possibly a problem in the Snort code itself. 
See the "Tools and Processes" section for details. 
 
 
  
 
Monday's scan and alert log files have an eighteen hour gap 
of no logged data between 00:40 and 18:38. I shall assume 
that your host that records Snort alert logs was offline, 
possibly for end-of-year maintenance, during this period. 
 
 
  
 
The volume of log data is consistent with what 
I expect of holiday time, "between semesters" traffic at 
a University. The largest alert and scan logs are those of 
New Year's Eve and New Year's Day. 
 
 
  
 
For each alert and scan file, 
there is a delay (approximately three days five hours) 
between the timestamp of the last event in that file 
and the timestamp of the file itself. This may be 
the result of an improperly synchronized system clock 
on a machine that handled these files, but 
could also be the result of regular or automated tampering 
of these files. 
Therefore, unless chain-of-custody issues regarding these data are 
resolved, 
I don't recommend using the information in this report as evidence in 
support 
of disciplinary or legal action against any individual or entity. 
Defensive recommendation: 
review procedures for handling log data. 
 

Non-targeted scanning activity by remote hosts 

 
 
Table 2: portscan breakdown 
 
  
 
 

20 remote hosts scanned 3000 or more PU hosts or ports, 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

52 remote hosts scanned 300-2999 PU hosts or ports, 
203 remote hosts scanned 30-299 ports, 
212 remote hosts scanned 30-299 PU hosts, 
233 remote hosts scanned 29 or fewer ports, 
226 remote hosts scanned 29 or fewer PU hosts, 
508 portscanning remote hosts detected in total.  
 
 
 
  
 
Table 3: top twenty portscanning remote hosts: 
 
  
 
 
=========================== 
ports hosts remote host     
=========================== 
72370 68285 80.14.115.177   
20850 20207 150.187.177.12  
18927 13049 81.50.52.235    
11517 11313 202.181.214.4   
 9802 9562  194.248.237.100 
 8778 8474  67.113.252.218  
 8475 8377  208.176.192.14  
 8030 4     24.201.216.239  
 7765 6786  80.200.151.134  
 7508 7281  147.134.96.17   
 6580 6457  208.8.19.34     
 6010 5937  193.194.50.9    
 5923 5800  218.145.194.187 
 5864 5804  62.4.16.140     
 5847 5762  204.215.188.182 
 5711 5678  12.164.194.254  
 4959 4607  24.201.118.234  
 4847 4587  194.15.164.33   
 4519 4369  210.255.49.131  
 3957 3878  209.196.6.226   
 
  
 
 
 
  
 
All of the top twenty were systematic scans of PU hosts, looking for 
the following potentially exploitable services: 
Microsoft Networking/NBT/CIFS (TCP ports 135, 139, 445; UDP port 137), 
Radmin (TCP port 4899), 
web servers (TCP ports 80, 443), 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Microsoft Terminal Services (TCP port 3389), 
ssh (port 22), 
SOCKS (port 1080), 
and Microsoft SQL Server (TCP port 1433). 
Defensive recommendation: 
a properly configured firewall and regular vulnerability assessment 
scanning 
are desirable countermeasures against such reconnaissance. 
 
  
 
Most of the top twenty portscanners were also taking advantage of 
the holiday; their probes occurred between 07:42 Tuesday and 
13:08:55 Thursday. Perhaps they are hoping that their holiday scans 
will pass unnoticed. 
 

Targeted scanning activity by remote hosts 

 
 
Of particular concern are the remote hosts that targeted particular 
PU hosts for extensive port scanning. Let's look at five of these 
incidents in detail. 
 
  
 
 
Table 4: portscan events by remote hosts 
probing an average of 10 or more ports per scanned PU host: 
 
  
 
 
================================== 
ports hosts remote host    ratio 
================================== 
 8030 4     24.201.216.239  2007.5 
  116 1     208.185.54.31    116 
   29 1     194.176.61.59     29 
  122 5     131.118.254.1     24 
   65 5     193.163.220.4     13 
 
  
 
 
The scans.030103.gz logs show 
that the remote machine 24.201.216.239 
(modemcable239.216-201-24.que.mc.videotron.ca) 
probed TCP ports 1-4992 
of MY.NET.150.213 between 21:17 and 21:23 on Friday: 
 
 
Jan  3 21:17:44 24.201.216.239:1096 -> MY.NET.150.213:1 SYN ******S*  
Jan  3 21:17:44 24.201.216.239:1099 -> MY.NET.150.213:4 SYN ******S*  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Jan  3 21:17:43 24.201.216.239:1102 -> MY.NET.150.213:7 SYN ******S*  
Jan  3 21:17:44 24.201.216.239:1103 -> MY.NET.150.213:8 SYN ******S*  
... 
Jan  3 21:23:20 24.201.216.239:2572 -> MY.NET.150.213:4991 SYN ******S*  
Jan  3 21:23:20 24.201.216.239:2573 -> MY.NET.150.213:4992 SYN ******S*  
Jan  3 21:23:20 24.201.216.239:2565 -> MY.NET.150.213:4985 SYN ******S*  
 
The alert.0301030.gz logs also show that a TFTP server on 
MY.NET.150.213 responded affirmatively to these TCP probes, 
so this event and the involved PU host merit attention: 
 
01/03-21:17:47.261629  [**]  
TFTP - External TCP connection to internal tftp server [**]  
24.201.216.239:1164 -> MY.NET.150.213:69 
 
01/03-21:17:47.261815  [**]  
TFTP - External TCP connection to internal tftp server [**]  
MY.NET.150.213:69 -> 24.201.216.239:1164 
 
 
  
 
Other alerts show that another remote host, 
12.240.219.52, also elicited TFTP responses from UDP probes 
to MY.NET.150.213 at 05:34 that same day. 
There are viruses/worms that run TFTP servers 
to propagate themselves or provide backdoors on infected hosts; 
MY.NET.150.213 may be infected. 
 
  
 
Also, the alerts show that many times on Thursday and Friday 
it exchanged UDP port 65535 datagrams with seventeen different outside 
hosts, 
but these exchanges may be WinMX (http://www.winmx.com) 
peer-to-peer file sharing traffic, as they are all between 
WinMX's local port 6257 and remote port 65535. 
Defensive recommendation: 
please consider MY.NET.150.213 compromised, and 
quarantine it for further investigation by your security team. 
 
  
 
The remote host 208.185.54.31 
(208.185.54.31.speedera.com) 
probed random UDP ports at MY.NET.112.210. 
There is no evidence in the logs that the target responded. 
 
