
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

JIM BECHER

GCIA PRACTICAL V3.3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ASSIGNMENT 1: DESCRIBE THE STATE OF INTRUSION DETECTION

HTTPVER, GET /SUMTHIN!

SUMMARY
In July of 2002, Ben Laurie released an advisory that indicated serious vulnerabilities in
OpenSSL. No exploit code was believed to exist at that time. Unix vendors released
upgrades and patches to the vulnerabilities over the next week. In September, exploit
code for several flavors of unix was developed and released. An additional piece of
software was written (not by the author of the exploit), to aid in identifying vulnerable
servers and calling the exploit code with the appropriate command-line arguments. This
additional piece of software, httpver, generated odd log entries in webservers. A fact
that was noticed in October of 2002. Httpver took advantage of the default Apache
configuration which discloses operating system and web server version information
through the Apache directives of ServerTokens and ServerSignature. Applying the
patches, or upgrading, in a reasonable time would address this vulnerability. Another
method of defeating httpver, is to change the default settings of the ServerTokens and
ServerSignature directives in Apache.

We are going to walk through early reports of these strange log entries, how the httpver
source code was discovered, acquiring and compiling the code, how the httpver code
works, and the impacts and countermeasures. Packet traces are provided to illustrate
one of the defensive mechanisms.

EARLY REPORTS
Back in October, 2002, we started seeing reports of log entries in webservers that were
requests for “/sumthin”. The earliest reference I found in a pubic forum or mailing list
was an e-mail from jmaywood1975@hushmail.com dated 17 October, 2002. The e-mail
can be found in the archives at SecurityFocus at the URL
http://www.securityfocus.com/archive/75/295738/2002-10-18/2002-10-24/2. The post
was made to the incidents list on SecurityFocus. The webserver was returning a 404,
page not found error message. In addition, the logs posted in this initial e-mail also
included log entries that were indicating problems with SSL connections from the same
host at the same time. The earliest log entry that contained the “GET /sumthin” was
from 10 October 2002, from IP address 205.150.215.204. Interestingly though, a
couple of the ssl error messages involving this host were from 1 October 2002.

Several posters quickly affirmed that they were seeing the same things, but none of
them indicated that they had logs prior to October 10th. One of the responders
(zeno@cgisecurity.net) suggested that it might be a mechanism for banner grabbing.
This turns out to be the case, but not the whole story.

HACKED MACHINE, WE FOUND “SUMTHIN”
On February 26, 2003, Philipp Hug forwarded an e-mail
(http://www.securityfocus.com/archive/75/313283) to the incidents mailing list at
SecurityFocus with the httpver.c source code. The code was retrieved from a machine

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

that had been compromised. In the e-mail from the victim administrator, he indicates
that the “GET /sumthin”s are indeed a probe, but that the compromise is due to a bug in
SSL – but not specific.

The following day, D.C. van Moolenbroek suspects that the SSL bug is the “openssl-
too-open” mod_ssl exploit by Solar Eclipse (solareclipse@phreedom.org), from
September of 2002.

It is interesting to note that the timeframe from detecting the activity to the httpver code
being posted was in excess of 4 months. As I mentioned before, there were many
people seeing this traffic from various sources. The httpver code was clearly being
used from geographically disperse areas.

ACQUIRING AND COMPILING
I acquired the httpver.c source code from Philipp’s post. I have a Redhat 8.0 machine
that in my lab that we use for purposes such as these. The machine is secured, and
resides on an internal segment.

The source code does not indicate the author, or attribute the code to a particular group.
It does contain a couple of misspelled words, and a couple of words that appear to be
Romanian.

Compiling this piece of code consists of a simple “gcc –o httpver httpver.c”. It requires
normal system functions and libraries.

Mr. Van Moolenbroek indicated that the “openssl-too-open” exploit code could be found
at PacketStorm Security website. It is located at
http://packetstormsecurity.nl/filedesc/openssl-too-open.tar.html, dated September 17th,
2002. From the description for openssl-too-open at PacketStormSecurity’s website:
“OpenSSL v0.9.6d and below remote exploit for Apache/mod_ssl servers which takes
advantage of the KEY_ARG overflow. Tested against most major Linux distributions.
Gives a remote nobody shell on Apache and remote root on other servers.”

The file was retrieved from the PacketStormSecurity website, and unzipped and untar’d.
Compiling the openssl-too-open exploit consists of a simple “make”. A couple of
warnings were encountered about the implicit declaration of the ‘memcpy’ and ‘exit’
functions in linux-x86.c.

HOW HTTPVER WORKS
The process flow of the httpver code is as follows:
§ The code accepts a host and, optionally, a port as command-line arguments – if no

port is provided, a default of 80 is assumed;
§ It validates that either 1 or 2 command line arguments have been provided,

otherwise it will display usage information;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

§ If 2 command line arguments are provided, it performs a sanity check on the port
number;

§ If a hostname is provided, the code resolves the hostname to an IP address, if
resolution does not occur and error message is displayed and the code terminates;

§ A socket is opened;
§ A connection to the host is made, to the IP address and port number provided;
§ If a connection to the IP address and port is unsuccessful, a connect error is logged

and the code terminates;
§ The default command, defined as “GET /sumthin HTTP/1.0/r/n/r/n” is sent;
§ 99.99% of the time, this GET request will generate a 404 (Page Not Found)

response, which often times contains webserver and host information;
§ A buffer for the response is cleared, and data is received;
§ Move data into a buffer called “buf” until all data has been received from the host;
§ Close the connection to the host;
§ Convert the entire response to lower-case;
§ Locates the first occurrence of the string “\nserver:” in the data received;
§ Extract the data from “\nserver:” to the first occurrence of “\r\n”, if the length of this

data is zero the code will log that it could not get the version and terminate;
§ Log the IP address and server response to the logfile;
§ A subroutine then checks to make sure it is an Apache 1.3.x server and returns an

integer containing the subversion of 1.3, otherwise the subroutine will return a code
(-1) to terminate;

§ A subroutine then identifies the operating system (if it is returned in the 404 error
message);

§ Another subroutine then displays the “architecture”, the operating system, and the
version of Apache – the return code from this subroutine is the “architecture”;

§ If the operating system is known and the webserver version is vulnerable, the code
then executes the following system call: “./openssl –a 0x%02x %s\n”. It is executing
a program named “openssl” in the current directory, and providing command-line
arguments to it. In this case, it is passing it the “architecture” and the IP address of
the server that is vulnerable to the openssl-too-open KEY_ARG vulnerability;

§ If the operating system cannot be determined, but the webserver version is known to
be vulnerable, the code will execute the openssl exploit multiple times, each time
providing a different “architecture”.

Here are packet traces to a machine that provides operating system and web server
version information. The Apache server in question is an Apache 1.3.19 server, with a
default installation, running on a Redhat 7.1 box. I have snipped the 3-way TCP
handshake for brevity.

