
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3

Tyler Hudak

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents

TABLE OF CONTENTS ... 2

PAPER CONVENTIONS .. 2

OPEN PROXY SERVER SCANS... 3

EXECUTIVE SUMMARY .. 3
WHAT IS A PROXY SERVER?... 4
PROXY SERVER MISCONFIGURATIONS... 5
HOW ARE OPEN PROXY SERVERS MISUSED? ... 6
PROXY HUNTER... 10
DETECTING OPEN PROXY SERVER SCANS AND TESTS ... 12
REFERENCES.. 14
APPENDIX A–PROXY.PL ... 15

NETWORK DETECTS ... 18

DETECT #1 - ATTACK RESPONSES ID CHECK RETURNED ROOT ... 18
DETECT #2 - BAD TRAFFIC UDP PORT 0 TRAFFIC ... 28
DETECT #3 –KUANG2 VIRUS SYN SCANS... 37

ANALYZE THIS!... 45

EXECUTIVE SUMMARY .. 45
LOGS ANALYZED... 45
ALERT LOGS ANALYSIS .. 46
TOP 5 ALERTS FROM EXTERNAL SOURCES.. 48
TOP 5 ALERTS FROM INTERNAL SOURCES... 53
SCAN LOGS ANALYSIS.. 60
OOS PACKET ANALYSIS... 65
REGISTRATION INFORMATION ... 68
ADDITIONAL DEFENSIVE RECOMMENDATIONS.. 70
COMPROMISED HOSTS ... 71
ANALYSIS PROCESS... 72
REFERENCES.. 73

Paper Conventions

This following conventions are used within this paper.

Arial 12 font is used for normal text.

The Times New Roman 10 or Courier New 10 fonts are used for packet information.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

Open Proxy Server Scans

Executive Summary

Every so often Intrusion Detection Systems or firewalls will detect scans for TCP ports
80, 1080, 3128 or 8080 across a network, such as the slow scan shown below.

2002/12/26-07:26:18.885979 scanner.5.1668 > home.68.1080: S 1618127438:1618127438(0) win 1024
2002/12/26-07:26:20.778587 scanner.5.45514 > home.68.3128: S 1642554383:1642554383(0) win 1024
2002/12/26-07:26:22.642234 scanner.5.61494 > home.68.8080: S 449166470:449166470(0) win 1024
2002/12/26-07:26:24.571208 scanner.5.30426 > home.68.80: S 278315363:278315363(0) win 1024
2002/12/26-14:41:59.535045 scanner.5.39184 > home.34.1080: S 83523683:83523683(0) win 1024
2002/12/26-14:42:01.393228 scanner.5.19351 > home.34.3128: S 1163112705:1163112705(0) win 1024
2002/12/26-14:42:03.265129 scanner.5.64907 > home.34.8080: S 237470119:237470119(0) win 1024
2002/12/26-14:42:05.143377 scanner.5.18712 > home.34.80: S 598834575:598834575(0) win 1024
2002/12/26-16:22:41.636288 scanner.5.43740 > home.44.1080: S 1124083233:1124083233(0) win 1024
2002/12/26-16:22:43.618842 scanner.5.44100 > home.44.3128: S 185666678:185666678(0) win 1024
2002/12/26-16:22:45.614627 scanner.5.29786 > home.44.8080: S 1231912456:1231912456(0) win 1024
2002/12/26-16:22:47.378890 scanner.5.29439 > home.44.80: S 780169159:780169159(0) win 1024

In addition to the port scans above, web server log files will sometimes show odd
requests for other web servers, such as shown in an Apache web server’s logs below.

10.2.2.214 - - [18/Nov/2002:13:19:00 -0500] "GET http://www.intel.com/ HTTP/1.1" 404 281 "-"
10.3.3.19 - - [06/Dec/2002:02:02:54 -0500] "GET http://www.yahoo.com/ HTTP/1.1" 404 281 "-"
10.2.2.214 - - [12/Dec/2002:02:49:11 -0500] "GET http://www.intel.com/ HTTP/1.1" 404 281 "-"
10.6.6.210 - - [13/Dec/2002:08:39:03 -0500] "HEAD http://www.sun .com" 400 - "-" "-"
10.4.4.176 - - [10/Jan/2003:08:28:00 -0500] "GET http://www.yahoo.com/ HTTP/1.1" 404 281 "-"
10.5.5.3 - - [14/Jan/2003:18:13:11 -0500] "GET http://www.google.com/ HTTP/1.1" 404 281 "-"
10.5.5.3 - - [14/Jan/2003:21:38:55 -0500] "GET http://www.google.com/ HTTP/1.1" 404 281 "-"
10.5.5.3 - - [15/Jan/2003:17:43:35 -0500] "GET http://www.google.com/ HTTP/1.1" 404 281 "-"
10.1.1.175 - - [22/Jan/2003:05:46:50 -0500] "GET http://www.intel.com/ HTTP/1.1" 404 281 "-"

These scans and logs are evidence of attackers searching for open HTTP proxy servers
and are quickly becoming part of the background noise of the Internet, joining the likes
of probes for NetBIOS shares and vulnerable IIS servers. Even though these scans
may seem rather harmless, understanding what the scanners are looking for and what
the they will do with any open proxy servers found is key to understanding how to better
protect your network when proxy servers are present.

This paper will focus on how proxy servers are misconfigured and how they are
misused. Tools currently used to scan for proxy servers and how these scans can be
detected is also covered.

It should be pointed out that even though this paper focuses mainly on proxy servers
that proxy web-based traffic, many of the problems associated with a misconfigured
proxy server are universal and apply to all proxy servers. Additionally, all of the
problems apply to proxy servers that are Internet accessible or segmented on a private
network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

What is a proxy server?

The Merriam-Webster dictionary defines a proxy as “a person authorized to act for
another”. Essentially, this is what aproxy server, sometimes referred to as an
application gateway, does. A proxy server acts as an authorized server for a client by
taking requests from the client and passing them to a foreign server. When the foreign
server responds to the request, the proxy server will pass the response back to the
original client.

A web browser uses an HTTP proxy server to contact foreign web servers on its behalf.
The browser will send some HTTP commands, such as a GET request for the foreign
server’s index.html page, to a pre-defined port on the proxy server. The proxy server
will contact the foreign server with the client’s GET request and wait for the response.
When the foreign server responds, the proxy server will send the data it received back
to the original client. This communication will continue until the connection is closed.

Some of the HTTP proxy servers used today include the Microsoft Proxy Server, Squid,
and the Wingate Proxy Server. Even some web servers, such as the Apache web
server, can proxy some protocols. Each of these proxy servers listen on a different port
for clients to send requests and because the default ports are well known, such as TCP
port 3128 for the Squid proxy server, attackers know what ports to scan for.

However, proxy servers can only proxy protocols that they specifically know how to
proxy, such as HTTP(S), TELNET or FTP. If any other protocol needs to be proxied, a
SOCKS proxy server can be used.

The SOCKS protocol is used to proxy protocols that do not have a proxy server
available. SOCKS is generic and does not control anything specific to any protocol, so
it is very extensible (Zwicky 234). The latest version, SOCKS version 5, can proxy TCP
and UDP protocols, provide user authentication and hostname resolution. SOCKS
version 5 is defined in RFC 1928 and further described in RFC 1929, RFC 1951 and
RFC 3089.

Most programs today are already SOCKS-aware and can use a SOCKS server without
any modification. However, if the client program does not know how to communicate
with a SOCKS server, it must be “socksified”. This is done in one of two ways. The first
involves recompiling the source code of the program to include the SOCKS system calls
that replace the normal network system calls. Since the source code of a program is
not always available, a non-socksified program can use SOCKS dynamically by using a
program such as SocksCap for Windows or runsocks for UNIX which will intercept any
networking system calls from the program and convert them to the appropriate SOCKS
system calls. Non-commercial versions of the SOCKS server, SocksCap and runsocks
are freely available at http://www.socks.permeo.com.

Assuming a proxy server and it’s environment are set up correctly, there are many
advantages to using a proxy server over letting individual clients contact foreign servers.
First, since the proxy server handles all communication between the proxy server and a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

foreign server, the foreign server never knows the true IP address of the client and
cannot directly query them. This is useful, for example, when a client contacts a
malicious web server that attempts to scan the client for vulnerable services. Instead of
probing the client, the malicious server will scan the proxy server, never touching the
original client.

A second advantage to using a proxy server is that the server can act as a choke point
within the network. By adding authentication and access control on the proxy server
and forcing clients to go through it, clients can be restricted to where they can go with
each protocol proxied. Additionally, many proxy servers allow supplementary services,
such as anti-virus scanning and content filtering, to be installed on the server which
increases the security of the protocol being proxied and the network behind it.

Proxy Server Misconfigurations

However, these advantages will only work if the proxy server and network are set up
correctly. If a proxy server or its surrounding network is misconfigured, serious security
vulnerabilities can surface. Some common misconfigurations include lack of
authentication and not properly protecting the proxy server.

Most, if not all, proxy servers provide some type of authentication to control who can
use it. These methods vary according to the proxy server used and range from a
username and password stored in a flat file to a backend LDAP server or database.
Unfortunately, even though authentication is available, it is not always used. Problems
arise when authentication is not used and accountability is needed to trace back who
did what.

Proxy servers are often set up to proxy connections from an internal network to the
Internet. When they are set up this way, they should be protected from the Internet in
the same manner a host in a protected subnet would be. Protecting the proxy server in
this way includes setting up a firewall to restrict connections to and from the proxy
server for both its Internet and private network facing connections. Zwicky, Cooper and
Chapman say it best in Building Internet Firewalls,

Proxy Systems are effective only when they are used in conjunction with
some method of restricting IP-level traffic between clients and the real
servers, such as a screening router of a dual-homed host that doesn’t
route packets. If there is IP-level connectivity between the client and the
real servers, the clients can bypass the proxy system (and presumably so
can someone from the outside). (225)

Failure to effectively filter unwanted traffic to and from the proxy server, such as
connections not initiated from the private network, may allow proxy servers to be used
for malicious purposes or provide unprotected tunnels into the protected network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

Even though the misconfigurations described above are easy to fix and implement
correctly, a surprisingly large number of proxy servers have these misconfigurations
present and are considered open proxies on the Internet. An open proxy server is a
proxy server that allows anyone to connect and use the proxy services for whatever
they choose, although most open proxy servers only offer web-based or telnet
connections. It is easy to find lists of proxy servers to use on the Internet and can be
found for free at web sites such as http://void.ru and http://www.winfosec.com/proxies/.

How are open proxy servers misused?

In order to find out what open proxy servers are used for, I wrote a small open proxy
honeypot Perl script similar to the script created by Joe Stewart in his article, “Exposing
the Underground: Adventures of an Open Proxy Server”. The script acts as an open
HTTP proxy server that will accept and log connections from anyone and behave
differently based upon what the client requests.

Upon receiving an HTTP HEAD request, the script will return an “HTTP 200 OK”
message to the client. If the request is an HTTP GET, the script will get the item
requested from the foreign server and return it to the client as long as the item is not an
image or the request contains an authentication attempt. If the request is for an image,
a small, black GIF will be returned to the client. If the request contains an
authentication attempt, the script returns a "401 Unauthorized" error message to
simulate an invalid log in attempt. Finally, an HTTP CONNECT request will return a
“404 Not Found” error message. The source code for the script is available in appendix
A.

By running the script on my home machine for about 8 hours and advertising it as an
open proxy server on a number of open proxy lists, I was able to get a number of
connections to the honeypot and record what they did. There were four different things
the open proxy server was used for: anonymous web surfing and proxy checking, brute
force attacks against password protected web sites, proxying connections to mail
servers and anonymous IRC connections.

The majority of the connections to the script were attempts to use it as an anonymous
proxy server and surf the web. By using an anonymous proxy server, one can be
assured that they can surf the web in relatively privacy, with little to no hope of anyone
finding out their true IP address. This is useful, for example, when someone is posting
to a message board and wishes to remain unidentified or when someone wishes to
avoid the tracking mechanisms present on the Internet today. The sites that were
connected to varied from adult sites to gaming discussion forums to eBay.

The following are some examples of attempts to connect to web sites with the script.
The logs created by the proxy script show anything the client sent to the script.
However, for brevity, some of the unnecessary information, such as the user agent and
host header fields, have been stripped. The IP address of the originating request has
also been sanitized.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

192.168.1.3 GET http://runuo.com/ HTTP/1.0
192.168.1.3 GET http://www.runuo.com/styles/runuo.css HTTP/1.0
192.168.1.3 GET http://www.runuo.com/images/wmt-hilightshead.gif HTTP/1.0
192.168.1.3 GET http://www.runuo.com/discussion/viewtopic.php?t=1685&sid=d980796d09 HTTP/1.0
10.50.65.132 GET http://www.google.com/ HTTP/1.0
10.50.65.132 GET http://www.geocities.com/abyla47 HTTP/1.0
172.16.6.62 GET http://ebay.com/ HTTP/1.0
172.16.6.62 GET http://include.ebay.com/aw/pics/js/help/openHelpWindow.js HTTP/1.0
172.16.6.62 GET http://include.ebay.com/aw/pics/js/ebay_toolbar/installVB.js HTTP/1.0

Some of the web connections, however, were not to normal web sites but to scripts
used to check proxy servers. These scripts will check if a proxy server is open or how
anonymous a proxy server lets you become. The script shows the surfer how
anonymous they are by displaying the headers that are returned from an HTTP request
sent to the proxy server. The less information in the headers, the more anonymous the
surfer is when using the proxy server. Usually, these scripts are hosted at the same
sites that maintain lists of open proxy servers and whenever a proxy server is checked
and found to be open, it will be added to the list.

The following are some examples of proxy checking scripts that were run against the
proxy script.

172.16.182.124 GET http://www.gamox.com/cgi-bin/envinfo.cgi HTTP/1.0
10.1.14.2 GET http://badfellow.com/blood/pcheck/anonim.pl HTTP/1.1
192.168.122.194 GET http://void.ru/?do=envprox HTTP/1.0
10.2.65.250 GET http://atomintersoft.com/40.aspx?p=192.168.1.163:8080 HTTP/1.0

Since an open proxy server provides anonymous connections to web sites, it makes it a
prime target to be used to relay brute force password attacks against password
protected web sites. Brute force attacks attempt to log in to a web site using a large
number of user ID and password combinations and recording which ones are
successful. While a brute force attack may be launched against a site such as eBay or
PayPal where a user ID and password could yield monetary gains, most of the brute
force attacks witnessed were against adult oriented sites. In fact, there is a large
community of password crackers dedicated to finding and sharing passwords to adult
sites. Open proxy servers provide them the anonymity and protection they desire to
launch brute force attacks against these web sites, as the web site will see the attack
coming from the proxy server and not the attacker’s true IP address.

The following is an attempt to use the proxy script to brute force a password on a
website. Notice how quickly the attempts occur. In this particular case, 608 attempts
occurred in a little under three minutes.

Mon, 25 Nov 2002 09:47:20 PM EST
10.10.216.189 HEAD http://www.picsofme.com/members/index.html HTTP/1.0
Authorization: Basic MTIzNDU6eHl6

Mon, 25 Nov 2002 09:47:21 PM EST
10.10.216.189 HEAD http://www.picsofme.com/members/index.html HTTP/1.0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

Authorization: Basic c3dpZmZlcjpzd2VlcGVy

Mon, 25 Nov 2002 09:47:21 PM EST
10.10.216.189 HEAD http://www.picsofme.com/members/index.html HTTP/1.0
Authorization: Basic ZnVuZmFtbHk6bWF4ZWxs

Mon, 25 Nov 2002 09:47:21 PM EST
10.10.216.189 HEAD http://www.picsofme.com/members/index.html HTTP/1.0
Authorization: Basic Z2F5c2V4OmdheXNleA==

Mon, 25 Nov 2002 09:47:21 PM EST
10.10.216.189 HEAD http://www.picsofme.com/members/index.html HTTP/1.0
Authorization: Basic c3RldmUyMTpodXN0bGVy

Mon, 25 Nov 2002 09:47:21 PM EST
10.10.216.189 HEAD http://www.picsofme.com/members/index.html HTTP/1.0
Authorization: Basic cGFzc3dvcmQ6cGFzc3dvcmQ=

Mon, 25 Nov 2002 09:47:22 PM EST
10.10.216.189 HEAD http://www.picsofme.com/members/index.html HTTP/1.0
Authorization: Basic ZWJ1bWdhcmQ6dG95b3Rh

Not all of the connections to the proxy script were to web sites, some connections were
attempts to connect to other TCP services through the script. When a proxy server
wants to proxy an HTTPS connection, it cannot proxy the request the same way that it
would an HTTP connection. If it did, the proxy server would have to decrypt the SSL
encrypted data and pass it back to the client unencrypted, which would violate the
privacy the encryption provides. In order to overcome this problem, Ari Luotonen
described a method to tunnel TCP based protocols through HTTP proxy servers in his
Internet Draft Paper.

In his paper, Luotonen describes the HTTP CONNECT method for proxy servers. This
method creates a tunnel between the client and the foreign server through the proxy
server. The client will connect to the proxy server as usual and send a CONNECT
string specifying the server and port to contact as well as any other HTTP header
information, such as authorization information. The proxy server will attempt to contact
the foreign server on the port specified by the client. If the connection is successful, the
proxy server will send the client a “200 Connection Successful” message and then data
transfer between the client and the foreign server will occur. It should be noted that
when the CONNECT method is used, the proxy server only forwards the traffic and
does not examine any of it.

There is a problem with some proxy where they do not allow administrators to restrict
what the destination port of a CONNECT tunnel can be. When the destination port is
not restricted, a connection can be created to any TCP service and can provide another
way for malicious users to get anonymous connections to services such as IRC,
TELNET or SMTP. This vulnerability is noted in CERT Vulnerability Note #150227 and
is briefly explained in Luotonen’s paper.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

During the time the proxy script was running, attempts to use the CONNECT method to
connect to TCP services other than HTTPS was seen multiple times. The majority of
the attempts were to TCP port 25, SMTP, as shown below. Since SMTP headers
record the IP address of the machine sending an email, open proxy servers permit
spammers to connect to mail relays and hide their true IP address. This allows them to
retain their ISP connections longer, as the complaints will flow back to the owners of the
open proxy server and their ISP rather than the spammer and the spammer’s ISP.

192.168.52.150 CONNECT nodrog.webmedia.pl:25 HTTP/1.0
192.168.52.150 CONNECT mail2.gofast.net:25 HTTP/1.0
192.168.52.150 CONNECT ns.caotus.ru:25 HTTP/1.0
192.168.52.150 CONNECT relay.ptc.spbu.ru:25 HTTP/1.0
192.168.52.150 CONNECT solace.me.uiuc.edu:25 HTTP/1.0
192.168.52.150 CONNECT mail.whatodo.ru:25 HTTP/1.0
192.168.52.150 CONNECT relay.wplus.net:25 HTTP/1.0
192.168.52.150 CONNECT mail.sto.telegate.se:25 HTTP/1.0

The next largest set of attempts to use the CONNECT method were to Internet Relay
Chat (IRC) ports. IRC is often used by hackers to communicate with each other and
share exploits. However, there are many attacks that can disconnect someone from an
IRC session. These denial of service attacks are usually known as floods.

When an IRC user is able to connect to IRC through a proxy server and they are
attacked, the proxy will get flooded instead of the user’s real machine. This allows the
user to connect back to the IRC server with ease. Furthermore, by connecting through
a proxy server, the IRC user is anonymous, as their true IP address is not known.

The following log entries show attempted connections to IRC servers.

192.168.219.11 CONNECT irc.japsclan.com:6667 HTTP/1.0
10.58.169.218 CONNECT IRC.DATANET.EE:6667 HTTP/1.0
10.25.169.218 CONNECT irc.stealth.net:6667 HTTP/1.0
172.30.179.179 CONNECT irc.terra.es:6667 HTTP/1.0
172.26.100.54 CONNECT correos.islagrande.cu:6667 HTTP/1.0
10.125.255.105 CONNECT IRC.ELSITIO.COM:6667 HTTP/1.0
172.31.145.65 CONNECT irc.sbor.ru:6667 HTTP/1.0

The proxy script observed all of the uses of open proxy servers previously described.
However, there is one use of an open proxy server that was not witnessed by the script
- using an open proxy server to tunnel into an internal network. When a proxy server is
set up, its purpose is usually to proxy connections from an internal network to the
Internet. If the proxy server is not set up properly, there exists the chance that it could
become a reverse proxy server and proxy connections from hosts on the Internet to
hosts on the internal, protected network, bypassing any security in place.

