
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Intrusion Prevention Systems:
The New Frontier of Intrusion Detection?

Ron Shuck, CISSP
GIAC GCIA Practical (version 3.3)

SANS Network Security, Washington, DC, USA
October 19-24, 2002

Submitted: April 1, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents
Assignment 1: The State of Intrusion Detection ... 3

Intrusion Prevention Systems: The New Frontier of Intrusion Detection?......... 3
Summary: ... 3
History: ... 3
Definition of IDS:... 3
Various Claims of Intrusion Prevention... 5
Types of Intrusion Prevention Systems .. 6
Conclusion.. 9
References: .. 10

Assignment 2: Network Detects ... 12
Detect 1: BACKDOOR Q access.. 12
Detect 2: BAD TRAFFIC IP reserved bit set ... 26
Detect 3: P2P Outbound GNUTella client request.. 33

Assignment 3: Analyze This ... 41
Executive Summary.. 41
List of Files ... 42
Relational Analysis ... 43
Alerts .. 46
Top Talkers... 64
External Sources .. 67
Link Graph Analysis.. 71
Possible Compromises / Dangerous Activity .. 72
Defensive Recommendations... 72
Description of Analysis Processes.. 73
References ... 74

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 3 of 75

Assignment 1: The State of Intrusion Detection

Intrusion Prevention Systems: The New Frontier of Intrusion Detection?

Summary:
What is an Intrusion Prevention System? In simple terms, one would say an Intrusion
Prevention System or IPS is a system that prevents an intrusion. Wait a minute, is a
good Security Policy an IPS? How about a Firewall, or Antivirus, or even a VPN? If
preventing an intrusion is all that is required, isn’t virtually every security tool an IPS?

The primary goal of this paper is to clearly define the term Intrusion Prevention System
with out all of the hype and marketing doubletalk, and explain why Intrusion Detection
and Intrusion Prevention systems are two separate types of security products. However,
this is not a strictly black and white issue. Ultimately you have to decide.

History:
The term first showed up over two years ago when it was used by a company called
Click-Net for their new product Entercept. Since then the company has changed their
name to Entercept.1 Entercept now claims to be the proven leader in intrusion
prevention. Since then, countless vendors have hopped on the “intrusion prevention”
bandwagon. Each vendor uses the term to identify different products, but the bottom
line is that the phrase could mean anything.

Definition of IDS:
Most can agree that an Intrusion Detection System is any system used to detect
intrusions or attacks. This can also be expanded to include protocol and transport
anomalies, or changes in normal behavior. These systems are typically separated into
two distinct classes: Network-based Intrusion Detection Systems (NIDS) and Host-
based Intrusion Detection Systems (HIDS).

Method of Detection
Regardless of the type of IDS, both have common methods for determining or detecting
attacks and anomalies. The most common is signature-based. Signature based
systems work by matching events or network traffic to a pre-determined list of
“signatures”. The signature is a description of the attack, such as network
characteristics or system activities. There are also new hybrid systems in development
that will utilize fuzzy logic and data mining in conjunction with traditional signatures to
detect attacks. There are even plans for systems that will “learn” about new attacks
using Autonomous Reinforcement Learning.

1 Briney, URL: http://www.infosecuritymag.com/2002/apr/note.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 4 of 75

Network-based IDS
A Network-based IDS is typically a passive device that monitors traffic on a network
segment, and generates alerts or logs when an attack or intrusion is detected. Later, we
will see that new technology is challenging this paradigm, but let’s stick with this
definition for now. Below are some common examples of network based products. An
excellent resource for locating Open Source IDS solutions can be found at:
http://www.whitehats.com/index.shtml

Snort
Written by Martin Roesch, Snort is a very powerful Open Source based network
intrusion detection system capable of real-time traffic and protocol analysis and content
matching. Snort is a major player in the NIDS market. The Snort system utilizes
signatures to determine attacks. This is not only research information. I have deployed
several Snort systems, and can attest to the effectiveness of the Snort system. Snort
can be found at: http://www.snort.org/
Commercial IDS solutions by the creators of Snort are also available from Sourcefire
located at: http://www.sourcefire.com/

ISS Real Secure
Produced by Internet Security Systems (ISS), the Real Secure product line offers a full
featured network intrusion detection system. The Real Secure product contains many of
the features desired in a NIDS. It was my experience that the missing component was
the detailed view or display of the packet that caused the alert. Real Secure is also
signature driven. The Real Secure product line also incorporates a host based system.
The major advantage of Real Secure is the product integration. ISS has a system that
can integrate network, host, and desktop intrusion detection, as well as vulnerability
scanners into a single, centrally managed system. ISS Real Secure can be found at:
http://www.iss.net/products_services/enterprise_protection/

Cisco Secure IDS (Netranger)
Originally developed by The Wheel Group and called “NetRanger”, the Cisco Secure
IDS sensor is now a NIDS hardware appliance. The real advantage to the Cisco
solution is network integration. The Secure IDS systems are available in a variety of
deployment options. They can be stand–alone sensors or blades in the 6500 Chassis
series switches. They can also be integrated as a software component into existing
Cisco routers and Firewalls. Cisco also offers a host based solution as well. The Cisco
Secure IDS can be found at: http://www.cisco.com/

SHADOW
No discussion of network-based intrusion detection would be complete with out the
mention of SHADOW. The project was developed by Stephen Northcutt and the
Shadow team back in 1994 for the Naval Surface Warfare Center. Shadow stands for
Secondary Heuristic Analysis for Defensive Online Warfare, and is still in use today.
Shadow can be found at: http://www.nswc.navy.mil/ISSEC/CID/index.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 5 of 75

Host-based IDS
A Host-based IDS, is typically software that resides on the host system and detects
attacks or intrusions for that system. These systems can be strictly detection systems
such as Tripwire, or they can restrict events to “trusted” or specified machines like the
TCP Wrappers software. Again, emerging technology is changing the face of host
based systems. Later, we will explore some of these new approaches. Below are some
common examples of host based products.

TCP Wrappers
Written by Wietse Venema, TCP Wrappers allows for logging and access control of
some common services such as exec, ftp, rsh, telnet, rlogin, finger, etc. TCP Wrappers
can be found at: ftp://ftp.porcupine.org/pub/security/

Xinetd
Xinetd, which stands for eXtended InterNET services daemon, is a replacement for the
traditional inetd. The internet services daemon controls many of the common services
on a “*nix” based system.Xinetd provides enhancements over TCP Wrappers. Xinetd
can be found at: http://www.xinetd.org/

Tripwire
Written by Eugene Spafford and Gene Kim, Tripwire is basically software that records
information on the files you specify, and can then notify if one of those files has been
changed. Tripwire can be found at: http://www.tripwire.com/

Swatch
Swatch was written by Todd Atkins, and basically is a log file analyzer. It can notify on
certain events, or even take action based on an event in the log file. Swatch can be
found at: http://swatch.sourceforge.net/

Manual Audit
This is the good old fashion method for intrusion detection. It involves manually
reviewing the various log files, a baseline of open ports, and the processes running on
the system. Although, we may cringe at the thought of manually reviewing log files, etc.,
this is the tried and true mechanism for host based security. In fact, many products and
HIDS applications are based on these principles. A well administered system is the first
line of defense in host based security.

Various Claims of Intrusion Prevention
Even if you are new to IDS technology, by now you have a basic understanding of what
constitutes an Intrusion Detection System. An IDS detects intrusions, simple enough.
So, you may think that an Intrusion Prevention System would be the next evolution of
IDS, right? Wrong! “Intrusion detection and intrusion prevention aren't different names
for the same market segment—they're different names for two distinct categories of
security products.”2

2 Taylor, URL: http://www.zdnet.com.au/itmanager/technology/story/0,2000029587,20267597,00.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 6 of 75

For the sake of argument, let’s assume that you are satisfied that Intrusion Detection
and Intrusion Prevention are different products. Then what is Intrusion Prevention? If
you search the Internet for “intrusion prevention system”, you will get thousands of
matches. When I initiated this search, I was presented with about 95,700 matches.
Good grief! How can a security professional ever review that much information? There
are countless vendors with products that offer Intrusion Prevention Systems. They have
cool and impressive sounding features like Dynamic Attack Suppression™ and
Integrated Attack Mitigation, Automatic Policy Generation, and Intrusion Prevention
Ecosystem. The following section will skip all the marketing hype, and describe the
basics of Intrusion Prevention.

Types of Intrusion Prevention Systems
I think we can all agree that in its simplest form an Intrusion Prevention System should
prevent intrusions. That seems easy enough. Regardless of the hype, cool terms and
phrases, all Intrusion Prevention Systems provide this “prevention” in one of three ways.
The system either stops the intrusion at the Operating System (OS) level, at the
application level, or at the network level. With this in mind, let’s review the various
methods used by prevention systems to stop intrusions.

Trusted Operating System
The idea of a Trusted OS is that the entire operating system is secure. There are really
two varieties; first is the trusted version of a vendor OS such as “Trusted Solaris” from
Sun or HP’s “VirtualVault.” These are operating systems with built-in security. Second is
a third party application or OS Wrapper. These applications generally replace the kernel
to provide security for the OS. Examples of this type of trusted OS are PitBull LX by
Argus Systems and Linux Lockbox by Guardian Digital.

In either case, the Trusted OS provides these major security features:
 Compartmentalization of resources such as files or processes. This provides

security by allowing access only to the files or resources that are appropriate for
a given function.

 Compartmentalization of user roles. This provides security by restricting what
actions each user has the ability to perform including the administrator.

 Enforcement of least privilege. This provides security by only allowing the actions
that are required.

 Kernel level enforcement. This provides security by implementing the security
decisions at a low level closer to the resource being protected.

 Sensitivity labeling of files and resources. This provides security by enforcing
mandatory access controls as opposed to discretionary.

™ Dynamic Attack Suppression is a Trademark of Latis Networks, Inc.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 7 of 75

Host Intrusion Prevention (HIP)
These systems are very similar to a Trusted OS, and may even provide many of the
same security features. Typically they are developed to protect one or more specific
applications. These systems will generally utilize kernel level modules or replace shared
libraries. The focus being the interception of system calls to look for bad application
behavior. HIP systems are implemented in three basic methods: behavior-based
policies, signature-based policies, and user-based policies.

Some common examples of HIP systems are Entercept Advanced e-Server or Standard
Edition by Entercept Security Technologies, STAT Neutralizer™ by Harris, Real Secure®

Server Sensor from ISS, and Okena’s Stormwatch™. There are also many products that
are focused on specific types of servers such as Entercept’s Web Server and Database
Editions and SecureIIS™ Web Server Protection from eEye Digital.

Application Firewall
An Application Firewall is somewhat less intrusive than a Trusted OS or HIP. Where a
Trusted OS or HIP attempts to protect the server or host, the Application Firewall
protects specific applications. Application Firewalls are known by many different names:
Content Scrubbers, Proxy and Proxy Firewall, Reverse Proxy, and Air Gap. Although,
there are different types of Application Firewalls, most are dedicated to securing
common inbound traffic such as web and e-mail traffic.

Content Scrubbers
Content scrubbers perform just as their name implies. They remove “malicious” traffic or
content. These devices typically sit in-between the Firewall and some content server
such as web, mail, etc.

Proxy
A Proxy acts much like the definition, an agent or substitute. A proxy acts on behalf of
the client. So, the client talks to the proxy and the proxy talks to the server. Proxies are
often referred to as Application Proxies or Application Layer Firewalls. The Proxy
actually has to re-create the packet to send to the server. This allows the proxy to not
only record the request, but inspect the traffic. The most common examples of proxies
areMicrosoft’s Proxy and ISA Servers, and the Linux proxy Squid.

Reverse Proxy
A Reverse Proxy is very similar to a regular or forward proxy. While a forward proxy
acts on behalf of the client, the reverse proxy acts on behalf of the server. This is
typically used to provide access to one or more servers behind a Firewall. The reverse
proxy would sit outside the Firewall or in a DMZ, and then proxy connections from
external users to the internal server or servers. The Firewall would be configured to only
allow the reverse proxy to access the internal servers. Common examples are Netscape
Proxy Server and Apache Web Server using ‘mod_proxy’.

™ STAT Neutralizer is a Trademark of Harris Corporation
® Real Secure is a registered trademark of Internet Security Systems
™ Stormwatch is a Trademark of Okena, Inc.
™ SecureIIS is a Trademark of eEye Digital Security

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 8 of 75

Air-Gap
The Air-Gap is similar to a reverse proxy. Both air-gap and reverse proxy are application
specific. This means the device or proxy has to be designed for each different
application or protocol. The air-gap is different in the way it gets data from the source to
the destination.These devices use one or more gap technologies like “real time switch”,
“one way link”, or “network switcher”. The basic idea is that the device contains two
independent components: one for the trusted and one for the un-trusted networks. They
use a separate hardware device, such as a SCSI bus, to transfer data only from one to
the other. Two common examples are Whale Communications e-Gap and Spearhead’s
AirGAP.

Gateway or In-line IDS
These devices are much like a typical IDS. The difference is that these devices are not
passive. All traffic must pass through the in-line IDS. This means that the IDS can drop
packets just like a Firewall. A common example would be ISS’s Real Secure® Guard.

Passive or Active Response
This involves extending the functionality of standard intrusion detection systems. Many
IDS systems have the “passive response” capability. This involves the IDS sensor
crafting a TCP RST packet in response to a specific alert or rule. The problem is that
this is not always reliable. It depends on the type of exploit (it may already be too late),
and the timing because the intended destination is going to respond to the “bad” packet
as well.

The other type of response is active response. This usually involves the IDS sensor
communicating with a Firewall to change rules “on-the-fly”. For example, an IDS
receives a “bad” packet from an IP, it can insert a new Firewall rule that blocks traffic
from that address. The new Firewall rule can be very specific or very general depending
on the implementation. StillSecure’s™ BorderGuard is a prime example. This product
uses Snort as the IDS and can work with various Firewalls to block traffic. The
coordination with the Firewall can be via a downloadable ACL for Cisco’s PIX, or via
Open Platform for Security (OPSEC) for Check Point Firewall-1/VPN-1 and other
OPSEC compliant providers™.

Security Analysis
Finally, there are the analysis tools. These tools generally consolidate and correlate
data from Firewall logs, IDS logs, and other sources. This data is then analyzed to
locate not only intrusions but other types of problems. Sometimes these tools are called
Security Information Management Systems or SIMS. Two prime examples are
SilentRunner® and netForensics®.

® Real Secure is a registered trademark of Internet Security Systems
™ StillSecure is a Trademark of Latis Networks
™ OPSEC, VPN-1 and Firewall-1 are Tradmarks of Check Point Software Technologies Ltd.
® SilentRunner is a registered trademark of Silentrunner, Inc.
® netForensics is a registered trademark of Netforensics, Inc.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 9 of 75

Conclusion
Hopefully, you now have a better understanding of the primary Intrusion Detection
Systems and some of the Intrusion Prevention Systems. It should be apparent that
Intrusion Prevention is much more like a Firewall than an IDS. It should also be obvious
that there is a lot of hype regarding Intrusion Prevention. I think this sums it up nicely.
“The point is that if "intrusion prevention" can refer to everything, it can't mean anything-
that is, it can't mean any one thing. It's a convenient marketing neologism designed to
make you think it's the next evolution in IDSes.”3

So, security professional beware! Look through the hype at what the product can
actually accomplish. Know and understand what you want a security device to do before
you unwrap your shiny, new, IPS. Remember, “IDS and IPS are not competing
devices.”4 You as the security professional are the greatest intrusion prevention system.
One of the IDS Titians, Stephen Northcutt, said in his book on the subject, “… there is
no magic product that can do intrusion detection for you, in the end, every analyst
needs a basic understanding of how IP works, so they will be able to detect the
anomalies.”5

If you are still unconvinced, and you still do not believe. I went straight to the source. My
all time IDS hero and coolest famous guy I have ever met. He had this to say.

“I think that network IPS is the future of firewalling, not of intrusion detection.
There are a lot of people who will tell you that IPS will replace the IDS, but that
ignores the fact that they serve two separate functions. An IPS is an access
control device, an IDS is a network monitoring tool. One provides protection, the
other provides awareness. IPS won't do anything to monitor internal host-to-host
communications, it certainly won't tell you when attacks take place on those links.
Intrusion detection also provides validation that your IPS is working or not. Let's
face it, the only way to tell if you IPS has failed and let an attack through is with
an IDS.”6

3 Briney, URL: http://www.infosecuritymag.com/2002/apr/note.shtml
4 Synder, p.22.
5 Northcutt, p.xiii
6 Roesch, E-mail

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 10 of 75

References:
Briney, Andy. “What Isn't Intrusion Prevention?” April 2002.
URL: http://www.infosecuritymag.com/2002/apr/note.shtml (26 Jan. 2003).

Synder, Joel. “Intrusion Prevention Essentials.” SANS Institute Webcast Slide
Presentation. 4 Dec. 2002.

Bridges, Susan, and Rayford Vaughn. “Fuzzy Data Mining and Genetic Algorithms
Applied To Intrusion Detection.”
URL: http://csrc.nist.gov/nissc/2000/proceedings/papers/005.pdf (16 Feb. 2003).

Cannady, James. “Next Generation Intrusion Detection: Autonomous Reinforcement
Learning.”
URL: http://csrc.nist.gov/nissc/2000/proceedings/papers/033.pdf (16 Feb. 2003).

Goldman, Jeff. “Intrusion Detection Systems: SHADOW.” May 2002.
URL: http://www.isp-planet.com/services/ids/shadow.html (22 Feb. 2003).

Fratto, Mike. “Keep Out.” October 2002.
URL: http://www.nwc.com/1322/1322f1.html?ls=TW_110402_rev (22 Feb. 2003)

Northcutt, Stephen, Judy Novak, and Donald McLachlan. Network Intrusion Detection–
An Analyst’s Handbook Second Edition. Indianapolis: New Riders Publishing, 2000.

Piscitello, David. “Intrusion Detection…Or Prevention?” Business Communications
Review. May 2002. URL: http://www.bcr.com/bcrmag/2002/05/p42.asp (22 Feb. 2003).

Fisher, Dennis. “New Wave of IDS Tools Take Aim at Prevention.” September 2002.
URL: http://www.eweek.com/print_article/0,3668,a=31080,00.asp (23 Feb. 2003).

Fisher, Dennis. “New IDS Tools Automate Response.” November 2002.
URL: http://www.eweek.com/article2/0,3959,685311,00.asp (23 Feb. 2003).