=+=

05/18-13:59:34.168596 192.168.1.4:34344 -> 192.168.1.3:80
TCP TTL:64 TOS:0x0 ID:14446 IpLen:20 DgmLen:77 DF
AP Seq: 0x8498CA77 Ack: 0x5F293FD6 Win: 0x16D0 TcpLen: 32

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

TCP Options (3) => NOP NOP TS: 127514 95008
47 45 54 20 2F 73 75 6D 74 68 69 6E 20 48 54 54 GET /sumthin HTT
50 2F 31 2E 30 0D 0A 0D 0A P/1.0....

=+=

05/18-13:59:34.168596 192.168.1.3:80 -> 192.168.1.4:34344
TCP TTL:64 TOS:0x0 ID:19702 IpLen:20 DgmLen:52 DF
A* Seq: 0x5F293FD6 Ack: 0x8498CA90 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 95008 127514

=+=

05/18-13:59:34.438596 192.168.1.3:80 -> 192.168.1.4:34344
TCP TTL:64 TOS:0x0 ID:19703 IpLen:20 DgmLen:561 DF
AP Seq: 0x5F293FD6 Ack: 0x8498CA90 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 95035 127514
48 54 54 50 2F 31 2E 31 20 34 30 34 20 4E 6F 74 HTTP/1.1 404 Not
20 46 6F 75 6E 64 0D 0A 44 61 74 65 3A 20 54 75 Found..Date: Tu
65 2C 20 30 39 20 4A 61 6E 20 31 39 39 36 20 31 e, 09 Jan 1996 1
37 3A 33 31 3A 33 39 20 47 4D 54 0D 0A 53 65 72 7:31:39 GMT..Ser
76 65 72 3A 20 41 70 61 63 68 65 2F 31 2E 33 2E ver: Apache/1.3.
31 39 20 28 55 6E 69 78 29 20 20 28 52 65 64 2D 19 (Unix) (Red-
48 61 74 2F 4C 69 6E 75 78 29 20 6D 6F 64 5F 73 Hat/Linux) mod_s
73 6C 2F 32 2E 38 2E 31 20 4F 70 65 6E 53 53 4C sl/2.8.1 OpenSSL
2F 30 2E 39 2E 36 20 44 41 56 2F 31 2E 30 2E 32 /0.9.6 DAV/1.0.2
20 50 48 50 2F 34 2E 30 2E 34 70 6C 31 20 6D 6F PHP/4.0.4pl1 mo
64 5F 70 65 72 6C 2F 31 2E 32 34 5F 30 31 0D 0A d_perl/1.24_01..
43 6F 6E 6E 65 63 74 69 6F 6E 3A 20 63 6C 6F 73 Connection: clos
65 0D 0A 43 6F 6E 74 65 6E 74 2D 54 79 70 65 3A e..Content-Type:
20 74 65 78 74 2F 68 74 6D 6C 3B 20 63 68 61 72 text/html; char
73 65 74 3D 69 73 6F 2D 38 38 35 39 2D 31 0D 0A set=iso-8859-1..
0D 0A 3C 21 44 4F 43 54 59 50 45 20 48 54 4D 4C ..<!DOCTYPE HTML
20 50 55 42 4C 49 43 20 22 2D 2F 2F 49 45 54 46 PUBLIC "-//IETF
2F 2F 44 54 44 20 48 54 4D 4C 20 32 2E 30 2F 2F //DTD HTML 2.0//
45 4E 22 3E 0A 3C 48 54 4D 4C 3E 3C 48 45 41 44 EN">.<HTML><HEAD
3E 0A 3C 54 49 54 4C 45 3E 34 30 34 20 4E 6F 74 >.<TITLE>404 Not
20 46 6F 75 6E 64 3C 2F 54 49 54 4C 45 3E 0A 3C Found</TITLE>.<
2F 48 45 41 44 3E 3C 42 4F 44 59 3E 0A 3C 48 31 /HEAD><BODY>.<H1
3E 4E 6F 74 20 46 6F 75 6E 64 3C 2F 48 31 3E 0A >Not Found</H1>.
54 68 65 20 72 65 71 75 65 73 74 65 64 20 55 52 The requested UR
4C 20 2F 73 75 6D 74 68 69 6E 20 77 61 73 20 6E L /sumthin was n
6F 74 20 66 6F 75 6E 64 20 6F 6E 20 74 68 69 73 ot found on this
20 73 65 72 76 65 72 2E 3C 50 3E 0A 3C 48 52 3E server.<P>.<HR>
0A 3C 41 44 44 52 45 53 53 3E 41 70 61 63 68 65 .<ADDRESS>Apache
2F 31 2E 33 2E 31 39 20 53 65 72 76 65 72 20 61 /1.3.19 Server a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

74 20 31 32 37 2E 30 2E 30 2E 31 20 50 6F 72 74 t 127.0.0.1 Port
20 38 30 3C 2F 41 44 44 52 45 53 53 3E 0A 3C 2F 80</ADDRESS>.</
42 4F 44 59 3E 3C 2F 48 54 4D 4C 3E 0A BODY></HTML>.

=+=

05/18-13:59:34.438596 192.168.1.4:34344 -> 192.168.1.3:80
TCP TTL:64 TOS:0x0 ID:14447 IpLen:20 DgmLen:52 DF
A* Seq: 0x8498CA90 Ack: 0x5F2941D3 Win: 0x1920 TcpLen: 32
TCP Options (3) => NOP NOP TS: 127541 95035

=+=

05/18-13:59:34.438596 192.168.1.4:34344 -> 192.168.1.3:80
TCP TTL:64 TOS:0x0 ID:14448 IpLen:20 DgmLen:52 DF
AF Seq: 0x8498CA90 Ack: 0x5F2941D3 Win: 0x1920 TcpLen: 32
TCP Options (3) => NOP NOP TS: 127541 95035

=+=

05/18-13:59:34.478596 192.168.1.3:80 -> 192.168.1.4:34344
TCP TTL:64 TOS:0x0 ID:19704 IpLen:20 DgmLen:52 DF
A* Seq: 0x5F2941D3 Ack: 0x8498CA91 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 95039 127541

=+=

Note the existence of the “Server: “ line, and that it contains the text “apache/1.3.19
(unix) (red-hat/linux) mod_ssl/2.8.1 openssl/0.9.6 dav/1.0.2 php/4.0.4pl1
mod_perl/1.24_01”. This information is the data that is parsed by the httpver code. In
this case, it is determined that this server is vulnerable, and httpver calls openssl-too-
open to exploit the server. I did not place the openssl-too-open exploit code in the
current directory with httpver, so the exploit will not be launched against the server.

IMPACT AND COUNTERMEASURES
The impact of the httpver.c code is that it identifies vulnerable operating system and
Apache version combinations. This information is collected, and then passed to an SSL
exploit. The exploit allows for an attacker to remotely access a shell on the webserver.
From there, an attacker would attempt to escalate their privileges to root, for a complete
compromise.