  
 
The remote host 194.176.61.59 probed MY.NET.53.31 
for many well known trojan TCP ports, 
such as 31337 (BackOrifice) and 12345 (Netbus). 
These were definitely hostile scans, 
but there is no evidence in the logs that the target responded. 
Defensive recommendation: 
Please report these hostile scans to the Lithuanian address reported by 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

RIPE Whois (RIPE): 
 
inetnum:      194.176.61.0 - 194.176.61.255 
netname:      OMNITEL-CUSTOMERS 
descr:        OMNITEL-CUSTOMERS 
country:      LT 
admin-c:      ODA1-RIPE 
tech-c:       ODA1-RIPE 
rev-srv:      ns1.omnitel.net 
rev-srv:      ns2.omnitel.net 
status:       ASSIGNED PA 
notify:       hostmaster@omnitel.net 
mnt-by:       AS5522-MNT 
changed:      m.malakauskas@omnitel.net 20020613 
source:       RIPE 
 
route:        194.176.61.0/24 
descr:        OMNITEL customer block 
origin:       AS5522 
notify:       hostmaster@omnitel.net 
mnt-by:       AS5522-MNT 
changed:      m.malakauskas@omnitel.net 20020717 
source:       RIPE 
 
person:       OMNITEL DNS Administrator 
address:      T.Sevcenkos 25 
address:      Vilnius 2600 
address:      Lithuania 
phone:        +370 2 221712 
fax-no:       +370 2 220627 
e-mail:       hostmaster@omnitel.net 
nic-hdl:      ODA1-RIPE 
notify:       hostmaster@omnitel.net 
changed:      s.kazlauskas@omnitel.net 19981207 
source:       RIPE 
 
 
  
 
The DNS server 131.118.254.1 
(ns.ums.edu) 
had a habit of rapidly spraying UDP datagrams 
from source port 53 (DNS) at several consecutive ports of 
MY.NET.137.46. This is not customary DNS server behavior. 
Perhaps these are responses to stimuli spoofed with MY.NET.137.46's 
address. 
Throughout the week there are several 
Microsoft Networking (SMB Name Wildcard, SMC C access) 
alerts on traffic to MY.NET.137.46, but nothing that correlates with 
the port 53 bursts. 
 
  
 
The scanner at 193.163.220.4 
(proxy-scanner.eris.dk) 
rapidly probed each of 
 MY.NET.83.188, MY.NET.60.40, and MY.NET.27.210 for ports 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

80, 8080, 8081, 3128, 1080, 6552, 5104, 5262, 4438, 5634, 7113, 7464, 
and 23, 
in that order. 
This scanning pattern is common among IRC server operators. 
There are 131 IRC entries in the alert logs 
that correlate with the probes to MY.NET.83.188. 
 
 

Alert summary 

 
 
Table 5: Alert instance counts (excluding portscans) 
 
  
 
 
 
============================================================================ 
   %      #      description                                                 
============================================================================ 
42.8 156445      Russia Dynamo - SANS Flash 28-jul-00                        
13.8  50323      spp_http_decode: IIS Unicode attack detected                
13.5  49282      SMB Name Wildcard                                           
13.4  48854      High port 65535 tcp - possible Red Worm - traffic           
 7.4  27022      TFTP - External UDP connection to internal tftp server      
 2.9  10530      Watchlist 000220 IL-ISDNNET-990517                          
 2.5   9106      NIMDA - Attempt to execute cmd from campus host             
 0.7   2647      High port 65535 udp - possible Red Worm - traffic           
 0.6   2033      spp_http_decode: CGI Null Byte attack detected              
 0.5   1943      Queso fingerprint                                           
 0.4   1354      Watchlist 000222 NET-NCFC                                   
 0.4   1336      NIMDA - Attempt to execute root from campus host            
 0.3   1027      IRC evil - running XDCC                                     
 0.2    849      External RPC call                                           
 0.2    587      SUNRPC highport access!                                     
 0.1    385      Tiny Fragments - Possible Hostile Activity                  
 0.1    283      Incomplete Packet Fragments Discarded                       
 0.1    275      Null scan!                                                  
 0.1    184      SMB C access                                                
 0.0    157      Port 55850 tcp - Possible myserver activity - ref. 010313-1 
 0.0    144      TFTP - Internal UDP connection to external tftp server      
 0.0    137      EXPLOIT x86 NOOP                                            
 0.0     84      Possible trojan server activity                             
 0.0     81      NMAP TCP ping!                                              
 0.0     56      EXPLOIT x86 setuid 0                                        
 0.0     35      EXPLOIT x86 setgid 0                                        
 0.0     26      Attempted Sun RPC high port access                          
 0.0     18      TCP SRC and DST outside network                             
 0.0     16      Port 55850 udp - Possible myserver activity - ref. 010313-1 
 0.0     15      FTP passwd attempt                                          
 0.0     12      RFB - Possible WinVNC - 010708-1                            
 0.0     10      TFTP - External TCP connection to internal tftp server      
 0.0      9      EXPLOIT x86 stealth noop                                    



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 0.0      3      EXPLOIT NTPDX buffer overflow                               
 0.0      2      ICMP SRC and DST outside network                            
 0.0      2      IDS552/web-iis_IIS ISAPI Overflow ida nosize                
 0.0      2      Probable NMAP fingerprint attempt                           
 0.0      1      Back Orifice                                                
 0.0      1      External FTP to HelpDesk MY.NET.70.49                       
 0.0      1      External FTP to HelpDesk MY.NET.70.50                       
 0.0      1      SYN-FIN scan!                                               
 0.0      1      connect to 515 from outside                                 
 
=============================================================================== 
 
 
 
  
 
Even though each of these 43 alerts represent potential network abuse, 
not all of them are discussed here. 
With one exception (peer-to-peer traffic), 
each of the top ten events of interest 
correspond to one of the top seven alerts. 
However, the analyses below 
also include discussion of many of the less common alerts, 
when they occur concurrently with a "top-ten talker's" attack, 
or help to explain one. 
 
  
 
The following three tables identify the 
top alert generators among remote hosts, local hosts, and local 
port numbers. These were used to help identify the top 
ten events of interest ("top talkers"). 
 
  
 
 
Table 6: Alert summary, remote hosts 
detected in more than 1000 instances of a triggered alert: 
 
  
 
 
 
=============================================================================== 
     # remote host          description                                         
=============================================================================== 
156445 194.87.6.75          Russia Dynamo - SANS Flash 28-jul-00                
 27021 192.168.0.253        TFTP - External UDP connection to internal tftp     
                            server                                              
 26797 61.236.39.3          spp_http_decode: IIS Unicode attack detected        
 14818 217.136.65.154       High port 65535 tcp - possible Red Worm - traffic   
  8452 81.50.52.235         SMB Name Wildcard                                   
  7882 80.200.151.134       High port 65535 tcp - possible Red Worm - traffic   
  5285 217.136.157.114      High port 65535 tcp - possible Red Worm - traffic   



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

  5034 80.200.117.120       High port 65535 tcp - possible Red Worm - traffic   
  3196 172.179.155.153      High port 65535 tcp - possible Red Worm - traffic   
  2890 209.196.6.226        spp_http_decode: IIS Unicode attack detected        
  2848 80.15.81.185         High port 65535 tcp - possible Red Worm - traffic   
  2161 212.179.96.28        Watchlist 000220 IL-ISDNNET-990517                  
  1818 62.23.74.165         spp_http_decode: IIS Unicode attack detected        
  1757 212.179.104.42       Watchlist 000220 IL-ISDNNET-990517                  
  1522 212.179.103.3        Watchlist 000220 IL-ISDNNET-990517                  
  1396 212.179.107.228      Watchlist 000220 IL-ISDNNET-990517                  
  1044 217.128.204.221      High port 65535 tcp - possible Red Worm - traffic   
 