Messmer, Ellen. “Intrusion Prevention Raises Hopes, Concerns.” Network World.
November 2002. URL: http://www.nwfusion.com/news/2002/1104prevention.html
(23 Feb. 2003).

Taylor, Laura.“Intrusion Detection is not Intrusion Prevention.” August 2002.
URL: http://www.zdnet.com.au/itmanager/technology/story/0,2000029587,20267597,00.htm
(23 Feb. 2003)

Halme, Lawrence, and R. Kenneth Bauer.“Intrusion Detection FAQ - AINT
Misbehaving: A Taxonomy of Anti-Intrusion Techniques”
URL: http://www.sans.org/resources/idfaq/aint.php (16 Feb. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 11 of 75

Rhodes, Brandon, James Mahaffey, and James Cannady. “Multiple Self-Organizing
Maps for Intrusion Detection”
URL: http://csrc.nist.gov/nissc/2000/proceedings/papers/045.pdf (16 Feb. 2003).

Lindstrom, Pete.“Diverse security technologies deliver the same message: Keep Out!"
Guide to Intrusion Prevention. October 2002.
URL: http://www.infosecuritymag.com/2002/oct/sidebar.shtml (23 Feb. 2003).

Jacobs, Charles. “Trusted Operating Systems.” May 2001.
URL: http://www.sans.org/rr/securitybasics/trusted_OS.php (23 Feb. 2003).

Roesch, Martin. “RE: Intrusion Prevention.” E-mail to the author. 19 Nov. 2002.

Sapiro, Benjamin. “Application Level Content Scrubbers” August 2001.
URL: http://www.sans.org/rr/firewall/scrubbers.php (31 Mar 2003).

Cabral, Jim. “Securing Email Through Proxies: Smap and Stunnel” September 2001.
URL: http://www.sans.org/rr/email/smap.php (31 Mar 2003).

Stricek, Art. “A Reverse Proxy Is A Proxy By Any Other Name” January 2002.
URL: http://www.sans.org/rr/web/reverse_proxy.php (31 Mar 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 12 of 75

Assignment 2: Network Detects

Detect 1: BACKDOOR Q access
This output is the standard log output from Snort, and has the following format;
Alert Signature Name
Date - Time Source IP:Source Port -> Destination IP:Destination Port
IP Header Information
Protocol Information

[**] BACKDOOR Q access [**]
10/31-18:10:04.866507 255.255.255.255:31337 -> 207.166.253.145:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

10/31-18:56:25.966507 255.255.255.255:31337 -> 207.166.97.171:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

10/31-21:08:05.026507 255.255.255.255:31337 -> 207.166.93.139:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

10/31-21:11:13.996507 255.255.255.255:31337 -> 207.166.125.50:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

10/31-22:44:17.156507 255.255.255.255:31337 -> 207.166.10.242:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

10/31-23:01:50.156507 255.255.255.255:31337 -> 207.166.243.229:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

10/31-23:33:32.136507 255.255.255.255:31337 -> 207.166.163.228:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-00:00:32.216507 255.255.255.255:31337 -> 207.166.100.235:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-00:40:35.196507 255.255.255.255:31337 -> 207.166.148.62:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 13 of 75

[**] BACKDOOR Q access [**]
11/01-01:59:56.246507 255.255.255.255:31337 -> 207.166.136.161:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-02:03:53.196507 255.255.255.255:31337 -> 207.166.84.0:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-02:21:29.266507 255.255.255.255:31337 -> 207.166.150.179:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-02:30:05.226507 255.255.255.255:31337 -> 207.166.105.163:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-03:43:08.396507 255.255.255.255:31337 -> 207.166.121.149:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-03:51:08.246507 255.255.255.255:31337 -> 207.166.75.164:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-05:14:20.316507 255.255.255.255:31337 -> 207.166.134.120:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-06:01:41.386507 255.255.255.255:31337 -> 207.166.49.222:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-06:01:44.406507 255.255.255.255:31337 -> 207.166.195.220:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-06:03:02.406507 255.255.255.255:31337 -> 207.166.108.206:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-06:41:56.386507 255.255.255.255:31337 -> 207.166.248.169:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 14 of 75

[**] BACKDOOR Q access [**]
11/01-06:56:38.426507 255.255.255.255:31337 -> 207.166.204.81:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-08:00:50.426507 255.255.255.255:31337 -> 207.166.175.116:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-08:28:20.476507 255.255.255.255:31337 -> 207.166.216.118:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-09:03:44.506507 255.255.255.255:31337 -> 207.166.249.188:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]

11/01-09:35:02.556507 255.255.255.255:31337 -> 207.166.191.175:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]
11/01-09:44:56.566507 255.255.255.255:31337 -> 207.166.140.164:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]
11/01-12:03:05.656507 255.255.255.255:31337 -> 207.166.84.156:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]
11/01-12:35:20.736507 255.255.255.255:31337 -> 207.166.71.180:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]
11/01-12:59:59.666507 255.255.255.255:31337 -> 207.166.42.113:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]
11/01-13:22:02.716507 255.255.255.255:31337 -> 207.166.166.69:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]
11/01-13:34:47.786507 255.255.255.255:31337 -> 207.166.148.94:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 15 of 75

[**] BACKDOOR Q access [**]
11/01-16:41:49.906507 255.255.255.255:31337 -> 207.166.178.165:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]
11/01-16:41:52.896507 255.255.255.255:31337 -> 207.166.198.211:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+
[**] BACKDOOR Q access [**]
11/01-17:24:16.986507 255.255.255.255:31337 -> 207.166.143.84:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
=+

Source of Trace:
The source of the trace was the raw logs directory at Incidents.org. The log files are the
result of a Snort instance running in binary logging mode. The logs themselves have
been sanitized. The specific file used for this detect was;
http://www.incidents.org/logs/Raw/2002.10.1

Since the network layout was not provided, I can only assume, but there is strong
evidence that the Snort sensor that captured the data was located between two Cisco
devices. Not only the packets involved in this detect, but all packets from the above log
file have one of two distinct MAC addresses. There are two different OUIs and both
belong to Cisco. My guess would be that the two devices are an external router and a
PIX firewall or NAT router.

11/01/2002 00:10:04.866507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.253.145.515: tcp 3
11/01/2002 00:56:25.966507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.97.171.515: tcp 3
11/01/2002 03:08:05.026507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.93.139.515: tcp 3
11/01/2002 03:11:13.996507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.125.50.515: tcp 3
11/01/2002 04:44:17.156507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.10.242.515: tcp 3
11/01/2002 05:01:50.156507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.243.229.515: tcp 3
11/01/2002 05:33:32.136507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.163.228.515: tcp 3
11/01/2002 06:00:32.216507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.100.235.515: tcp 3
11/01/2002 06:40:35.196507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.148.62.515: tcp 3
11/01/2002 07:59:56.246507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.136.161.515: tcp 3
11/01/2002 08:03:53.196507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.84.0.515: tcp 3
11/01/2002 08:21:29.266507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.150.179.515: tcp 3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 16 of 75

11/01/2002 08:30:05.226507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.105.163.515: tcp 3
11/01/2002 09:43:08.396507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.121.149.515: tcp 3
11/01/2002 09:51:08.246507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.75.164.515: tcp 3
11/01/2002 11:14:20.316507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.134.120.515: tcp 3
11/01/2002 12:01:41.386507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.49.222.515: tcp 3
11/01/2002 12:01:44.406507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.195.220.515: tcp 3
11/01/2002 12:03:02.406507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.108.206.515: tcp 3
11/01/2002 12:41:56.386507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.248.169.515: tcp 3
11/01/2002 12:56:38.426507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.204.81.515: tcp 3
11/01/2002 14:00:50.426507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.175.116.515: tcp 3
11/01/2002 14:28:20.476507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.216.118.515: tcp 3
11/01/2002 15:03:44.506507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.249.188.515: tcp 3
11/01/2002 15:35:02.556507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.191.175.515: tcp 3
11/01/2002 15:44:56.566507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.140.164.515: tcp 3
11/01/2002 18:03:05.656507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.84.156.515: tcp 3
11/01/2002 18:35:20.736507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.71.180.515: tcp 3
11/01/2002 18:59:59.666507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.42.113.515: tcp 3
11/01/2002 19:22:02.716507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.166.69.515: tcp 3
11/01/2002 19:34:47.786507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.148.94.515: tcp 3
11/01/2002 22:41:49.906507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.178.165.515: tcp 3
11/01/2002 22:41:52.896507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.198.211.515: tcp 3
11/01/2002 23:24:16.986507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
255.255.255.255.31337 > 207.166.143.84.515: tcp 3

The other evidence is that all of the packets of this detect, and all of the packets in the
log file, contain a bad IP header checksum. This was completed visually in Ethereal for
the packets of the detect, and using the following commands for the entire log file.

tcpdump –vnr 2002.10.1 | wc –l
tcpdump –vnr 2002.10.1 | grep “bad cksum” | wc –l

Both commands returned the same result, 14597 records. This is evidence that the
protected network addresses were “munged” or obfuscated as stated in the README
file in the log directory at Incidents.org.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 17 of 75

I also did a sorted visual scan of both source and destination addresses of the entire log
file. I did not detect any private networks. This is in no way conclusive, but it leads me to
believe that the sensor was located outside the firewall or NAT device, and inside an
external router providing connectivity to the Internet.

Detect was generated by:
The detect was generated using Snort v 1.9.0 (Build 209) with a default “snort.conf”
v1.110 and “backdoor.rules”v1.25 on Red Hat Linux 7.3. The detect was analyzed
using Snort log files, ACID, Ethereal, Sniffer Pro, and Tcpdump.

The specific rule that triggered the alert was:
alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q
access"; flags:A+; dsize: >1; reference:arachnids,203; sid:184;
classtype:misc-activity; rev:3;)

This rule basically alerts on any network packet that is TCP, has a source network of
255.255.255.0, the ACK flag set in addition to any other flags, and a packet payload
size of 2 or more. Of course the source and destination ports can contain any value,
and the destination address can be any address because the default configuration for
$HOME_NET is “any”.

Probability the source address was spoofed:
The probability that the source address was spoofed is 1 or 100%. These packets have
strong evidence of crafting. First, a source address of “255.255.255.255” is not validfor
normal IP traffic. It is possible that the packet was sent using an obsolete form of all-
zero broadcast address (according to the “Expert mode’analysis in Sniffer Pro 4.60.01),
but that is highly unlikely. Second, the sequence number is 0, which is possible, but
again very unlikely since it was 0 in all of the detect packets. Third, the ACK and RST
flags are both set which is only valid as a response to a SYN on a port that is not
listening. Fourth, is that the source port is 31337 or the “eleet” port common in hacker
tools. This is a valid ephemeral port, but not likely when combined with the other
evidence. Finally, I question the TTL value. The smallest default TTL value is 32 which
is used by Windows. So, it is possible that the packets originated 17 hops away from a
Windows machine, but again combined with the other factors I would suspect packet
crafting.

The following is a representative example of the detect packets. They were all identical
to this packet with the exception of the destination IP and obvious checksum values.

11/01/2002 00:10:04.866507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60:
255.255.255.255.31337 > 207.166.253.145.printer: R [bad tcp cksum b5b5!]
0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43, bad cksum 28e0!)
0x0000 4500 002b 0000 0000 0f06 28e0 ffff ffff E..+......(.....
0x0010 cfa6 fd91 7a69 0203 0000 0000 0000 0000zi..........
0x0020 5014 0000 de07 0000 636b 6f00 0000 P.......cko...

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 18 of 75

Description of attack:
The signature of the attack is for the Trojan named “Q” created by Mixter. The “Q”
Trojan allows for remote execution of commands. These are typically run as “root”.The
Trojan also uses encryption. This attack is referenced by Common Vulnerabilities and
Exposures (CVE) CAN-1999-0660. There were no references found at BugTraq, CERT,
or ISS XForce.

This detect involved 34 occurrences to 34 unique destination addresses. I also
processed raw logs files “2002.10.1”to “2002.10.10”from Incidents.org spanning
10/31/02 to 11/10/02. This resulted in 411 occurrences to 406 unique destinations. All of
the detects contained the same packet profile; payload data “cko” or 0x636B6F, TTL of
15, sequence number of 0, ACK and RST flags set, invalid 255.255.255.255 source
address, source port of 31337 and destination port of 515. In fact, all packets were
identical except the destination IP and checksum values.

This appears to me to be stimulus. This is based strictly on the signature that generated
the alert. Since we do not have access to general traffic logs, it is impossible to
determine if these packets were a response. It is clear from the logs, that there were no
other alerts to the 34 destinations of this detect. This was determined using the Snort
log directories. It is also clear that these 34 alerts were the only traffic from a source of
255.255.255.255. This was determined using the command:

tcpdump –r 2002.10.1 src 255.255.255.255 | wc –l
This returned only 34 records.

The other aspect I considered was a possible attack on a port 515 or ‘lpr’ vulnerability.
However, even if the packet were to reach a target destination with a vulnerable service,
the correct response to a lone packet with ACK and RST would be to silently drop the
packet. If there had been an active connection, it would be immediately terminated and
all associated resources released. However, there could have never been an
established session between the target and the 255.255.255.255 address. In addition
to this, there were no indications in the log file of any of the common ‘lpd’ attacks such
as Ramen, Adore, or lpdw0rm.

If we were to assume that this detect is indeed “Q”, then the “cko” payload is most likely
not an encrypted command to run because it is too small. Mike Wyman and Les Gordon
both did some testing with “Q”for their GCIA Practicals. However, I believe their tests
were flawed because they entered the command of “cko”.

If the detects we saw were encrypted, entering the command of “cko” would not give a
payload of “cko”. If it was not encrypted, then what the heck is the command “cko”? I
completed a search of the latest ‘Q’ source code and did not find the pattern ‘cko’.
However, the tests did prove one thing, the encryption created a very large amount of
payload data compared to the command, “cko”. Based on the amount of payload data
generated in the Wyman and Gordon tests, it is un-likely that the “cko” payload is an
encrypted command, at least not with the default version of “Q”.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 19 of 75

Attack mechanisms:
The “Q”Trojan uses raw tcp/udp/icmp packets to send remote commands to a machine
running the server or daemon component. The client component is called ‘q’ and the
server component is called ‘qd’ and can be used stand alone. There is also a
component called ‘qs’ which send commands to be executed remotely or control
commands for the server over the tunnel created by ‘q’ and ‘qd’.Using this Trojan, the
user can control the remote host. Commands can be executed or attacks can be
launched at other targets.

There are a number of other exploits, such as lpdw0rm, Ramen, and Adore WORMs,
that take advantage of vulnerabilities of the LPRng service running on port 515.
However, I found no indications of these WORMs in the log file. I looked specifically for
evidence of Ramen, but found none:

tcpdump –r 2002.10.1 port 27374

Based on the way ‘Q’ works, these detects could have been attempts to contact a ‘Q’
server running on port 515 one of the targets. These attempts might have been made to
cause infected hosts to “phone home”.However, based on the Wyman and Gordon
tests, the traffic in this detect does not follow the same pattern as a version of ‘Q’.

I searched the source code of ‘Q’ 2.4 and did not find any match for “cko”. So, I also
searched for the decimal and hex equivalents of ‘cko’ with no luck. “What if this is some
type of address?” I asked myself. Maybe ‘cko’ or “636B6F” was the netblock
“99.107.111”. However, this is part of an IANA reserved range. Based on all of the
evidence, I decided that the traffic must be the result of one of the following three
possibilities.

One: The traffic is some sort of modified version of ‘Q’ or the ‘libmix’ library that
obviously doesn’t work, or some other tool that has been modified incorrectly. This
would make the traffic annoying, but harmless.

Two: The traffic is just crafted traffic designed to trigger ID systems. A kind of “blue
herring” designed to occupy IDS Analysts. In this case the traffic is very annoying, but
still harmless.

Three: The traffic is some new WORM or Trojan that has not delivered a payload, Yet!
This new malware could be lying dormant waiting to strike.

The “non-paranoid” part of me, as small as that is, wants to believe it is scenario one.
The cynical part of me believes it is scenario two. However, my gut tells me it is the
latter because I just can’t figure out why this traffic is so common across such a wide
date range. I know I will continue to watch for this traffic on the networks I monitor.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 20 of 75

Correlations:
Additional information and the source code for ‘Q’ can be found at the author’s web site:
http://mixter.warrior2k.com/

Information regarding the Adore worm can be found at:
http://www.iss.net/security_center/static/6681.php

Additional information regarding the Ramen worm can be found at:
http://www.iss.net/security_center/static/6544.php
http://www.cert.org/incident_notes/IN-2001-01.html

Russell Fulton believes it is just someone attempting to trip or set off Intrusion Detection
Systems. This detect was more similar to my detect, but does not contain sequence
number, flags, or payload information.
http://lists.jammed.com/incidents/2001/04/0062.html

In June of 2002, an analyst calling themselves “fragga” detected a similar type of
packet. The destination port was different and the packets looked like real traffic with
valid sequence numbers and valid source IP addresses. However, the payload was the
same.
http://online.securityfocus.com/archive/75/279535

Crist Clark believes this type of traffic is the result of a broken worm.
http://lists.jammed.com/incidents/2001/07/0023.html

Tu Miem’s GCIA practical stating this type of traffic might be a probe from an IRC site.
http://cert.uni-stuttgart.de/archive/intrusions/2003/02/msg00000.html

Mike Wymann did some research into this traffic and Q2.4 for his GCIA practical.
http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00509.html

Les Gordon also did some research into this traffic and Q2.4 for his GCIA Practical.
http://cert.uni-stuttgart.de/archive/intrusions/2002/10/msg00221.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 21 of 75

Evidence of active targeting:
This destination addresses appears completely random except that they are all in the
207.166/16 net block. I believe this is due to the fact that this “207.166” is the network
behind the router. Of course, I believe that this 207.166 range is “munged” or
obfuscated and not the actual range.

The timing of the traffic is very slow, and has no discernable pattern indicated by the
chart below. The traffic spanned almost two full days.

Figure 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 22 of 75

Severity:
(3 + 1)–(3 + 4) = -3

(criticality + lethality)–(system countermeasures + network countermeasures)
= severity

Criticality=3, Lethality=1, System counter measures=3, Network counter measures=4
Severity = -3

Since I have no information regarding the function of the target devices, or the system
countermeasures in place, I have assigned them a median value of 3. Based on the
evidence, even if this packet were allowed to the destination, it would cause no
damage. Therefore Lethality was assigned a value of 1. Based on speculation of the
network design of an IDS between two Cisco devices, I made the assumption one of the
devices was a Firewall, therefore I assigned a value of 4 to network countermeasures.