Detection
A signature does not exist for the httpver code, perhaps due to the basic nature of the
manner in which it gathers system and webserver information. If a signature is put in
place looking for the “GET /sumthin HTTP/1.0” string, it would be incredibly easy for an
attacker to modify the request to avoid detection. Detecting on the “Server: “ response

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

from the server I would think would lead to a significant number of false positives. I
modified the httper code to request other URLs, and to use the HTTP HEAD request
instead of a GET. Both allowed me to successfully identify a server as vulnerable. So
clearly, focusing on the “GET /sumthin” request would only people who download the
code and run it as-is.

A signature does exist that should detect the SSL exploit in the “misc.rules” file:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 443 (msg:"MISC
OpenSSL Worm traffic"; flow:to_server,established; content:"TERM=xterm";
nocase; classtype:web-application-attack;
reference:url,www.cert.org/advisories/CA-2002-27.html; sid:1887; rev:2;)

While the signature does not appear to be built specifically for the openssl-too-open
exploit, it should detect the “TERM=xterm” string from main.c.

$ grep xterm *
main.c:#define COMMAND1 "TERM=xterm; export TERM=xterm; exec bash -i\n"

Prevention
There are a couple of approaches to preventing httpver from successfully identifying a
server as vulnerable: patch, disabling SSLv2 protocol negotiation, and configuring the
server not to send operating system and webserver version information.

The short answer to mitigate being probed and exploited is to keep current on patches.
Ben Laurie made the public announcement early on Jul 30, 2002. At that point, there
were no known exploits. Several vendors (Debian, Trustix, Engarde, Gentoo, SuSE,
Mandrake and Redhat) all made patch announcements, providing patches and/or
upgraded versions to address the vulnerability, later that day. There were additional
vendor announcements from FreeBSD, Slackware, Apple, and NetBSD over the next
week.

The problem was that system administrators were not applying the patches. Eric
Rescorla authored an interesting paper, entitled “Security Holes… Who cares?”, on
statistics and trends of system administrators patching/upgrading OpenSSL after the
announcement of the KEY_ARG vulnerability. According to his paper, disabling SSLv2
protocol negotiation is an easy and effective countermeasure to the KEY_ARG
vulnerability. Disabling SSLv2 protocol negotiation is as simple as a configuration
directive and restarting the server.

In a post to the Full-Disclosure mailing list on September 17, 2002 – Solar Eclipse
posted the exploit code. The post occurred more than a month after the vendor
announcements listed above.

Another method of reducing the probability that someone will use these tools to probe
and exploit your servers is to configure Apache not to include operating system and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Apache version information in responses to client requests. I edited the Apache
configuration file, httpd.conf, and added the following two lines:

ServerToken prod
ServerSignature off

I then stopped and started Apache. Executing httpver again, generated the following
traffic. Again, the 3-way TCP handshake was snipped for brevity:

=+=

05/18-14:25:48.388596 192.168.1.4:44721 -> 192.168.1.3:80
TCP TTL:64 TOS:0x0 ID:3883 IpLen:20 DgmLen:77 DF
AP Seq: 0xE78D5622 Ack: 0xC1C98771 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 284936 252500
47 45 54 20 2F 73 75 6D 74 68 69 6E 20 48 54 54 GET /sumthin HTT
50 2F 31 2E 30 0D 0A 0D 0A P/1.0....

=+=

05/18-14:25:48.388596 192.168.1.3:80 -> 192.168.1.4:44721
TCP TTL:64 TOS:0x0 ID:23845 IpLen:20 DgmLen:52 DF
A* Seq: 0xC1C98771 Ack: 0xE78D563B Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 252500 284936

=+=

05/18-14:25:48.398596 192.168.1.3:80 -> 192.168.1.4:44721
TCP TTL:64 TOS:0x0 ID:23846 IpLen:20 DgmLen:462 DF
AP Seq: 0xC1C98771 Ack: 0xE78D563B Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 252500 284936
48 54 54 50 2F 31 2E 31 20 34 30 34 20 4E 6F 74 HTTP/1.1 404 Not
20 46 6F 75 6E 64 0D 0A 44 61 74 65 3A 20 54 75 Found..Date: Tu
65 2C 20 30 39 20 4A 61 6E 20 31 39 39 36 20 31 e, 09 Jan 1996 1
37 3A 35 37 3A 35 34 20 47 4D 54 0D 0A 53 65 72 7:57:54 GMT..Ser
76 65 72 3A 20 41 70 61 63 68 65 0D 0A 43 6F 6E ver: Apache..Con
6E 65 63 74 69 6F 6E 3A 20 63 6C 6F 73 65 0D 0A nection: close..
43 6F 6E 74 65 6E 74 2D 54 79 70 65 3A 20 74 65 Content-Type: te
78 74 2F 68 74 6D 6C 3B 20 63 68 61 72 73 65 74 xt/html; charset
3D 69 73 6F 2D 38 38 35 39 2D 31 0D 0A 0D 0A 3C =iso-8859-1....<
21 44 4F 43 54 59 50 45 20 48 54 4D 4C 20 50 55 !DOCTYPE HTML PU
42 4C 49 43 20 22 2D 2F 2F 49 45 54 46 2F 2F 44 BLIC "-//IETF//D
54 44 20 48 54 4D 4C 20 32 2E 30 2F 2F 45 4E 22 TD HTML 2.0//EN"
3E 0A 3C 48 54 4D 4C 3E 3C 48 45 41 44 3E 0A 3C >.<HTML><HEAD>.<
54 49 54 4C 45 3E 34 30 34 20 4E 6F 74 20 46 6F TITLE>404 Not Fo
75 6E 64 3C 2F 54 49 54 4C 45 3E 0A 3C 2F 48 45 und</TITLE>.</HE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

41 44 3E 3C 42 4F 44 59 3E 0A 3C 48 31 3E 4E 6F AD><BODY>.<H1>No
74 20 46 6F 75 6E 64 3C 2F 48 31 3E 0A 54 68 65 t Found</H1>.The
20 72 65 71 75 65 73 74 65 64 20 55 52 4C 20 2F requested URL /
73 75 6D 74 68 69 6E 20 77 61 73 20 6E 6F 74 20 sumthin was not
66 6F 75 6E 64 20 6F 6E 20 74 68 69 73 20 73 65 found on this se
72 76 65 72 2E 3C 50 3E 0A 3C 48 52 3E 0A 3C 41 rver.<P>.<HR>.<A
44 44 52 45 53 53 3E 41 70 61 63 68 65 2F 31 2E DDRESS>Apache/1.
33 2E 31 39 20 53 65 72 76 65 72 20 61 74 20 31 3.19 Server at 1
32 37 2E 30 2E 30 2E 31 20 50 6F 72 74 20 38 30 27.0.0.1 Port 80
3C 2F 41 44 44 52 45 53 53 3E 0A 3C 2F 42 4F 44 </ADDRESS>.</BOD
59 3E 3C 2F 48 54 4D 4C 3E 0A Y></HTML>.

