
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Intrusion Detection and Analysis

Joona Airamo
GIAC GCIA Practical v3.3

Submitted 25 April 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents

Table of Contents.. 2
Assignment 1– White Paper “Comparison of Firewalls, IDS and IPS”............ 3

Abstract ... 3
Security Layers .. 3
Gateway Firewall ... 3
NIDS.. 4
Intrusion Prevention System (IPS)... 5
False Positives .. 5
Correlation ... 6
Conclusions ... 6
References .. 7

Assignment 2–Network Detects .. 8
Detect #1 ... 8
Detect #2 ... 20
Detect #3 ... 26

Assignment 3 - Analyze This... 32
Files used in the analysis... 32
Executive Summary and Defensive Recommendations 32
Alert Summary... 33
Most Frequent Alerts (over 5.000 during five days) 35
Other Interesting Alerts.. 39
Top Talkers.. 42
Peer-to-Peer Users.. 44
Link Graph ... 45
Selected Five External Hosts... 49
Analysis Process ... 50
References .. 52

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

Assignment 1– White Paper “Comparison of
Firewalls, IDS and IPS”

Abstract

This paper studies the roles of three security devices: the gateway firewall,
the network intrusion detection system and the intrusion prevention system.
The strengths and weaknesses are listed for all of them. The needs of
detection are reasoned by showing that all attacks and anomalies cannot be
prevented with full accuracy. In the conclusion there is a summary of the
differentiating factors of these devices.

Security Layers

A good security consists of layers of prevention, detection and reactions.
These layers provide defense in depth–an important attribute for the
defender.

The preventing methods include all devices, configurations, processes and
policies that together decrease the probability of certain threats to occur, as
well as minimize the potential damage these threats may cause. The
prevention is an essential and foremost protection method, since it stops the
bad things before they happen. Almost every component in a computer
network may have a role in preventing incidents to occur; in this paper we
focus on gateway firewall devices.

The detection means noticing events that violate the organization’s security
policy. Here we focus on network based intrusion detection systems that have
the ability to distinguish the normal, legitimate traffic and the traffic that is
suspicious.

Finally, the reactions contain pre-planned processes, automatic or manual,
that have the purpose to get rid of intruders or other problems and to return
the systems back to the normal state as fast and reliably as possible.

Gateway Firewall

A gateway firewall is able to monitor only the traffic that goes through the
firewall. Therefore the firewall must be located in the network in such a way
that any two network devices whose communication must be regulated can
send packets to each other only through the firewall. In practice, the firewalls
are located between the network segments to monitor all traffic that travel
from one segment to another one. A limitation of this approach is that the
firewall is unable to restrict the communication within a network segment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

Because the firewall operates in an inline mode, it has full control over the
traffic that attempts to travel through the firewall. The firewall stops every
packet for inspection and lets the packet to continue only after the inspection
has been done with an approving result. If the firewall breaks down or is
overloaded, it fails to the safe side: no unauthorized traffic can pass the
firewall.

The firewall bases its matching criteria on values that are located in the
network and transport layer headers of the packet and typically omits the
application payload validation. The firewall is good at preventing connections
to non-allowed services, but fails to detect attacks within a connection that it
allows to pass.

NIDS

The NIDS listens a network segment and monitors all traffic that travels there.
Therefore it sees more traffic than a firewall does–not only the packets that
arrive or leave the segment but also all the traffic between the hosts in the
single segment. Depending on the needs to monitor the traffic between hosts
within a single segment–and also on the size of the segments–it may be
more cost-effective to utilize a NIDS than to try to isolate the hosts so that
they would be able to communicate with each other only through a firewall.

Since the NIDS is not a part of the network path between the communicating
devices, it is unable to prevent the offending packets to pass; it can only
notice that this is happening. Marcus Ranum [Ranum] wrote an excellent
article how frustrating this can be. He also pointed out that since the network
administrator always knows his network better than an attacker, he can use
this advantage to monitor for unexpected network events to catch the
attacker’s moves.

There are several reactive functions that have been implemented in many
NIDS. These include sending terminating packets, such as TCP Reset, to kill
the violating connections or instructing a firewall to prevent further packets
from the violating source. Larsen and Haile [Larsen] show several examples
where this approach works only partially, or not at all. The NIDS is well suited
for detecting incidents and raising alerts. The preventive abilities are limited,
though, since at the time when the NIDS at the earliest can perform a reactive
action, the damage may have already occurred.

The NIDS usually performs a more thorough investigation for network traffic
than a typical firewall. The firewall’s decision is most often based on the
information in the network packet’s header fields; the NIDS typically looks at
the payload part of the packet. A very common rule for a NIDS is to search for
a pre-defined string of bytes in the payload that would indicate a certain type
of incident of taking place. Another approach is to validate the traffic against
some well-defined specification in order to find anomalies. Shankar and
Paxson [Shankar] developed an interesting method for an IDS to learn the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

network characteristics to better distinguish between the malicious traffic and
non-harming garbage.

Intrusion Prevention System (IPS)

The idea of the intrusion preventing system is an interesting one. By
combining the best parts of the firewall and the NIDS, the IPS is not only able
to detect the attacks, but also to prevent them to pass to their destinations.

The IPS works in inline mode, just like the firewall. Therefore the traffic cannot
bypass the IPS and every packet is subject to the inspection. The inline
topology also gives the same restrictions to the IPS than the firewall has: only
the traffic that goes through the IPS can be regulated. This means that if the
IPS is monitoring the traffic between two network segments, the
communication between hosts within a single segment is not restricted by the
IPS.

While the firewall typically looks only the header information in the packets,
the IPS inspects also the payload. The IPS and NIDS have identical
techniques to detect incidents at the time when they are attempted. The
difference comes from the fact that the IPS is better equipped to prevent the
violating traffic to pass than the NIDS is.

There is one more advantage of implementing IPS instead of NIDS. Horizon
[horizon] describes many tricks that an attacker can use to evade an intrusion
detection system. All of them work because they make the NIDS to interpret
the traffic differently than the target of the attack. Many of these techniques,
such as fragmentation and TCP out-of-order-segments can be better handled
by the IPS, since it can force the packets to wait until all relevant information
has been arrived for deciding whether the traffic may be passed or denied.

False Positives

One of the biggest challenges in the art of intrusion detection is to minimize
the occurrence of false alarms. To do that, the detection mechanisms of
single incidents should be as explicit as possible. However, this leads to a
situation where a detection signature for a single attack fails to detect a small
variation of the same attack. On the other hand, if the signature is loose
enough to catch multiple attack variations, the probability to raise false alarms
increase.

It is not even possible to make an explicit detection signature for every
interesting network activity. If the desire is to detect the leakage of company
secrets by catching keywords from SMTP or IRC traffic, for example, the false
positive rate can be pretty high.

The challenge of reducing the false positives applies to both IPS and NIDS,
since they both try to detect incidents from the traffic. There is a fundamental

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

difference, however, of the effect of false positives on these systems. If the
NIDS reports a false positive, it burdens the administrator of the NIDS, but the
operational traffic that caused the alarm is not affected. If the IPS judges
wrongly, the operational traffic stops until the administrator inspects the
situation manually and fixes the IPS rule base. For this reason the IPS should
only run rules that have proved to generate false alarms rarely or not at all.

Correlation

The role of the intrusion detection system is not only to catch immediate,
single violating packets, but also to look at the big picture. A single network
packet may look innocent when alone, but together with other pieces of
information may turn out to be an essential part of an attack. The pieces that
the IDS correlates may come from multiple sources and at different times.

The correlation is never done in real-time. It should rather be understood as a
background process that monitors the logs that other components have
produced. The events that generate a correlation are gone long before any
preventive mechanism can learn that these events should have been stopped.

Conclusions

The three analyzed network security devices–the gateway firewall, the NIDS
and the IPS–have separate roles, functions and strengths. The differentiating
factors between the devices are:

 NIDS operates in stealth mode and is able to monitor all traffic within a
single segment; IPS and firewall operate in inline mode between two or
more network segments

 The inline operating mode gives the firewall and IPS an advantage
over the IPS in preventing the unwanted traffic to pass the security
device

 Similarly, because of the operating mode, the devices behave
differently when overloaded or if broken. The firewall and IPS disturb
the legitimate traffic but do not let the unwanted traffic to pass; the
NIDS passes (some) traffic without inspecting it.

 Firewall inspects only the IP and transport headers; NIDS and IPS look
at the packet payloads

 Because the NIDS and IPS have a lot more complex task interpreting
the traffic than the firewall, they have much greater risk to have a bug
in the interpreting code causing a vulnerability in the product. There
have been many examples of vulnerabilities in the traffic interpreting
programs, such as the bug in Snort’s stream4 preprocessor [snort-
stream4].

These factors are also summarized in the table below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

Gateway Firewall NIDS IPS
IP header check Yes Yes Yes
Transport header
check

Yes Yes Yes

Payload check No Yes Yes
Inline Yes No Yes
Preventive
capabilities

Yes Limited Yes

When overloaded or
broken

Drops traffic Does not inspect (all)
data

Drops traffic

Effect of false
positives

N/A May stop legitimate
traffic

Stops legitimate
traffic

Stealth mode No Yes No
Prone to have
vulnerabilities

Less likely than NIDS
or IPS

Yes Yes

The study here has focused on their primary roles of the firewall, NIDS and
IPS. If the functions of these devices are combined to a single box, the
combined solution also combines the strengths and weaknesses of the
original functions. If, for instance, a firewall and IPS functions were
implemented to a single device, it would gain the advantages of the IPS to be
able to inspect also the packet payloads. However, at the same time it would
also inherit the potential vulnerabilities of the more complex interpreting
functions than the firewall alone would have had.

References

[horizon] horizon, “Defeating Sniffers and Intrusion Detection
Systems”, Phrack Magazine issue 54, 25 December
1998

[Larsen] Larsen, Jason & Haile, Jed, “Understanding IDS
Active Response Mechanisms”, URL:
http://online.securityfocus.com/infocus/1540, 29
January 2002

[Ranum] Ranum, Marcus, “Intrusion Detection: Challenges and
Myths”, URL: http://secinf.net/info/ids/ids_mythe.html,
16 October 2002

[Shankar] Shankar, Umesh & Paxson, Vern, “Active Mapping:
Resisting NIDS Evasion Without Altering Traffic”,
URL:
http://www.cs.berkeley.edu/~ushankar/research/active
/activemap.pdf, 6 November 2002

[snort-stream4] Snort developing team, “Snort Advisory: Integer
Overflow in Stream4”, URL:
http://www.snort.org/advisories/snort-2003-04-16-
1.txt, 16 April 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

Assignment 2–Network Detects

Detect #1

Anomaly in TCP sequence numbers

1. Source of Trace

The network traffic analysed in this paper was taken from incidents.org’s
repository of Snort binary log at <http://www.incidents.org/logs/Raw>. The log
file used is 2002.9.30.

According to the README file in the same directory with the log files, all
packets in the log files were captured by a Snort instance running in binary
logging mode. All IP addresses of the protected network have been changed
and the IP and TCP checksums have been modified to have incorrect values.

I started my traffic analysis by looking at the MAC addresses. There seemed
to be only two unique MAC addresses: 00:00:0c:04:b2:33 and
00:03:e3:d9:26:c0. According to [mac_find], both of these addresses belong
to Cisco Systems, Inc. Every frame in the source file had one of these
addresses as source address and the other one as destination address. I am
assuming that the Snort instance that captured the packets was sitting
between two Cisco devices and that there were no other (active) devices in
the same segment.