Defensive recommendations:
I have made the assumption that this site employed a Firewall and an IDS. Therefore, I
recommend that the Firewall configuration block all inbound port 515 traffic. This should
be the case anyway.

Multiple choice test question:
11/01/2002 00:10:04.866507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60:
255.255.255.255.31337 > 207.166.253.145.printer: R [bad tcp cksum b5b5!]
0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43, bad cksum 28e0!)
0x0000 4500 002b 0000 0000 0f06 28e0 ffff ffff E..+......(.....
0x0010 cfa6 fd91 7a69 0203 0000 0000 0000 0000zi..........
0x0020 5014 0000 de07 0000 636b 6f00 0000 P.......cko...

When a machine receives a TCP packet with the RST and ACK flags set, the correct
response is:

a. Send an ACK and then close the connection
b. Wait for the time out period and then close the connection
c. Send a FIN and ACK and wait for a reply
d. Close the connection immediately
e. None of the above

Answer: d–close the connection immediately and release all associated buffers.

Detect Submitted:
February 7, 2003
http://cert.uni-stuttgart.de/archive/intrusions/2003/02/msg00066.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 23 of 75

Comments from Incidents.org Posting
http://cert.uni-stuttgart.de/archive/intrusions/2003/02/msg00067.html
From: Andrew Rucker Jones [mailto:arjones@simultan.dyndns.org]
Sent: Saturday, February 08, 2003 11:15 AM
To: Ron Shuck; intrusions@incidents.org
Subject: Re: LOGS: GIAC GCIA Version 3.3 Practical Detect

I think an important point here is that Q generates a key for encryption during
compilation (if i recall a previous analysis correctly). That key should be different for
every compiled version, meaning if the "cko" is encrypted, there is no way for any of us
to analyze what the plaintext might be.

Why does it necessarily have to be a broken piece of malware? Why can't it be innocent
traffic from a broken TCP/IP stack or application? You don't know what the environment
looks like, and it's entirely possible that someone there is manufacturing new equipment
with a locally developed TCP/IP implementation, or that someone has a computer that
is 10 or 15 years old. I know this is the case where i work, and we have some strange
packets on our network because of it. What do You think? Let me give You a great
example. We have printing (spooling) software for a large printer, and a big customer of
ours prints on our printer. The printing software sometimes fails to close the TCP
connection properly, leading to a perpetually open connection on the spooler. For some
stupid reason beyond me, the program that our customer uses starts any new set of
print jobs by using the last source port from the last set. Like i say, don't ask me why.
Stupid program. Due to the still open connection on the spooler, this doesn't work, and
the spooler has to be restarted every time. We briefly considered using hping to send a
reset packet to kill the connection. If we had done that in an automated way, it might
well have looked somewhat similar to this traffic (though with the correct source
address). See whatI’msaying? Just a thought.

Response:
Andrew is right, there's no way to analyze what the plain text might be, but I think it's
safe to assume that if encryption is taking place, the payload would not be 'cko' for a
command of 'cko'. Otherwise, it's not encrypted.

I though about whether the traffic was malware or just broken code as well. Andrew’s
example helps, but I still stick with malware. Here's my reason. If this is just broken
innocuous code, why is it communicating with as many different hosts as indicated by
my detect and the other detects recently? I suggest that if you have broken code, on the
Internet, blasting packets outside of your network, it is malware whether it is intended
that way or not. I didn't see this traffic at any of the sites I watch, but if I did I would have
spent time looking into it. So, by my definition it is malware because it causes a
negative impact on my network even if that was not the intention.

I totally agree that I should make that distinction in the analysis. The traffic may not be
intentional broken malware.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 24 of 75

From: Gordon, Les M [Les.M.Gordon@team.telstra.com]
Sent: Sunday, February 09, 2003 6:01 PM
To: Ron Shuck
Subject: RE: LOGS: GIAC GCIA Version 3.3 Practical Detect

Ron,

Just one quick point is that versions of Q prior to 2.0 did NOT encrypt the payload used
for requesting the server to execute commands. My analysis covered versions prior to
2.0 as well as 2.4.

Regards,
Les

Response:
Good clarification. Versions of Q prior to 2.0 did not encrypt the payload. So, if my
detect was utilizing a version prior to 2.0, the then ‘cko’ payload would have been plain
text. In that case, the test is valid and demonstrates that the version 1.0 did not create
an identical packet as our detect packets.

If the detect was utilizing a version later than 2.0, testing with the command of ‘cko’ is
still flawed. I stand by my original statement. If the payload was assumed encrypted,
testing with a command of ‘cko’ could not produce the packets of the detect. If the
payload was indeed encrypted the ‘cko’ payload would have to be different than the
command, or it wouldn’t be very good encryption.

So, the clarification is that the first part of the testing was valid and provided good
information, but the second test was not valid. However, it did provide some useful
information. It indicated that a command of 3 characters created a payload of 86 bytes.
It seems highly unlikely that any command would create an encrypted payload of just 3
bytes. This rules out the possibility, in my mind, that the ‘cko’ payload of the detect was
an encrypted payload for some unknown command.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 25 of 75

http://cert.uni-stuttgart.de/archive/intrusions/2003/02/msg00204.html
From: Robert Wagner [rwagner@eruces.com]
Sent: Monday, February 24, 2003 10:41 AM
To: Ron Shuck; intrusions@incidents.org
Subject: RE: LOGS: GIAC GCIA Version 3.3 Practical Detect

First one - Backdoor Q Access.

10/31-18:10:04.866507 255.255.255.255:31337 -> 207.166.253.145:515 "Defensive
recommendations: I have made the assumption that this site employed a Firewall and
an IDS. Therefore, I recommend that the Firewall configuration block all inbound port
515 traffic. This should be the case anyway."

I just saw the packet and read your defense, you may have covered this somewhere in
the documentation. I didn't see the mention of ingress and egress filters. Do you think
they are important?

Response:
This is an excellent point that I did not mention in my defensive recommendations.
Ingress and egress filters can provide an additional layer of protection. As we all know,
the key to security is layers. For this particular detect, an ingress filter may have proved
the most effective

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 26 of 75

Detect 2: BAD TRAFFIC IP reserved bit set
This output is the standard log output from Snort, and has the following format;
Alert Signature Name
Date - Time Source IP:Source Port -> Destination IP:Destination Port
IP Header Information
Protocol Information

[**] BAD TRAFFIC ip reserved bit set [**]
11/06-18:52:03.576507 200.200.200.1 -> 207.166.81.197
TCP TTL:242 TOS:0x0 ID:0 IpLen:20 DgmLen:40 RB
Frag Offset: 0x0864 Frag Size: 0xFFFFF7B0
=+

[**] BAD TRAFFIC ip reserved bit set [**]
11/06-21:09:28.956507 200.200.200.1 -> 207.166.119.251
TCP TTL:242 TOS:0x0 ID:0 IpLen:20 DgmLen:40 RB
Frag Offset: 0x0864 Frag Size: 0xFFFFF7B0
=+

[**] BAD TRAFFIC ip reserved bit set [**]
11/07-00:05:36.006507 200.200.200.1 -> 207.166.15.33
TCP TTL:242 TOS:0x0 ID:0 IpLen:20 DgmLen:40 RB
Frag Offset: 0x0864 Frag Size: 0xFFFFF7B0
=+

[**] BAD TRAFFIC ip reserved bit set [**]
11/07-12:02:09.736507 200.200.200.1 -> 207.166.219.11
TCP TTL:242 TOS:0x0 ID:0 IpLen:20 DgmLen:40 RB
Frag Offset: 0x0864 Frag Size: 0xFFFFF7B0
=+

[**] BAD TRAFFIC ip reserved bit set [**]
11/07-15:38:43.136507 200.200.200.1 -> 207.166.14.185
TCP TTL:242 TOS:0x0 ID:0 IpLen:20 DgmLen:40 RB
Frag Offset: 0x0864 Frag Size: 0xFFFFF7B0
=+

[**] BAD TRAFFIC ip reserved bit set [**]
11/07-15:43:44.736507 200.200.200.1 -> 207.166.37.247
TCP TTL:242 TOS:0x0 ID:0 IpLen:20 DgmLen:40 RB
Frag Offset: 0x0864 Frag Size: 0xFFFFF7B0
=+

Source of Trace:
The source of the trace was the raw logs directory at Incidents.org. The log files are the
result of a Snort instance running in binary logging mode. The logs themselves have
been sanitized. The specific file used for this detect was;
http://www.incidents.org/logs/Raw/2002.10.7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 27 of 75

Since the network layout was not provided, I can only assume, but there is strong
evidence that the Snort sensor that captured the data was located between two Cisco
devices. Not only the packets involved in this detect, but all packets from the above log
file have one of two distinct MAC addresses. There are two different OUIs and both
belong to Cisco. My guess would be that the two devices are an external router and a
PIX firewall or NAT router.

11/07/2002 00:52:03.576507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
200.200.200.1 > 207.166.81.197: (frag 0:20@17184)
11/07/2002 03:09:28.956507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
200.200.200.1 > 207.166.119.251: (frag 0:20@17184)
11/07/2002 06:05:36.006507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
200.200.200.1 > 207.166.15.33: (frag 0:20@17184)
11/07/2002 18:02:09.736507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
200.200.200.1 > 207.166.219.11: (frag 0:20@17184)
11/07/2002 21:38:43.136507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
200.200.200.1 > 207.166.14.185: (frag 0:20@17184)
11/07/2002 21:43:44.736507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60:
200.200.200.1 > 207.166.37.247: (frag 0:20@17184)

The other evidence is that all of the packets of this detect, and all of the packets in the
log file, contain a bad IP header checksum. This was completed visually in Ethereal for
the packets of the detect, and using the following commands for the entire log file.

tcpdump –vnr 2002.10.7 | wc –l
tcpdump –vnr 2002.10.7 | grep “bad cksum” | wc –l

Both commands returned the same result, 2509 records. This is evidence that the
protected network addresses were “munged” or obfuscated as stated in the README
file in the log directory at Incidents.org. I also did a sorted visual scan of both source
and destination addresses of the entire log file. I did not detect any private networks.
This is in no way conclusive, but it leads me to believe that the sensor was located
outside the firewall or NAT device, and inside an external router providing connectivity
to the Internet.

Detect was generated by:
The detect was generated using Snort v 1.9.0 (Build 209) with a default “snort.conf”
v1.110 and “bad-traffic.rules” v1.18 on Red Hat Linux 7.3. The detect was analyzed
using Snort log files, ACID, Ethereal, and Tcpdump.

The specific rule that triggered the alert was:
alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD TRAFFIC ip reserved bit
set"; fragbits:R; sid:523; classtype:misc-activity; rev:3;)

The rule basically alerts on any traffic with the Reserved Bit set in the IP header. The
Reserved Bit is the high order bit of the 7th byte of the IP header (byte 6). This bit is not
used and should be set to 0.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 28 of 75

Probability the source address was spoofed:
Although sufficient data is not available to determine with any certainty, there is no real
evidence that the source address was spoofed. It should be noted that the packets do
exhibit signs of packet crafting. Based on the information available, I would estimate the
probability at 50% or .5. The 200.128/9 net block is registered to Comite Gestor da
Internet no Brasil. The 200.200/16 Class B is registered to Embratel-Empresa Brasileira
de Telecomunicações SA. This is a Phone company in Brazil that provides Internet
services.

Description of attack:
This detect consisted of 6 events (displayed below in tcpdump format). They all had the
same source 200.200.200.1 and 6 different targets. I also searched the log files
“2002.10.1”through “2002.10.14”at Incidents.org, and found 9 more events from the
same source and 9 different targets. For the “2002.10.7” log file, I found that there was
no other traffic that triggered an alert involving the destinations of this detect.

11/07/2002 00:52:03.576507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 200.200.200.1
> 207.166.81.197: (frag 0:20@17184) (ttl 242, len 40, bad cksum d87f!)
0x0000 4500 0028 0000 8864 f206 d87f c8c8 c801 E..(...d........
0x0010 cfa6 51c5 1022 0050 3b99 8046 3b99 8046 ..Q..".P;..F;..F
0x0020 0004 0000 0fc4 0000 0000 0000 0000
11/07/2002 03:09:28.956507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 200.200.200.1
> 207.166.119.251: (frag 0:20@17184) (ttl 242, len 40, bad cksum b249!)
0x0000 4500 0028 0000 8864 f206 b249 c8c8 c801 E..(...d...I....
0x0010 cfa6 77fb 0fdd 0050 3c17 51d8 3c17 51d8 ..w....P<.Q.<.Q.
0x0020 0004 0000 45b3 0000 0000 0000 0000E.........
11/07/2002 06:05:36.006507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 200.200.200.1
> 207.166.15.33: (frag 0:20@17184) (ttl 242, len 40, bad cksum 1c25!)
0x0000 4500 0028 0000 8864 f206 1c25 c8c8 c801 E..(...d...%....
0x0010 cfa6 0f21 0fa6 0050 3cb8 90a2 3cb8 90a2 ...!...P<...<...
0x0020 0004 0000 30ef 0000 0000 0000 00000.........
11/07/2002 18:02:09.736507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 200.200.200.1
> 207.166.219.11: (frag 0:20@17184) (ttl 242, len 40, bad cksum 4e3b!)
0x0000 4500 0028 0000 8864 f206 4e3b c8c8 c801 E..(...d..N;....
0x0010 cfa6 db0b 1354 0050 3f48 9dc6 3f48 9dc6T.P?H..?H..
0x0020 9104 0000 aeee 0000 0000 0000 0000
11/07/2002 21:38:43.136507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 200.200.200.1
> 207.166.14.185: (frag 0:20@17184) (ttl 242, len 40, bad cksum 1d8b!)
0x0000 4500 0028 0000 8864 f206 1d8b c8c8 c801 E..(...d........
0x0010 cfa6 0eb9 0dc7 0050 400e e378 400e e378P@..x@..x
0x0020 9104 0000 f6da 0000 0000 0000 0000
11/07/2002 21:43:44.736507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 200.200.200.1
> 207.166.37.247: (frag 0:20@17184) (ttl 242, len 40, bad cksum 44e!)
0x0000 4500 0028 0000 8864 f206 044e c8c8 c801 E..(...d...N....
0x0010 cfa6 25f7 0d44 0050 4013 7dac 4013 7dac ..%..D.P@.}.@.}.
0x0020 0004 0000 3ab0 0000 0000 0000 0000:.........

I also did some research at DShield.org on the 200.200.200.1 address. There were
1121 records involving this IP along with 443 different targets. However, based on the
“whois” information, I believe that the IP is part of a dial-up ISP range.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 29 of 75

There is no hard evidence to support this conclusion, but it is my opinion that this traffic
is stimulus. By this I mean that the traffic was not the result of a stimulus or request from
the protected network. Here is why. First, the source was a single IP that does not
resolve to a name. It is possible that it did resolve to a name at the time of the detect,
but there is strong evidence that the source IP was and is part of a dial-up ISP. Second,
the destinations involved 15 different IP addresses in what appears to be different
subnets. Finally, the source was used in the past to target other systems as indicated by
the DShield.org data.

Attack mechanisms:
The mechanism of this detect is not clear. There is not an obvious payload or exploit
associated with this detect. There are several components of this detect that do warrant
further investigation.

First, all of the packets in question have the high order bit of byte 6 set in the IP header.
This bit position is reserved and should always have a value of zero, according to
RFC791 or STD005. A value in this position is often associated with packet crafting.
Typically, this would be used as a fingerprinting mechanism. Unfortunately, the
“munging” or obfuscation of the data has eliminated the possibility of determining if the
reserved bit was set or was the result of packet corruption. If the value was an error, the
checksum for the header would be incorrect. This is not guaranteed, but generally the
case. However, all of the packets have incorrect checksums as a result of the
obfuscation. I did not find any direct references to this type of packet on CVE. The
closest was CAN-1999-0240, but that was related to SYN packets.

Second, all of the datagrams have the same fragment ID of 0. This is highly unlikely
under normal circumstances. The value 0 would be a valid value, but the fragment ID
should vary. Typically IP stacks increment this number for each datagram. It is possible
that the packets that triggered this detect were ID zero, but very improbable that the two
that occur in the same hour time frame would have the same ID of zero.

Third, all of the packets in question appear to be the last fragment of a datagram. Again,
it seems too coincidental that only the last fragment of 6 different datagrams destined
for 6 different addresses would be corrupted in the same fashion affecting the reserved
bit of the IP header. It is very common to use fragments as a way to circumvent security
controls or avoid detection.

Fourth, all of the packets claim to have a fragment offset of 17184 and contain 20 bytes
of data and 6 bytes of trailer. This too seems very coincidental. If these packets were
actually the last fragment at offset 17184 for fragment ID 0, then I would contend that
the original datagram was the same size in all six instances. However, the data portion
is different. I looked for indications of bit flipping or data corruption in the data, but I
found nothing that would indicate data corruption.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 30 of 75

Finally, all of the packets have a TTL of 242. If this is indeed a default value, it is
indicative of a Solaris 2.x machine in close proximity to the destinations. This leads to
the real question. What is this detect? I suggest that it is one of the following
possibilities:

One: Traffic generated by a broken IP stack on an a network not monitored by an IDS.

Two: Some type of attempted reconnaissance designed to circumvent a Firewall or
perimeter security device. The use of the reserved bit could have been designed to
provide some type of operating system fingerprinting.

There is only one factor permitting me from labeling this detect as bad traffic from poorly
written software. That factor is the number of targets. Bret Wrisley and Soren Macbeth
found the same type of traffic during their GCIA practicals.

Correlations:
Information on default TTL values for various operating systems.
http://secfr.nerim.net/docs/fingerprint/en/ttl_default.html

Information at DShield.org regarding the source of this detect.
http://www.dshield.org/ipinfo.php?ip=200.200.200.1

Brent Wrisley submitted a similar detect for his GCIA Practical.
http://cert.uni-stuttgart.de/archive/intrusions/2002/10/msg00079.html

Soren MacBeth submitted a similar detect for his GCIA Practical.
http://cert.uni-stuttgart.de/archive/intrusions/2002/10/msg00119.html

IP reserved bit Common Vulnerability and Exposure candidate.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0240

Network Working Group Standard for IP. STD005 or RFC791
ftp://ftp.rfc-editor.org/in-notes/std/std5.txt

Information on default TTL values for various operating systems.
http://secfr.nerim.net/docs/fingerprint/en/ttl_default.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 31 of 75

Evidence of active targeting:
There are insufficient numbers of packets to correctly identify active targeting, in my
opinion. However, based on the packet craft evidence, the source location, and the type
of attack this detect would indicate, I suggest that the traffic was directed at the target
addresses. I do not believe that the attack is specifically targeting the protected network.
In other words, I believe the evidence indicates that the packets are an attempt at
reconnaissance, but not directed specifically at the protected network as an entity.