 
 
  
 
Table 7: Alert summary, local hosts 
detected in more than 1000 instances of a triggered alert: 
 
  
 
 
 
=============================================================================== 
     # local host          description                                          
=============================================================================== 
156445 MY.NET.105.204      Russia Dynamo - SANS Flash 28-jul-00                 
 26798 MY.NET.112.204      spp_http_decode: IIS Unicode attack detected         
 25957 MY.NET.84.151       High port 65535 tcp - possible Red Worm - traffic    
 19919 MY.NET.88.193       High port 65535 tcp - possible Red Worm - traffic    
  9104 MY.NET.71.230       NIMDA - Attempt to execute cmd from campus host      
  5418 MY.NET.111.235      TFTP - External UDP connection to internal tftp      
                           server                                               
  5414 MY.NET.111.232      TFTP - External UDP connection to internal tftp      
                           server                                               
  5410 MY.NET.111.219      TFTP - External UDP connection to internal tftp      
                           server                                               
  5393 MY.NET.111.231      TFTP - External UDP connection to internal tftp      
                           server                                               
  5386 MY.NET.111.230      TFTP - External UDP connection to internal tftp      
                           server                                               
  4574 MY.NET.71.230       spp_http_decode: IIS Unicode attack detected         
  2907 MY.NET.91.104       Watchlist 000220 IL-ISDNNET-990517                   
  2580 MY.NET.198.220      High port 65535 tcp - possible Red Worm - traffic    
  2073 MY.NET.70.207       spp_http_decode: IIS Unicode attack detected         
  1957 MY.NET.84.193       Watchlist 000220 IL-ISDNNET-990517 
  1806 MY.NET.113.4        Watchlist 000220 IL-ISDNNET-990517                   
  1724 MY.NET.183.26       spp_http_decode: IIS Unicode attack detected         
  1486 MY.NET.84.133       spp_http_decode: IIS Unicode attack detected         
  1336 MY.NET.71.230       NIMDA - Attempt to execute root from campus host     
  1066 MY.NET.70.176       High port 65535 udp - possible Red Worm - traffic    
  1050 MY.NET.83.146       High port 65535 udp - possible Red Worm - traffic 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
  
 
Table 8: 
Alert summary, local ports associated with 100 or more alerts 
 
  
 
 
 
============================================================================== 
    # port              description                                           
============================================================================== 
  165 ftp               Watchlist 000222 NET-NCFC                              
  802 smtp              Queso fingerprint                                      
 8257 http              spp_http_decode: IIS Unicode attack detected          
 1071 http              Queso fingerprint                                     
  419 http              Watchlist 000222 NET-NCFC                             
  849 sunrpc            External RPC call                                     
49282 netbios-ns        SMB Name Wildcard                                     
  184 netbios-ssn       SMB C access                                          
22530 1191              Russia Dynamo - SANS Flash 28-jul-00                  
 4146 1214              Watchlist 000220 IL-ISDNNET-990517                    
  307 1237              Watchlist 000220 IL-ISDNNET-990517                    
 1957 2418              Watchlist 000220 IL-ISDNNET-990517                    
  844 2435              Watchlist 000220 IL-ISDNNET-990517                    
  609 2502              Watchlist 000220 IL-ISDNNET-990517                    
  191 2515              Watchlist 000222 NET-NCFC                             
  552 2681              Watchlist 000220 IL-ISDNNET-990517                    
10117 2718              Russia Dynamo - SANS Flash 28-jul-00                  
 1561 3144              Russia Dynamo - SANS Flash 28-jul-00                  
23977 3514              Russia Dynamo - SANS Flash 28-jul-00                  
  569 4125              Watchlist 000220 IL-ISDNNET-990517                    
 7100 4930              Russia Dynamo - SANS Flash 28-jul-00                  
 1177 6257              High port 65535 udp - possible Red Worm - traffic     
  587 32771             SUNRPC highport access!                               
26813 65535             High port 65535 tcp - possible Red Worm - traffic     
 
  
 
 

Top ten events of interest ("top talkers") 
 
 

Alerts: Russia Dynamo, 194.87.6.75 <--> MY.NET.105.204 

 
In July 2000, SANS reported a widespread infestation of 
hostile code which sent traffic to the 194.87.6.0/24 
(*.dynamic.dol.ru) network. 
See  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://archives.neohapsis.com/archives/sans/2000/0068.html (SANS[1]) 
and 
http://www.sans.org/y2k/072818.htm (Northcutt) 
for background information on these alerts. 
Miika Turkia, GCIA (Turkia), who also studied a previous year's 
end-of-year alerts, 
also noticed this traffic and called it "weird." He 
suggested that the local host may have been Trojan-horse compromised. 
 
  
 
Traffic between MY.NET.105.204 and 194.87.6.75 
(75.6.87.194.dynamic.dol.ru) 
occurs in constant streams for the following intervals: 

•  
•  20:57-23:17 New Year's Eve (local port 3514) 
•  
•  
•  03:53-05:42 New Year's Day (local port 1191) 
•  
•  
•  05:53-06:26 New Year's Day (local port 4930) 
•  
•  
•  07:46-08:31 New Year's Day (local port 2718) 
•  
•  
•  08:35-08:42 New Year's Day (local port 3144) 
•  

 
If you are paranoid, examine MY.NET.105.204 for signs of a Trojan. 
But it's more likely that these alerts represent 
five harmless sessions of streaming traffic, 
such as a video conference, between a Russian student stuck 
at PU for the holiday, and the dynamic.dol.ru customer for 
whom he or she is homesick. 
 

Alerts: IIS Unicode attacks, MY.NET.112.204 ---> 
61.236.39.3  

 
 
Bugtraq id 1806 
(SecurityFocus Online) 
discusses these attacks in detail. 
Attackers send carefully written URLs to an unpatched Microsoft IIS 
hosts, 
and the results can include unauthorized disclosure, modification, 
deletion, 
or execution of files. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Bugtraq alert warns of worms 
loose in the wild that explioit this vulnerability. 
These are alerts we should take seriously. 
 
 
 
  
 
Microsoft has revised their security bulletin 
MS00-078 (Microsoft Technet) 
regarding this alert. They have released a patch that not only 
fixes this vulnerability, but another as well. 
Defensive recommendation: 
Please ensure that all PU-owned servers that run IIS are patched. 
 
