
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Intrusion Detection In Depth
GCIA Practical Assignment

Version 3.3

Submitted by
ASHLEY THOMAS

March 17, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 1

Table of Contents

Summary………………………………………………………………………2
Part 1: Intrusion detection in High-speed networks………………………2

Part 2: Network Detects……………………………………………………..8
 Detect 1………………………………………………………………..8
 Detect 2………………………………………………………………17
 Detect 3………………………………………………………………26

Part 3: Analyze This !..38

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

Summary:
The document is divided into three parts. Part 1 (Describe the state of intrusion
detection) talks about challenges and approaches for Intrusion detection in a high
speed network. Part 2 covers analysis of three network detects. Two of them
were posted on the intrusions@incidents.org mailing list for questions or
comments from experts and the answers are included. In Part 3, a network audit
is performed based on log files downloaded from incidents.org mailing list.

Part 1: Intrusion detection in High-speed networks

Abstract:
The Intrusion detection systems (IDS) have been trying to catch up with the ever-
increasing network speed. The network and Link bandwidth is increasing at a
very high rate [1]. Researchers all over have been trying to increase the
performance of IDS to be able to monitor traffic greater than 100 Mbps or even
Gigabit traffic. This paper discusses the issues that the current IDS technology is
facing with respect to monitoring High-speed networks and their probable
solutions.

Introduction:
IDS are used to detect abnormal operations (intrusions) that might occur in the
network due to a malicious hacker or due to erroneous applications resulting in
disruption of network operations. There exist different classifications of IDS,
based on different criteria. One important classification is based on how the audit
data is collected. There exist two types of IDS categories - Host-based IDS, also
known as the HIDS and Network-based IDS a.k.a NIDS. The audit data for an
HIDS is collected from the log files on the host machines on which it operates
where as the audit data for the NIDS is from the network traffic. This document
deals with the issues regarding an NIDS.
Another classification is based on the type of analysis that an IDS performs on
the audit data. This classifies an IDS into Signature based, Anomaly based,
Protocol Analysis based etc. Often an IDS does a mixture of all the above
analyses.

Basic operation of NIDS:

A Network IDS monitors all the inbound and outbound traffic to/from the
network, which requires the IDS’s network interface card to operate in a mode
called promiscuous mode. In this mode the card accepts all the packets
regardless of the destination MAC address. The placement of IDS on the network
is of high importance. The IDS has to be placed at such a location where it can
monitor (promiscuously) all the packets bound to the network that it is monitoring.
This makes Demilitarized zone (DMZ) a good location for an NIDS. The NIDS
operates in what is known as a Fail-open mode. A copy of the packet will be
analyzed by the IDS while the original packet goes to its destination. This
behavior of a NIDS means that even if that packet is detected to be part of an
intrusion it is still going to reach its destination. On the contrary a firewall

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

operates in Fail-close mode (i.e. when a packet that is either bad or not allowed
arrives it does not pass through the firewall).
 Most of the IDS are built over a user level packet capture library called
libpcap [2] or winpcap [3] (windows version of libpcap). The libpcap layer
captures the packet from the wire and delivers it to the IDS. Nowadays the IDS
makes the interface card go to a stealth mode; in which the interface is not
assigned an ip-address and is therefore hidden from any other node on the
network.

Impact of High-speed networks on NIDS:
One common design goal that Intrusion detection systems have is that of real
time detection and notification [5] [4]. This means that the analysis of traffic is not
done offline but at real time. In offline Intrusion detection, network traffic data in
the form of TCPdump or other logs will be fed to the IDS at the end of the day or
in certain intervals. This makes the detection possible only after a significant
amount of time. The fact that NIDS operate in Fail-open mode makes it critical
that intrusive activities be detected as soon as possible and that appropriate
actions be taken. This motivates the need for real time intrusion detection
systems. However real time detection and notification is a challenge since NIDS
has to process all the packets that flow through the network and the computation
power has not kept pace with the increases in network bandwidth. A few factors
or points that are directly affected due to this are [6]:
1. Performance
 The performance of an Intrusion detection System is the rate at which audit
events are processed [6]. If performance falls below some predetermined level
then the IDS will not be able to keep up with the network traffic. In short, the
processing has to be ‘on the fly’ i.e. in the worst case the packet processing time
should be less than the inter packet arrival time.
2. Completeness

This point refers to the functionality of the IDS, the size of the signature
database etc. It is very important that the NIDS perform basic functions like IP
fragmentation reassembly and TCP stream reassembly. Also the status of ths
signature database is very important. It has to be updated regularly and quickly
as a new attack signatures are published.
 It can be noted that the above two points are difficult to attain simultaneously.
When complete coverage and analysis is done, the processing time increases
and performance is affected and vice versa. Completeness should not be
compromised when you aim for high-speed network intrusion detection.

Consequence of low performance:
When the IDS is not able to keep up with the traffic, it starts dropping packets,
resulting in missing attacks; thereby defeating the very purpose why IDS was
used. One could argue that although the IDS may drop packets it need not drop
packets when attack happens (i.e. miss attacks) but, the fact that the probability
of missing attacks is non-zero itself is bad. Moreover the attacker knowing this
weakness of IDS can plan his attack such that in the first phase of attack he

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

overloads the IDS to a point where it starts dropping packets and then sneak in
and attack.

From reports like IDS Group tests from NSS [7] and Network Computing
[8] we see that even the best of NIDS doesn’t fare well when tested under
performance load tests especially with small packets (64 bytes). They started
dropping packets at traffic loads lower than 100Mbps. As the report from Network
Computing [8] mentions not many IDSs give out information about whether they
are dropping packets, which is even worse.

Bottlenecks:
 Having seen that IDSs do not perform well at heavy traffic loads and miss
attacks, lets try to consider what are all the issues or performance bottlenecks
that the current IDSs have. Some might be general and the others specific to
some IDS.
1. Processor speed
Intrusion detection on Gigabit networks would have been a piece of cake if we
had processors with an infinite processing capability. The rate at which processor
speed increases is lower than the rate at which networking rates are increasing
[12] [1].
2. Libpcap – packet capture mechanism
Neil Desai in his paper [10] describes libpcap to be one of the main bottlenecks
that the IDS (specifically Snort) is facing. As Neil Desai [Ref] points out; going for
an OS specific and NIC specific libpcap would be more efficient but then
portability is affected. There is a compromise involved.
 The libpcap provides system independence by hiding the different raw
packet capture mechanisms on different flavors of UNIX. And different flavors of
Unix OSs have different packet capture mechanisms and hence different rate at
which they can capture. Most of them require copying the data from kernel space
to user space. Operating systems like *BSD use BPF (BSD packet filter) [Ref]
which avoids this. Similarly Linux 2.4.x kernel also uses memory-mapped
mechanism to overcome this extra copying.
3. String / Pattern matching algorithms
This can be a bottleneck especially when the IDS tends to be a signature based
IDS [10]. Snort [5] as mentioned above is a signature based IDS. 1086 out of
1270 rules in the signature base involves some kind of string/pattern matching.
For such IDS it is imperative that the string/pattern matching be as fast as to
satisfy the on the processing rule.
4. Increasing signature database
As new attacks are discovered almost everyday, new signatures are added into
the database. It also means that for each packet, the IDS will need to do more
analysis. This again increases the load on the IDS.
5. Poor performing platforms
IDS Group tests [7] mention a specific platform, which they found to be poorly
performing. According to them:
During testing we noticed significant problems under Red Hat Linux (both 6.2 and
7.1) when using 3Com 3C905 network cards, where the driver appeared to be

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

overwhelmed at 100 per cent network loads thus preventing the IDS sensor from
detecting attacks. This effect was not limited to any one IDS product, and even
occurred when using tcpdump with the interface in promiscuous mode. There is
clearly a problem somewhere in the chain of network card – driver – packet
capture library, which were unable to resolve in the time available to us. For now,
therefore, we could not recommend this combination of OS and network card as
a platform for any IDS system.

6. IDS specific issues
There can be IDS specific issues that might be a bottleneck for it. We discuss
two cases of open source IDS.
Case 1: Consider Bro, an open source NIDS from Berkeley labs developed by
Vern Paxson [4]. The IDS has an Event engine over the libpcap layer and above
the Event engine is a policy interpreter. The Event engine generates events for
different network events like tcp_connection_established and the policy script
has handlers for each such event. Vern mentions [4] that the interpretive
overhead is indeed significant and plans to develop a compiler for the same. At
heavy loads if the interpreting cannot be done fast enough the on the fly
processing requirement is not satisfied and will lead to dropped packets.
Case 2: Consider Snort, another open source NIDS by Martin Roesch. Neil Desai
discusses the main bottlenecks of Snort in his paper [Neil]. Listing them again
they are:

1. Libpcap (discussed above)
2. String matching algorithm.
3. Clearing out data structures.
4. Checksum verification.

Approaches / Solutions:
This section discusses the different approaches or solutions for the above
mentioned bottlenecks, which will push the IDS to higher and higher traffic loads.

1. Load balancing:

The load balancing approach tries to solve the problem of IDS in high-speed
networks by balancing the load among different sensors. The division of labor
can be done based on a)Protocol b) destination subnet ip address.

Different sensors can analyze traffic of different protocols like HTTP, UDP,
TCP, ICMP etc. For example, one sensor can be dedicated for HTTP alone;
another sensor can analyze UDP and ICMP and yet another one can analyze
TCP traffic other than HTTP. This division can be done easily by configuring the
libpcap filters on each of the sensors appropriately. The approach depends on
the ability to divide the network traffic among the different sensors in a
meaningful way, which can be another challenge. This approach would not work
well when the attack spans over different protocols and would require a
centralized analyzer to solve the problem.

The load balancing can also be based on the destination address.
Different sensors would be processing the subset of the traffic bound to a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

particular subnet and probably reporting to a central server. This is also called
the distributed approach. Note that an IDS watching a subnet’s traffic will be
overloaded if the traffic to that subnet constitutes the most of the traffic. (say
90%).
2. A Partitioning approach
This is a direct solution from the first bottleneck. Since Network speeds are
increasing faster than Processor speed, the Centralized solution has reached its
limits [Ref]. Kruegel and Giovanni [Ref] come up with a slicing or partitioning
approach for doing Intrusion detection on High-speed networks. As contrast to
Load balancing, the traffic is partitioned meaningfully to a distributed set of
sensors each assigned to a set of detection rules. The division of traffic has to be
so that it guarantees detection of all attack scenarios. This can also be looked
upon as a “divide and conquer” approach.
3. Sampling
When the IDS cannot process all the traffic on a high-speed network, it could do
statistical sampling of the traffic and process that sample. This is not a
dependable or attractive approach. Sampling is as bad as dropping. Although the
attacker cannot guess whether his packet will be processed by the IDS or not,
there is a non-negligible probability that the attacker can sneak in his attack
without getting noticed. So this solution is not acceptable.
4. Fixed snap-len approach:
In this approach the IDS captures only ‘N’ bytes of traffic off the wire and
analyzes that. The motivation for this approach is that a lot of attacks can be
detected just by analyzing the IP, TCP/UDP and higher layer protocol headers
which can be captured within, say, the first 100 bytes or so. As can be assumed
this will disable the IDS from attacks which need the bytes greater than 100.
5. Adaptive Intrusion detection.
This approach takes into account the various analysis tasks that an IDS does
and fixes priorities or values to them. Also benchmarking is done and the cost of
each analysis task is found. The main idea of this approach then, is to do the
most important tasks in the available ‘on the fly processing time’ (or inter packet
arrival time) mentioned in section 2. In other words, this approach tries to
maximize the value of the IDS at any operating conditions. This needs some
performance monitoring by the sensor itself. It should keep statistics like inter-
packet-arrival time, number of packets received/sec and number of packets
dropped/sec. Libpcap [Ref] the packet capture library provides APIs to get
number of packets dropped.
The philosophy of this approach is that more important analysis tasks should not
be at the mercy of less important tasks and should be given more priority.
6. ASICs / FPGAs
ASICs (or Application Specific Integrated Circuits) are used a lot nowadays to
create switches and routers. Research and work are in progress to make ASIC
based IDS too. That would be a very big step towards high-speed intrusion
detection. Research is also being done in order to use FPGA (Field
Programmable Gate Arrays) to assist IDS. David and Didier [Ref] talks about
performing Tcp-stream reassembly and state tracking using FPGA.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

Another interesting work is by Franklin, Carver and Hutchings [Ref] in which they
do FPGA based regular expression matching on bit streams. They based their
regular expression on the snort database. A JHDL based compiler extracts
regular expressions from snort database and make circuits that do the matching.
FPGA acts as a co-processor to offload pattern matching work from the main
processor doing the intrusion detection, thereby pushing the technology towards
higher and higher bandwidths.
7. Network processors.
Network processors are also new in the field of NIDS. Intel’s IXP 1200 network
processors are an example. The design goals of this Network processor [11]
included Intrusion detection on high-speed networks. The architecture of this
network processor shows that it is well suited for highly parallel computations. It
is equipped with six multithreaded, micro engines and a choice of Intel® Strong-
Arm* 166, 200, or 232 MHz processor core. One way to approach (based on
SNORT architecture) is to divide the different modules of the IDS on different
micro engines so as to do the processing of packets in a pipelined fashion. For
example, the modules can be packet capture, IP fragmentation reassembly, TCP
stream reassembly, other preprocessors and finally the detection engine. I am
part of the research team at Georgia Tech where we are implementing this
approach.
8. Better String matching algorithms:
Depending on the algorithm used, the number of signatures or rules which
involves pattern matching, it can become a bottleneck in IDS performance. To
lessen the impact of this effect, advanced algorithms should be used [10].

Conclusion:
This document discussed the various challenges that the network intrusion
detection systems faces with the ever increasing high speed networks. It also
discussed the various solutions / approaches available. Not any of the solution is
a panacea for the problem. Each approach has its own advantages/drawbacks
associated and is to be selected appropriately.

References:
[1]: Rules of thumb in data engineering – Jim Gray, Prashant Shenoy.
http://research.microsoft.com/~gray/papers/MS_TR_99_100_Rules_of_Thumb_i
n_Data_Engineering.pdf
[2]: S.McCanne, C. Leres and V.Jaconson. libpcap. ftp.ee.lbl.gov, 1994
[3]: Winpcap: http://winpcap.polito.it/contact.htm
[4]: V.Paxson. Bro: A system for detecting network intruders in real-time.
Computer Networks 99.
[5]: Martin Roesch. Snort - Lightweight Intrusion Detection for Networks. Usenix
Lisa 99’. http://www.snort.org/docs/lisapaper.txt
[6]: Practical security issues with high-speed networks. John velissarios. Price
water house coopers.
[7]: IDS Group Tests. http://www.nss.co.uk/ids/ids_edition_2.htm

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

[8]: G.Shipley and P.Mueller. Dragon claws its way to the top. Network
computing.http://www.networkcomputing.com/1217/1217f2.html
[9]:Increasing performance in High speed NIDS.-Neil Desai.
http://www.linuxsecurity.com/resource_files/intrusion_detection/Increasing_Perfor
mance_in_High_Speed_NIDS.pdf
[10]: Towards faster string matching for Intrusion detection – Coit, Staniford et. al.
http://www.silicondefense.com/software/acbm/speed_of_snort_03_16_2001.pdf
[11]: http://developer.intel.com/design/network/products/npfamily/ixp1200.htm
[12]: Beyond Moore's law: Internet growth trends, Roberts, L.G. IEEE Computer,
Vol.33, Iss.1, Jan 2000 Pages:117-119
[13] Stateful intrusion detection for high speed networks, Kruegel, Valeur, IEEE
Symposium on Security and Privacy May 12 - 15, 2002 California, P 285.

Part 2:

Detect #1: Load-balancing-device Probe matches Snort's NMAP rule

Trace Log:
[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
06/10-03:03:40.884488 64.152.70.68:80 -> 46.5.180.250:53
TCP TTL:49 TOS:0x0 ID:53592 IpLen:20 DgmLen:40
A* Seq: 0x200 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => arachnids 28]

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
06/10-03:03:40.884488 64.152.70.68:53 -> 46.5.180.250:53
TCP TTL:49 TOS:0x0 ID:53593 IpLen:20 DgmLen:40
A* Seq: 0x201 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => arachnids 28]

Source of the trace:
The trace file used was www.incidents.org/logs/Raw/2002.5.10. The file is in the
binary format or tcpdump readable format generated by a Snort IDS with
unknown ruleset.

Type of Event generator:
The above alert was generated when the trace file was processed by Snort IDS
version 1.9.0, with the stable rule set downloaded on Nov 12, 2002. The default
ruleset was used. All the preprocessors were enabled.
The variables EXTERNAL_NET and HOME_NET were set to 'any'.

Snort was run with the following options:
snort -r 2002.5.10 -c etc/snort.conf -l/LOGS/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

The alert was generated by the following snort rule in scan.rules -

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap
TCP";flags:A;ack:0; reference:arachnids,28; classtype:attempted-recon;
sid:628; rev:1;)

A brief description of the alert format is given below:
SCAN nmap TCP: This is the name of the alert.
Classification: Attempted Information Leak; Priority: 2

This is the importance associated with this particular
alert. The classification is done in the
classification.config file and this particular alert is
classified as attempted-recon, with priority-2

06/10-03:03:40.884488 Time at which the alert was generated and the packet
was logged into the trace file.

64.152.70.68:80 Source IP Address: Source port
46.5.180.250:53 Destination IP Address: Destination port
TCP Protocol
TTL: 49 Time to live. This IP header field is decremented at

each hop and the usual (recommended by RFC 1700)
value is 64. This implies the packet has made 15 hops
when the IDS processed it.

TOS:0x0 Type of Service. 0 is default value.
ID: 53593 Identification number. This IP header value uniquely

identifies the IP datagram.
IpLen: 20 IP Header length. The default and min value is 20.
DgmLen:40 Total length of the IP datagram.
A* represents the FLAGS field of the TCP header. Only

the ACK bit is set.
Seq: 0x201 TCP Sequence number
Ack: 0x0 TCP Acknowledgement number. It is unusual to have

ACK# 0 for a non-SYN tcp segment. (Discussed later)
Win: 0x578 TCP Window size
TcpLen: 20 Length of TCP headers

The IP datagram length is 40, IP Header length is 20,
TCP Hdr length is 20. There is no TCP payload.

Xref => arachnids 28 This is a reference o the corresponding alert entry in
Arachnids, an Intrusion Event database.

The hex dump of the concerned packets using tcpdump is shown below:

03:03:40.884488 64.152.70.68.http > 46.5.180.250.domain: . ack 0 win 1400
4500 0028 d158 0000 3106 54a2 4098 4644
2e05 b4fa 0050 0035 0000 0200 0000 0000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

5010 0578 4402 0000 0000 0000 0000

03:03:40.884488 64.152.70.68.domain > 46.5.180.250.domain: . ack 0 win 1400
4500 0028 d159 0000 3106 54a1 4098 4644
2e05 b4fa 0035 0035 0000 0201 0000 0000
5010 0578 441c 0000 0000 0000 0000

Investigation of the trace:
Normally, the ACK number of a TCP segment is 0 only for a SYN segment. The
subsequent segments will have the ACK number equal to the next expected
sequence number. There can be a valid case when the ACK number can be
zero, i.e. when the expected sequence number is in fact 0 due to wrapping of
sequence number space, but this is a rare case. The relevant parts from the RFC
793 are given below:

<snip>
Acknowledgment Number: 32 bits

 If the ACK control bit is set this field contains the value of the next sequence
number the sender of the segment is expecting to receive. Once a connection is
established this is always sent.
 Please note in the following that all arithmetic on sequence numbers,
acknowledgment numbers, windows, et cetera, is modulo 2**32 the size of the
sequence number space. Also note that "=<" means less than or equal to
(modulo 2**32).
<snip>

In such a case, the ISN (Initial sequence number) will be near 2**32-1 and when
(2**32-1)-ISN bytes are transferred, there can be an ACK segment ack-ing with
an acknowledgement number=0. This means that the next sequence number
expected is 0. The probability is quite low for this case.
Besides, it can be noted that both the packets have consecutive sequence
numbers. The sequence numbers of the packets can be noted to be consecutive.
Also, the values are too small for a 32 bit sequence number field.
 The IP header ID fields of both the packets are also consecutive. It seems
that the application that crafted the packets just incremented the Seq num and
the ID fields by one.
The above packets, most probably, are crafted and do not belong to an
established TCP session. This could be confirmed by analyzing:
• whether the target replies with a RST segment.
• whether the 3 way handshake has already been established.