Next I looked at the IP addresses. The frames that had the source MAC
address of 00:00:0c:04:b2:33 all shared the same source IP address of
207.166.87.157. The frames coming from 00:03:e3:d9:26:c0 had a wider
variety of IP addresses as the destination address. The smallest of them was
207.166.10.149; the largest was 207.166.252.18. I assume that the whole B-
class size network 207.166.0.0/16 is routed through the 00:00:0c:04:b2:33–
address. The IP addresses behind the 00:03:e3:d9:26:c0–address seemed to
vary between 4.x.x.x and 217.x.x.x, however not in 207.166.x.x address
space.

My conclusion for the network topology thus is the following:

Internet -- Cisco:c0 ----- Cisco:33 -- 207.166.0.0/16
|

Snort

I found that at least Andre Cormier had drawn similar conclusion in his
analysis. Andre’s paper can be found here:

http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00121.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

Snort seems to have captured traffic only from a single source IP address
leaving the protected network: 207.166.87.157. However, there are several
indications that more than one host is sharing the same IP address. The
indications that make me to believe this are:

- Multiple TTL values exist in the packets coming from 207.166.87.157. The
values are: 123,124,125 and 240.

- As correlation to the TTL values, the IP ID number is zero in all packets that
have TTL 240 and non-zero in others.

- Also as correlation to the TTL values, the Type of Service is always 0x00 for
TTL values 123 and 125; always 0x10 for TTL 240 and varies a lot for TTL
124.

- Also as correlation to the TTL values, the DF flag is set in every packet that
have TTL values of 123, 124 or 125; the DF flag is zero in packets with TTL
240.

I can think of two different possibilities why multiple hosts would seem to
share the same IP address:

a) There is a device between Snort and 207.166.x.x network (maybe
Cisco:33) that does dynamic network address translation hiding all outgoing
traffic behind a single IP address.

b) The README file in the log repository directory says that the IP addresses
of the protected network have been modified. It is possible that this
modification was done in such a way that all the addresses in the protected
network were replaced with a single address.

I do not believe that there would be a proxy device between Snort and
207.166.x.x network. In that case all TTL values should be identical at the
place of observation. I am assuming that the case a) (dynamic NAT) is the
reason for this traffic behaviour. However, let us keep in mind the possibility
for case b) also during our further analysis.

An additional notice of the network is that some of the packets have long total
packet lengths. The biggest packet has total length of 6772 bytes -- well over
the ethernet MTU value of 1500. None of the captured packet payloads
exceeds 1500 bytes, though, which indicates that the snaplen parameter was
set to 1500 bytes when Snort was running. All packets over 1500 bytes are
coming from 207.166.x.x network and none of them are fragmented. I assume
that the 207.166.x.x network and the network that Snort is listening have MTU
values greater than 1500 and they are therefore something else than
ethernet. [Stevens, page 30] lists typical MTU values for different networks.
My guess is that the detects have been captured from a 16 Mbs token ring–
network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

2. Detect was generated by

Every single packet in the raw log file has been captured by Snort intrusion
detection system. I am not aware of the version of neither the Snort nor the
rulebase used.

It is important to remember that there have been a lot of packets in the
network that have not been captured to the log. Therefore a missing packet
does not proof anything else than it did not match the Snort rulebase that was
used.

I installed Snort version 1.9.1 and downloaded the default rulebase from
www.snort.org. I run the Snort against the log file and got multiple reports of
all kind of anomalies. The anomaly I am presenting here, however, was not
detected by the Snort version and configuration I had. I hate to say but I
detected it purely accidentally when browsing through the log file with Snort,
tcpdump and Ethereal.

I noticed that there are cases where a sending host uses the same TCP
sequence number in multiple packets within a single TCP connection–- but
has different payload in them.

An example of this detect is given here as a tcpdump trace:

$ /usr/sbin/tcpdump –nexSr 2002.9.30 ‘tcp[4:4] = 0x03967f19’

18:08:10.446507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 2974:
207.166.87.157.62514 > 216.136.232.84.http: P 60194585:60197505(2920)
ack 25114938 win 64240 [tos 0x10]

4510 0b90 0000 0000 f006 0000 cfa6 579d
d888 e854 f432 0050 0396 7f19 017f 393a
5018 faf0 0000 0000 696a 517f 8057 8788
4175 7556 8a8a 4276 764f 8383 527f 8353
<snip>

18:08:10.536507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 1514:
207.166.87.157.62514 > 216.136.232.84.http: P 60194585:60196045(1460)
ack 25116398 win 65535 [tos 0x10]

4510 05dc 0000 0000 f006 0000 cfa6 579d
d888 e854 f432 0050 0396 7f19 017f 3eee
5018 ffff 0000 0000 1c1c 1a1e 1f24 2829
2423 252c 2729 2b25 2629 271f 252d 2222
<snip>

18:08:11.746507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 2406:
207.166.87.157.62514 > 216.136.232.84.http: P 60194585:60196937(2352)
ack 25169362 win 64808 [tos 0x10]

4510 0958 0000 0000 f006 0000 cfa6 579d
d888 e854 f432 0050 0396 7f19 0180 0dd2
5018 fd28 0000 0000 577d 414c 6839 4158
323d 5928 3353 232e 4e25 3050 2831 5221
<snip>

18:08:12.016507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 2406:
207.166.87.157.62514 > 216.136.232.84.http: P 60194585:60196937(2352)
ack 25185746 win 64808 [tos 0x10]

4510 0958 0000 0000 f006 0000 cfa6 579d
d888 e854 f432 0050 0396 7f19 0180 4dd2
5018 fd28 0000 0000 2125 2a15 1914 1a18

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

1022 1c1d 1b18 1419 1612 1613 0f16 130f
<snip>

18:08:12.156507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 2406:
207.166.87.157.62514 > 216.136.232.84.http: P 60194585:60196937(2352)
ack 25193938 win 64808 [tos 0x10]

4510 0958 0000 0000 f006 0000 cfa6 579d
d888 e854 f432 0050 0396 7f19 0180 6dd2
5018 fd28 0000 0000 6d49 6b6a 496d 6730
554b 2b51 453e 6b5b 295b 5129 5465 9fb4
<snip>

18:08:12.266507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 2974:
207.166.87.157.62514 > 216.136.232.84.http: P 60194585:60197505(2920)
ack 25196858 win 64240 [tos 0x10]

4510 0b90 0000 0000 f006 0000 cfa6 579d
d888 e854 f432 0050 0396 7f19 0180 793a
5018 faf0 0000 0000 522b 6053 3469 5c3c
7164 467b 6e2e 6856 2666 5022 664d 2568
<snip>

18:08:12.436507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 2406:
207.166.87.157.62514 > 216.136.232.84.http: P 60194585:60196937(2352)
ack 25210322 win 64808 [tos 0x10]

4510 0958 0000 0000 f006 0000 cfa6 579d
d888 e854 f432 0050 0396 7f19 0180 add2
5018 fd28 0000 0000 7264 5085 7857 897d
4779 6d31 6357 4d7c 735b 7a77 5d72 7061
<snip>

The following tcpdump flags were used:

-n to avoid name resolution
-e to show link layer addresses
-x to show packets in hexadecimal dump
-S to show the actual sequence numbers
-r to read the traffic from a file

The expression ‘tcp[4:4] = 0x03967f19’ tells tcpdump to show only those
packets that have TCP sequence number of 60194585 (0x03967f19 in hex).
There appeared to be seven packets sharing this sequence number.

All packets have source IP address of 207.166.87.157 and destination IP of
216.136.232.84. So they are coming from the protected network and leaving
for the Internet. The MAC addresses confirm this assumption. All of them
were sent within a short period of time (within two seconds) and they all share
the same source and destination TCP ports. Therefore, by definition, they
belong to a single TCP connection.

[RFC 793] is the standard for TCP protocol. According to it there is only a
single case when a sending host should keep the same sequence number in
multiple packets: when retransmitting data that was not correctly delivered in
the first try. The TCP data payload -- or at least the overlapping part of it if the
packets are of different length -- must be identical in the retransmitted packet
than in the original one.

All of the detected packets clearly have different payloads. The first two bytes
of the payload in the seven packets are:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

0x696a
0x1c1c
0x577d
0x2125
0x6d49
0x522b
0x7264

None of them indicates of TCP retransmitting. This anomaly got my attention
and I decided to give it further analysis.

3. Probability the source address was spoofed

The anomalies in the detect are particularly alarming, since they appear to
come from the protected network. I am assuming that the network topology is
the one described above. I am not sure if the network has any anti-spoofing
mechanism in place but the IP/MAC address correlation gives pretty strong
evidence that no spoofing is happening.

It may be possible that the source IP address is not the one that the sending
host holds, but at least the packets are coming from the right direction. Since I
assume that there is a device doing dynamic NAT between the 207.166.x.x
network and the Snort instance capturing the traffic, my guess is that the
source IP is modified by the NAT device but not necessarily spoofed by an
attacker.

4. Description of attack

I was unable to find any known attack that would cause this type of TCP
sequence number anomaly.

Every host controls the TCP sequence numbers it sends independently,
without any influence from the other hosts in the network. Therefore there
must be something weird in the sending host. Furthermore, since the sender
of these crafted packets seems to lie in the protected network, the attention
the detect deserves is high.

I’ll present some theories why the anomaly might exist in the correlations
section below.

5. Attack mechanism

Let us have a closer look at the packets. All of them have the source IP
address of 207.166.87.157 and source TCP port of 62514. They all have
destination IP of 216.136.232.84 and destination TCP port of 80. Even though
the destination port indicates http traffic, the payload is not pure ASCII, since
there are bytes having greater value than 0x7f. The amount of data sent from

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

the client to the server is pretty big: 16708 bytes in these seven packets
alone. Unfortunately the http protocol is used also for many other purposes
than requesting html documents. The data in the packets looks pretty random,
which indicates that the http connection is used to tunnel some unknown
protocol. This alone is not necessarily a sign of malicious traffic, just an
observation that we do not know for sure what is going on here. The
destination address resolves to a name ‘f214.mail.yahoo.com’ that might
indicate the use of some sort of web mail.

All of the packets have IP ID number zero. According to [RFC 791] the ID
values “must be unique for that source-destination pair and protocol for the
time the datagram will be active in the internet system.” The ID numbers are
easy to spoof, but I am not aware of any way to force a remote host to stay in
one ID number. Thus the sender must have selected the ID numbers. This is
also an indicator that says that there is something strange in the sending host.

All of the packets have a common TTL value of 240, a common TOS of 0x10
(minimize delay), none of them are fragmented, none of them have the DF
flag set, none of them have IP or TCP options. They all have TCP flags PSH
and ACK set and the TCP window size is 64k or thereabouts in every packet.
These are all valid values, even though I would have assumed to see the DF
flag set since the IP IDs used do not really support fragmentation.

One of the packets has total length of 1500 bytes; all others are well over
2000 bytes long.

6. Correlations

I decided to run another test with tcpdump against the same log file:

$ /usr/sbin/tcpdump –nexSr 2002.9.30 ‘host 207.166.87.157 and host
216.136.232.84 and tcp port 62514 and tcp port 80 and not tcp[4:4] =
0x03967f19'

18:08:10.236507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 946:
207.166.87.157.62514 > 216.136.232.84.http: P 25111126:25112018(892)
ack 60194585 win 8760 (DF)

4500 03a4 9782 4000 7c06 c5fa cfa6 579d
d888 e854 f432 0050 017f 2a56 0396 7f19
5018 2238 14c5 0000 8b57 7e87 4c73 7c6d
97a4 4c75 8471 9aa9 6f98 a76b 92a0 4f76
<snip>

18:08:11.486507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 ip 946:
207.166.87.157.62514 > 216.136.232.84.http: P 25160278:25161170(892)
ack 60194585 win 8760 (DF)

4500 03a4 c082 4000 7c06 9cfa cfa6 579d
d888 e854 f432 0050 017f ea56 0396 7f19
5018 2238 613f 0000 ab69 91a4 6488 986d
91a1 5276 865e 8292 547a 8652 7884 6288
<snip>

The flags used in tcpdump program are the same than before. The expression
tells the tcpdump to show all TCP packets that belong to the same TCP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

connection than the seven previous packets but that do not have the same
sequence number of 60194585 (0x03967f19 in hex).