This is how hacker Adrian Lamo was able to get into the internal networks of
WorldCom, the New York Times and Excite@Home. According to several articles by
Kevin Poulson, Lamo used misconfigured proxy servers at all of the companies sites to
tunnel into the internal network and access such things as customer records, sensitive

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

employee information and even router maintenance tools. Using Lamo and the access
that he gained using misconfigured proxy servers as an example, one can see how
large a security risk a misconfigured proxy server can present.

Proxy Hunter

Port scanners such as nmap or SuperScan can be used to find servers with ports that
proxy servers usually listen on, but these tools will only tell the attacker what ports are
open and not if the server can be used as an open proxy. However, there are
specialized programs that will scan for ports that open proxy servers listen on and test
whether or not they can be used as an open proxy server. One of the more popular of
these programs is called Proxy Hunter.

Proxy Hunter is a Windows program whose purpose is to scan a range of IP addresses
looking for open proxy servers on ports specified by the user. The current version, 3.1
beta 1, is located on the Chinese web site http://dzc.126.com, but can be found in
various other places around the Internet.

The program works by first having the user enter in the hosts to scan. The hosts can be
entered in a number of ways, including single or ranges of IP addresses. After the
hosts are entered, the user enters in the desired ports and services to scan for. Proxy
Hunter comes with the ability to scan for HTTP, SOCKS, FTP, POP3 and TELNET
proxy servers on any port; so a user could set the program to scan for an HTTP proxy
on port 8080 or a TELNET proxy on port 12345. Proxy Hunter also comes with the
ability to scan through existing open proxy servers, which provides the user protection
and anonymity while they are scanning.

The following is an example of Proxy Hunter scanning a range of IP addresses for
HTTP proxy servers on TCP ports 80 and 8080, and SOCKS servers on TCP port 1080.
This is actual data from a scan, and was performed on my home network from a
Windows XP Pro machine.

As shown below, Proxy Hunter will first scan for open ports on the IP range by sending
SYN packets. The SYN packet it sends out is not unusual and there is no evidence of
packet crafting. The only unusual item in the packet is all the TCP options that are set,
but this was determined as normal after watching other traffic from the machine the
tests were taking place on send the same options on SYN packets.

20:49:53.882917 IP 192.168.1.1.1356 > 192.168.1.10.8080: S
476313682:476313682(0) win 64512 <mss 1460,nop,wscale 0,nop,nop,timestamp 0
0,nop,nop,sackOK>
0x0000 4500 0040 1443 0000 8006 a319 c0a8 0101 E..@.C..........
0x0010 c0a8 010a 054c 1f90 1c63 f852 0000 0000L...c.R....
0x0020 b002 fc00 2512 5800 0204 05b4 0103 0300%.X.........
0x0030 0101 080a 0000 0000 0000 0000 0101 0402

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

If Proxy Hunter does not receive a response from a SYN packet it will send a retry 3 and
6 seconds after the initial packet was sent. This is normal TCP behavior and again
indicates packet crafting has not taken place. Typically when packet crafting has
occurred, TCP retries do not follow the normal 3-6 second time frame.

So far, there has been nothing in Proxy Hunter’s scan to differentiate between itself and
a SYN scan from another tool. In order to figure out if Proxy Hunter is scanning a
network, we will have to wait until it finds an open port to test.

Proxy Hunter tests each protocol differently, but when testing for HTTP proxy servers it
will attempt to get one of four different URLs: www.click2net.com, www.intel.com,
www.adm.com or www.spedia.net/sp_login.htm. This is shown in the packet below.

20:49:53.884966 IP 192.168.1.1.1356 > 192.168.1.10.8080: P 1:148(147) ack 1
win 64512
0x0000 4500 00bb 1445 0000 8006 a29c c0a8 0101 E....E..........
0x0010 c0a8 010a 054c 1f90 1c63 f853 c154 238aL...c.S.T#.
0x0020 5018 fc00 afb4 0000 4745 5420 6874 7470 P.......GET.http
0x0030 3a2f 2f77 7777 2e61 646d 2e63 6f6d 2f20 ://www.adm.com/.
0x0040 4854 5450 2f31 2e31 0d0a 486f 7374 3a20 HTTP/1.1..Host:.
0x0050 7777 772e 6164 6d2e 636f 6d0d 0a41 6363 www.adm.com..Acc
0x0060 6570 743a 202a 2f2a 0d0a 5072 6167 6d61 ept:.*/*..Pragma
0x0070 3a20 6e6f 2d63 6163 6865 0d0a 5573 6572 :.no-cache..User
0x0080 2d41 6765 6e74 3a20 4d6f 7a69 6c6c 612f -Agent:.Mozilla/
0x0090 342e 3020 2863 6f6d 7061 7469 626c 653b 4.0.(compatible;
0x00a0 204d 5349 4520 352e 3031 3b20 5769 6e64 .MSIE.5.01;.Wind
0x00b0 6f77 7320 3938 290d 0a0d 0a ows.98)....

Again, there is nothing out of the ordinary in the packet. In the HTTP request itself,
there are no unusual settings either. The User-Agent setting, which tells the web server
what browser is requesting the page, is set to “Mozilla/4.0” here. This is a configurable
parameter within Proxy Hunter which allows the user to pick from a list of pre-defined
user agents or define their own.

If the server responds with a “404 Not Found” error, Proxy Hunter will mark the result of
that server as "undecidable" or "not matching". If the server does respond with a web
page, Proxy Hunter will check it for a “Verification Data Parameter” in the returned page.
The “Verification Data Parameter” is a string that verifies that the returned page is
actually the one that Proxy Hunter wanted. For example, when Proxy Hunter is
requesting www.intel.com, it will search for “Welcome to Intel” in the returned page. If it
finds the “Verification Data Parameter”, the IP address is marked as good and can be
used as an open proxy server.

After Proxy Hunter finishes talking to a host, it will gracefully close the connection with a
FIN/ACK packet. Once again, nothing unusual occurs.

20:49:55.483011 IP 192.168.1.10.8080 > 192.168.1.1.1356: F 933:933(0) ack 148
win 5840 (DF)
0x0000 4500 0028 721a 4000 4006 455a c0a8 010a E..(r.@.@.EZ....
0x0010 c0a8 0101 1f90 054c c154 272e 1c63 f8e6L.T'..c..

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

0x0020 5011 16d0 f2fe 0000 0000 0000 0000 P.............

Since nothing unusual occurs at the packet level when Proxy Hunter is scanning a
network, how then can it be detected? It seems that there is no foolproof way to detect
when Proxy Hunter is scanning your network. However, it is possible to tell if an
attacker is scanning for open HTTP proxy servers.

Detecting Open Proxy Server Scans and Tests

There are a number of ways to detect open proxy server scans coming across a
network. The following section will focus on using Snort to detect open HTTP proxy
server scans and tests.

Snort comes with a number of signatures to detect open proxy server scans. In the
scan.rules rule file, three signatures specifically will detect proxy scans.

alert tcp $EXTERNAL_NET any -> $HOME_NET 1080 (msg:"SCAN SOCKS Proxy
attempt"; flags:S; reference:url,help.undernet.org/proxyscan/;
classtype:attempted-recon; sid:615; rev:3;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 3128 (msg:"SCAN Squid Proxy
attempt"; flags:S; classtype:attempted-recon; sid:618; rev:2;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 8080 (msg:"SCAN Proxy \(8080\)
attempt"; flags:S; classtype:attempted-recon; sid:620; rev:2;)

Each of these signatures will detect when a connection is attempted to TCP ports 1080,
3128 or 8080 on $HOME_NET, which is usually defined to be the IP address range
Snort is watching. Additionally, if Snort’s spp_portscan or spp_portscan2 preprocessors
are turned on, they may detect scans for these ports.

Unfortunately, these signatures will only detect when attempts to contact those ports are
made, not when an actual attempt to test a server as an open proxy occurs.
Additionally, these signatures will not look at connections to TCP port 80, another
common port that open proxy servers run on.

In order to detect attempts to find open proxy servers, new Snort signatures will have to
be written. The following signatures will detect any attempt to test a server listening on
any of the ports defined in the $HTTP_PORTS variable for an open proxy.

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg: "Attempted HTTP
GET open proxy test"; flow: to_server, established; content: "GET
http\:\/\/"; nocase;)

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg: "Attempted HTTP
HEAD open proxy test"; flow: to_server, established; content: "HEAD
http\:\/\/"; nocase;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg: "Attempted HTTP
CONNECT open proxy test"; flow: to_server, established; content: "CONNECT ";
nocase; content: "http\/1\."; within: 64; nocase;)

The first two signatures watch the packet payload on an established connection to a
server on an HTTPport for the strings “GET http://” or “HEAD http://”. The third
signature watches the same port on an established connection for the string
“CONNECT ” followed by “HTTP/1.”, within 64 bytes of the “CONNECT” string. These
strings are what are seen when an attacker attempts to use a server as an open HTTP
proxy server, as shown in the logs taken from the honeypot proxy script above.

Unfortunately, there may be some false positives with these signatures. For example, if
Snort is watching a network where a legitimate proxy server is sitting, these signatures
will alert constantly.

Additionally, these signatures are not foolproof. Since they are only looking for the
strings above, if an attacker were to come up with a new way to test for open proxy
servers, they would be able to bypass the signatures. However, these signatures will
detect all of the proxy server scans the honeypot proxy script saw.

It was previously said that there is no way to detect Proxy Hunter from the packets that
it sends out. However, it is possible to detect it if the attacker has not changed the
default URLs to scan for. The following signatures will detect a possible Proxy Hunter
scan on a web server by watching for HTTP GET requests for the default web sites
Proxy Hunter attempts to connect to through the proxy.

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg: "Proxy Hunter open
proxy scan attempt"; flow: to_server, established; content: "GET
http\:\/\/www.intel.com"; nocase;)

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg: "Proxy Hunter open
proxy scan attempt"; flow: to_server, established; content: "GET
http\:\/\/www.click2net.com"; nocase;)

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg: "Proxy Hunter open
proxy scan attempt"; flow: to_server, established; content: "GET
http\:\/\/www.adm.com"; nocase;)

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg: "Proxy Hunter open
proxy scan attempt"; flow: to_server, established; content: "GET
http\:\/\/www.spedia.net"; nocase;)

If these signatures are put to use with the previous signatures written, they should be
placed before the previous ones or they will never get alerted on due to the way Snort
processes rules.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

References

IRC Hacking. 2 April 2003 <http://onlinesecurity.virtualave.net/hacking/irc.htm>.

IRC Warfare. 2 April 2003. <http://dooyoo-uk.tripod.com/mirc/floods.htm>.

Luotonen, Ari. “Tunneling TCP based protocols through Web proxy servers“ 2 April
2003 <http://www.web-cache.com/Writings/Internet-Drafts/draft-luotonen-web-proxy-
tunneling-01.txt>.

“Multiple vendors' HTTP proxy default configurations allow arbitrary TCP connections
via HTTP CONNECT method.” CERT. 2 April 2003
<http://www.kb.cert.org/vuls/id/150227>.

Poulsen, Kevin. “Lamo strikes again: WorldCom.” The Register 12 June 2001. 2 April
2003 <http://www.theregister.co.uk/content/archive/23218.html>.

Poulsen, Kevin. “@Home’s mis-configured proxy Excites hacker.” The Register 29
May 2001. 2 April 2003 <http://www.theregister.co.uk/content/archive/19279.html>.

Poulsen, Kevin. “New York Times Internal Network Hacked.” 26 February 2002. 2
April 2003 <http://online.securityfocus.com/news/342>.

SOCKS. 2 April 2003 <http://www.socks.permeo.com/>.

Stewart, Joe. “Exposing the Underground: Adventures of an Open Proxy Server .” 10
November 2002 <http://www.infosecwriters.com/texts.php?op=display&id=54>.

Zwicky, Elizabeth D., Simon Cooper, and D. Brent Chapman. Building Internet
Firewalls. 2nd ed. Sepastopol: O’Reilly, 2000.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

Appendix A –proxy.pl

#!/usr/bin/perl
#
proxy.pl by Tyler Hudak
#
This perl script will listen on port 8080 and act as an HTTP open
proxy server and do the following:
#
- A HEAD request should return a 200 OK
- A GET request should go out and get the page requested, except if
it is a request that contains an authentication attempt or is for
an image. An authentication attempt will get a 401 Unauthorized
message returned and an image will return the file pic.gif, which
you must include!!!!!!
- A CONNECT request will return a 404 Not Found error
- anything else (including a POST) will get a 500 Internal Server
error

use IO::Socket;
use FileHandle;
use LWP::UserAgent;
use Fcntl;

set up socket
$main_sock = new IO::Socket::INET (LocalHost => 'localhost',

LocalPort => 8080,
Listen => 5,
Proto => 'tcp',
ReuseAddr => 1,
);

die "Socket could not be created. Reason: $!\n" unless ($main_sock);

set up log file
open (LOGFILE, ">>log.txt") || die "Can't open log.txt: $!\n";

while ($new_sock = $main_sock->accept()) {

$space = 0;

$pid = fork();

Successful fork and I'm the child
if ($pid == 0)
{

get address of connection
$hersockaddr = getpeername($new_sock);
($port, $iaddr) = sockaddr_in($hersockaddr);
$herstraddr = inet_ntoa($iaddr);

$date = `date +\"%a, %d %b %Y %X %Z\"`;
print "$date got one!\n";

get first line and find out what type of request it is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

$first = <$new_sock>;
$logout = $first;

get rest of request
while ($space == 0)
{

$input = <$new_sock>;

@myword=split('',$input);

end of request
if (ord($myword[0]) == 10 || ord($myword[1]) == 10) { $space++}
$logout = $logout . $input;

}

print out faked data to requestor

if the request contains authorization return a 401 unauthorized
if ($first =~ /http\:\/\/\S+\:\S+\@\S+/ || $logout =~ /Authorization\:/)
{

print $new_sock "HTTP/1.1 401 Unauthorized\n\n";
print $new_sock "\nAuthorization Required\n";

}
a HEAD request - print out a 200 OK message
elsif ($first =~ /head/i) {

print $new_sock "HTTP/1.1 200 OK\n";
}
else if its a connect, return a 404
elsif ($first =~ /connect/i) {

print $new_sock "HTTP/1.1 404 Not Found\n";
}
elsif ($first =~ /\.gif|\.jpg/i) {

print $new_sock "HTTP/1.0 200 OK\n";
print $new_sock "Content-length: 807\n";
print $new_sock "Content-type: image/gif\n\n";

open (GIF, "pic.gif") || die "can't open gif: $!\n";
binmode GIF;
print $new_sock <GIF>;
close GIF;

}
else get the page and return it
else {

$ua = LWP::UserAgent->new;

if ($first =~ /get/i) {
@request = split (" ",$first);
$http_req = HTTP::Request->new(GET => $request[1]);
$ua->timeout(7);
$http_res = $ua->request($http_req);
if ($http_res->is_success) {

print $new_sock $http_res->content;
} else {

print $new_sock $http_res->error_as_HTML;
}

}
else {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

print $new_sock "HTTP/1.1 500 Internal Server Error\n";
}

}

$new_sock->shutdown(2);

print LOGFILE "$date";
print LOGFILE "$herstraddr\n";
print LOGFILE $logout;

exit 0;
} # child
i'm the parent - wait for another connection
elsif ($pid > 0) {

wait();
}
else {

die "Error while forking: $!\n";
exit;

}

} # while

close $main_sock;
close LOGFILE;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

Network Detects

Detect #1 - ATTACK RESPONSES id check returned root

Alert generated:

[**] [1:498:3] ATTACK RESPONSES id check returned root [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
05/31-08:12:19.804488 205.252.49.1:80 -> 226.185.106.176:64094
TCP TTL:117 TOS:0x0 ID:38245 IpLen:20 DgmLen:1500 DF
AP Seq: 0x6E1E09D0 Ack: 0x13A13701 Win: 0x43BC TcpLen: 20

Actual packet that generated the alert:

$ tcpdump -r 2002.4.31.log -n -v 'src host 205.252.49.1 and dst host
226.185.106.176 and dst port 64094'

08:12:19.804488 205.252.49.1.80 > 226.185.106.176.64094: P [bad tcp cksum
8f8f!] 1847462352:1847463812(1460) ack 329332481 win 17340 (DF) (ttl 117, id
38245, len 1500, bad cksum 8ebf!)

1. Source of Trace:

The alert generated was obtained from the raw tcpdump log file generated by Snort and
located at http://www.incidents.org/logs/Raw/2002.4.31. The file was sanitized as
outlined in http://www.incidents.org/logs/Raw/README.

While I do not have access to the network layout, I can make an educated guess. The
following was derived from my own analysis and Andre Cormier’s excellent Network
Detect submission.

Every packet in the tcpdump log is either coming from or going to an address within the
226.185.0.0/16 range. However, the log only shows a source IP address range of
226.185.106.0/24. This means that even though the entire IP address range of
226.185.0.0/16 is owned by this network, only 226.185.106.0/26 has hosts on it or only
has hosts that Snort generated alerts on.

Additionally, there are only two MAC addresses for all packets in the log. According to
IEEE these MAC addresses, 00:00:0c:04:b2:33 and 00:03:e3:d9:26:c0, are owned by
Cisco cards. The MAC address 00:03:e3:d9:26:c0 is always associated with an
external IP address and the MAC address 00:00:0c:04:b2:33 is always associated with
an internal IP address in the tcpdump log. With this information, the following diagram
on how the network is set up, at least in relation to the Snort IDS, can be generated:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

Internet <-> Cisco Device <-|-> Cisco Device <-> Internal Network
0:3:e3:d9:26:c0 | 0:0:c:4:b2:33 (216.185.0.0/26)

|
Snort

Traffic coming from the Internet first goes through a Cisco device, probably a router or
PIX firewall. The traffic is then detected by the Snort IDS sensor, most likely through a
hub or a span port on a switch, and then goes to a second Cisco device. The second
device is likely another PIX firewall or router that filters the data further and sends it off
to the internal network.

2. Detect was generated by:

This detect was generated by running Snort Version 1.9.0 Build 209 against the
tcpdump log specified above. A default snort.conf configuration file was used with an
updated rule set. Snort was run to log to the current directory and to include packets in
tcpdump format using the following options:

$ snort –b –r 2002.4.31 –c ./snort.conf –l ./

Snort is an open source network intrusion detection system created and maintained by
Marty Roesch. It can be found at http://www.snort.org.

The rule that set off this alert is shown below:

alert ip any any -> any any (msg:"ATTACK RESPONSES id check returned
root"; content: "uid=0(root)"; classtype:bad-unknown; sid:498; rev:3;)

We can analyze the signature to determine why this detect was generated.

alert ip any any -> any any

The first part of the signature, known as the rule header, tells Snort what to look for in
regards to who is involved in the network conversation. In this case, the rule tells Snort
to look for IP traffic coming from any IP address on any port going to any IP address on
any port. In other words, this rule will get evaluated on any IP traffic whatsoever.

(msg:"ATTACK RESPONSES id check returned root";

Next we look at the rule options of the signature, located in the parentheses after the
rule header. This tells Snort what parts within the packet it should look at as well as
what output options to use. The first part, shown above, is the alert message to display
when this alert is generated.

content: "uid=0(root)";

The content option tells Snort what to look for within the data of the packet. The rule
here looks for the string “uid=0(root)”, which is part of the output from the UNIX “id”
command. If Snort finds that string within the packet, the alert is generated.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

classtype:bad-unknown; sid:498; rev:3;)

The rest of the signature gives event information on this alert to Snort. The classtype
option defines this alert as “bad-unknown”, sid gives a signature identifier to the alert
and rev is the revision of the alert.

Since the only option that looks into the packet payload is the content option, this alert
will be generated whenever the string “uid=0(root)” is in an IP packet coming from and
going to any IP address and port.

3. Probability the source address was spoofed:

There is little probability that the source address was spoofed. As will later be
explained, the traffic that generated the alert appears to be part of a KaZaa file transfer.
A file transfer using the KaZaa peer to peer file sharing agent occurs when a KaZaa
client, internal host 226.185.106.176 in this case, contacts another KaZaa client (acting
as a server) to download a file.