But the trace file does not contain enough information for confirming these. The
trace file was generated by a Snort IDS with unknown ruleset. Only the packets
that caused alerts were logged. Especially complete 3 way handshakes of TCP
connections were not present. (This was confirmed using the command -

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

tcpdump -r 2002.5.10 -n 'tcp[13]&0x7!=0'. No complete 3 way handshakes
were seen)
Such probes from the same source were seen repetitively over consecutive
day's log files. (See Appendix 3). All of them had the ACK number = 0; therefore
it looks very likely that these are crafted packets which do not belong to any
established TCP sessions.

What can we conclude about the topology from the trace seen?
The TCP segments under consideration does not belong to an established
session, as discussed above, and would not pass through a stateful firewall.
Therefore, the firewall (if present) is a stateless one. Another possibility is that
the IDS is placed outside the firewall.

Description of attack:
'SCAN nmap TCP' alert is generated by Snort when it receives a TCP segment
with
• Only ACK bit set in the TCP Flags and
• The ACK number is 0.

According to information from Arachnids, this signature will only detect older
versions of NMAP that set the TCP ACK number to zero and also that the intent
of the packet is to check if a host is reachable. [1]

Such a scan can also be used to –
• Check the firewall configuration.
• Test whether the firewall is a stateful or stateless one.
• Check the unfiltered and filtered ports on the firewall.
• Check if the target is reachable (as mentioned above. ref: arachnids).
• Scan for DNS machines on the target network.

Only the ACK bit is set. So, if the firewall is stateless it would not be able to
distinguish this packet with another one of an established TCP connection. Such
firewalls make decision based on each individual packet without keeping any
state information. The packets are passed or dropped based on source and
destination ports (allowed / blocked services).
 The source ports of the packets are 53 and 80, respectively. This is a
usual method to bypass stateless firewalls. The NMAP tool from
www.insecure.org can be used to generate such a packet.

Nmap -g allows the attacker to specify a source port number that should be used.
Nmap -sA is used for performing an 'ACK scan'. Previous versions of NMAP
uses ACK# 0 while performing this scan.
The relevant section from NMAP man page is given in the Appendix section.

Attack Mechanism:
An ACK scan using low source ports! That was my first conclusion on seeing
this alert. But similar packets were quite frequent and had the same destination

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

IP address and port. There were no evident signs of scanning / reconnaissance
activity. Moreover, a reverse name lookup on the source IP address
provided proximitycheck2.allmusic.com. (Note the name - proximitycheck)
 I searched for related information on the web and found out that certain load
balancing boxes in fact does similar probing. Link Proof by Radware is such a
device. These boxes do such probing for performing traffic redirection and load
balancing. I contacted support engineer at Radware and got a document which
gave more insight - appnote-proxdet.pdf.
According to the document:

To measure, Radware will initiate the proximity detection probe by sending
several packets (upto 4) to the destination network and learning the hops and
latency based on the replies to the proximity detection probe. The proximity
probes are a combination of IP, TCP and application layer probes (such as TCP
ACKS and ICMP Echo Requests) to ensure accurate measurements. The reply
will either be a response to an ICMP Echo Request or an error message
generated by the remote network in response to the other proximity detection
probe packets.

However, the trace does not contain the ICMP Echo Requests and UDP
packets from the same source port and we can reason it because the IDS has
not logged those packets.

There are no signs of any scanning using such probes. It can be noted
that the destination IP address/port is constant, which is not the case with usual
scans. Moreover, the reverse DNS shows the source to be music.com and the
naming of the machines - proximitycheck1 and proximitycheck2 links the devices
to be some sort of load balancing devices.(refer section : Probability that the
address is spoofed). It may be considered as a false alarm since the signature is
matching an event, which is not exactly the event of interest. The packets are in
fact probes but with a different intent than the ACK scan (event of interest).
On the other hand, the firewall related information is obtained; i.e. whether the
firewall is stateful or not, whether firewall is open to port 53 and port 80. Even if
this probe was with non-malicious intent, a passive attacker (listening to the
network traffic) can get such information.

Probability that the address is spoofed:
Probably not.
This is a probe packet, and the source is most probably expecting a reply.
Therefore, the probability of the source IP address being spoofed is low.

Such probes from the same source IP were seen repetitively over consecutive
day's log files and the TTL values were the same (TTL:49) (See Appendix).

A reverse lookup on 64.152.70.68 gave the following:
% nslookup 64.152.70.68
Non-authoritative answer:
68.70.152.64.in-addr.arpa name = proximitycheck2.allmusic.com.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

A traceroute to 64.152.70.68 was done from http://www.above.net/

FROM www.above.net TO 64.152.70.68.
traceroute to 64.152.70.68 (64.152.70.68), 30 hops max, 40 byte packets
1 inside.fw1.sjc2.mfnx.net (208.184.213.129) 0.303 ms 0.247 ms 0.222 ms
2 99.ge2-0.er4b.sjc2.us.mfnx.net (64.124.216.11) 0.577 ms 0.367 ms 0.339 ms
3 so-4-2-2.mpr4.sjc2.us.mfnx.net (208.185.156.193) 0.526 ms 0.748 ms 0.544ms
4 pos6-0.mpr2.pao1.us.mfnx.net (208.185.175.162) 0.835 ms 0.819 ms 0.805ms
5 gigabitethernet6-0.edge1.paix-sjo1.Level3.net (209.245.146.157) 0.896 ms 0.843 ms
0.830 ms
6 GigabitEthernet3-1.core1.SanJose1.Level3.net (209.244.3.249) 1.194 ms 1.120 ms
1.139 ms
7 gige10-1.ipcolo3.SanJose1.Level3.net (64.159.2.105) 1.186 ms 1.198 ms 1.220 ms
8 proximitycheck2.allmusic.com (64.152.70.68) 5.558 ms 6.560 ms 4.535 ms

Similar alerts were found from the trace file for next day i.e.
www.incidents.org/logs/Raw/2002.5.11 and are given below:

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
06/11-07:12:31.894488 63.211.17.228:80 -> 46.5.180.250:53
TCP TTL:49 TOS:0x0 ID:12785 IpLen:20 DgmLen:40
A* Seq: 0x17A Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => arachnids 28]
[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
06/11-07:12:31.894488 63.211.17.228:53 -> 46.5.180.250:53
TCP TTL:49 TOS:0x0 ID:12786 IpLen:20 DgmLen:40
A* Seq: 0x17B Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => arachnids 28]

A traceroute to 63.211.17.228 from www.above.net gives:

FROM www.above.net TO 63.211.17.228.
traceroute to 63.211.17.228 (63.211.17.228), 30 hops max, 40 byte packets
1 inside.fw1.sjc2.mfnx.net (208.184.213.129) 0.294 ms 0.262 ms 0.216 ms
2 99.ge2-0.er4b.sjc2.us.mfnx.net (64.124.216.11) 0.350 ms 0.371 ms 0.333 ms
3 so-4-2-2.mpr4.sjc2.us.mfnx.net (208.185.156.193) 0.530 ms 0.511 ms 0.509ms
4 pos6-0.mpr2.pao1.us.mfnx.net (208.185.175.162) 2.393 ms 0.901 ms 0.801ms
5 gigabitethernet6-0.edge1.paix-sjo1.Level3.net (209.245.146.157) 0.894 ms 0.881 ms
3.495 ms
6 GigabitEthernet3-1.core1.SanJose1.Level3.net (209.244.3.249) 1.268 ms 1.104 ms
1.093 ms
7 ae0-56.mp2.SanJose1.Level3.net (64.159.2.161) 1.622 ms 1.656 ms 1.698 ms
8 so-0-1-0.mp2.Detroit1.Level3.net (64.159.0.198) 85.962 ms 85.998 ms86.04ms
9 gige9-1.hsipaccess1.Detroit1.Level3.net (64.159.0.210) 87.742 ms 86.056 ms87.07ms
10 proximitycheck1.allmusic.com (63.211.17.228) 88.698 ms 88.443 ms 90.33ms

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

Similar traffic from the same organization allmusic.com seems to have triggered
both the alerts.
 The nslookup/traceroutes give the names of the sources for the above alerts-
proximitycheck1 & proximitycheck2. Another point is that Link Proof by Radware
is a proximity detection device.

The document (appnote-proxdet.pdf) from Radware, in fact, mentions:
One way to minimize any client concern is to provide the Radware devices with a
DNS names such as proximity-device.company.com or quality-of-service-
device.company.com, or network-proximity-measuring-device.company.com.
Should a client detect the proximity probe, they may do a reverse DNS lookup
and then be informed of the nature and source of the probe.
All this suggests that the chances of the source address being spoofed is pretty
low.

Correlations:
A similar discussion can be found at Sans site [3]
Chris Brenton also has analyzed such scans which was seen at incidents.org [2]

Information regarding 64.152.70.68 from DShield.org :
IP Address: 64.152.70.68
HostName: proximitycheck2.allmusic.com
DShield Profile:
Country: US
Contact E-mail: spamtool@level3.com
Total Records against IP: 5717
Number of targets: 1279
Date Range: 2002-12-06 to 2002-12-06
Ports Attacked (up to 10): Port Attacks
53 14
37852 36

Evidence of active targeting:
It is clear that the probes are directed towards this particular machine. There is
no sign of any scanning. Both the packets (alerts) have destination port = 53.
However, But that does not prove that the target runs DNS server because the
source (load balancing device) does not expect a DNS server to run on the target
machine. It just needs a RST packet (if there is a DNS server) or an ICMP
destination unreachable, if there is no server listening on port 53.

Severity:
Severity = (Criticality + Lethality) - (System Countermeasures + Network
Countermeasures)

Criticality -

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

The target IP address has been sanitized by incidents.org.

The packets that caused the alerts had destination port = 53. But that does not
prove that the target runs DNS server because the source (load balancing
device) does not expect a DNS server to run on the target machine. It just needs
a RST packet (if there is a DNS server) or an ICMP destination unreachable, if
there is no server listening on port 53. But by analyzing the 2002.5.10, these
packets were seen:
01:57:49.484488 63.70.83.162.2329 > 46.5.180.250.http:
P 1539858796:1539858855(59) ack 3321212235 win 8760 (DF)
10:08:20.434488 208.62.40.112.3641 > 46.5.180.250.http:
P 2626429556:2626429615(59) ack 14123919 win 17520 (DF)

Also analyzing the 2002.5.11, these packets were seen:
11:15:26.564488 216.30.135.34.1095 > 46.5.180.250.domain:
P 3994613107:3994613135(28) ack 1030056136 win 32120
<nop,nop,timestamp 4493315 389937016> (DF)
11:20:38.264488 211.21.238.234.1026 > 46.5.180.250.domain:
P 1891915402:1891915430(28) ack 1349524697 win 32120
<nop,nop,timestamp 7390274 389968166> (DF)
14:10:36.244488 211.21.238.234.1027 > 46.5.180.250.domain:
P 4072701345:4072701373(28) ack 3525246507 win 32120
<nop,nop,timestamp 8410059 390988042> (DF)
14:18:46.814488 216.30.135.34.1110 > 46.5.180.250.domain:
P 2751539674:2751539702(28) ack 4034113541 win 32120
<nop,nop,timestamp 5593309 391037126> (DF)

The above trace shows packets destined to HTTP and DNS servers and seems
to be part of an established TCP session. However, the trace does not have the
traffic from the server back to the client. Therefore, with some uncertainty, we
can assume that the target is running DNS and HTTP, and might be an important
server. Therefore, criticality is given as 4.

Lethality:
The above alert is classified as false alarm and the alerts were found to be
probes from a load balancing device. Therefore, lethality is low.
Lethality = 1
System Countermeasures:
There is not much information about how well the particular host is patched.
System Countermeasures = 4
Network Countermeasures:
The network topology is unknown. If we assume that IDS was placed inside the
firewall, then the firewall is stateless and the ports 80 and 53 are open. (Because
otherwise the above probe would not have been detected in the first place).
It would be good to have a stateful firewall.
Network Countermeasures = 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

Severity = (4 + 1) - (4 + 1) = 0. Overall, the severity is low.

Defensive Recommendations:
The TCP nmap scans can be effectively blocked using a stateful firewall. Since
the particular packet does not belong to an established session it will be dropped
at the firewall.
The probes from the load balancing device (Link Proof) consisted of ICMP Echo
requests, TCP Ack probes and other UDP packets. The ICMP echo requests can
be blocked at the perimeter easily using a packet filter. A stateful firewall will be
useful in blocking TCP ACK probes and similar TCP packets that manipulate the
TCP flags to fool the perimeter defense.

Multiple choice question:
TCP ACK Scans can be used to
a) to get information about firewall configuration
b) crash vulnerable machines
c) hijack TCP sessions
d) buffer overflow
Answer: a

Reference:
[1] http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids28&view=event
[2] Email from Chris Brenton,
http://www.incidents.org/archives/intrusions/msg08129.html
[3] http://www.sans.org/y2k/031401.htm

Appendix-1: Answers to questions from intrusions@incidents.org
- what type of OS uses a default TTL of 64?
Linux, FreeBSDs use a default ttl value of 64.

> What would you expect the TTL value to be if NMAP was run from
a Windows 2000/XP host?

Nmap run from windows uses different ttl values at different times.
Nmap older versions used default values (depending on OS) but
this provided some information leak about the scanner. This was fixed
and now it uses a random value per execution (between 37 and 64)

Appendix-2: Relevant section from NMAP man page:
<snip>
-sA ACK scan: This advanced method is usually used to map out firewall rule
sets. In particular, it can help determine whether a firewall is stateful or just a
simple packet filter that blocks incoming SYN packets. This scan type sends an
ACK packet (with random looking acknowledgement/ sequence numbers) to the
ports specified. If a RST comes back, the ports are classified as "unfiltered". If

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

nothing comes back (or if an ICMP unreachable is returned), the port is classified
as "filtered".

-g <portnumber>
Sets the source port number used in scans. Many naive firewall and packet filter
installations make an exception in their rule set to allow DNS (53) or FTP-DATA
(20) packets to come through and establish a connection. Obviously this
completely subverts the security advantages of the firewall since intruders can
just masquerade as FTP or DNS by modifying their source port. Obviously for a
UDP scan you should try 53 first and TCP scans should try 20 before 53.
<snip>

Appendix-3: Similar packets over consecutive days:
Similar traces/probes from the same destination IP address across
consecutive day's log files. Some snippets are shown below.

It can be noted that it occurs repeatedly over some irregular intervals.
According to the document appnote-proxdet.pdf from Link Proof -
Once the device knows the hops and latency between its network(s) and the
clients network, the best three contant delivery paths will be recorded in the
dynamic table. This data is stored in the dynamic table for an adminitratively
defined period of time. The repetitive probes may be due to expiry of entries in
such a dynamic table.
2002.5.10
03:03:40.884488 64.152.70.68.http > 46.5.180.250.domain: . ack 0 win 1400
03:03:40.884488 64.152.70.68.domain > 46.5.180.250.domain: . ack 0 win 1400
03:03:40.984488 63.211.17.228.http > 46.5.180.250.domain: . ack 0 win 1400
2002.5.11 :
07:12:31.894488 63.211.17.228.http > 46.5.180.250.domain: . ack 0 win 1400
07:12:31.894488 63.211.17.228.domain > 46.5.180.250.domain: . ack 0 win1400
07:12:32.004488 64.152.70.68.http > 46.5.180.250.domain: . ack 0 win 1400
2002.5.12:
10:52:24.684488 63.211.17.228.http > 46.5.180.250.domain: . ack 0 win 1400
10:52:24.694488 63.211.17.228.domain > 46.5.180.250.domain: . ack 0 win1400
10:52:24.914488 64.152.70.68.http > 46.5.180.250.domain: . ack 0 win 1400
<entries snipped due to space constraints>

Detect #2: Malformed IGMP packets

Trace Log:
[**] [1:527:3] BAD TRAFFIC same SRC/DST [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
11/08-10:52:39.026507 207.166.206.31 -> 207.166.206.31
PROTO002 TTL:47 TOS:0x0 ID:0 IpLen:20 DgmLen:28
[Xref => url www.cert.org/advisories/CA-1997-28.html]
[Xref => cve CVE-1999-0016]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

[**] [1:527:3] BAD TRAFFIC same SRC/DST [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
11/08-10:52:39.026507 207.166.206.26 -> 207.166.206.26
PROTO002 TTL:47 TOS:0x0 ID:0 IpLen:20 DgmLen:28
[Xref => url www.cert.org/advisories/CA-1997-28.html]
[Xref => cve CVE-1999-0016]

[**] [1:527:3] BAD TRAFFIC same SRC/DST [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
11/08-10:52:39.026507 207.166.206.37 -> 207.166.206.37
PROTO002 TTL:47 TOS:0x0 ID:0 IpLen:20 DgmLen:28
[Xref => url www.cert.org/advisories/CA-1997-28.html]
[Xref => cve CVE-1999-0016]

Source of the trace:
The trace file used was www.incidents.org/logs/Raw/2002.10.8
The file is in the binary format or tcpdump readable format generated by a Snort
IDS with unknown rule set.

Type of Event generator:
The above alert was generated when the trace file was processed by Snort IDS
version 1.9.0, with the stable rule set downloaded on Nov 12, 2002. The default
ruleset was used. All the preprocessors were enabled.
The variables EXTERNAL_NET and HOME_NET were set to 'any'. Snort was
run with the following options: snort -r 2002.10.8 -c etc/snort.conf -l/LOGS/
The alert was generated by the following snort rule in scan.rules -

alert ip any any -> any any (msg:"BAD TRAFFIC same SRC/DST";
 sameip; reference:cve,CVE-1999-0016;
reference:url,www.cert.org/advisories/CA-1997-28.html; classtype:bad-unknown;
sid:527; rev:3;)

A brief description of the alert format is given below: (based on the first alert)

BAD TRAFFIC same
SRC/DST

This is the name of the alert.

Classification: Potentially Bad Traffic; Priority: 2
This is the importance associated with this
particular alert. The classification is done in the
classification.config file and this particular alert is
classified as potentially bad traffic, with priority-2

11/08-10:52:39.026507 Time at which the alert was generated and the
packet was logged into the trace file.

207.166.206.31 Source IP Address
207.166.206.31 Destination IP Address
PROTO002 IGMP Protocol

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

TTL: 47 Time to live
This IP header field is decremented at each hop
and the usual (recommended by RFC 1700) value
is 64. This implies the packet has made 17 hops
when the IDS processed it.

TOS:0x0 Type of Service. 0 is default value.
ID: 0 Identification number

This IP header value uniquely identifies the IP
datagram.

IpLen: 20 IP Header length. The default and min value is 20.
DgmLen:28 Total length of the IP datagram.
Xref => url
www.cert.org/advisories
/CA-1997-28.html
Xref => cve CVE-1999-
0016

This is a reference to the corresponding alert entry
in cve.mitre.org, an Intrusion Event database.

Corresponding packet trace using tcpdump:

10:52:39.026507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60:
207.166.206.31 > 207.166.206.31: igmp query v2 [gaddr 240.0.1.168]
4500 001c 0000 0000 2f02 e2ec cfa6 ce1f
cfa6 ce1f 1164 fcf2 f000 01a8 0000 0000
0000 0000 0000 0000 0000 0000 0000

10:52:39.026507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60:
207.166.206.26 > 207.166.206.26: igmp query v2 [gaddr 240.0.1.163]
4500 001c 0000 0000 2f02 e2f6 cfa6 ce1a
cfa6 ce1a 1164 fcf7 f000 01a3 0000 0000
0000 0000 0000 0000 0000 0000 0000

10:52:39.026507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60:
207.166.206.37 > 207.166.206.37: igmp query v2 [gaddr 240.0.1.174]
4500 001c 0000 0000 2f02 e2e0 cfa6 ce25
cfa6 ce25 1164 fcec f000 01ae 0000 0000
0000 0000 0000 0000 0000 0000 0000

Tethereal dump:
Frame 1 (60 bytes on wire, 60 bytes captured)
 Arrival Time: Nov 8, 2002 10:52:39.026507000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:03:e3:d9:26:c0, Dst: 00:00:0c:04:b2:33
 Destination: 00:00:0c:04:b2:33 (00:00:0c:04:b2:33)
 Source: 00:03:e3:d9:26:c0 (00:03:e3:d9:26:c0)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

 Type: IP (0x0800)
 Trailer: 00000000000000000000000000000000...
Internet Protocol, Src Addr: 207.166.206.31 (207.166.206.31),
Dst Addr: 207.166.206.31 (207.166.206.31)
 Version: 4
 Header length: 20 bytes
 Total Length: 28
 Identification: 0x0000
 Flags: 0x00
 .0.. = Don't fragment: Not set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 47
 Protocol: IGMP (0x02)
 Header checksum: 0xe2ec (incorrect, should be 0x5054)
 Source: 207.166.206.31 (207.166.206.31)
 Destination: 207.166.206.31 (207.166.206.31)
Internet Group Management Protocol
 IGMP Version: 2
 Type: Membership Query (0x11)
 Max Response Time: 10.0 sec (0x64)
 Header checksum: 0xfcf2 (correct)
 Multicast Address: 240.0.1.168 (240.0.1.168)

Probability that the address is spoofed:
Very high. It can be noted that the source and destination IP addresses are the
same. This suggests that the source IP address has a very high chance of being
a spoofed one. Such a packet should never be seen on the wire.