=+=

05/18-14:25:48.398596 192.168.1.4:44721 -> 192.168.1.3:80
TCP TTL:64 TOS:0x0 ID:3884 IpLen:20 DgmLen:52 DF
A* Seq: 0xE78D563B Ack: 0xC1C9890B Win: 0x1920 TcpLen: 32
TCP Options (3) => NOP NOP TS: 284937 252500

=+=

05/18-14:25:48.398596 192.168.1.4:44721 -> 192.168.1.3:80
TCP TTL:64 TOS:0x0 ID:3885 IpLen:20 DgmLen:52 DF
AF Seq: 0xE78D563B Ack: 0xC1C9890B Win: 0x1920 TcpLen: 32
TCP Options (3) => NOP NOP TS: 284937 252500

=+=

05/18-14:25:48.398596 192.168.1.3:80 -> 192.168.1.4:44721
TCP TTL:64 TOS:0x0 ID:23847 IpLen:20 DgmLen:52 DF
AF Seq: 0xC1C9890B Ack: 0xE78D563C Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 252501 284937

=+=

05/18-14:25:48.398596 192.168.1.4:44721 -> 192.168.1.3:80
TCP TTL:64 TOS:0x0 ID:3886 IpLen:20 DgmLen:52 DF
A* Seq: 0xE78D563C Ack: 0xC1C9890C Win: 0x1920 TcpLen: 32
TCP Options (3) => NOP NOP TS: 284937 252501

=+=

Note the existence of the “Server: “ line, and that this time, it only contains the text
“apache”. The httpver code is not able to determine the web server version, or the
operating system that it is running on. Thus, the httpver code reports that the server is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

not vulnerable. I realize that this information is available other ways, but this at least
prevents to httpver tool from determining that the server is vulnerable.

REFERENCES
Hug, Philipp. “Re: More /sumthin.” SecurityFocus. 26 February 2003.
URL: http://www.securityfocus.com/archive/75/313283
jmaywood1975@hushmail.com. “HTTP attack looking for /sumthin?” SecurityFocus. 17
October 2002. URL: http://www.securityfocus.com/archive/75/295738/2002-10-
18/2002-10-24/2

Laurie, Ben. “OpenSSL Security Altert – Remote Buffer Overflows.” OpenSSL-
Announce. 30 July 2002. URL: http://www.mail-archive.com/openssl-
announce@openssl.org/msg00037.html

Packet Storm. “openssl-too-open.tar.gz." Packet Storm Security Tool Archive. 17
September 2002. URL: http://packetstormsecurity.nl/filedesc/openssl-too-open.tar.html

Rescorla, Eric. “Security Holes… Who cares?” URL:
http://www.cgisecurity.com/lib/reports/slapper-report.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ASSIGNMENT 2

DETECT #1 (SMTP HELO OVERFLOW ATTEMPT FROM 207.134.171.22)

1. SOURCE OF TRACE.

The source of this trace is from my company’s production network. The external
segment consists of the ethernet interface of the Internet router, a Cisco 3550
ethernet switch, and the corporate firewalls. A spanning session was built on the
Cisco 3550 ethernet switch. A network intrusion detection system is connected to
the destination port of the spanning session. A Compaq DL-360, running Redhat
Linux 8.0 is connected to the port on the Cisco 3550 switch where the spanning
session is configured to send all traffic. The Compaq DL-360 has 2 ethernet
interfaces configured – one has no IP address associated with it (stealth interface),
and one with an internal IP address (management interface). The stealth interface
on the Compaq DL-360 machine is connected to the external Cisco 3550 switch.
The management interface on the Compaq DL-360 machine is connected to an
internal Cisco 6509 switch.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2. DETECT WAS GENERATED BY.

The detect was generated by Snort version 1.9.0 (Build 209). We run Snort in full
packet capture mode, logging to binary files. The binary files are rotated hourly, at
which time another instance of snort is run against the binary log file. The snort
binary logs, and alerts, are logged locally to the machine. The rule which triggered
the events is:

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:"SMTP HELO
overflow attempt"; flow:to_server,established; content:"HELO "; offset:0; depth:5;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

content:!"|0a|"; within:500; reference:cve,CVE-2000-0042;
reference:nessus,10324; classtype:attempted-admin; sid:1549; rev:9;)

This signature exists in the smtp.rules file.

alert
what snort is to do with the event when the signature triggers

tcp

traffic must be Transmission Control Protocol (TCP), protocol 6

$EXTERNAL_NET

the source of the traffic must match $EXTERNAL_NET (in our case is defined
as “!$HOME_NET”), which means that it is anything that is not
MY.HOME.NET.0/24

any

traffic can match any source port

$SMTP_SERVERS

the destination of the traffic must match $SMTP_SERVERS (in our case is
defined as “$HOME_NET”), which means that it is any IP address in
MY.HOME.NET.0/24

25

traffic must match the destination port of 25. Simple Mail Transfer Protocol
(SMTP) uses TCP port 25 as its’ default listening port.

msg: “SMTP HELO overflow attempt”

The name of the event

flow: to_server

indicates that the signature must match on traffic that is a client request to the
server

established

this keyword indicates that the traffic must be part of a connection that has
already successfully completed the TCP 3-way handshake of SYN, SYN-
ACK, ACK.

content: “HELO “

snort is looking for this string of characters in the data stream, in this case the
word HELO followed by a space

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

offset: 0
offset indicates the starting point within the payload of the packet to start
looking for content

depth: 5

specifies how far into the payload of the packet to look for content

content: !”|0a|”

snort again is comparing the traffic to a string of characters, but in this case
snort will only match on this content directive if the hex values of “0a” are not
found. A hex “0a” is a linefeed.

within: 500
 snort will match if a hex 0A is not found within the first 500 bytes of the

payload

reference: cve, CVE-2000-0042 and reference: nessus,10324

References where analysts could go to get additional details on the
vulnerabilities associated with this signature

classtype: attempted-admin

classtype is used for event prioritization and categorization, in this case
“attempted-admin” means that triggering this signature indicates that
someone is attempting to gain administrator privileges, which is classified as
a high priority event

sid: 1549

a number used to uniquely track Snort rules

rev: 9

this is the revision of the signature

3. PROBABILITY THE SOURCE ADDRESS WAS SPOOFED.
The probability that the source address was spoofed is very low. The three-way
handshake for the TCP connection completes successfully, and data is transmitted
across the connection. For spoofing to occur, the true source of the packets would
have to be in the path of traffic between the apparent source and destination of the
connection.