Since the internal host contacted the external host to download a file, it initiated the
connection. While not impossible, it would be extremely difficult for another machine to
intercept the traffic destined for 205.242.49.1 and hijack the connection. If we look
further into the tcpdump logs, more connections between the two hosts take place.
Since all of the connections seem to occur without any problems, the likelihood that the
source was spoofed is very small.

The source address would probably not be spoofed even if this alert were generated
from an actual attack and not a false positive. As will be described below, this alert is
commonly generated after a machine has been compromised and output from the“id”
command is sent back to the attacker. If the source address was spoofed, the attacker
may never see the output and would not know that they had superuser access to the
machine.

4. Description of attack:

When run, the UNIX “id” command displays the real and effective user IDs (UID) and
group IDs (GID) for the current user. This alert is generated when the output from the
“id” command shows that the user has the UID of 0. When a user has a UID of 0, they
have superuser, or root, access to the machine. Attackers usually run the “id”
command after they have compromised a machine to verify they have superuser access
over the box, so this alert usually lets an administrator know that they have already
been compromised.

In this case, the alert is a false positive. This is better seen if we use tcpdump to look at
the actual data in the packet that generated the alert. Since there are multiple packets
to and from these hosts, we will include the destination port in the BPF filter to get only
the packet that generated the alert.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

$ tcpdump -r 2002.4.31 -n -s 1514 -X 'src host 205.252.49.1 and dst host
226.185.106.176 and dst port 64094'

08:12:19.804488 205.252.49.1.80 > 226.185.106.176.64094: P
1847462352:1847463812(1460) ack 329332481 win 17340 (DF)

0x0000 4500 05dc 9565 4000 7506 8ebf cdfc 3101 E....e@.u.....1.
0x0010 e2b9 6ab0 0050 fa5e 6e1e 09d0 13a1 3701 ..j..P.^n.....7.
0x0020 5018 43bc a093 0000 6c63 6f64 653e 5c70 P.C.....lcode>\p
0x0030 6172 0d0a 7b5c 706e 7465 7874 5c66 315c ar..{\pntext\f1\
0x0040 2742 375c 7461 627d 3233 302d 4e65 7874 'B7\tab}230-Next
0x0050 2074 696d 6520 706c 6561 7365 2075 7365 .time.please.use
0x0060 2079 6f75 7220 652d 6d61 696c 2061 6464 .your.e-mail.add
0x0070 7265 7373 2061 7320 796f 7572 2070 6173 ress.as.your.pas
0x0080 7377 6f72 645c 7061 720d 0a7b 5c70 6e74 sword\par..{\pnt
0x0090 6578 745c 6631 5c27 4237 5c74 6162 7d32 ext\f1\'B7\tab}2
0x00a0 3330 2d20 2020 2020 2020 2066 6f72 2065 30-........for.e
0x00b0 7861 6d70 6c65 3a20 6a6f 6540 6b67 622e xample:.joe@kgb.
0x00c0 7a61 2e6e 6574 5c70 6172 0d0a 7b5c 706e za.net\par..{\pn
0x00d0 7465 7874 5c66 315c 2742 375c 7461 627d text\f1\'B7\tab}
0x00e0 3233 3020 4775 6573 7420 6c6f 6769 6e20 230.Guest.login.
0x00f0 6f6b 2c20 6163 6365 7373 2072 6573 7472 ok,.access.restr
0x0100 6963 7469 6f6e 7320 6170 706c 792e 5c70 ictions.apply.\p
... (cut for brevity) …
x02d0 4c69 6e75 7820 6c61 6d65 5f62 6f78 2e7a Linux.lame_box.z
0x02e0 612e 6e65 7420 322e 322e 3134 2d35 2e30 a.net.2.2.14-5.0
0x02f0 2023 3120 5475 6520 4d61 7220 3720 3231 .#1.Tue.Mar.7.21
0x0300 3a30 373a 3339 2045 5354 2032 3030 3020 :07:39.EST.2000.
0x0310 6936 3836 2075 6e6b 6e6f 776e 5c70 6172 i686.unknown\par
0x0320 0d0a 7b5c 706e 7465 7874 5c66 315c 2742 ..{\pntext\f1\'B
0x0330 375c 7461 627d 7569 643d 3028 726f 6f74 7\tab}uid=0(root
0x0340 2920 6769 643d 3028 726f 6f74 2920 6567).gid=0(root).eg
0x0350 6964 3d35 3028 6674 7029 2067 726f 7570 id=50(ftp).group
0x0360 733d 3530 2866 7470 295c 7061 720d 0a7b s=50(ftp)\par..{
0x0370 5c70 6e74 6578 745c 6631 5c27 4237 5c74 \pntext\f1\'B7\t
0x0380 6162 7d5c 7061 720d 0a7b 5c70 6e74 6578 ab}\par..{\pntex
0x0390 745c 6631 5c27 4237 5c74 6162 7d42 616e t\f1\'B7\tab}Ban
0x03a0 6721 2059 6f75 2068 6176 6520 726f 6f74 g!.You.have.root
0x03b0 215c 7061 720d 0a7b 5c70 6e74 6578 745c !\par..{\pntext\
0x03c0 6631 5c27 4237 5c74 6162 7d2d 2d2d 2d2d f1\'B7\tab}-----
0x03d0 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ----------------
0x03e0 2d2d 2d2d 2d2d 2d2d 2063 7574 2068 6572 --------.cut.her
0x03f0 6520 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d e.--------------
0x0400 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d5c ---------------\
0x0410 7061 720d 0a7b 5c70 6e74 6578 745c 6631 par..{\pntext\f1
0x0420 5c27 4237 5c74 6162 7d54 6861 7473 2069 \'B7\tab}Thats.i
0x0430 742e 2e2e 2077 6861 7420 796f 7520 646f t....what.you.do
0x0440 2066 726f 6d20 6865 7265 2069 7320 7468 .from.here.is.th
0x0450 6520 6d61 7474 6572 206f 6620 6f74 6865 e.matter.of.othe
0x0460 7220 686f 7732 732e 2059 6f75 205c 7061 r.how2s..You.\pa
0x0470 720d 0a7b 5c70 6e74 6578 745c 6631 5c27 r..{\pntext\f1\'
0x0480 4237 5c74 6162 7d61 6c73 6f20 6d69 6768 B7\tab}also.migh
0x0490 7420 6265 2061 736b 696e 6720 7768 6174 t.be.asking.what
0x04a0 2069 7320 4e65 7443 6174 2066 6f72 2e2e .is.NetCat.for..
0x04b0 2e20 7765 6c6c 2073 6f6d 6520 6578 706c ..well.some.expl

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

0x04c0 6f69 7473 2072 6571 7569 7265 205c 7061 oits.require.\pa
0x04d0 720d 0a7b 5c70 6e74 6578 745c 6631 5c27 r..{\pntext\f1\'
0x04e0 4237 5c74 6162 7d69 742e 204e 6f74 6963 B7\tab}it..Notic
0x04f0 6520 7468 6174 2061 626f 7665 2065 7870 e.that.above.exp
0x0500 6c6f 6974 2075 7365 6420 616e 6f6e 796d loit.used.anonym
0x0510 6f75 7320 6c6f 6769 6e2c 2073 6f20 6966 ous.login,.so.if
0x0520 2061 6e6f 6e79 6d6f 7573 205c 7061 720d .anonymous.\par.
0x0530 0a7b 5c70 6e74 6578 745c 6631 5c27 4237 .{\pntext\f1\'B7
0x0540 5c74 6162 7d61 6363 6573 7320 7761 7320 \tab}access.was.
0x0550 6469 7361 626c 6564 2074 6865 7265 2c20 disabled.there,.
0x0560 6974 2077 6f75 6c64 6e74 2077 6f72 6b2e it.wouldnt.work.
0x0570 2054 6861 7473 2077 6879 2077 6520 7765 .Thats.why.we.we
0x0580 7265 2063 6865 636b 696e 675c 7061 720d re.checking\par.
0x0590 0a7b 5c70 6e74 6578 745c 6631 5c27 4237 .{\pntext\f1\'B7
0x05a0 5c74 6162 7d66 6f72 2061 6e6f 6e79 6d6f \tab}for.anonymo
0x05b0 7573 2061 6363 6573 7320 6174 2073 7465 us.access.at.ste
0x05c0 7020 662e 2049 6620 616e 6f6e 2061 6363 p.f..If.anon.acc
0x05d0 6573 7320 7761 7320 6469 7361 ess.was.disa

Looking at the data in the packet, we see the string “uid=0(root)”, which set off the alert,
surrounded by what looks like an RTF document. The RTF document looks strangely
like a cracking tutorial. In fact, if we search the Internet using Google for the phrase
“Bang! You have root!” we find a tutorial by kgb_kid called “Cracking Howto 1” which
explains how to run a wu-ftp exploit.

Looking further into the tcpdump logs for any other packets between these two hosts,
we come across the following packet:

$ tcpdump -r 2002.4.31 -n -s 1514 -X 'src host 205.252.49.1 and dst host
226.185.106.176’

… (some output cut for brevity) …
13:58:52.704488 205.252.49.1.80 > 226.185.106.176.61188: P
1462836325:1462837785 (1460) ack 2582223155 win 17340 (DF)

0x0000 4500 05dc 1a47 4000 7506 09de cdfc 3101 E....G@.u.....1.
0x0010 e2b9 6ab0 0050 ef04 5731 1c65 99e9 9933 ..j..P..W1.e...3
0x0020 5018 43bc 8ef3 0000 4854 5450 2f31 2e31 P.C.....HTTP/1.1
0x0030 2032 3030 204f 4b0d 0a43 6f6e 7465 6e74 .200.OK..Content
0x0040 2d4c 656e 6774 683a 2033 3339 3534 0d0a -Length:.33954..
0x0050 4163 6365 7074 2d52 616e 6765 733a 2062 Accept-Ranges:.b
0x0060 7974 6573 0d0a 4461 7465 3a20 4672 692c ytes..Date:.Fri,
0x0070 2033 3120 4d61 7920 3230 3032 2031 393a .31.May.2002.19:
0x0080 3538 3a35 3820 474d 540d 0a53 6572 7665 58:58.GMT..Serve
0x0090 723a 204b 617a 6161 436c 6965 6e74 204d r:.KazaaClient.M
0x00a0 6179 2032 3820 3230 3032 2030 303a 3233 ay.28.2002.00:23
0x00b0 3a35 320d 0a43 6f6e 6e65 6374 696f 6e3a :52..Connection:
… (cut for brevity) …

This is the start of an HTTP server response from the external host. Examining the
HTTP Server header more closely, we see that it is a KaZaa client as shown by the
HTTP header “Server: KazaaClient” highlighted above. KaZaa is a peer to peer file-
sharing network where users utilize the KaZaa agent to download any files shared by

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

any other user. Users who have the KaZaa client installed are able to change the port it
listens for requests on, from the default port of TCP 1214 to whatever port they want.
This is done to more easily bypass firewalls, since a firewall is more likely to allow
inbound or outbound traffic to a port such as TCP 80 than TCP 1214.

What appears to be happening here is that a user on the network is using KaZaa to
download tutorials on how to hack computers. The tutorial shows the output of one
particular exploit, which happens to be the output of the “id” command from a user who
has successfully gained root access on a Linux machine using a remote FTP exploit.
Since this output contains the string “uid=0(root)”, it set off the signature in Snort,
creating the false positive.

5. Attack mechanism:

Many exploits that attack systems do so remotely. Therefore, any traffic, including any
output, from the exploit has to travel over the network back to the attacker. Many of
these remote exploits run the “id” command automatically after it has successfully
compromised a machine to verify to the attacker that they have superuser, or root,
access. The “ATTACK RESPONSES id check returned root” signature exists to detect
this.

While we would hope that Snort would generate an alert on the actual exploit attacking
the machine, this may not happen, especially if the attack was unknown. This signature
provides a way to alert in case Snort fails to detect the attack.

6. Correlations:

The Snort log shows 24 other alerts set off by the communications between these two
hosts. Every one of these alerts is either a “SHELLCODE x86 inc ebx NOOP” or
“SHELLCODE x86 NOOP” alert. Each of these alerts occurs when an exploit is being
run against a remote machine. However, these alerts can also occur when someone is
downloading an exploit containing the shellcode signature that Snort looks for.
Considering the previous evidence that the user is using KaZaa to download cracking
tutorials, chances are they are also using KaZaa to download the exploits mentioned
within these tutorials. These exploits would be what Snort is detecting.

There are many instances where the “ATTACK RESPONSES id check returned root“
alert is a false positive. For example, in his GIAC network detect, Dennis Klaman
reported a similar false positive with the alert.

However, many incident response reports available on the Internet show the signature
occurring after a machine compromise has occurred. One such incident report is
Michael Anuzis’ analysis of a compromised BSD honeypot.

As per guidelines, this detect was posted on the Intrusions mailing list on January 31,
2003. There were no responses to this so it was resubmitted to the list again on March

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

8, 2003. Andrew Rucker Jones replied to it and said that the analysis was good and
that he had nothing to say about it.
Andrew also replied with the following:

> The Snort log shows 24 other alerts set off by the communications between
> these two hosts. Every one of these alerts is either a "SHELLCODE x86 inc ebx
> NOOP" or "SHELLCODE x86 NOOP" alert. Each of these alerts occurs when an
> exploit is being run against a remote machine. However, these alerts can
> also occur when someone is downloading an exploit containing the shellcode
> signature that Snort looks for.

Not only. This is a frequent false alarm. Downloading other files that KaZaa is associated with (like MP3's)
would probably generate a few of these alerts, too. But, as You say, the alerts are between those two hosts, so it
stands to reason...

I agree with Andrew’s comment here that downloading other files can set off these
alerts, but given that there is evidence the user is downloading hacking tutorials, I
believe that these alerts were set off due to exploits being downloaded.

7. Evidence of active targeting:

KaZaa, and other file sharing software, work by letting different clients connect to each
other to download software. In this case, the internal user actively contacted the remote
machine to download the file. There is no evidence that the external machine targeted
the internal machine in any way.

8. Severity:

The equation for severity is:

severity = (criticality + lethality)–(system countermeasures + network countermeasures)

Each value is rated on a scale from 1 to 5, where 1 is the lowest value.

Criticality– We don’t knowhow critical the system is, but all of our conclusions have
pointed to it being a user’s system or workstation. Since this is on the lower end of
critical machines as compared to web and DNS servers, criticality will be given a value
of 2.

Lethality–The potential for a positive “id check returned root” alert gives it the highest
lethality possible since the alert would indicate a root compromise of a machine. This
alert is a false positive, though, and should get a low rating. However, since the data
within the packet indicates some other nefarious activities may be planned and exploits
may have been downloaded, this category should be rated higher. Lethality will be
given a rating of 2.

System Countermeasures–We do not know what system countermeasures are
available on the host system, so it gets a low score of 1.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

Network Countermeasures–While we do not know exactly what network
countermeasures are in place, we do know that some type of Cisco border router or
firewall and a Snort IDS is in place. This would normally lead to a high value, but since
the border protection let the peer to peer file sharing through, it should be lessened a
little. Network Countermeasures will get a value of 2.

Severity = (2+2)–(1+2) = 4–3 = 1

A severity of 1 indicates some additional network countermeasures, as specified below,
need to be put into place. Follow-up with the user associated with this incident should
occur as well.

9. Defensive recommendation:

Normally there are no defensive recommendations for this alert, except taking the
appropriate steps to prevent whatever compromise had occurred from happening again.
This would include blocking ports on a firewall, applying patches and end user
education.

Since this alert was a false positive and no compromise actually occurred, there are no
defensive recommendations. However, it would be prudent to contact the internal user
downloading these files as it is obvious they are trying to learn how to hack and may try
to apply that knowledge against the other machines on the network.

However, it may also be helpful to block internal users from using a peer to peer file
sharing program like KaZaa to prevent viruses and other malware from entering the
network. Blocking peer to peer file-sharing programs can also prevent potential legal
liability from users downloading copyrighted materials, such as MP3s. Blocking can be
accomplished in a number of ways.

The first step is usually blocking the ports used by peer to peer programs. For the
KaZaa peer to peer network, the port to block would be TCP 1214. However, as seen
in this alert, many peer to peer programs now have the ability to change the port they
listen on for the express purpose of bypassing firewall restrictions.

Since most peer to peer file-sharing programs require you to log on to a central server,
blocking the IP address ranges of these servers may stop some programs from working.
This is because if the client is not able to authenticate onto the peer to peer network,
they won’t be able to use it. The list of central servers used often changes however, so
the list of blocked IP addresses would need to be updated frequently.

The next best thing to do would be to require all users to go through an authenticating
proxy server to get to the Internet. Some of the peer to peer file-sharing programs lack
the ability to work through a proxy server. The ones that are able to work through a
proxy server do not always have the ability to work through one that requires

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

authentication. While not foolproof, using the proxy server will help prevent some of the
peer to peer file-sharing programs from working.

10. Multiple choice test question:

13:58:52.704488 205.252.49.1.80 > 226.185.106.176.61188: P
1462836325:1462837785 (1460) ack 2582223155 win 17340 (DF)

0x0000 4500 05dc 1a47 4000 7506 09de cdfc 3101 E....G@.u.....1.
0x0010 e2b9 6ab0 0050 ef04 5731 1c65 99e9 9933 ..j..P..W1.e...3
0x0020 5018 43bc 8ef3 0000 4854 5450 2f31 2e31 P.C.....HTTP/1.1
0x0030 2032 3030 204f 4b0d 0a43 6f6e 7465 6e74 .200.OK..Content
0x0040 2d4c 656e 6774 683a 2033 3339 3534 0d0a -Length:.33954..
0x0050 4163 6365 7074 2d52 616e 6765 733a 2062 Accept-Ranges:.b
0x0060 7974 6573 0d0a 4461 7465 3a20 4672 692c ytes..Date:.Fri,
0x0070 2033 3120 4d61 7920 3230 3032 2031 393a .31.May.2002.19:
0x0080 3538 3a35 3820 474d 540d 0a53 6572 7665 58:58.GMT..Serve
0x0090 723a 204b 617a 6161 436c 6965 6e74 204d r:.KazaaClient.M
0x00a0 6179 2032 3820 3230 3032 2030 303a 3233 ay.28.2002.00:23
0x00b0 3a35 320d 0a43 6f6e 6e65 6374 696f 6e3a :52..Connection:
… (cut for brevity) …

If 226.185.106.176 is on the internal network, what activity is the above packet
accomplishing?

a) Bypassing firewall restrictions
b) Connecting to a backdoor
c) Sending a buffer overflow
d) Nothing, this is normal HTTP traffic

Answer: A. The port of the service being used, KaZaa in this case, is listening on port
80. Most firewalls allow port 80, commonly used by HTTP, through to allow users to
surf the web. By listening on port 80, the user is almost guaranteed to be allowed to
use KaZaa through the firewall, something that may normally be restricted in the firewall
policy.

11. References:

Anuzis, Michael. “Incident Analysis of Compromised OpenBSD 3.0 Honeypot.” July
2002. <http://www.lucidic.net/whitepapers/manuzis-7-5-2002-1.html>.

Cormier, Andre. “LOGS: GIAC GCIA Version 3.3 Practical Detect(s) (Andre Cormier).”
20 Jan 2003. Intrusions mailing list. 24 Jan 2003. <http://cert.uni-
tuttgart.de/archive/intrusions/2003/01/msg00162.html>.

“Google search: kgb_kid.” 24 Jan. 2003.
<http://www.google.com/search?q=%22kgb_kid%22&hl=en&lr=&ie=UTF-
8&oe=UTF-8>.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

Hudak, Tyler. “LOGS: GIAC GCIA Version 3.3 Practical Detect (Hudak).” 31 Jan 2003.
Intrusions mailing list. 2 April 2003. <http://cert.uni-
stuttgart.de/archive/intrusions/2003/01/msg00510.html>.

Hudak, Tyler. “LOGS: GIAC GCIA Version 3.3 Practical Detect (Hudak) –second
posting.” 8 Mar 2003. Intrusions mailing list. 2 April 2003. <http://cert.uni-
stuttgart.de/archive/intrusions/2003/01/msg00105.html>.

Jones, Andrew Rucker. “Re: LOGS: GIAC GCIA Version 3.3 Practical Detect (Hudak)–
second posting.” 8 Mar 2003. Intrusions mailing list. 2 April 2003. <http://cert.uni-
stuttgart.de/archive/intrusions/2003/01/msg00111.html>.