Description of attack:
This can be classified as a DoS attempt using a malformed packet against hosts
which process IGMP. It is a network wide attempt. The tcpdump of the entire set
is given in the Appendix-1.
 The packet is a malformed IGMP Version: 2 Membership Query. The query
is for an invalid group address and if this is not correctly handled, it may cause
problems. However, there are no known vulnerabilities related to such a
malformed IGMP query. The tool used to craft this packet is not known.
 Moreover, the attack packets have same source and destination IP
addresses which is *similar* to the LAND attack signature. Land attack consists
of a TCP Syn packet with same source and destination IP address/port, and has
been known for a while and most of the systems do not have the LAND
vulnerability.
But there is no information with regards to this specific case; i.e. source and
destination IP are equal for an IGMP protocol. The attacker might be trying out
new ways to do Denial of service on remote machines.

As mentioned in a HACK FAQ at nmrc.org [1]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

5.6 How can I discover new DoS attacks?
New DoS attacks are fairly easy to discover. Flooding any service or system with
malformed or excessive packets and observing the behavior will tell you if you've
discovered something interesting.

Attack Mechanism:
The packets are malformed IGMP query packets. It is an IGMP group specific
query for an invalid multicast group (240.0.1.168). The relevant part from the
Tethereal dump is shown below:
Internet Group Management Protocol
 IGMP Version: 2
 Type: Membership Query (0x11)
 Max Response Time: 10.0 sec (0x64)
 Header checksum: 0xfcf2 (correct)
 Multicast Address: 240.0.1.168 (240.0.1.168)

It is a stimulus packet. Here, the attacker has used "unicast transmission" to
carry IGMP payload, which is unusual. The source IP is spoofed also; and is
same as the destination IP address. It will appear to the end host that the packet
originated from itself. The attacker does'nt expect any replies from the target; so
spoofing and hiding his identity (ip address) is logical. (This can be related to the
LAND attack, which is a TCP Syn packet with source IP address equals
destination IP address; and source port equals destination port.) Besides, serving
as a hiding method, having source IP equal to destination IP makes it appear to
the end host that the packet originated from itself. Since such packets are not
expected on the wire, there might be inconsistencies with hosts/routers in such
cases (for the specific case with IGMP protocol?). Usually, the destination IP
address for a IGMP group specific query is same as the group that is being
queried. However, IGMP v3 has mentioned that hosts should be lenient to
process even unicast packets reaching its interface.

A host must keep a table of all the groups that atleast one process belongs to,
and a reference count of the processes belonging to the group. When a group
specific query comes from a 'Querier' router, it sends a REPORT if it belongs to
the group. (after checking its internal table)
The RFC suggests that the host do some validation of the queries before
processing. RFC 2236 comments -
 "query received" occurs when the host receives either a valid General
Membership Query message, or a valid Group-Specific Membership Query
message. To be valid, the Query message must be at least 8 octets long, and
have a correct IGMP checksum. The group address in the IGMP header must
either be zero (a General Query) or a valid multicast group address (a Group-
Specific Query).
If the above validations are not performed, it might cause problems while
processing invalid requests, depending on implementation details of the IP/IGMP
stack. However, there is no known vulnerabilities related to this.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

Lets look into some more detail.
IGMP is used to manage multicast sessions and it is required to be implemented
by all hosts wishing to receive IP multicasts as part of the IP stack.
From RFC 2236, IGMP messages can be of 3 types -
1.Membership Query
This can be General query or a Group specific query. A general query sets the
group address field of IGMP message to 0; where as a group specific query sets
it to the address of the specific group.
2.Membership Report
3.Leave Group

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Max Resp Time | Checksum |
 +-+
 | Group Address |
 +-+

 Fig.1 IGMP Message format

The multicast address present in the query (240.0.1.168) is not a valid multicast
address. A valid multicast IP address lies in the class D range; i.e. 224.0.0.0 -
239.255.255.255

All the IGMP messages are send using multicasting, using the destination IP
address for the appropriate multicast group. The destination MAC address of the
message is also derived from the multicasting IP address.(shown below)

From RFC 2236:
 Message Type Destination Group
 ------------ -----------------
 General Query ALL-SYSTEMS (224.0.0.1)
 Group-Specific Query The group being queried

An example of a usual group specific query is as shown below. *Note* the
similarity in the destination IP address and the group address. This packet was
collected from a real network.

23:44:46.308414 128.61.136.2 > 239.255.255.250: igmp query v2
[max resp time 10] [gaddr 239.255.255.250] [tos 0xc0] [ttl 1]
 46c0 0020 0000 0000 0102 2bde 803d 8802
 efff fffa 9404 0000 110a fefa efff fffa
 0000 0000 0000 0000 0000 0000 0000

Another characteristic of a multicast packet is that the destination MAC address
is derived from the destination IP address as mentioned in RFC 1054:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

An IP host group address is mapped to an Ethernet multicast address by placing
the low-order 23-bits of the IP address into the low-order 23 bits of the Ethernet
multicast address 01-00-5E-00-00-00 (hex).

A valid ethernet address for a multicast packet should start with 01-00-5E. But, if
you look at the tcpdump in Appendix 1, all the malformed packets have
destination MAC 0:0:c:4:b2:33 which is incorrect. But, this is consistent with the
statement that the attacker is using unicast transmission for sending the
malformed IGMP to the target. The TTL value, discussed later, also supports
this.
Looking in general at the raw file, we see that all the packets have destination
MAC 0:3:e3:d9:26:c0 or 0:0:c:4:b2:33. This suggests that these are packets
collected from an Ethernet network between two routers / packet filters.
This was pointed out by another student for his GCIA submissions.
(Post by Freeland Chew on incidents mailing list on 12/8/2002)

Let's take a look at the TTL value of the malformed IGMP packets.

RFC 2236 describes IGMP and states -
 All IGMP messages described in this document are sent with IP TTL 1

TTL values is generally 1 for IGMP queries as well as other messages. This is
because these messages are meant to be inside that LAN.
- Besides using unicast ip addresses, the attacker has used a higher value to
make sure the packet reaches the target.
- Also, note that the IP identifier field is also 0 for all the packets. There is
enough data to conclude that the packets are crafted.

Correlations:
There were no CVE or Bugtraq references found.
Another student, Daniel Wesseman, has done analysis on the same/similar alerts
from incidents.org.

The attack bears similarity to the LAND attack as mentioned by the Snort alert.
The CVE reference for LAND attack is CVE-1999-0016. [2]
Malformed IGMP packets causing denial of service has occured previously and
can be found in the CVE database. CVE-1999-0918 - refers to DoS on Windows
systems using malformed fragmented IGMP packets.
CVE-2001-0796 - refers to DoS using malformed IGMP packets (with small
response delay/time). This affected SGI IRIX 6.5 and FreeBSD 3.0

Previous students have also explained malformed IGMP attacks.
Brent Deterding has analyzed fragmented IGMP or igmpnuke.
Buddy Smith has also analyzed fragmented IGMP attack.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

Evidence of active targeting:
Low.
As it can be seen from the tcpdump output (Appendix 1), it is a network wide
attempt. From the output it seems the malformed packets are sent to a random
subset of machines in each subnet. Also, considering the IP addresses are
sanitized, it is difficult to make any conclusions from looking at those IP
addresses.

Severity:
Severity = (Criticality + Lethality) - (System Countermeasures + Network
Countermeasures)

Criticality: 2
No information about the target is available. The attack spans a large portion of
the network. There is a chance that it hits valid hosts; servers or workstations.

Lethality: 1
There is no information regarding any similar vulnerability. Queries with invalid
group addresses do not cause any known problems. The Snort alert points to
LAND attack, but that vulnerability was based on a TCP Syn packet with same
source and destination IP addresses as well as ports. Vulnerabilities due to IP
addresses alone being the same is not known, but is surely invalid.

System Countermeasures: 3
Hosts those do not support multicasting will not process such a packet; and for
hosts that process such a packet, if they perform the checking suggested by the
RFC, it is fine. RFC 2236 says -
 "query received" occurs when the host receives either a valid
 General Membership Query message, or a valid Group-Specific
 Membership Query message. To be valid, the Query message must be
 at least 8 octets long, and have a correct IGMP checksum. The
 group address in the IGMP header must either be zero (a General
 Query) or a valid multicast group address (a Group-Specific Query).

However, there is no available information about whether any of the target
systems supports multicasting; or if they do the valid checking of the IGMP
queries received.

Network Countermeasures: 1
The firewall or the router did not block these malformed packets. However,
there is a Snort IDS running which logged alarms.

Severity = (2+1)-(3+1) = -1 (LOW)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

Defensive Recommendations:
Defenses can be implemented at different levels :
• The Hosts supporting multicasting should perform the validity checks

suggested by the RFC to make sure the query is valid. IGMP v3 also
recommends using IPSEC in Authentication Header mode to protect against
remote attacks by ensuring that IGMPv3 messages came from a system on
the LAN (or, more specifically, a system with the proper key).

• In addition the host on receiving a receiving an IGMP packet, should check
the MAC address. If it is not a multicast Ethernet address, i.e. with the prefix
01:00:5E, the host must drop the packet.

• Firewall can also be used to block/restrict IGMP messages, depending on the
need for your network applications.

Multiple choice question:
IGMP protocol is an integral part of which protocol -
a. TCP
b. UDP
c. IP
d. TFTP
Answer :c

Reference:
[1] http://www.nmrc.org/faqs/hackfaq/hackfaq-5.html
[2] www.cert.org/advisories/CA-1997-28.html

Appendix - 1

TCPDump of mal-formed IGMP packets.
It can be seen that it is a network wide attack. Snippets from logs of adjacent
days is shown below -
 /usr/sbin/tcpdump -n 'igmp' -e -r 2002.10.8
10:52:39.026507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.206.31 > 207.166.206.31:
igmp query v2 [gaddr 240.0.1.168]
10:52:39.026507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.206.26 > 207.166.206.26:
igmp query v2 [gaddr 240.0.1.163]
10:52:39.026507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.206.37 > 207.166.206.37:
igmp query v2 [gaddr 240.0.1.174]
10:52:39.036507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.207.45 > 207.166.207.45:
igmp query v2 [gaddr 240.0.1.184]
<snip>

marks% /usr/sbin/tcpdump -n 'igmp' -e -r 2002.10.9
02:55:34.036507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.199.38 > 207.166.199.38:
igmp query v2 [gaddr 240.0.0.231]
02:55:34.036507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.199.25 > 207.166.199.25:
igmp query v2 [gaddr 240.0.0.218]
02:55:34.036507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.199.32 > 207.166.199.32:
igmp query v2 [gaddr 240.0.0.225]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

02:55:34.036507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.200.47 > 207.166.200.47:
igmp query v2 [gaddr 240.0.0.242]
<snip>
 marks% /usr/sbin/tcpdump -n 'igmp' -e -r 2002.10.11
19:02:51.796507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.71.211 > 207.166.71.211:
igmp query v2 [gaddr 240.0.3.94]
19:02:51.796507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.71.199 > 207.166.71.199:
igmp query v2 [gaddr 240.0.3.82]
19:02:51.796507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.71.192 > 207.166.71.192:
igmp query v2 [gaddr 240.0.3.75]
<snip>
marks% /usr/sbin/tcpdump -n 'igmp' -e -r 2002.10.13
02:22:18.726507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.38.167 > 207.166.38.167:
igmp query v2 [gaddr 240.0.3.146]
02:22:18.726507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.38.172 > 207.166.38.172:
igmp query v2 [gaddr 240.0.3.151]
02:22:18.726507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 60: 207.166.38.177 > 207.166.38.177:
igmp query v2 [gaddr 240.0.3.156]
<snip>

Detect #3: Slapper worm

Trace Log:
Frame 1:
12:55:45.152257 00:05:00:d6:b8:80 00:08:20:db:1d:bc 0800 83: IP
(tos 0x0, ttl 45, length: 69) 210.70.60.99.1812 > MY.NET.0.0.1812:
[udp sum ok] [|radius] (DF)
 4500 0045 0000 4000 2d11 bc2f d246 3c63
 xxyy 0000 0714 0714 0031 6eb0 0000 0000
 0b53 0000 cc18 2522 2600 0000 d1d2 d020
 1d00 0000 55af 958a 0105 0000 0000 0000
 217a 0200 00
Frame 2:
11:13:44.536955 00:05:00:d6:b8:80 00:08:20:db:1d:bc 0800 70: IP
(tos 0x0, ttl 45, length: 56) 210.70.60.99.1812 > MY.NET.0.0.1812:
[udp sum ok] [|radius] (DF)
 4500 0038 0000 4000 2d11 bc3c d246 3c63
 xxyy 0000 0714 0714 0024 8875 0000 0000
 8bff 0000 7cd0 5abf 7400 0000 0000 0000
 0000 0000 0000 0000

A more detailed Tethereal dump of the packets is given in the Appendix-1.

Source of the trace:
The trace was obtained from the campus network.

Type of Event generator:
TCPDUMP was used to capture/display the above packets.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

Explanation for the above format (based on Frame 1) :

12:55:45.152257 Time the packet was captured
00:05:00:d6:b8:80 Source MAC address
00:08:20:db:1d:bc Destination MAC address
0800 Layer 3 protocol = IP
83 Frame length
tos 0x0 Type of service
ttl 45 Time to live
Length: 69 Length of the IP datagram
210.70.60.99 Source IP address
1812 Source port
MY.NET.0.0 Destination IP address
1812 destination port
UDP sum ok Verification of UDP checksum
[|radius] Radius - UDP port 1812 corresponds to the RADIUS protocol
(DF) Don’t fragment

The DF flag of the IP header is set.

Some observances and points:
• TTL is 45. Seems like the source uses a default TTL value of 64 and the

datagram has made 19 hops, when it was captured. Linux, FreeBSDs use a
default ttl value of 64.

• IP Identification number is 0. RFC 791 says - "The identification field is used
to distinguish the fragments of one datagram from those of another." The
document seems to indicate ID value's usage primarily for Fragmentation
only.

 TCP IP Illustrated Vol1 - Richard Stevens quotes - The identification field
uniquely identifies each datagram sent by a host.
The Article - http://www.sys-security.com/archive/bugtraq/ofirarkin2002-02.txt
discusses this more and points out that Linux kernel uses ID = 0 in many cases,
especially when DF is set. Later we will confirm that the source has Linux on it.

• Source and destination ports is 1812
 RADIUS - Remote Authentication Dial-In User Service uses UDP protocol and
port 1812. It is not unusual to have both source and destination ports 1812 but if
we interpret the UDP payload, using the RADIUS packet format (Appendix - 3)
we find out that Code = 0, Identifier = 0, Length = 0. This is unusual.
 The minimum length is 20 and maximum length is 4096 for a RADIUS payload,
and valid RADIUS codes are also given in appendix - 4. This points that this is an
invalid packet. Later, we show that these packets belong to Slapper worm.

• Destination IP address - MY.NET.0.0
 It can be noted that the host portion of the ip address is 0, which is unusual.
However, RFC 1122 points out –

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

There is a class of hosts (4.2BSD UNIX and its derivatives, but not 4.3BSD) that
use non-standard broadcast address forms, substituting 0 for -1. All hosts
SHOULD recognize and accept any of these non-standard broadcast addresses
as the destination address of an incoming datagram. A host MAY optionally have
a configuration option to choose the 0 or the -1 form of broadcast address, for
each physical interface, but this option SHOULD default to the standard (-1)
form.

• There was an interesting case that happened, although it doesn’t directly
 apply to the main analysis. TCPDUMP version that i was using (TCPDUMP
version 3.6.3) crashed when it was used to analyze the above packets. The
output looked like -

 12:55:45.152257 210.70.60.99.radius > MY.NET.0.0.radius: rad-#0 41 [id 0]
Attr[Term_action Term_action Term_action Term_action Term_action
Term_action Term_action Term_action Term_action Term_action Term_action
Term_action Term_action Term_action Term_action Term_action Term_action
Term_action

 It went to an infinite loop printing Term_action. The problem was related to a
TCPDUMP bug where a RADIUS packet with zero length would cause an infinite
loop. This happens only when you run TCPDUMP in display/interpreting mode. If
TCPDUMP is used just in capture mode (- w), this problem is not present. The
problem is corrected and is not present in the latest TCPDUMP version. The
CVS log for TCPDUMP explains it. (Appendix)
This kind of a packet could very well be used as a DoS attack against any
TCPDUMP listening on the network (in the display mode). A related attack is
analyzed by Mark Cooper - GCIA 143.

Description of attack:
This is from a variant of the slapper worm - Slapper variant C2. The worm mainly
affects Linux systems with Apache with mod_ssl installation having vulnerable
OpenSSl libraries.
The worm apart from spreading itself to other vulnerable systems creates a peer
to peer network of infected machines and makes it possible to do different types
of Distributed-Denial-of-service attacks. Slapper worms exchange different
messages; and the packets that is analyzed in this document belongs to that
type. A brief description of Slapper C2 can be found at
http://isc.incidents.org/analysis.html?id=175

Other versions differ slightly and the respective descriptions can be found at -
Slapper A: http://isc.incidents.org/analysis.html?id=167
Slapper B: http://isc.incidents.org/analysis.html?id=172
Slapper C: http://isc.incidents.org/analysis.html?id=173

The source code of the worm lists the systems that it targets -

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

{"Gentoo", "", 0x08086c34}, {"Debian", "1.3.26", 0x080863cc},
{"Red-Hat", "1.3.6", 0x080707ec},{"Red-Hat", "1.3.9", 0x0808ccc4},
{"Red-Hat", "1.3.12", 0x0808f614},{"Red-Hat", "1.3.12", 0x0809251c},
{"Red-Hat", "1.3.19", 0x0809af8c},{"Red-Hat", "1.3.20", 0x080994d4},
{"Red-Hat", "1.3.26", 0x08161c14},{"Red-Hat", "1.3.23", 0x0808528c},
{"Red-Hat", "1.3.22", 0x0808400c},{"SuSE", "1.3.12", 0x0809f54c},
{"SuSE", "1.3.17", 0x08099984},{"SuSE", "1.3.19", 0x08099ec8},
{"SuSE", "1.3.20", 0x08099da8},{"SuSE", "1.3.23", 0x08086168},
{"SuSE", "1.3.23", 0x080861c8},{"Mandrake", "1.3.14", 0x0809d6c4},
{"Mandrake", "1.3.19", 0x0809ea98},{"Mandrake", "1.3.20", 0x0809e97c},
{"Mandrake", "1.3.23", 0x08086580},{"Slackware", "1.3.26", 0x083d37fc},
{"Slackware", "1.3.26",0x080b2100}

Attack Mechanism:
The Slapper worm works in stages. The Infection stage involves scanning for
vulnerable machines, exploiting and spreading the worm. Once the worm is
passed and the target is infected, it spreads again and so on. Meanwhile, the
infected machines create a peer to peer network of infected machines,
exchanging information and messages.
The packets under consideration do not belong to the infection stage, but rather
a worm on an infected machine is trying to exchange information to already
compromised machines.