As shown above, two new packets were found. These packets have been
captured approximately at the same time with the seven previous packets and
they have the same IP numbers and TCP ports. Thus they clearly belong to
the same TCP connection. What is really strange is that the new packets have
the same acknowledge numbers than the previous packets had as sequence
numbers -- even though the packets are going to the same direction as the
previous ones.

There are also other differences between these two packets and the seven
packets analysed before. These two packets have TTL value of 124 (the
seven packets have 240); the IP ID number is random, like it should (it is zero
in all seven); the DF flag is set (it is unset in the previous packets); TOS is
zero (0x10 in previous); TCP window size is 8760 (approximately 64k in
previous).

These two new packets differ so much from the seven previous ones that it is
hard to believe that they have been sent by the same host. And still they
seem to belong to the same TCP connection! This is odd.

I cannot think of any stimulus that would cause a response like this. Therefore
I have to assume that this anomaly is created by a host in the protected
network, unless I can think of any other means why TCP could behave like
this.

If a host repeats the same TCP sequence number while sending new data,
the receiver is unable to keep track of the data. I suppose this could be a
clever way to confuse firewalls and intrusion detection systems, but it requires
a specifically crafted TCP/IP stack both on sending and receiving hosts. If this
is the case, we really need to investigate the host in the protected network
that is partaking this activity. This would also mean that f214.mail.yahoo.com
(the other end of this TCP connection) has been compromised.

Another possibility is that the detect is corrupted somehow. Let us sort all nine
packets by the time and list their sequence and acknowledge numbers and
the packet total lengths:

Frame Seq Ack Packet_length
1 25111126 60194585 932
2 60194585 25114938 2960
3 60194585 25116398 1500
4 25160278 60194585 932
5 60194585 25169362 2392
6 60194585 25185746 2392
7 60194585 25193938 2392
8 60194585 25196858 2960
9 60194585 25210322 2392

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

Let us consider a possibility that the number 60194585 actually is or should
be the acknowledge number for all of these packets. The sequence number
would then grow from 25111126 to 25210322. That would indicate that
starting from the frame #1 a total of 99.196 bytes would have been send by
the client just prior the frame #9 was sent. For some unknown reason seven
of these packets have their sequence and acknowledge numbers switched.

I browsed through the whole log file and found 11 TCP connections that had
the same anomaly. The sequence numbers that repeated in multiple packets
in a single connection even though the payload changed are the following:

60194585 (0x03967f19 in hex)
776154499 (0x2e432d83 in hex)
1260679045 (0x4b246f85 in hex)
1374708739 (0x51f06403 in hex)
1616916512 (0x60603020 in hex)
2142566233 (0x7fb4f759 in hex)
2659228771 (0x9e809c63 in hex)
3410273829 (0xcb44a625 in hex)
3513873551 (0xd171748f in hex)
3523143865 (0xd1fee8b9 in hex)
4073505461 (0xf2ccc2b5 in hex)

I noticed that in every case the packets that had the sequence number
anomaly had the IP total length greater or equal than 1500 bytes. For every
such connection there are also packets that had the total length smaller than
1500 bytes and which do not have the sequence number anomaly (i.e. the
sequence and acknowledge numbers are in opposite order than in the long
packets).

These facts tempt me to think that maybe every packet over 1500 bytes is
corrupted somehow. And what if also the total length value is corrupted? Who
knows if the network MTU is 1500 after all!

There are 835 packets in the log that have the total length value over 1500
bytes. The total packet count in the log is 15021. Thus 5,56% of the packets
are big and potentially corrupted.

This number correlates nicely to another piece of information I have
experienced before. Some network interface card drivers I have used on
Linux may corrupt ethernet traffic up to 5% of the packets they handle.
Normally this can be verified by looking at the checksum values --
unfortunately this time the checksums have been deliberately modified and
therefore they are not helpful.

If the corruption theory is the right one, then the other differences between the
packets may also be explained with the same reason.

The provided data does not give definite answers to the problem. Without
further information this is about as far as I am able to speculate. In a real
situation I would start inspecting the protected network in order to find the
actual host that has sent the packets. Alternatively I might try to capture

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

similar traffic using different network interface card and driver than the one
used this time. I might also want to use completely different capturing tools,
such as Solaris with snoop or some hardware traffic analyzer like Fluke. If
these methods showed similar behaviour with the TCP sequence numbers, I
would be able to eliminate the possibility of having a problem during the
capture.

7. Evidence of active targeting

Snort has not captured any packets coming from the IP address
216.136.232.84. No information was found how the host in the internal
network would have been compromised. This does not eliminate such a
possibility, though.

8. Severity

The severity is a sum of criticality and lethality subtracted by the sum of
system and network countermeasures. I evaluate these values as following:

Criticality = 2. The address 207.166.87.157 may be shared by multiple hosts,
but this particular one has opened an http connection to f214.mail.yahoo.com.
This makes me assume that the client is a workstation.

Lethality = 5. Even though I am suspecting some sort of corruption in the
network traffic, the worst case means that the sender’s TCP/IP stack has
been modified. Only a superuser can do that and I have no reasons to believe
that the actual system administrator would do such a trick.

System countermeasures = 1. The system is sending invalid packets to the
network. Either the packets are corrupted, or the host has been compromised,
in which case the countermeasures have not been good enough.

Network countermeasures = 3. There is no evidence of having a firewall
protecting the network, but some other good signs can be detected. First, the
IP/MAC address pairs give a strong indication that some sort of anti-spoofing
measures are effective in the network. Secondly, if my analysis is correct,
there is a device doing dynamic NAT, which makes it harder to contact
directly the hosts that are hiding behind the NAT device.

Severity = (2 + 5)–(1 + 3) = 3.

Definitely something to pay more attention to.

9. Defensive recommendation

I have the following defensive recommendations:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

a) Inspect the host 207.166.87.157 for possible signs of compromise. If this
address is the NAT hide address, consult the logs of the NAT device first in
order to find the real host behind this connection.

b) Test the snort instance that captured the packets. Try changing your
hardware and device driver or run some other sniffers than snort or tcpdump
and compare the results. In normal cases incorrect IP or TCP checksums are
strong indications of corrupted traffic -- this time this information was
unavailable.

c) Do not forget to use also the manual approach when studying the logs of
firewalls and IDS. Often times an experienced network administrator may find
“something that just doesn’t look right” and that has not been detected by the
automated systems.

The advice of testing your tools applies to us all -- there is hardly anything
more annoying than a security device that corrupts the logs!

10. Multiple choice test question

A tcpdump trace shows two TCP packets that share the same sequence
number. In which case this is against the TCP standard:

a) If both packets also share the same IP ID number

b) If both packets are sent by the same host and they do not belong to the
same TCP connection

c) If both packets belong to the same TCP connection, are sent by the same
host and have completely different TCP payloads

d) If both packets share the same IP addresses and TCP ports but only one of
them is fragmented

Answer is c.

Comments from the community:

I posted the analysis for the detect #1 above to intrusions@incidents.org on
11 April 2003. The analysis can be found from the address: <http://cert.uni-
stuttgart.de/archive/intrusions/2003/04/msg00102.html>.

Andrew Rucker Jones commented the analysis on 12 April: <http://cert.uni-
stuttgart.de/archive/intrusions/2003/04/msg00123.html>.

Three selected questions from his comments follow, together with my
answers posted on 15 April: <http://cert.uni-
stuttgart.de/archive/intrusions/2003/04/msg00142.html>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

Question #1:

I really loved Your arguments as to why something behind
207.166.87.157 is doing many-to-one NAT. I have to ask, though, if
You remove the packets that You say are corrupted, do You still have
those arguments? You say, for instance, that TTL = 240, IP ID = 0, and
TOS = 0x10 are all tied together. Those sound like the corrupted
packets to me. Are the characteristics of the output packets more
homogenous once the corrupted packets are removed?

My answer:

I checked this out. It seemed that out of 15021 packets 1529 have TTL value
of 240 and IP ID zero (835 of those have IP total length greater than 1500
bytes). Two of these 1529 packets are inbound and the rest are outbound.
Now if we assume that all these are corrupted, then the percentage of
corruption would be 10,18%. I have not seen this high corruption percentage
before, but I suppose it could be possible.

Even if we remove all TTL=240 packets out, there are still three different TTL
values (123, 124 and 125) in the packets sent by 207.166.87.157. I also
looked at the TCP window size and it seemed to vary between 5455 and
65189. No significant correlation in window sizes compared to the TTL values,
though. I find it difficult to understand why the TTL would vary at all for
outbound packets that are sent by the same host -- therefore I still assume
that some device is doing dynamic NAT. The evidence is not as strong
anymore after removing all of the supposedly corrupted packets, however.

Question #2:

> If a host repeats the same TCP sequence number
> while sending new data, the receiver is unable to
> keep track of the data. I suppose this could be a
> clever way to confuse firewalls and intrusion
> detection systems, but it requires a specifically
> crafted TCP/IP stack both on sending and receiving
> hosts.

Not necessarily. On the receiving end, it might just reassemble by
overwriting the old data. What surprises me (should that be the case),
is that the PUSH flag is set. The way i understand it, once that's set,
the previous data couldn't be overwritten.

My answer:

Once the application has received the byte from the TCP, no further packets
can overwrite it. This applies whether there is PSH flag set or not -- the use of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

PSH flags makes it more likely that the application receives the data before
the next segment arrives. For that reason I still believe that the receiver needs
a modified TCP stack to be able to receive any other data after the first
segment, if the sequence numbers do not change.

Question #3:

> Network countermeasures = 3. There is no evidence
> of having a firewall protecting the network, but
> some other good signs can be detected. First, the
> IP/MAC address pairs give a strong indication that
> some sort of anti-spoofing measures are effective
> in the network.

...or simply that no one tried spoofing in the time frame You analyzed.

My answer:

An excellent point. Given that the dynamic NAT evidence is not that strong
anymore either, I am considering to decrease the Network countermeasures
value to 2.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

Detect #2

Broadcast source IP address

12:43:06.876507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 57:
255.255.255.255.31337 > 207.166.120.90.515: R 0:3(3) ack 0 win 0
4500 002b 0000 0000 0f06 ae17 ffff ffff
cfa6 785a 7a69 0203 0000 0000 0000 0000
5014 0000 633f 0000 636b 6f00 0000

1. Source of Trace

The trace for the detect #2 is the same as in detect #1 above, the Snort binary
log file 2002.9.30 downloaded from <http://www.incidents.org/logs/Raw>.

I concluded with the detect #1 that the trace included some corrupted frames.
In addition, the README file in the same directory with the log files states that
all IP and TCP checksums have been modified and are incorrect. Also the IP
addresses of the protected network have been changed in the trace.

As with the previous detect, my conclusion for the network topology is the
following:

Internet -- Cisco:c0 ----- Cisco:33 -- 207.166.0.0/16
|

Snort

I believe now that all packets in the trace that have the IP total length value
greater than 1500 bytes are corrupted. Therefore the network that Snort
listens to does not necessarily have MTU value greater than 1500.