This is supported by the following evidence. The packets involved only targeted 15 IP
addresses over a 15 day period. It could be “low and slow”, but the traffic is too obvious
to be “low”. My point is why scan very slowly while waiving a giant red flag.

Figure 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 32 of 75

Severity:
(3 + 1)–(3 + 4) = -3

(criticality + lethality)–(system countermeasures + network countermeasures)
= severity

Criticality=3, Lethality=1, System counter measures=3, Network counter measures=4
Severity = -3

Since I have no information regarding the function of the target devices, or the system
countermeasures in place, I have assigned them a median value of 3. Based on the
evidence, even if this packet were allowed to the destination, it would cause no
damage. Therefore Lethality was assigned a value of 1. Based on speculation of the
network design of an IDS between two Cisco devices, I made the assumption one of the
devices was a Firewall, therefore I assigned a value of 4 to network countermeasures.

Defensive recommendations:
This type of reconnaissance, if it truly was reconnaissance, should be easily defeated
with current versions of Firewalls. I would also watch this specific alert more closely.

Multiple choice test question:
11/07/2002 00:52:03.576507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 200.200.200.1
> 207.166.81.197: (frag 0:20@17184) (ttl 242, len 40, bad cksum d87f!)
0x0000 4500 0028 0000 8864 f206 d87f c8c8 c801 E..(...d........
0x0010 cfa6 51c5 1022 0050 3b99 8046 3b99 8046 ..Q..".P;..F;..F
0x0020 0004 0000 0fc4 0000 0000 0000 0000

The fragment ID of zero in the packet above is derived from the following.

A. The IP Identification Number field
B. The Initial Sequence Number (ISN) of the datagram
C. An IP options field
D. A TCP options field
E. None of the above

Answer: A The 16 bit IP Identification Number field of the IP Header

Detect Submitted:
February 10, 2003
http://cert.uni-stuttgart.de/archive/intrusions/2003/02/msg00088.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 33 of 75

Detect 3: P2P Outbound GNUTella client request
This output is the standard log output from Snort, and has the following format;

Alert Signature Name
Date - Time Source IP:Source Port -> Destination IP:Destination Port
IP Header Information
Protocol Information

[**] P2P Outbound GNUTella client request [**]
11/14-13:46:22.526507 170.129.50.120:61744 -> 142.217.196.48:8330
TCP TTL:123 TOS:0x0 ID:61506 IpLen:20 DgmLen:158 DF
AP Seq: 0x2688C47B Ack: 0xFE5553 Win: 0x4038 TcpLen: 20
=+

[**] P2P Outbound GNUTella client request [**]
11/14-13:46:25.506507 170.129.50.120:61744 -> 142.217.196.48:8330
TCP TTL:123 TOS:0x0 ID:61792 IpLen:20 DgmLen:158 DF
AP Seq: 0x2688C47B Ack: 0xFE5553 Win: 0x4038 TcpLen: 20
=+

[**] P2P Outbound GNUTella client request [**]
11/14-13:46:31.526507 170.129.50.120:61744 -> 142.217.196.48:8330
TCP TTL:123 TOS:0x0 ID:62383 IpLen:20 DgmLen:158 DF
AP Seq: 0x2688C47B Ack: 0xFE5553 Win: 0x4038 TcpLen: 20
=+

[**] P2P Outbound GNUTella client request [**]
11/14-13:46:41.186507 170.129.50.120:61784 -> 142.217.196.48:8330
TCP TTL:123 TOS:0x0 ID:63239 IpLen:20 DgmLen:62 DF
AP Seq: 0x2803691C Ack: 0xFE9E3B Win: 0x4038 TcpLen: 20
=+

[**] P2P Outbound GNUTella client request [**]
11/14-13:46:43.616507 170.129.50.120:61744 -> 142.217.196.48:8330
TCP TTL:123 TOS:0x0 ID:63458 IpLen:20 DgmLen:158 DF
***AP**F Seq: 0x2688C47B Ack: 0xFE5553 Win: 0x4038 TcpLen: 20
=+

[**] P2P Outbound GNUTella client request [**]
11/14-13:46:47.176507 170.129.50.120:61784 -> 142.217.196.48:8330
TCP TTL:123 TOS:0x0 ID:63787 IpLen:20 DgmLen:62 DF
AP Seq: 0x2803691C Ack: 0xFE9E3B Win: 0x4038 TcpLen: 20
=+

Source of Trace:
The source of the trace was the raw logs directory at Incidents.org. The log files are the
result of a Snort instance running in binary logging mode. The logs themselves have
been sanitized. The specific file used for this detect was;
http://www.incidents.org/logs/Raw/2002.10.14

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 34 of 75

Since the network layout was not provided, I can only assume, but there is strong
evidence that the Snort sensor that captured the data was located between two Cisco
devices. Not only the packets involved in this detect, but all packets from the above log
file have one of two distinct MAC addresses. There are two different OUIs and both
belong to Cisco. Based on this, my guess would be that the two devices are an external
router and a PIX firewall or NAT router. This was my guess for my previous 2 detects for
this practical. However, in the previous two detects one of the IP addresses appeared to
be obfuscated.

Detect 1 example:
11/01/2002 00:10:04.866507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60:
255.255.255.255.31337 > 207.166.253.145.printer: R [bad tcp cksum b5b5!]
0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43, bad cksum 28e0!)
0x0000 4500 002b 0000 0000 0f06 28e0 ffff ffff E..+......(.....
0x0010 cfa6 fd91 7a69 0203 0000 0000 0000 0000zi..........
0x0020 5014 0000 de07 0000 636b 6f00 0000 P.......cko...

Detect 2 example:
11/07/2002 00:52:03.576507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 200.200.200.1
> 207.166.81.197: (frag 0:20@17184) (ttl 242, len 40, bad cksum d87f!)
0x0000 4500 0028 0000 8864 f206 d87f c8c8 c801 E..(...d........
0x0010 cfa6 51c5 1022 0050 3b99 8046 3b99 8046 ..Q..".P;..F;..F
0x0020 0004 0000 0fc4 0000 0000 0000 0000

The bad checksums corroborated this conclusion. This detect has the same two Cisco
devices for all traffic, but does not have the bad checksum issue. The creation date on
the log files are different between this detect, and my previous detects. This means that
the obfuscation would be different, but does not explain the lack of bad check sums.

All of this leads me to believe that this is the same network from my previous two
detects, and that the obfuscation of this log file corrected the checksums. I would also
deduce that the 170.129.50.120 is the obfuscated address. This is based on the traffic
direction of the previous two detects. The 0:0:c:4:b2:33 MAC always appeared to be
the inside router or PIX (destination). If that is the case, then the traffic in this detect is
outbound since the 0:0:c:4:b2:33 MAC is the source.

11/14/2002 19:46:22.526507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 172:
170.129.50.120.61744 > 142.217.196.48.8330: tcp 118 (DF)
11/14/2002 19:46:25.506507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 172:
170.129.50.120.61744 > 142.217.196.48.8330: tcp 118 (DF)
11/14/2002 19:46:31.526507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 172:
170.129.50.120.61744 > 142.217.196.48.8330: tcp 118 (DF)
11/14/2002 19:46:41.186507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 76:
170.129.50.120.61784 > 142.217.196.48.8330: tcp 22 (DF)
11/14/2002 19:46:43.616507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 172:
170.129.50.120.61744 > 142.217.196.48.8330: tcp 118 (DF)
11/14/2002 19:46:47.176507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 76:
170.129.50.120.61784 > 142.217.196.48.8330: tcp 22 (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 35 of 75

Detect was generated by:
The detect was generated using Snort v 1.9.0 (Build 209) with a default “snort.conf”
v1.110 and“p2p.rules”v1.8 on Red Hat Linux 7.3. The detect was analyzed using Snort
log files, ACID, Ethereal, and Tcpdump.

The specific rule that triggered the alert was:
alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"P2P Outbound GNUTella
client request"; flow:to_server,established; content:"GNUTELLA CONNECT";
depth:40; classtype:misc-activity; sid:556; rev:4;)

This alert triggers on any source or destination address or port when the following
conditions are met. First, the packet is part of an established TCP session. This is
caused by the “flow:established” option. Basically this does not inspect packets with
SYN. Second, the packet must be from client to server. This is caused by the
“flow:to_server” option. Basically, this means traffic from the machine that initiated the
session (client) to the server. Third, the payload of the packet must have the text
“GNUTELLA CONNECT” in the first 40 bytes.

Probability the source address was spoofed:
I would estimate the probability that these packets had spoofed source addresses at .1
or 10%. There is no real evidence of packet crafting, and it is my position that these
packets are outbound traffic. It would make no sense to for a client request to spoof the
source. Although I do not believe these packets had a spoofed source address, there is
strong evidence that the source address is obfuscated.

Description of attack:
The first three packets appear to be the same session. The first was the original, and
the next two are retries. This is evident in the same sequence number in all three
packets, and the fact that they are spaced 3, 6, 9 seconds apart. The fifth packet is sent
12 seconds later, and is a request to terminate the connection with the FIN flag set.

The fourth and sixth packets are related. They both have the same sequence number
and are spaced 3 seconds apart. These packets contain a different payload than
packets 1,2,3, and 5.

11/14/2002 19:46:22.526507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 172:
midgaard.smsc.com.61744 > sehv-3-lt-48.lino.sympatico.ca.8330: P [tcp sum ok]
646497403:646497521(118) ack 16667987 win 16440 (DF) (ttl 123, id 61506, len 158)
0x0000 4500 009e f042 4000 7b06 df13 aa81 3278 E....B@.{.....2x
0x0010 8ed9 c430 f130 208a 2688 c47b 00fe 5553 ...0.0..&..{..US
0x0020 5018 4038 7eea 0000 474e 5554 454c 4c41 P.@8~...GNUTELLA
0x0030 2043 4f4e 4e45 4354 2f30 2e36 0d0a 5573 .CONNECT/0.6..Us
0x0040 6572 2d41 6765 6e74 3a20 4d6f 7270 6865 er-Agent:.Morphe
0x0050 7573 2032 2e30 2e30 2e38 0d0a 582d 556c us.2.0.0.8..X-Ul
0x0060 7472 6170 6565 723a 2046 616c 7365 0d0a trapeer:.False..
0x0070 5245 5155 4553 5454 4553 5443 4f4e 4e3a REQUESTTESTCONN:
0x0080 2039 3531 320d 0a4c 6973 7465 6e69 6e67 .9512..Listening
0x0090 506f 7274 203a 3935 3132 0d0a 0d0a Port.:9512....

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 36 of 75

11/14/2002 19:46:25.506507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 172:
midgaard.smsc.com.61744 > sehv-3-lt-48.lino.sympatico.ca.8330: P [tcp sum ok]
0:118(118) ack 1 win 16440 (DF) (ttl 123, id 61792, len 158)
0x0000 4500 009e f160 4000 7b06 ddf5 aa81 3278 E....`@.{.....2x
0x0010 8ed9 c430 f130 208a 2688 c47b 00fe 5553 ...0.0..&..{..US
0x0020 5018 4038 7eea 0000 474e 5554 454c 4c41 P.@8~...GNUTELLA
0x0030 2043 4f4e 4e45 4354 2f30 2e36 0d0a 5573 .CONNECT/0.6..Us
0x0040 6572 2d41 6765 6e74 3a20 4d6f 7270 6865 er-Agent:.Morphe
0x0050 7573 2032 2e30 2e30 2e38 0d0a 582d 556c us.2.0.0.8..X-Ul
0x0060 7472 6170 6565 723a 2046 616c 7365 0d0a trapeer:.False..
0x0070 5245 5155 4553 5454 4553 5443 4f4e 4e3a REQUESTTESTCONN:
0x0080 2039 3531 320d 0a4c 6973 7465 6e69 6e67 .9512..Listening
0x0090 506f 7274 203a 3935 3132 0d0a 0d0a Port.:9512....
11/14/2002 19:46:31.526507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 172:
midgaard.smsc.com.61744 > sehv-3-lt-48.lino.sympatico.ca.8330: P [tcp sum ok]
0:118(118) ack 1 win 16440 (DF) (ttl 123, id 62383, len 158)
0x0000 4500 009e f3af 4000 7b06 dba6 aa81 3278 E.....@.{.....2x
0x0010 8ed9 c430 f130 208a 2688 c47b 00fe 5553 ...0.0..&..{..US
0x0020 5018 4038 7eea 0000 474e 5554 454c 4c41 P.@8~...GNUTELLA
0x0030 2043 4f4e 4e45 4354 2f30 2e36 0d0a 5573 .CONNECT/0.6..Us
0x0040 6572 2d41 6765 6e74 3a20 4d6f 7270 6865 er-Agent:.Morphe
0x0050 7573 2032 2e30 2e30 2e38 0d0a 582d 556c us.2.0.0.8..X-Ul
0x0060 7472 6170 6565 723a 2046 616c 7365 0d0a trapeer:.False..
0x0070 5245 5155 4553 5454 4553 5443 4f4e 4e3a REQUESTTESTCONN:
0x0080 2039 3531 320d 0a4c 6973 7465 6e69 6e67 .9512..Listening
0x0090 506f 7274 203a 3935 3132 0d0a 0d0a Port.:9512....
11/14/2002 19:46:41.186507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 76:
midgaard.smsc.com.61784 > sehv-3-lt-48.lino.sympatico.ca.8330: P [tcp sum ok]
671312156:671312178(22) ack 16686651 win 16440 (DF) (ttl 123, id 63239, len 62)
0x0000 4500 003e f707 4000 7b06 d8ae aa81 3278 E..>..@.{.....2x
0x0010 8ed9 c430 f158 208a 2803 691c 00fe 9e3b ...0.X..(.i....;
0x0020 5018 4038 6675 0000 474e 5554 454c 4c41 P.@8fu..GNUTELLA
0x0030 2043 4f4e 4e45 4354 2f30 2e34 0a0a .CONNECT/0.4..
11/14/2002 19:46:43.616507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 172:
midgaard.smsc.com.61744 > sehv-3-lt-48.lino.sympatico.ca.8330: FP [tcp sum
ok] 0:118(118) ack 1 win 16440 (DF) (ttl 123, id 63458, len 158)
0x0000 4500 009e f7e2 4000 7b06 d773 aa81 3278 E.....@.{..s..2x
0x0010 8ed9 c430 f130 208a 2688 c47b 00fe 5553 ...0.0..&..{..US
0x0020 5019 4038 7ee9 0000 474e 5554 454c 4c41 P.@8~...GNUTELLA
0x0030 2043 4f4e 4e45 4354 2f30 2e36 0d0a 5573 .CONNECT/0.6..Us
0x0040 6572 2d41 6765 6e74 3a20 4d6f 7270 6865 er-Agent:.Morphe
0x0050 7573 2032 2e30 2e30 2e38 0d0a 582d 556c us.2.0.0.8..X-Ul
0x0060 7472 6170 6565 723a 2046 616c 7365 0d0a trapeer:.False..
0x0070 5245 5155 4553 5454 4553 5443 4f4e 4e3a REQUESTTESTCONN:
0x0080 2039 3531 320d 0a4c 6973 7465 6e69 6e67 .9512..Listening
0x0090 506f 7274 203a 3935 3132 0d0a 0d0a Port.:9512....
11/14/2002 19:46:47.176507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 76:
midgaard.smsc.com.61784 > sehv-3-lt-48.lino.sympatico.ca.8330: P [tcp sum ok]
0:22(22) ack 1 win 16440 (DF) (ttl 123, id 63787, len 62)
0x0000 4500 003e f92b 4000 7b06 d68a aa81 3278 E..>.+@.{.....2x
0x0010 8ed9 c430 f158 208a 2803 691c 00fe 9e3b ...0.X..(.i....;
0x0020 5018 4038 6675 0000 474e 5554 454c 4c41 P.@8fu..GNUTELLA
0x0030 2043 4f4e 4e45 4354 2f30 2e34 0a0a .CONNECT/0.4..

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 37 of 75

So, there are two separate sessions involved. The first is sequence number 646497403
which is also an ACK for 16667987. This appears to be a GNUTella attempt for version
0.6. The second is sequence number 671312156 which is an ACK for 16686651. This
appears to be a GNUTella attempt for version 0.4.

This seems to indicate that two connection attempts were made, most likely, from a
Window NT or 2000 machine based on the TTL values and window size. It is also
evident that the initial three way handshake was completed. However, we did not
capture a “GNUTELLA OK” message. This suggests one of two possibilities. First, the
target or destination machine was listening on port 8330, but not for the GNUTella
protocol. Second, the target machine was running GNUTella, but was no accepting
connections for some reason.

Attack mechanisms:
GNUTella is a peer to peer (P2P) based file sharing client. The original version was
written by Justin Frankel and Tom Pepper, but many different versions of clients are
now available. GNUTella software acts as both a client and a server earning the name
“servent”.

Basically, a “servent” opens a TCP connection to another “servent”. It then sends the
“GNUTELLA CONNECT” message along with the version of the clientsoftware. The
“servent” acting as a server would then respond with “GNUTELLA OK”to accept the
connection. In some versions, the “OK” message also contains the version of the
software. Also during this process, the new “servent” provides the IP and port that it is
listening on for connections. Once a connection is established, the “servent” can search
other “servents” for files and provide files.

The software utilizes a set of protocol descriptors to communicate with other “servents”.
The “ping” and “pong” descriptors are used to identify other “servents” on the network.
The “query”, and “query hit” descriptors are used to locate files to download, and the
“push” descriptor allowsfor circumventing Firewalls, etc. The “push” descriptor provides
the ability of a “servent” that contained a requested file, to establish a connection to the
requestor. GNUTella software also includes a type of routing capability as well.
“Servents” are expected to route GNUTella traffic based on a set of rules or guidelines
for the protocol.