KGB_Kid. “Cracking Howto 1.” 10 May 2000. Google cache.
<http://216.239.39.100/search?q=cache:S2XrOR5SD58C:bigben187.housing4free.d
e/docs/basic_hacking_guides_using_linux_tru_WUftpd_bughole.rtf+%22kgb_kid%2
2&hl=en&ie=UTF-8>.

Klaman, Dennis. “LOGS: GIAC GCIA Version 3.3 Detect #1 (Klaman).” Online posting.
21 Oct 2002. Intrusions mailing list. 24 Jan 2003. <http://cert.uni-
tuttgart.de/archive/intrusions/2002/10/msg00266.html>.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

Detect #2 - BAD TRAFFIC udp port 0 traffic

Alerts generated:

[**] [1:525:4] BAD TRAFFIC udp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
02/04-18:47:23.860953 208.203.77.22:53 -> 192.168.25.15:0
UDP TTL:1 TOS:0x0 ID:27417 IpLen:20 DgmLen:64
Len: 44
[Xref => nessus 10074][Xref => cve CVE-1999-0675]

[**] [1:525:4] BAD TRAFFIC udp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
02/04-18:47:24.866417 208.203.77.22:53 -> 192.168.25.15:0
UDP TTL:1 TOS:0x0 ID:27418 IpLen:20 DgmLen:64
Len: 44
[Xref => nessus 10074][Xref => cve CVE-1999-0675]

[**] [1:525:4] BAD TRAFFIC udp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
02/04-18:47:25.876605 208.203.77.22:53 -> 192.168.25.15:0
UDP TTL:2 TOS:0x0 ID:27419 IpLen:20 DgmLen:64
Len: 44
[Xref => nessus 10074][Xref => cve CVE-1999-0675]
[Xref => nessus 10074][Xref => cve CVE-1999-0675]

[**] [1:525:4] BAD TRAFFIC udp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
02/04-18:47:26.886692 208.203.77.22:53 -> 192.168.25.15:0
UDP TTL:2 TOS:0x0 ID:27420 IpLen:20 DgmLen:64
Len: 44
[Xref => nessus 10074][Xref => cve CVE-1999-0675]

[**] [1:525:4] BAD TRAFFIC udp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
02/04-18:47:27.896698 208.203.77.22:53 -> 192.168.25.15:0
UDP TTL:2 TOS:0x0 ID:27421 IpLen:20 DgmLen:64
Len: 44
[Xref => nessus 10074][Xref => cve CVE-1999-0675]

Traffic that generated the alerts:

$ tcpdump –r snort.log.1042744510 –n –X –s 1514 –q ‘udp and src host
208.203.77.22 and dst port 0’

18:47:23.860953 208.203.77.22.53 > 192.168.25.15.0: [udp sum ok] udp 36 [ttl
1] (id 27417, len 64)
0x0000 4500 0040 6b19 0000 0111 e84f d0cb 4d16 E..@k......O..M.
0x0010 c0a8 190f 0035 0000 002c ad81 6b19 8081 .S...5...,..k...
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

18:47:24.866417 208.203.77.22.53 > 192.168.25.15.0: [udp sum ok] udp 36 [ttl
1] (id 27418, len 64)
0x0000 4500 0040 6b1a 0000 0111 e84e d0cb 4d16 E..@k......N..M.
0x0010 c0a8 190f 0035 0000 002c ad80 6b1a 8081 .S...5...,..k...
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

18:47:25.876605 208.203.77.22.53 > 192.168.25.15.0: [udp sum ok] udp 36 (ttl
2, id 27419, len 64)
0x0000 4500 0040 6b1b 0000 0211 e74d d0cb 4d16 E..@k......M..M.
0x0010 c0a8 190f 0035 0000 002c ad7f 6b1b 8081 .S...5...,..k...
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

18:47:26.886692 208.203.77.22.53 > 192.168.25.15.0: [udp sum ok] udp 36 (ttl
2, id 27420, len 64)
0x0000 4500 0040 6b1c 0000 0211 e74c d0cb 4d16 E..@k......L..M.
0x0010 c0a8 190f 0035 0000 002c ad7e 6b1c 8081 .S...5...,.~k...
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

18:47:27.896698 208.203.77.22.53 > 192.168.25.15.0: [udp sum ok] udp 36 (ttl
2, id 27421, len 64)
0x0000 4500 0040 6b1d 0000 0211 e74b d0cb 4d16 E..@k......K..M.
0x0010 c0a8 190f 0035 0000 002c ad7d 6b1d 8081 .S...5...,.}k...
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

1. Source of Trace:

This detect was obtained from a Snort IDS listening to my employer’s Internet
connection.

Without going too deeply into the structure of the network, the IDS listens to all Internet
traffic outside of the firewall through an interface in stealth mode. This means the IDS
sensor’s interface has no IP address assigned to it so the interface can only listen to
traffic and not respond. Behind the firewall reside the protected e-commerce servers
and internal network. The following is a basic diagram of how the network is organized.

Internet --- Firewall --- Internal Network
| |

Snort DMZ
Servers

(192.168.25.0/24)

It should be noted that in this alert the destination IP address, 192.168.25.15, is
obfuscated to hide the actual class C Internet IP address and internal IP address of the
machine in the alert. The source IP address, 208.203.77.22, has not been changed.

2. Detect was generated by:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

The detect was generated by Snort Version 1.9.0 Build 209 running a rule set current as
of February 3, 2003. Snort is an open source Intrusion Detection System maintained by
Marty Roesch and located at http://www.snort.org.

The signature that set off the “BAD TRAFFIC udp port 0 traffic” alert is shown below:

alert udp $EXTERNAL_NET any <> $HOME_NET 0 (msg:"BAD TRAFFIC udp port 0
traffic"; reference:cve,CVE-1999-0675; reference:nessus,10074;
classtype:misc-activity; sid:525; rev:4;)

We can analyze the signature to determine why the alert was generated.

alert udp $EXTERNAL_NET any <> $HOME_NET 0

The rule header of the signature tells Snort that this signature should only look at UDP
network traffic coming from or going to port 0 on any machine in $HOME_NET.

$HOME_NET is an internal variable set in Snort’s configuration file that tells Snort what
its home network should be. The home network is typically the IP address or range of
the machine or network that Snort is watching. In this case, $HOME_NET was set to
the class C IP range of the Internet connection it was listening on, or 192.168.25.0/24.

(msg:"BAD TRAFFIC udp port 0 traffic";

The first rule option in the signature shows the alert message Snort should display when
this signature goes off.

reference:cve,CVE-1999-0675; reference:nessus,10074; classtype:misc-
activity; sid:525; rev:4;)

The rest of the signature provides Snort references and identification for the rule.
These options have no bearing on when Snort will alert due to this signature.

Since there are no rule options that look into the packet, Snort will generate this alert
whenever UDP traffic is seen coming from or going to port 0 on a machine in
$HOME_NET.

3. Probability the source address was spoofed:

There is a possibility that the source address was spoofed. As opposed to TCP, UDP is
a connectionless protocol and has no concept of state. Because of this, it is very easy
to spoof source IP addresses in UDP as there is no initial setup that requires a
response. This is different from a TCP connection where an initial three-way
handshake is required and source spoofing is much more difficult.

However, it is unlikely that the source address was spoofed. There have been reports
of some tools using UDP port 0 for OS fingerprinting (Stephens) or in a traceroute

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

(Rietveld), as will be shown is the case here. Because of this, the attacker will want to
see the return traffic and will not spoof the source address.

4. Description of Attack:

There are a number of possibilities of what could be occurring here. First, this could be
an active OS fingerprint scan. However, an OS fingerprint scan would most likely
include other traffic to the host. Active OS fingerprinting programs work by sending a
host a number of packets with unusual settings. Since every operating system
responds to traffic in it’s own way, the fingerprinting program can guess what operating
system is responding to it by looking at how the return packets are formatted. However,
as will be shown later, the only traffic between the two hosts are ICMP echo requests,
DNS traffic and the UDP datagrams Snort alerted on; all of which do not seem to be
unusual. Therefore, this probably isn’t an OS fingerprinting scan.

A denial of service attack exists against some Checkpoint Firewall-1 machines where
the firewall can crash if it receives a UDP packet destined for port 0. However, for this
to occur, the attacker must be coming in through a VPN-1 interface. This did not occur
here. Additionally, the destination host is not a Checkpoint Firewall-1 firewall.

The packets here are being used in a traceroute for high performance purposes. IP
address 208.203.77.22 resolves to hostname mia-3dns.trialgraphix.com, which appears
to be a 3-DNS machine. 3-DNS is a load-balancing solution created by F5 Networks
where it “sends users to the best site based on rich performance metrics it collects from
local area load balancers, servers and cache devices throughout the network.” (F5
Networks) As shall be seen later, 3-DNS does some of its performance metrics using
ICMP echo requests and the UDP datagrams that Snort picked up.

5. Attack mechanism:

If we look at all of the traffic coming from 208.203.77.22, we see how it executes its
performance metrics and why Snort alerted on it. The initial traffic we see between
192.168.25.15 and 208.203.77.22 are some DNS requests and responses.

18:46:51.729255 192.168.25.15.1138 > 208.203.77.22.53: [udp sum ok] 23679
[1au] MX? trialgraphix.com. (45) (ttl 62, id 40178, len 73)
0x0000 4500 0049 9cf2 0000 3e11 796d c0a8 190f E..I....>.ym.S..
0x0010 d0cb 4d16 0472 0035 0035 b465 5c7f 0010 ..M..r.5.5.e\...
0x0020 0001 0000 0000 0001 0c74 7269 616c 6772trialgr
0x0030 6170 6869 7803 636f 6d00 000f 0001 0000 aphix.com.......
0x0040 2908 0000 0080 0000 00)........

18:46:51.781581 208.203.77.22.53 > 192.168.25.15.1138: [udp sum ok] 23679
FormErr% [0q] 0/0/0 (12) (ttl 53, id 4783, len 40)
0x0000 4500 0028 12af 0000 3511 0cd2 d0cb 4d16 E..(....5.....M.
0x0010 c0a8 190f 0035 0472 0014 b7c9 5c7f 8091 .S...5.r....\...
0x0020 0000 0000 0000 0000 0000 0000 0000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

18:46:51.782848 192.168.25.15.1138 > 208.203.77.22.53: [udp sum ok] 10485
MX? trialgraphix.com. (34) (ttl 62, id 40179, len 62)
0x0000 4500 003e 9cf3 0000 3e11 7977 c0a8 190f E..>....>.yw.S..
0x0010 d0cb 4d16 0472 0035 002a 119f 28f5 0000 ..M..r.5.*..(...
0x0020 0001 0000 0000 0000 0c74 7269 616c 6772trialgr
0x0030 6170 6869 7803 636f 6d00 000f 0001 aphix.com.....

18:46:51.833829 208.203.77.22.53 > 192.168.25.15.1138: [udp sum ok]
10485* 1/2/4 trialgraphix.com. MX smtp.trialgraphix.com. 10 (165) (ttl 53,
id 4784, len 193)
0x0000 4500 00c1 12b0 0000 3511 0c38 d0cb 4d16 E.......5..8..M.
0x0010 c0a8 190f 0035 0472 00ad 5a6f 28f5 8480 .S...5.r..Zo(...
0x0020 0001 0001 0002 0004 0c74 7269 616c 6772trialgr
0x0030 6170 6869 7803 636f 6d00 000f 0001 c00c aphix.com.......
0x0040 000f 0001 0001 5180 0009 000a 0473 6d74Q......smt
0x0050 70c0 0cc0 0c00 0200 0100 0151 8000 0b08 p..........Q....
0x0060 6d69 612d 3364 6e73 c00c c00c 0002 0001 mia-3dns........
0x0070 0001 5180 000b 0863 6869 2d33 646e 73c0 ..Q....chi-3dns.
0x0080 0cc0 3000 0100 0100 0000 1e00 040c 2f01 ..0.........../.
0x0090 04c0 3000 0100 0100 0000 1e00 040c 2f01 ..0.........../.
0x00a0 04c0 4300 0100 0100 0151 8000 04d0 cb4d ..C......Q.....M
0x00b0 16c0 5a00 0100 0100 0151 8000 040c 2f01 ..Z......Q..../.
0x00c0 03

The DNS requests and responses shown above are normal DNS traffic, initiated by
192.168.25.15 to 208.203.77.22. Since 192.168.25.15 is an SMTP server, most likely
someone is sending an email to the trialgraphix.com domain. We know this because
the DNS requests above are for the mail (MX) record for trialgraphix.com.

Two seconds after the DNS traffic stops, 208.203.77.22 initiates some ICMP echo
requests to 192.168.25.15.

18:46:53.526091 208.203.77.22 > 192.168.25.15: icmp: echo request (ttl 53,
id 4787, len 64)
0x0000 4500 0040 12b3 0000 3501 0cc6 d0cb 4d16 E..@....5.....M.
0x0010 c0a8 190f 0800 95c7 6238 0000 0000 0000 .S......b8......
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

18:46:54.535574 208.203.77.22 > 192.168.25.15: icmp: echo request (ttl 53,
id 4820, len 64)
0x0000 4500 0040 12d4 0000 3501 0ca5 d0cb 4d16 E..@....5.....M.
0x0010 c0a8 190f 0800 93c7 6238 0100 0000 0000 .S......b8......
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0100 0000 0000 0000 0000 0000 0000 0000

18:46:55.545815 208.203.77.22 > 192.168.25.15: icmp: echo request (ttl 53,
id 4853, len 64)
0x0000 4500 0040 12f5 0000 3501 0c84 d0cb 4d16 E..@....5.....M.
0x0010 c0a8 190f 0800 91c7 6238 0200 0000 0000 .S......b8......
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0200 0000 0000 0000 0000 0000 0000 0000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

208.203.77.22 sends out three ICMP echo requests to 192.168.25.15. These are sent
out to see the round trip time for traffic going from 208.203.77.22 to 192.168.25.15 and
back. By measuring the round trip time, 208.203.77.22 can be sure to send
192.168.25.15 to a closer DNS or SMTP server, if one exists, the next time
192.168.25.15 submits a DNS request.

The ICMP packets themselves are normal, with the exception of bytes 0x1a and 0x30,
highlighted above. These bytes are sequential counters for the ICMP packets, possibly
for error checking or performance purposes.

Until this point, Snort has not alerted on anything since the traffic has been normal.
However, after almost 30 seconds and no response to the ICMP echo requests,
208.203.77.22 sends out five UDP datagrams destined for port 0, which Snort alerts on.

18:47:23.860953 208.203.77.22.53 > 192.168.25.15.0: [udp sum ok] udp 36
[ttl 1] (id 27417, len 64)
0x0000 4500 0040 6b19 0000 0111 e84f d0cb 4d16 E..@k......O..M.
0x0010 c0a8 190f 0035 0000 002c ad81 6b19 8081 .S...5...,..k...
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

18:47:24.866417 208.203.77.22.53 > 192.168.25.15.0: [udp sum ok] udp 36
[ttl 1] (id 27418, len 64)
0x0000 4500 0040 6b1a 0000 0111 e84e d0cb 4d16 E..@k......N..M.
0x0010 c0a8 190f 0035 0000 002c ad80 6b1a 8081 .S...5...,..k...
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

18:47:25.876605 208.203.77.22.53 > 192.168.25.15.0: [udp sum ok] udp 36
(ttl 2, id 27419, len 64)
0x0000 4500 0040 6b1b 0000 0211 e74d d0cb 4d16 E..@k......M..M.
0x0010 c0a8 190f 0035 0000 002c ad7f 6b1b 8081 .S...5...,..k...
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

18:47:26.886692 208.203.77.22.53 > 192.168.25.15.0: [udp sum ok] udp 36
(ttl 2, id 27420, len 64)
0x0000 4500 0040 6b1c 0000 0211 e74c d0cb 4d16 E..@k......L..M.
0x0010 c0a8 190f 0035 0000 002c ad7e 6b1c 8081 .S...5...,.~k...
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

18:47:27.896698 208.203.77.22.53 > 192.168.25.15.0: [udp sum ok] udp 36
(ttl 2, id 27421, len 64)
0x0000 4500 0040 6b1d 0000 0211 e74b d0cb 4d16 E..@k......K..M.
0x0010 c0a8 190f 0035 0000 002c ad7d 6b1d 8081 .S...5...,.}k...
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

With the exception of the destination port of 0 and the small Time To Live (TTL) fields,
the datagrams appear to be normal. The only payload in the packets is an increasing
number, highlighted above, which correspond to the IP Identification number, and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

followed by 0x8081. Like the ICMP echo requests packets that were first sent out, this
sequencing is to keep track of the packets as they go out.

The purpose of the UDP datagrams is two-fold. First, the datagrams are being used to
perform a traceroute to the destination machine. This can be seen in the increasing
TTL fields of the packets. The first two datagrams have a TTL of 1, while the other
three have a TTL of 2. When a packet’s TTL reaches 0, the machine that the packet is
at will send an ICMP Time To Live exceeded message to the source IP address instead
of forwarding the packet on to the destination IP address. By starting off with a TTL of 1
and increasing it slowly, a machine can tell the path that it’s traffic takes to get to the
remote machine by examining the IP address of the sender of the ICMP TTL exceeded
messages.

Here 208.203.77.22 is using the traceroute to tell the exact path it takes to get from
itself to 192.168.25.15. This is useful if the reason the original ICMP echo requests
failed was because a firewall was blocking the ICMP requests from getting to the
destination in the first place. The 3-DNS server can examine the time it took for the last
ICMP TTL exceeded message to get back to it and perform the evaluation on what the
closest machine to use is based on that.

The datagrams are also being sent in the hopes that an ICMP Port Unreachable
message will be sent back. ICMP Port Unreachable messages are sent whenever a
UDP packet attempts to connect to a remote port that does not have a listening process
attached to it. A Port Unreachable message would be generated here since the
destination port is 0, a reserved port that nothing should ever listen on. If an ICMP Port
Unreachable message is sent back from 192.168.25.15, 208.203.77.22 can execute the
round trip time performance calculations using that.

To increase the likelihood an ICMP message is sent back, the UDP packets are
formatted to bypass firewall restrictions by setting the source port to 53. Port 53 is used
by DNS and many firewalls have been configured to allow UDP packets with source
port 53 from any host into their network in order to allow DNS responses to get through.
The 3-DNS server is hoping that by setting the source port to 53, any firewall will think
this is a normal DNS response and let the packet through, thereby generating the ICMP
port unreachable.

6. Correlations:

3-DNS queries like the ones Snort alerted on have been seen by a number of other
people and have been reported on in Ronny Rietveld’s GIAC GCIA Network Detect. In
Ronny’s Network Detect Analysis, he describes the same packets as were seen here.
Ronny also concludes that this is due to a 3-DNS server.

The IP address 208.203.77.22 does not have any corresponding entries in the DShield
database. This indicates that 208.203.77.22 either is not a malicious host or has not
been seen by any host that reports to DShield yet.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

7. Evidence of Active Targeting:

The 3-DNS server, 208.203.77.22, is actively sending traffic to 192.168.25.15 to create
performance metrics and is not doing a general scan or sending misdirected traffic.

8. Severity:

The equation for severity is:

severity = (criticality + lethality)–(system countermeasures + network countermeasures)

Each value is rated on a scale from 1 to 5, where 1 is the lowest value.

Criticality–The server being targeted, 192.168.25.15, is the primary Internet mail
server. Since this machine is extremely critical to the infrastructure, criticality is given a
value of 5.

Lethality–Since the attack against the system would at most create an ICMP Port
Unreachable error message, it is not considered lethal. At most, this would give an
attacker an idea of what IP addresses were active. Lethality is given a value of 1.

System Countermeasures–The mail server is a patched and protected system running
a host-based IDS. Access to the machine is strictly regulated and its logs are closely
monitored. Because of this, system countermeasures are given a value of 4.

Network Countermeasures–The mail server is in a protected subnet guarded by a
stateful firewall. The firewall is set up to only allow SMTP and DNS traffic to and from
the mail server and nothing else. Because of this, the UDP datagrams and ICMP
messages did not get through. Additionally, a border router is in place to do ingress and
egress filtering on traffic coming from the Internet. Due to the strict protections in place,
network countermeasures are given a value of 5.