Furthermore, my conclusion with detect #1 was that every IP packet that has
all of the following characteristics is corrupted:

- IP ID is zero
- IP TTL is 240
- IP checksum is zero
- TCP checksum is zero

This means that 1529 (10,18%) packets are corrupted. I assume in this
analysis that the rest of the packets are intact.

There are no packets in the trace that would come behind the Cisco:c0 router
and have a source address from 207.166.x.x address space. Similarly no
packets with destination address within that address space are routed through
Cisco:33 router. This IP/MAC address correlation may mean that there is
some anti-spoofing technique in place in the network. It may also mean that
no spoofing just happens during the time of observation. It is worth to note,
however, that even if the incoming packets with the internal source IP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

addresses are dropped in the perimeter router, the 255.255.255.255 address
still seems to get through.

2. Detect was generated by

The trace is a binary Snort log file. Thus the detect was generated by Snort
intrusion detection system. The exact rule that triggered the alert is unknown,
as is the alert message. The detect has several characteristics that typically
trigger alerts in intrusion detection systems, however. I’ll explain these
characteristics in the attack description chapter below.

3. Probability the source address was spoofed

The IP address of 255.255.255.255 is reserved for limited broadcast use and
it should appear only as destination address [Stevens, p45]. Either some
network device is broken or the packets are crafted. I lean strongly toward the
latter theory.

The question of spoofed IP address is strongly tied to another question:
whether the detect is a stimulus or a response. Let us speculate this shortly.

If the detect is a response, there must exists a stimulus that causes such a
response. The detect has a unicast destination IP address. This address
could have been used as source IP address in the stimulus. However, the
detect has a broadcast IP address as source address. Normally no network
device would send a packet out with this address.

Evenif a network device would be broken and would use the stimulus’
broadcast destination address as the source address in the response, there
are other things that do not support that. The detect consists of TCP packets
which have RST and ACK flags set. Furthermore, each packet has three
bytes of TCP payload. Normally, whenever a TCP connection is terminated
with RST, no payload is included to the packet that has the RST flag set. And
as a final comment, all packets of the detect have the same IP ID number
(zero), which is a strong sign of crafted packets.

The conclusion is that the detect is a stimulus and it uses spoofed IP address.
It appears to come from the external network, according to the MAC
addresses. Theoretically the packets could have been sent from the same
segment where the Snort is listening and with spoofed source MAC
addresses, but there is no evidence that would support this theory.

4. Description of attack

The packets were sent to 18 different host, all located in the protected
network. None of the hosts received more than one packet. All packets were
similar -- up to the IP ID number (zero). Every packet’s TTL value is 15, which

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

indicates that most likely they have been sent by the same host. The packets
are TCP RST packets with the destination port 515 (printer).

The first packet was detected at 12:43 and the last at 02:27. The shortest
delay between two packets was 39 seconds and the longest was 3 hours and
6 minutes. No pattern was discovered from the packet timings.

The packets had several characteristics that made them as interesting
detects:

1) The source IP address 255.255.255.255 is the first and foremost anomaly
that got my attention. Since it breaks the IP standard, it has a strong
probability of getting caught by an IDS. It is worth to notice that the packet has
already penetrated through the external router, which indicates that there are
no ingress filters to stop these packets.

2) The source TCP port 31337 deserves some attention, since many trojan
horses, such as Back Orifice, use it. The purpose of using this port is unclear,
however, since due to the spoofed source IP address the sender is unable to
receive the returning packets.

3) The IP ID number remains unchanged (zero) in all of these packets.

4) There is the samepayload in all of the packets (ASCII string “cko”) even
though the TCP flag RST was set.

I was unable to find a known attack that would match the detect. I’ll speculate
the purpose of these packets in the attack mechanism chapter below.

5. Attack mechanism

As I speculated above, I do not believe the detect being a response. And
since the packets have the RST flag set, they should not generate any
response either. I can think of three different purposes of why the packets
may have been sent.

One possible purpose for the packets is just to generate noise to the network.
This can serve multiple purposes: the security administrators may either
disable the rule that generates a lot of alerts or at least they may get used to
them. Additionally the noise may cause the defenders to look at the wrong
direction when a real attack is executed somewhere else.

The source IP address and source port selections seem to support the noise
theory, since I fail to see why they would benefit the attacker. If the purpose
were to act silently, the attacker should have chosen less alarming values for
these fields.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

Another possible purpose is a denial-of-service attack against printer service.
I couldn’t find any printer vulnerability that would match the detect, but surely
there might exist one that is not known.

The third possible purpose is to provide a communication path for a trojan
horse program. It may be possible that someone is trying to establish a
contact with a trojan horse program -- most likely in order to start sending
commands to it. The big question of this theory is that how the trojan knows to
whom it should answer, since the source IP address of the packet does not
give any clue.

6. Correlations

I browsed through the incident.org’s mail archive and found Les Gordon’s
(response) article [Gordon2] speculating similar detect. Les described how the
remote-control software Q works and how covert channels can be used to
send commands to the Q program.

Les pointed out that a trojan is able to interpret the packet in totally different
way than a standard TCP/IP stack. He also speculated that the IP address
where the trojan is asked to contact can be encoded to the IP or TCP header
fields, such as sequence or acknowledge numbers.

In my detect the sequence and acknowledge numbers are zero in all packets.
Also the IP ID numbers are zero. Thus it is not likely that they carry any
hidden information. However, the three bytes in the payload may do so. Still,
since the payload is only 24 bits long in these packets and the IP address is
32 bit long, some extra information may be needed.

I suppose it is possible to compress a 32-bit IP address to 24 bits or even to a
smaller space, however. Not all 2^32 possible IP addresses are valid
addresses anyways. Furthermore the trojan may carry a map with 2^24
addresses evenly distributed across the whole IP address space; the 24-bit
key might be just a pointer to the right IP address.

This correlation showed that the trojan theory is a possible one. I select it as
my candidate suspect, even though the other two theories (noise or DoS
attack) are also possible.

7. Evidence of active targeting

No traffic was detected to these targets prior the detect. This is
understandable, since none of the three theories of why the packets may
have been sent require prior scanning. The most likely suspect, a trojan
covert channel, is a scan itself looking for installed and active trojans.

I looked quickly the previous and next day’s logs and found that the similar
pattern with the source IP 255.255.255.255 repeated in them too.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

I believe that the scan is not targeted specifically against the hosts in the
207.166.x.x address space, but that it is a generic scan in the Internet.

8. Severity

Here are my evaluations for the criticality, lethality and system and network
countermeasures:

Criticality = 2. The scan is targeted evenly across the address space of the
protected network. There is no evidence that these hosts would be particularly
important servers. Typically trojan programs tend to infect workstations rather
than servers, so that point also limits the criticality.

Lethality = 2. A normal scan would earn only 1 point here. The another point
comes from the fact that since the possible trojan inside the protected network
seems able to receive commands through a covert channel, we have to
assume that an established connection between the trojan and its master may
be covert too. The trace does not indicate such a connection, but it is fully
possible that the Snort rulebase simply does not catch one.

System countermeasures = 4. A normal system should not be affected by
these packets in any way. I decreased one point from the fear of an unknown
DoS attack.

Network countermeasures = 1. These packets have clear anomalies and they
should not be allowed to enter the network. The perimeter router has clearly
failed to block them.

Severity = (2 + 2)–(4 + 1) = -1.

The detect gives no reasons for big worries. The network countermeasures
may need a little boost, though.

9. Defensive recommendations

Since there is no evidence of trojan activity beside the external scanning, no
immediate damage control is needed.

However, I recommend some tuning to the rulebase of the perimeter
firewall/router. There is no need to allow packets with broadcast source
addresses to pass the firewall. Furthermore, all unnecessary services should
be denied. If there is no clear need to allow the external hosts to contact the
protected networks’ printer service, for instance, the perimeter defence should
block all attempts to do so.

Unfortunately the covert channels are limited only by the imagination of their
creators. If there is a trojan program inside, there are really no ways to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

completely deny it communicating with the outside world. The obvious
methods may be detectable and preventable, but the real solution is to try to
prevent the trojans to enter the internal network in the first place.

10. Multiple choice test question

Which one of the following is a valid source IP address?

a) 10.0.0.255

b) 127.0.0.255

c) 240.0.0.255

d) 255.255.255.255

The answer is a. The 10.x.x.x is a private address space and its addresses
can be used as host addresses. The address 10.0.0.255 is not a broadcast
address if the netmask is larger than /24. The b) is loopback network, c) is
multicast and d) limited broadcast.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

Detect #3

ACK scan

03:17:52.834488 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60:
63.211.17.228.80 > 46.5.180.250.53: . ack 0 win 1400

1. Source of Trace

The source for this detect was found from the same place than the two
previous ones: at incident.org’s Snort binary log repository at
<http://www.incidents.org/logs/Raw>. This time I selected almost half a year
older log file 2002.5.5.

Again the README file located in the same directory with the log files warns
that the IP addresses of the protected network have been modified and
therefore the IP, TCP and UDP checksums are not correct. It seemed that the
addresses were modified differently back in June 2002 than they were in
October 2002 when the trace of my previous two detects was captured. The
MAC addresses seemed to be the same which makes me to assume that the
network topology where the Snort instance runs has not changed.

Using the same techniques as with the previous detects I got the following
network diagram. This time the address space for the protected network is
46.5.x.x.

Internet -- Cisco:c0 ----- Cisco:33 – 46.5.0.0/16
|

Snort

I did not see any packets with source IP address of 46.5.x.x coming from the
Internet side; nor did I see any packets with source IP anything else than
46.5.x.x leaving the internal network. Again, this does not proof that there
would be some anti-spoofing device in place; it only indicates that no spoofing
happened that day. It is worth to notice, however, that some spoofed packets
were detected in the trace: there are 34 packets with the source IP address of
255.255.255.255. I covered these packets in the previous detect -- here I only
remark that this anomaly seems to be constant.

One outbound packet has source IP address 46.5.180.133. All other outbound
packets have source address 46.5.180.250. This is different than with the
previous detects when there was only a single address that the outbound
packets shared as the source address.

Using the same criteria as with the detect #2 above, I dismissed all packets
that appeared to be corrupted. All packets that had TTL 240, IP ID zero and
both IP and TCP checksums zero are assumed to be corrupted. This also
removed all packets supposedly bigger than 1500 bytes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

There appeared to be 2558 corrupted packets out of 5135 packets in the
trace. This makes the corruption percentage awfully high: 49,8%. I have never
seen this high corruption with any network card; however, since I do not have
better guesses I have to stand with the assumption that this is the case.

The single packet with source IP 46.5.180.133 has TTL value of 63, TOS
0x00, non-zero IP ID and window size 32120. The packets with source IP
46.5.180.250 have TTL values 123-125 (also 240 among the corrupted
packets), multiple kind of TOS values, non-zero IP ID values and windows
sizes 0-65535.

Since it is hard to believe that the routing would change within the internal
network for a single host, I assume that the address 46.5.180.250 is used for
a hide address in a NAT device that is located between the protected network
and the Snort. The rules of the NAT device either do not change the source
address of 46.5.180.133 or that address is another hide address used less
often than the .250 address. It may also be possible that the host with
46.5.180.133 address somehow is able to communicate with the Internet
without routing its traffic through the NAT device -- unlike all other hosts.

2. Detect was generated by

The detect was generated by Snort intrusion detection system running in
binary logging mode. Since the log data is in standard pcap format, it can be
read with multiple programs, including tcpdump and ethereal.