 
  
 
There were 1811 distinct remote hosts and 
428 distinct local hosts among the 50,323 "IIS Unicode" alerts. 
More than half (26,797; 53%) were caused by relentless 
traffic from MY.NET.112.204 to 61.236.39.3, 
starting at 11:46 on New Year's Eve and continuing 
(seldom interrupted) through 00:07 Friday morning. 
 Return traffic from 61.236.39.3 also 
triggered four "EXPLOIT x86 set[ug]id" alerts at 
widely spaced intervals during the same time period, 
which increases my suspicion that these alerts represent 
malicious traffic. 
Defensive recommendation: 
Please quarantine and investigate MY.NET.112.204. 
If you wish to contact the remote network administrator about this 
event, 
APNIC Whois 
has the following records regarding 61.236.39.3: 
 
  
 
 
inetnum:      61.232.0.0 - 61.237.255.255 
netname:      CRTC 
country:      CN 
descr:        CHINA RAILWAY TELECOMMUNICATIONS CENTER 
admin-c:      LQ112-AP 
tech-c:       LM273-AP 
status:       ALLOCATED PORTABLE 
changed:      ipas@cnnic.net.cn 20030121 
mnt-by:       MAINT-CNNIC-AP 
source:       APNIC 
 
person:       LV QIANG 
nic-hdl:      LQ112-AP 
e-mail:       lq@crc.net.cn 
address:      22F Yuetan Mansion,Xicheng District,Beijing,P.R.China 
phone:        +86-10-51890499 
fax-no:       +86-10-51890674 
country:      CN 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

changed:      ipas@cnnic.net.cn 20030121 
mnt-by:       MAINT-CNNIC-AP 
source:       APNIC 
 
person:       liu min 
nic-hdl:      LM273-AP 
e-mail:       mliu@crc.net.cn 
address:      22F Yuetan Mansion,Xicheng District,Beijing,P.R.China 
phone:        +86-10-51848796 
fax-no:       +86-10-51842426 
country:      CN 
changed:      ipas@cnnic.net.cn 20030121 
mnt-by:       MAINT-CNNIC-AP 
source:       APNIC 
 
mntner:       MAINT-CNNIC-AP 
descr:        Computer Network Information Center 
descr:        Chinese Academy of Science 
admin-c:      HQ1-CN 
tech-c:       MW1-AP 
upd-to:       dbmon@apnic.net 
auth:         NONE 
notify:       dbmon@apnic.net 
mnt-by:       MAINT-CNNIC-AP 
referral-by:  MAINT-NULL 
changed:      hostmaster@apnic.net 970408 
source:       APNIC 
 
person:       Hualin Qian 
address:      Chinese Academy of Sciences 
address:      Computer Network Center 
address:      P.O.Box 2418-26 
address:      Beijing, 100081 
address:      CN 
phone:        +86 1 2569960 
e-mail:       hlqian@ns.cnc.ac.cn 
nic-hdl:      HQ1-CN 
notify:       dbmon@apnic.net 
mnt-by:       MAINT-NULL 
changed:      hostmaster@apnic.net 19950419 
source:       APNIC 
 
person:       Mao Wei 
address:      China Internet Information Center(CNNIC) 
  No. 4 of South street ,Zhongguancun,Haidian District 
address:      Beijing,100080 
address:      P.R.China 
country:      CN 
phone:        +86-10-62619750 
fax-no:       +86-10-62559892 
e-mail:       mao@cnnic.net.cn 
nic-hdl:      MW1-AP 
mnt-by:       MAINT-CNNIC-AP 
changed:      IPAS@CNNIC.NET.CN 20010319 
source:       APNIC 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Alerts: IIS Unicode attacks, 209.196.6.226 ---> 30 PU 
targets 

 
 
Remote host 209.196.6.226 (226-209.196.6.dellhost.com) 
triggered this alert 2,890 
times, and that host is also a top twenty remote portscanner. 
ARIN Whois identifies 
Atlanta-based Interliant as responsible for 209.196.6.0/24: 
 
OrgName:    Interliant 
OrgID:      INTERL-38 
 
NetRange:   209.196.6.0 - 209.196.6.255 
CIDR:       209.196.6.0/24 
NetName:    ILNT-DH37 
NetHandle:  NET-209-196-6-0-1 
Parent:     NET-209-196-0-0-1 
NetType:    Reassigned 
NameServer: NS1.US.DELLHOST.COM 
Comment: 
RegDate:    2001-08-17 
Updated:    2001-08-17 
 
TechHandle: AG138-ARIN 
TechName:   Galiano, Aj 
TechPhone:  +1-770-673-2202 
TechEmail:  neteng@sagenetworks.com 
 
 
This remote machine alerted 
on traffic to each of the following 30 PU hosts no fewer than 20 times, 
so the attacks may have been focused on these specific PU targets. 
Defensive recommendation: 
Contact Interliant and ask about these scans. 
 
 
 
 MY.NET.5.92     MY.NET.91.8     MY.NET.113.208  MY.NET.130.122 
 MY.NET.5.95     MY.NET.91.154   MY.NET.130.14   MY.NET.130.187 
 MY.NET.11.2     MY.NET.104.177  MY.NET.130.27   MY.NET.132.42 
 MY.NET.29.3     MY.NET.105.204  MY.NET.130.34   MY.NET.136.2 
 MY.NET.29.10    MY.NET.106.191  MY.NET.130.40   MY.NET.150.101 
 MY.NET.70.207   MY.NET.106.222  MY.NET.130.86   MY.NET.157.12 
 MY.NET.83.248   MY.NET.110.76   MY.NET.130.91   MY.NET.157.52 
 MY.NET.86.19    MY.NET.111.21 
 
Of these 30 hosts, MY.NET.130.187 triggers "Internal UDP 
connection to external tftp server" for seven distinct remote 
addresses, 
three of which are RFC-1918 addresses (see illustration). 
This is behavior consistent with 
an infected machine trying to propagate its virus via TFTP. 
Defensive recommendation: 
Please quarantine this host and investigate whether it is compromised. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Code Blue (Sophos[1]) 
is one example of code that exploits the IIS Unicoce vulnerability 
and propagates via TFTP. I don't believe MY.NET.130.187 is 
infected with Code Blue, because I don't see other 
signatures of Code Blue infection, such as attacks 
by infected hosts at 211.167.67.167 (www.nsfocus.com). 
But it may be infected with a variant. 
 
  

 

   
 
 
  
Also among the other 29 targets, 
MY.NET.70.207 traffic represents another event of interest, 
discussed next. 
 
 

Alerts: IIS Unicode attacks, 5 remote attackers ---> 
MY.NET.70.207 

 
 
Not only did the dellhost.com machine at 209.196.6.226 
attack MY.NET.70.207 (see above), 
but four others did as well. 
 
  
 
62.23.74.165 (host.165.74.23.62.rev.coltfrance.com) 
triggered this alert 1,818 times 
in a 5½ minute interval beginning at 05:50 New Year's day. 
Also, 62.226.25.106 (p3EE2196A.dip.t-dialin.net), 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

195.71.226.156 (tomp-gtso-de01.mediaways.net), 
and 65.203.113.240 all sent rapid 
bursts to MY.NET.70.207's port 80 at different times. 
Defensive recommendation: 
If this is an IIS server, please check its web access logs for activity 
by these attackers. 
 

Alerts: IIS Unicode and Nimda attacks, 

MY.NET.71.230 ---> 1,569 remote targets 

 
 
Not only did MY.NET.71.230 trigger 4,574 "IIS Unicode" alerts, 
but it also triggered 10,440 Nimda alerts. 
 
See the 
Sophos virus analysis of Nimda-D (Sophos[2]) for more information. 
MY.NET.71.230 is apparently scanning remote hosts, looking for 
Nimda or Code Red II (Sophos[3]) compromised hosts that allow remote 
execution of 
commands via cmd.exe or root.exe. 
(Nimda variants also try to spread themselves this way.) 
Defensive recommendation: 
MY.NET.71.230 is almost certainly compromised; 
please quarantine and clean this machine. 
 