There are several security issues with GNUTella software. First, it may allow the sharing
of files in a manner outside of the approved mechanism for a company. There may be
mechanisms in place that protect corporate data via the approved methods, but may not
be in place for GNUTella traffic. The fact that GNUTella can run over ports that may be
allowed by the Firewall such as SMTP or HTTP, is of particular cause for alarm.
Second, the use of GNUTella may also bypass a layer of Anti-virus protection. Third,
often times these GNUTella clients have spyware or other Trojans included.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 38 of 75

Correlations:
The target was not listed at DShield.org, and the Neohapsis Port list does not contain
any reference to port 8330. This supports the hypothesis that the target was not
providing GNUTella, at least not on port 8330, but it does not provide any additional
information to the service that was listening on port 8330. A subsequent search of
Google also failed to shed any light on what service would be running on port 8330.
http://www.dshield.org/ipinfo.php?ip=142.217.196.48&Submit=Submit
http://www.neohapsis.com/neolabs/neo-ports/neo-ports.html

Information on Passive OS Fingerprinting used to speculate source system.
http://project.honeynet.org/papers/finger/traces.txt

Information on GNUTella
http://www.sans.org/rr/threats/gnutella.php

These sites contained the information on GNUTella and its protocol that allowed a
positive identification of the traffic payload as GNUTella traffic.
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf
http://rfc-gnutella.sourceforge.net/Proposals/Handshake_06/Gnutella06.txt

Information regarding Spyware and threats of P2P software.
http://www.unwantedlinks.com/Guntella-alert.htm

I only found one comparable detect of GNUTella submitted for a GCIA practical, and
that was the one submitted by Nils Reichen.
http://cert.uni-stuttgart.de/archive/intrusions/2002/10/msg00072.html

Evidence of active targeting:
There was no evidence that the protected site was targeted. In fact, there is strong
evidence that the detect was generated from an internal system attempting to connect
to an external GNUTella “servent”.

Severity:
(2 + 4)–(3 + 1) = 2

(criticality + lethality)–(system countermeasures + network countermeasures)
= severity

Criticality=2, Lethality=4, System counter measures=3, Network counter measures=1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 39 of 75

Since I have no information regarding the function of the target devices, or the system
countermeasures in place, I would typically assign them a median value of 3. However,
based on the TTL information and the GNUTella usage, I would suggest that the source
is probably a workstation. Therefore I lowered the criticality to 2. Based on the evidence,
I believe this traffic was allowed to the destination. Since it poses a significant risk to the
organization, lethality was assigned a value of 4.

Based on speculation of the network design of an IDS between two Cisco devices, I
made the assumption one of the devices was a Firewall. However I feel the network
countermeasure were ineffective in this case. Therefore, I assigned a value of 1 to
network countermeasures.

Defensive recommendations:
My primary recommendation is to implement a company policy that prohibits use of the
P2P clients. It could be added to the Acceptable Use policy or a new policy. Make sure
the policy is well communicated to the users. Next, tighten Firewall security. Only allow
outbound traffic on ports that are required. Do not just allow all outbound connections.

Also, consider use of a proxy server for common outbound services. This could be a
simple proxy server used to authenticate connections, or a proxy server based firewall
used to inspect the traffic. A proxy server based firewall would be used to stop traffic
that was not consistent with the protocol. The proxy server based firewall understands
the application layer and only allows traffic that is valid for that application. A simple
proxy server or SOCKS server can provide authentication and logging of traffic.
Although, this type of proxy would not stop GNUTella traffic, it could require the user to
authenticate and then log the traffic. The downside to both types of proxy servers is that
the applications on the client machines must support the use of a proxy.

Finally, consider use of active response on IDS for GNUTella detects. Many systems
can send TCP RST packets based on a signature match. This should be considered for
the outbound “servent” connection attempts. This could terminate GNUTella
connections when they were made. The downside is that a false positive could
terminate good traffic. It is also possible for active response from a passive IDS to be
ineffective.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 40 of 75

Multiple choice test question:
11/14/2002 19:46:41.186507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 76:
midgaard.smsc.com.61784 > sehv-3-lt-48.lino.sympatico.ca.8330: P [tcp sum ok]
671312156:671312178(22) ack 16686651 win 16440 (DF) (ttl 123, id 63239, len 62)
0x0000 4500 003e f707 4000 7b06 d8ae aa81 3278 E..>..@.{.....2x
0x0010 8ed9 c430 f158 208a 2803 691c 00fe 9e3b ...0.X..(.i....;
0x0020 5018 4038 6675 0000 474e 5554 454c 4c41 P.@8fu..GNUTELLA
0x0030 2043 4f4e 4e45 4354 2f30 2e34 0a0a .CONNECT/0.4..

11/14/2002 19:46:47.176507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 76:
midgaard.smsc.com.61784 > sehv-3-lt-48.lino.sympatico.ca.8330: P [tcp sum ok]
0:22(22) ack 1 win 16440 (DF) (ttl 123, id 63787, len 62)
0x0000 4500 003e f92b 4000 7b06 d68a aa81 3278 E..>.+@.{.....2x
0x0010 8ed9 c430 f158 208a 2803 691c 00fe 9e3b ...0.X..(.i....;
0x0020 5018 4038 6675 0000 474e 5554 454c 4c41 P.@8fu..GNUTELLA
0x0030 2043 4f4e 4e45 4354 2f30 2e34 0a0a .CONNECT/0.4..
The packets above are:

A. Not related because the IDs are different
B. Both contain 22 bytes of data
C. Are both GNUTella protocol descriptor packets
D. The second packet is a retransmission of the first
E. B and D
F. None of the above

Answer: E, both B and D.

Detect Submitted:
February 15, 2003
http://cert.uni-stuttgart.de/archive/intrusions/2003/02/msg00160.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 41 of 75

Assignment 3: Analyze This
The purpose of this assignment is to analyze a sequence of intrusion detection log files.
The scenario provided is that of a University requesting a security audit. I have taken
the approach of a security consultant providing this audit. The remainder of this
assignment depicts a report provided to the GIAC University from the fictitious company
Shuck Consulting Group (SCG). This assumes that the GCIA Practical assignment part
3 was the original “statement of work”.

Executive Summary
A Security Audit is a key component in the overall security of an organization. Shuck
Consulting Group (SCG) appreciates the opportunity to complete this audit for GIAC
University.

The key mission of a Security Audit is to identify security issues or threats, identify
possible vulnerabilities, and recommend safeguards. A threat is any tool or technique
that can be used to damage a resource, such as a network, server or desktop, or to
compromise those resources for unauthorized use. A vulnerability is the weakness of a
resource or procedure that allows a threat to occur. A safeguard is a control or
countermeasure employed to reduce the risk associated with a specific threat, or group
of threats. The graph below depicts the number and frequency of alert and port scan
events detected in the log files.

0

2000

4000

6000

8000

10000

12000

Feb
-2

3
0 4 8 12 16 20

Feb
-2

4
0 4 8 12 16 20

Feb
-2

5
0 4 8 12 16 20

Feb
-2

6
0 4 8 12 16 20

Fe
b-

27
0 4 8 12 16 20

Alerts Scans

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 42 of 75

SCG has completed the Security Audit by conducting an in-depth analysis of log files
generated by GIAC University’s Snort Intrusion Detection System (IDS). The true IP
addresses range of the University was obfuscated in the logs with a prefix of “MY.NET”.
SCG has converted all obfuscated addresses with this prefix to the unused “10.199”
Class B range. This range was chosen at random after verification that the range did not
appear elsewhere in the logs, and is used throughout the remainder of this document.

There were 31,760 unique internal (addresses that began with “MY.NET”) IP addresses.
This is roughly half of the possible 65,534 host for a Class B range. There were 22,209
unique external IP addresses. SCG also discovered 154,160 individual alerts and
132,769 individual port scans in the log file analysis. This consisted of 49 unique alerts
and 13 unique scans.

List of Files
The following files were provided by GIAC University. The files were produced by Snort
IDS. Although, the exact version and the rules used are unknown, the following can be
assumed. The version is at least version 1.9.0 because there are alerts from the
‘spp_http_decode’ plugin which was added 10/09/2002 or 1.9.0. There were three
separate types of files provided. Additional information on how the files were used in the
analysis can be found in the “Description of Analysis Processes” section.

Alert Files
The following are the “Alert” files. There were 175,478 total lines or records in the alert
files. This represented data from 02/23/03 at 00:45:07 to 02/28/03 at 00:05:25.
However, there were 212 lines that were corrupted, and were removed.

For example: Lines 4006-4007 in “alert.030223.gz”:
4006: 02/23-03:45:35.005242 [**] TFTP - External UDP connection to internal
tftp server [**] MY.NET.111.23202/23-03:34:22.324760 [**] Port 55850 tcp -
Possible myserver activity - ref. 010313-1 [**] MY.NET.251.2:69 ->
192.168.0.253:3724 -> 195.241.150.18:1839
4007: :55850

Filename Size (in bytes) Lines / Rec
alert.030223.gz 480,282 35,052
alert.030224.gz 411,336 32,055
alert.030225.gz 427,643 31,915
alert.030226.gz 503,802 38,342
alert.030227.gz 497,009 38,114

The basic format for the Alert files was as follows:
<date/time stamp> [**] Signature [**] Source:Port -> Destination:Port

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 43 of 75

Scan Files
The following are the “Scan” files that were analyzed. There were 132,769 total lines or
records in the scan files. This represented data from 02/23/03 at 00:05:13 to 02/27/03 at
23:46:49.

Filename Size (in bytes) Lines / Rec
scans.030223.gz 304,623 39,690
scans.030224.gz 107,409 12,858
scans.030225.gz 96,186 13,351
scans.030226.gz 383,202 49,540
scans.030227.gz 141,365 17,330

The basic format for the Scan files was as follows:
<date/time stamp> Source:Port -> Destination:Port <Protocol Info>

Out of Spec (OOS) Files
The following are the “Out of Spec” files that were analyzed. There were 99,605 total
lines, but only 11,325 unique records in the OOS files. This represented data from
02/22/03 at 00:07:55 to 02/26/03 at 23:49:06.

Filename Size (in bytes) Lines / Rec
OOS_Report_2003_02_23_22505.gz 206,824 43,505 / 5,821
OOS_Report_2003_02_24_24091.gz 107,796 11,336 / 1,230
OOS_Report_2003_02_25_11706.gz 158,886 11,644 / 1,154
OOS_Report_2003_02_26_32018.gz 104,638 17,785 / 1,439
OOS_Report_2003_02_27_17540.gz 100,901 15,335 / 1,681

The basic format for the OOS files was as follows:
<date/time stamp> Source:Port -> Destination:Port
<IP Header>
<TCP Header / Options>
<Payload>

Relational Analysis
One of the first tasks in the analysis process was to determine as much as possible
about the University systems. Since no information was provided, SCG has made the
following assumptions based on the type and direction of traffic. These assumptions
were made based on the origination and receipt of traffic on well known ports. It is
important to remember that SCG only had alert and port scan traffic. Inbound traffic was
only considered evidence of a service if significant numbers were received.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 44 of 75

FTP Servers
To identify possible FTP servers, SCG looked for TCP port 20 and 21 traffic. This
identified 3 possibilities. It would be very common for an FTP server to have a lot of port
21 FTP Control traffic. It was also found that all 279 instances of traffic to
10.199.100.165 triggered the “CS WEBSERVER - external ftp traffic” signature.

destination port count destination port count destination port count
10.199.100.165 21 279 10.199.24.47 21 5 10.199.24.27 21 2

Although, there was very little port 21 traffic to the 10.199.24.47 and 10.199.24.27
addresses, some of this traffic triggered the “FTP passwd attempt” signature. This
would indicate the presence of an FTP server. Based on this information, there is
evidence that all three identified addresses above are indeed FTP servers. There was
also evidence that 10.199.208.210 may be an FTP server.

SMTP Servers
In an effort to identify the mail or SMTP servers, SCG searched for multiple instances of
traffic to and from port 25. This search uncovered the following 6 unique possibilities.
The server 10.199.6.47 has traffic both to and from port 25, so this is most likely an
actual SMTP server. The others are less certain.

source port count destination port count destination port count
10.199.6.47 25 6 10.199.6.40 25 39 10.199.6.47 25 28
10.199.24.21 25 4 10.199.24.22 25 25

10.199.12.2 25 2 10.199.24.23 25 31

There was also the corroboration of some POP v3 traffic to 10.199.25.21. However,
there was only a single packet which could have been part of a port scan. Based on this
information, it is strongly believed that 10.199.6.47 is the only SMTP server.

DNS Servers
There was very little evidence of Domain Name Service in the log files. The following 4
destinations were discovered with traffic to port 53. However, this was discovered to be
NMAP TCP Ping traffic, and as such does not give a strong indication of the presence
of an actual DNS server.

destination port count destination port count
10.199.1.3 53 22 10.199.137.7 53 2
10.199.1.4 53 2 10.199.1.5 53 1

Based on the available information and the sequential nature of the addresses, SCG
believes that 10.199.1.3, 10.199.1.4, and 10.199.1.5 may all be DNS servers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 45 of 75

Network Equipment
Again, SCG was not provided with any information regarding the internal structure of the
University. However, one of the traffic patterns that emerged was the use of Trivial FTP.
This is very commonly used by network equipment to transfer code and configuration
files. It is also a common practice to place network equipment in the upper IP address
range. It is the opinion of SCG that these devices are network switches or routers.

source port count source port count
10.199.111.235 69 305 10.199.111.231 69 281
10.199.111.230 69 296 10.199.111.219 69 279
10.199.111.232 69 288 10.199.251.2 69 1

All of the traffic from these devices had a single destination of 192.168.0.253.

LDAP Server
Based on the large amount of traffic originating from the following device on port 1760, it
is believed that this device is some type of LDAP server.

source port count
10.199.244.78 1760 1077

Web Servers
There were significant instances of traffic on the well known HTTP port 80. However, it
is also very common to use this port for other purposes in an effort to bypass Firewalls,
etc. SCG looked primarily at traffic originating traffic on port 80, and correlated this with
traffic destined for port 80. Sources with only a single incident of traffic were eliminated,
unless additional information was discovered.

This analysis uncovered the following 6 possible web servers.

source port count destination port count
10.199.24.44 80 68 10.199.24.44 80 65
10.199.100.165 80 9 10.199.100.165 80 9816
10.199.179.77 80 4 10.199.179.77 80 10
10.199.6.7 80 4 10.199.6.7 80 211
10.199.218.26 80 3 10.199.218.26 80 847
10.199.24.34 80 3 10.199.24.34 80 19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 46 of 75

Although, there were some large amounts of port 80 traffic directed at other devices,
this was considered to be coincidental.

destination port count
10.199.116.86 80 169
10.199.30.4 80 151
10.199.220.18 80 70
10.199.252.133 80 24
10.199.252.251 80 23
10.199.130.14 80 15
10.199.249.18 80 13

One additional piece of information was uncovered. There were two signatures named
“CS WEBSERVER - external ftp traffic” and “CS WEBSERVER - external web traffic”.
These signature appear to reference a Computer Science Web Server. The destination
of all traffic that triggered one of these signatures was 10.199.100.165.

Therefore, SCG is convinced that 10.199.100.165 is the “CS Web Server”, and that the
other five devices listed in the first table are also hosting web services.

Alerts
The following section covers the in-depth analysis conducted on the alerts, port scans
and out of specification events found in the log files supplied. This section is divided into
four primary areas:

 Overview–which details the type and quantity of alerts discovered
 Portscan–which details the type and quantity of scan or reconnaissance activity
 Out of Spec–which details the type and quantity of abnormal activity
 Alert Analysis–which explains the various alerts and assesses the possible

risk to the University

Overview
The following table identifies each unique alert found in the log files. In addition, the
number of alerts detected, the number of sources and destinations for each alert, and if
the alert was part of the default Snort IDS rule files.

SCG has discovered 154,160 individual alerts in the log file analysis. This consisted of
49 unique alerts. However, of the 49 unique alert signatures, only 7 were an exact
match for a Snort IDS rule file signature. Every effort has been made to assure that the
evaluation of the alerts was thorough, but some assumptions were necessary since the
actual rule or signature files were not supplied.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 47 of 75

Default
Rule Signature # Alerts #

Sources # Dests

N SMB Name Wildcard 71720 16168 31107

N Watchlist 000220 IL-ISDNNET-990517 25714 164 314

Y spp_http_decode: IIS Unicode attack detected 13375 771 814

N High port 65535 tcp - possible Red Worm - traffic 11479 145 148

N CS WEBSERVER - external web traffic 9743 3304 2

N Port 55850 tcp - Possible myserver activity - ref. 010313-1 4996 80 87

Y spp_http_decode: CGI Null Byte attack detected 2459 143 96

N Tiny Fragments - Possible Hostile Activity 1747 12 158

N SUNRPC highport access! 1663 51 30

N TFTP - Internal TCP connection to external tftp server 1538 33 35

N TFTP - External UDP connection to internal tftp server 1449 5 1

N Null scan! 1416 81 74

N High port 65535 udp - possible Red Worm - traffic 1202 192 219

N Watchlist 000222 NET-NCFC 1023 44 33

N External RPC call 882 4 846

N Russia Dynamo - SANS Flash 28-jul-00 732 2 3

N Queso fingerprint 583 231 88

N 10.199.30.4 activity 382 126 1

Y Incomplete Packet Fragments Discarded 356 53 38

N TCP SRC and DST outside network 289 32 94

N CS WEBSERVER - external ftp traffic 279 99 1

N EXPLOIT x86 NOOP 248 70 73

N Possible trojan server activity 182 38 114

N connect to 515 from outside 133 8 3

N 10.199.30.3 activity 102 16 1

N IRC evil - running XDCC 95 25 18

Y SNMP public access 94 18 16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 48 of 75

Default
Rule Signature # Alerts #

Sources # Dests

N EXPLOIT x86 setuid 0 68 66 59

N NMAP TCP ping! 57 21 29

N EXPLOIT x86 stealth noop 41 5 4

N EXPLOIT x86 setgid 0 32 32 30

N TFTP - Internal UDP connection to external tftp server 29 13 13

N SMB C access 7 6 5

N Probable NMAP fingerprint attempt 7 5 5

N Port 55850 udp - Possible myserver activity - ref. 010313-1 7 3 3

N FTP passwd attempt 5 5 2

N SYN-FIN scan! 4 4 4

N Attempted Sun RPC high port access 3 3 3

N Notify Brian B. 3.56 tcp 3 3 1

N Notify Brian B. 3.54 tcp 3 3 1

Y Fragmentation Overflow Attack 3 1 1

N RFB - Possible WinVNC - 010708-1 2 2 2

N HelpDesk 10.199.83.197 to External FTP 2 1 1

N IDS552/web-iis_IIS ISAPI Overflow ida nosize [arachNIDS] 1 1 1

Y NETBIOS NT NULL session 1 1 1

Y DDOS shaft client to handler 1 1 1

N FTP DoS ftpd globbing 1 1 1

Portscans
The basic idea behind port scanning is to determine which devices are “listening” or
have services running on various ports. Port scanning is a technique often used as a
reconnaissance tool, and is typically the precursor to an actual attack or exploit. As
such, these events are very serious, and have been carefully evaluated by SCG.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 49 of 75

The following table outlines the 132,769 port scan events comprising 13 unique types of
scans discovered in the University log files. Note the use of the term “EOI”, this is short
for “Events of Interest”.