• Is it a stimulus or response? This is a stimulus packet.
• Affected Service: Slapper worm basically targets Web servers (Apache/Linux)

with vulnerable OpenSSL libraries.
• Known Vulnerabilities/Exposures: All the machines in the target network are

known to be well patched.
• Attack Intent: An instance of the worm is trying to send/exchange information

to other infected machines or peers.

Let's analyze the packets a bit more.
Since the packets we are analyzing concerns the worm's communication part
and not the infection part, the infection part is not discussed. Please find that at
the links mentioned in the previous section.

Once the worm has infected a target, it exchanges information with other infected
machines. There are different messages that can be exchanged. All the
messages have the following format:
Each message has a low level header (llheader) and record(s)
- The llheader has type, checksum and id.
- Records - these can be different types of records like route records or list
records etc
Each of these records start with a header
 - tag
 - id

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

 - len
 - seq
Different messages are identified by different tags as below -
known 'Tags' (from http://isc.incidents.org/analysis.html?id=167)

0x20: 'Info' 0x21: 'Open a bounce' 0x22: 'Close a bounce'
0x23: 'Send a message to bounce' 0x24: 'run a command' 0x25: not used
0x26: 'route' 0x27: not used 0x28: 'List'
0x29: 'UDP Flood' 0x2A: 'TCP Flood' 0x2B: 'IPv6 TCP Flood'
0x2C: 'DNS Flood' 0x2D: 'Email Scan' 0x41-0x47: 'Relay to Client'
0x70: 'Incoming Client' 0x71: 'Recieve the List' 0x72: 'Send the list'
0x73: 'Get my IP' 0x74: 'Transmit their IP'

Trying to understand the worm payload of Frame - 1, according to the above
headers structure -
0000 0000 0b53 0000 cc18 2522 2600 0000
Type Checksum Id Tag
d1d2 d020 1d00 0000 55af 958a 01 05
id Len seq sync Hops

This message has a tag = 0x26, which means a route message. This probably
contains some information about routing and has some metric 'hop with value 5.

Trying to understand the udp payload of Frame - 2, according to the above
headers -
0000 0000 8bff 0000 7cd0 5abf 7400 0000
Type Checksum Id Tag
0000 0000 0000 0000 0000 0000
id Len seq

This message has a tag = 0x74, and is sent when the worm on an infected
machine does'nt know it's own IP.

Probability that the address is spoofed:

The packets being UDP packets and used for peer to peer messaging makes it a
candidate for spoofing. But, apparently, the chances of spoofing are low.

1. The source IP address, 210.70.60.99, seems to be running vulnerable
OpenSSL version (ref: http://www.openssl.org/news/secadv_20020730.txt) and
also hosts Apache on Linux platform. So, the source is most probably an infected
machine (and is not spoofing its address).

% telnet 210.70.60.99 80
Trying 210.70.60.99...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

Connected to 210.70.60.99.
Escape character is '^]'.
HEAD / HTTP/1.1
Host: MY.NET.16.55

HTTP/1.1 200 OK
Date: Tue, 14 Jan 2003 05:47:34 GMT
Server: Apache/1.3.23 (Unix) (Red-Hat/Linux) mod_python/2.7.6
Python/1.5.2 mod_ssl/2.8.7 OpenSSL/0.9.6b DAV/1.0.3 PHP/4.1.2
mod_perl/1.26 mod_throttle/3.1.2
Last-Modified: Thu, 26 Dec 2002 07:50:20 GMT
ETag: "11b8fd-4a31-3e0ab4bc"
Accept-Ranges: bytes
Content-Length: 18993
Connection: close
Content-Type: text/html

2. Both the packets have the same IP address and same TTL value also. This
strengthens the fact that the IP is not spoofed.
3. A traceroute to 210.70.60.99 is given below. Note the number of hops,19,
which is consistent with the TTL value of the packets (49), assuming a default of
64 as used by Linux.

% /usr/sbin/traceroute 210.70.60.99
traceroute to 210.70.60.99 (210.70.60.99), 30 hops max, 38 byte packets
 1 cc-cisco1-MY.NET (MY.NET.XX.1) 0.265 ms 0.215 ms 0.168 ms
 2 gateway2-MY.NET (MY.NET.YY.1) 0.216 ms 0.188 ms 0.191 ms
 3 sox-gw2-rtr.sox.MY.NET1 (MY.NET1.194.5) 0.657 ms 0.720 ms 0.582 ms
 4 atla.abilene.sox.net (199.77.193.10) 0.579 ms 0.632 ms 0.550 ms
 5 iplsng-atla.abilene.ucaid.edu (198.32.8.79) 10.598 ms 10.588 ms 10.593 ms
 6 kscyng-iplsng.abilene.ucaid.edu (198.32.8.81) 19.871 ms 33.154 ms 19.928 ms
 7 dnvr-kscy.abilene.ucaid.edu (198.32.8.13) 30.426 ms 30.448 ms 30.741 ms
 8 dnvrng-dnvr.abilene.ucaid.edu (198.32.11.110) 30.484 ms 39.435 ms 40.276 ms
 9 sttlng-dnvrng.abilene.ucaid.edu (198.32.8.49) 58.951 ms 58.984 ms 58.877 ms
10 TANET2-PWAVE.pnw-gigapop.net (198.32.170.42) 59.368 ms 59.024 ms 59.07ms
11 210.200.35.10 (210.200.35.10) 235.229 ms 235.662 ms 234.887 ms
12 tanet2-tanet.tanet2.net.tw (210.200.33.2) 235.836 ms 235.563 ms 236.455 ms
13 203.72.43.205 (203.72.43.205) 235.819 ms 235.759 ms 236.068 ms
14 140.111.230.253 (140.111.230.253) 240.556 ms 237.297 ms 236.963 ms
15 140.111.255.6 (140.111.255.6) 241.672 ms 239.421 ms 259.221 ms
16 210.240.0.254 (210.240.0.254) 239.611 ms 246.607 ms 240.983 ms
17 210.240.0.250 (210.240.0.250) 244.881 ms 357.911 ms 241.373 ms
18 210.240.0.26 (210.240.0.26) 272.160 ms 264.247 ms 252.010 ms
19 pc99.klcivs.kl.edu.tw (210.70.60.99) 358.892 ms 259.439 ms 254.195 ms

4. The source code of the worm also doesn’t contain any indications of spoofing
being done.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

Correlations:
1. A query to dshield.org gave -

 IP Address: 210.70.60.99
 HostName: pc99.klcivs.kl.edu.tw
 DShield Profile:
 Country:
 Contact E-mail:
 Total Records against IP: 4
 Number of targets: 4
 Date Range: 2003-01-14 to 2003-01-14
 Ports Attacked (up to 10):
 Port Attacks
 1812 1
 80 2

 Fightback: not sent
 Whois: inetnum: 210.70.0.0 - 210.71.127.255
 netname: TANET
 country: TW
 descr: Taiwan Academic Network
 admin_c: CY1-TW
 tech_c: ZL1-TW
 mnt_by: MAINT-TWNIC-NS
 changed: snw@www.edu.tw 980908
 status: ALLOCATED PORTABLE
 source: APNIC
 start: 3527802880
 end: 3527901183
 diff: 98303
 person: Zi-Di Liu
 address: Taiwan Network Information Center
 Computer Center, Ministry of Education
 12th Fl, No. 106 Section 2, Hoping EastRd.
 Taipei
 TW

2. A sample detect of a Slapper version C worm's communication packet was
given at incidents.org [1] (Appendix 3). Note the similarity in the UDP payload.
That is also one containing the 'Route' Tag.

3. Another student, Edward W Ray, has submitted an analysis on Slapper worm
detect. His analysis focuses on the scanning and the infection part.

Evidence of active targeting:
Low.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

In this case, the worm is trying to communicate with other infected hosts in a
random fashion. No signs of active targeting.

Severity:
Severity = (Criticality + Lethality) - (System Countermeasures + Network
Countermeasures)

Criticality: 2
The worm is trying to communicate with infected machines in the target network
at random.
Lethality: 4
The worm can potentially execute commands on the remote machine, if it can
connect with an already infected machine; and even coordinate for Distributed
DoS attacks.
System Countermeasures: 4
Since the campus network might have machines running vulnerable openssl with
apache/linux. I verified that the main webservers are well patched.
Network Countermeasures: 1
No firewall; IDS present.
Severity = (2+4)-(4+1) = 1 (Low)

Defensive Recommendations:

1. Keep web servers patched. (OpenSSL/Apache/Linux)
2. Block UDP port 1812 (RADIUS) outgoing and incoming
 Usually internal machines do not use external RADIUS servers and vice versa.
3. Routers/Firewalls can drop directed broadcasts.
4. TCPDUMP versions should be patched, if there is a need to use.
5. Keep IDS running and signatures updated.

 Snort rules had a rule for detecting Slapper worm communication as below -
 alert udp $EXTERNAL_NET 2002 -> $HTTP_SERVERS 2002 (msg:"MISC
slapper worm admin traffic"; content:"|0000 4500 0045 0000 4000|";
offset:0; depth:10; classtype:trojan-activity;
reference:url,www.cert.org/advisories/CA-2002-27.html;
reference:url,isc.incidents.org/analysis.html?id=167; sid:1889; rev:3;)
content:"|0000 4500 0045 0000 4000|" seems to be trying to match the initial part
of the IP header.

 For example, 4500 0045 0000 4000 is common in all the below packets taken
from the campus network here -

 15:50:16.522194 IP 64.152.195.131.1812 > MY.NET.0.0.1812: [|radius] (DF)
 4500 0045 0000 4000 2911 cabd 4098 c383
 xxyy 0000 0714 0714 0031 3195 0000 0000
 b2b8 0000 40fa f7e9 2600 0000 45c8 a22c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 34

 1d00 0000 3e10 f1c3 0105 0000 0000 0000
 ef78 0200 00

 Also, note the detect posted at http://isc.incidents.org/analysis.html?id=167
 (Appendix 2); having the 4500 0045 0000 4000. Note that Snort rule has a
small error in that a 0000 is extra. It should be corrected to content:"|4500 0045
0000 4000|". This rule also would be missing the worm packets which have size
other than 69 bytes. I have notified the snort-sigs mailing list for the change
needed.

Multiple choice question:
Slapper worm infects another vulnerable machine through -
a. UDP port 1812
b. TCP port 1812
c. TCP port 443
d. TCP port 80
Answer :c

Reference:
[1] http://isc.incidents.org/analysis.html?id=167

Appendix -1: Answers to questions from intrusions@incidents.org
1.Any special significance of this fact in this case? You seem to be using
 it to support the fact that the source of the packet is Linux. Is there
 anything else there?
No. It is an observation, which is used to support the statement that
the source m/c is Linux.

2.So why is worm sending the packet there, if there are no compromised
 machines?
 >* Attack Intent: An instance of the worm is trying to send/exchange
 > information to other infected machines or peers.
 So, is it "patched" or "infected" in this case?
I correct myself here. Since the campus network might have machines running
vulnerable openssl with apache/linux. I only checked if the main webservers are
well patched.

However, there was no slapper worm traffic outbound and also no slapper worm
traffic destined to specific machine (with unicast ip address); i.e. there was no
signs of compromised internal machines sending traffic outbound. (after
monitoring the traffic for long time)

The traffic I am analysing is destined to a broadcast address, MY.NET.0.0,
which is unusual for the worm's behaviour - The worm keeps a list of IP address (
corresponding to already compromised m/cs) and exchanges machines.
The trace would look like -

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 35

(from http://isc.incidents.org/analysis.html?id=167)

14:14:23.705193 IP ns.lingv.ro.2002 > xx.yy.116.27.2002
0x0000 4500 0045 0000 4000 2b11 b5e2 c1e6 2582 E..E..@.+.....%.
0x0010 yyxx 741b 07d2 07d2 0031 f1ce 0000 0000 yxt......1......
0x0020 91be 0000 2bf0 3863 2600 0000 1395 277b+.8c&.....'{
0x0030 1d00 0000 c1a1 8f5c 0105 0000 0000 0000\........
0x0040 9e2d 0000 00

-Note the unicast destination address.

In the considered case, it seems
- the worm is trying to send a broadcast message to a target network
 thereby reaching all the compromised m/cs, if any.
OR
- the worm somehow has a network entry (MY.NET.0.0) in the list it maintains.
According to rfc 1122, IP addresses are not permitted to have the
value 0 or -1 for any of the <Host-number>. Also, there is no host misconfigured
with this IP address.

Appendix – 2
Frame 1 (83 bytes on wire, 83 bytes captured)
 Arrival Time: Jan 8, 2003 12:55:45.152257000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 83 bytes
 Capture Length: 83 bytes
Ethernet II, Src: 00:05:00:d6:b8:80, Dst: 00:08:20:db:1d:bc
 Destination: 00:08:20:db:1d:bc (00:08:20:db:1d:bc)
 Source: 00:05:00:d6:b8:80 (00:05:00:d6:b8:80)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 210.70.60.99 (210.70.60.99), Dst Addr: MY.NET.0.0
(MY.NET.0.0)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 69
 Identification: 0x0000
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 45
 Protocol: UDP (0x11)
 Header checksum: 0xbc2f (correct)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 36

 Source: 210.70.60.99 (210.70.60.99)
 Destination: MY.NET.0.0 (MY.NET.0.0)
User Datagram Protocol, Src Port: 1812 (1812), Dst Port: 1812 (1812)
 Source port: 1812 (1812)
 Destination port: 1812 (1812)
 Length: 49
 Checksum: 0x6eb0 (correct)
Radius Protocol
 Code: Unknown (0)
 Packet identifier: 0x0 (0)
 Length: 0
 Authenticator

Frame 2 (70 bytes on wire, 70 bytes captured)
 Arrival Time: Jan 9, 2003 11:13:44.536955000
 Time delta from previous packet: 80279.384698000 seconds
 Time relative to first packet: 80279.384698000 seconds
 Frame Number: 2
 Packet Length: 70 bytes
 Capture Length: 70 bytes
Ethernet II, Src: 00:05:00:d6:b8:80, Dst: 00:08:20:db:1d:bc
 Destination: 00:08:20:db:1d:bc (00:08:20:db:1d:bc)
 Source: 00:05:00:d6:b8:80 (00:05:00:d6:b8:80)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 210.70.60.99 (210.70.60.99), Dst Addr: MY.NET.0.0
(MY.NET.0.0)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 56
 Identification: 0x0000
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 45
 Protocol: UDP (0x11)
 Header checksum: 0xbc3c (correct)
 Source: 210.70.60.99 (210.70.60.99)
 Destination: MY.NET.0.0 (MY.NET.0.0)
User Datagram Protocol, Src Port: 1812 (1812), Dst Port: 1812 (1812)
 Source port: 1812 (1812)
 Destination port: 1812 (1812)
 Length: 36
 Checksum: 0x8875 (correct)
Radius Protocol
 Code: Unknown (0)
 Packet identifier: 0x0 (0)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 37

 Length: 0
 Authenticator

Appendix – 3
14:14:23.705193 IP ns.lingv.ro.2002 > xx.yy.116.27.2002: type: 0
chksum: be91 id: 6338f02b | tag: 26 id: 7b279513 len: 29 seq:
5c8fa1c1 | route sync=1 hops=5 server=0 links=11678 [slapper]
(DF)
0x0000 4500 0045 0000 4000 2b11 b5e2 c1e6 2582 E..E..@.+.....%.
0x0010 yyxx 741b 07d2 07d2 0031 f1ce 0000 0000 yxt......1......
0x0020 91be 0000 2bf0 3863 2600 0000 1395 277b+.8c&.....'{
0x0030 1d00 0000 c1a1 8f5c 0105 0000 0000 0000\........
0x0040 9e2d 0000 00 .-...
14:14:23.733149 IP 217.167.206.74.2002 > xx.yy.116.27.2002: type:
0 chksum: c3 id: de43a4f1 | tag: 26 id: 613538b0 len: 29 seq:
4cf7e56f | route sync=1 hops=5 server=0 links=11692 [slapper]
(DF)
0x0000 4500 0045 0000 4000 2d11 f358 d9a7 ce4a E..E..@.-..X...J
0x0010 yyxx 741b 07d2 07d2 0031 6015 0000 0000 yxt......1`.....
0x0020 c300 0000 f1a4 43de 2600 0000 b038 3561C.&....85a
0x0030 1d00 0000 6fe5 f74c 0105 0000 0000 0000o..L........
0x0040 ac2d 0000 00

Appendix – 4: RADUIS Packet format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | |
 | Authenticator |
 | |
 | |
 +-+

Appendix – 5: RADIUS Codes (decimal) are assigned as follows:

1 Access-Request 2 Access-Accept
3 Access-Reject 4 Accounting-Request
5 Accounting-Response 11 Access-Challenge
12 Status-Server (experimental) 13 Status-Client (experimental)
255 Reserved

Appendix - 6
http://www.tcpdump.org/cvs-log/2002-01-21.10:16:48.html

File: tcpdump/print-radius.c
Revision: 1.7;
Date: 2001/06/18 09:16:28;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 38

Author: guy;
Lines: (+25 -6)

Description: Don't use "sizeof()" to find the minimum RADIUS
packet length (although, as it's a multiple of 4, it's probably
not a problem on the most common offender here, GCC-on-ARM).
Hand to the code that dissects RADIUS attributes, as the length
of the attributes, min(payload length, captured payload length, length from
header) minus the size of the fixed-length fields in the RADIUS packet.
When printing RADIUS attributes, quit if we find one with a zero length,
rather than looping infinitely.

Analyze This!

1. Executive Summary:

A security audit was performed as requested by the GIAC Institute based on the
alert, scan and OOS log files for the period Jan 16th – Jan 20 th 2003. The files
were downloaded from http://www.incidents.org/logs/ as per the requirement and
are listed in the next section. Various issues were identified and defensive
recommendations were made. Some important issues which require immediate
actions are listed below. Detailed analysis on top critical alerts as well as
suspicious internal hosts can be found in the later sections.

As a general rule, it is recommended that services on hosts, which are not
needed be turned off.

• A list of machines is provided in section 11- ‘Insight into certain insider

machines’. These machines need to be checked for potential compromise.
• Installing a state-ful firewall is recommended. If that is not possible according

to the university limitations, it is advised to have router access control lists or
packet filters restricting/blocking traffic on certain ports. For example, TFTP is
a non secure protocol and external machines should not be allowed to access
internal TFTP servers.

• Egress filtering is also recommended. There are instances where internal
hosts are suspected to have spoofed their IP addresses, which can be
prevented by blocking outbound packets with external source IP address.

• Some machines are found to be misconfigured with improper IP addresses.
They have used 192.0.0.0/24 address space instead of the private address
space- i.e. 192.168.0.0/16.

• It is also recommended to update IDS configurations so as to have better
detection.
1. For example, spp_frag2 preprocessor should be used in place of

spp_defrag in the snort. The later one is an obfuscated preprocessor with
limitations.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 39

2. Snort’s configuration should understand the private IP addresses as part
of HOME_NET so as to reduce the number of false alarms.

2. Files analyzed:

The files analyzed are given below. The files belong to the period from Jan 16th –
Jan 20th 2003. Note that 6 OOS files had to be analyzed to cover the time period.

alert.030116 scans.030116 OOS_Report_2003_01_16_30391.txt
alert.030117 scans.030117 OOS_Report_2003_01_17_22332.txt
alert.030118 scans.030118 OOS_Report_2003_01_18_6261.txt
alert.030119 scans.030119 OOS_Report_2003_01_19_19130.txt
alert.030120 scans.030120 OOS_Report_2003_01_20_10420.txt
 OOS_Report_2003_01_21_8590.txt

3. Host Profile:

The alert and OOS files contain logs with home IP address sanitized.
But scan files have not been sanitized. Comparing the corresponding logs across
the files, it can be noted that HOME NETWORK is 130.85/16.
 This section explains the host/IDS/firewalls profile gathered from
information available from the log files. A number of conclusions are made about
the topology of the Home network, configurations of Firewalls, IDSs, hosts, and
servers. This makes an important contribution towards the total analysis and
helps eliminate many false alarms.