Severity = (5+1)–(4+5) = 6–9 = -3

A severity score of–3 is a good score and indicates sufficient protections are in place.

9. Defensive Recommendation:

To prevent traffic like this from reaching it’s destination, setting up a stateful firewall to
only allow necessary traffic through would be recommended. In this case the firewall is
set up to only allow SMTP connections in and out of the machine and DNS traffic out.
All other traffic is blocked. Setting up an Intrusion Detection System to monitor the
traffic, as is done here, is also recommended.

The defenses set up here are fine since the UDP datagrams sent to elicit an ICMP Port
Unreachable error message were blocked. If the UDP datagrams had been able to get

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

through, the ICMP replies would have been blocked by the firewall as well due to the
strict rule set in place.

10. Multiple Choice Test Question:

18:47:27.896698 208.203.77.22.53 > 192.168.25.15.0: [udp sum ok] udp 36
(ttl 28, id 27421, len 64)
0x0000 4500 0040 6b1d 0000 1c11 e74b d0cb 4d16 E..@k......K..M.
0x0010 c0a8 190f 0035 0000 002c ad7d 6b1d 8081 .S...5...,.}k...
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

Given the packet above, what is the most likely response from the destination host?

A. TCP Reset
B. UDP DNS response
C. ICMP Port Unreachable error message
D. ICMP TTL Time Exceeded error message

Answer: C. According to RFC 1122, a host is supposed to send an ICMP Port
Unreachable “when the designated transport protocol (e.g., UDP) is unable to
demultiplex the datagram but has no protocol mechanism to inform the sender. “

11. References.

“F5 Networks – 3DNS Controller.” F5 Networks. 11 Feb. 2003.
<http://www.f5.com/f5products/3dns/>.

“Firewall-1 Port 0 Denial of Service Vulnerability.” SecurityFocus Vulnerability
Database. 11 Feb. 2003. <http://online.securityfocus.com/bid/576/info/>.

“HyperRFC: file rfc1122.txt.” 11 Feb 2003. <http://www.csl.sony.co.jp/cgi-
bin/hyperrfc?1122>.

Rietveld, Ronny. “LOGS: GIAC GCIA Version 3.3 Practical Detect#3 (Rietveld).” 27
Oct. 2002. Intrusions mailing list. 11 Feb 2003. <http://cert.uni-
stuttgart.de/archive/intrusions/2002/10/msg00318.html>.

Stephens, Alex. Alex Stephens (LevelTwo SANS GCIA Certification Exam. 25 Mar.
2001. Global Information Assurance Certification. 11 Feb. 2003.
<http://www.giac.org/practical/Alex_Stephens_GCIA.htm>.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

Detect #3 –Kuang2 virus SYN Scans

On the night of February 12, 2003 starting at 20:42:12 and proceeding until 03:28:51 the
morning of February 13, 2003, my employer’s network was scanned 1,999 times by 33
different IP addresses looking for any machine listening on port 17300. This port is
associated with Kuang2 theVirus.

The following are some of the packets detected by the Shadow IDS:

20:24:12.881873 66.138.126.219.4764 > 192.168.25.2.17300: S
1977475:1977475(0) win 8192 (DF)

20:24:12.913925 66.138.126.219.4766 > 192.168.25.4.17300: S
1977508:1977508(0) win 8192 (DF)

20:39:07.997189 220.89.88.232.2562 > 192.168.25.24.17300: S
1724452:1724452(0) win 8192 (DF)

20:39:08.150916 220.89.88.232.2544 > 192.168.25.6.17300: S 1721632:1721632(0)
win 8192 (DF)

02:26:03.289354 211.224.18.12.3376 > 192.168.25.5.17300: S 4692294:4692294(0)
win 34930

02:26:03.612249 211.224.18.12.3398 > 192.168.25.27.17300: S
4695601:4695601(0) win 34930

The following are selected full packet dumps from the Shadow tcpdump logs, obtained
using tcpdump:

$ tcpdump –r log –n –s 1514 -X
20:24:12.881873 66.138.126.219.4764 > 192.168.25.2.17300: S
1977475:1977475(0) win 8192 <mss 1414,nop,nop,sackOK> (DF)
0x0000 4500 0030 9f29 4000 7106 60e3 428a 7edb E..0.)@.q.`.B.~.
0x0010 c0a8 1902 129c 4394 001e 2c83 0000 0000C...,.....
0x0020 7002 2000 d6c0 0000 0204 0586 0101 0402 p...............

20:24:12.913925 66.138.126.219.4766 > 192.168.25.4.17300: S
1977508:1977508(0) win 8192 <mss 1414,nop,nop,sackOK> (DF)
0x0000 4500 0030 a329 4000 7106 5ce1 428a 7edb E..0.)@.q.\.B.~.
0x0010 c0a8 1904 129e 4394 001e 2ca4 0000 0000C...,.....
0x0020 7002 2000 d69b 0000 0204 0586 0101 0402 p...............

20:39:07.997189 220.89.88.232.2562 > 192.168.25.24.17300: S
1724452:1724452(0) win 8192 <mss 1460,nop,nop,sackOK> (DF)
0x0000 4500 0030 4d42 4000 6f06 40d8 dc59 58e8 E..0MB@.o.@..YX.
0x0010 c0a8 1918 0a02 4394 001a 5024 0000 0000C...P$....
0x0020 7002 2000 479d 0000 0204 05b4 0101 0402 p...G...........

20:39:08.150916 220.89.88.232.2544 > 192.168.25.6.17300: S 1721632:1721632(0)
win 8192 <mss 1460,nop,nop,sackOK> (DF)
0x0000 4500 0030 4f42 4000 6f06 3eea dc59 58e8 E..0OB@.o.>..YX.
0x0010 c0a8 1906 09f0 4394 001a 4520 0000 0000C...E.....

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

0x0020 7002 2000 52c5 0000 0204 05b4 0101 0402 p...R...........

02:26:03.289354 211.224.18.12.3376 > 192.168.25.5.17300: S 4692294:4692294(0)
win 34930 <mss 1414,nop,wscale 3,nop,nop,timestamp 0 0,nop,nop,sackOK>
0x0000 4500 0040 9171 0000 3106 ca01 d3e0 120c E..@.q..1.......
0x0010 c0a8 1905 0d30 4394 0047 9946 0000 00000C..G.F....
0x0020 b002 8872 9522 0000 0204 0586 0103 0303 ...r."..........
0x0030 0101 080a 0000 0000 0000 0000 0101 0402

02:26:03.612249 211.224.18.12.3398 > 192.168.25.17300: S 4695601:4695601(0)
win 34930 <mss 1414,nop,wscale 3,nop,nop,timestamp 0 0,nop,nop,sackOK>
0x0000 4500 0040 9471 0000 3106 c6eb d3e0 120c E..@.q..1.......
0x0010 c0a8 191b 0d46 4394 0047 a631 0000 0000FC..G.1....
0x0020 b002 8872 880b 0000 0204 0586 0103 0303 ...r............
0x0030 0101 080a 0000 0000 0000 0000 0101 0402

1. Source of Trace:

This detect was obtained from a Shadow IDS listening to my employers Internet
connection.

Without going too deeply into the structure of the network, a Shadow sensor running
tcpdump logs all of the Internet traffic outside of the firewall through an interface in
stealth mode. This means the IDS sensor’s interface has no IP address assigned to it
so it can only listen to traffic and not respond. Behind the firewall resides the protected
e-commerce servers and internal network. The following is a basic diagram of how the
network is organized.

Internet --- Firewall --- Internal Network
| |

Snort DMZ
Servers

(192.168.25.0/24)

It should be noted that in this alert the destination IP address, 192.168.25.15, is
obfuscated to hide the actual class C Internet IP address and internal IP address of the
machine in the alert. The source IP addresses have not been changed.

2. Detect was generated by:

The detect was generated by a Shadow IDS sensor. Shadow is maintained by the
Naval Surface Warfare Center (NSWC) and is located at
http://www.nswc.navy.mil/ISSEC/CID/index.html.

Shadow works by having a sensor log all network traffic it sees using tcpdump. Once
an hour, the sensor will securely copy the logs using OpenSSH to another machine
where Shadow scripts will run the tcpdump logs through pre-defined BPF filters created
by a Shadow IDS analyst. The filters are set up to remove known good traffic, such as
SMTP traffic to a mail server or HTTP traffic to a web server. Any traffic that is left is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

not normal and therefore suspect. The filters are also set up to find any unusual network
traffic, such as TCP packets with the SYN and FIN flags set at the same time.

After Shadow runs the tcpdump logs through the filters, the resulting traffic is added to a
web page the Shadow analyst can view. The format of the resulting traffic, as shown
below, is what one would see if they were looking at the traffic through tcpdump. Since
the original tcpdump logs are kept, the Shadow analyst can go back and analyze any
traffic further.

The following are more of the port 17300 scans taken directly from the Shadow HTML
page.

12.207.21.138 > 192.168.25.2

20:59:50.183084 12.207.21.138.4991 > 192.168.25.2.17300: S 3414363:3414363(0)
win 65535 (DF)

20:59:50.896227 12.207.21.138.4994 > 192.168.25.5.17300: S 3415075:3415075(0)
win 65535 (DF)

20:59:50.900041 12.207.21.138.4995 > 192.168.25.6.17300: S 3415078:3415078(0)
win 65535 (DF)

20:59:51.559479 12.207.21.138.4999 > 2.168.25.10.17300: S 3415738:3415738(0)
win 65535 (DF)

20:59:51.562770 12.207.21.138.5000 > 192.168.25.11.17300: S
3415741:3415741(0) win 65535 (DF)

3. Probability the source address was spoofed:

I do not believe the source addresses of any of the packets were spoofed for a number
of reasons. First, each packet that is looking for TCP port 17300 has only the SYN flag
set. This means that the attacker will be expecting a SYN/ACK packet returned for an
open port or a RST packet for a closed port, as per RFC 793. If the attacker were
spoofing their IP address, they would not see this return traffic and would not know if the
port was open.

While there is the possibility that some of the source addresses are spoofed to act as
decoys and hide the true IP address of the scanner, I do not think that this is the case
here. First of all, each of the 33 different source IP addresses scan for port 17300 at
different times, with no packets from one source address starting before a different
source address has completely finished. If an attacker were spoofing some of the
source IP addresses as decoys, they would send the decoy packets along with the real
packets at the same time.

Additionally, every source IP address does not scan every destination IP address. If
some of the probes were decoy packets, they would all be scanning the same IP
addresses.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

Finally, many of the fields that are typically unusual with spoofed packets are not. Since
the packets shown below are typical of all the packets seen in the scan, they will be
examined.

In the packets below, the sequence number in the TCP header varies with each source
address, indicating the packets are coming from different machines. With tools such as
nmap, the sequence number is the same in the spoofed packet as the good packet.
The Time To Live (TTL) field in each packet, highlighted as byte 0x08 below, is also
normal. In spoofed packets, the TTL will occasionally be unusually low or high. In the
packets below, the TTL’s are 112 and 113 respectively, a reasonable TTL for a packet
starting with a TTL of 128.

Finally, the source ports below are not below 1024, which can indicate a spoofed
packet. This is because machines will not normally create packets with a source port
less than 1024, since these ports are reserved. There are, of course, a few exceptions
to this.

23:21:59.829997 218.52.154.221.2451 > 192.168.25.58.17300: S 308387:308387(0)
win 8192 <mss 1460,nop,nop,sackOK> (DF)
0x0000 4500 0030 700a 4000 7006 dd1d da34 9add E..0p.@.p....4..
0x0010 c0a8 193a 0993 4394 0004 b4a3 0000 0000 ...:..C.........
0x0020 7002 2000 a3b0 0000 0204 05b4 0101 0402 p...............

00:01:59.270945 211.51.125.249.1552 > 192.168.25.31.17300: S
1693664:1693664(0) win 8192 <mss 1460,nop,nop,sackOK> (DF)
0x0000 4500 0030 bf31 4000 7106 b0f6 d333 7df9 E..0.1@.q....3}.
0x0010 c0a8 191f 0610 4394 0019 d7e0 0000 0000C.........
0x0020 7002 2000 a7e1 0000 0204 05b4 0101 0402 p...............

4. Description of attack:

This is a SYN scan looking for computers infected with Kuang2 theVirus, which listens
on TCP port 17300. Kuang2 is a trojan horse for Windows that allows a remote attacker
to upload, download, delete and run files on an infected machine. The trojan horse also
has the ability to load plug-ins to provide more functionality. Additionally, tools like
Kuang2 Web Updater exist that will scan a list of IP addresses for Kuang2 infected
hosts and force them to download and run a program. This makes a mass-compromise
of infected hosts quick and easy to perform.

Since the scan is coming from many different IP addresses during a relatively short
amount of time, the scan is probably controlled by one attacker and distributed across
all of the machines detected in the scan. This makes sense since Kuang2 provides the
ability to remotely upload and run programs on infected machines. An attacker who had
control of a number of infected machines could use Kuang2 to upload a scanning
program, such as Kuang2 Web Updater, and scan for other infected machines.

Running p0f against the tcpdump logs strengthens this theory. P0f is a passive OS
fingerprinting tool that will listen to a network interface or examine a tcpdump log and try

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

to determine what operating system the sender of every TCP SYN packet is running.
Every operating system has it’s own unique way of creating a TCP connection and p0f
looks for these nuances within every SYN packet to determine, if possible, the operating
system.

When run against the SYN scan, p0f determined that 24 out of the 33 hosts were
running a Windows operating system; the operating system that Kuang2 infects. This
means that the hosts that were scanning for Kuang2 could have been infected with
Kuang2 and used as described above. P0f was not able to determine the operating
system of the other 9 hosts.

Of course, the scans could be coming from different attackers. However, it is very
unusual that the scans never overlap and abruptly stop. If these were indeed random
scans from different attackers, one would expect the scans to trickle on over time and
not within a specific time space. Additionally, since these scans occurred, no other
scans for port 17300 have been seen. This implies that one person or group was
controlling all of the scans.

5. Attack mechanism:

A SYN scan occurs when an attacker sends out TCP packets with only the SYN flag set
for a specific port to a number of remote machines. The attacker is relying upon the
way TCP works to find out if the remote port is available.

In TCP connections, a three-way handshake is required to start a conversation. The
first TCP packet sent has only the SYN flag set, signifying that the client would like to
talk to the remote server on the destination service. If the remote service is available,
the server will send back a TCP packet with the SYN and ACK flags set. The client will
then respond with a third packet with just the ACK flag set.

If the remote service is not available, instead of sending a SYN/ACK packet the server
will send a TCP packet with the RST flag set. The purpose of the three-way handshake
is to synchronize the sequence numbers on both machines so a reliable connection can
be provided.

The attacker is sending out TCP SYN packets for port 17300 to the remote IP
addresses, hoping that a SYN-ACK or RST response will be sent back. In doing so the
attacker will quickly be able to tell if a remote machine is infected with Kuang2.

This scan is probably not done with a port scanning tool such as nmap but with a
specialized tool like the Kuang2 Web Updater, which will scan a list of infected IP
addresses and force any infected machine to download a file from a URL and run it.
Using a tool such as this would allow an attacker to quickly take over a large number of
hosts.

6. Correlations:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

TCP SYN scans are common, but during the month of February, scans for port 17300
increased and were detected by many analysts. For example, on February 13, Chris
Jones posted to the Intrusions mailing list that he had seen many port 17300 scans
directed against his network the previous night.

As shown below, the incidents.org port report for 17300, which feeds off of the statistics
provided by DShield, shows a massive jump in scanning for port 17300 beginning
around February 6, 2003 with the peak occurring on February 16 with close to 70,000
targets. During the entire jump in scanning, the number of sources never exceeded
1925 hosts. This again suggests a coordinated scan was taking place.

(Image used with permission from incidents.org)

The DShield database did not have any entries for any of the 33 IP addresses. This
implies that these machines have not been used for scanning before, or no one had
reported them as scanning.

Searching the Internet revealed that Glenn Larratt posted on the Intrusions mailing list
that he received what he believes to be a coordinated scan for TCP 17300 in July 2002.
All of the scans Larratt saw occurred over a short period of time like the scan detected
here.

7. Evidence of active targeting:

The scan detected is a general scan of a class C network looking for machines infected
with the Kuang2 virus. It is directed to this class C network, but in all probability, it was
scanning IP network ranges around it as well.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

8. Severity:

The equation for severity is:

severity = (criticality + lethality)–(system countermeasures + network countermeasures)

Each value is rated on a scale from 1 to 5, where 1 is the lowest value.

Criticality–The network being scanned was the entire class C network of the company.
Every machine on this network is extremely critical to the success of the business.
Therefore, criticality is assigned a value of 5.

Lethality–Since this was just a scan, a successful attack would have only resulted in
the knowledge that an infected machine was present. This gives lethality a low score of
1.

System countermeasures–All hosts on the network that was scanned are regularly
updated and monitored constantly. There is also host based intrusion detection
software residing on each machine. Additionally, none of the systems on this network
are running Microsoft Windows and cannot be infected by Kuang2. Therefore, system
countermeasures are given a score of 5.

Network countermeasures–Each host is behind a stateful firewall and monitored via
multiple network intrusion detection sensors. Since TCP port 17300 is not a service
offered by any server, it is blocked at the firewall. Additionally, a border router is in
place to do ingress and egress filtering on traffic coming from the Internet. Due to the
strict protections in place, network countermeasures is given a value of 5.

Severity = (5+1)–(5+5) = 6–10 = -4

A severity score of–4 is a good score and indicates that sufficient protections are in
place.

9. Defensive recommendations:

Preventing scans like the ones detected above requires using a firewall set to deny all
connections except those for services offered or required. Additionally, using an
intrusion detection system to detect the scans is also recommended. Since the scans
are looking for a port that is used by a trojan horse, any Windows servers that are
Internet accessible should be patched, have updated anti-virus software and host-based
IDS installed.

Given that this scan was blocked by a stateful firewall and sufficient intrusion detection
is in place and detected the scan, there are no defensive recommendations.

10. Multiple choice test question:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

Which of the following packets from a tcpdump log file would the passive OS
fingerprinting tool p0f look at to determine an operating system?

A. 11:59:52.445407 10.215.26.200 > 66.218.71.63: icmp: echo request

B. 11:00:57.608203 192.169.25.30.3837 > 208.45.133.230.53: 60466 [1au] A?
test.myhost.com. (43)

C. 11:03:47.752865 207.54.158.16.34703 > 172.16.135.15.113: . ack 37 win
24820 (DF)

D. 11:00:57.668668 12.111.239.35.8648 > 10.104.3.20.80: S
3301816628:3301816628(0) win 512 <mss 1460>

Answer: D. P0f determines the operating system of a machine by looking at different
settings in TCP SYN packets.

11. References:

Aphex. “Kuang2 Web Updater 1.1.” Aug 2002. 2 April 2003.
<http://www.megasecurity.org/trojans/k/kuang2_webupdater/Kuang2_webupdater1.1.ht
ml>.

“Internet Storm Center Port 17300 Report“ 2 April2003
<http://isc.incidents.org/port_details.html?port=17300&recax=1&tarax=2&srcax=2&perc
ent=N&days=40>.

Jones, Chris. “port 17300 scanning?”13 Feb 2003. Intrusions mailing list. 2 April
2003 <http://cert.uni-stuttgart.de/archive/intrusions/2003/02/msg00120.html>.

“Kuang2 the Virus 0.21.” 2 April 2003 <http://www.dark-
e.com/archive/trojans/kuang/tv/index.shtml>.

Larratt, Glenn Forbes Fleming. “[LOGS] new port 17300 scans.” 29 July 2002.
Intrusions mailing list. 2 April 2003 <http://cert.uni-
stuttgart.de/archive/intrusions/2002/07/msg00226.html>.

“RFC 793: Transmission Control Protocol.” Sept 1981. Jon Postel ed. 2 Apr 2003.
<http://www.ietf.org/rfc/rfc0793.txt?number=793>.

“Security Port Scanner, Trojan Port List: Kuang2 the virus.” 2 April 2003.
<http://www.glocksoft.com/trojan_list/Kuang2_the_virus.htm>

Tharakan, Royans. “port 17300 probe fingerprint analysis.” 17 Feb 2003. Intrusions
mailing list. 2 April 2003 <http://cert.uni-
stuttgart.de/archive/intrusions/2003/02/msg00172.html>.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

Analyze This!