__/ EOIs by Alert Message __

| |
| 77669 UDP scan (Externally-based) |
| 52182 SYN scan (Externally-based) |
| 1539 NULL scan (Externally-based) |
| 522 NOACK scan (Externally-based) |
| 244 INVALIDACK scan (Externally-based) |
| 170 VECNA scan (Externally-based) |
| 156 FIN scan (Externally-based) |
| 122 XMAS scan (Externally-based) |
| 113 UNKNOWN scan (Externally-based) |
| 22 NMAPID scan (Externally-based) |
| 13 FULLXMAS scan (Externally-based) |
| 9 SPAU scan (Externally-based) |
| 8 SYNFIN scan (Externally-based) |
| |
Total Uniques: 13 Total EOIs: 132769

There are various methods and techniques for port scanning. Most of the more unusual
techniques are geared towards avoiding detection or bypassing filters or Firewalls.

UDP Scan
The basic idea behind a UDP scan is similar to most port scanning. A “probe” or fake
UDP packet is sent to the UDP port being scanned. Unlike normal TCP port scanning,
no reply is required if a packet is not expected, and no response is required if the device
is not listening on that port. However, most devices send an ICMP “Port Unreachable”
message if they receive a packet on a closed port. What this means is that UDP port
scanning looks for ports that are “closed”, and assumes the other ports are open. This
leads to many false positives since there is no guarantee an ICMP or UDP message will
be received. The UDP Scan is also quite time consuming. It also typically generates the
most alerts. This is caused by the large number of ports to scan and the re-transmission
necessary to reduce false positives.

SYN Scan
This is a type of TCP port scanning. It is often called a “half-open” scan. This is because
all TCP communication involves the exchange of three packets called the three way
handshake. The “SYN” flag is set on the first packet of this exchange. Under normal
conditions, if a device is listening on a port, it will respond to a “SYN” packet with a
“SYN/ACK” packet. In a SYN Scan, once the SYN/ACK is received, the port is recorded
and the three way handshake is not completed. Instead a RST packet is sent indicating
a desire to stop communication. This type of scan is used because it is often not
recorded by the scanned device.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 50 of 75

FIN Scan
This is a type TCP port scanning that only sets the FIN flag. A device that is listening on
a port will ignore these packets, but a RST packet is sent if the device is not listening on
the port. This method is often used as a more clandestine approach. Most Firewalls are
concerned with the SYN packet since this is the packet used to initiate a new TCP
session. Many Firewalls and other systems now look for the familiar SYN type packets
or scans, but overlook the FIN packets.

SYN/FIN Scan
This is a variation on the FIN Scan. The idea is to exploit the way filtering devices or
Firewalls determine which TCP flags are set. The SYN and FIN flags set together are
not a valid combination, so many devices do not check for this combination.

XMAS Scan
This is another variation of the FIN Scan. In this technique, the FIN, URGent and PUSH
flags are all set in the hopes that the combination of TCP flags will not be recognized.

NULL Scan
This variation on the FIN Scan does not set any of the TCP flags. Again, this
combination is often not checked by Firewall and filtering devices.

Invalid ACK Scan
This type of scan involves the use of the ACK TCP flag when not appropriate such as in
addition to a SYN or SYN/ACK combination.

Vecna Scan
The Vecna Scan is another variation of different combinations of TCP flags. Specifically,
the Vecna Scans use combinations of URG, PUSH, URG/PUSH, FIN/URG, and
FIN/PUSH. All of these are meant to bypass Firewalls of filtering devices and provide
clandestine operation.

SPAU Scan
This is yet another variation on the use of invalid TCP flag combinations. This particular
one utilizes the SYN/PUSH/ACK/URG combination.

NOACK Scan
This is the catch all scan type. This is designed to identify all scans that do not match
one of the other known scan types. Specifically, if ACK is not set, and the packet is not
a SYN or RST packet and the packet is not a known scan type.

Out of Spec
SCG evaluated various aspects of the out of spec traffic. However, the real question is
what the purpose of the OOS traffic is. There are three primary reasons why traffic may
be deemed out of spec:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 51 of 75

Corrupted traffic
This is as simple as it sounds. It is always possible that a device along the path that a
packet travels could corrupt the packet. Remember the whole packet is just a bunch of
ones and zeros. Hardware can fail and alter one or more of the bits in a packet.

Unfortunately, this is possible, but not very probable. Packets contain checksums that
are designed to identify when packets get changed unexpectedly. SCG did not find any
indications of bad checksums in the log analysis. This is not to say corrupted traffic
could not have been the case in some instances. It is prudent, however, to assume that
a very small percentage would be expected to be the result of packet corruption without
any indication of bad checksums.

ECN Traffic
It is also possible that some of the traffic identified as out of spec was in fact utilizing the
new ECN standard. ECN or Explicit Congestion Notification is defined by RFC31687

and as explained by Tod Beardsley in his GCIA Practical8, makes use of previously
reserved bits in the TCP header. This can often cause an IDS to generate an alert for
valid traffic.

However, what Tod did not mention in his practical, is that to utilize this new standard
there are components of the IP header that most also be in place. Most notable is the
“ECN Capable” bit in the IP header. If the OOS traffic had been legitimate ECN traffic,
SCG should have found evidence of this in the IP headers of the OSS traffic.

What SCG found did not support the ECN theory. The vast majority of OOS traffic did
not have the ECN Capable bit set in the IP header.

tos count tos count
0x0 10394 0x40 11
0x10 9 0x50 2
0x2 8 0x8 13
0x20 881 0xA0 5

As you can see from the table above, only 8 packets contained a value in the low order
bits of the “Type of Service” IP header field. This would have identified the packets as
ECN Capable or “congestion experienced”. Although not definitive proof, it is strong
evidence that the OOS packets were not the result of ECN.

7 http://www.ietf.org/rfc/rfc3168.txt
8 http://www.giac.org/practical/Tod_Beardsley_GCIA.doc

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 52 of 75

Reconnaissance techniques
The final and most likely explanation for the OOS traffic is some type of reconnaissance
technique. This is typically in the form of some type of port scanning, Firewall or IDS
evasion, or operating system or other types of fingerprinting.

The purpose of OOS traffic in reconnaissance is typically avoidance of detection and
possibly circumvention of security controls. The premise is that by creating and sending
packets that are invalid or abnormal they may be ignored or not handled correctly.

OOS Characteristics
There are some common trends that SCG investigated. One of the most common is to
identify the largest sources. These are listed below. This is sometimes referred to as
“Top Talkers”.

source count source count
213.37.100.232 4078 148.63.247.216 148
200.167.116.27 196 213.140.9.151 142
212.227.109.38 181 66.140.25.156 114
81.182.14.135 173 213.143.83.172 112
148.64.162.157 153 217.217.14.35 109

Another important characteristic of the OOS traffic is the combinations or patterns used.
These patterns can often provide insight into the intended purpose. The following table
outlines the primary TCP Flag combinations found in the OOS traffic.

Flag combinations count
12****S* 9903
****P*** 997
******** 112
12***R** 60
***A**SF 17

Pattern 12****S*
Based on the primary destination ports for this particular OOS traffic, SCG believes that
most can be attributed to some type of peer-to-peer (P2P) client and attempts at covert
port scanning.

Destination port count Possible Exploit
443 4114 SSL

4662 1720 eDonkey2000 or Overnet P2P
25 1307 SMTP

6346 1057 Gnutella
80 585 Web Traffic

6011 360 X Windows

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 53 of 75

Pattern ****P***
Again, based on the primary destination ports for this particular OOS traffic, SCG
believes that most can be attributed to some type of peer-to-peer (P2P) client.

Destination port count Possible Exploit
1214 500 Kazaa or Morpheous

80 154 Web Traffic
6011 115 X Windows
8333 66 Unknown
2642 42 Tragic
6346 34 Gnutella

Pattern ******** | 12***R** | ***A**SF
No significant pattern of destination port was found for these patterns. These are
believed to be the result of NULL Scan, and variations on other port scan traffic.

In addition to the “Top Talkers”, SCG also identified the primary destinations or targets
of this traffic. This information is useful in the creation of defensive recommendations
and strategies. The top or major destinations or targets of OOS traffic are displayed
below.

destination count destination count
10.199.207.2 478 10.199.249.134 216
10.199.202.50 357 10.199.240.46 188
10.199.24.21 308 10.199.219.14 186
10.199.6.40 287 10.199.209.210 156
10.199.6.47 286 10.199.24.44 152
10.199.24.23 283 10.199.241.114 148
10.199.189.62 276 10.199.252.122 137
10.199.237.66 266 10.199.100.165 124
10.199.222.98 258 10.199.218.26 117
10.199.220.106 221 10.199.226.98 105

It is also important to identify patterns of OOS communication or traffic. The following
table identifies the top pair of communicating devices.

source destination count source destination count
200.167.116.27 10.199.249.134 196 81.182.14.135 10.199.222.98 135
212.227.109.38 10.199.209.210 156 213.143.83.172 10.199.252.122 112
148.64.162.157 10.199.240.46 153 217.217.14.35 10.199.237.66 109
148.63.247.216 10.199.241.114 148 209.191.132.40 10.199.250.90 83
213.140.9.151 10.199.202.50 141 195.162.218.167 10.199.202.50 79

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 54 of 75

Of the out of spec traffic recorded, very little was traffic generated by University devices.
In fact, there were only 141 packets generated by University devices of the 11,325
packets of out of spec traffic. The following table outlines the University devices
involved as sources.

source count source count
10.199.12.2 7 10.199.208.230 75
10.199.12.4 51 10.199.239.158 3
10.199.194.179 1 10.199.253.2 1
10.199.204.94 3

Two of the University devices are responsible for most of the internal out of spec traffic.
These hosts or devices should be investigated further.

Alert Analysis
SCG conducted as thorough an analysis as possible given the data available. Based on
this analysis, SCG has assigned each unique alert a risk level. These risk levels are
based on the source of the attack, the seriousness of the exploit, the possibility of false
positives, and the number of incidents.

SMB Name Wildcard (Low)
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the following arachNIDS9.

alert UDP $EXTERNAL any -> $INTERNAL 137 (msg: "IDS177/netbios_netbios-name-
query"; content: "CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|00 00|"; classtype: info-
attempt; reference: arachnids,177;)

This rule detects NETBIOS name queries. These are typically used as reconnaissance
to locate poorly configured NETBIOS shares. All NETBIOS port 137 traffic should be
blocked at the Firewall. There were 71,720 instances of this alert affecting 31,107
internal addresses. This is 97% of the internal addresses found in the log files. Thomas
Halverson analyzed a similar detect in his IDIC practical10.

Watchlist 000220 IL-ISDNNET-990517 (High)
This was not a default Snort rule. SCG believes this rule was created to detect traffic to
or from the Israeli network range 212.179.0.0 - 212.179.255.255. SCG located 149
various occurrences of this network at SANS alone, such as the practicals by Robert
Sorensen11 or George Bakos12. This range is listed in 113,607 reports at the Internet
Storm Center at Incidents.org13.

9 http://www.whitehats.com/info/IDS177
10 http://www.giac.org/practical/Tomas_Halvarsson.txt
11 http://www.giac.org/practical/Robert_Sorensen_GCIA.htm
12 http://www.giac.org/practical/George_Bakos.html
13 http://isc.incidents.org/source_report.html?order=&subnet=212

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 55 of 75

Normally, SCG would only recommend close attention to alerts from this rule. However,
the bulk of traffic appears to be some form of P2P software. This poses a significant
security risk particularly combined with the nature of the source network.

spp_http_decode: IIS Unicode attack detected (low)
This is a default result from a Snort pre-processor. This particular attack attempts to
exploit a flaw in Microsoft IIS web servers14. The flaw can allow the bypass of security
for directories and files by injecting Unicode characters in the path. Christof Voemel did
an excellent job of analyzing this attack in his GCIA practical15.

SCG is assuming that GCIA University has maintained the security patches on
externally accessible devices. If so, this is a harmless attack for patches servers. If not,
this is a medium risk and should be addressed quickly. Additionally, the vast majority of
this traffic was generated by University devices.

High port 65535 tcp - possible Red Worm –traffic (unknown)
This was not a default Snort rule. SCG believes this rule was triggered by all traffic with
a source or destination port of 65535. There were a large number of these alerts and it
is very odd to have that many on this port. However, with out payload data SCG can not
make an accurate analysis. Bradley Urwiller noted similar traffic in his GCIA practical16.

CS WEBSERVER - external web traffic (none/low)
This was not a default Snort rule. SCG believes this is a rule designed to watch external
HTTP traffic to the Computer Science department web server or servers, since there
were two destinations. No correlations were possible without additional information.

Port 55850 tcp - Possible myserver activity - ref. 010313-1 (unknown)
This was not a default Snort rule. SCG can only assume that GIAC University has an
application called “myserver” that runs on port 55850. Without further information, SCG
is unable to assess risk for this alert. Mark Embrich had a similar analysis in his GCIA
practical17.

spp_http_decode: CGI Null Byte attack detected (low)
This is a default result from a Snort pre-processor. The rule looks for the NULL
character in web traffic. The vast majority of this traffic was generated by University
devices. More information and payload data would be necessary for a accurate
analysis, but SCG feels this traffic is primarily “false positives”.Mark Embrich also
analyzed this alert in his GCIA practical18.

14 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/ms00-057.asp
15 http://www.giac.org/practical/Christof_Voemel_GCIA.txt
16 http://www.giac.org/practical/Bradley_Urwiller_GCIA.pdf
17 http://www.giac.org/practical/Mark_Embrich_GCIA.htm
18 http://www.giac.org/practical/Mark_Embrich_GCIA.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 56 of 75

Tiny Fragments - Possible Hostile Activity (low)
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the following.

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC Tiny Fragments";
fragbits:M; dsize: < 25; classtype:bad-unknown; sid:522; rev:1;)

This rule looks for fragment packets with a size smaller than 25 bytes. This is higly
unusual, since normal fragmentation occurs as a result of MTU size. An MTU of 25
would be highly unlikely. The majority of this traffic was destined for 10.199.246.54.
Without additional information it is difficult to accurately assess, but SCG believes this is
a low risk. SCG does recommend GIAC University research the fragment capability of
their Firewalls, since it could be indicative of a Teardrop attack. This type of traffic was
also seen by Dale Ross in his IDIC practical19.

SUNRPC highport access! (medium)
This was not a default Snort rule. SCG believes this rule was looking for a destination
port of 32771. There are several RPC vulnerabilities on this port such as “ttdbserv”,
“NFS showmount”, and “RPC port listing”.This alert requires further investigation. Many
of the alerts have a source of port 80, and are most likely false positives. However,
there are a significant number with a source ports known for Trojans and P2P clients.
Joeseph Rach also analyzed this type of traffic in his GCIA practical20 with similar
conclusions.

TFTP - Internal TCP connection to external tftp server (low)
This was not a default Snort rule. SCG believes this rule was looking traffic originating
internally with an external destination on TCP port 69. TFTP is not a secure protocol
and should not be used for external sites. There are several related Advisories and
Vulnerability Notes regarding TFTP at CERT, and 16 items on BugTraq.

TFTP - External UDP connection to internal tftp server (medium)
This was not a default Snort rule. SCG believes this rule was looking traffic originating
externally with an internal destination on UDP port 69. TFTP is not a secure protocol
and should not be allowed through the Firewall. There are several related Advisories
and Vulnerability Notes regarding TFTP at CERT, and 16 items on BugTraq.

Null scan! (low)
This was not a default Snort rule. However, SCG believes this rule was looking for
traffic with none of the TCP Flag bits set. Chris Kuethe found similar traffic in his GCIA
practical21. This is most likely low level reconnaissance traffic and should be blocked by
the Firewall.

19 http://www.giac.org/practical/Dale_Ross_GCIA.htm
20 http://www.giac.org/practical/Joseph_Rach.html
21 http://www.giac.org/practical/chris_kuethe_gcia.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 57 of 75

High port 65535 udp - possible Red Worm –traffic (low)
This was not a default Snort rule. SCG believes this rule was triggered by all traffic with
a source or destination port of 65535. There were not a large number of these alerts,
and over half of the alerts originated from University devices. However, with out payload
data SCG can not make an accurate analysis. Bradley Urwiller noted similar traffic in his
GCIA practical22.

Watchlist 000222 NET-NCFC (medium)
This was not a default Snort rule. SCG believes this rule was created to detect traffic to
or from the Computer Network Center Chinese Academy of Sciences network range
159.226.0.0 - 159.226.255.255. SCG located 23 various occurrences of this network at
SANS alone such as the practicals by Crist Clark23 and Mark Turkia24. This range is
listed in 7,359 reports at the Internet Storm Center at Incidents.org25. The majority of the
traffic appears to be web, e-mail, and eDonkey. Based on this SCG has assessed this
alert as medium. This alert should be investigated further.

External RPC call (low)
This was not a default Snort rule. SCG believes this rule looks for all external traffic
destined for port 111 or SUN RPC. The bulk of the traffic originated from Korea Network
Information Center. This traffic should be blocked by the Firewall. There are several
related Advisories and Vulnerability Notes regarding RPC at CERT, and 42 items on
BugTraq.

Russia Dynamo - SANS Flash 28-jul-00 (medium)
This was not a default Snort rule. SCG was unable to locate any reference to this rule
on SANS. The majority of the traffic was between 10.199.105.204 and 194.87.6.50
which is registered to DEMOS-Online Dialup in Russia. The traffic does not have a
concrete pattern. SCG finds no information on this alert, but the internal device should
be investigated. In his GCIA practical26, David Osborn came to a similar conclusion.

Queso fingerprint (low)
This was not a default Snort rule. SCG assumes the rule must look for indication of
fingerprinting by the Queso application. The assumption would be that the rule is
triggered by some combination of TCP Flags and TCP options. SCG believes the rule is
looking for the SYN and Reserved or ECN bits and a window size of 1234. This traffic
should be blocked by the Firewall. Information that lead to SCG’s conclusions can be
found in Tomas Halvarsson’s GCIA practical27.