1. Firewall:

Firewall is an important component of the network security framework of the
organization. There is no information whether a firewall is in place. In case
there is one, it is a stateless firewall.
It can be noticed that ‘NMAP TCP PING’ alerts are generated. For example,

01/18-20:55:48.582409 [**] NMAP TCP ping! [**] 61.144.229.242:80 -> MY.NET.146.47:80
01/18-20:55:53.242589 [**] NMAP TCP ping! [**] 210.22.4.18:80 -> MY.NET.146.47:80

The snort signature used for this alert might be:

alert tcp EXTERNAL_NET any -> MY.NET/16 any (flags: A; ack: 0; msg:”NMAP TCP ping!”;)

 The same or similar alert from the latest snort rule set is given below:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap TCP";flags:A;ack:0;
reference:arachnids,28; classtype:attempted-recon; sid:628; rev:1;)

The packets which trigger this alert, most probably, are not part of any
established tcp sessions. These packets seem to be part of an ACK scan
done using NMAP tool. Assuming the IDS that generated this alert is placed

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 40

inside the firewall/router; we can comment that the firewall is not a stateful
firewall.

Another point that can be noticed from the alerts/logs that NAT (Network
Address Translation) is being used. This is being done at the border router or
a firewall.
01/16-13:10:34.073147 [**] TCP SRC and DST outside network
[**] 192.168.0.147:1652 -> 216.49.88.100:80
01/16-13:11:05.636049 [**] TCP SRC and DST outside network
[**] 192.168.0.147:1653 -> 216.49.88.100:80
01/16-13:11:20.457685 [**] TCP SRC and DST outside network
[**] 192.168.0.147:1655 -> 207.217.120.137:110

2. IDS.

The log files analyzed are from Snort IDS, with a fairly standard (unknown)
rule base. The snort configuration has portscan, http_decode (and Unicode
analysis), fragmentation reassembly preprocessors turned on. The
HOME_NET variable is probably set to MY.NET/16. (130.85/16)

It can be noted that there are alerts private source/destination IP address
i.e. 192.168/16 or 10/8. This points that the IDS is placed inside the firewall or
router (possibly in the DMZ). However, the log files could have been from
multiple IDSs too.

3. From the log files, it is also possible to make a list of different servers – Web
server, mail server, DNS server, FTP server, which is useful for analysis
purpose.

The log files contain only alerts and not all packets seen on wire.
Therefore, it cannot be said whether a machine actually runs a particular
service from the alert in all cases. For e.g. From an alert, due to a SYN
packet to a certain service on a machine we may not conclude that the
machine does run that service; where as alerts which need an established
connection points out that the destination machines run the particular service.

 Alerts like “IIS Unicode attack detected” need an established TCP session;
 hence there is a high chance that the target m/c runs web server. Similarly,
 alerts which have source port 80 could be from a machine running httpserver.

Type Description
TFTP Servers • Usually listen on UDP port 69.

• Store router configuration files
• No authentication and hence less secure
MY.NET.111.219,MY.NET.111.231,MY.NET.111.230,MY.NET.111.235
MY.NET.111.232

Web Servers • Usually listen on tcp port 80
MY.NET.150.16, MY.NET.84.193, MY.NET.70.231,MY.NET.29.3,
MY.NET.179.77,MY.NET.157.52,MY.NET.70.207,MY.NET.168.140,
MY.NET.157.52,MY.NET.130.40,MY.NET.137.18,MY.NET.132.42,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 41

MY.NET.136.2,MY.NET.150.228,MY.NET.99.36,MY.NET.157.12
(All the 600+ are not shown here)

FTP Servers FTP uses port 21 (for the control messages)
MY.NET.140.3

DNS Servers DNS servers listen to TCP/UDP port 53.
MY.NET.137.7

Mail Servers SMTP uses port 25, IMAP uses 143 and POP uses 110.
SMTP: MY.NET.6.40, MY.NET.145.9, MY.NET.139.230,MY.NET.140.236
POP: MY.NET.70.50, MY.NET.70.49

LPR servers Line printer servers use tcp port 515.
MY.NET.132.42

4. Alert listing
The alerts files were analyzed using methods, which is described later. The table
below lists the different alerts that occurred during the period (Jan 16-20) and
their frequency.

A brief analysis/discussion on the most frequent 15 alerts is given. The
analysis addresses factors like chances that the alert is a false alarm, and
whether spoofing is involved, and the severity or importance of the alert.

Alert Frequency
1 High port 65535 tcp - possible Red Worm – traffic 67902
2 Watchlist 000220 IL-ISDNNET-990517 41781
3 Russia Dynamo - SANS Flash 28-jul-00 39207
4 SMB Name Wildcard 29382
5 TFTP - External UDP connection to internal tftp server 20698
6 spp_http_decode: IIS Unicode attack detected 17819
7 High port 65535 udp - possible Red Worm – traffic 4011
8 Incomplete Packet Fragments Discarded 2863
9 Possible trojan server activity 2688
10 spp_http_decode: CGI Null Byte attack detected 1900
11 EXPLOIT x86 NOOP 1757
12 IDS552/web-iis_IIS ISAPI Overflow ida nosize 1608
13 Queso fingerprint 1573
14 Watchlist 000222 NET-NCFC 1503
15 SUNRPC highport access! 1227
16 TCP SRC and DST outside network 906
17 Port 55850 tcp - Possible myserver activity - ref. 010313-1 389
18 Null scan! 365
19 External POP to HelpDesk MY.NET.70.49 349
20 IRC evil - running XDCC 334
21 TFTP - External TCP connection to internal tftp server 311
22 External POP to HelpDesk MY.NET.70.50 276
23 External RPC call 169
24 ICMP SRC and DST outside network 163

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 42

25 connect to 515 from inside 136
26 SMB C access 133
27 TFTP - Internal UDP connection to external tftp server 95
28 NMAP TCP ping! 87
29 EXPLOIT x86 setuid 0 62
30 EXPLOIT x86 setgid 0 50
31 Port 55850 udp - Possible myserver activity - ref. 010313-1 48
32 External FTP to HelpDesk MY.NET.70.49 24
33 External FTP to HelpDesk MY.NET.70.50 22
34 EXPLOIT x86 NOPS 21
35 Tiny Fragments – Possible Hostile Activity 18
36 connect to 515 from outside 14
37 PHF attempt 12
38 Attempted Sun RPC high port access 11
39 EXPLOIT NTPDX buffer overflow 9
40 DDOS shaft client to handler 7
41 TFTP - Internal TCP connection to external tftp server 6
42 HelpDesk MY.NET.83.197 to External FTP 6
43 External FTP to HelpDesk MY.NET.83.197 4
44 RFB - Possible WinVNC - 010708-1 3
45 Fragmentation Overflow Attack 2
46 EXPLOIT x86 stealth noop 2
47 SYN-FIN scan! 1
48 Probable NMAP fingerprint attempt 1
49 FTP DoS ftpd globbing 1
50 DOS Real Server template.html 1
51 Back Orifice 1

5. Detect analysis and correlations

Alert #1: High port 65535 tcp - possible Red Worm – traffic
Alert frequency – 67904 Category: Worm traffic

The Red worm or Adore worm exploits vulnerabilities in rpc.statd, bind, LPRng,
and wuftpd26. It creates a backdoor on the infected machines on TCP port
65535. It is explained by Anthony Dell in “Adore Worm – Another Mutation” [1].
The worm replaces the ‘Kernel Log Daemon’, klogd with another version which
implements a backdoor. This activates when it receives a ping with certain
number of bytes (77 bytes).The worm opens a shell on port 65535 and will be
used to transfer sensitive data like /etc/passwd or /etc/shadow
A snippet from “Adore Worm – Another Mutation” [1]:

The worm captures important system information, including userids and
running processes, and sends the information to two different e-mail
addresses (either adore9000@21cn.com and adore9000@sina.com, or

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 43

adore9001@21cn.com and adore9001@sina.com). This worm also randomly
generates the first two octets of an IP address and then scans that
entire subnet for any other vulnerable systems. Once the worm finds a
vulnerable system, it infects the new system and the worm propagates
again.

Besides red worm, TCP port 65535 is also associated with trojans RC1 and ICE.

The signature used for this detect is not present in the latest rule set of Snort.
The rule which triggered could have been as given below, described by Lorraine
Weaver [2].
alert TCP any any -> any 65535 (msg:"High port 65535 tcp - possible Red
Worm – traffic";)
alert TCP any 65535 -> any any (msg:"High port 65535 tcp - possible Red
Worm – traffic";)

Almost 20 internal machines seem to be potentially affected by the Red Worm.
The top 5 destinations (internal machines having backdoor port open) are given
below. All the affected machines and especially the ones below are to be
investigated further.

Top talkers (internal)
MY.NET.84.151 MY.NET.88.193 MY.NET.198.220 MY.NET.88.238 MY.NET.6.40

MY.NET.84.151
More than 130 IP addresses seem to be connecting to the backdoor on
MY.NET.84.151. The top 5 external IP’s connecting are:
IP Address Rev name lookups
217.136.73.54 54.73-136-217.adsl.skynet.be
62.147.242.129 lns-p19-25-62-147-242-129.adsl.proxad.net
80.200.147.156 156.147-200-80.adsl.skynet.be
217.225.205.66 pD9E1CD42.dip.t-dialin.net
212.95.85.172 ip-85-172.evc.net
MY.NET.84.151 was not involved in other alerts.

MY.NET.88.193
33 different source IP’s connect to the backdoor port (TCP 65535). The top 5 IP’s
involved and the reverse name lookups are:

IP Address Rev name lookups
81.48.122.172 AClermont-Ferrand-201-1-4-172.abo.wanadoo.fr
80.15.81.167 AClermont-Ferrand-201-1-3-167.abo.wanadoo.fr
62.212.112.98 chtiot.net2.nerim.net
81.50.44.197 AClermont-Ferrand-201-1-5-197.abo.wanadoo.fr
80.11.124.214 AClermont-Ferrand-201-1-1-214.abo.wanadoo.fr
MY.NET.88.193 was not involved in other alerts.

MY.NET.198.220

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 44

The alerts show that two machines, 217.136.153.233 and 80.200.147.21 actively
connecting (multiple connections) to tcp port 65535 on MY.NET.198.220.

IP address Rev Name lookups
217.136.153.233 233.153-136-217.adsl.skynet.be
80.200.147.21 21.147-200-80.adsl.skynet.be

MY.NET.198.220 was involved in the following alerts:
- Actively scanning external hosts for port 6667. IRC server listens to this port.
- 112 alerts: IRC evil - running XDCC [**] MY.NET.198.220:4772->Ext_addr:6667
- 113 alerts:
 EXPLOIT x86 NOOP [**] 24.189.153.176:port -> MY.NET.198.220:1070

MY.NET.6.40
MY.NET.6.40 seems to be an smtp server. It was involved in the following other
alerts:
• 578 alerts : Queso fingerprint (discussed later)
• 177 alerts: Watch list 000222 NET-NCFC
• 16 alerts: Null scan!
• 1 alert: NMAP TCP ping!
• Possible Trojan server activity
• Port 55850 tcp - Possible myserver activity - ref. 010313-1

Top talkers (external):
IP Address Rev name lookups
217.136.73.54 54.73-136-217.adsl.skynet.be
62.147.242.129 lns-p19-25-62-147-242-129.adsl.proxad.net
80.200.147.156 156.147-200-80.adsl.skynet.be
217.225.205.66 pD9E1CD42.dip.t-dialin.net
212.95.85.172 ip-85-172.evc.net

Correlations:
A previous candidate, Lorraine Weaver has covered this alert in the GCIA
practical [2].

Defensive recommendations:
• MY.NET.84.151, MY.NET.88.193 and MY.NET.70.176 need to investigate

further for potential worm infection.
• The patches for BIND, rpc.statd, LPRng, and wu-ftp vulnerabilities that this

worm exploits should be applied. They were released a long time back.

Reference:
[1] Adore Worm – Another Mutation - J. Anthony Dell
http://www.sans.org/rr/threats/mutation.php
[2] Lorraine Weaver. http://www.giac.org/practical/Lorraine_Weaver_GCIA.zip

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 45

Alert #2: Watchlist Alerts

Watch list 000220 IL-ISDNNET-990517 Alert-frequency : 41780

These alerts belong to watch list category. The purpose of these alerts is to
detect traffic from IP addresses belonging to the watch list. Suspicious or
blacklisted IP addresses are kept in the list.
Watch list 000220 IL-ISDNNET-990517 seems to be using 212.179/16 as the
suspicious set of IP addresses. The Snort rule used could be -

alert ip 212.179/16 any -> $HOME_NET any (msg:"Watch list 000220 IL-ISDNNET 990517";)

Information from Dshield.org:
inetnum: 212.179.0.0 - 212.179.255.255
netname: IL-ISDNNET-990517
descr: PROVIDER
descr: ISDNet LTD
country: IL

The reverse name lookups for the top talkers (5) are shown below.
Alert # IP Address Rev name lookups
16197 212.179.1.145 fr-c27145.kbm.org.il
5889 212.179.56.252 bzq-179-56-252.cust.bezeqint.net
4098 212.179.107.228 bzq-179-107-228.dcenter.bezeqint.net
3619 212.179.105.69 cablep-179-105-69.cablep.bezeqint.net
3581 212.179.98.160 cablep-179-98-160.cablep.bezeqint.net

The top destination ports for the alert are shown below:
Alert # Destination port
22345 1214
3790 2418
3606 4068
1964 3011
1425 1625

Watch list 000222 NET-NCFC Alert-frequency - 1503

Watch list 000222 NET-NCFC seems to be using 159.226/16 as the suspicious
set of IP addresses. ‘NCFC’ is the Net name for The Computer Network Center
Chinese Academy of Sciences. The Snort rule used could be -

alert ip 159.226/16 any -> $HOME_NET any (msg: "Watchlist 000222 NET-NCFC ";)

A lookup for 159.226.0.0 on www.arin.net gives:

OrgName: The Computer Network Center Chinese Academy of Sciences
OrgID: CNCCAS
NetRange: 159.226.0.0 - 159.226.255.255
CIDR: 159.226.0.0/16

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 46

NetName: NCFC

Alert# IP Address Description
452 159.226.119.3 MY.NET.153.143 seems to be accessing

159.226.119.3’s web service. The traffic is most
probably non malicious.

358 159.226.99.14 MY.NET.153.126 seems to be accessing
159.226.99.14’s web service. The traffic is most
probably non malicious.

156 159.226.39.166 MY.NET.87.123 seems to be accessing
159.226.39.166’s web service. The traffic is most
probably non malicious.

107 159.226.236.23 MY.NET.88.250 and MY.NET.110.168 seems to be
accessing 159.226.236.23’s web service. The
traffic is most probably non malicious.

76 159.226.120.14 159.226.120.14 is sending packets to smtp port on
MY.NET.6.40, which is one of the mail servers.
159.226.120.14 has name - mail.nigpas.ac.cn and
runs SMTP, IMAP4 and POP3. Most probably this is a
mail server. Traffic is most probably non
malicious.

Alert #3: Russia Dynamo - SANS Flash 28-jul-00
Alert-frequency – 39205 Category: Reconnaissance

This alert falls under the class of Watch list alerts. The signature was written to
trigger on seeing any incoming/outgoing packets from/to a suspicious network –
194.87.6/24 (dol.ru). The alert was triggered 39205 times and the entire set of
alerts was triggered from traffic between MY.NET.105.204: 4657 and
194.87.6.86: 2244. That is significant traffic and was exchanged over a period of
5 hours 35 minutes.
From the logs there is no information whether the packets are TCP or UDP.
The alert is most probably similar to:

alert IP $HOME_NET any -> 194.87.6.0/24 any (msg:”Russia Dynamo – SANS Flash 28-jul-00”;)
alert IP194.87.6.0/24 any -> $HOME_NET any (msg:”Russia Dynamo – SANS Flash 28-jul-00”;)

More investigation is recommended to verify whether MY.NET.105.204 is
compromised.
Summary of other alerts involving MY.NET.105.204:
• Alert files show that 130.13.105.43 had tried IIS Unicode attack on

MY.NET.105.204.
• MY.NET.105.204 has also triggered 3600+ ‘Watch list 000220 IL-ISDNNET-

990517’ alerts. This alert was explained in the previous section.

194.87.6.86 was resolved to 86.6.87.194.dynamic.dol.ru (Dshield.org)
Also from a sans “Detects analyzed” document [1], this site was involved in
malicious activity in the past.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 47

Correlations:
This alert was studied by the following students also in their practical:
Lorraine Weaver[2] and Brian Credeur[3].

Defensive recommendations:
Closely follow or completely block traffic to and fro 194.86/16 network addresses.

Reference:
[1] www.sans.org/y2k/072818.htm
[2] Lorraine Weaver. http://www.giac.org/practical/Lorraine_Weaver_GCIA.zip
[3] Brian_Credeur, www.giac.org/practical/Brian_Credeur_GCIA.doc

Alert #4:SMB Name Wildcard
Alert-frequency – 29382 Category: Reconnaissance

The latest snort ruleset does not have a rule for this alert. The signature used
may be similar as given below (this was obtained from a Google search.)

alert udp any any -> HOME_NET 137 (msg:"SMB Name Wildcard";
content:"CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|0000|";)

The signature is to detect ‘wildcard’ node status queries (or name query) on the
network. The attacker can get information about all the NetBIOS names, which is
there in the name table of the target. [1]

The part of RFC 1002 [2], which describes how a node status request is
shown. Note that a node status request with ‘*’ is processed.
NODE STATUS REQUEST:
 /*
 * Name of "*" may be used for force node to
 * divulge status for administrative purposes
 */
 IF name in local name table OR name = "*" THEN
 BEGIN
 /*
 * Build response packet and send to requestor node
 * Send only those names that are in the same scope
 * as the scope in the request packet.
 */
 send NODE STATUS RESPONSE;
 END

The attacker might be looking for machines with unprotected sharing on drives.
Besides, there are also worms which makes use of this method; for e.g. "911"
bat-chode virus/worm and network.vbs worm.

A good connection between the pattern
"CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|0000|" and SMB wildcard is
given by Judy Novak in the following document [6].

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 48

Repeating from the document,
When NetBIOS names are sent over the network, they are "mangled". What
happens with an nbstat query is that :
Each character in NetBIOS name is divided into two hex characters
Normally blank padded to 16 characters. Each hex character added to
ASCII value 0x41 (uppercase "A") Now, if a wildcard name is used "*"
(as is done with the nbtstat –A IP address command), the formula is a
little different:
Each character in NetBIOS name is divided into two hex characters
Null padded to 16 characters. Each hex character added to ASCII value
0x41 (uppercase "A"). The value of "*" in hex is 2A. So the formula is
as follows
2 A (divided into two hex characters)
2 A (null padded – no change)
 2 A
+ 41 41 41 41 41 41 41 41 41 41 41 41 41 41, etc.
--
 43 4B 41 41 41 41 41 41 41 41 41 41 41 41 - Hex result
 C K A A A A A A A A A A A A - ASCII result

Correlation:
Bryce Alexander has analyzed similar alert in his GCIA practicals.[4]
He has also posted a “honey pot” catch to GIAC.[5]

Top talkers:
192.168.5.2 61.144.129.210 200.204.181.16 219.65.193.96 217.97.64.149

192.168.5.2
192.168.5.2 seems to be an internal machine and there is no evidence of a scan
involved. Most probably this machine is involved in legitimate queries.

61.144.129.210
61.144.129.210 seems to be trying to get information using wildcard requests (*).
See the traffic pattern from 61.144.129.210 given below. The attacker seems to
be trying each IP address one by one as part of the reconnaissance.

01/17-07:51:00.686606 [**] SMB Name Wildcard [**] 61.144.129.210:1035 -> MY.NET.132.29:137
01/17-07:51:00.840997 [**] SMB Name Wildcard [**] 61.144.129.210:1035 -> MY.NET.132.30:137
01/17-07:51:00.988529 [**] SMB Name Wildcard [**] 61.144.129.210:1035 -> MY.NET.132.31:137
..
01/17-07:51:51.204424 [**] SMB Name Wildcard [**] 61.144.129.210:1035 -> MY.NET.133.43:137
01/17-07:51:51.361621 [**] SMB Name Wildcard [**] 61.144.129.210:1035 -> MY.NET.133.44:137
01/17-07:51:51.523226 [**] SMB Name Wildcard [**] 61.144.129.210:1035 -> MY.NET.133.45:137

These alerts can be correlated with 'SMB C access' alerts from the same source
IP address.
01/17-07:51:04.933227 [**] SMB C access [**] 61.144.129.210:4314 -> MY.NET.132.43:139
01/17-07:51:35.368758 [**] SMB C access [**] 61.144.129.210:4314 -> MY.NET.132.43:139
01/17-07:52:05.598991 [**] SMB C access [**] 61.144.129.210:4314 -> MY.NET.132.43:139

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 49

From the alerts it seems like MY.NET.132.43 responded to the initial probe and
the attacker followed up by trying to access/mount the C directory.