Executive Summary

An analysis was done on the university’s Intrusion Detection System (IDS) logs to
discover what security problems, if any, are present. This paper presents the findings of
the analysis.

While examining the university’s logs, a number of problems became apparent. First,
peer to peer file-sharing applications, such as KaZaa and Gnutella, generate a large
portion of the network traffic. These programs allow users to exchange files with each
other on the Internet easily.

More often than not, however, the file sharing networks are utilized to download
copyrighted MP3 music files and pirated software, which may present legal problems to
the university. Allowing these programs to continue also opens the possibility for
widespread virus infections to occur, as viruses and other malware are rampant on
these networks. Additionally, this traffic causes many false positives to be generated by
the IDS, which causes IDS analysts to waste time researching what is actually non-
malicious traffic.

A number of internal hosts have also been compromised and are being used in
Distributed Denial of Service (DDoS) attacks against external machines. This not only
causes problems for the machine being attacked, but it also consumes bandwidth on
the university network, triggering network slowness and other problems.

Logs Analyzed

The following logs were provided by the university to analyze:

alert.030215.gz scans.030215.gz OOS_Report_2003_02_16_32309

alert.030216.gz scans.030215.gz OOS_Report_2003_02_17_6137

alert.030217.gz scans.030215.gz OOS_Report_2003_02_18_27913

alert.030218.gz scans.030215.gz OOS_Report_2003_02_19_479

alert.030219.gz scans.030215.gz OOS_Report_2003_02_20_28598

The alert logs contain alerts generated by Snort with an unknown rule set. I believe that
Snort version 1.7 or earlier was used, due to the wording of some of the different
preprocessor alert messages. In the analysis of the alert files in the rest of this
document, any messages generated by the spp_portscan Snort pre-processor
contained in the alert logs are ignored since these alerts are also contained in the scan
logs

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

The scan logs contain a listing of all of the portscans detected and were created by
Snort’s spp_portscan preprocessor.

The out-of-spec (OOS) logs contain TCP packets that have unusual flags set within
them. The format of these files is the same as seen when ‘snort –dv’ is run. It should
be noted that the dates of the OOS files examined are one off from the other files
examined. This is because the data in the OOS files are one day off from the filename.
For example, the data is OOS_Report_2003_02_20_28598 is actually from the 19th, not
the 20th.

Alert logs analysis

A total of 146,499 alerts were present in the alert log files. The following table lists the
alerts generated, ordered by total occurrence. The number of occurrences of internal
and external sources for each alert is also broken out.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

Total Internal Src External Src Alert Name
74876 74876 SMB Name Wildcard
15079 14814 265 Incomplete Packet Fragments Discarded
12630 12630 Watchlist 000220 IL-ISDNNET-990517

6558 6558 CS WEBSERVER - external web traffic
5892 5446 446 spp_http_decode: IIS Unicode attack detected
5838 3716 2122 High port 65535 tcp - possible Red Worm - traffic
5782 5782 SUNRPC highport access!
3481 3457 24 spp_http_decode: CGI Null Byte attack detected
2737 2737 TCP SRC and DST outside network
1947 878 1069 TFTP - Internal TCP connection to external tftp server
1644 1644 Null scan!
1493 1493 TFTP - External UDP connection to internal tftp server
1360 1360 Watchlist 000222 NET-NCFC
971 491 480 High port 65535 udp - possible Red Worm - traffic
792 594 198 Port 55850 tcp - Possible myserver activity - ref. 010313-1
760 760 MY.NET.30.4 activity
629 629 Queso fingerprint
536 536 IDS552/web-iis_IIS ISAPI Overflow ida nosize
492 25 467 Tiny Fragments - Possible Hostile Activity
447 266 181 Possible trojan server activity
433 433 connect to 515 from outside
335 335 EXPLOIT x86 NOOP
283 283 TCP SMTP Source Port traffic
281 281 NETBIOS NT NULL session
214 214 External RPC call
178 178 MY.NET.30.3 activity
175 175 CS WEBSERVER - external ftp traffic
148 148 IRC evil - running XDCC
89 33 56 TFTP - External TCP connection to internal tftp server
89 89 NMAP TCP ping!
78 78 EXPLOIT x86 setuid 0
53 53 EXPLOIT x86 stealth noop
36 36 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
28 28 EXPLOIT x86 setgid 0
26 26 SNMP public access
26 26 Notify Brian B. 3.54 tcp
17 14 3 TFTP - Internal UDP connection to external tftp server
17 17 Notify Brian B. 3.56 tcp
17 17 Attempted Sun RPC high port access
6 6 Probable NMAP fingerprint attempt
6 6 Port 55850 udp - Possible myserver activity - ref. 010313-1
5 5 FTP passwd attempt
4 4 SMB C access
2 1 1 RFB - Possible WinVNC - 010708-1
2 2 PHF attempt
1 1 Fragmentation Overflow Attack

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

Top 10 internal alert talkers Top 10 external alert talkers
alerts IP address # alerts IP address
13193 MY.NET.211.6 4726 169.232.84.146
1018 MY.NET.132.42 2187 212.179.123.163
778 MY.NET.207.214 1779 12.35.158.199
735 MY.NET.204.74 1281 212.179.88.96
589 MY.NET.201.146 1156 212.179.105.210
550 MY.NET.202.226 967 212.179.91.129
469 MY.NET.226.22 809 141.157.254.236
452 MY.NET.237.238 763 159.226.5.220
439 MY.NET.212.22 682 66.72.199.111
424 MY.NET.242.250 604 141.156.242.139

Top 5 alerts from external sources

The alerts analyzed below are the top five alerts generated by external sources. By
analyzing the most numerous alerts from external sources, one can see what is being
attacked and / or exploited the most on the internal network and base defensive
recommendations on that. Additionally, studying the top alerts from external sources
can give hints as to what security trends are occurring in the world. For example, if a
large number of “SMB Name Wildcard” alerts are being generated, it could indicate
something in the wild, such as a new virus or worm, is attempting to find and attack
Microsoft Windows shares.

SMB Name Wildcard
Total alerts reported: 74,876
External sources: 74,876 Unique external sources: 16,365
Internal sources: 0 Unique internal sources: 0

The “SMB Name Wildcard” alert occurs when an attempt to list a remote Windows
machine’s NetBIOS name table is seen, such as when the Windows command “nbtstat
–A <IP Address>” is used. In doing this, a lot of information about the machine can be
revealed, including the machine’s NetBIOS name and workgroup, user ID of any users
logged in, and if any shares are open. All of this information can lead to a compromise
of an unsecured machine.

This signature is seen a lot now since many attackers and viruses attempt to find any
open Windows file shares on computers to attack. CERT issued an incident note on
March 3, 2000 entitled “Exploitation of Unprotected Windows Networking Shares” to this
effect. Since this alert was set off by so many different external sources, it leads one to
believe that the university is not under a coordinated attack, but is feeling the brunt of
the numerous worms in the wild that attempt to do this.

It is interesting that this alert only reported on external sources. This probably means
that the IDS was configured to ignore internal machines setting off this alert. Since this
alert can be generated due to normal traffic on an internal network, it is a good idea to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

set your IDS to ignore internal SMB wildcard alerts; else you may be flooded with false
positives.

Correlations: Tod Beardsley noted this event in his GIAC practical, although he saw
mostly alerts generated from internal machines. This indicates one of two things about
the current network: either the current network is allowing NetBIOS traffic from the
internet onto it’s internal network or the IDS is in a position where it is looking at the
Internet traffic before it gets filtered by a firewall. With little knowledge of the internal
network’s structure, we could only guess at this answer.

Bryce Alexander also describes this alert in the SANS Port 137 Intrusion Detection
FAQ, although he describes it in relation to the “network.vbs” worm.

Recommendations: It is recommended that a firewall be configured to block all
NetBIOS traffic coming in from the Internet, if this is not done already. Since this alert is
frequently set off due to worms and attackers scanning for open shares on Windows
machines, it may be a good idea to turn off this alert once firewall blocking is set up. By
leaving this rule on, a lot of alerts will be generated which will have no bearing on the
security of the network.

Watchlist 000220 IL-ISDNNET-990517
Total alerts reported: 12,630
External sources: 12,630 Unique external sources: 176
Internal sources: 0 Unique internal sources: 0

The “Watchlist 000220 IL-ISDNNET-990517” alert was created by the university and is
not an alert provided by Snort. While we don’t have access to the actual signature that
triggers this alert, the signature refers to the whois handle “IL-ISDNNET-990517”, which
is the handle for ISDNet LTD, an Internet service provider in Israel. This signature
probably exists because suspicious activity has been seen from this network before.

Looking at the alerts we see that there are only 176 unique sources out of 12,630 alerts.
However, 4 of these sources are in the top 10 alert talkers and account for 45% of the
“Watchlist 000220 IL-ISDNNET-990517”alerts. Two of these sources have the majority
of their traffic going to ports 1214 and 4662, ports used by the peer to peer file sharing
programs KaZaa and eDonkey, respectively. The other machines did not have any
recognizable ports that they were sending data to, but since many file-sharing programs
are able to listen on any port, there is a good chance that these were also part of a file-
sharing network.

Additionally, port 80 (HTTP) is the most common source port within the alerts. This
indicates that there are many web servers within this IP range that users on the
university’s network are going to.

Correlations: Brian Coyle saw a lot of traffic generating this alert in his GCIA analysis
and concluded that much of it was due to file sharing and web traffic. Mike Worman

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

also reported seeing Napster traffic from this network in his analysis. This indicates that
a lot of users that are using file-sharing programs, such as KaZaa or Napster, are
contacting machines in the IP range above.

At the time of this writing, DShield’s database does not show any malicious activity
coming from the 212.179.0.0/16 network.

Recommendations: Since most of the traffic coming from ISDNet LTD is peer to peer
file sharing or web based, there are only a few defensive recommendations that can be
made. First, blocking all traffic coming from or going to 212.179.0.0/16 at the firewall
will effectively stop any threat from this network, including the web and file sharing traffic
currently occurring.

Eliminating the use of peer to peer file sharing, which the majority of the alerts appear to
be generated from, is very difficult to accomplish. Using a combination of policy and
end user education is somewhat effective. Joining this with blocking ports at the firewall
that peer to peer programs communicate on will also help stop much of the traffic to and
from this network.

CS WEBSERVER - external web traffic
Total alerts: 6,558
External sources: 6,558 Unique external sources: 2,885
Internal sources: 0 Unique internal sources: 0

This is another custom alert developed by the university. The alert was generated
6,558 times but only has 1 destination, MY.NET.100.165. All of the alerts were to port
80, HTTP.

The alert has been written to signal whenever an external IP address accesses the IP
address specified above on port 80. This fact that this will only go off when traffic is
sent to port 80 can further be seen as there are additional alerts in the logs for external
traffic going to MY.NET.100.165 on ports other than 80.

The CS web server is most likely a web server owned by the computer science (CS)
department and is either a frequent target of attacks or contains highly sensitive or
important information. Since computer science students are more likely to fool around
and hack, the computer science web server would be a prime target to attack and
needs to be monitored.

The top external source that set this alert off, 141.157.254.236, resolves to pool-141-
157-254-236.ny325.east.verizon.net. This is in an IP address space owned by Verizon
Internet Services and is probably a dial-up or broadband Internet connection. The CS
web server, MY.NET.100.165, was accessed by this address 809 times over a period of
two days (approximately 7 hours total). This could be a student or faculty member
accessing the server, or it could be a probe into the weaknesses present on the server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

Correlations: Scott Baird noted in his analysis that 18,080 alerts were generated with
this signature. He also notes that there was only one destination for this alert,
MY.NET.100.165, and that the signature was probably written specifically to notify when
external traffic to that server was generated.

There were no other alerts from 141.157.254.236 in the university’s logs and DShield’s
database did not note any malicious activity from it. Searching Google for the IP
address did not generate anything either. This could indicate that whoever was using
this address was harmless, or had not been caught yet.

Recommendations: If the CS web server is a prime target of attack from external
sources, it is recommended to block all access to the server from any external traffic
with a stateful firewall. Additionally, keeping the server patched and installing security
software, like anti-virus or intrusion detection, onto it will help prevent any compromises.
Reviewing the web logs of the server will also help catch anyone attempting to
compromise the server.

SUNRPC highport access!
Total alerts reported: 5,782
External sources: 5,782 Unique external sources: 25
Internal sources: 0 Unique internal sources: 0

This alert is generated whenever traffic to port 32771 is seen. Looking through the logs
at this alert, there are 25 unique, external sources, going to port 32771 on 14 different
internal destinations. ISS notes that on Sun servers, rpcbind will listen on port 32771 in
addition to port 111. This is a problem as an attacker could obtain SUNRPC program
information even if the standard port for rpcbind, port 111, is filtered.

However, port 32771 is above 1024, and could be used by a client in a normal client /
server connection. Therefore, some of the alerts generated could be false positives.
Scanning through the source ports from the 25 source addresses, there are a number of
ports that are associated with normal services. Specifically, ports 20 (passive FTP), 22
(SSH), 80 (HTTP), 1214 (KaZaa), 5190 (AOL Instant Messenger) and 6667 (X11) are
present. The alerts associated with these connections are false positives and not
malicious.

After filtering out the false positives, we are left with 5,467 alerts coming from 5 unique
sources. Out of the remaining sources, two of them, 169.232.84.146 and
66.72.199.111, appear on the top alert talkers list with 4726 and 682 alerts,
respectively. Both of these machines talk exclusively to one internal source,
MY.NET.252.126.

Each of these machines generates alerts to MY.NET.252.126 for approximately four
hours total. Since so much traffic is going back and forth between these hosts, it could
indicate something malicious is occurring, especially if this machine is not running
SUNRPC services.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

Correlations: Many GCIA analyst reports mention seeing the “SUNRPC highport
access!” alert in many alert files. As seen here, James Hoover reports in his analysis
seeing this alert generated as a false positive. In his case, this alert was set off from a
normal telnet session. However, James also reports on seeing this alert set off due to a
host that has probably been compromised.

The top two talkers for this alert, 169.232.84.146 and 66.72.199.111, did not have any
other alerts and had no corresponding entries in the DShield database.

Recommendations: Since it is possible that a Sun server could be running rpcbind on
port 32771, a stateful firewall should be set up to block external traffic to internal
machines. Additionally, any Sun servers affected by this should turn off rpcbind if it is
not needed or apply the patches supplied by Sun.

It also appears that IP address MY.NET.252.126 may have been compromised. This
machine should be taken off-line and forensically analyzed to see if any compromise
has occurred.

TCP SRC and DST outside network
Total alerts reported: 2,737
External sources: 2,737 Unique external sources: 2,247
Internal sources: 0 Unique internal sources: 0

This is another custom alert and although we don’t have access to the rule that
generates this alert, we can speculate that it is generated when a TCP packet with a
source and destination IP address outside of the internal network is seen. Looking at
the IP addresses in the alerts, there are no IP addresses for the “MY.NET” network, so
this conclusion is the correct one.

Seeing traffic with the IP source and destination set to outside of the current network
indicates that external traffic is entering the internal network or IP spoofing is occurring.
IP spoofing takes place when an attacker changes, or spoofs, their source IP address to
make it look like the network traffic they are sending is coming from a different machine.
IP spoofing is most commonly used in denial of service attacks or as a technique for
hiding one’s true IP address amongst garbage traffic, such as with tools like Nmap. IP
spoofing can also be used for exploits, but this is very difficult to do with TCP traffic and
is usually not seen.

In all of the alerts seen, there are only 58 unique destination hosts. The top destination
that traffic is sent to is 216.209.164.171, with 1,790 alerts. This host resolves to
newmarket-ppp277234.sympatico.ca and appears to be a Canadian DSL account.
Every packet sent to this host is destined for TCP port 135, an end point mapper used
on Microsoft Windows machines. Additionally, there are 1,790 different, spoofed source
addresses, but every source address is in the 171.165.0.0/16 subnet that is owned by
Bank of America.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

What is happening is an attacker is trying to denial of service 216.209.164.171, making
it look like Bank of America is doing the attack. This could mean that an internal host or
hosts are compromised and are being used in the attack or an internal user is attacking
216.209.164.171.

Correlations: Many GCIA analysts have indicated seeing this alert in their analyses of
the university’s traffic. Michael McDonnell wrote in his analysis about seeing this alert,
but the majority of his traffic was to non-routable IP addresses.

The DShield database shows no reports of malicious activity for the 171.165 subnet.

Recommendations: This alert indicates IP spoofing is taking place or external traffic is
getting into the internal network. To prevent this type of traffic from entering or leaving
the internal network, ingress and egress filtering should be set up any border routers
leading to the internal network from the Internet or any 3rd party connection. This will
prevent traffic destined for non-internal IP addresses from entering the network and
traffic coming from non-internal IP addresses from exiting the network.

Additionally, IP spoofing can indicate a compromised machine. Tracing back a spoofed
source to it’s true IP address is done by following MAC addresses in conjunction with
the traffic, and is nearly impossible to do after the traffic has stopped. If this traffic starts
again, a procedure should be set up to trace this traffic back to find out who, and why, it
is being generated.

Top 5 alerts from internal sources

The alerts analyzed below are the top 5 alerts where the majority of the source IP
addresses are from the internal network. Alerts generated from internal machines
indicate where security compromises have occurred or where network problems lie.
While the alerts analyzed below might have additional alerts generated from external
sources, these will not be looked at and instead the problems associated with internal
sources generating these alerts will be focused on.

Incomplete Packet Fragments Discarded
Total alerts reported: 15,079
External sources: 265 Unique external sources: 44
Internal sources: 14,814 Unique internal sources: 6

The “Incomplete Packet Fragments Discarded” alert occurs when Snort’s spp_defrag
preprocessor detects a packet that has been fragmented, but is not able to reassemble
the entire packet due to missing fragments. Snort discards the rest of the fragments
because without the full packet, the IDS cannot analyze it. Missing fragments only
occur in a few situations.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54

The first reason an IDS would detect missing fragments is due to a broken network. If a
fragment is dropped or lost along the way to it’s destination, the rest of the fragments in
the fragment train will not be able to be completely reassembled. The receiving host will
eventually time out and should issue an ICMP “Fragment Reassembly Time Exceeded”
(type 11 code 1) error to the sender.

The second reason an IDS would detect missing fragments is because of an attacker
purposely sending fragmented packets with missing pieces to a host to cause a denial
of service. Every time a host receives fragmented packets, it waits a certain amount of
time for all of the fragments to arrive. If the fragments don’t arrive in that amount of
time, an ICMP “Fragment Reassembly Time Exceeded” error message will be sent.

If an attacker wants to denial of service a machine, they can send many fragmented
packets, leaving out some of the fragments needed. The recipient will wait for the other
fragments to arrive and eventually time out. If the recipient receives so many fragments
that it fills up it’s buffers with incoming packets, it will start dropping other good packets
it receives. This causes a denial of service for the machine.

Chances are, in the alerts seen here, a mixture of both reasons is occurring. While
there are 265 alerts coming from 44 different external sources setting off this alert, there
are only 29 unique internal destinations. The most any one internal destination receives
is 74 packets; not enough to cause a full denial of service. The discarded packets in
these alerts are probably due to a network error somewhere.

However, as shown below, there are 14,814 alerts from only 6 unique internal sources.
Looking at the breakdown of where the packets are going to, we see that there are only
15 unique destination hosts, two of which receive over 6500 packets each from internal
hosts. This indicates that some internal hosts have been compromised and are being
used to denial of service these external machines.

Internal attacking hosts
Host # alerts # unique destinations

MY.NET.211.6 13,188 3
MY.NET.132.42 1,018 4
MY.NET.226.22 469 3
MY.NET.237.106 89 1
MY.NET.252.82 47 3
MY.NET.204.94 3 3

Top 5 attacked hosts
IP # attacks # attackers

198.247.231.42 6,963 2
216.111.123.20 6,656 2
172.181.116.159 584 1
172.181.251.235 200 1
172.180.246.250 152 1

Correlations: John Jenkinson noted in his GCIA paper seeing 14,601 alerts of this kind
coming from only 18 unique sources. However, most of his alerts are coming from one

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
55

machine in Verio’s network that he attributes to a broken network. Additionally, David
Stewart reported seeing 4,309 alerts and also attributes it to non-malicious traffic.