The following is a tcpdump output of the detect:

03:17:52.834488 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60:
63.211.17.228.80 > 46.5.180.250.53: . ack 0 win 1400

4500 0028 324e 0000 3106 28d2 3fd3 11e4
2e05 b4fa 0050 0035 0000 0398 0000 0000
5010 0578 778f 0000 0000 0000 0000

03:17:52.834488 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60:
63.211.17.228.53 > 46.5.180.250.53: . ack 0 win 1400

4500 0028 324f 0000 3106 28d1 3fd3 11e4
2e05 b4fa 0035 0035 0000 0399 0000 0000
5010 0578 77a9 0000 0000 0000 0000

03:17:52.944488 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60:
64.152.70.68.80 > 46.5.180.250.53: . ack 0 win 1400

4500 0028 af8e 0000 3106 766c 4098 4644
2e05 b4fa 0050 0035 0000 0215 0000 0000
5010 0578 43ed 0000 0000 0000 0000

<snip>

I snipped the trace after the first three packets to save space; there are total
of 29 similar events in the logs: 9 with the destination port of 53, three
destination ports 4100 and 17 destination ports 80. The anomaly in all of the
packets is that the ACK flag is set but the acknowledge number is zero
(bolded in the trace).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

3. Probability the source address was spoofed

Let us have a closer look at the source addresses of the packets and try to
correlate them somehow. According to the whois databases (arin, ripe and
apnic) the packets came from the following organizations/countries:

- First three packets, captured at 03:17:52, came from addresses belonging to
Level 3 Communications, Inc., Broomfield, CO, US.

- The next six packets, captured at 08:35:05, came from addresses belonging
to UUNET Technologies, Inc, Ashburn, VA, US.

- The next three packets were captured at 15:19:54–15:19:55 and they came
from Israel. (Bank Leumi Of Israel, NetVision Ltd, Israel)

- The next two packets were captured at 15:40:41 and they came from Sollac,
France and USINOR TI, France.

- The next five packets, captured at 20:37:04–20:37:31 came from Taiwan
(Chunghwa Telecom and NCEN)

- Also the last ten packets came from Taiwan (CCEN), the first six captured at
02:26:43–02:27:10 and the last four at 02:50:10–02:50:19.

The packets surely do not look like valid TCP packets. The ACK flag is set in
all of them, but the acknowledge field value is zero. According to RFC793,
whenever the ACK flag is set the acknowledge field tells the next sequence
number the sender of this packet expects to receive. Theoretically this value
could be zero, but in is terribly unlikely for that to happen in all of these cases.

Furthermore, all of the packets have a very low sequence number value.
While all values are valid for sequence numbers, the initial numbers should be
selected randomly. It is extremely unlikely that all of these connections would
have sequence numbers randomly selected as low as they are in these
packets.

The TCP ports are also odd. The only source/destination port combinations
that make sense are 80/4100 and 81/4100; the port 4100 would then be the
ephemeral port. Even then it is very unlikely that the internal client (or the
intermediate NAT device) would have selected the same source port for two
different connections.

All these facts combined are strong evidence that the packets have been
spoofed. But I have another theory too that might explain the behaviour.

Let us suppose that some ISP load balancer device has not been designed
correctly and that it probes the ISP links by sending a crafted packet through
all of them. Let us further suppose that all of the places mentioned above

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

might use this device to balance their outbound traffic between multiple ISP
links. Now if one of their clients wanted to connect a computer in the
University, the balancer may send a crafted IP packet -- like the ones
captured in this detect -- to the server simultaneously through all of the ISPs
available. The fact that similar packets are captured approximately at the
same time coming from the same general area seems to support this theory.

I agree that this would not be the smartest way to probe the ISP links. I do not
know of any ISP balancer that would work like this; still I have seen my share
of oddly behaving network devices and I know that this could be possible.

The timing of the packets in the capture makes me to assume the ISP
balancer theory and therefore I do not believe that the packets would be
spoofed (except by the balancer).

4. Description of attack

If my theory of the ISP load balancers is right, the detect is not an attack but
traffic from poorly configured, designed or implemented network devices.

5. Attack mechanism

I’ll try to speculate here why I do not believe the detect to be an attack.

The destination ports 53 and 80 are common attack targets since the
applications listening to these ports have a long history of having severe
vulnerabilities. However, none of the packets have any payload, so they
cannot be targeted against the applications.

While the packets have odd sequence numbers, acknowledge numbers and
source/destination port pairs, strictly speaking they do not break TCP or IP
standards. Therefore they should not cause denial-of-service to any TCP/IP
stack.

The only relevant reason I can think of why an attacker may have send these
packets is port scanning. The ACK scan is a well-known but unreliable way to
determine the open and closed ports on certain operating systems. This
theory requires that the attacker does not spoof the addresses he uses, since
he needs to see the possible returning packets.

However, the detect consists of groups of packets, each packet in one group
sent almost simultaneously and from the same general area. Furthermore, the
scans seem to come from all around the world: US, Europe, Middle East and
Asia. It would be more understandable if there were some single ACK scans;
the fact that all scans come in groups makes me to doubt the port scan
theory.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

6. Correlations

I have not seen an ISP balancer to behave like this. However, I have seen
other network devices to behave oddly in certain situations.

Symantec’s Raptor firewall, for instance, when configured to prevent TCP
SYN flooding attacks sent odd packets to the network in order to trying to
determine whether the sender of the SYN packet is an alive host or not.

Radware’s Linkproof ISP balancer -- at least in the past times -- sent ICMP
echo requests to probe the ISP availability.

The detect here certainly does not match these two devices or at least to the
behaviour I have experienced with them. Still they show that some devices
send odd packets even when they work like expected.

7. Evidence of active targeting

Since there is no attack, there cannot be active targeting either. The packets
have been sent to their targets purposefully, but not with a malicious purpose.

8. Severity

Here are my evaluations for the criticality, lethality and system and network
countermeasures:

Criticality = 2. The packets are targeted against the servers of the protected
network. There is no evidence that these services would actually be listening
on the target hosts, the TCP packets do not indicate that a connection would
have been established.

Lethality = 1. Even at the worst case the packets would be performing port
scanning. And I believe them to be non-malicious.

System countermeasures = 5. A normal system should not be affected by
these packets in any way.

Network countermeasures = 1. A statefull firewall should drop the TCP
packets that claim to belong to a non-existing connection. Since Snort has
captured the packets, the perimeter defence has failed this task.

Severity = (2 + 1)–(5 + 1) = -3.

Not a big deal. I recommend using a statefull firewall as the perimeter
defence, though.

9. Defensive recommendations

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

As already stated, my recommendation is to implement tighter perimeter
defence, using for instance a statefull firewall that would drop all odd and out-
of-connection packets out.

10. Multiple choice test question

The acknowledge number is always zero if

a) the TCP connection has been established but no data has been transferred

b) both SYN and ACK flags are set

c) the TCP packet is being retransmitted

d) None of the answers above

The correct answer is d.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

Assignment 3 - Analyze This

Files used in the analysis

alert.030401.gz scans.030401.gz OOS_Report_2003_04_02_24924
(contains oos logs for 2003-04-01)

alert.030402.gz scans.030402.gz OOS_Report_2003_04_03_9924
(contains oos logs for 2003-04-02)

alert.030403.gz scans.030403.gz OOS_Report_2003_04_04_29217
(contains oos logs for 2003-04-03)

alert.030404.gz scans.030404.gz OOS_Report_2003_04_05_3459
(contains oos logs for 2003-04-04)

alert.030405.gz scans.030405.gz OOS_Report_2003_04_07_31826
(contains oos logs for 2003-04-05)

Executive Summary and Defensive Recommendations

The University’s IDS produces a lot of logs:237.332 alerts, 1.416.554 scans
and 9.396 out-of-spec packets were collected during five days from 1 April
through 5 April 2003. These logs are analyzed here.

A great deal of the logs appeared to be false alarms. Specific
recommendations to fine-tune the IDS rules are given in the specific analysis
of individual alerts. Still, the University seems to be under constant
hammering from the Internet, which the logs clearly show.

Unfortunately, a few hosts in the University look so suspicious, that they have
to be assumed to be compromised. The reasons to believe that are detailed in
the individual alert analysis below. A strong recommendation is to pay
immediate attention to the hosts involved. The security holes in them must be
fixed and possible intruders driven out before they can do more harm to the
University’s network.

Some peer-to-peer program activity was also detected in the network. The
dangers involved with such a programs are shortly listed in the peer-to-peer–
chapter below. A link to an excellent article about the subject is also provided
there.

It seems clear that the University does not have a properly configured
perimeter firewall. A good advice and a strong recommendation is to enforce
all traffic between the University and the Internet through a firewall with a tight
policy to deny everything that is not explicitly allowed. This would serve
several purposes. First–it would reduce the amount of false positives of the
IDS dramatically. Secondly, a good preventive mechanism is a lot cheaper to
maintain than detecting and reacting to incidents that are executed.

The hosts that require immediate attention are the following:

MY.NET.97.66

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

MY.NET.97.88
MY.NET.98.157
MY.NET.98.184
MY.NET.84.235
MY.NET.105.48
MY.NET.252.166
MY.NET.240.78

The following hosts should also be inspected:

MY.NET.6.63
MY.NET.88.193
MY.NET.105.48
MY.NET.194.223
MY.NET.197.2
MY.NET.203.86
MY.NET.223.46
MY.NET.240.246

Alert Summary

I found an excellent alert summary table used in Les M. Gordon’s practical
[Gordon] and decided to use the same approach in my work. Les also
provided a perl script to help construct the summary table.

All alerts are listed below, in the decreasing order of how many times they
occurred during the five days. The count of IP addresses involved is divided to
external sources, internal destinations, internal sources and external
destinations. The internal addresses contain all addresses in the University’s
MY.NET.0.0/16 address space. Finally the number of attacks are listed on
basis of the direction of the attack: inbound, outbound, only internal or only
external.

Alert name Alerts
Ext
Src

Int
Dst

Int
Src

Ext
Dst Inbound Outbound I->I E->E

SMB Name Wildcard 109244 22873 35727 1 109243 1
Watchlist 000220 IL-ISDNNET-
990517 39358 251 324 39358
High port 65535 udp - possible
Red Worm - traffic 18176 153 93 61 157 9459 8717
spp_http_decode: IIS Unicode
attack detected 14163 240 212 525 692 614 13549
CS WEBSERVER - external web
traffic 9393 4262 1 1 9392 1
High port 65535 tcp - possible
Red Worm - traffic 8452 72 47 51 72 2263 6189
Tiny Fragments - Possible Hostile
Activity 7587 7 7 1 237 104 7483
Incomplete Packet Fragments
Discarded 5567 64 48 4 5 468 5098 1
TFTP - Internal TCP connection
to external tftp server 3963 30 6 6 28 2036 1927
TCP SRC and DST outside
network 3949 1928 81 3949
MY.NET.30.4 activity 3086 257 1 3086