4. DESCRIPTION OF THE ATTACK.
Beginning on the morning of April 16, 2003, hundreds of these events started rolling
in per hour. The source address for all the alerts was the same. The destination
indicated in the events was one of the corporate “bridgehead” Exchange servers that
accepts mail from the Internet. Because we have snort configured to do full packet
capture to a binary log file that is rotated hourly, I was able to go back and start

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

reviewing the entire set of connections. Here is one of the many connections that
caused the Snort signature to trigger:

04/16-14:11:20.259592 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:59535 IpLen:20 DgmLen:60 DF
******S* Seq: 0x4A933687 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 33349128 0 NOP WS: 0

=+=

04/16-14:11:20.259969 MY.HOME.NET.4:25 -> 207.134.171.22:39120
TCP TTL:127 TOS:0x0 ID:62386 IpLen:20 DgmLen:64 DF
***A**S* Seq: 0x92E82B Ack: 0x4A933688 Win: 0xFAF0 TcpLen: 44
TCP Options (9) => MSS: 1380 NOP WS: 0 NOP NOP TS: 0 0 NOP NOP
SackOK

=+=

04/16-14:11:20.310485 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:59536 IpLen:20 DgmLen:52 DF
A* Seq: 0x4A933688 Ack: 0x92E82C Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 33349133 0

=+=

The above 3 packets show the completion of the TCP 3-way handshake.

04/16-14:11:20.311089 MY.HOME.NET.4:25 -> 207.134.171.22:39120
TCP TTL:127 TOS:0x0 ID:62395 IpLen:20 DgmLen:179 DF
AP Seq: 0x92E82C Ack: 0x4A933688 Win: 0xFAF0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 12544066 33349133
32 32 30 20 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 220 ************
2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A ****************
2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A ****************
2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A ****************
2A 2A 2A 2A 2A 2A 2A 30 2A 32 2A 2A 2A 2A 2A 2A *******0*2******
32 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2***************
2A 2A 2A 2A 2A 2A 2A 2A 2A 32 30 30 2A 2A 2A 2A *********200****
2A 2A 2A 2A 2A 30 20 2A 30 2A 30 30 20 0D 0A *****0 *0*00 ..

=+=

The Exchange server sends it’s banner – it has been configured to mask its’ banner.

04/16-14:11:20.363739 207.134.171.22:39120 -> MY.HOME.NET.4:25

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

TCP TTL:47 TOS:0x0 ID:59538 IpLen:20 DgmLen:57 DF
AP Seq: 0x4A933688 Ack: 0x92E8AB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 33349139 12544066
48 45 4C 4F 20 HELO

=+=

The client sends a “HELO “ – but notice, there is no linefeed.

04/16-14:11:20.364050 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:59537 IpLen:20 DgmLen:52 DF
A* Seq: 0x4A933688 Ack: 0x92E8AB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 33349139 12544066

=+=

04/16-14:11:20.613241 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:59539 IpLen:20 DgmLen:57 DF
AP Seq: 0x4A933688 Ack: 0x92E8AB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 33349164 12544066
48 45 4C 4F 20 HELO

=+=

04/16-14:11:21.117987 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:59540 IpLen:20 DgmLen:57 DF
AP Seq: 0x4A933688 Ack: 0x92E8AB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 33349214 12544066
48 45 4C 4F 20 HELO

=+=

04/16-14:11:22.112591 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:59541 IpLen:20 DgmLen:57 DF
AP Seq: 0x4A933688 Ack: 0x92E8AB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 33349314 12544066
48 45 4C 4F 20 HELO

=+=

04/16-14:11:28.116984 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:59543 IpLen:20 DgmLen:57 DF
AP Seq: 0x4A933688 Ack: 0x92E8AB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 33349914 12544066
48 45 4C 4F 20 HELO

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

=+=

04/16-14:11:36.158270 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:59544 IpLen:20 DgmLen:57 DF
AP Seq: 0x4A933688 Ack: 0x92E8AB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 33350714 12544066
48 45 4C 4F 20 HELO

=+=

04/16-14:11:52.133512 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:59545 IpLen:20 DgmLen:57 DF
AP Seq: 0x4A933688 Ack: 0x92E8AB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 33352314 12544066
48 45 4C 4F 20 HELO

=+=

The client continues to send “HELO “s at 0.25 seconds, 0.5 seconds, 1 second, 2
seconds, 4 seconds, 8 seconds, and 16 seconds. It was pointed out that the
sequence numbers do not change, as they are retransmits. The packet at 2
seconds is not present, I can only assume that in this connection, that packet was
dropped. The Exchange server is not responding.

04/16-14:12:20.411870 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:59546 IpLen:20 DgmLen:68 DF
***AP**F Seq: 0x4A93368D Ack: 0x92E8AB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 33355143 12544066
74 62 6E 31 2E 62 72 64 6E 34 2E 63 6F 6D 0D 0A tbn1.brdn4.com..

=+=

The client is apparently willing to give up, and sends a FIN-ACK one minute since
the last packet from the Exchange server. In the payload of the FIN-ACK packet is a
string that may be a hostname. The brdn4.com domain is also registered to
Bluerockdove Inc.

04/16-14:12:20.412320 MY.HOME.NET.4:25 -> 207.134.171.22:39120
TCP TTL:127 TOS:0x0 ID:8462 IpLen:20 DgmLen:64 DF
A* Seq: 0x92E8AB Ack: 0x4A933688 Win: 0xFAF0 TcpLen: 44
TCP Options (6) => NOP NOP TS: 12544668 33349139 NOP NOP Sack:
19091@13965

=+=

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/16-14:12:24.158651 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:59547 IpLen:20 DgmLen:57 DF
AP Seq: 0x4A933688 Ack: 0x92E8AB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 33355514 12544668
48 45 4C 4F 20 HELO

=+=

04/16-14:21:33.167856 MY.HOME.NET.4:25 -> 207.134.171.22:39120
TCP TTL:127 TOS:0x0 ID:31927 IpLen:20 DgmLen:90 DF
AP Seq: 0x92E8AB Ack: 0x4A933688 Win: 0xFAF0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 12550196 33349139
34 35 31 20 54 69 6D 65 6F 75 74 20 77 61 69 74 451 Timeout wait
69 6E 67 20 66 6F 72 20 63 6C 69 65 6E 74 20 69 ing for client i
6E 70 75 74 0D 0A nput..

=+=

The Exchange server gives up on the client..