Alerts: SMB Name Wildcard, 81.50.52.235 ---> 862 PU hosts, 

 
  and SMB Name Wildcard and SMB C Access, 

    many remote and local hosts 

 
 
These triggered for 860 distinct remote hosts and 925 distinct local 
hosts. 
SMB Wildcard queries are ubiquitous in traffic among Microsoft windows 
hosts. 
Defensive recommendation: 
No NBT or CIFS traffic (ports 135-139, 445) should be allowed 
through the campus firewall, because the protocol itself exposes 
machines 
to many security and privacy vulnerabilities. 
 
 
  
 
 
The top triggerer is 81.50.52.235 (ALille-208-1-17-235.abo.wanadoo.fr), 
which is also one of the top twenty portscanners. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

It scanned for port 137 (Microsoft 
NetBIOS) at 862 distinct addresses in PU's MY.NET.132/22 and 
MY.NET.137/24 
networks, so while it wasn't targeted at particular hosts, it does 
appear 
to be a targeted scan at particular subnets.  This host also tried 
15 FTP passwd attempt attacks on New Year's Eve at 8 distinct PU hosts. 
 
  
 
RIPE Whois (RIPE) 
reports the following registration for this attacker's network. 
Defensive recommendation: report these attacks to 
abuse@wanadoo.fr. 
 
inetnum:      81.50.52.0 - 81.50.52.255 
netname:      IP2000-ADSL-BAS 
descr:        BSLIL208 Lille Bloc1 
country:      FR 
admin-c:      WITR1-RIPE 
tech-c:       WITR1-RIPE 
status:       ASSIGNED PA 
remarks:      for hacking, spamming or security problems send mail to 
remarks:      postmaster@wanadoo.fr AND abuse@wanadoo.fr 
remarks:      for ANY problem send mail to 
gestionip.ft@francetelecom.com 
mnt-by:       FT-BRX 
changed:      gestionip.ft@francetelecom.com 20021120 
source:       RIPE 
 
route:        81.50.0.0/16 
descr:        France Telecom 
descr:        Wanadoo Interactive 
remarks:      ------------------------------------------- 
remarks:      For Hacking, Spamming or Security problems 
remarks:      send mail to   abuse@wanadoo.fr 
remarks:      ------------------------------------------- 
origin:       AS3215 
mnt-by:       RAIN-TRANSPAC 
mnt-routes:   RAIN-TRANSPAC 
changed:      tom@rain.fr 20021030 
source:       RIPE 
 
role:         Wanadoo Interactive Technical Role 
address:      WANADOO INTERACTIVE 
address:      48 rue Camille Desmoulins 
address:      92791 ISSY LES MOULINEAUX CEDEX 9 
address:      FR 
phone:        +33 1 58 88 50 00 
e-mail:       abuse@wanadoo.fr 
e-mail:       postmaster@wanadoo.fr 
admin-c:      FTI-RIPE 
tech-c:       TEFS1-RIPE 
nic-hdl:      WITR1-RIPE 
notify:       gestionip.ft@francetelecom.com 
mnt-by:       FT-BRX 
changed:      gestionip.ft@francetelecom.com 20010504 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

changed:      gestionip.ft@francetelecom.com 20010912 
changed:      gestionip.ft@francetelecom.com 20011204 
source:       RIPE 
 
 
  
 
 
The SMB C Access alerts are troubling. 
This alert occurred 184 times, on 90 remote and 15 local hosts. 
Defensive recommendation: 
You should be paranoid about any 
access of "shares" (shared folders, drives, printers, etc.) 
through the firewall. 
Consider deploying a VPN solution for the small number of users 
that absolutely must have this functionality. 
 

Alerts: High port 65535 tcp, 72 remote hosts <--> 17 PU 
hosts 

 
 
Adore (Sophos[4]), also known as 
Red Worm 
(SANS[2]), 
exploits several Linux vulnerabilities. 
One of the side effects of a compromised Linux box is a backdoor 
root shell listening on port 65535, which may be activated if 
the packets it receives are a certain size. 
 
 
  
 
 
The alerts don't show the sizes of the tcp segments that triggered 
them. 
Without more information, 
it is difficult to guess whether your TCP port 65535 traffic is 
malicious or merely unusual. You could take the drastic 
step of blocking all port 65535 traffic, but that 
move may bring other undesirable side effects. 
 
 
  
 
 
TCP port 65535 does not appear in any scans.*.gz entry. 
Nevertheless, one of the top twenty portscanners, 
80.200.151.134 
(134.151-200-80.adsl.skynet.be), also triggered 7,882 "High port" 
alerts. 
It did so between Thursday 07:35 and Friday 15:53, in traffic to 
TCP port 65535 of three distinct PU hosts: 
MY.NET.84.151, MY.NET.88.193, and MY.NET.198.220. 
Defensive recommendation: 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Report this activity as possible but unconfirmed network abuse. 
RIPE Whois (RIPE) has Skynet Belgium's contact information: 
 
inetnum:      80.200.0.0 - 80.200.255.255 
netname:      BE-SKYNET-20011108 
descr:        ADSL Customers 
descr:        Skynet Belgium 
country:      BE 
admin-c:      JFS1-RIPE 
tech-c:       PDH16-RIPE 
status:       ASSIGNED PA 
mnt-by:       SKYNETBE-MNT 
changed:      ripe@skynet.be 20011212 
source:       RIPE 
 
route:        80.200.0.0/15 
descr:        SKYNETBE-CUSTOMERS 
origin:       AS5432 
notify:       noc@skynet.be 
mnt-by:       SKYNETBE-MNT 
changed:      noc@skynet.be 20011116 
source:       RIPE 
 
person:       Jean-Francois Stenuit 
address:      Belgacom Skynet NV/SA 
address:      Rue Carli 2 
address:      B-1140 Bruxelles 
address:      Belgium 
phone:        +32 2 706-1311 
fax-no:       +32 2 706-1150 
e-mail:       jfs@skynet.be 
nic-hdl:      JFS1-RIPE 
remarks:      ---------------------------------------- 
remarks:      Network problems to: noc@skynet.be 
remarks:      Peering requests to: peering@skynet.be 
remarks:      Abuse notifications to: abuse@skynet.be 
remarks:      ---------------------------------------- 
mnt-by:       SKYNETBE-MNT 
changed:      jfs@skynet.be 19970707 
changed:      ripe@skynet.be 20021125 
source:       RIPE 
 
person:       Pieterjan d'Hertog 
address:      Belgacom Skynet sa/nv 
address:      2 Rue Carli 
address:      B-1140 Brussels 
address:      Belgium 
phone:        +32 2 706 13 11 
fax-no:       +32 2 706 13 12 
e-mail:       piet@skynet.be 
nic-hdl:      PDH16-RIPE 
remarks:      ---------------------------------------- 
remarks:      Network problems to: noc@skynet.be 
remarks:      Peering requests to: peering@skynet.be 
remarks:      Abuse notifications to: abuse@skynet.be 
remarks:      ---------------------------------------- 
mnt-by:       SKYNETBE-MNT 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

changed:      jfs@skynet.be 19990415 
changed:      piet@skynet.be 19991210 
changed:      piet@skynet.be 20000302 
changed:      piet@skynet.be 20020329 
source:       RIPE 
 
 

Alerts: TFTP UDP connections, 5 PU TFTP servers ---> 
192.168.0.253 

 
These TFTP connections happen at regular intervals during the 5 day 
period. 
All five PU servers are in the same /24 subnet; they are 
MY.NET.111.219, 
MY.NET.111.230, 
MY.NET.111.231, 
MY.NET.111.232, and 
MY.NET.111.235. 
 