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

External RPC call 2803 16 2748 2803
spp_http_decode: CGI Null Byte
attack detected 2711 15 2 112 117 22 2689
Null scan! 1609 68 78 1609
Watchlist 000222 NET-NCFC 1254 90 40 1254
Queso fingerprint 1174 292 109 1174
IDS552/web-iis_IIS ISAPI
Overflow ida nosize 854 608 700 854
SUNRPC highport access! 689 65 43 689
Possible trojan server activity 548 58 30 14 17 134 414
EXPLOIT x86 NOOP 472 116 95 472
CS WEBSERVER - external ftp
traffic 307 115 1 307
IDS552/web-iis_IIS ISAPI
Overflow ida INTERNAL nosize 305 4 264 305
MY.NET.30.3 activity 220 44 1 220
NMAP TCP ping! 214 45 76 214
connect to 515 from outside 181 24 3 181
DDOS mstream handler to client 170 1 2 170
SNMP public access 128 14 13 128
EXPLOIT x86 setuid 0 117 107 94 117
NIMDA - Attempt to execute cmd
from campus host 114 4 111 114
IRC evil - running XDCC 85 20 22 85
EXPLOIT x86 setgid 0 79 73 69 79
TFTP - Internal UDP connection
to external tftp server 75 6 11 9 4 31 44
EXPLOIT x86 stealth noop 74 16 15 74
DDOS mstream client to handler 71 27 3 71
TFTP - External TCP connection
to internal tftp server 26 12 1 1 14 12 14
Notify Brian B. 3.54 tcp 22 19 1 22
Notify Brian B. 3.56 tcp 22 21 1 22
Attempted Sun RPC high port
access 16 4 3 16
SMB C access 11 10 8 11
NETBIOS NT NULL session 8 1 5 8
FTP passwd attempt 7 7 1 7
TCP SMTP Source Port traffic 7 1 2 7
Probable NMAP fingerprint
attempt 5 5 5 5
EXPLOIT NTPDX buffer overflow 3 3 3 3
EXPLOIT digital unix noop 2 1 1 2
NIMDA - Attempt to execute root
from campus host 2 2 2 2
RFB - Possible WinVNC -
010708-1 2 1 1 1 1 1 1
SYN-FIN scan! 2 1 1 2
Back Orifice 1 1 1 1
Bugbear@MM virus in SMTP 1 1
DDOS shaft client to handler 1 1 1 1
External FTP to HelpDesk
MY.NET.53.29 1 1 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

Trin00 password on tcp 1 1 1 1
Totals: 237332 32027 40635 816 1828 186579 46801 1 3951

Most Frequent Alerts (over 5.000 during five days)

1. SMB Name Wildcard, 109.244 alerts (46,03% of all alerts)
Snort rule: Custom

Since I did not find a Snort rule with this message among the standard or
experimental Snort rulebase, I do not know what traffic the rule matches. I
assume, though, that all NetBIOS queries trigger the alarm. Furthermore,
since all packets have an external source IP address, I assume that the
internal NetBIOS queries do not trigger the alert.

Les M. Gordon [Gordon] noticed in his practical that this alert occurred 58.295
times during a six-day period in June 2002. Johnny Calhoun [Calhoun]
counted 61.249 alerts during five days in January 2003. Back in June 2002
the majority of the traffic was internal; In January 2003 most of the traffic
originated from outside. The trend clearly seems to be that the external scans
have increased dramatically in time. There are a few reports of vulnerabilities
in Microsoft Windows and Samba that might explain the increased interest to
these services:

CERT vulnerability note VU#958321, Samba contains a remotely exploitable
stack buffer overflow, published 13 Dec 2002
http://www.kb.cert.org/vuls/id/958321
Also CAN-2002-1318

CERT advisory CA-2003-03, Buffer overflow in Windows locator service,
published 23 Jan 2003
http://www.cert.org/advisories/CA-2003-03.html
Also CAN-2003-0003

CERT advisory CA-2003-08, Increased activity targeting Windows shares,
published 11 March 2003
http://www.cert.org/advisories/CA-2003-08.html

CERT vulnerability note VU#298233, Samba contains buffer overflow in
SMB/CIFS packet fragment reassembly code, published 17 March 2003
http://www.kb.cert.org/vuls/id/298233
Also CAN-2003-0085

CERT vulnerability note VU#267873, Samba contains multiple buffer
overflows, published 10 Apr 2003
http://www.kb.cert.org/vuls/id/267873
Also CAN-2003-0201, CAN-2003-0196

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

The last note does not explain the alerts of the selected dates, since the note
was published after they occurred. It may affect even more scans in the
future, however.

Recommendations:

Block the incoming NetBIOS traffic in the perimeter firewall. If the NetBIOS is
needed with some peers, the recommended way is to build a VPN tunnel
between the University and those sites. Ensure that all hosts with samba
service have the newest samba software -- the older ones have serious
vulnerabilities. Finally ensure that the password policy used with the samba
shares requires strong passwords. The CERT advisory CA-2003-08 tells
about a worm that spreads by guessing samba passwords.

2. Watchlist 000220 IL-ISDNNET-990517, 39.358 alerts (16,58%)
Snort rule: Custom

This is a custom alert. Based on the traffic that has triggered the alert, it
seems to capture traffic that comes from 212.179.0.0/16 network. The port
numbers indicate that the majority of the traffic is KaZaA, web browsing and
traffic to ports 3162 and 3249. These last two ports do not map to well-known
services, which makes me to think that probably they are customized peer-to-
peer software ports or even customized trojan horse ports.

Since I do not for what purpose the rule has been created, I find it difficult to
evaluate how serious the alerts are.

Recommendations:

If the Israel ISP, whose IP addresses these are, does not need access to the
University’s network, block them out in the perimeter firewall. If they do need
access, limit it to the minimum with the same firewall. This should reduce the
amount of logs significantly.

3. High port 65535 udp - possible Red Worm - traffic, 18176 alerts
(7,66%)
Snort rule: Custom

Red Worm, also known as Adore, spreads using vulnerabilities in LPRng, rpc-
statd and BIND. Once it has infected a host, it opens a backdoor to listen TCP
port 65535. A good analysis of the worm is available at the SANS’s reading
room by J. Anthony Dell [Dell].

This rule watches for UDP traffic, not TCP, and therefore cannot detect the
Red Worm. The amount of traffic having UDP port 65535 is so high, however,
that it is hard to believe that it has happened to be used as random ephemeral
port this often. There are 9459 alerts for inbound traffic and 8717 for
outbound.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

The majority (89%) of these packets are sent or received by MY.NET.201.58.
This host seems to communicate a lot with the external hosts 66.42.68.210
and 4.46.32.83 (ports 5121 and 5122) and host 68.110.8.98 (port 4121). The
UDP ports 5121 and 5122 are used by a Neverwinter Nights–game, made by
BioWare Corp. [Bioware]. My guess is that this game triggers the majority of
the alerts. I am not sure, though, that what application uses UDP port 4121;
the IP address involved with that traffic belongs to Cox Communications Inc,
Atlanta, US.

Recommendations:

The alert name is misleading. Since the alert does not capture Red Worm
traffic, its purpose is questionable. My recommendation is to remove it.

4. spp_http_decode: IIS Unicode attack detected, 14163 alerts (5,97%)
Snort rule: snort preprocessor http_decode

As Tod Beardsley [Beardsley] described in his practical, this alert is generated
by Snort http_decode preprocessor when it sees unicode encoded ‘\’, ‘/’ or ‘.’
characters on common http ports. The idea is that Microsoft’s Internet
Information Server (IIS) has a sad history of accepting requests encoded in
unicode that it would not accept otherwise. Tod concludes in his paper that
Nimda and other worms have infected multiple hosts in the University.

However, Les Gordon [Gordon] points out in his practical that the extended
character sets used in Korea, Japan and some other sites trigger this alert as
well. It turned out that approximately 70% of the alerts actually had the
destination address in Korea, China or Taiwan.

Michael Wisener [Wisener] found a posting on snort-users mailing list, sent by
Joe Steward [Steward], that many of these alerts may be due to URL encoded
binary data that the website cookies send.

Given these facts the alerts do not seem to be reliable. I give the same
recommendation as Michael and others to turn off the unicode checking from
the snort http preprocessor, as explained in the Snort FAQ [snort-faq].

5. CS WEBSERVER–external web traffic, 9393 alerts (3,96%)
Snort rule: Custom

This rule seemed to trigger alert for all http traffic that comes from the external
network. All of the packets shared the same internal destination:
MY.NET.100.165. 1306 packets (13,9%) came from a single source address
216.39.48.2 that belongs to AltaVista Company. My guess is that AltaVista is
updating their web search databases.

It is interesting to notice that this internal host has drawn quite a lot external
fire. In addition to the 9392 web traffic alerts it received 307 packets with “CS
WEBSERVER - external ftp traffic” alerts, 67 “SMB Name Wildcard” alerts,
101 “Watchlist 000222” and 61 “Watchlist 000220” alerts, 8 IIS Unicode alerts,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

6 Queso Fingerprints, 4 NMAP TCP pings, a single IIS ISAPI overflow alert, a
single TCP high port 65535 alert, some scanning and total of 23 out-of-spec
packets.

Recommendations:

None of the alerts, scans or OOS packets are particularly alarming, though. If
the host’s purpose is to be an external web server, it will for sure get more
attention than an average host -- exactly what happens here. I recommend to
check that the host has all of the available patches installed, however, and
that it is configured properly. Furthermore, some of the alerts should never be
triggered, since a properly configured perimeter firewall’s task is to drop all
unnecessary connection attempts and single packets before they arrive to the
internal network.

6. High port 65535 tcp - possible Red Worm - traffic, 8452 alerts (3,56%)
Snort rule: Custom

As noted with UDP 65535 above, the Red Worm uses TCP, not UDP, for the
backdoor communication protocol. These backdoor connection attempts
should be captured by this rule.

The majority of the alerts here, however, show connections that have TCP
port 65535 bound to the external host’s address and the MY.NET hosts use
some other port. I looked for connections where the external host would have
a likely ephemeral port (1024 or higher) and the internal host has the port
65535. I found eight hosts that fit this criteria:

MY.NET.6.63
MY.NET.88.193
MY.NET.105.48
MY.NET.194.223
MY.NET.197.2
MY.NET.203.86
MY.NET.223.46
MY.NET.240.246

My recommendation is to have a look of these hosts for possible signs of Red
Worm infection.

7. Tiny Fragments–Possible Hostile Activity, 7587 alerts (3,20%)
Snort rule: SID 522 (the closest match)

This rule triggers an alert for all packets that have the MF (more fragments)
flag set and are smaller than 25 bytes. This might happen if a packet gets
fragmented multiple times during its travel. However, more often than not the
small fragments are signs of some kind of evasion or other malicious activity.
Therefore these alerts require attention.

The vast majority of the alerts are outbound–and from a single host:
MY.NET.240.78. This host alone sent 7483 tiny fragments to 237 different

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

hosts. The same host also scanned 874 hosts and used 228 different scan
types to do that!

104 inbound packets triggered the same rule. This is not alarming, since it can
be explained as the Internet noise. The fragments themselves should not be
able to damage the recent versions of operating systems; their primary
function typically is to evade older firewalls or intrusion detection systems.

Recommendations:

Investigate the internal host MY.NET.240.78 for possible compromise.
Implement a perimeter firewall to drop all malicious and incomplete fragments
before they enter the protected network.

8. Incomplete Packet Fragments Discarded, 5567 alerts (2,35%)
Snort rule: Custom

This rule catches the fragmented packets that Snort is unable to reassemble
due to a missing fragment. There may be several reasons for this: the missing
fragment may have been lost in the network, it may have been routed
differently, or the IDS may have been too busy and missed the fragment for
that reason. It is also possible that the incomplete fragments have been send
purposefully–maybe to launch a DoS attack or just to generate noise to the
network. A conservative amount of these packets would be understandable as
normal background noise. However, 5060 packets (90,9%) are sent by a
single host MY.NET.252.166 for a single destination 63.210.47.23. I was
unable to guess the purpose for these packets, therefore an investigation of
the internal host is recommended.

Other Interesting Alerts

9. TCP SRC and DST outside network, 3949 alerts
Snort rule: Custom

This rule alerts whenever a packet is seen that has both source and
destination address outside of the MY.NET address space. Let us look at the
packets that have triggered the alert.

255 packets (6,5%) have either source or destination address from a private
IP address space. My assumption is that there are hosts in the University that
have been configured to use private addresses. Either there is a device doing
NAT for these addresses before they leave the University network, or the
hosts have been configured wrongly.