04/16-14:21:33.168269 MY.HOME.NET.4:25 -> 207.134.171.22:39120
TCP TTL:127 TOS:0x0 ID:31932 IpLen:20 DgmLen:52 DF
AF Seq: 0x92E8D1 Ack: 0x4A933688 Win: 0xFAF0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 12550196 33349139

=+=

…and sends a FIN-ACK

04/16-14:21:33.218717 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:0 IpLen:20 DgmLen:40 DF
*****R** Seq: 0x4A933688 Ack: 0x0 Win: 0x0 TcpLen: 20

=+=

04/16-14:21:33.219148 207.134.171.22:39120 -> MY.HOME.NET.4:25
TCP TTL:47 TOS:0x0 ID:0 IpLen:20 DgmLen:40 DF
*****R** Seq: 0x4A933688 Ack: 0x0 Win: 0x0 TcpLen: 20

=+=

The client aborts the connection. It was pointed out that the client sends two RSTs,
one for each of the packets the Exchange server sent.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

According to RFC 821, "48 45 4C 4F 20" is not a valid response to a 220. There
should be the client domain and a linefeed. I realize that RFC2821 has obsoleted
RFC821, but RFC2821 does not really cover HELO.

It appears that the source is attempting to deliver mail, but is not compliant with the
SMTP protocol as defined in RFC821/2821. I can’t imagine a freeware or
commercial client that is not compliant with a 1982 RFC. Perhaps someone is
developing/testing a new tool for delivering spam.

Running the binary packet capture through p0f, indicates it is a Linux 2.4.x machine:

p0f -s snort.log.1050519600 | grep "207.134.171.22"
p0f: passive os fingerprinting utility, version 1.8.2
(C) Michal Zalewski <lcamtuf@gis.net>, William Stearns
<wstearns@pobox.com>
p0f: file: '/etc/p0f.fp', 150 fprints, iface: 'eth0', rule: 'all'.
207.134.171.22 [18 hops]: Linux 2.4.2 - 2.4.14 (1)

It turns out that this was not an attempt to gain administrative privileges, so the event
is a false positive in that respect. But it did bring to our attention that a spammer
was attempting to deliver, or attempting to relay, spam.

$ whois -h whois.arin.net 207.134.171.22
[whois.arin.net]
TELUS Communications Inc. TELUS-207-134-0-0 (NET-207-134-0-0-1)
 207.134.0.0 - 207.134.255.255
Telus Quebec TELUS-QC-207-134-160-0 (NET-207-134-160-0-1)
 207.134.160.0 - 207.134.175.255
Blue Rock Dove BRD-8-207-134-170-0 (NET-207-134-171-0-1)
 207.134.171.0 - 207.134.171.127
Blue Rock Dove BRD-8-207-134-170-0 (NET-207-134-171-0-2)
 207.134.171.0 - 207.134.171.127

5. ATTACK MECHANISM

It turns out that this wasn’t an attack. We were seeing the number of alerts per hour
because the same connection was generating 6-9 alerts each. The number of
connections per hour was not sufficient for a denial of service type attack.

6. CORRELATIONS
The references that are provided in the snort signature refer to the buffer overflow in
the CSM Mail Server. Those references and correlations don’t seem to be relevant.
Instead, I queried the incidents mailing list. I got two responses off-list, and both
indicate that they were seeing the same things on their networks. They provided no
additional details or analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I queried www.mynetwatchman.com, and there were two reports of this source
address:

Most Recent Event Date/Time

(UTC)
22 Apr 2003 18:39:11 16 Apr 2003 23:50:29

Agent Alias Net2 kreator
Agent Type win32 Perl

Log Type BlackICE Snort
Target Ip 207.51.x.x 161.53.x.x

of Ips Targeted 1 1
IP Protocol 6 6
Target Port 25 25

Port/Issue Description Simple Mail Transport
Protocol (SMTP)
SMTP port probe

Simple Mail Transport
Protocol (SMTP)
Simple Mail Transport
Protocol (SMTP)

Source Port 55823 53506
Explanation advICE | mNW Info mNW Info

Event Count 1 1

A quick google search on “bluerockdove” and “spam” results in many, many hits.
Also, the 207.134.171.0/24 network (SBL6884) is listed on the Spamhaus Block List
(SBL) since the 14th of February 2003.

In addition, an “IP Info” report on dshield.org did not return any records.

7. EVIDENCE OF ACTIVE TARGETING
There is evidence of active targeting. In this case, there is only one server open for
port 25 on the network where this activity was detected. The firewall logs do not
indicate a single dropped/rejected packet from the source IP address during the
entire month of April.

8. SEVERITY
Severity = (criticality + lethality) – (system countermeasures + network
countermeasures)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Criticality=4
 This is one of two corporate “bridgehead” Exchange servers.

Lethality=2
 This was not an attack, it appears to have been an attempt to deliver or relay

spam. If it would have been successful, we might have ended up on a open
relays list, and we might not have been able to deliver mail to destinations that
use those lists when accepting mail.

System Countermeasures=4
 The server was completely patched, masked its’ banner, and does not allow

relaying. To give a 5, I would like to have seen qmail, or similar, be used to
accept mail from the Internet.

Network Countermeasures=4
 The Exchange server is protected by routers performing ingress/egress filtering,

redundant firewalls, and network IDS. It is acknowledged that our firewall and
IDS would not have prevented the spam relaying from occurring if the Exchange
server was misconfigured.

Severity = (4+2) – (4+4) = -2

9. DEFENSIVE RECOMMENDATION
Current defenses seem adequate, but one additional measure that could be taken
would be to have qmail, or similar, accept all inbound mail from the Internet, and
then forward it on to the internal Exchange servers. This reduces the risk of having
a full-featured mail server exposed to the Internet. Small, secure, and efficient
alternatives, such as qmail, should provide an additional level of security.

An improvement in the snort signature is probably needed. Matthew Callaway sent
an e-mail to the snort-sigs list
(http://sourceforge.net/mailarchive/forum.php?thread_id=2035256&forum_id=7141)
containing an improved signature:

From: snort-sigs-admin@lists.sourceforge.net
[mailto:snort-sigs-admin@lists.sourceforge.net]On Behalf Of Matthew
Callaway
Sent: Tuesday, April 29, 2003 2:20 PM
To: Ron Shuck
Cc: snort-sigs@lists.sourceforge.net
Subject: Re: [Snort-sigs] False Positive on SMTP HELO Overflow

Here is a new version of this signature that works correctly:

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:"SMTP HELO
overflow attempt"; flow:to_server,established; content:"HELO ";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

offset:0; depth:5; content:!"|0a|"; within:500; content: "?"; offset:
499; regex; reference:cve,CVE-2000-0042; reference:nessus,10324;
classtype:attempted-admin; sid:1549; rev:10;)

ie: "HELO " from byte 0 to 5, but no LF within 500 bytes, and at least
one char at 500 bytes.

I then re-ran my binary captures past just this signature, and I received no alerts. I
cannot say that this signature will trigger only on the buffer overflow attempt and that
it does not false positive. But, I can say that it did not alert on the traffic that
revision 9 of this signature had.

10. MULTIPLE CHOICE TEST QUESTION
Which one of the following RFCs discuss the Simple Mail Transfer Protocol?
A. RFC1149
B. RFC2821
C. RFC3514
D. It is not discussed in an RFC

Answer: B

The detect was posted to the intrusions@incidents.org mailing list on May 18, 2003.
The text above includes changes that I have made based on the questions/comments
from the list. Andrew Rucker Jones posed the following questions/comments to my
detect:

>What does this (ARIN whois results) tell us?