The recipient of these datagrams has an RFC 1918 private address; 
if that host has no other network interfaces or configurations, then 
it is not a remote host on the public internet. Logically, it is 
a host on PU's network, regardless of which side of the Snort sensor 
it lies. 
 
  
 
The pattern is very regular. 
For forty-second intervals spaced about ten minutes apart 
(sometimes twenty minutes apart), 
all five hosts trasmit equal numbers of datagrams 
in equal time periods.  For example, here are the start and stop 
times for the last few transmission intervals of New Year's Eve 
and the first few of New Year's Day: 
 
 
12/31-23:08:10 - 12/31-23:08:51 
12/31-23:19:15 - 12/31-23:19:55 
12/31-23:30:19 - 12/31-23:30:59 
12/31-23:41:23 - 12/31-23:42:03 
01/01-00:03:31 - 01/01-00:04:11 
01/01-00:14:35 - 01/01-00:15:15 
01/01-00:25:39 - 01/01-00:26:19 
 
 
The following excerpt from alerts.030101.gz shows how remarkably 
synchronized 
all five transmissions are: 
 
 
... 
01/01-00:04:08.373160  [**] TFTP - External UDP ... internal tftp 
server [**] 
MY.NET.111.232:69 -> 192.168.0.253:6590 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

01/01-00:04:08.373196  [**] TFTP - External UDP ... internal tftp 
server [**] 
MY.NET.111.230:69 -> 192.168.0.253:6590 
01/01-00:04:08.373659  [**] TFTP - External UDP ... internal tftp 
server [**] 
MY.NET.111.235:69 -> 192.168.0.253:6590 
01/01-00:04:08.375042  [**] TFTP - External UDP ... internal tftp 
server [**] 
MY.NET.111.231:69 -> 192.168.0.253:6590 
01/01-00:04:08.377037  [**] TFTP - External UDP ... internal tftp 
server [**] 
MY.NET.111.219:69 -> 192.168.0.253:6590 
01/01-00:04:11.626291  [**] TFTP - External UDP ... internal tftp 
server [**] 
MY.NET.111.231:69 -> 192.168.0.253:2307 
01/01-00:04:11.627899  [**] TFTP - External UDP ... internal tftp 
server [**] 
MY.NET.111.219:69 -> 192.168.0.253:2307 
01/01-00:04:11.629262  [**] TFTP - External UDP ... internal tftp 
server [**] 
MY.NET.111.232:69 -> 192.168.0.253:2307 
01/01-00:04:11.629280  [**] TFTP - External UDP ... internal tftp 
server [**] 
MY.NET.111.235:69 -> 192.168.0.253:2307 
01/01-00:04:11.629296  [**] TFTP - External UDP ... internal tftp 
server [**] 
MY.NET.111.230:69 -> 192.168.0.253:2307 
... 
 
Since the ephemeral port used by 192.168.0.253 is the same for all five 
TFTP server's responses, these could be broadcast amplified packets. 
In other words, the 
stimulus from 192.168.0.253 is a TFTP datagram broadcasted to 
MY.NET.111.255, and these five hosts are the ones answering this 
broadcast. 
 
  
 
Defensive recommendation: 
If, for example, 
192.168.0.253 runs your network management software, which periodically 
tests the stability of 5 network devices using this traffic, then 
the Snort rule should be modified to eliminate these false positives. 
But if this traffic is mysterious to you, then these are very high 
priority alarms. It could be that an adversary has installed a 
reconnaissance device inside your trusted network, and is taking 
advantage of allowed RFC-1918 routes inside your network, to 
systematically gather 
data every ten minutes from these five machines. 
If that is the case, you should confiscate this 
rogue and take steps to shut down any RFC-1918 traffic in your 
network that is not specifically 
authorized by your network planners. 
 

Alerts: Watchlist 000222 IL-ISDNNET-990517 alerts 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
These alerts seem to be from a custom Snort rule; they are not 
part of the default Snort ruleset. 
They are triggered by traffic from 212.179.0.0/16, which 
RIPE Whois (RIPE) identifies as Bezeq-International's network in 
Israel: 
 
inetnum:      212.179.0.0  - 212.179.0.255 
netname:      REDBACK-EQUIPMENT 
mnt-by:       INET-MGR 
descr:        BEZEQINT-EQUIPMENT 
country:      IL 
admin-c:      MR916-RIPE 
tech-c:       ZV140-RIPE 
status:       ASSIGNED PA 
remarks:      please send ABUSE complains to abuse@bezeqint.net 
remarks:      INFRA-AW 
notify:       hostmaster@bezeqint.net 
changed:      hostmaster@bezeqint.net 20021020 
source:       RIPE 
 
route:        212.179.0.0/18 
descr:        ISDN Net Ltd. 
origin:       AS8551 
notify:       hostmaster@bezeqint.net 
mnt-by:       AS8551-MNT 
changed:      hostmaster@bezeqint.net 20020618 
source:       RIPE 
 
person:       Miri Roaky 
address:      bezeq-international 
address:      40 hashacham 
address:      petach tikva 49170 Israel 
phone:        +972 1 800800110 
fax-no:       +972 3 9203033 
e-mail:       hostmaster@bezeqint.net 
nic-hdl:      MR916-RIPE 
changed:      hostmaster@bezeqint.net 20021027 
source:       RIPE 
 
person:       Zehavit Vigder 
address:      bezeq-international 
address:      40 hashacham 
address:      petach tikva 49170 Israel 
phone:        +972 1 800800110 
fax-no:       +972 3 9203033 
e-mail:       hostmaster@bezeqint.net 
nic-hdl:      ZV140-RIPE 
changed:      hostmaster@bezeqint.net 20021027 
source:       RIPE 
 
The only other clue I could find about the nature of this "Watchlist" 
alert is the date 17 May 1999, coded in the alert string as "990517." 
This is the day that Ehud Barak became Israel's Prime Minister, 
by defeating Benjamin Netanyahu in a public election. 
The other number in the alert string could also be a date, 
20 Feb. 2000, but I could not connect that date to any event. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
 
  
 
Defensive recommendation: 
I don't have sufficient information to gauge the nature or 
severity of these alerts. 
I sincerely hope you are not experiencing network abuse 
motivated by Middle-Eastern political or religious strife. 
If you are, I recommend that you retain an expert in 
international relations or international law, who can 
recommend appropriate considerations for your network 
security policy and practice. 
 