However, there are known attacks against systems using this technique. Lance
Spitzner discovered an attack against Checkpoint Firewall-1 machines where missing
fragments could be used to denial of service the firewall. James Farrell details this
attack in his paper, “IP Fragmentation Attacks on Checkpoint Firewalls”, available in the
SANS Reading Room.

Recommendations: Guarding against fragmentation denial of service attacks is not
always easy. Configuring a firewall or router to drop all fragments would prevent these
types of attacks, but may also prevent good traffic from getting through.

In the university, it appears that some internal machines have been compromised and
are being used to denial of service external machines. These machines should be
taken out of service and reloaded with current patches and security software to prevent
another compromise. Further discussion of these hosts takes place in the compromised
hosts section of this paper.

spp_http_decode: IIS Unicode attack detected
Total alerts reported: 5,892
External sources: 446 Unique external sources: 245
Internal sources: 5,446 Unique internal sources: 328

This alert is generated whenever the http_decode preprocessor detects a URL with
Unicode characters that exploit vulnerabilities in the Microsoft IIS web server. These
vulnerabilities allow an attacker to traverse the directory structure and execute
commands directly on the server. The Code Red and Nimda worms also take
advantage of these attacks to compromise IIS web servers and propagate. However,
these Unicode characters can also appear in normal URLs and can cause false
positives.

Since many of the worms that use IIS Unicode attacks to propagate scan for more
machines to infect, internal machines setting off this alert could indicate an infected
machine. Nevertheless, we have to be careful to determine whether or not a machine is
actually infected, or if the alert it generated is due to a false positive. Unfortunately, the
only foolproof way to tell this is to look at the actual URL that set the alert off, which is
not shown in the logs.

The top 5 talkers for this alert are shown in the table below.

IP Address # alerts # unique destinations
MY.NET.242.250 424 58
MY.NET.97.172 180 4
MY.NET.236.66 176 11
MY.NET.207.34 172 13
MY.NET.112.204 157 3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
56

The machine located at MY.NET.242.250 has the most alerts here and is one of the top
10 talkers of all the internal machines. Many of the alerts it generates are directed
towards machines in the 211.233.0.0/16 networks, all located within Korea.

Given that there are so many alerts from this machine and that the destinations are
spread out over a number of different machines, this is probably not a false positive.
The fact that most of the destinations from MY.NET.242.250 are in Korea indicates that
an internal user is either attacking Korean web servers, or this machine is infected with
a worm that has chosen the 211.233.0.0/16 subnet to scan.

Correlations: Since the Code Red and Nimda worms were released, this signature is
commonly seen in log files. Tod Beardsley noted seeing this alert 26,048 times in his
analysis and attributed them to worm traffic. Additionally, there are numerous posts on
many mailing lists detailing attacks that set off this alert being used by the Code Red
and Nimda worms.

Rain Forest Puppy first explained the attacks detected by this alert in his advisory
entitled “IIS %c1%1c bug”.

Recommendations: Every one of the internal IP addresses generating this alert,
especially MY.NET.242.250, should be investigated further to see if they have been
infected with a worm or have been compromised due to an IIS Unicode attack. If these
machines are infected or have been compromised, their hard drives should be
formatted, Windows reloaded and patched with the latest Windows and IIS patches.
Additionally, tools like URLScan from Microsoft should be installed to help detect and
prevent future attacks. If these machines do not need to have IIS installed at all, it
should not even be loaded again.

Many routers and firewalls can now be configured to drop packets that contain URLs
that set off this alert. Any routers or firewalls that provide this functionality on the
university’s network should be configured to do so and alert an administrator when this
is done.

High port 65535 tcp - possible Red Worm –traffic
Total alerts reported: 5,838
External sources: 2,122 Unique external sources: 166
Internal sources: 3,716 Unique internal sources: 59

This alert is generated whenever traffic to or from TCP port 65535 is seen. Port 65535
is used by the Adore worm, originally called the Red Worm, to open a backdoor to the
infected system. The backdoor allows anyone connecting to it root access to the
infected system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
57

By watching for traffic coming from or going to TCP port 65535, IDS analysts can be
notified when a machine has been infected by the Adore worm and an attacker has
connected to the backdoor. However, port 65535 is also an ephemeral port, and can be
used in normal client/server connections. Therefore, careful attention must be paid to
the traffic setting off the alerts to be sure that it is truly being generated by the backdoor
from the worm and not normal traffic.

The top 5 internal machines that set off this alert are shown in the table below.

IP Address # alerts # unique
destinations

MY.NET.207.214 770 1
MY.NET.204.74 735 1
MY.NET.201.146 589 2
MY.NET.202.226 550 1
MY.NET.243.238 344 1

Four of the top five internal machines that set off this alert are also in the top 10 alert
talkers. It should be noted that these machines have a very small amount of unique
destinations and are always sending data to port 65535 on the external machine. This
means that these machines are either sending data on legitimate connections where
their computer has chosen 65535 as the ephemeral port or they are connecting to an
Adore backdoor on a remote machine. Unfortunately, since these machines did not
generate any more relevant alerts and the packet payload is not available, it is not
possible to tell.

Correlations: James Hoover details in his analysis one machine infected with the Adore
worm and one false positive alert.

J. Anthony Dell has written an excellent explanation on the Adore worm and how it
works. His paper is located at http://www.sans.org/rr/threats/mutation.php.

Recommendations: Any internal machine that traffic to port 65535 is seen travelling to
should be investigated to see if they are infected with the Adore worm.

While it may not be possible to contact the owners of every machine that is seen
contacting port 65535 externally, it should be feasible to contact the owners of the top
talkers in this category. From there, it can be determined if malicious activity was taking
place.

A stateful firewall should also be set up to block incoming and outgoing TCP
connections to port 65535. The firewall should be set up to only block connection
initiations to this port. This will prevent any internal or external users from connecting to
a machine infected with the worm.

spp_http_decode: CGI Null Byte attack detected

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
58

Total alerts reported: 3,481
External sources: 24 Unique external sources: 19
Internal sources: 3,457 Unique internal sources: 121

This alert is generated when the Snort preprocessor http_decode detects a NULL
Unicode byte in the URL. A Null Unicode byte is encoded as %00 in the URL and is
used in attacks against CGI perl scripts on web servers to trick the CGI script into
executing commands on the web server. However, this can be seen as a false positive
if a form or CGI script passes this character in the URL.

Of all the 3,457 alerts generated by internal sources, none of them are for source port
80. In other words, every one of the 121 unique internal sources are connecting to port
80 and possibly attacking external machines. The following is a table of the top 5
internal talkers for this alert.

IP Address # alerts # unique
external dest

Destination hosts

MY.NET.97.126 246 1 209.10.239.135
MY.NET.98.119 240 1 64.14.122.229
MY.NET.234.226 236 2 212.112.162.203,

212.112.171.37
MY.NET.97.67 211 1 216.241.219.14
MY.NET.237.82 187 1 209.10.239.135

As seen in the table above, each of the machines that set off this alert are going to only
one or two unique destinations. It would be unusual to see an actual attack using a Null
byte generate so many alerts to one host. Because of this, the alerts above indicate the
IP addresses have a form or script that is constantly getting used and contains %00 in
the URL.

In fact, one of the destinations that appears twice in the table above, 209.10.239.135, is
the destination for 1,635 of the alerts. This IP address, which is owned by iFilm - an
online streaming media website - is generating a false positive alert for every host that
visits it.

Correlations: In his analysis, Joe Ellis details the “CGI Null Byte attack detected” alert
and sees IP address 209.10.239.135 generating many alerts as well. As here, he
concludes it is probably generating false positives.

Recommendations: The “CGI Null Byte attack detected” alert can generate a lot of false
positives, depending on how much web traffic there is. Providing the “-cginull” option to
the http_decode configuration line in Snort’s configuration file can disable this alert.
This is recommended here as most, if not all, of the alerts are almost certainly false
positives.

TFTP - External UDP connection to internal tftp server
Total alerts reported: 1,493
External sources: 0 Unique external sources: 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
59

Internal sources: 1,493 Unique internal sources: 5

This alert is generated whenever a connection is made from an internal source at port
69 (TFTP) to an external server. This is a concern because TFTP has no authentication
and is used by many attackers and worms, including Code Red, to transfer files. A
connection from an internal server to an external machine is especially a concern as it
can mean the internal server has been compromised and files, such as rootkits, are
being transferred to it.

There are only 5 unique, internal sources that set off this alert. They are detailed in the
table below.

IP Address # alerts # Unique destinations
MY.NET.111.231 332 1
MY.NET.111.232 313 1
MY.NET.111.235 308 1
MY.NET.111.230 275 1
MY.NET.111.219 265 1

As the table shows, each of the hosts makes its connections for this alert to only 1
external destination. In fact, the external destination is the same for all hosts in this
alert! The destination, 192.168.0.253, is a non-routable IP address used only for
internal networks.

There could be a few things happening here. First, these machines could be spoofing
the destination IP address and sending data off into the ethernet. This would be easy to
do since UDP is connection-less and easier to spoof than TCP. However, there would
be no point in sending data out onto the network where it had no where to go. This
could possibly be used to flood the default gateway, since all of these hosts are on the
same subnet, but there is not enough traffic to do this.

Most likely, 192.168.0.253 is actually on the internal network somewhere. TFTP has
many legitimate uses for hosts, especially routers and diskless workstations. These
machines use TFTP to download their configuration files. The five hosts that are setting
off this alert are most likely routers or diskless workstations grabbing their configuration
file from 192.168.0.253 and generating this false positive while doing so.

Correlations: Joe Ellis discusses this signature in his alert and states that it should
never be allowed to internal servers from the Internet. However, Joe incorrectly
misinterprets this alert as being a side effect of an FTP bounce attack.

The five hosts generating this alert are not the source for any other alerts during the
time period analyzed from the university. Because of this, the alerts above are almost
certainly false positives.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
60

Recommendations: The hosts causing this alert should be located to verify that they
are using TFTP for a legitimate purpose. Additionally, the host at 192.168.0.253 should
be located to see if it is a valid server and what it is transferring to these hosts.

TFTP should never be allowed into or out of the internal network from external
networks. It is recommended that a stateful firewall be placed between the internal
network and any third-party networks (including the Internet) with a rule to block all
TFTP traffic. Additionally, this signature should be kept in the IDS rules to alert
whenever TFTP traffic from an external IP address is seen.

The signature should also be modified to not alert on TFTP traffic from 192.168.0.253 if
it is found to be a valid host.

Scan logs analysis

A total of 258,798 scans were detected and logged. The following table shows the
scans ordered by number of occurrence. The table also breaks down the number of
scans from internal and external sources.

Scans Internal Sources External Sources Scan Type
150,030 114,284 35,749 SYN
106,051 106,050 1 UDP

1,309 3 1,306 NULL
486 264 222 FIN
392 4 388 NOACK
212 2 210 INVALIDACK
149 0 149 VECNA
128 21 107 UNKNOWN
14 0 14 XMAS
11 0 11 NMAPID
8 0 8 SPAU
5 0 5 FULLXMAS
3 0 3 SYNFIN

Top 10 internal scan sources Top 10 external scan sources
Scans IP Address # Scans IP Address

111,366 MY.NET.223.78 5,380 66.134.226.37
20,414 MY.NET.70.176 2,521 80.14.80.158
14,995 MY.NET.87.44 2,422 64.156.31.70
6,185 MY.NET.98.31 1,824 63.78.224.166
5,377 MY.NET.97.136 1,673 210.178.9.1
5,349 MY.NET.242.174 1,517 206.167.165.56
4,198 MY.NET.97.110 1,503 213.73.142.100
3,799 MY.NET.97.67 1,254 61.242.90.229
3,058 MY.NET.98.150 720 218.155.10.85
2,794 MY.NET.97.35 702 12.239.36.3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
61

Top 10 ports scanned for
Scans Port Description

120,124 443 HTTPS over SSL
21,996 22,321
20,690 6,257 WinMX file sharing app
16,370 137 NetBIOS Name Service
12,551 7,674 iMQ SSL Tunnel
11,152 445 Win2k+ SMB
10,370 27,005 FlexLM (1-10)
7,468 80 HTTP
1,829 21 FTP
1,390 0

Interesting SYN Scans

SYN and UDP scans were detected the most of all of the scans and there are some
interesting trends within these scans.

SYN scans occur when an attacker sends a TCP packet with just the SYN flag set to a
specific port or ports on a victim. Per RFC 793 guidelines, the victim should respond
with a SYN/ACK packet if the service is available, or a RST/ACK if the service is not.
This helps an attacker quickly determine what hosts have a specific service running.

Most of the SYN scans were from internal sources. In fact, 111,366 of the 150,030 SYN
scans were from one source: MY.NET.223.78. This host scans a large amount of IP
addresses looking for any machine with TCP port 443 open. TCP port 443 is the default
port that HTTPS over SSL listens on. In July 2002, a number of remotely exploitable
vulnerabilities were found in the OpenSSL libraries that provide the SSL layer for many
applications, including the Apache web server. These vulnerabilities are detailed in
CERT advisory CA-2002-23.

In September 2002, a self-propagating worm was released which would exploit this
vulnerability in unpatched Apache servers. This worm is detailed in CERT Advisory CA-
2002-27. However, MY.NET.223.78 is probably not infected with this worm. According
to the CERT advisory, the worm will first scan for vulnerable systems on port 80, then
connect to port 443 when it finds one. Although MY.NET.223.78 scans for port 80, it
does so only minimally and the majority of its scans are for port 443.

Therefore, MY.NET.223.78 is most likely being used to scan for any servers that have
port 443 open. Attackers like to create lists of machines running specific services so
when an exploit is released in the future, they already have a list of machines that are
vulnerable. MY.NET.223.78 is probably being used to create one of these lists.

Interesting UDP Scans

UDP scans occur whenever an attacker is searching for services listening on UDP
ports. To find out if a machine has a UDP service open, the attacker will send a UDP
packet to the sought after port. If the attacker receives an ICMP Port Unreachable

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
62

message, they know the port is closed. If the attacker does not receive a response, as
none is necessarily required with a connectionless protocol such as UDP, they assume
the port is open.

This technique causes many false positives as many firewalls will drop UDP packets for
services they do not allow. When this occurs, the scanner will never receive a response
and assume the port is opened.

Many of the UDP scans detected were from internal hosts as well. The top ports
scanned for with UDP scans were ports 22321, 6257, 137 and 7674. Internal machines
scanned for all of these ports.

Port 22321

Scanning for UDP port 22321 was the highest UDP port scanned for, with 21,996
separate scans. I was not able to find what service listened on UDP port 22321, but the
Windows trojan backdoor Dobol listens on TCP port 22321.

Greg Schmidt posted to the Incidents mailing list in September 2002 that he saw many
scans from his university students for this port. The Dobol backdoor was suggested as
the reason for the scans, but it was pointed out that this uses TCP not UDP.
Unfortunately, searching the Internet did not turn up any more information about this.

Looking at the packets from the scan for this port, it is evident that packet crafting is
present. As shown below in one of the logged scans, the source port is the same as the
destination port. This rarely occurs with legitimate traffic and is a definite indication a
tool is creating the packet from scratch.

Feb 15 00:21:13 MY.NET.97.212:22321 -> 203.247.198.108:22321 UDP

Port 6257

The WinMX peer to peer file-sharing program uses UDP port 6257. Many peer to peer
file sharing programs work by talking to their peers to find the files they are looking for.
Because they connect to many different peers at once, the traffic can set off portscan
alerts. This is what is occurring here.

As shown below, much of the traffic to port 6257 is also coming from source port 6257.
While this usually indicates packet crafting, this is not the case here. A post to the
alt.music.mp3.winmx newsgroup by Dolphy on August 18, 2002 concerning what
firewall rules to open for WinMX to work indicates that he regularly sees traffic from
WinMX with reflexive ports.

Feb 15 04:00:33 MY.NET.70.176:6257 -> 68.7.35.15:6257 UDP

Port 137

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
63

UDP port 137 is used by the NetBT Name Service on Windows machines to resolve
NetBIOS names and provide information on the different services that are available on a
Windows machine, including what file shares are open. While this traffic is normal on
Windows networks, scans for port 137 mean an attacker or virus is looking for open
shares to attack.

Traffic for UDP port 137 will sometimes be seen with reflexive ports, as shown below.
This occurs when a user is running the Windows utility “nbtstat” with the “-a” or “-A”
option. Running “nbtstat” with these options will dump the remote machine’s NetBIOS
name table and display information about the computer and whether some services,
such as file shares, are present.

Feb 19 11:37:39 MY.NET.97.112:137 -> 208.86.211.151:137 UDP

In all of the UDP scans, only one source, MY.NET.97.112, shows this signature. The
scans from this machine occur sporadically over the time period analyzed, so this is
probably a user that is manually looking for open file shares on machines that they
come across.

The rest of the traffic comes from an ephemeral port, like the scan shown below. When
scans like this are seen, it usually means a virus has infected a computer and is
scanning for more open file shares to infect.

Feb 15 09:00:08 MY.NET.97.110:1030 -> 61.147.211.132:137 UDP

There are 57 internal servers logged scanning for UDP port 137. The top talker of this
group, MY.NET.97.110, logged 4,071 scans for port 137. Additionally, this host caused
a number of “IIS Unicode Attack detected” and “SMB Name Wildcard” alerts to be
generated. Therefore, like many of the other internal machines scanning for port 137, it
is infected with a worm.

Port 7674

Port 7674 is described as belonging to iMQ SSL Tunnel, a component of the iPlanet
Message Queue for Java. However, this is probably not what is being scanned for
here. When looking at the packets that are detected by the UDP scan, we see that, like
the scans for 22321, they have reflexive ports.

Feb 15 00:21:51 MY.NET.97.212:7674 -> 211.232.199.249:7674 UDP

In fact, it is interesting to note that every one of the machines that scanned for UDP port
22321, also scanned for UDP port 7674! This helps us infer that the same program is
scanning for both ports. We can probably also hypothesize what is going on.

As seen in previous detects, university networks are full of peer to peer file sharing
network traffic. What could be occurring here is that a new peer to peer file-sharing

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
64

program is using these two ports to transfer files or information. Since peer to peer
programs talk to each other to find out where files are, this would look like a scan, as
seen with the WinMX scans above.

Khan Rohail posted to the Security-Basics mailing list on February 13, 2002 that he saw
UDP traffic on ports 22321 and 7764 going to and coming from students systems in his
university. This correlates our theory that the same tool is scanning for both ports.

Additional Scans Detected

The rest of the scans detected work by manipulating the flags in TCP packets. In doing
so, the scanner can cause the victim machine to respond in a variety of ways to indicate
whether or port is open or not. Additionally, the scanner may be able to trick firewalls
into thinking the packet is part of a valid connection and allow the packet through.

The following table, taken from Joe Ellis’ GCIA analysis paper, shows what flags must
be set in order for these scans to be detected. Joe got this from Christof Voemel’s
paper.

VECNA One of the following: P, U, PU, FP, FU
NULL None of SFRPAU
UNKNOWN See spp_portscan.c source code
NOACK A flag is missing
INVALIDACK ACK set, not 'normal', no SPAU or FULLXMAS
FIN F flag
XMAS FPU flags
SPAU SPAU flags
SYNFIN SF flags
NMAPID SFPU flags
FULLXMAS SFRPAU flags

Since there are no written RFCs that explain how an IP stack should respond when it
receives these unusual combinations of flags, each operating system has done their
own thing. Because of this, fingerprint scanners are available which will send machines
odd packets in the hope that the program will be able to tell what operating system is
responding by the way it formats the packets.

However, false positives of these scans are also seen within the logs. For example, as
has already been shown, much of the traffic in the logs is from peer to peer file-sharing
programs. In the scans detected, 510 of the scan alerts were from peer to peer
programs.

Due to the way that some of the peer to peer programs communicate, the portscan
preprocessor may interpret them as portscans. Richard Bejtlich noted in a post to the
Intrusions mailing list that some Gnutella communications (port 6346) are interpreted by
Snort as Vecna scans. This is also seen in the scan logs from the university, as shown
below. Shane Huntley also noted this about KaZaa communications in his analyses as
well.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
65

Feb 15 07:15:00 148.64.29.21:1026 -> MY.NET.202.50:6346 VECNA ****P***

OOS packet analysis

The Out-Of-Spec (OOS) log files are packets detected that have unusual or illegal TCP
flag combinations. These include packets with the ACK flag missing when it is required
or the Type of Service reserved bits set.