Address space in North America is ultimately assigned and registered through ARIN
(http://www.arin.net). ARIN maintains a whois service, that allows anyone to submit
queries to their IP address database. The results from ARIN, in this case, tell us that
the IP address 207.134.171.22 is part of the 207.134.0.0/16 Class B network assigned
to TELUS Communications. It also has more granular entries indicating that a /20 CIDR
chunk is assigned to TELUS Quebec. The contact information for bluerockdove.com
has a physical street address in Montreal, Quebec.

>Can I reference those e-mails?

Andrew is referring to 2 replies I received off-list to my initial query about the network
traffic I was seeing. As these e-mails were sent only to me, I feel that netiquette
prevents me from providing any additional information.

>The scale is 1-5. If You need something to justify calling it "1" when it feels like it
should be a "0", think >about the fact that spammers are using Your resources, which is
a kind of attack. :)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Andrew is referring to the 0 score I provided for lethality. Andrew is correct. The score
was changed based on his comments.

References
Callaway, Matthew. “Re: [Snort-sigs] False Positive on SMTP HELO Overflow.” Snort-
sigs Mailing List. 29 April 2003. URL:
http://sourceforge.net/mailarchive/forum.php?thread_id=2035256&forum_id=7141

“Intrusion Reporting and Response.” April 2003. URL: www.mynetwatchman.com

Klensin, J. “Simple Mail Transfer Protocol.” Request for Comments 2821. April 2001.
URL: ftp://ftp.rfc-editor.org/in-notes/rfc2821.txt

Postel, J. “Simple Mail Transfer Protocol.” Request for Comments 821. 1 August 1982.
URL: ftp://ftp.rfc-editor.org/in-notes/rfc821.txt

“The Spamhaus Project.” Spamhaus Block List. April 2003.
http://www.spamhaus.org/sbl/index.lasso

DETECT #2 (SCANNING FOR PROXIES)

1. SOURCE OF TRACE.

The source of the detect was http://www.incidents.org/logs/Raw/2002.10.17. Binary
logs are placed on the incidents website for use by students for their GCIA practical.
These logs are sanitized, and only contain packets that violate the ruleset. Although
not explicitly mentioned, it is assumed that the 170.129.x.x addresses are the
obfuscated addresses. The addresses that are non-local to the organization that is
providing the sanitized logs are assumed not to be obfuscated, as they will be used
in correlating events with other services (i.e. dshield and mynetwatchman).

It appears that the IDS was watching an untrusted, external segment. I am led to
believe this due to the variety of scans/probes that the IDS saw. There are packets
with a destination port of 0, and there are proxy (SOCKS, Squid, 8080/tcp) scans
with only the SYN bit set. I would not expect that an organization would allow this
type of traffic from the Internet to a DMZ or internal network. I would expect a
filtering router or firewall to block this type of traffic.

In addition, the Media Access Control (MAC) addresses also provide some credence
to this assumption. A MAC address is compromised of a 6-hex-character OUI, and a
device specific 6-hex-character string. All inbound traffic from non-170.129.x.x
addresses have the source MAC address of 00:03:E3:D9:26:C0. All outbound traffic
from 170.129.x.x address have the source MAC address of 0:0:C:4:B2:33.
According to the IEEE (http://standards.ieee.org/regauth/oui/oui.txt), both the
“00:03:E3” and the “00:00:0C” OUIs are registered to Cisco Systems. Cisco is a
large manufacturer of routers and firewalls.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2. DETECT WAS GENERATED BY.

The detect was generated by Snort version 1.9.1 (Build 231). The rules which
triggered the events are:

alert tcp $EXTERNAL_NET any -> $HOME_NET 1080 (msg:"SCAN SOCKS
Proxy attempt"; flags:S; reference:url,help.undernet.org/proxyscan/;
classtype:attempted-recon; sid:615; rev:3;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 3128 (msg:"SCAN Squid Proxy
attempt"; flags:S; classtype:attempted-recon; sid:618; rev:2;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 8080 (msg:"SCAN Proxy
\(8080\) attempt"; flags:S; classtype:attempted-recon; sid:620; rev:2;)

All three signatures exist in the “scan.rules” file. These three signatures match on
TCP packets with only the SYN bit set, and that have destination ports of 1080,
3128, or 8080. In addition, the source of the packet must match $EXTERNAL_NET,
and the destination of the packet must match $HOME_NET. If these signatures
match network traffic, snort will alert with the description that is contained in the
“msg” option. The classtype option for each of these signatures is an attempted
recon, which means that someone is attempting to gather information. An attempted
recon is classified as a medium priority event. The “sid” option is a unique tracking
number for this signature within snort, and the “rev” option tracks the revision
number of this particular signature.

In order to narrow the traffic and alerts down the specific host in question, I ran the
command “snort –r 2002.10.17 –c /etc/snort/snort.conf –l ./2002.10.17-log/specific/
host 202.108.254.200”. Here is a sample of the alerts that were generated for an
example scan for a single host across all three ports:

[**] [1:620:2] SCAN Proxy (8080) attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
11/17-06:57:31.896507 202.108.254.200:8576 -> 170.129.38.209:8080
TCP TTL:46 TOS:0x0 ID:61101 IpLen:20 DgmLen:40
******S* Seq: 0x538A1F3F Ack: 0x538A1F3F Win: 0x400 TcpLen: 20

[**] [1:618:2] SCAN Squid Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
11/17-06:57:33.906507 202.108.254.200:55536 -> 170.129.38.209:3128
TCP TTL:46 TOS:0x0 ID:53371 IpLen:20 DgmLen:40
******S* Seq: 0x469C4525 Ack: 0x469C4525 Win: 0x400 TcpLen: 20

[**] [1:615:3] SCAN SOCKS Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
11/17-06:57:37.146507 202.108.254.200:31904 -> 170.129.38.209:1080

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

TCP TTL:46 TOS:0x0 ID:61585 IpLen:20 DgmLen:40
******S* Seq: 0x764EB76A Ack: 0x764EB76A Win: 0x400 TcpLen: 20
[Xref => url help.undernet.org/proxyscan/]

3. PROBABILITY THE SOURCE ADDRESS WAS SPOOFED.

While it is possible that the source address was spoofed, it probably is not in this
case. The attacker is looking for open proxies. The only possible scenario where I
could envision that these packets were spoofed, and still have value to the true
attacker is if the true attacker was in the flow of packets to the spoofed source. In
this scenario, the true attacker would see the responses from the hosts being
scanned.