22 http://www.giac.org/practical/Bradley_Urwiller_GCIA.pdf
23 http://www.giac.org/practical/Crist_Clark_GCIA.html
24 http://www.giac.org/practical/Miika_Turkia_GCIA.html
25 http://isc.incidents.org/source_report.html?order=&subnet=159
26 http://www.giac.org/practical/David_Oborn_GCIA.html
27 http://www.giac.org/practical/Tomas_Halvarsson.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 58 of 75

10.199.30.4 activity (unknown)
This was not a default Snort rule. SCG believes this rule looks for traffic to or from
10.199.30.4. Based on the traffic, it appears this is a web server running Novell (due to
the amount of NCP traffic as well). There is insufficient information to assess risk. No
correlations were possible without additional information.

Incomplete Packet Fragments Discarded (low)
This is a default result from the Snort pre-processor “spp_frag2”. This pre-processor will
alert when all of the fragments of a frame are not received. This could indicate a
Teardrop attack, although there were not significant numbers of packets received.
There are several related Advisories and Vulnerability Notes regarding Fragmentation at
CERT, and 31 items on BugTraq.

TCP SRC and DST outside network (low)
This was not a default Snort rule. SCG believes this rule looks for TCP traffic where
both source and destination are external addresses or not “10.199”. The majority of this
traffic was from 192.168.1.102. SCG assumes this is some type of DMZ address range.
Valid detects for this type of traffic could indicate address spoofing of an incorrectly
configured router. No acceptable correlations were found for this rule.

CS WEBSERVER - external ftp traffic (low)
This was not a default Snort rule. SCG believes this is a rule designed to watch external
FTP traffic to the Computer Science department web server. FTP traffic is not secure
and should be avoided. If it is used, make sure the FTP software is current for all
patches. There are several related Advisories and Vulnerability Notes regarding FTP at
CERT, and 50 items on BugTraq.

EXPLOIT x86 NOOP (low)
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the Snort rules for NOOP sleds. This typically looks for some of
the various Intel NOOP combinations such as "eb02”, "9000”, “43”, or “61”. It is
impossible for SCG to assess the risk without access to the payload data. These
shellcode rules are very prone to false positives. Todd Garrison did a nice job of
analyzing this type of attack in his GCIA practical28.

Possible trojan server activity (high)
This was not a default Snort rule. However, there are several Snort rules that address
the apparent intention of this rule. SCG believes this rule looks for traffic with a source
or destination port of 27374. Upon closer analysis, SCG believes 10.199.227.134 may
be infected with a Trojan. No correlations were possible without additional information.

28 http://www.giac.org/practical/Todd_Garrison.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 59 of 75

connect to 515 from outside (low)
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the Snort rules for “lpr” or “lpd” vulnerabilities. It is assumed that
the rule was looking for external traffic destined for internal devices on port 515. The
vast majority of this traffic originated from AT&T dial-up access points in Minneapolis
and Washington. This traffic should be blocked at the Firewall. The host 10.199.132.42
should be investigated for possible “lpr” exploits. Robert Sorensen came to similar
conclusions in his GCIA practical29.

10.199.30.3 activity (high)
This was not a default Snort rule. SCG believes this rule looks for traffic to or from
10.199.30.3. Based on the traffic, it appears this is a web server running Novell (due to
the amount of NCP traffic as well). Although the purpose of this device is unknown, it
appears to have one of the port 6667 Trojans or IRC installed. IRC can be potentially
risky and should be avoided if possible. No correlations were possible without additional
information.

IRC evil - running XDCC (medium)
This was not a default Snort rule. The rule appears to be targeting IRC on ports 6667,
6668, and 7000. By the title, SCG assumes it is also looking for some characteristic of
xDCC file sharing capability in IRC. Use of xDCC is a very dangerous practice and there
are 25 University devices that may be using this function. A university administrator
named TonikGin has written an excellent paper on protecting against this function30.

SNMP public access (low)
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the following.

alert tcp $EXTERNAL_NET any -> $HOME_NET 161 (msg:"SNMP public access tcp";
flow:to_server,established; content:"public"; reference:cve,CAN-2002-0012;
reference:cve,CAN-2002-0013; sid:1412; classtype:attempted-recon; rev:4;)

The traffic could be either TCP or UDP. This traffic should be blocked at the Firewall.
E.A Vasquez noted similar finding in his GCIA practical31. Additional information can
also be found at CVE in CAN-2002-001232 and CAN-2002-001333.

29 http://www.giac.org/practical/Robert_Sorensen_GCIA.htm
30 http://www.russonline.net/tonikgin/EduHacking.html
31 http://www.giac.org/practical/EAVazquezJr.html
32 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0012
33 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0013

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 60 of 75

EXPLOIT x86 setuid 0 (low)
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the following.

alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS (msg:"SHELLCODE x86
setuid 0"; content: "|b017 cd80|"; reference:arachnids,436; classtype:system-
call-detect; sid:650; rev:5;)

This rule looks for the pattern "b017cd80". It is impossible for SCG to assess the risk
without access to the payload data. These shellcode rules are very prone to false
positives. The following SecuriTeam.com URL contains an x86 setuid exploit for
Pfinger34.

NMAP TCP ping! (low)
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the following.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap TCP"; flags:A;
ack:0; reference:arachnids,28; classtype:attempted-recon; sid:628; rev:1;)

This rule looks for the signature of an Nmap TCP ping which by default sends a single
ACK packet to port 80 with an acknowledgement id of 0. This is a reconnaissance
attempt. The traffic should be blocked by the Firewall. E.A Vasquez noted similar finding
in his GCIA practical35.

EXPLOIT x86 stealth noop (low)
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the following.

alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS (msg:"SHELLCODE x86
stealth NOOP"; content: "|eb 02 eb 02 eb 02|"; reference:arachnids,291;
classtype:shellcode-detect; sid:651; rev:5;)

This rule looks for the pattern "eb02eb02eb02". It is impossible for SCG to assess the
risk without access to the payload data. These shellcode rules are very prone to false
positives. The majority of this traffic was destined for 10.199.24.8 on port 119 (NNTP)
from news.ums.edu. This is most likely a false positive. No acceptable correlations were
found for this rule.

EXPLOIT x86 setgid 0 (medium)
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the following.

alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS (msg:"SHELLCODE x86
setgid 0"; content: "|b0b5 cd80|"; reference:arachnids,284; classtype:system-
call-detect; sid:649; rev:5;)

34 http://www.securiteam.com/exploits/6E00Q006AG.html
35 http://www.giac.org/practical/EAVazquezJr.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 61 of 75

This rule looks for the pattern "b0b5cd80". It is impossible for SCG to assess the risk
without access to the payload data. These shellcode rules are very prone to false
positives. The majority of this traffic is destined for ports known for P2P software. This is
most likely a false positive for a shellcode exploit, but may be P2P traffic. There are 3
articles regarding this exploit in the ISS X-Force database36.

TFTP - Internal UDP connection to external tftp server (low)
This was not a default Snort rule. SCG believes this rule was looking traffic originating
internally with an external destination on UDP port 69. TFTP is not a secure protocol
and should not be used if possible. There are several related Vulnerability Notes
regarding TFTP at CERT, and 16 items on BugTraq.

SMB C access (medium)
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the following.

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS SMB C$ ccess";
flow:to_server,established; content: "|5c|C$|00 41 3a 00|"
;reference:arachnids,339; classtype:attempted-recon; sid:533; rev:5;)

The rule looks for any NETBIOS access for the ‘C’ drive. There were 7 alerts involving
external access to internal devices. This traffic is very difficult to secure since many
Microsoft functions utilize port 139, therefore it should be blocked at the Firewall. Eric
Hacker37 found the same type of detect in his analysis of a site. His recommendations
mirrored those of SCG.

Probable NMAP fingerprint attempt (low)
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the following.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap fingerprint
attempt"; flags:SFPU; reference:arachnids,05; classtype:attempted-recon;
sid:629; rev:1;)

This rule looks for the SYN/FIN/PUSH/URG flags to be set. This is used in OS
fingerprinting by Nmap, and is used for reconnaissance. Again, this traffic should be
blocked at the Firewall. Chris Kuthe also recorded this signature in his GCIA practical38.

Port 55850 udp - Possible myserver activity - ref. 010313-1 (low)
This was not a default Snort rule. SCG can only assume that GIAC University has an
application called “myserver” that runs on port 55850. Without further information, SCG
is unable to assess risk for this alert. No correlations were possible without additional
information.

36 http://www.iss.net/security_center/
37 http://www.giac.org/practical/Eric_Hacker.html#anchor9566546
38 http://www.giac.org/practical/chris_kuethe_gcia.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 62 of 75

FTP passwd attempt (none)
This was not a default Snort rule. SCG believes the rule would have been looking for
content of “passwd” in FTP (port 21) traffic. SCG is uncertain of the purpose of this rule.
In any case, FTP is not a secure protocol as demonstrated by this rule. The password is
sent in clear text. SSH should be used instead. There are several related Advisories
and Vulnerability Notes regarding FTP at CERT, and 50 items on BugTraq.

SYN-FIN scan! (low)
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the following.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN SYN FIN";flags:SF;
reference:arachnids,198; classtype:attempted-recon; sid:624; rev:1;)

This is a common scan used to bypass Firewalls and filter devices. It is used for
reconnaissance. Herschel Gelman did some excellent analysis of this in his GCIA
practical39.

Attempted Sun RPC high port access (low)
This was not a default Snort rule. However, SCG believes that this rule was designed to
trigger an alert on all TCP traffic to an internal device with a destination port or 32771 or
greater or possibly 32771 to 34000. This inbound traffic should be blocked at the
Firewall. There are several related Advisories and Vulnerability Notes regarding RPC at
CERT, and 42 items on BugTraq. Dale Ross also analyzed similar traffic in his GCIA
practical40.

Notify Brian B. 3.56 tcp (medium)
This was not a default Snort rule. The rule appears to trigger on any traffic to
10.199.3.56. The significance of this is unknown. SCG believes that this device is a
Window machine running MS-SQL. It also appears to have a Trojan or IRC on port
6667. No correlations were possible without additional information.

Notify Brian B. 3.54 tcp (low)
This was not a default Snort rule. The rule appears to trigger on any traffic to
10.199.3.56. The significance of this is unknown. SCG believes that this device is a
Window machine running MS-SQL. Without further information, SCG is unable to
assess risk for this alert. No correlations were possible without additional information.

39 http://www.giac.org/practical/Herschel_Gelman.html
40 http://www.giac.org/practical/Dale_Ross_GCIA.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 63 of 75

Fragmentation Overflow Attack (low)
This is a default result from the Snort pre-processor “spp_defrag”. This alert is triggered
by a packet that has a fragment offset and length that would cause it to extend beyond
the previously indicated total packet size. This type of attack is designed to be a denial
of service. The only source for this traffic, 80.135.229.168, was a dial-up ISP that is not
listed at Dshield.org41, and there were only 3 instances. There are several related
Advisories and Vulnerability Notes regarding Fragmentation at CERT, and 31 items on
BugTraq

RFB - Possible WinVNC - 010708-1 (low)
This was not a default Snort rule. SCG believes that this rule was triggered by traffic
with a source or destination port of 5900, which is the virtual network computer (VNC)
port. SCG feels these 2 alerts were false positives. Obviously, this port should be
blocked at the Firewall. Mark Embrich detected similar traffic in his GCIA practical42.
There are 3 Vulnerability Notes regarding VNC at CERT, and 13 items on BugTraq.

HelpDesk 10.199.83.197 to External FTP (low)
This was not a default Snort rule. The rule appears to trigger on external bound traffic
from 10.199.83.197. All of this traffic was destined for a Network Associates IP of
161.69.201.237. No correlations were possible without additional information.

IDS552/web-iis_IIS ISAPI Overflow ida nosize [arachNIDS]
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the following.

alert TCP $EXTERNAL any -> $INTERNAL 80 (msg: "IDS552/web-iis_IIS ISAPI
Overflow ida"; dsize: >239; flags: A+; uricontent: ".ida?"; classtype:
system-or-info-attempt; reference: arachnids,552;)

This actual rule may have had the “dsize” option removed based on the title of the alert.
This attack is used to exploit an ISAPI vulnerability in Microsoft IIS web servers.
Additional information can be found at CVE in CAN-2000-007143 and at BugTraq in
BID106544. Bradley Urwiller also detected similar traffic in his GCIA practical45.

NETBIOS NT NULL session (low)
This was the following default Snort rule.

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS NT NULL session";
flow:to_server,established; content: "|00 00 00 00 57 00 69 00 6E 00 64 00 6F
00 77 00 73 00 20 00 4E 00 54 00 20 00 31 00 33 00 38 00 31|"; reference:
bugtraq,1163; reference:cve,CVE-2000-0347; reference:arachnids,204;
classtype:attempted-recon; sid:530; rev:7;)

41 http://www.dshield.org/ipinfo.php?ip=80.135.229.168
42 http://www.giac.org/practical/Mark_Embrich_GCIA.htm
43 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0071
44 http://www.securityfocus.com/bid/1065
45 http://www.giac.org/practical/Bradley_Urwiller_GCIA.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 64 of 75

This rule is looking for Microsoft NULL sessions. These are sessions that do not require
any authentication. They are used to perform reconnaissance on a Windows machine.
A great deal of information can be obtained if these are allowed. Additional information
can be found at CVE in CVE-2000-034746 and at Microsoft in KB13267947.

DDOS shaft client to handler
This was the following default Snort rule.

alert tcp $EXTERNAL_NET any -> $HOME_NET 20432 (msg:"DDOS shaft client to
handler"; flags: A+; reference:arachnids,254; classtype:attempted-dos;
sid:230; rev:1;)

This rule looks for traffic from an external source to an internal destination on port
20432. Since this is an ephemeral port, this rule generates a large number of false
positives. The only source of this alert is listed at Dshield.org48, but since there was only
a single packet, SCG believes this was most likely part of a port scan. Chris Calabrese
also detected this type of traffic in his GCIA practical49.

FTP DoS ftpd globbing
Although this rule name was not an exact match for a current Snort rule, SCG believes
the rule was similar to the following.

alert TCP $EXTERNAL any -> $INTERNAL 21 (msg: "IDS487/ftp_dos-ftpd-globbing";
flags: A+; content: "|2f2a|"; classtype: denialofservice; reference:
arachnids,487;)

This rule looks for traffic containing the pattern “2f2a” with a destination port of 21. This
is a known exploit of the Wu-FTP server software. If the only destination address,
10.199.208.210, for this alert is running the Wu-FTP server, it should be investigated for
possible compromise and latest patches. Mark Embrich found similar traffic in his GCIA
practical50. Additional information on this exploit can be found at BugTraq in BID358151.

Top Talkers
There are many different criteria used to determine a “Top Talker”. SCG utilizes the
following criteria to identify the “Top Talkers”. Although it is common and was requested
by GIAC University, SCG has identified at least the top ten talkers using the various
criteria, but in some cases may identify more than ten. This is because SCG finds that
patterns often emerge, and that top talkers often gather in striation patterns.

46 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0347
47 http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B132679
48 http://www.dshield.org/ipinfo.php?ip=66.115.47.66
49 http://www.giac.org/practical/Chris_Calabrese_GCIA.html
50 http://www.giac.org/practical/Mark_Embrich_GCIA.htm
51 http://www.securityfocus.com/bid/3581

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 65 of 75

Also take notice of the additional information at the end of each table. SCG has also
included the minimum and maximum number of packets for a given type of “talker”, and
the average and standard deviation values. These numbers, particularly the standard
deviation, help identify how unusual the top talkers are compared to the other talkers of
the same type.

Top Alert Destination IP
The following table identifies the top 12 destination IP addresses for Alert traffic.

destination count destination count destination count
10.199.100.165 10133 10.199.210.238 1722 24.193.129.45 1150
10.199.240.234 6027 10.199.180.39 1615 67.81.224.77 1077
10.199.247.102 3506 10.199.245.50 1577 10.199.252.122 1045
10.199.244.78 2047 192.168.0.253 1450 64.12.54.248 1033

minimum maximum average Std deviation
1 10133 4.69 75.12

Top Alert Source IP
The following table identifies the top 12 source IP addresses for Alert traffic.

source count source count
212.179.94.48 6021 10.199.246.54 1510
212.179.13.98 3502 212.179.100.234 1414
202.175.95.50 2545 212.179.35.118 1252
67.81.224.77 2007 10.199.241.182 1151
10.199.207.34 1714 10.199.244.78 1099
212.179.102.22 1574 10.199.201.66 967

minimum maximum average Std deviation
1 6021 7.045 63.74

Top Alert IP Pairs
The following table identifies the top 10 communication pairs for Alert traffic.

source destination count source destination count
212.179.94.48 10.199.240.234 6021 212.179.100.234 10.199.210.238 1413
212.179.13.98 10.199.247.102 3502 10.199.241.182 24.193.129.45 1150
202.175.95.50 10.199.100.165 2545 10.199.244.78 67.81.224.77 1077
67.81.224.77 10.199.244.78 2007 10.199.201.66 80.129.80.137 967
212.179.102.22 10.199.245.50 1574 65.79.79.242 10.199.240.186 787

minimum maximum average Std deviation
1 6021 1.98 32.02

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 66 of 75

Top Alert Destination Ports
The following table identifies the top 12 destination ports for Alert traffic.

destination count destination count destination count destination count
137 71722 65535 5244 1214 2427 2708 1619
80 27028 6699 4046 1760 2007 3162 1446

2561 6021 55850 2980 32771 1666 4662 1418
minimum maximum average Std deviation

0 71722 81.46 1798.04

Top Alert Source Ports
The following table identifies the top 16 source ports for Alert traffic.

source count source count source count source count
1026 8820 1028 6600 1029 4443 55850 2022
1025 8812 137 6555 2163 3507 1031 1381
1027 7690 3920 6024 1030 2468 1214 1279

65535 7441 80 4928 69 2249 1760 1078
minimum maximum average Std deviation

0 8820 8.85 167.57

Top Scan Destination IP
The following table identifies the top 10 destination IP addresses for Scan traffic.

destination count destination count destination count
217.210.106.58 10704 212.39.90.9 3291 208.187.180.214 1251
80.232.11.236 6949 217.39.77.130 3052 157.193.80.50 1070
208.48.163.2 3541 217.35.71.32 1521

66.93.105.211 3449 69.3.248.134 1358
minimum maximum average Std deviation

1 10704 2.12 58.93

Top Scan Source IP
The following table identifies the top 15 source IP addresses for Scan traffic.

source count source count source count
130.85.218.62 29337 220.114.0.175 3715 130.85.1.3 2468
130.85.60.16 14909 195.25.165.42 3527 130.85.97.52 2386
130.85.87.44 7442 130.85.88.252 3237 212.4.64.29 2203
130.85.221.110 7146 211.199.143.9 2990 212.4.64.28 2040
130.85.219.170 4658 130.85.150.210 2793 61.221.128.34 1810

minimum maximum average Std deviation
1 29337 179.42 1322.58

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 67 of 75

External Sources
At GIAC University’s request, SCG has selected 5 external sources to investigate.