The following is a list of the top 10 OOS talkers.

packets IP Address Reverse lookup
445 148.64.169.5 vsat-148-64-169-5.c005.g4.mrt.starband.net
368 148.63.130.172 vsat-148-63-130-172.c189.t7.mrt.starband.net
347 65.214.38.10 ghost.directhit.com
300 68.164.35.154 h-68-164-35-154.NYCMNY83.covad.net
203 213.98.16.183 213-98-16-183.uc.nombres.ttd.es
203 210.253.215.113 nttfad3-113.246.ne.jp
155 200.163.200.5 3-005.ctame700-1.telepar.net.br
149 61.114.222.241 h222241.ppp.asahi-net.or.jp
106 212.86.100.68 hunter.rbone.ci.net.ua
95 216.95.201.18 smtp8.jsuati.com

The following analysis of some OOS packets will look at three hosts, each logged as out
of spec for different reasons.

OOS packet #1 - 148.63.130.172
Number of unique destinations: 1
Number of unique destination ports: 1
Reason for OOS: No ACK flag–PSH flag by itself–No ACK number

This host is the second highest OOS talker with 368 packets logged. However, all of
the packets for this host are directed to one internal IP address on one port:
MY.NET.229.58 on port 3676. By looking at the data within the packet, we can see that
these packets are part of a conversation using KaZaa.

02/15-10:51:29.267008 148.63.130.172:1582 -> MY.NET.229.58:3676
TCP TTL:115 TOS:0x0 ID:48733 IpLen:20 DgmLen:440 DF
****P*** Seq: 0x408EB80A Ack: 0x0 Win: 0x2000 TcpLen: 20
47 45 54 20 2F 2E 68 61 73 68 3D 32 32 36 33 62 GET /.hash=2263b
39 63 32 31 65 37 65 30 62 38 34 39 34 35 32 61 9c21e7e0b849452a
38 32 64 38 66 34 62 61 65 64 66 63 62 65 38 38 82d8f4baedfcbe88
62 65 36 20 48 54 54 50 2F 31 2E 31 0D 0A 48 6F be6 HTTP/1.1..Ho
73 74 3A 20 31 33 30 2E 38 35 2E 32 32 39 2E 35 st: MY.NET.229.5
38 3A 33 36 37 36 0D 0A 55 73 65 72 41 67 65 6E 8:3676..UserAgen
74 3A 20 4B 61 7A 61 61 43 6C 69 65 6E 74 20 4E t: KazaaClient N
6F 76 20 20 33 20 32 30 30 32 20 32 30 3A 32 39 ov 3 2002 20:29
3A 30 33 0D 0A 58 2D 4B 61 7A 61 61 2D 55 73 65 :03..X-Kazaa-Use
72 6E 61 6D 65 3A 20 66 69 74 69 6E 64 72 67 6E rname: 123456789

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
66

0D 0A 58 2D 4B 61 7A 61 61 2D 4E 65 74 77 6F 72 ..X-Kazaa-Networ
6B 3A 20 4B 61 5A 61 41 0D 0A 58 2D 4B 61 7A 61 k: KaZaA..X-Kaza
… (cut for brevity)

This packet is marked as OOS because it has an illegal combination of flags: only the
PSH flag is set. During a TCP conversation, the ACK flag will always be set in order to
acknowledge the previous packet’s data. The only time the ACK flag is not set is during
the initial SYN packet - every time after that the ACK flag should always be set. We
know this is not part of an initial TCP connection because the SYN flag is not set.

Apparently, some peer to peer file-sharing programs will send data with only the PSH
flag set. In a paper entitled “Measuring and Analyzing the Characteristics of Napster
and Gnutella Hosts”, the authors provide a figure showing the exact TCP sequence that
Gnutella clients and hosts communicate (Howe 11). During a Gnutella Handshake and
Gnutella Packet-Pair Estimate, the peers will send TCP traffic with only the PSH flag
set. This causes packets to be marked as OOS and alerted as scans. This can be
seen in the logs as well because the traffic between these two hosts generated 30
Vecna scan alerts.

Unfortunately, peer to peer file sharing programs are commonly seen on networks today
and generate many false positives. In fact, out of the 7,473 OOS packets logged within
the time period analyzed, at least 1,810 packets were from peer to peer file-sharing
programs.

OOS Packet #2 - 65.214.38.10
Number of unique destinations: 33
Number of unique destination ports: 1
Reason for OOS: TCP flag byte reserved bits set

02/18-21:40:34.048027 65.214.38.10:39446 -> MY.NET.70.231:80
TCP TTL:46 TOS:0x0 ID:14199 IpLen:20 DgmLen:60 DF
12****S* Seq: 0xD11B5FA3 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 251947220 0 NOP WS: 0

The host here was marked as OOS because the reserved bits in the TCP flag byte (bits
6 and 7) were set. When TCP was first implemented, these bits were set to be reserved
and should always have been set to 0.

However, the IETF released RFC 2481, later superceded by RFC 3168, which allows
for the use of these bits for Explicit Congestion Notification (ECN). ECN provides a way
to reduce congestion on a network by having hosts reduce the amount of traffic sent.
As shown below, bit 7 is the Congestion Window Reduced bit (CWR) which notifies
senders to send less data. Bit 6 is known as the ECN echo flag (ECN) and is set when
congestion is experienced.

7 6 5 4 3 2 1 0
CWR ECN URG ACK PSH RST SYN FIN

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
67

When these bits are set, however, packets could be mistaken as packets coming from
Queso, an active OS fingerprintingprogram. Toby Miller verifies this in his paper “ECN
and it’s impact on Intrusion Detection” located on the SANS web site.The university’s
logs indicate this as well because 65.214.38.10 generates 32 Queso alerts as well.

However, 65.214.38.10 could still be an attacking machine. DShield’s database shows
a large number of attacks from this IP address directed at a number of different ports.
Considering that this host is part of the Ask Jeeves search engine network, we should
expect to never see initiated sessions from this host, as is the case here.

OOS Packet #3 - 24.165.17.183
Number of OOS packets: 10
Number of unique destinations: 1 Number of unique destination ports: 2
Reason for OOS: Illegal flag combinations

Like many of the other packets within the OOS files, host 24.165.17.183 talks to only
one destination, MY.NET.240.178, on a small number of ports. In the conversations
here, 24.165.17.183 talks to TCP ports 1191 and 6699. Port 6699 is used with Napster
and WinMX file sharing, but I could not find any known application that used port 1191.

These packets were marked as OOS because they each had illegal flag combinations in
each packet. An example packet is shown below.

02/16-00:24:00.082676 24.165.17.183:1191 -> MY.NET.240.178:6699
TCP TTL:111 TOS:0x0 ID:33959 IpLen:20 DgmLen:76 DF
****PRSF Seq: 0xD38215 Ack: 0x8D67 Win: 0x5018 TcpLen: 12
00 00 ED 4C B5 1B D9 62 01 2B 70 7E 66 B8 E3 54 ...L...b.+p~f..T
5E 2C 02 35 05 DD 8E 06 77 2E 7A 24 59 76 2F A1 ^,.5....w.z$Yv/.
E6 78 A3 97 .x..

In this packet, the PSH, RST, SYN and FIN flags are all set at the same time. This is an
illegal combination of flags and should never occur. The following table lists all of the
flags set in each of the OOS packets from 24.165.17.183.

Packet # CWR ECN URG ACK PSH RST SYN FIN
1 X X X X
2 X X X X
3
4
5 X X X X
6 X X X X X
7 X X X X X
8 X X X
9
10 X X X X X

In addition to the illegal flags, every packet had different and widely varying sequence
numbers, datagram lengths and IP Identification numbers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
68

Every one of the flag combinations in the packets above is illegal and will never occur in
normal traffic. Since these are illegal combinations of flags, they were never planned
for when the RFCs for IP and TCP were created. Therefore, every operating system
handles them in its own way by responding in different ways and setting different
options in the reply packets.

The attacking host here, 24.165.17.183, is using illegal flags to discover the operating
system of MY.NET.240.178. By sending packets with illegal flag combinations to a
remote system and analyzing the responses, one can determine the remote operating
system. This is known as active OS fingerprinting and a number of programs are
available that provide this functionality, including Queso and nmap.

Registration Information

The following is the registration information for the top 5 external alert talkers.

169.232.84.146
Reverse DNS: s84-146.resnet.ucla.edu.
WHOIS Information: whois.arin.net

University of California, Office of the President UCNET-BLK
(NET-169-228-0-0-1) 169.228.0.0 - 169.237.255.255
University of California, Los Angeles UCLANET4
(NET-169-232-0-0-1) 169.232.0.0 - 169.232.255.255

12.35.158.199
Reverse DNS: unknown
WHOIS Information: whois.arin.net

AT&T WorldNet Services ATT
(NET-12-0-0-0-1) 12.0.0.0 - 12.255.255.255
Mckenzie Tankline MCTAN656-158-192
(NET-12-35-158-192-1) 12.35.158.192 - 12.35.158.207

The next three hosts: 212.179.123.163, 212.179.88.96 and 212.179.105.210 all
produced the same contact information. For brevity, this is only listed once.

212.179.123.163
Revesre DNS: cablep-179-123-163.cablep.bezeqint.net.
WHOIS Information: whois.ripe.net

inetnum: 212.179.100.0 - 212.179.124.255
netname: CABLES-CONNECTION
descr: CABLES-CUSTOMERS-CONNECTION
country: IL
admin-c: YK76-RIPE tech-c:
BHT2-RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
69

status: ASSIGNED PA
remarks: please send ABUSE complains to abuse@bezeqint.net mnt-by:
AS8551-MNT mnt-lower: AS8551-MNT
notify: hostmaster@bezeqint.net
changed: hostmaster@bezeqint.net 20021029
source: RIPE

route: 212.179.64.0/18
descr: ISDN Net Ltd.
origin: AS8551
notify: hostmaster@bezeqint.net
mnt-by: AS8551-MNT
changed: hostmaster@bezeqint.net 20020618
source: RIPE

role: BEZEQINT HOSTMASTERS TEAM
address: bezeq-international
address: 40 hashacham
address: petach tikva 49170 Israel
phone: +972 1 800800110
fax-no: +972 3 9203033
e-mail: hostmaster@bezeqint.net
admin-c: YK76-RIPE
tech-c: MR916-RIPE
nic-hdl: BHT2-RIPE
remarks: Please Send Spam and Abuse ONLY to abuse@bezeqint.net
mnt-by: AS8551-MNT changed: hostmaster@bezeqint.net 20021029
changed: hostmaster@bezeqint.net 20030204
source: RIPE

person: Yuval Keinan
address: bezeq-international
address: 40 hashacham
address: petach tikva 49170 Israel
phone: +972 1 800800110
fax-no: +972 3 9203033
e-mail: hostmaster@bezeqint.net
mnt-by: AS8551-MNT
nic-hdl: YK76-RIPE
changed: hostmaster@bezeqint.net 20021215
changed: hostmaster@bezeqint.net 20030204
source: RIPE

212.179.88.96
Reverse DNS: bzq-179-88-96.cablep.bezeqint.net.
WHOIS Information: whois.ripe.net

inetnum: 212.179.80.0 - 212.179.94.255
netname: CABLES-CONNECTION
descr: CABLES-CUSTOMERS-CONNECTION
country: IL
admin-c: YK76-RIPE
tech-c: BHT2-RIPE
status: ASSIGNED PA
remarks: please send ABUSE complains to abuse@bezeqint.net

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
70

mnt-by: AS8551-MNT
mnt-lower: AS8551-MNT
notify: hostmaster@bezeqint.net
changed: hostmaster@bezeqint.net 20021029
source: RIPE

212.179.105.210
Reverse DNS: cablep-179-105-210.cablep.bezeqint.net.
WHOIS Information: whois.ripe.net

inetnum: 212.179.100.0 - 212.179.124.255
netname: CABLES-CONNECTION
descr: CABLES-CUSTOMERS-CONNECTION
country: IL
admin-c: YK76-RIPE tech-c:
BHT2-RIPE
status: ASSIGNED PA
remarks: please send ABUSE complains to abuse@bezeqint.net mnt-by:
AS8551-MNT mnt-lower: AS8551-MNT
notify: hostmaster@bezeqint.net
changed: hostmaster@bezeqint.net 20021029
source: RIPE

Additional Defensive Recommendations

While defensive recommendations are placed throughout this analysis, there are a few
recommendations that can be made which will help in overall detection.

Peer to peer (P2P) file sharing traffic is rampant within the university’s network. By
allowing P2P software to run, a number of issues arise. First, the P2P networks create
an unsecured, unprotected tunnel into the network where viruses, disguised as normal
files, can enter when unsuspecting users download them. Once these viruses get in
and infect the P2P client, they will propagate to other internal machines.

Additionally, many legal issues arise when users are allowed to download illegal files,
such as copyrighted MP3s. Furthermore, as seen in the analysis, the P2P traffic
creates many false positive alerts that waste an analyst’stime.

A stateful firewall should be put into place to block all incoming and outgoing
connections to the ports P2P software uses, such as TCP 1214 (KaZaa), TCP 6346
(Gnutella) and TCP 4662 (eDonkey). This is not fool proof, since users can change the
port the software listens on, but this will still block many connections. A policy banning
the use of all P2P software should also be drafted.

There is also a lot of activity on the Microsoft NetBIOS and file sharing ports (ports 135-
139, 445) from external machines. Traffic from these ports should never be allowed into
a network from external machines. Firewall rules should be put into place, which block
all traffic into and out of the internal network on these ports.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
71

Compromised Hosts

There is evidence a number of internal hosts have been compromised and are being
used as distributed denial of service (DDoS) agents. During the analysis of the
“Incomplete Packet Fragments Discarded” alert, it was found that a few internal sources
were generating this alert many times to a small number of external sources. Since this
alert can be generated when a denial of service attack takes place, chances are high
that these hosts have been compromised and are being used in a DDoS network.

Two of the top internal hosts for the alert above, MY.NET.211.6 and MY.NET.226.22,
are DoS’ing a number of external hosts. The following link graph shows which hosts the
two internal machines generated incomplete fragment alerts to.

Unfortunately, none of the alerts for the two internal machines give any indication of
who may have compromised them, so it must have taken place before the time period
analyzed.

However, another internal machine that produces a large number of incomplete
fragment alerts, MY.NET.132.42, does have alerts that show it being compromised.
The following link graph shows the sequence of alerts generated to and from this host.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
72

In the sequence of alerts above, MY.NET.132.42 is first connected to with a Null
Session by 195.178.205.29. While a Null Session can occur in normal network traffic,
you should never see one coming from an external machine. Next, 18 “Exploit x86
NOOP” alerts are generated from 66.79.65.234 followed by 11 of the same alerts from
35.10.81.123. These alerts indicate a buffer overflow exploit is being run against
MY.NET.132.42 and that there is a high chance that either, or more likely both, of the
attacking machines have compromised it. After the NOOP alerts occur, 1018
incomplete packet fragments are generated from MY.NET.132.42 to the four hosts
listed.

Each of the three internal machines described here is being used as DDoS zombies in
attacks against external machines. They should all be taken off-line and forensically
examined to find out how they were compromised. If the DDoS software can be
obtained from the forensic analysis, it should be analyzed and Snort signatures created
so other zombie hosts in the network can be detected.

Analysis Process

The analysis of the log files was performed on a Linux notebook using command line
tools and perl. To analyze the alert logs, some perl scripts were written to pull out
specific data, such as the alert name and source and destination IP addresses. Once
these were pulled out, UNIX command line tools including awk, grep, sort and uniq were
used to grab statistical information for analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
73

For the scan and OOS logs, the command line tools noted above were used. Since
these logs were in a more regular format, these tools provided quick and easy ways to
pull the data needed.

Throughout the entire analysis, running “sort | uniq –c | sort–nr” helped immensely
when trying to find the top talkers for a number of different reasons. For example,
whenever a specific alert was being analyzed, these commands would be used to pull
the top talkers or top destinations so any patterns could be detected. Without these
commands, the data would have had to be imported into a spreadsheet or database
and analysis done from that, which would have taken considerably longer.

References

Alexander, Bryce. “Intrusion Detection FAQ: Port 137 Scan.” 10 May 2000.
<http://www.sans.org/resources/idfaq/port_137.php>.

Baird, Scott. “Intrusion Detection In Depth GCIA Practical Assignment.”
<http://www.giac.org/practical/Scott_Baird_GCIA.doc>.

Beardsley, Tod. “Intrusion Detection and Analysis: Theory, Techniques, and Tools.”
<www.giac.org/practical/Tod_Beardsley_GCIA.doc>.

Bejtlich, Richard. “’venca’ history.” 6 Feb 2002. Incidents mailing list.
<http://www.incidents.org/archives/intrusions/msg03111.html>.

“CERT® Advisory CA-2002-23 Multiple Vulnerabilities In OpenSSL.” CERT. 11 Oct
2002. <http://www.cert.org/advisories/CA-2002-23.html>.

“CERT® Advisory CA-2002-27 Apache/mod_ssl Worm.” CERT. 11 Oct 2002.
<http://www.cert.org/advisories/CA-2002-27.html>.

Coyle, Brian. “GCIA Practical V3.1.“
<http://www.giac.org/practical/GCIA/Brian_Coyle_GCIA.pdf>.

Dell, J. Anthony. “Adore Worm– Another Mutation.” 6 April 2001.
<http://www.sans.org/rr/threats/mutation.php>.

Dolphy. “Re: Winmx *source* port 6257 - Valid?” Online posting. 18 Aug 2002.
<news:alt.music.mp3.winmx>.

Ellis, Joe. “GCIA Practical Assignment, v3.0.”
<http://www.giac.org/practical/Joe_Ellis_GCIA.doc>.

“Exploitation of Unprotected Windows Networking Shares.” CERT. 7 April 2000.
<http://www.cert.org/incident_notes/IN-2000-02.html>.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
74

Farrell, James. “IP Fragmentation Attacks on Checkpoint Firewalls.” 3 April 2001.
<http://www.sans.org/rr/firewall/frag_attacks.php>.

Hoover, James. “SANS GCIA Practical.”
<http://www.giac.org/practical/James_Hoover_GCIA.doc>.

Howe, Anthony J, and Dr. Mantis Cheng. “Napster and Gnutella: a Comparison of two
Popular Peer-to-Peer Protocols”. 28 Feb 2002.
<www.cs.washington.edu/homes/tzoompy/publications/
mm_systems_journal/2002/mm.pdf>.

Jenkinson, John. “GCIA Practical.”
<http://www.giac.org/practical/John_Jenkinson_GCIA.doc>.

McDonnell, Michael. “Intrusion Detection In Depth GCIA Practical Assignment.”
<http://www.giac.org/practical/Michael_McDonnell_GCIA.doc>.

Miller, Toby. “ECN and it’s impact on Intrusion Detection.”
<http://www.sans.org/y2k/ecn.htm>.

Rain Forest Puppy. “IIS %c1%1c bug.” 28 Feb 2001.
<http://www.wiretrip.net/rfp/p/doc.asp/i2/d57.htm>.

Ramakrishnan, K. “RFC 2481: A Proposal to add Explicit Congestion Notification (ECN)
to IP.” Jan 1999. <http://www.ietf.org/rfc/rfc2481.txt?number=2841>.

Rohail, Khan. “UDP Traffic on port 22321 AND 7674.” 13 Feb 2003. Security-Basics
mailing list. <http://www.securityfocus.com/archive/105/311770>.

“rpc-32771 (330): RPC bind service on improper port.” ISS X-Force Database. 4 June
1997. <http://www.iss.net/security_center/static/330.php>.

Schmidt, Greg. “UDP port 22321.” 9 Sept 2002. Incidents mailing list. 2 April 2003.
<http://cert.uni-stuttgart.de/archive/incidents/2002/09/msg00054.html>.

Spitzner, Lance. “FW-1 IP Fragmentation Vulnerability.” BugTraq. 5 June 2000.
<http://www.securityfocus.com/archive/1/63478>.

Steward, David. “GCIA Practical Assignment.”
<http://www.giac.org/practical/david_stewart_gcia.doc>.

Voemel, Christof. “Christof Voemel SANS Intrusion Detection Practical.”
<http://www.giac.org/practical/Christof_Voemel_GCIA.txt>.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
75

Worman, Mike. “Intrusion Detection Practical Assignment.”
<http://www.giac.org/GCIA/Mike_Worman_GCIA.doc>.