Furthermore, 1745 packets (44,2%) have the source IP address of
207.46.134.190 and the destination address of 216.251.32.98. The source
address resolves to microsoft.com; it actually appears to be Microsoft’s main
web site address. The destination address belongs to an ISP named
InternetNamesForBusiness.com. Since there should be no reason why

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

Microsoft would route these packets through the University, I suspect that the
source address is spoofed.

Recommendations:

If the private addresses are valid addresses in the network, modify the snort
rule to recognize them as internal addresses.

Consult the snort binary log to find the MAC address of the spoofed packets.
This gives indications of what host has sent packets with external source
address. The investigation may require consulting of other logs too, such as
the MAC address tables of the switches in the network.

Implement anti-spoofing rules to the perimeter firewall / router to block all
outbound packets that do not have source IP address belonging to the
University’s address space. In the same place, block all incoming packets
whose source address is within the University’s address space. Make sure
that all traffic between the University and the Internet goes through the
firewall.

10. IDS552/web-iis_IIS ISAPI Overflow ida nosize, 854 alerts
Snort rule: Custom

This snort rule is taken from the whitehats.com’s web site, to capture exploits
against Microsoft Internet Information Server.

Total of 700 internal hosts have received the exploit attempt from a total of
608 external hosts. No evidence was found that any of the attempts would
have lead to a compromise.

Recommended actions:

These alerts are pure noise when targeted against servers that have been
patched against the exploit. I recommend to check the patch levels of all
servers through the regular auditing processes and to ensure that the
perimeter firewall accepts only the desired connections to the internal
network.

11. IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize, 305 alerts
Snort rule: Custom

No doubt, this rule is a modified version of the previous one to capture the
outbound exploits against the IIS ISAPI extension. It is also a lot more
interesting, since it alarms of the malicious activity launched from the internal
network.

Four internal hosts were found to send packets that triggered this alert. The
hosts are:

Count IP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

219 MY.NET.97.66
49 MY.NET.97.88
23 MY.NET.98.157
14 MY.NET.98.184

Recommended actions:

Check out the internal hosts involved for possible compromise or other
misuse.

12. Possible trojan server activity, 548 alerts
Snort rule: Custom

This rule seemed to trigger whenever either the source or destination port was
27374. According to [doshelp] this port is associated with Sub-7 trojan horse.

The vast majority of the alerts turned out to be false alarms, where the port
27374 was used as normal ephemeral port. A single internal host, however,
was connected 25 times to the port in question and may therefore require
some further investigation.

Recommendations:

Inspect the host MY.NET.105.48 for possible compromise. Block all
unnecessary ports in the perimeter firewall.

13. DDOS mstream handler to client, 170 alerts
Snort rule: SID 248, SID 250

This rule is intended to catch the communication from an mstream handler
program to an attacker’s client host. The mstream is a distributed denial-of-
service program suite that consists of a client host(s), handler programs and
agent programs. The clients send commands to the handlers whose task is to
forward them to the agents. The agents are able to generate a large amount
of network traffic that is used to paralyze the victim the agents are attacking.

A good article about the mstream is written by David Dittrich et al [Dittrich].

One internal host seems to be involved with the mstream: MY.NET.84.235.
There are various versions of mstream around and they use different ports; an
interesting detail is that this particular host triggers the alert with two different
mstream ports: 12754 (140 counts) and 15104 (30 counts).

Recommended actions:

Check out this host for possible infection. Again, block all unnecessary ports
in the perimeter firewall.

14. DDOS mstream client to handler, 71 alerts
Snort rule: SID 247, SID 249

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

This is a reverse rule to the one above; it catches the communication from the
attacker’s clientto the mstream handler program.

Three internal hosts have triggered this alert. However, one of them seems to
be a clear false alarm. The other two consist of MY.NET.84.235 that triggered
also the previous alert, as well as MY.NET.105.48.

I recommend checking out the host MY.NET.105.48 in addition to the other
host that was already mentioned with the previous alert.

15. NIMDA–Attempt to execute cmd from campus host, 114 alerts
Snort rule: Custom

This is also an interesting detect, since it claims to find malicious activity
launched from the internal network.

Four internal hosts triggered the alert. The hosts are MY.NET.97.66 (86
alerts), MY.NET.98.157 (12 alerts), MY.NET.97.88 (10 alerts) and
MY.NET.98.184 (6 alerts). They appear to be the same hosts that triggered
the ISAPI Overflow ida INTERNAL nosize–alert above. In addition, two of
them (98.157 and 97.66) also generated another NIMDA alert: Attempt to
execute root from campus host.

Recommended actions:

These four hosts are highly suspicious and should be inspected immediately.

Top Talkers

The following tables list the top talkers. The ‘Combined Top 10’ –tables list
hosts with the most alerts, scans and OOS events combined to a single
number, further categorized as internal sources, external sources, internal
destinations and external destinations.

Combined Top 10 Internal Src
Count IP

546219 MY.NET.132.23

348775 MY.NET.210.182

283439 MY.NET.178.19

23339 MY.NET.97.66

9522 MY.NET.240.78

7886 MY.NET.201.58

7321 MY.NET.97.88

6906 MY.NET.97.202

6473 MY.NET.88.229

6327 MY.NET.98.126

Combined Top 10 External Src
Count IP

32156 218.68.216.47

9907 212.179.101.68

9122 212.179.48.2

6992 172.186.87.8

5655 217.21.114.148

5393 66.42.68.210

5241 217.21.114.154

4055 63.250.195.10

3607 62.65.192.30

3544 216.173.52.200

Combined Top 10 Internal Dst Count IP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

10012 MY.NET.100.165
9951 MY.NET.207.194
8918 MY.NET.220.150
8540 MY.NET.201.58
3236 MY.NET.195.67
3090 MY.NET.30.4
2397 MY.NET.217.38
2271 MY.NET.236.42
1900 MY.NET.196.161
1783 MY.NET.6.7

Combined Top 10 External Dst

Count IP
822419 157.156.0.106

7239 200.43.46.36
6768 139.55.51.186
5060 63.210.47.23
5056 66.42.68.210
4716 68.97.167.18
4326 208.63.167.105
4113 67.35.48.144
3578 65.80.69.96
3364 139.142.201.55

The following tables list the top internal and external scanners:

Top 10 Internal Scanners
Count IP

546203 MY.NET.132.23
348775 MY.NET.210.182
283433 MY.NET.178.19
23033 MY.NET.97.66

7224 MY.NET.97.88
6874 MY.NET.97.202
6345 MY.NET.88.229
6327 MY.NET.98.126
5539 MY.NET.194.223
5049 MY.NET.204.110

Top 10 External Scanners
Count IP
32155 218.68.216.47

6992 172.186.87.8
5655 217.21.114.148
5235 217.21.114.154
4049 63.250.195.10
3543 216.173.52.200
2835 217.59.215.194
2653 61.133.3.146
2076 64.5.44.143
1795 62.65.192.30

Here are the top internal and external host sending packets that generated
alerts:

Top 10 Internal Host generating
alerts
Count IP
7886 MY.NET.201.58
7483 MY.NET.240.78
5061 MY.NET.252.166
2501 MY.NET.224.90
1487 MY.NET.86.110
1418 MY.NET.226.206
1088 MY.NET.54.210
770 MY.NET.97.48
662 MY.NET.153.145
628 MY.NET.152.20

Top 10 External Host generating
alerts
Count IP
9907 212.179.101.68
9122 212.179.48.2
5393 66.42.68.210
2384 212.179.102.138
2291 24.66.182.171
2063 4.46.32.83
1812 62.65.192.30
1783 212.179.85.46
1745 207.46.134.190
1534 212.179.35.118

Here are the top internal and external OOS-packet senders:

Top 10 Internal OOS senders
Count IP
49 MY.NET.12.4

8 MY.NET.12.2
7 MY.NET.236.186
2 MY.NET.83.161
2 MY.NET.253.2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

2 MY.NET.104.113
1 MY.NET.252.14
1 MY.NET.183.31
0
0

Top 10 External OOS senders
Count IP
1099 68.54.93.181
612 209.191.132.40

356 66.140.25.157
162 148.63.151.3
159 61.114.222.241
152 62.142.15.248
147 212.244.86.66
136 80.26.5.150
136 216.95.201.23
119 216.95.201.34

Peer-to-Peer Users

The following is a list of probable peer-to-peer (P-P) file sharing users. These
programs are used to search and download files, usually illegal copies of
software, music and video, across the P-P network. Additionally, these
programs have had a sad history of containing several security holes, as well
as them have been used to spread worms and trojan programs. A good article
of the dangers of the P-P programs can be read by Michael Hurwicz at
Network Magazine [Hurwicz].

Gnutella users:
IP Count
MY.NET.211.26 18
MY.NET.247.94 3
MY.NET.194.223 2
MY.NET.252.78 1
MY.NET.222.98 1
MY.NET.207.10 1
MY.NET.195.67 1

KaZaA users:
IP Count
MY.NET.235.202 206
MY.NET.228.126 26
MY.NET.226.162 25
MY.NET.217.222 14
MY.NET.250.226 13
MY.NET.225.142 11
MY.NET.210.190 9
MY.NET.233.146 8
MY.NET.193.1 8
MY.NET.224.154 7
MY.NET.206.254 6
MY.NET.247.174 5
MY.NET.237.114 5
MY.NET.233.146 5

MY.NET.217.190 5
MY.NET.207.198 5
MY.NET.233.46 4
MY.NET.211.82 3
MY.NET.88.225 2
MY.NET.250.186 2
MY.NET.239.46 2
MY.NET.228.70 2
MY.NET.194.13 2
MY.NET.97.103 1
MY.NET.249.134 1
MY.NET.235.122 1
MY.NET.233.146 1
MY.NET.233.146 1

Napster users:
IP Count
MY.NET.244.182 20
MY.NET.253.102 18
MY.NET.205.198 6
MY.NET.208.66 5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

MY.NET.206.74 2
MY.NET.253.106 1
MY.NET.241.78 1
MY.NET.208.186 1
MY.NET.201.218 1

Link Graph

I decided to study the hosts that triggered the highest total amount of alerts,
scans and OOS reports, either as sender or receiver. Since one internal and
one external host happened to be active in both sending and receiving these
events of interest, I ended up with 19 internal and 19 external hosts out of my
four Top 10 Combined–tables.

I found the link graphs I drew as useful tools during my analysis. They helped
me to correlate the major portion of the logs together by showing the players
who created the logs. The contents of the graphs are analyzed above and I do
not repeat the work here; however I first made the graphs and then concluded
the analysis using the information visible in them.

It is important to understand that only the hosts generating a lot of logs ended
to these graphs. They do not necessarily represent the most alarming cases;
those I have analyzed above with the interesting alerts.

Graphs 1-5: Suspicious internal hosts

These internal hosts have sent a lot of suspicious traffic and therefore should
be inspected for possible compromise or other misuse.

MY.NET.97.66
2 x OOS (ASF flags)
1 x IDS552 alert
5 x SMB Name Wildcard

306 alerts to 258 destinations
- 219 x IDS552
- 86 x Nimda cmd
- 1 x Nimda root
SYN scan to 21354 hosts

MY.NET.240.787 x SMB Name Wildcard
1 x SYN scan

- 7483 Tiny fragments -alert to
237 hosts
- 228 different scan types to
874 hosts

MY.NET.97.88
4 x Queso fingerprint
3 x SMB Name Wildcard
6 x SYN scan
21 OOS packets

SYN scan to 6843 hosts
Alerts to 57 hosts
- 43 x IDS552
- 10 x Nimda cmd
- 4 x IIS Unicode

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

MY.NET.6.7

52 x SMB Name Wildcard
11 x Watchlist-222
8 x Queso Fingerprint
3 x Watchlist-220
2 x Possible trojan server
activity
IIS Unicode, NMAP TCP Ping
184 x SYN scan
1126 x OOS packets

Alerts to 4 hosts:
- 11 x Possible trojan
server activity

MY.NET.252.166 63.210.47.23

5060 x Incomplete Packet
Frag -alert

Graphs 6-10: UDP scans from internal hosts

Here are 5 internal hosts and one external that perform heavy UDP scanning
and/or raise UDP high port 65535–alerts. The two internal hosts in the first
graph (MY.NET.132.23 and MY.NET.178.19) seem to scan random UDP
ports. The UDP traffic of the rest of the hosts in the graphs is much more
narrower, including ports associated with peer-to-peer programs. I
recommend to check out the internal hosts shown in the first graph and to
warn the users of the other hosts about the dangers involved with P-P
programs.