212.179.94.48 - bzq-179-94-48.cablep.bezeqint.net
This address was chosen because it was the top source address in all of the alert log
files with 6,021 occurrences. This address is not listed at Dshield.org.

inetnum: 212.179.80.0 - 212.179.94.255
netname: CABLES-CONNECTION
descr: CABLES-CUSTOMERS-CONNECTION
country: IL
admin-c: YK76-RIPE
tech-c: BHT2-RIPE
status: ASSIGNED PA
remarks: please send ABUSE complains to abuse@bezeqint.net
mnt-by: AS8551-MNT
mnt-lower: AS8551-MNT
notify: hostmaster@bezeqint.net
changed: hostmaster@bezeqint.net 20021029
source: RIPE
route: 212.179.64.0/18
descr: ISDN Net Ltd.
origin: AS8551
notify: hostmaster@bezeqint.net
mnt-by: AS8551-MNT
changed: hostmaster@bezeqint.net 20020618
source: RIPE
role: BEZEQINT HOSTMASTERS TEAM
address: bezeq-international
address: 40 hashacham
address: petach tikva 49170 Israel
phone: +972 1 800800110
fax-no: +972 3 9203033
e-mail: hostmaster@bezeqint.net
admin-c: YK76-RIPE
tech-c: MR916-RIPE
nic-hdl: BHT2-RIPE
remarks: Please Send Spam and Abuse ONLY to abuse@bezeqint.net
mnt-by: AS8551-MNT
changed: hostmaster@bezeqint.net 20021029
changed: hostmaster@bezeqint.net 20030204
source: RIPE
person: Yuval Keinan
address: bezeq-international
address: 40 hashacham
address: petach tikva 49170 Israel
phone: +972 1 800800110
fax-no: +972 3 9203033
e-mail: hostmaster@bezeqint.net
mnt-by: AS8551-MNT
nic-hdl: YK76-RIPE
changed: hostmaster@bezeqint.net 20021215
changed: hostmaster@bezeqint.net 20030204

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 68 of 75

212.179.13.98 - cablep-179-13-98.cablep.bezeqint.net
This address was chosen because it was the second most frequent source address in
all of the alert log files with 3,502 occurrences. This address is not listed at Dshield.org.

inetnum: 212.179.13.0 - 212.179.14.255
netname: MATAV-CABLES
mnt-by: INET-MGR
descr: MATAV
country: IL
admin-c: MR916-RIPE
tech-c: ZV140-RIPE
status: ASSIGNED PA
remarks: please send ABUSE complains to abuse@bezeqint.net
remarks: INFRA-AW
notify: hostmaster@bezeqint.net
changed: hostmaster@bezeqint.net 20021023
source: RIPE
route: 212.179.0.0/18
descr: ISDN Net Ltd.
origin: AS8551
notify: hostmaster@bezeqint.net
mnt-by: AS8551-MNT
changed: hostmaster@bezeqint.net 20020618
source: RIPE
person: Miri Roaky
address: bezeq-international
address: 40 hashacham
address: petach tikva 49170 Israel
phone: +972 1 800800110
fax-no: +972 3 9203033
e-mail: hostmaster@bezeqint.net
mnt-by: AS8551-MNT
nic-hdl: MR916-RIPE
changed: hostmaster@bezeqint.net 20021027
changed: hostmaster@bezeqint.net 20030204
source: RIPE
person: Zehavit Vigder
address: bezeq-international
address: 40 hashacham
address: petach tikva 49170 Israel
phone: +972 1 800800110
fax-no: +972 3 9203033
e-mail: hostmaster@bezeqint.net
mnt-by: AS8551-MNT
nic-hdl: ZV140-RIPE
changed: hostmaster@bezeqint.net 20021027
changed: hostmaster@bezeqint.net 20030204
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 69 of 75

24.193.129.45 - 24-193-129-45.nyc.rr.com
This address was chosen because it was the top external destination address in all of
the alert log files with 1,150 occurrences. It was ranked 9th overall. This address is not
listed at Dshield.org.

OrgName: ROADRUNNER-NYC
OrgID: RRNY
Address: 13241 Woodland Park Road
City: Herndon
StateProv: VA
PostalCode: 20171
Country: US

NetRange: 24.193.0.0 - 24.193.255.255
CIDR: 24.193.0.0/16
NetName: ROADRUNNER-NYC-3
NetHandle: NET-24-193-0-0-1
Parent: NET-24-0-0-0-0
NetType: Direct Allocation
NameServer: DNS1.RR.COM
NameServer: DNS2.RR.COM
NameServer: DNS3.RR.COM
NameServer: DNS4.RR.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2002-04-05
Updated: 2002-11-25

TechHandle: ZS30-ARIN
TechName: ServiceCo LLC
TechPhone: +1-703-345-3416
TechEmail: abuse@rr.com

OrgAbuseHandle: ABUSE10-ARIN
OrgAbuseName: Abuse
OrgAbusePhone: +1-703-345-3416
OrgAbuseEmail: abuse@rr.com

OrgTechHandle: IPTEC-ARIN
OrgTechName: IP Tech
OrgTechPhone: +1-703-345-3416
OrgTechEmail: abuse@rr.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 70 of 75

67.81.224.77 - ool-4351e04d.dyn.optonline.net
This address was chosen because it was the second most frequent external destination
address in all of the alert log files with 1,077 occurrences. This address is not listed at
Dshield.org.

Optimum Online (Cablevision Systems) NETBLK-OOL-4BLK (NET-67-80-0-0-1)
67.80.0.0 - 67.87.255.255

CustName: Optimum Online (Cablevision Systems)
Address: 111 New South Road
City: Hicksville
StateProv: NY
PostalCode: 11801
Country: US
RegDate: 2003-01-24
Updated: 2003-01-24
NetRange: 67.81.224.0 - 67.81.239.255
CIDR: 67.81.224.0/20
NetName: OOL-65ELZBNJ5-0821
NetHandle: NET-67-81-224-0-1
Parent: NET-67-80-0-0-1
NetType: Reassigned
Comment:
RegDate: 2003-01-24
Updated: 2003-01-24

130.85.218.62 - resnet2-89.resnet.umbc.edu
This address was chosen because it was the top source address in all of the scan log
files with 29,337 occurrences. This address is not listed at Dshield.org.

OrgName: University of Maryland Baltimore County
OrgID: UMBC
Address: UMBC University Computing
City: Baltimore
StateProv: MD
PostalCode: 21250
Country: US
NetRange: 130.85.0.0 - 130.85.255.255
CIDR: 130.85.0.0/16
NetName: UMBCNET
NetHandle: NET-130-85-0-0-1
Parent: NET-130-0-0-0-0
NetType: Direct Assignment
NameServer: UMBC5.UMBC.EDU
NameServer: UMBC4.UMBC.EDU
NameServer: UMBC3.UMBC.EDU
Comment:
RegDate: 1988-07-05
Updated: 2000-03-17
TechHandle: JJS41-ARIN
TechName: Suess, John J.
TechPhone: +1-410-455-2582
TechEmail: jack@umbc.edu

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 71 of 75

Link Graph Analysis
The following Link Graph depicts a possible KaZaa or other P2P network. To begin,
SCG looked for the top talkers on the KaZaa port 1214. Then SQL queries were
performed to locate other devices that communicated with our original three talkers
(outlined in bold blue). All internal devices are outlined in bold. The links indicate
direction of traffic and source and destination ports. All external to internal traffic is
highlighted in red.

216.197.127.11

10.199.236.46

M
an

y
-1

21
4

10.199.246.10

10.199.223.182

10.199.237.82

10.199.249.190

212.179.67.148 68.100.89.161

2373 - 65535

4475
- 3114

Many - 2708

M
an

y - 2
37

3

Many - 1721

1612 - 6667

51
53

6
-

63
47

Man
y - 237

3

212.179.35.119

212.179.85.133

67.32.214.240 212.179.66.23

137 - 137

80
-M

an
y

2333 - 1214

10.199.246.86

140.99.102.3

10.199.86.33

66.150.99.99

216.152.65.144

10.199.150.218

1027 - 6667 3937 - 6667

2803 - 6667

1128 - 6666

1214 - 3027

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 72 of 75

212.179.8.11810.199.246.22 Many - 1214 80.129.80.13710.199.201.66 1214 - 55850

Notice in the traffic patterns there are several well known Trojan or P2P ports in use.

 1027 - ICKiller Trojan, 1214–Kazaa, 2333 - IRC Contact Trojan or SNAPP
 6347–Gnutella, 6666 - irc-serv, IRCU, NetBus Trojan, other Trojans
 6667–IRC, SubSeven Trojan, other Trojans

It is the opinion of SCG that GIAC University has a large KaZaa or other P2P software
user base. This is dangerous software. Its use is typically indicative of other Trojan
software. SCG was only able to perform this link graph starting with 3 hosts because
addition of more host resulted in a very large link graph.

Possible Compromises / Dangerous Activity
SCG has identified the following possible compromises and dangerous activity.

 Large amounts of P2P software use often to dangerous locations. See destinations
of alert “Watchlist 000220 IL-ISDNNET-990517”, and link graph above.

 The following devices may have been exposed to NETBIOS attacks or data theft.
10.199.132.42, 10.199.132.43, 10.199.137.46, 10.199.190.93, 10.199.190.100.

 Significant traffic, 5,026 alerts affecting 226 internal hosts, on several well known
Trojan and P2P ports (1025, 1027, 1029,1042,1045, 1097, 1104,1214, 1338, 2333,
4662, 6346,6347, 6666, 6667, 27374, 65535)

 IP 10.199.105.204 may be infected with Russia Dynamo.
 IP 10.199.30.3 may be running IRC or be infected with a Trojan.
 IPs 10.199.12.4 and 10.199.208.230 generated a large amount of OOS traffic.
 IP 10.199.227.134 appears to be infected with a port 27374 Trojan.
 IP 10.199.132.42 may have been compromised via an “lpr” exploit.
 There are 25 University devices that may be using the xDCC file sharing capability
of IRC. Check the destinations of alert “IRC evil - running XDCC”.

 There are several devices that may have been exploited via SUN RPC. Check
destinations of alert “SUN RPC highport access”.

Defensive Recommendations
The following recommendations are made with the caveat that SCG did not have full
access to payload data, or any previous knowledge of the layout of the University.

 Block all external access to NETBIOS port 139 at Firewall.
 Address P2P software issues on destination addresses outlined above.
 Maintain current patch level on all servers, especially externally accessible ones.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 73 of 75

 Research the fragment capability of all GIAC University Firewalls.
 Block all incoming high TCP port access at the Firewall, particularly port 32771 and

111.
 Investigate possible use of MonkeyCom (port 9898)
 Discontinue use of TFTP for internal / external traffic. Instead use SSH.
 Verify SUN RPC (port 111) is blocked by the Firewall.
 Block all inbound connections except those explicitly allowed by the University. It is
very common for a university to have an “open network” policy. If this is the case,
then SCG recommends a minimum of two full time intrusion detection analysts be
employed to monitor the network. It is apparent that this is not the case currently.

 Have a qualified third party firm to perform a Vulnerability Assessment of the
University network.

 Implement policies and procedures to maintain patch levels on all servers.
 Review the Top Talkers lists and investigate each internal device for possible

compromise or mis-configuration. Ideally, you could compare the results of an
external IDS to that of an internal one.

Description of Analysis Processes
The following outlines the process SCG employed to analyze the log files supplied by
GIAC University. The analysis was conducted with the aid of several tools and operating
systems. The bulk of the raw file manipulation was done in Red Hat Linux and under
Cygwin on Windows XP. The data was analyzed using Silicon Defense’s SnortSnarf52,
scripts found in Tod Beardsley’s GCIA practical53, and various SQL scripts in a
Microsoft Access database.

 The first step was getting some record counts from the various files. This was
done using ‘wc –l’ andfor the OOS file ‘grep –e “->” OOS_file | wc –l’.

 Then the 5 daily files were combined into a single file using ‘cat’.
 There were several of the alert files that had corrupted data. It looked as though

multiple alerts were written to the same line. These lines were removed by hand
using a search for lines that did not start with a date.

 The files were then sorted by date and time using the ‘sort’ command.
 Many of the analysis tools require valid IP addresses, so the obfuscated
“MY.NET” was replaced with an unused private address, “10.199”. This was
done by making sure 10.199 was unused, grep –e ‘10\.199’. Then replacing
the “MY.NET”, sed –e ‘s/MY.NET/10.199/g’.

 Then the alert and scan files were analyzed with SnortSnarf.
 Next, the scan and alert files were formatted in a comma separated format to

allow import into a database. This was done with the csv.pl script by Tod
Beardsley54. The CSV files were then analyzed with the summarize.pl script also
by Tod. This script summarized the top talkers and top ports, etc.

52 http://www.silicondefense.com/software/snortsnarf/
53 http://www.giac.org/practical/Tod_Beardsley_GCIA.doc
54 http://www.giac.org/practical/Tod_Beardsley_GCIA.doc

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 74 of 75

 The OOS files required a little manipulation before they could be imported into
the database. First the IP address data was extracted:
grep -e '->' OOS_Report-all | awk -F ' ' '{print $2","$4}' |
sed 's/:/,/g' | sed 's/MY.NET/10.199/g' > OOS_Report-all-ip-port.csv

 Then the TCP flag data was extracted:
grep -e 'Seq:' OOS_Report-all | awk '{print $1","$3","$5","$7","$9}' >
OOS_Report-all-flags.csv

 Then the IP header data:
grep -e "^TCP TTL" OOS_Report-all| awk '{print $2":"$3":"$4":"$5":"$6}' |
awk -F ':' '{print $2","$4","$6","$8","$10}' > OOS_Report-all-header.csv

 The IP and TCP flags were combined in a file for import as well.
egrep "^02/|Seq:" OOS_Report-all | sed –e ‘s/MY.NET/10.199/g’ >
OOS_Report-all-foo

 The combined file was edited with an editor and made into a CSV record with the
regular expression functions.
REGEX “̂ ([0-9]:^)^([0-9]+^)^(^p^)”REPLACE with “̂ 1̂ 2,“
REGEX “ “REPLACE with “,”
REGEX “ “REPLACE with “,”

 The CSV files were imported into Microsoft Access where various SQL queries
were used. The information generated by SnortSnarf and the other tools were
utilized together to fully analyze the data.

References
Goldman, Jeff. “Intrusion Detection Systems: SHADOW.” May 2002.
URL: http://www.isp-planet.com/services/ids/shadow.html (22 Feb. 2003).

Beardsley, Tod. “GCIA Practical Assignment.” May 2002.
URL: http://www.giac.org/practical/Tod_Beardsley_GCIA.doc (29 Mar 2003).

Halversson, Tomas. “IDIC Practical Assignment.” April 2000.
URL: http://www.giac.org/practical/Tomas_Halvarsson.txt (29 Mar 2003).

Sorensen, Robert.“GCIA Practical Assignment.” February 2001.
URL: http://www.giac.org/practical/Robert_Sorensen_GCIA.htm (29 Mar 2003).

Bakos, George.“GCIA Practical Assignment.” 2000.
URL: http://www.giac.org/practical/George_Bakos.html (29 Mar 2003).

Voemel, Christof.“GCIA Practical Assignment.” September 2001.
URL: http://www.giac.org/practical/Christof_Voemel_GCIA.txt (29 Mar 2003).

Urwiller, Bradley.“GCIA Practical Assignment.” April 2002.
URL: http://www.giac.org/practical/Bradley_Urwiller_GCIA.pdf (29 Mar 2003).

Embrich, Mark.“GCIA Practical Assignment.” February 2002.
URL: http://www.giac.org/practical/Mark_Embrich_GCIA.htm (29 Mar 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
RON SHUCK–GCIA PRACTICAL V3.3 Page 75 of 75

Ross, Dale.“GCIA Practical Assignment.”2000-2001.
URL: http://www.giac.org/practical/Dale_Ross_GCIA.htm (29 Mar 2003).

Rach, Joseph.“GCIA Practical Assignment.” 2000.
URL: http://www.giac.org/practical/Joseph_Rach.html (29 Mar 2003).

Kuthe, Chris.“GCIA Practical Assignment.” Unknown.
URL: http://www.giac.org/practical/chris_kuethe_gcia.html (29 Mar 2003).

Clark, Crist.“GCIA Practical Assignment.” 2000-2001.
URL: http://www.giac.org/practical/Crist_Clark_GCIA.html (29 Mar 2003).

Turkia, Miika.“GCIA Practical Assignment.” January 2001.
URL: http://www.giac.org/practical/Miika_Turkia_GCIA.html (29 Mar 2003).

Oborn, David.“GCIA Practical Assignment.” Unknown.
URL: http://www.giac.org/practical/David_Oborn_GCIA.html (29 Mar 2003).

Garrison, Todd.“GCIA Practical Assignment.” Unknown.
URL: http://www.giac.org/practical/Todd_Garrison.html (29 Mar 2003).

Vazquez, E.A., Jr.“GCIA Practical Assignment.” Unknown.
URL: http://www.giac.org/practical/EAVazquezJr.html (29 Mar 2003).

Hacker, Eric.“GCIA Practical Assignment.” Unknown.
URL: http://www.giac.org/practical/Eric_Hacker.html#anchor9566546 (29 Mar 2003).

Gelman, Herschel.“GCIA Practical Assignment.” 2000.
URL: http://www.giac.org/practical/Herschel_Gelman.html (29 Mar 2003).

Calabrese, Chris.“GCIA Practical Assignment.” December 2001.
URL: http://www.giac.org/practical/Chris_Calabrese_GCIA.html (29 Mar 2003).

Ramakrishnan, K. “The Addition of Explicit Congestion Notification (ECN) to IP.”
Request for Comments 3168. September 2001
URL: http://www.ietf.org/rfc/rfc3168.txt (29 Mar 2003).

Unknown, A.K.A TonikGin. “XDCC– An .EDU Admin’s Nightmare” September 2002.
URL: http://www.russonline.net/tonikgin/EduHacking.html (29 Mar 2003).