Scans and OOS traffic: peer-to-peer (P2P) file sharing 

 
Like most college campuses, your network is brimming with 
peer-to-peer traffic. 
The most popular client is currently Kazaa. 
There are 50,488 entries in the 
scans logs that identify connections to port 1214, the 
most common port associated with Kazaa. There are thousands 
more that identify connections with other P2P software, 
such as Napster (port 6699), WinMX (6699/6257), or Gnutella (6347). 
Certainly these scans are just a small subset of your total 
P2P traffic; these entries are just those connections 
that happened to meet the threshold 
of what Snort's spp_portscan preprocessor identifies as a scan. 
 
  
 
The protocols used by P2P software such as Kazaa change frequently 
and without notice, so assessing their impact on the University's 
security and privacy posture is close to impossible. 
Trying to restrict or block P2P traffic is also a losing battle. 
The usual reason for the rapid and frequent protocol 
adjustments is to make the software circumvent security measures and 
network policing techniques. 
 
  
 
Looking through the OOS logs shows that peer-to-peer ports are popular 
targets of fingerprinting stimuli by tools such as nmap or queso. 
There are dozens of Kazaa OOS packets with odd combinations of TCP 
flags. 
But there are others that do not stand out as fingerprinting probes. 
Here is an example from Thursday afternoon, 
which looks like a reasonable packet except for no ACK flag and a 
zero acknowledgement number: 
 
  
 
01/02-18:06:59.705859 200.167.121.16:3917 -> MY.NET.150.220:1214 
TCP TTL:108 TOS:0x0 ID:30643 IpLen:20 DgmLen:52 DF 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

****P*** Seq: 0xB9D2040A  Ack: 0x0  Win: 0x2000  TcpLen: 20 
C1 F4 AE 37 14 77 12 F6 C0 04 68 80              ...7.w....h. 
 
I suspect that this is not an nmap/queso fingerprinting stimulus, 
but instead may be a Kazaa-specific OOS stimulus packet. 
 
  
 
For more information about security issues regarding 
peer-to-peer file sharing, see the report 
Peer-to-Peer File-Sharing Networks: Security Risks (Couch), 
which includes a discussion of 
the "Benjamin worm" that targeted Kazaa users in 2002. 
Defensive recommendation: 
Please keep up to date with the network security 
news, as more vulnerabilities in P2P networks are certain to surface. 
 
  
 
P2P software is used extensively to make unauthorized transmissions 
of copyrighted material, contrary to law. 
Defensive recommendation: 
At the very least, 
no user of PU's network should be allowed access unless they 
have agreed to your acceptable use policy, which should include 
a statement about legal use of (and risks posed by) P2P network 
software. 
 

Tools and Processes 
 
 

Snort-rep and ``Perl Munging'' 

 
 
For Snort alert logs, I have had success with David Schweikert's tool 
snort-rep (Schweikert), 
so I used it for this analysis. 
It expects alerts in either syslog format or Snort's "fast" alert 
format, 
so I used some scripts to convert the data into "fast" format. 
I tried to follow the guidelines in David Cross' excellent book, 
Data Munging with Perl. (Cross) 
 
 
  
 
 
Each alert file is in plaintext format, one line per alert. 
When I tried converting these to "fast" format, I found that 
some of the alert lines were corrupt. 
I wrote the following filter script, 0alertsyntaxbad.plx, 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

which identified these corrupt lines: 
 
#!/usr/bin/perl -w 
 
my @fields; 
while (<>) { 
  if (/^:/) { 
    # many bad alert fragments start with : 
    print; 
  } elsif (/spp_portscan/) { 
    # spp_portscan lines should have two [**] delimited fields 
    @fields = split /\s*\[\*\*\]\s*/; 
    if ((scalar @fields) != 2) { 
      print; 
    } 
  } else { 
    # other alert lines should have three [**] delimited fields 
    @fields = split /\s*\[\*\*\]\s*/; 
    if ((scalar @fields) != 3 ) { 
      print; 
    } 
  } 
} 
 
 
Of the 842,113 alert lines, this filter found 148 which exhibit bad 
syntax; 
I saved those in a "badsyntax.txt" file. 
Then I rewrote the script 
(essentially just replacing each print with next) 
to obtain a complementary filter 1alertsyntaxgood.plx. 
It yielded the remaining 841,985 alert lines that were used in the 
analysis. 
I perused the "badsyntax.txt" file after the analysis was complete, 
to see if it contained any important event not covered in the analysis. 
(It did not, but it did suggest a possible flaw in your Snort system 
setup 
that should be investigated; see the 
post-analysis section below for details.) 
 
  
 
The following filter, 2alertfastformat.plx, 
converts the "good syntax" alert lines into "fast" format: 
 
#!/usr/bin/perl -w 
 
while (<>) { 
  chomp; 
  my @fields = split /\s*\[\*\*\]\s*/; 
  my $fieldcount = scalar @fields; 
  if ( $fieldcount == 2) {  # spp_portscan format 
    print join ' ', 
      $fields[0], ' [**]', '[1:0:0]',  # add a zero "sid" field for 
snort-rep 
      $fields[1], '[**]'; 
    print "\n"; 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

    next; 
  } elsif ( $fieldcount == 3 ) {  # snort alert format 
    print join ' ', 
      $fields[0], ' [**]', '[1:0:0]',  # add a zero "sid" field for 
snort-rep 
      $fields[1], '[**]', 
      '[Classification: n/a]',  # snort-rep expects these items too,  
      '[Priority: 4]', '{TCP}',  # so insert meaningless versions of 
them 
      $fields[2]; 
    print "\n"; 
    next; 
  } else { 
    print STDERR "****** Bad field count $fieldcount:"; 
    print STDERR ""; 
    print STDERR "\n"; 
    } 
} 
 
 
Finally, snort-rep expects IP addresses as numeric dotted-quads, 
but the alert logs are anonymized, with PU's class B numbers 
replaced with MY.NET. 
I used sed filters to temporarily put PU's hosts in a fake 
"99.999.0.0/16" class B. 
(In the real world, such IP addresses are invalid, 
so snort-rep never mistakes these for non-PU hosts.) 
 
  
 
I obtained the snort-rep report by piping all of the assembled tools 
together in a shell command line, 3createreport.sh: 
 
zcat alert*gz |\ 
 sed -e 's/MY\.NET/99.999/g' |\ 
 1alertsyntaxgood.plx |\ 
 2alertfastformat.plx |\ 
 snort-rep --source=fast:- --local=99.999.0.0/16 |\ 
 sed -e 's/99\.999/MY.NET/g' > report.txt 
 
The result, "report.txt," laid the foundation for the analysis. 
In the analysis above, 
Tables 3 (portscans), 
5 (alert counts), 6 (alerts on remote hosts), 
and 7 (alerts on local hosts) 
were essentially cut and pasted from report.txt. 
(The full report.txt is almost ten thousand 
lines long, and if printed consumes about 160 sheets of paper 
at 60 lines per page, so only the most pertinent parts of report.txt 
have been copied.) 
 