MY.NET.132.23

200.43.46.36

157.156.0.106

MY.NET.178.19

542728 UDP scans

3475 UDP
scans

3764 UDP scans

279669
UDP
scans

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

208.63.167.105 65.80.69.96

139.142.201.5568.97.167.18

MY.NET.210.182139.55.51.186

67.35.48.144

+1567 additional
hosts

6768

4716

4326
4113

3578

3364

UDP scans

66.42.68.210 MY.NET.201.58

5392 UDP scans

1 x UDP 65535

- 8532 UDP 65535 -alerts from 13
hosts
- 3 x SMB Name Wildcard
- 5 x SYN scan

7866 UDP 65535 -alerts to 30
different hosts

5056 UDP scans

MY.NET.98.1262 x SMB Name Wildcard
2 x SYN scan

- 5225 x UDP scans
- 4 x SYN scans

63.250.195.10

Alerts to 6 hosts:
- 4 x UDP 65535
- 1 x Exploit NTPDX bof
- 1 x Attempted Sun RPC high port
Over 4000 UDP scans to 11 hosts

Graphs 11-13: Internal hosts that draw external fire

These three internal hosts got significantly more external attention than the
average internal hosts. No evidence shows compromise, though. Still it is a
good idea to keep an eye on these hosts. I recommend checking that their
configuration and hardening is properly done. I also recommend checking the
firewall settings to filter all unnecessary traffic out.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

MY.NET.100.165

9948 alerts from 4437 sources
- 9392 x CS Web
- 307 x CS FTP
- 101 x Watchlist 222
- 67 x SMB Name Wildcard
- 61 x Watchlist 220
- 8 x IIS Unicode
- 6 x Queso
- 4 x NMAP TCP Ping
- IDS552, TCP 65535
SYN, RST scans from 7 hosts
23 OOS packets

1 x TCP 65535 alert

MY.NET.195.67

2434 x SMB Name Wildcard
9 x Queso
3 x Incomplete Packet Frag
2 x TCP 65535
Watchlist-220, NMAP TCP
Ping, Exploit x86 NOOP
474 x FIN scan
Some SYN, ARF, NULL scans
49 x OOS packets

1 x TCP 65535

217.21.114.154 MY.NET.30.4

3 x MY.NET.30.4 activity
3 x SYN scan

257 x MY.NET.30.4 activity
1 x SMB Name Wildcard
1 x SYN scan

Graphs 14-16 Watchlist 000220 alerts

These hosts seemed to be heavily involved with the custom alert Watchlist
000220.

212.179.101.68 MY.NET.207.194

9906 Watchlist 220 alerts

1 x Watchlist 220 alert

2 x SYN scan
14 x SMB Name Wildcard alert
2 x TCP 65535 alert

Total of 8 TCP 65535 alerts to
2 hosts

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

212.179.48.2

MY.NET.220.150 MY.NET.236.42

8909 x Watchlist-220 alerts

212 x Watchlist-220 alerts

3 x SMB Name Wildcard
1 x Exploit x86 Setgid 0
1 x SFU scan
2 x UAPRSF OOS
1 x USF, 1 x 12ARSF OOS

- 2053 x Watchlist-220
alerts from 5 hosts
- 3 x SMB Name Wildcard
- 3 x SYN scan

1 x Watchlist-220

MY.NET.217.382396 x Watchlist-220 alert
from 4 hosts

Selected Five External Hosts

The following five external hosts/networks were linked to malicious activities
or other network events that are good to confirm with their owners:

IP address Reason to contact WHOIS information
212.179.101.68 &
212.179.48.2

These hosts triggered the most
Watchlist 000220 -alerts

Netnum: 212.179.0.0 - 212.179.0.255
Netname: REDBACK-EQUIPMENT
Mnt-by: INET-MGR
Descr: BEZEQINT-EQUIPMENT
Country: IL
Admin-c: MR916-RIPE
Tech-c: ZV140-RIPE
Status: ASSIGNED PA
Remarks: please send ABUSE complains to

abuse@bezeqint.net
Remarks: INFRA-AW
Notify: hostmaster@bezeqint.net
Changed: hostmaster@bezeqint.net

20021020
Source: RIPE

216.251.32.98 1745 packets were sent to this
host–supposedly from
Microsoft’s address space

OrgName: InternetNamesForBusiness.com
OrgID: INFB
Address: 500 East Broward Boulevard,

Suite 1700
City: Ft. Lauderdale
StateProv: FL
PostalCode: 33394
Country: US
NetRange: 216.251.32.0 - 216.251.47.255
CIDR: 216.251.32.0/20
Updated: 2001-04-09

TechName: InternetNamesForBusiness.com
TechPhone: +1-954-463-3080
TechEmail:

admin@internetnamesforbusines
s.com

66.42.68.210 This address was heavily
involved with UDP 65535 traffic
with MY.NET.201.58

OrgName: Pac-West Telecomm, INC.
OrgID: PWTI
Address: 1776 W. March Lane
Address: Suite 250
City: Stockton
StateProv: CA

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

PostalCode: 95207
Country: US
NetRange: 66.42.0.0 - 66.42.127.255
CIDR: 66.42.0.0/17

RegDate: 2000-11-10
Updated: 2002-11-15
TechHandle: ZP86-ARIN
TechName: Administrator
TechPhone: +1-800-722-9378
TechEmail: admin@mdsg-pacwest.com

218.68.216.47 A heavy SYN scanner inetnum: 218.67.128.0 - 218.69.255.255
netname: CHINANET-TJ
descr: CHINANET Tianjing province

network
descr: China Telecom
descr: A12,Xin-Jie-Kou-Wai Street
descr: Beijing 100088
country: CN
admin-c: CH93-AP
tech-c: HZ19-AP
mnt-by: MAINT-CHINANET
mnt-lower: MAINT-CHINANET-TJ
changed: hostmaster@ns.chinanet.cn.net

20010820
status: ALLOCATED PORTABLE
source: APNIC

person: Chinanet Hostmaster
address: No.31 ,jingrong street,beijing
address: 100032
country: CN
phone: +86-10-66027112
fax-no: +86-10-66027334
e-mail: hostmaster@ns.chinanet.cn.net
e-mail: anti-spam@ns.chinanet.cn.net
nic-hdl: CH93-AP
mnt-by: MAINT-CHINANET
changed: hostmaster@ns.chinanet.cn.net

20021016
source: APNIC

172.186.87.8 Another scanner OrgName: America Online
OrgID: AOL
Address: 8619 Westwood Center Drive
Address: Suite 200
City: Vienna
StateProv: VA
PostalCode: 22182
Country: US
NetRange: 172.128.0.0 - 172.191.255.255
CIDR: 172.128.0.0/10
NetName: AOL-172BLK

AbuseName: Abuse
AbusePhone: +1-703-265-4670
AbuseEmail: abuse@aol.net

Analysis Process

I started the analysis, as recommended, by studying the other GCIA student’s
work. I found Les M. Gordon’s and Tod A. Beardsley’s practical as ones with
high quality and professionalism in their analysis methods and results. There
were others too, of course, but the list would grow too long to mention them all
here.

As to the analysis process itself, I first concatenated all alarms, scans and
OOS messages to single files (alarms-all, scans-all and oos-all). The OOS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

logs consisted of multiple lines per log entry, so I run it through Emacs and
several shell- and awk-scripts to suit my needs. I removed all corrupted
entries and processed the log to contain a single event in a single line,
different fields separated by commas. Similarly I formatted the alerts and
scans too and got three new files: alert-formatted, scans-formatted and oos-
formatted. These three files were the base for all my further analysis.

Next I used Les Gordon’s perl script to produce the Alert Summary table I
have in the beginning of this analysis. After studying the alerts I counted the
top talkative players and decided to draw link graphs of them. The top-ten lists
and the link graphs helped me to go through the analysis and to find the
important relationships between the communicating hosts.

I selected the alerts I wanted to analyze and processed them one by one. I
tried to find correlations from the other’s work when possible. After all analysis
was done I wrote the executive summary and listed the recommended actions
to the beginning to the assignment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

References

[Bioware] BioWare Corp, “Neverwinter Nights Technical FAQ”,
URL: http://nwn.bioware.com/support/techfaq.html,
referred 25 April 2003

[Beardsley] Beardsley, Tod, “Intrusion Detection and Analysis:
Theory, Techniques and Tools”, GCIA Practical
Assignment, 8 May 2002

[Calhoun] Calhoun, Johnny, “Intrusion Detection: In-Depth
Analysis”, GCIA Practical Assignment, 8 January
2003

[Dell] Dell, J. Anthony, “Adore Worm – Another Mutation”,
URL: http://www.sans.org/rr/threats/mutation.php, 6
April 2001

[Dittrich] Dittrich, David et al, “The mstream distributed denial
of service attack tool”, URL:
http://staff.washington.edu/dittrich/misc/mstream.analy
sis.txt, referred 25 April 2003

[doshelp] Doshelp.com, “Trojan and Remote Access Service
Ports”, URL: http://doshelp.com/trojanports.htm,
referred 25 April 2003

[Gordon] Gordon, Les, “Intrusion Analysis – The Director’s
Cut!”, GCIA Practical Assignment, 22 November 2002

[Gordon2] Gordon, Les, “RE: Attack or Virus with
255.255.255.255 Spoofed IP address”, URL:
http://cert.uni-
stuttgart.de/archive/intrusions/2003/02/msg00011.html
3 Feb 2003

[Hurwicz] Hurwicz, Michael, “Emerging Technology: Peer-To-
Peer Networking Security”, URL:
http://www.networkmagazine.com/shared/article/show
Article.jhtml?articleId=8703302&pgno=1, 6 February
2002

[mac_find] Coffer.com, “Vendor/Ethernet MAC Address Lookup”,
URL: http://coffer.com/mac_find/ Referred 25 April
2003

[RFC791] Postel, J. Internet Protocol, Request for Comments
791 (also STD0005), URL: ftp://ftp.rfc-editor.org/in-
notes/rfc791.txt, 1 September 1981

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

[RFC793] Postel, J. Transmission Control Protocol, Request for
Comments 793 (also STD0007), URL: ftp://ftp.rfc-
editor.org/in-notes/rfc793.txt, 1 September 1981

[snort-faq] Snort IDS FAQ, “I am getting too many IIS Unicode
attack detected…” URL:
http://www.snort.org/docs/faq.html#4.17, referred 25
April 2003

[Stevens] Stevens, Richard, TCP/IP Illustrated, Volume 1,
Addison Wesley 1994

[Steward] Steward, Joe, “Re: [Snort-users] What defines a IIS
Unicode Attack?” URL:
http://marc.theaimsgroup.com/?l=snort-
users&m=97665860614029&w=2, 12 December 2000

[Wisener] Wisener, Michael, “Intrusion Detection in Depth:
Finding the Needle”, GCIA Practical Assignment, 28
January 2003