The above alert entries can be correlated with entries from scan file also.
It has been logged as a UDP scan.
Jan 17 07:51:51 61.144.129.210:1035 -> 130.85.133.42:137 UDP
Jan 17 07:51:51 61.144.129.210:1035 -> 130.85.133.43:137 UDP
Jan 17 07:51:51 61.144.129.210:1035 -> 130.85.133.44:137 UDP
Jan 17 07:51:51 61.144.129.210:1035 -> 130.85.133.45:137 UDP

A ‘whois’ lookup from dshield.org on 61.144.129.210 gave:

Whois: Inetnum: 61.144.0.0 - 61.144.255.255

netname: CHINANET-GD
country: CN
descr: CHINANET Guangdong province network

200.204.181.16
A snippet from the alerts:
01/17-18:50:27.173074 [**] SMB Name Wildcard [**] 200.204.181.16:1030 -> MY.NET.135.95:137
01/17-18:50:27.365311 [**] SMB Name Wildcard [**] 200.204.181.16:1030 -> MY.NET.135.96:137
01/17-18:50:27.502245 [**] SMB Name Wildcard [**] 200.204.181.16:1030 -> MY.NET.135.97:137
01/17-18:50:27.708274 [**] SMB Name Wildcard [**] 200.204.181.16:1030 -> MY.NET.135.98:137
01/17-18:50:27.841784 [**] SMB Name Wildcard [**] 200.204.181.16:1030 -> MY.NET.135.99:137
01/17-18:50:28.030840 [**] SMB Name Wildcard [**] 200.204.181.16:1030 -> MY.NET.135.100:137
..

Obviously, the source is doing a reconnaissance work here, trying the ‘wildcard
request’ on each machine on the target network.
A whois lookup on 200.204.181.16 at Dshield.org gave:
HostName: 200-204-181-16.speedyterra.com.br
Country:
Total Records against IP: 2592
Number of targets: 2589
Date Range: 2003-01-10 to 2003-02-20
Ports Attacked (up to 10):
Port Attacks
137 930

Defense recommendations:
1. Scanning for unprotected shares should be done at least once a quarter [7]
2. If file sharing is not needed disable Windows networking shares or consider

disabling NetBIOS over TCP/IP altogether in the Windows network control
panel. [8]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 50

3. Block inbound and outbound NetBIOS traffic (TCP and UDP ports 137
through 139 and 445) on the perimeter firewall if NetBIOS is used.[8]

References:
[1] http://secinf.net/misc/An_analysis_of_TCPIP_NetBIOS_filesharing_protocols_.html
[2] Protocol standard for a NetBIOS service on a TCP/UDP transport:
 http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1002.html
[3] Port 137 Scan (Intrusion Detection FAQ) by Bryce Alexander
 http://www.sans.org/resources/idfaq/port_137.php
[4] Bryce Alexander, http://www.giac.org/practical/Bryce_Alexander.doc
[5] Follow up on a Honey Pot catch, Bryce Alexander -
 http://www.sans.org/y2k/honeypot_catch.htm
[6] Analysis by Judy Novak at GIAC. http://www.sans.org/y2k/061500.htm
[7] Bob Konigsberg, http://www.sans.org/rr/audit/inside.php
[8] David Cieslak, http://www.giac.org/practical/David_Cieslak_GSEC.doc

Alert #5:TFTP - External UDP connection to internal tftp server
Alert-frequency – 20698 Category: Illegal access/

Reconnaissance

TFTP or Trivial file transfer protocol is a simple protocol, running over UDP layer,
and is used mainly by diskless machines and routers to download initial boot
software from central servers. It does not support password authentication and
has insecurity associated with it. As mentioned in the article – “Keeping Your
Network Safe And Sound,
It's easy to overlook the security of a device that's not on the front line of Internet access,
but rather holds the configuration of the devices that connect you to the Internet. Viewing
the device configuration on a TFTP server that is used to store network device
configuration can be just as helpful to a hacker as viewing the configuration from the
device itself.

Snort signature used might be –
alert udp any any -> HOME_NET 69
(msg:" TFTP - External UDP connection to internal tftp server";
content:"CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|0000|";)

alert udp HOME_NET 69 -> any any
(msg:" TFTP - External UDP connection to internal tftp server";
content:"CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|0000|";)

20692 out of 20698 alerts of the type as given below –
01/16-00:06:02.745396 [**]
TFTP - External UDP connection to internal tftp server
[**] MY.NET.111.231:69 -> 192.168.0.253:7933
01/16-00:06:02.745881 [**]
TFTP - External UDP connection to internal tftp server
[**] MY.NET.111.230:69 -> 192.168.0.253:7933

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 51

According to RFC 1918 [2], 192.168.0.253 belongs to the private address space.
Snort thinks it to be an external IP address. Most probably, the HOME_NET
variable might be configured to be MY.NET/16. It could have been configured to
include the private addresses as well, in case there is NAT-ing being done and
IDS is sitting inside the Firewall. The traffic seems normal.
However, there are 4 entries where the private addresses are not the case;

01/19-22:25:38.115465 [**]
TFTP - External UDP connection to internal tftp server [**]
63.210.198.194:2205 -> MY.NET.27.210:69
01/19-22:25:38.121441 [**]
TFTP - External UDP connection to internal tftp server [**]
63.210.198.194:2205 -> MY.NET.27.210:69
<snip>

It should be checked if MY.NET.27.210 is hosting a tftp server, and whether it
needs to be accessible to outside world.
A whois on 63.210.198.194 gives
OrgName: Level 3 Communications, Inc.
OrgID: LVLT

Correlations:
Joe Ellis has done a brief description about this alert in his practical [3].

Recommendations:
1. It is a good practice to disable TFTP, if not needed. Otherwise, it should be

made sure that only intended files are accessible. [1]
2. It is recommended that TFTP (UDP port 69) be blocked at the firewall.
3. Consider private addresses also in HOME_NET variable of snort

configuration so as to reduce false alarms.

Reference:
[1] Network Security for Trade Shows; http://www.faqs.org/rfcs/rfc2179.html
[2] RFC 1928 http://www.isi.edu/in-notes/rfc1918.txt
[3] Joe Ellis, http://www.giac.org/practical/Joe_Ellis_GCIA.doc
[4] http://www.networkcomputing.com/818/818buyers3.html

Alert #6:spp_http_decode: IIS Unicode attack detected
Alert-frequency – 17819 Category: Illegal access, remote exec.

This is an attack against the Microsoft IIS servers. IIS 4.0 and 5.0 had "Web
Server Folder Traversal" vulnerability, which gives an attacker illegal access to
files and documents outside the webroot. It is also possible to remotely execute
programs like cmd.exe, tftp.exe using this method. Andrew Brannan describes
this attack very well in "Unicode Vulnerability – How & Why?" [1]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 52

Microsoft IIS checks for the '../' pattern in the request, but using the
Unicode encoding this check is bypassed. For e.g.
/ can be encoded as %c0%af , \ can be encoded as %c1%9c, . can be encoded
as %2e.

This alert is generated by the HTTP_DECODE preprocessor of the snort.
A look at the spp_http_decode.c (snort-1.8.6) reveals that the alert is generated
when the preprocessor sees '%2f' or '%5c' or '%2e' in the URL.
There are also many worms based on this vulnerability - Nimda, Code Red,
Sadmind to name a few.

Correlations:
This vulnerability is listed in cve database - CVE-2000-0884
Paul Critchfield has analyzed Unicode attack as part of his GCIA practical [2].

Top talkers:
Top Talkers (Internal) Top Talkers (External)
MY.NET.88.249 (1293 alerts) 148.246.52.7
MY.NET.85.74 (1212 alerts) 211.90.88.43
MY.NET.84.133 (1140 alerts) 68.33.105.77
MY.NET.88.139 (875 alerts)
MY.NET.153.110 (614 alerts)

There is a high chance that these internal machines have been compromised (by
some virus). More investigation on them is recommended.

Top targets:
207.200.86.97 211.233.32.56 199.244.218.42 MY.NET.70.207 MY.NET.168.140

Whether the attacks on the internal machines were successful is not evident.
However, we can look for suspicious behavior from the internal servers for an
indirect verification of a successful compromise.

MY.NET.70.207:
• 126 alerts: High port 65535 UDP - possible Red Worm – traffic
MY.NET.168.140:
• 20 alerts: Watchlist 000220 IL-ISDNNET-990517
• 3 alerts: Attempted Sun RPC high port access

01/18-20:49:51.600531 [**] Attempted Sun RPC high port access [**]
63.250.205.23:25142 -> MY.NET.168.140:32771
01/18-20:49:51.979193 [**] Attempted Sun RPC high port access [**]
63.250.205.23:25142 -> MY.NET.168.140:32771
01/18-20:49:56.428793 [**] Attempted Sun RPC high port access [**]
63.250.205.23:25142 -> MY.NET.168.140:32771

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 53

Information about the external top talkers:
148.246.52.7
Whois Information:
Hostname: ce590-gdl02.terra.net.mx
OrgName: TerraLycos Mexico
This external IP address has attempted the ‘IIS Unicode attack’, against a set of
Web servers in the home network.

IIS Unicode attack attempt from 148.246.52.7
Alert# Destination IP Alert# Destination IP
215 MY.NET.157.52 152 MY.NET.130.122
197 MY.NET.130.40 149 MY.NET.130.34
191 MY.NET.132.42 129 MY.NET.150.220
184 MY.NET.136.2 127 MY.NET.130.123
171 MY.NET.150.228 114 MY.NET.130.86
170 MY.NET.157.12 97 MY.NET.157.11
167 MY.NET.130.91 95 MY.NET.198.241
158 MY.NET.137.18 75 MY.NET.198.237

211.90.88.43
Whois information:
Hostname: 211.90.88.43
inetnum: 211.90.0.0 - 211.91.255.255
netname: UNICOM
country: CN
descr: China United Telecommunications Corporation

68.33.105.77
Hostname : pcp02102752pcs.towson01.md.comcast.net
OrgName: Comcast Cable Communications, Inc.

False alarms is possible if a valid URL contains ‘%2f' or '%5c' or '%2e’ and the
only way to verify would be to have a look at the original packet payload. Snort
IDS could be run in binary logging mode so that alerts based on content can be
analyzed more.

Defensive recommendations:
1. Apply the necessary and recommended patches for the IIS web servers if any.
2. Moving the web folder root to a different logical drive than the one holding the
 system executables is a good idea. (given by Andrew Brannan in [1])

Reference:
[1] "Unicode Vulnerability – How & Why?" – Andrew Brannan
 http://www.sans.org/rr/threats/unicode.php
[2] Paul Crutchfield, www.giac.org/practical/Paul_Crutchfield_GCIA.doc

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 54

Alert #7: High port 65535 udp - possible Red Worm - traffic
Alert-frequency - 4011 Category: Worm

The Red worm or Adore worm exploits vulnerabilities in rpc.statd, bind, LPRng,
and wuftpd26. It creates a backdoor on the infected machines on port 65535. It is
explained by Anthony Dell in “Adore Worm – Another Mutation” [1]. As per this
document the backdoor is using TCP port 65535. I have not found any
references about UDP port 65535 being used. However, traffic to port 65535 is
suspicious. The snort rule that triggered must be similar to –

alert UDP any any -> any 65535 (msg:"High port 65535 udp - possible Red
Worm – traffic";)
alert UDP any 65535 -> any any (msg:"High port 65535 udp - possible Red
Worm – traffic";)

While analyzing these alerts it was noted that approximately 3400 out of 4000
alerts of this type was between port 6257 and port 65535.
Port 6257 (UDP) is used by a peer file sharing application called WinMX[2].

For e.g. a snippet of traffic from/to MY.NET.70.176 is given below:
01/16-00:16:12.167706 [**] High port 65535 udp - possible Red Worm - traffic [**]
MY.NET.70.176:6257 -> 151.37.50.252:65535
01/16-00:18:00.469369 [**] High port 65535 udp - possible Red Worm - traffic [**]
151.37.50.252:65535 -> MY.NET.70.176:6257
01/16-00:22:56.265283 [**] High port 65535 udp - possible Red Worm - traffic [**]
151.37.50.252:65535 -> MY.NET.70.176:6257
<snip>
Corresponding entries in scans logs are :
Jan 16 00:16:12 130.85.70.176:6257 -> 151.37.50.252:65535 UDP
Jan 16 00:22:56 130.85.70.176:6257 -> 151.37.50.252:65535 UDP
Jan 16 00:22:59 130.85.70.176:6257 -> 151.37.50.252:65535 UDP
<snip>

From scans log files we can also note traffic (a snippet is shown below), which
suggests that MY.NET.70.176 or 130.85.70.176 might be using WinMX.
Jan 16 00:16:11 130.85.70.176:6257 -> 65.28.231.53:6257 UDP
Jan 16 00:16:11 130.85.70.176:6257 -> 62.211.221.211:6257 UDP
Jan 16 00:16:11 130.85.70.176:6257 -> 68.58.122.61:6257 UDP
Jan 16 00:16:13 130.85.70.176:6257 -> 80.236.71.158:6257 UDP
Jan 16 00:16:12 130.85.70.176:6257 -> 162.83.151.188:6257 UDP
Jan 16 00:16:12 130.85.70.176:6257 -> 62.211.233.149:6257 UDP
Jan 16 00:16:12 130.85.70.176:6257 -> 24.27.252.13:6257 UDP

Top talkers:
MY.NET.70.176 211.125.217.3 MY.NET.83.146 MY.NET.150.213 MY.NET.91.72

Recommendations:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 55

It is recommended that the internal machines are checked for possible infection /
compromise.

Reference:
[1] Adore Worm – Another Mutation - J. Anthony Dell
http://www.sans.org/rr/threats/mutation.php
[2] WinMX - http://www.winmx.com

Alert #6: Incomplete Packet Fragments Discarded
Alert-frequency - 2863 Category: False alarm?

This is an alert generated from the fragmentation reassembly preprocessor,
spp_defrag of the snort IDS. This is a deprecated preprocessor and should be
replaced by the newer fragmentation reassembly preprocessor – spp_frag2.

This particular alert indicates that the fragment set is not complete. This
may be due to lost fragments due to
- Network problems (lost fragments)
- IDS dropping packets
- Fragmentation attacks or
- False alarm. (described later)

After analyzing the spp_defrag.c, we see that the preprocessor does a
check when it receives the last fragment of a set. If the total size of all received
fragments is less that half the total length (of the original datagram before
fragmentation) this alert is generated. Also this is checked only if total length >
8192 bytes. This is explained by Dragos Ruiu [7] and snippet of the mail is given
below:

This message is given by the defragmentation preprocessor when
packets bigger than 8k that are more than half empty when the last
fragment is received are discarded. This can be caused by:
transmission errors, broken stacks, and fragmentation attacks So your assumption was correct.
Hope it helps... and let me know if I can be of assistance. cheers,
--dr

But this checking can cause false alarms especially with O.S’s like Linux which
sends fragments out in the opposite order; i.e last fragment is sent out first. I
came up with this scenario, which caused the IDS to throw the (false) alert given
below –
The fragment set which triggered the alert is also given below. As can be noticed
the fragments are generated from a Linux machine and therefore is seen on the
wire in the opposite order (last fragment first).

[**] [103:2:1] Incomplete Packet Fragments Discarded [**]
02/06-15:14:46.869357 192.168.16.55 -> 192.168.16.54
ICMP TTL:64 TOS:0x0 ID:34780 IpLen:20 DgmLen:9028
ICMP header truncated

15:14:46.869357 192.168.16.55 > 192.168.16.54: (frag 34780:128@8880)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 56

15:14:46.869371 192.168.16.55 > 192.168.16.54: (frag 34780:1480@7400+)
15:14:46.869385 192.168.16.55 > 192.168.16.54: (frag 34780:1480@5920+)
15:14:46.869393 192.168.16.55 > 192.168.16.54: (frag 34780:1480@4440+)
15:14:46.869401 192.168.16.55 > 192.168.16.54: (frag 34780:1480@2960+)
15:14:46.869409 192.168.16.55 > 192.168.16.54: (frag 34780:1480@1480+)
15:14:46.869417 192.168.16.55 > 192.168.16.54: icmp: echo request (frag
34780:1480@0+)

Also, this alert is generated only for fragment sets whose reassembled size is
greater than 8192 bytes.

Correlations:
John Jenkinson has discussed this alert in his practical [3].

Recommendations:
• Upgrade the fragmentation reassembly preprocessor. This is suggested by

Martin Roesche in one of the mails in snort archive [2].
• Keep an eye whether the IDS is dropping packets. In case it is dropping

packets, then the configuration can be tuned so that the load on the IDS is
reduced.

References:
[1] http://www.security-express.com/archives/snort/2001-02/0320.html
[2] http://archives.neohapsis.com/archives/snort/2001-11/0822.html
[3] John Jenkinson, http://www.giac.org/practical/John_Jenkinson_GCIA.doc

Alert #9:Possible trojan server activity
Alert-frequency – 2688 Category: Trojan

Port 27374 is associated with many Trojan/worm applications; mainly subseven
Trojan, Lion and ramen worm. [1]

2491 out of 2688 alerts were triggered by traffic between MY.NET.91.104 and
213.46.21.207. A small snippet of the traffic is shown:

01/17-02:38:11.325953 [**] Possible trojan server activity [**] MY.NET.91.104:1214 -> 213.46.21.207:27374
01/17-02:38:18.915710 [**] Possible trojan server activity [**] 213.46.21.207:27374 -> MY.NET.91.104:1214
01/17-02:38:20.347762 [**] Possible trojan server activity [**] MY.NET.91.104:1214 -> 213.46.21.207:27374
01/17-02:38:20.347892 [**] Possible trojan server activity [**] MY.NET.91.104:1214 -> 213.46.21.207:27374
01/17-02:38:20.352029 [**] Possible trojan server activity [**] 213.46.21.207:27374 -> MY.NET.91.104:1214

1214 is the port used by KaZaa. It could be very probable that this traffic is non
malicious since 27374 is an ephemeral port and there is a certain chance that
nodes are going to use it for legitimate purposes.

Most probably, the snort rule used for this alert must be:

alert TCP any any -> any 27374 (msg:”Possible trojan server activity”;)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 57

alert TCP any 27374 -> any any (msg:” Possible trojan server activity;)

A rule as this one can create false alarms, and it is recommended to use
signatures based on content of the packet. The latest snort ruleset has the
following rule for Subseven Trojan:

alert tcp $EXTERNAL_NET 27374 -> $HOME_NET any (msg:"BACKDOOR subseven 22";
flow:to_server,established; content:"|0d0a5b52504c5d3030320d0a|"; reference:arachnids,485;
reference:url,www.hackfix.org/subseven/; classtype:misc-activity; sid:103; rev:5;)

The top talkers of this alert, as mentioned above, are MY.NET.91.104 and
213.46.21.207.
A lookup on 213.46.21.207 at Dshield.org gives –
Hostname: d21207.upc-d.chello.nl

Recommendations:
Use better IDS signatures with some specific content matching with the trojan’s
signature; for example, from the latest snort rule set.

References:
[1] http://isc.incidents.org/port_details.html?port=27374

Alert #10:spp_http_decode: CGI Null Byte attack detected
Alert-frequency - 1900 Category: Web exploit

As the alert shows, this is generated by the ‘HTTP Decode’ preprocessor of the
Snort IDS. As seen from spp_http_decode.c (snort source code) and also from
Snort FAQ [1], this alert is generated when a %00 is seen while doing http
decoding. As the FAQ also points out, there is a likely chance of false alarms,
especially when sites use cookies. This might reason well with the large number
of alerts of this type. Another reason is given below-

Take a look at the following trait. Look at the timestamp of each set of alerts.
01/16-11:24:28.632236 [**] spp_http_decode: CGI Null Byte attack
detected [**] MY.NET.27.231:2048 -> 216.241.219.12:80
01/16-11:24:28.632236 [**] spp_http_decode: CGI Null Byte attack
detected [**] MY.NET.27.231:2048 -> 216.241.219.12:80
<repeated many times>

01/16-11:24:39.239788 [**] spp_http_decode: CGI Null Byte attack
detected [**] MY.NET.27.231:2048 -> 216.241.219.12:80
01/16-11:24:39.239788 [**] spp_http_decode: CGI Null Byte attack
detected [**] MY.NET.27.231:2048 -> 216.241.219.12:80
<repeated many times>

This pattern is there through out for this alert. The http decoder goes through
each character of the request uri and does the check for %00. So if one request
itself has more than one %00, the alert is generated that many times.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 58

This can be corrected by removing the exactly same lines using the ‘sort’ and
‘uniq’ commands of unix. After doing so, the frequency of the alerts came down
from 1900 to 569.