  
 
The snort-rep reports are ideal for importing into a spreadsheet, 
because they are plain text and tabular. 
For example, to obtain the top five portscan port:host ratios in Table 
4, 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I imported report.txt's portscan table (Table 3) into StarOffice 
StarCalc, 
added a fourth column that calculates the 
ratio of the first two columns, and then sorted the whole sheet 
by the results in the fourth column. I also used Microsoft Excel 
to sort and study the other alert tables (for example, to sort a 
table by IP address and survey alert types generated 
by a subnet's hosts). 
 
  
 
I also made extensive use of Unix command line tools. 
For example, 
 I learned in which order the five "Russia dynamo" 
streaming sessions occurred, by executing the command pipeline 
 
 
  
 
 
    zcat alert*gz 
 | grep Russia | cut -c 71- | grep "^MY" | uniq -c 
 
  
 
 
 
and I learned what time the third session ended via 
 
 
  
 
 
    zcat alert*gz 
 | grep Russia | grep "MY\.NET\.105\.204:4930" | tail -1. 
 
 
  
 
The link graph illustration was created using 
Dia (Dia). 
 

Post-analysis 

 
 
The file "badsyntax.txt" contained no alerts or patterns 
that weren't already addressed in the analysis.  But the 
bad alert lines themselves showed an interesting pattern. 
 
Here are four example lines from "badsyntax.txt": 

 
 
12/30-00:12:54.364686  [**] spp_http_decode: IIS Unicode attack 
detected [**] MY 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

.NET.71.230:3461 -> 3.155.133.6612/30-00:15:18.160971  [**] NIMDA - 
Attempt to e 
xecute root from campus host [**] MY.NET.71.230:4795 -> 
165.158.251.157:80 
 
:80 
 
01/03-22:30:14.803185  [**] High port 65535 tcp - possible Red Worm - 
traffic [* 
*] MY.NET.84.15101/03-22:46:28.178412  [**] spp_portscan: portscan 
status from M 
Y.NET.83.146: 4 connections across 4 hosts: TCP(0), UDP(4) [**]  
 
:65535 -> 172.179.155.153:4366 

 
 
 
Notice the first two lines. The ":80" fragment 
completes the first line's "IIS Unicode" alert, at the point 
where the "NIMDA" alert was inserted mid-line. This is reasonable; 
such traffic would be aimed at an IIS web server listening on port 80. 
The same applies to the other pair: the ":65535" fragment completes 
the "High port 65535" alert at the point where the portscan alert 
was inserted. 
 
 
  
 
 
I suspect that there are multiple Snort threads or processes, 
or perhaps multiple Snort sensors, 
which occasionally collide during output. 
To solve this problem, a mechanism needs to be implemented 
to ensure that each logged alert is an atomic transaction, 
not interrupted by other alerts. 
Computer scientists have studied this phenomenon in depth. 
For more information, consult Andrew S. Tanenbaum's 
discussion of "Mutual Exclusion" in his 
chapter on "Synchronization in Distributed Systems." 
(Tanenbaum, pp 476-482) 
 
 
  
 
 
Most, but not all "badsyntax.txt" lines can be explained 
by this observation, so my theory isn't grand and unified. 
But here is my last 
Defensive recommendation: 
you should review the Snort code and architecture you 
are using, to see if my suspicion is accurate. By doing so, 
you might find a way to clean up your alert logs. 
 

References 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
 
APNIC. "Query the APNIC Whois Database." 
Asia Pacific Network Information Centre. 
URL:http://www.apnic.net/apnic-bin/whois2.pl (29 Jan. 2003) 
 
 
  
 
 
ARIN. "ARIN WHOIS Database Search." 
American Registry for Internet Numbers. 
URL:http://whois.arin.net/ (29 Jan. 2003) 
 
 
  
 
 
Couch, William. "Peer-to-Peer File-Sharing Networks: Security Risks." 
SANS Info Sec Reading Room. 8 Sep. 2002. 
URL:http://www.sans.org/rr/policy/peer.php (29 Jan. 2003) 
 
 
  
 
 
Cross, David. 
Data Munging with Perl. 
Greenwich, CT: Manning Publications Co., 2001. 
 
 
  
 
 
Dia. "Dia a drawing program." Home page. 1 Jun. 2002. 
URL:http://www.lysator.liu.se/~alla/dia/ (29 Jan. 2003) 
 
 
  
 
 
Microsoft Technet. "Microsoft Security Bulletin MS00-078." 
Microsoft Corporation. Originally posted 17 Oct. 2000. 
URL:http://www.microsoft.com/technet/security/bulletin/ms00-078.asp 
(29 Jan. 2003) 
 
 
  
 
 
Northcutt, Steven. "Global Incident Analysis Center: Detects 
Analyzed 7/29/00." SANS Institute. 29 Jul. 2000. 
URL:http://www.sans.org/y2k/072818.htm (29 Jan. 2003) 
 
 
  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
RIPE 
"Query the RIPE Whois Database." 
Réseaux IP Européens. 
URL:http://www.ripe.net/ripencc/pub-services/db/whois/whois.html (29 
Jan. 2003) 
 
 
  
 
 
SANS[1]. "SANS FLASH: New Trojan Sending Data To Russia." 
Neohapsis Archives. 28 Jul. 2000. 
URL:http://archives.neohapsis.com/archives/sans/2000/0068.html (29 Jan. 
2003) 
 
 
  
 
 
SANS[2], Fearnow, Matt and Stearns, William. 
"Adore Worm." SANS Instititue. 12 Apr. 2001. 
URL:http://www.sans.org/y2k/adore.htm (29 Jan. 2003) 
 
 
  
 
 
Schweikert, David. "snort-rep - a Snort Reporting Tool." 
URL:http://people.ee.ethz.ch/~dws/software/snort-rep/ (29 Jan. 2003) 
 
 
  
 
 
SecurityFocus Online. "Microsoft IIS and PWS Extended Unicode Directory 
Traversal Vulnerability." Bugtraq id 1806. Updated 10 Sep. 2001. 
URL:http://online.securityfocus.com/bid/1806 (29 Jan. 2003) 
 
 
  
 
 
Sophos[1]. "Sophos virus analysis: W32/CodeBlue." 
URL:http://www.sophos.com/virusinfo/analyses/w32codeblue.html 
(29 Jan. 2003) 
 
 
  
 
 
Sophos[2]. "Sophos virus analysis: W32/Nimda-D." 
URL:http://www.sophos.com/virusinfo/analyses/w32nimdad.html 
(29 Jan. 2003) 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
  
 
 
Sophos[3]. "Sophos virus analysis: Troj/CodeRed-II." 
URL:http://www.sophos.com/virusinfo/analyses/w32codered2.html 
(29 Jan. 2003) 
 
 
  
 
 
Sophos[4]. "Sophos virus analysis: Linux/Adore." 
URL:http://www.sophos.com/virusinfo/analyses/linuxadore.html 
(29 Jan. 2003) 
 
 
  
 
 
Tanenbaum, Andrew. Modern Operating Systems. 
Englewood Cliffs, NJ: Prentice Hall, 1992. 
 
 
  
 
 
Turkia, Mike. "SANS Intrusion Detection Practical." GIAC. 28 Jan. 2001. 
URL:http://www.giac.org/practical/Miika_Turkia_GCIA.html (29 Jan. 2003) 
 
 
  
 
 