Top talkers:
MY.NET.117.150 MY.NET.117.149 MY.NET.168.105 MY.NET.53.67 MY.NET.115.229

As Snort FAQ suggests, the best way to verify if we are handling a real attack
packet is to have the real packet dump. It is possible to run snort to log the actual
packet in case there is an alert generated for the particular packet. (We do not
have this for this assignment)

Correlations:
Bradley Urwiller has discussed this alert in his GCIA practical. [2]

Recommendations:
Run Snort with –b option to capture the packet which triggers the alert. This will
enable to verify alerts that need further analysis.

Reference:
[1] Snort FAQ, http://www.snort.org/docs/faq.html#4.12
[2] Bradley Urwiller, http://www.giac.org/practical/Bradley_Urwiller_GCIA.pdf

Alert #11:EXPLOIT x86 NOOP
Alert-frequency - 1757 Category: Exploit

NOOPs are used to increase the success chances of buffer overflow attempts;
this is described in ‘Intrusion Signatures and Analysis’ textbook (Detect by Mark
Cooper, GCIA). Reciting from his practical:

Because it is very difficult for the attacker to know exactly where in
memory the rogue code resides, and thus what value must be placed into
the return pointer, the rogue code is surrounded by a large number of
NO-OP instructions.
<snip>
The hex code for the NO-OP instruction on the Intel x86 family of
processors is 0x90. Therefore, the IDS is programmed to look at the
content of packets for repeated instances of the byte 0x90.

The snort rule used might have been
alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"EXPLOIT x86 NOOP";
content: "|90
90 90 90 90|"; flags: A+; reference:arachnids,181;)

Just looking at the signature itself, we can say that there are good chances of
false alarms. One example is described by Chris Keuthe in his practicals [1]
The packet happened to contain some jpeg image !

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 59

Top talkers:
80.13.63.154 217.128.167.158 80.14.125.161 164.106.62.52 24.189.153.176

Correlations:
GCIA detect – Bryce Alexander (Intrusion Signatures and analysis)
 Mark Cooper (Intrusion Signatures and analysis)

Reference:
[1] Chris Kuethe, http://www.giac.org/practical/chris_kuethe_gcia.html#1.1

Alert #12: IDS552/web-iis_IIS ISAPI Overflow ida nosize
Alert-frequency – 1607 Category: Exploit

Microsoft IIS web server version 4.0 and 5.0 are vulnerable to a buffer overflow
attack due to problems in the handling of ISAPI (Internet Services Application
Programming Interface) extensions. [1] This could potentially be taken advantage
of by an attacker to gain control of a vulnerable web server. Code Red and Code
Red II worms make use of this vulnerability.

A web request of the form below is used [3]

GET /NULL.ida?[buffer]=X HTTP/1.1
Host: werd
Where [buffer] is aprox. 240 bytes.
For e.g. [4]
GET /default.ida?NNN
NN
NN
NNNNNNNNNNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%
u7801%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531
b%u53ff%u0078%u0000%u00=a

Top talkers:
140.128.19.195 140.128.19.224 203.145.177.111 64.221.193.90 212.209.9.218

Correlations:
The vulnerability can be found at cve.mitre.org with id - CAN-2001-0500 [2]

Defensive recommendations:
• Update or apply relevant patches for the IIS web servers.

Reference:
[1] http://www.iss.net/security_center/static/6705.php
[2] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0500
[3] http://www.eeye.com/html/Research/Advisories/AD20010618.html
[4] http://www.cert.org/advisories/CA-2001-19.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 60

Alert #13 : Queso fingerprint
Alert-frequency - 1573 Category: reconnaissance

Summary: ‘Queso’ is a probe used for OS finger printing. Queso is the Hispanic
shortcut for "Que Sistema Operativo?" which translates into "which operating
system?" [3]. Among other types of scans Queso does, one method (BOGUS
flag probe) is by setting the reserved bits of TCP flags with a SYN segment to
fingerprint the target machine’s O.S.

Toby Miller has given a discussion at SANS on ‘ECN and it’s impact on
Intrusion Detection’ – which is very useful in this analysis [2]. The recent ECN
standard uses the reserved bits in TCP header and IP header for ECN – Explicit
Congestion Notification. (More discussion below)
Fyodor describes the reconnaissance method more in the article Remote OS
detection via TCP/IP Stack FingerPrinting [1].

The BOGUS flag probe -- Queso is the first scanner I have seen to use this
clever test. The idea is to set an undefined TCP "flag" (64 or 128) in the TCP
header of a SYN packet. Linux boxes prior to 2.0.35 keep the flag set in their
response. I have not found any other OS to have this bug. However, some
operating systems seem to reset the connection when they get a SYN+BOGUS
packet. This behavior could be useful in identifying them.

The latest snort rule set did not have the rule for this scan. But the appropriate
signature would be:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:" Possible Queso
Fingerprint attempt";flags:S12;)

Alex Stevens (see correlation section) has listed the above snort rule.
As expected, the SCAN files have corresponding entries as shown below; and it
can be seen that the SYN flag and the reserved bits '1' and '2' are also set.
01/16-22:36:52.861440 [**] Queso fingerprint [**] 65.214.36.150:59054
-> MY.NET.99.174:80
01/16-23:01:21.375013 [**] Queso fingerprint [**] 65.214.36.150:39848
-> MY.NET.99.85:80

Jan 16 22:36:52 65.214.36.150:59054 -> 130.85.99.174:80 SYN 12****S*
RESERVEDBITS
Jan 16 23:01:21 65.214.36.150:39848 -> 130.85.99.85:80 SYN 12****S*
RESERVEDBITS

The part of the TCP header is shown below: (the 13th - 16th bytes)

 +-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
 +-+

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 61

RFC 793 speaks about the 'Reserved' bits as follows -

 Reserved: 6 bits
 Reserved for future use. Must be zero.

ECN and Queso:
The use of reserved bits of the tcp flags for ECN has complicated the detection of
Queso fingerprint attempts. The point to note is that if the packet in question is a
valid ECN packet, then besides the reserved bits of tcp flags, the 6 th bit of TOS
filed in IP header will also be set. [2] [4]

Top talkers:
65.214.36.150 217.126.116.244 66.140.25.156 81.56.17.119 195.71.116.19
202.156.131.251 209.47.251.30 209.47.251.23 209.47.251.25 209.167.239.31

Let’s consider some of the top talkers for further analysis.
65.214.36.150:
nslookup 65.214.36.150 : egspd400.teoma.com
Look up at www.arin.net:
AskJeeves, Inc. UU-65-214-36 (NET-65-214-36-0-1)
 65.214.36.0 - 65.214.39.255

01/19-17:16:06.362703 [**] Queso fingerprint [**] 65.214.36.150:43380
-> MY.NET.162.87:80
01/19-17:06:54.260021 [**] Queso fingerprint [**] 65.214.36.150:50038
-> MY.NET.140.2:80
01/19-17:25:56.484936 [**] Queso fingerprint [**] 65.214.36.150:53209
-> MY.NET.130.123:80
01/19-17:48:09.880586 [**] Queso fingerprint [**] 65.214.36.150:59216
-> MY.NET.150.83:80
01/19-18:22:04.163839 [**] Queso fingerprint [**] 65.214.36.150:51577
-> MY.NET.145.18:80
<snip>

On first look although it seems that this host is doing a Queso scan on the
destination network, most probably 65.214.36.150 is doing some kind of “spider”
like functionality as search engines do. These are most probably false alarms.

209.47.251.30 : smtp20.rapid-e.net
209.47.251.23 : smtp13.rapid-e.net
209.47.251.25 : smtp15.rapid-e.net

These seems to be having legitimate SMTP conversations with MY.NET.6.40
For example, there are 32 alerts of Queso scan from 209.47.251.30 to
MY.NET.6.40 and 26 alerts from 209.47.251.23. Normally, there is no reason an
attacker would 32 probes to do some O.S fingerprinting. These are most
probably false alarms.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 62

Correlations:
Bryce Alexander discusses ‘Queso’ packets in his network detects (SF set in
Header). He discusses about how to recognize a Queso packet from a tcpdump
log:

The hex value c2 in the Tcpdump trace can be analyzed using figure
17.1. Since hex c is the decimal for 12, we know that the bits
representing 8 and 4 must be set; these correspond to the two reserved
bits. The hex value 2 corresponds to Syn flag. What makes the use of
reserved bits “stealthy” is that if an analyst were to use TCPdump to
view the trace, the reserved bits would not be seen unless the packet
hex dumps were closely examined.

The latest tcpdump, however does indicate the setting of the reserved bits as
shown below. Note the flags “SWE”

13:22:02.551094 130.207.16.55.1777 > 130.207.16.54.0: SWE
1621615244:1621615244(0) win 512
0x0000 4500 0028 6841 0000 4006 ec83 82cf 1037 E..(hA..@......7
0x0010 82cf 1036 06f1 0000 60a7 e28c 5351 49e7 ...6....`...SQI.
0x0020 50c2 0200 9fb9 0000 P.......

Correlations:
This alert is described by Alex stevens in his Network Detects section. [5]

Recommendations:
A better IDS signature to reduce false alarms could be used. I have not tried it,
but the rule can be tried.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:" Possible Queso
Fingerprint attempt";flags:S12; tos:0x2;)

References:
[1] Fyodor, http://www.insecure.org/nmap/nmap-fingerprinting-article.txt
[2] ECN and it’s impact on Intrusion Detection - Toby Miller
[3] http://leb.net/hzo/ioscount/
[4] A Proposal to add Explicit Congestion Notification (ECN) to IP, RFC 2481
[5] Alex Stevens, http://www.giac.org/practical/Alex_Stephens_GCIA.htm

Alert #14: SUNRPC highport access!
Alert-frequency - 1227 Category: Reconnaissance

Rpcbind or portmapper is a server which is needed to run Remote procedure
calls. They convert RPC program numbers to universal addresses or port
numbers. On Solaris, this program listens on port 32771, rather than the
conventional port 111 [1]. So if the packet filter or firewall is not aware this port, it
maybe open at the firewall.

RPC weaknesses is listed as number 3 in the top 10 Internet security threats [2]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 63

The document [2] also says –
There is compelling evidence that the vast majority of the
distributed denial of service attacks launched during 1999 and
early 2000 were executed by systems that had been victimized
because they had the RPC vulnerabilities.

Correlations:
There are a number of vulnerabilities associated with RPC. The CVE entries
related to a few of them are:
CVE-1999-0687 - The ToolTalk ttsession daemon uses weak RPC
authentication, which allows a remote attacker to execute commands.
CVE-1999-0003 - Execute commands as root via buffer overflow in Tooltalk
database server (rpc.ttdbserverd)
CVE-1999-0696 – Buffer overflow in rpc.cmsd

Top talkers Details
128.122.20.14 SLINKY.CS.NYU.EDU
66.250.223.22 Cogent Communications
66.35.250.209 projects.sourceforge.net

Recommendations:
• Turn off the RPC related services on hosts, if not needed.
• Block ports 111 and 32771 at the firewall.
• Apply latest patches for the machines running rpc related applications.

Reference:
[1] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0189
[2] http://www.sans.org/top20/top10.php

Alert #15: TCP SRC and DST outside network
Alert-frequency – 906 Category: Abnormal

This alert notifies about packets having source IP address and destination IP
address of outside Internet. Such packets should not be seen by IDS normally.
The alerts are due to

1. IDS considering private addresses as outside address,
2. Mis-configurations in IP addresses.
3. Possible spoofing from internal machine.

The rule used for this alert could have been:

Set EXTERNAL_NET !HOME_NET

alert tcp $EXTERNAL_NET any -> $EXTERNAL_NET any (msg:" TCP SRC and DST
outside network"; flags:S12; tos:0x2;)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 64

597 out of 906 alerts of this type are due to the fact that IDS triggers the alert
interpreting the private address 192.168* as external IP address. The HOME
NETWORK seems to be be configured as MY.NET/16. A snippet is shown
below:
01/16-09:33:25.649780 [**] TCP SRC and DST outside network [**]
192.168.0.147:4829 -> 208.240.243.36:80
01/16-09:35:14.544070 [**] TCP SRC and DST outside network [**]
192.168.0.147:4836 -> 216.49.88.100:80

Some alerts have both private addresses. This traffic must have been captured
by an IDS listening to internal traffic. (Information regarding IDS placement is not
available.)
01/16-19:20:29.208724 [**] TCP SRC and DST outside network [**]
192.168.3.4:139 -> 192.168.2.5:1228
01/16-19:20:33.146058 [**] TCP SRC and DST outside network [**]
192.168.3.4:139 -> 192.168.2.5:1228
01/17-08:50:16.843280 [**] TCP SRC and DST outside network [**]
192.168.1.147:49154 -> 192.168.1.46:139

The above alerts are false alarms and can be avoided by setting the HOME_NET
variable to include the private addresses as well.
Now, let us take a look at the other alerts, where private addresses were not the
case. Take a look at this set of alerts:

01/16-10:20:12.152097 [**] TCP SRC and DST outside network [**] 192.2.3.11:1091 -> 192.4.3.11:12865
01/16-10:10:41.540589 [**] TCP SRC and DST outside network [**] 192.2.3.11:1088 -> 192.4.3.11:12865
01/16-10:10:43.551819 [**] TCP SRC and DST outside network [**] 192.4.3.11:12865 -> 192.2.3.11:1088
01/16-10:21:16.166902 [**] TCP SRC and DST outside network [**] 192.2.3.11:1091 -> 192.4.3.11:12865

01/19-20:37:14.421575 [**] TCP SRC and DST outside network [**] 192.6.3.11:1720 -> 192.5.3.11:32843
01/19-20:37:15.045889 [**] TCP SRC and DST outside network [**] 192.6.3.11:1720 -> 192.5.3.11:32843
01/19-20:37:17.565481 [**] TCP SRC and DST outside network [**] 192.6.3.11:1720 -> 192.5.3.11:32843
01/19-20:37:27.644275 [**] TCP SRC and DST outside network [**] 192.6.3.11:1720 -> 192.5.3.11:32843

01/20-12:23:45.474534 [**] TCP SRC and DST outside network [**] 192.5.3.11:32863 -> 192.6.3.11:1720
01/20-12:23:46.095149 [**] TCP SRC and DST outside network [**] 192.5.3.11:32863 -> 192.6.3.11:1720
01/20-12:23:48.614913 [**] TCP SRC and DST outside network [**] 192.5.3.11:32863 -> 192.6.3.11:1720
01/20-12:23:53.007186 [**] TCP SRC and DST outside network [**] 192.6.3.11:1720 -> 192.5.3.11:32863
01/20-12:23:54.267028 [**] TCP SRC and DST outside network [**] 192.6.3.11:1720 -> 192.5.3.11:32863

This is interesting. Note the IP addresses and their details from www.arin.net

IP Address Organization
192.2.3.11 Genuity
192.4.3.11 Telcordia Technologies
192.6.3.11 Agilent Technologies
192.5.3.11 City of Beverly Hills

It is strange to see traffic from Genuity to Telcordia or from Agilent to City of
Beverly hills in this network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 65

• Most probably this is due to some mis-configurations in IP addresses
allocation. Some internal machines are using non private IP addresses and
are captured by IDS listening on the internal network. 192.168/16 is the
private address space to be used and not 192/24.

• What are the chances of IP address spoofing ?
Take for e.g. the two alerts –

01/20-12:23:48.614913 [**] TCP SRC and DST outside network [**] 192.5.3.11:32863 -> 192.6.3.11:1720
01/20-12:23:53.007186 [**] TCP SRC and DST outside network [**] 192.6.3.11:1720 -> 192.5.3.11:32863

In a usual IP address spoofing case, if one of the internal machine spoofs the
source IP address as 192.5.3.11 and sends a packet to 192.6.3.11, we will not
see a reply. Why ? Because 192.6.3.11 will be sending the reply to the original
192.5.3.11. But we do see the reply. So the only way this could happen is that
both the machines are in the internal network.

A last set of alerts is shown below:
01/16-09:35:38.844958 [**] TCP SRC and DST outside network [**] 169.254.84.3:2110 ->
68.55.170.231:139
01/16-09:45:45.708323 [**] TCP SRC and DST outside network [**] 169.254.84.3:2123 ->
68.55.170.231:139
01/16-09:46:56.875805 [**] TCP SRC and DST outside network [**] 169.254.84.3:2126 ->
68.55.170.231:139
01/16-09:46:59.820301 [**] TCP SRC and DST outside network [**] 169.254.84.3:2126 ->
68.55.170.231:139
….

This is most probably due to address spoofing by an internal machine; and IP
address mis-configuration is also a possibility.

Defensive recommendation:
Egress filtering on the routers/firewalls to eliminate packets which have source IP
address spoofing.

6. Overall Top talkers:

Considering the alerts from the five day period, the top 10 talkers in terms of
number of alerts were –

IP Address # of alerts Type of alerts
MY.NET.84.151 26997 ‘Red worm (tcp)’ alert.
MY.NET.105.204 22638 Most of the alerts are watchlist alerts; either Russia

Dynamo or Watchlist 000220 IL-ISDNNET-990517
194.87.6.86 16545 All the alerts are ‘Russia Dynamo’
212.179.1.145 16195 ‘Watchlist 000220 IL-ISDNNET-990517’
217.136.73.54 6773 Red Worm (tcp)
212.179.56.252 5889 ‘Watchlist 000220 IL-ISDNNET-990517’

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 66

MY.NET.111.235 4184 TFTP - External UDP connection to internal tftp server
MY.NET.111.232 4173 TFTP - External UDP connection to internal tftp server
MY.NET.111.219 4135 TFTP - External UDP connection to internal tftp server
MY.NET.111.231 4110 TFTP - External UDP connection to internal tftp server

7. OOS Analysis:
Out of specification or OOS packets are those that are abnormal according to the
specifications of the protocol. For e.g. a TCP segment with the SYN and Fin flags
turned on would fall in this category.

These kinds of packets are used for fingerprinting operating systems,
evading intrusion detection systems and getting past firewalls. Bad routers also
could create such abnormality [1].

Usage of the reserved bits of TCP header was out of spec, but these are
used for ECN or Explicit congestion notification now. This makes detecting the
actual malicious probe packet a bit difficult. This was discussed earlier with
regards to Queso attempt.

TCP Flags related OOS:
The OOS files analyzed had 108 different combinations for TCP flags which are
out of spec. The ones that occurred more than 5 times are listed below:

Type Frequency Type Frequency
12****S* (Queso) 4989 1*U*PRSF 6
******** (Null) 967 1*UA*RSF 6
****P*** (VECNA) 648 1***PRSF 6
12***R** 26 12U**R*F 6
U*P*SF 9 12U*PR 6
12UA***F 9 12UA**** 6
U*** 8 12**PR*F 6
****PRSF 8 12*A**** 6
*2UAPRSF 8 12****** 6
12**P**F 8 **UAP*SF 5
1**A*RSF 7 *2UAP*SF 5
12**P*SF 7 12UA*RS* 5
12**P*S* 7 12UAPRSF 5
12*A*R*F 7 12U***** 5
 ******SF (Syn Fin) 6 12**P*** 5

Fragmentation related OOS:
There were also 11 fragmentation related OOS packets. There can be different
kind of OOS packets related to fragmentation. For.e.g. Tiny fragments. An
example of tiny fragmentation attack is given in RFC 1858 [2] where the first
fragment has just 8 bytes. This means that this will have the source port and
destination port information but not the tcp flags. This method can evade firewalls

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 67

that do not perform fragmentation reassembly before passing the packets and
some IDSs also.

The OOS alerts in the analyzed OOS files had the DF and MF bits set,
which is not normal.

01/18-14:51:29.398891 65.42.92.54 -> MY.NET.153.210
TCP TTL:112 TOS:0x0 ID:3985 IpLen:20 DgmLen:752 DF MF
Frag Offset: 0x0 Frag Size: 0x2DC
01/18-14:51:29.935853 65.42.92.54 -> MY.NET.153.210
TCP TTL:112 TOS:0x0 ID:3991 IpLen:20 DgmLen:752 DF MF
Frag Offset: 0x0 Frag Size: 0x2DC
01/18-14:51:30.298141 65.42.92.54 -> MY.NET.153.210
TCP TTL:112 TOS:0x0 ID:3995 IpLen:20 DgmLen:752 DF MF
Frag Offset: 0x0 Frag Size: 0x2DC
01/18-14:51:30.385900 65.42.92.54 -> MY.NET.153.210
TCP TTL:112 TOS:0x0 ID:3996 IpLen:20 DgmLen:752 DF MF
Frag Offset: 0x0 Frag Size: 0x2DC

Top 10 talkers in terms of OOS alerts were –

IP Address Number of alerts Type
65.214.36.150 765 12****S*
209.191.132.40 632 12****S*
MY.NET.70.183 560 ******** (Null scan)
148.63.115.208 558 ****P***
217.126.116.244 487 12****S*
MY.NET.53.10 312 ********
66.189.101.206 241 This IP address had 86 types of OOS alerts.
195.71.116.19 169 12****S*
66.140.25.156 165 12****S*
202.156.131.251 148 12****S*

Note that most of the OOS alerts is ‘12****S*’. This flag combination matches
with Queso fingerprint. But the signature could be part of the Explicit Congestion
Notification (ECN) scheme which uses the TCP reserved bits. This is discussed
with the ‘Queso’ description earlier.

Reference:
[1] Chapter 17, Intrusion Signatures and Analysis – Northcutt et al.
[2] RFC 1858 - Security Considerations for IP Fragment Filtering

8. Scan analysis:

Top talkers
IP address Number of entries
130.85.84.147 1272181
130.85.83.146 1001877
130.85.70.176 531468

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 68

130.85.150.213 282957
130.85.91.72 276771
130.85.114.45 231185
130.85.91.252 126497
130.85.88.242 102531
130.85.118.6 77679
130.85.198.220 73537

Top scanners (external)
IP address Name resolution and details Freq
68.33.105.77 pcp02102752pcs.towson01.md.comcast.net

This machine is involved in a set of vertical
scans on different targets.
 A snippet is shown below:
Jan 17 01:48:06 68.33.105.77:2537 -> 130.85.70.75:1 SYN ******S*
Jan 17 01:48:06 68.33.105.77:2538 -> 130.85.70.75:2 SYN ******S*
Jan 17 01:48:06 68.33.105.77:2539 -> 130.85.70.75:3 SYN ******S*
Jan 17 01:48:06 68.33.105.77:2540 -> 130.85.70.75:4 SYN ******S*
……
Jan 17 01:48:07 68.33.105.77:2561 -> 130.85.70.75:23 SYN ******S*
Jan 17 01:48:07 68.33.105.77:2562 -> 130.85.70.75:24 SYN ******S*
Jan 17 01:48:07 68.33.105.77:2566 -> 130.85.70.75:25 SYN ******S*

17271

217.136.117.165 165.117-136-217.adsl.skynet.be
This machine has actively scanned port 135 and
port 80 on the network. However, this machine
has not triggered any alerts.

16632

80.13.63.149 ABoulogne-112-1-1-149.abo.wanadoo.fr
Scanning for port 135, 80 and 445 (which is
used for SMB over TCP). No alerts other than
portscan.

16434

217.128.46.154 AMontpellier-205-1-9-154.abo.wanadoo.fr
Scanning for port 3389 (a total of 15569 SYNs
covering almost the whole network). Port 3389
is associated with MS Terminal server. There
are vulnerabilities on certain versions of the
application and an attacker can execute hostile
code on the server. [1]

15567

81.48.118.178 ALimoges-102-1-2-178.abo.wanadoo.fr
Does a vertical scan on 130.85.150.210.
From the logs we know that 130.85.150.210
runs a TFTP server.There are 4 alerts from this
IP.
01/16-06:57:47.606153
[**] TFTP - External TCP connection to internal tftp server [**]
81.48.118.178:1932 -> MY.NET.150.210:69
01/16-06:57:47.606181
[**] TFTP - External TCP connection to internal tftp server [**]
MY.NET.150.210:69 -> 81.48.118.178:1932
01/16-06:57:54.183046
<snip>

14449

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 69

Top 5 destination ports (according to scan reports)
Port number Application
6257/UDP WinMX program uses this port and is being extensively

used through out the network.
This port can be blocked at the firewall; but that is just a
temporary solution since WinMX can be configured to
use other ports.

135 NetBIOS
445 Used for SMB over TCP
80 HTTP
41170 Unknown

Some scanning activity by internal machines
• 130.85.82.32 was seen scanning 528 external IP addresses on port 80

between the period Jan 17th 3:22 and 4:36
• 130.85.190.90 was scanning external IP addresses for port 139. The activity

on this port is described in ISS’s doc as –
This is the single most dangerous port on the Internet. All "File and Printer Sharing" on a
Windows machine runs over this port. About 10% of all users on the Internet leave their
hard disks exposed on this port. This is the first port hackers want to connect to, and the
port that firewalls block.

Reference:
[1]
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/ms00-087.asp

9. Further investigation of 5 external IP addresses:

The top 15 external IP addresses in terms of most number of alerts are shown
below. The top 5 are selected (since there are 5 IPs from the 212.179/16 network
and they all triggered the same alert, one of them is taken as the representative).

1 194.87.6.86 6 212.179.105.69 11 148.246.52.7
2 212.179.1.145 7 212.179.98.160 12 61.166.111.117
3 217.136.73.54 8 62.147.242.129 13 212.95.85.172
4 212.179.56.252 9 80.200.147.156 14 68.33.105.77
5 212.179.107.228 10 217.225.205.66 15 80.200.147.21

Besides the top five, 68.33.105.77 is also selected due to a special
consideration; i.e this IP address triggered the most number of unique alerts.
They were -

Alert name Frequency
TFTP - External TCP connection to internal tftp server 160
External POP to HelpDesk MY.NET.70.49 349

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 70

External POP to HelpDesk MY.NET.70.50 276
PHF attempt 12
spp_http_decode: IIS Unicode attack detected 410
External RPC call 113
External FTP to HelpDesk MY.NET.70.49 15
External FTP to HelpDesk MY.NET.70.50 14
spp_http_decode: CGI Null Byte attack detected 8

1. 194.87.6.86
This IP address generated the most alerts (16545) and all were ‘Russia Dynamo’
alerts, which was discussed earlier.

nslookup 194.87.6.86

Non-authoritative answer:
86.6.87.194.in-addr.arpa name = 86.6.87.194.dynamic.dol.ru.
Authoritative answers can be found from:
6.87.194.in-addr.arpa nameserver = ns.demos.su.
6.87.194.in-addr.arpa nameserver = ns1.demos.net.
ns.demos.su internet address = 194.87.0.8
ns.demos.su internet address = 194.87.0.9

Information from whois service at www.ripn.net

inetnum: 194.87.6.0 - 194.87.6.255
netname: DEMOS-DOL-DIALUP
descr: DEMOS-Online Dialup
descr: Demos-Internet Co.
descr: Moscow, Russia
country: RU
admin-c: DNOC-ORG
source: RIPE

2. 212.179.1.145

nslookup 212.179.1.145

Non-authoritative answer:
145.1.179.212.in-addr.arpa name = fr-c27145.kbm.org.il.
Authoritative answers can be found from:
1.179.212.in-addr.arpa nameserver = ns1.bezeqint.net.
1.179.212.in-addr.arpa nameserver = ns2.bezeqint.net.
ns1.bezeqint.net internet address = 192.115.106.10
ns2.bezeqint.net internet address = 192.115.106.11

Information from whois service at www.ripe.net
inetnum: 212.179.1.128 - 212.179.1.191

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 71

netname: KIBBITZ-KFAR-BLUM
mnt-by: INET-MGR
descr: KIBBITZ-KFAR-BLUM-LAN
country: IL
admin-c: ZV140-RIPE
status: ASSIGNED PA
notify: hostmaster@isdn.net.il
changed: hostmaster@isdn.net.il 20020902
address: bezeq-international
source: RIPE

3. 217.136.73.54

nslookup 217.136.73.54

Non-authoritative answer:
54.73.136.217.in-addr.arpa name = 54.73-136-217.adsl.skynet.be.
Authoritative answers can be found from:
73.136.217.in-addr.arpa nameserver = ns4.skynet.be.

Information from www.ripe.net
inetnum: 217.136.0.0 - 217.136.127.255
netname: BE-SKYNET-ADSL1
descr: Belgacom Skynet SA/NV
descr: ADSL Access
country: BE
admin-c: SN2068-RIPE
tech-c: SN2068-RIPE
rev-srv: ns.ripe.net
rev-srv: ns1.skynet.be
mnt-by: SKYNETBE-MNT
changed: ripe@skynet.be 20021125
source: RIPE

4. 62.147.242.129

nslookup 62.147.242.129
Non-authoritative answer:
129.242.147.62.in-addr.arpa
name = lns-p19-25-62-147-242-129.adsl.proxad.net.
Authoritative answers can be found from:
242.147.62.in-addr.arpa nameserver = ns1.proxad.net.

Information from www.ripe.net
inetnum: 62.147.79.0 - 62.147.255.255
netname: FR-PROXAD-DIALUP
descr: Proxad / Free Telecom
descr: Dynamic pool (dialup)
descr: NCC#2002110278 (45312/45824)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 72

country: FR
admin-c: ACP23-RIPE
tech-c: TCP8-RIPE
status: ASSIGNED PA
mnt-by: PROXAD-MNT
source: RIPE

5. 80.200.147.156

nslookup 80.200.147.156

Non-authoritative answer:
156.147.200.80.in-addr.arpa name = 156.147-200-80.adsl.skynet.be.
Authoritative answers can be found from:
147.200.80.in-addr.arpa nameserver = ns4.skynet.be.

Information from www.ripe.net

inetnum: 80.200.0.0 - 80.200.255.255
netname: BE-SKYNET-20011108
descr: ADSL Customers
descr: Skynet Belgium
country: BE
admin-c: JFS1-RIPE
tech-c: PDH16-RIPE
status: ASSIGNED PA
mnt-by: SKYNETBE-MNT
changed: ripe@skynet.be 20011212
source: RIPE

6. 68.33.105.77

nslookup 68.33.105.77
Non-authoritative answer:
77.105.33.68.in-addr.arpa name =
pcp02102752pcs.towson01.md.comcast.net.
Authoritative answers can be found from:
33.68.in-addr.arpa nameserver = ns02.jdc01.pa.comcast.net.
33.68.in-addr.arpa nameserver = ns01.jdc01.pa.comcast.net.

Information from www.arin.net:
Comcast Cable Communications, Inc.
JUMPSTART-1 (NET-68-32-0-0-1)
68.32.0.0 - 68.63.255.255
Comcast Cable Communications, Inc.
JUMPSTART-BALTIMOR-B1 (NET-68-33-0-0-1)
68.33.0.0 - 68.34.127.255

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 73

10. Correlations from previous students practicals:
This is done along with each alert discussion.

11. Insights into certain internal machines:
A list of internal machines is given that should be further investigated for
compromise or malicious activity.

MY.NET.84.151: More than 130 IP addresses seem to be connecting to the
backdoor (port 65535) on MY.NET.84.151
MY.NET.6.40: SMTP server. It has generated 61 ‘Red worm’ alerts. There is a
chance that these are false alarms but being an important machine it is
recommended that a check be done.
MY.NET.88.193, MY.NET.198.220:
Involved in suspicious activity on backdoor port 65535. MY.NET.198.220 is also
actively scanning external hosts for port 6667
MY.NET.179.77: Suspicious activity with 218.145.25.109
inetnum: 218.144.0.0 - 218.159.255.255
netname: KORNET
descr: KOREA TELECOM
descr: Network Management Center
The attacker has done an IIS Unicode attack and later the internal m/c is
connecting to port 27374, which is a suspicious port. However, between these
two activities there is a long duration. It is however, recommended to check the
internal machine for possible compromise.
01/16-06:07:43.274300 [**] spp_http_decode: IIS Unicode attack detected [**]
218.145.25.109:2789 -> MY.NET.179.77:80
01/16-06:08:45.265582 [**] spp_http_decode: IIS Unicode attack detected [**]
218.145.25.109:12592 -> MY.NET.179.77:80
01/16-06:11:10.698105 [**] spp_http_decode: IIS Unicode attack detected [**]
218.145.25.109:36152 -> MY.NET.179.77:80
01/18-15:47:14.916384 [**] Possible trojan server activity [**] MY.NET.179.77:80 ->
218.145.25.109:27374
01/18-15:47:15.120522 [**] Possible trojan server activity [**] 218.145.25.109:27374 ->
MY.NET.179.77:80
01/18-15:47:15.120545 [**] Possible trojan server activity [**] 218.145.25.109:27374 ->
MY.NET.179.77:80

MY.NET.113.4,MY.NET.84.193, MY.NET.105.204, MY.NET.90.212,
MY.NET.178.101, MY.NET.118.6, MY.NET.114.45 MY.NET.198.185,
MY.NET.153.143, MY.NET.91.104,MY.NET.86.106, MY.NET.90.242,
MY.NET.150.209, MY.NET.114.88, MY.NET.106.228
These machines have triggered the Wacthlist alerts (Watch list 000220 IL-
ISDNNET-990517) more than 100 times. It is recommended that the machines
be checked further.
130.85.190.90 (MY.NET.190.90):
This machine is scanning external IP addresses for port 139 - NetBIOS Session
(TCP), Windows File and Printer Sharing

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 74

130.85.82.32 (MY.NET.82.32): Suspicious external port 80 scan

MY.NET.105.48: Seems to be using IRC. Depending on whether this is allowed
by university policy, it can be allowed or disallowed.There are malicious versions
of IRC clients; for e.g. ircII version 2.2.9 had a Trojan installed in it [1]. Seems to
be connecting to IRC servers - 128.242.65.30, 63.98.19.244

I connected to port 6667 on these machines to verify if they actually run
IRC services or whether 6667 is used as an ephemeral port. I got a response
which confirms it is actually IRC servers
marks% telnet 128.242.65.30 6667
Trying 128.242.65.30...
Connected to 128.242.65.30.
Escape character is '^]'.
NOTICE AUTH :*** Looking up your hostname...
NOTICE AUTH :*** Checking Ident
NOTICE AUTH :*** Found your hostname
NOTICE AUTH :*** Got Ident response
Reference:
[1] http://www.cert.org/advisories/CA-1994-14.html

MY.NET.88.168: Seems to be using IRC. Depending on whether this is allowed
by university policy, it can be allowed or disallowed.It was confirmed that the
machine was connecting to IRC servers by the same method as mentioned
above.

12. Link Graph:

1. The diagram above shows a scenario in which an external IP, 218.145.25.109

can be seen attempting IIS Unicode attack on MY.NET.179.77. There is no
information whether these attacks were successful. However, after 2 days, a
suspicious connection from the web server to the external machine on port
27374 can be noted.

The snippet of traffic is shown –

IIS Unicode attacks

218.145.25.109

 Port 27374

Port 80

MY.NET.179.77

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 75

01/16-06:07:43.274300 [**] spp_http_decode: IIS Unicode attack
detected [**] 218.145.25.109:2789 -> MY.NET.179.77:80
01/16-06:08:45.265582 [**] spp_http_decode: IIS Unicode attack
detected [**] 218.145.25.109:12592 -> MY.NET.179.77:80
01/16-06:11:10.698105 [**] spp_http_decode: IIS Unicode attack
detected [**] 218.145.25.109:36152 -> MY.NET.179.77:80
01/18-15:47:14.916384 [**] Possible trojan server activity [**]
MY.NET.179.77:80 -> 218.145.25.109:27374
01/18-15:47:15.120522 [**] Possible trojan server activity [**]
218.145.25.109:27374 -> MY.NET.179.77:80
..

 The port 27374 is associated with many Trojans like subseven Trojan,
Lion and ramen worm. There is of port 27374 being selected as an ephemeral
port for connecting to web server. But, the connection seems to start from the
web server side (unless IDS is dropping packets). The web server should be
checked.

2.

217.136.73.54
62.147.242.129
80.200.147.156
217.225.205.66
212.95.85.172
24.203.143.208
193.252.51.225
80.13.214.171
80.200.147.21
80.201.222.196
81.49.243.227
213.228.45.54
212.11.38.138
81.51.36.243
217.136.71.219
81.50.4.81
81.49.245.47
217.82.169.106

MY.NET.84.151 was the top talker for the ‘Red worm alert’ (See alert #1). Since
65535 is a valid port, I thought I would analyze the alert a bit more to check if it is
a false alarm. Above 130 IP addresses were connecting to the port 65535 on
MY.NET.84.151 and the distribution of traffic according to the source IP
addresses is shown in the above Pie chart. (All the IP addresses are not shown
on the legend). The large number of source IP addresses and the amount of
traffic lessens the possibility of the false alarm.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 76

13.Analysis process used:

All the alert files were concatenated into a single alert file and the analysis was
done on that. Same procedure was done for the scans and the oos files.

The analysis of the files were done using TCL scripts as well as standard unix
commands – awk, grep, uniq, sort etc.

#!/usr/bin/tcl
set file [lindex $argv 0]
set fp [open $file r]
set wp [open "Names.txt" w]
set wp1 [open "SrcAddr.txt" w]
set wp2 [open "DstAddr.txt" w]
set wp3 [open "SrcPort.txt" w]
set wp4 [open "DstPort.txt" w]
set data [read $fp]
set data [split $data "\n"]
foreach line $data {
 # We don't want the portscan alerts
 set ps [regexp "spp_portscan" $line]
 if {$ps == 0} {
 #Here we capture the name from the Alert-line
 set alert [lindex [split $line "]"] 1]
 set addresses [lindex [split $line "]"] 2]
 set alert [lindex [split $alert "\["] 0]
 if [info exists Array($alert)] {
 set Array($alert) [expr $Array($alert) + 1]
 } else {
 set Array($alert) [expr 0 + 1]
 }
 #puts $addresses
 set src_address [lindex [split [lindex [split $addresses "-"] 0] ":"] 0]
 set src_port [lindex [split [lindex [split $addresses "-"] 0] ":"] 1]
 set addresses [lindex [split [lindex [split $addresses "-"] 1] ">"] 1]
 set dst_address [lindex [split $addresses ":"] 0]
 set dst_port [lindex [split $addresses ":"] 1]
 if [info exists Src_address($src_address)] {
 set Src_address($src_address)
 [expr $Src_address($src_address) + 1]
 } else {
 set Src_address($src_address) [expr 0 + 1]
 }
 if [info exists Src_port($src_port)] {
 set Src_port($src_port) [expr $Src_port($src_port) + 1]
 } else {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 77

 set Src_port($src_port) [expr 0 + 1]
 }
 if [info exists Dst_address($dst_address)] {
 set Dst_address($dst_address)
 [expr $Dst_address($dst_address) + 1]
 } else {
 set Dst_address($dst_address) [expr 0 + 1]
 }
 if [info exists Dst_port($dst_port)] {
 set Dst_port($dst_port) [expr $Dst_port($dst_port) + 1]
 } else {
 set Dst_port($dst_port) [expr 0 + 1]
 }
 }
}
set array_index [array names Array]
puts $wp "Alert names"
puts $wp "-----------"
foreach index $array_index {
 puts $wp "$Array($index) $index"
}
set array_index [array names Src_address]
foreach index $array_index {
 puts $wp1 "$Src_address($index) $index"
}
set array_index [array names Dst_address]
foreach index $array_index {
 puts $wp2 "$Dst_address($index) $index"
}
set array_index [array names Src_port]
foreach index $array_index {
 puts $wp3 "$Src_port($index) $index"
}
set array_index [array names Dst_port]
foreach index $array_index {
 puts $wp4 "$Dst_port($index) $index"
}

This program was used to parse the alert file. This produced alert names and
their frequency, and similarly for source IP, destination IP, source port and
destination port. The same program could be used on subset of alert files. For
example to analyze just one type of alert, first use grep to create the subset of
alert file and then followed by the above program.
A variation of the above program was used to parse the scan file too. The
program is not listed due to space constraints.