4 DESCRIPTION OF THE ATTACK.
In this case, the attacker sent SYN packets to ports 1080/tcp, 3128/tcp, and
8080/tcp. From the log files available, no other ports were scanned from this host,
but 202.108.254.204 also ran some proxy scans through the IP space on the same
day, but to different destinations. Given that the hosts are from the same
organization and scanning for the same services, it is likely that these scans are
coordinated. The 202.108.254.204 host has a different scan pattern than that of
202.108.254.200 – the .200 scans are close together on each host and are close
together across multiple hosts. The 202.108.254.204 scans are slow across the
ports and slow across the different hosts. Scans from both hosts do not have TCP
options. If the scans would have been for 3128/tcp and 8080/tcp only
(http://www.sans.org/resources/idfaq/ring_zero.php) – I would have considered that
this might be a troll looking for RingZero-infected machined. However, since it
included a scan for 1080/tcp, I believe the attacker was looking for open proxies.
We have 221 SYN packets from 202.108.254.200 across 74 hosts in the 170.129.x.x
range. Here is an example of a scan for a single host across all three ports:

=+=

11/17-06:57:31.896507 202.108.254.200:8576 -> 170.129.38.209:8080
TCP TTL:46 TOS:0x0 ID:61101 IpLen:20 DgmLen:40
******S* Seq: 0x538A1F3F Ack: 0x538A1F3F Win: 0x400 TcpLen: 20

=+=

11/17-06:57:33.906507 202.108.254.200:55536 -> 170.129.38.209:3128
TCP TTL:46 TOS:0x0 ID:53371 IpLen:20 DgmLen:40
******S* Seq: 0x469C4525 Ack: 0x469C4525 Win: 0x400 TcpLen: 20

=+=

11/17-06:57:37.146507 202.108.254.200:31904 -> 170.129.38.209:1080
TCP TTL:46 TOS:0x0 ID:61585 IpLen:20 DgmLen:40
******S* Seq: 0x764EB76A Ack: 0x764EB76A Win: 0x400 TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

=+=

$ whois -h whois.apnic.net 202.108.254.200
[whois.apnic.net]
% [whois.apnic.net node-2]
% How to use this server http://www.apnic.net/db/
% Whois data copyright terms http://www.apnic.net/db/dbcopyright.html

inetnum: 202.108.0.0 - 202.108.255.255
netname: CHINANET-BJ
descr: CHINANET Beijing province network
descr: Data Communication Division
descr: China Telecom
country: CN
admin-c: CH93-AP
tech-c: SY21-AP
mnt-by: MAINT-CHINANET
mnt-lower: MAINT-CHINANET-BJ
changed: hostmaster@ns.chinanet.cn.net 20000101
status: ALLOCATED PORTABLE
source: APNIC

person: Chinanet Hostmaster
address: No.31 ,jingrong street,beijing
address: 100032
country: CN
phone: +86-10-66027112
fax-no: +86-10-66027334
e-mail: hostmaster@ns.chinanet.cn.net
e-mail: anti-spam@ns.chinanet.cn.net
nic-hdl: CH93-AP
mnt-by: MAINT-CHINANET
changed: hostmaster@ns.chinanet.cn.net 20021016
source: APNIC

person: sun ying
address: Beijing Telecommunication Administration
address: TaiPingHu DongLi 18, Xicheng District
address: Beijing 100031
country: CN
phone: +86-10-66198941
fax-no: +86-10-68511003
e-mail: suny@publicf.bta.net.cn
nic-hdl: SY21-AP
mnt-by: MAINT-CHINANET-BJ

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

changed: suny@publicf.bta.net.cn 19980824
source: APNIC

5. ATTACK MECHANISM
I ran the packets through p0f, to see if I could get an idea about the operating
system of the source of the packets. The p0f tool reported these SYN packets as an
nmap scan. I was curious as to why p0f was not able to identify the operating
system, so I went to have a look at the packets themselves. I immediately noticed
the lack of TCP options. Combined with the p0f results indicating an nmap scan, I
decided to run some nmap scans of my own.

I ran a standard TCP portscan with nmap: “nmap –sT –p 1080,3128,8080 <IP
address>” against a host under my control. At the same time, I had an instance of
snort performing a binary packet capture. When I had snort display the packets of
my first nmap scan, the TCP options were present.

Then I decided to run a Stealth SYN portscan with nmap: “nmap –sS –p
1080,3128,8080 <IP address>” against the same host under my control. Again, I
had an instance of snort performing a binary packet capture. Bingo! This time the
TCP options were not present, and running the packets from the second nmap scan
through p0f yielded the same results as the packets from the detect.

There may be other tools, besides nmap, that could generate the same types of
packets that we see in this detect.

6. CORRELATIONS

I used dshield.org and mynetwatchman.com to check to see if there is any other
reported activity from this IP address. Dshield.org did not return any hits, but
mynetwatchman,com did. There were four incidents reported to
mynetwatchman.com since October of 2002 – incident number 10173264,
13845908, 17807917, and 24993599. In particular, incident 13845908 was of
interested because it occurred on the same day as the scanning from this detect –
November 17th, but it does not appear to contain any probes to 1080/tcp. It is
unclear whether the entity that submitted this incident was monitoring for 1080/tcp.
The other incidents did contain the inclusion of port 1080/tcp, and in some cases
other additional ports. Given the timeframe, source IP address, and the ports
scanned – I would say there is sufficient evidence to assume this detect trace and
the incidents reported to mynetwatchman.com are related.

7. EVIDENCE OF ACTIVE TARGETING
There is no evidence of active targeting. There was no indication in the binary log
file to indicate that these scans are in response to traffic directed at the target, or
that there was additional host enumeration (ICMP pings for example) prior to the
scans. This is simply someone scanning through blocks of IP addresses looking for

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

open proxies to use. In this case, the attacker scanned 74 hosts across the
170.129.x.x class B network.

8. SEVERITY
Severity = (Criticality + Lethality) – (System Countermeasures + Network
Countermeasures)

Criticality = 2

There is no evidence that these services are available, and being used by
unauthorized users. However, depending on what segment the IDS is
monitoring, this could indicate an improperly configured firewall or perimeter
security device. If a system was accessible and configured as an open proxy,
there are 3 concerns:
− the proxy could be used by outsiders, and consume network bandwidth;
− it may be possible to view internal, sensitive servers through an open proxy;

and
− possible embarrassment to the company if the proxy was used to scan other

systems or access indecent sites.

Lethality = 1

I don’t believe that scans for open proxies themselves are cause for concern. I
see many scans a day on the networks that I monitor. If an open proxy exists, it
may indicate poor system and network administration.

System Countermeasures = 2

We are provided no information on the security of the hosts or network security
mechanisms. Without additional information, it is difficult to determine an
accurate severity based on the system countermeasures.

Network Countermeasures = 4

If my assumption that the IDS is watching the untrusted, external segment then I
would rate the network countermeasures as a 4. If the organization has snort
monitoring outside the firewall, I think it would be reasonable to assume that they
are fairly security-savvy. The lack of response to the SYN packets could be that
the firewall is configured to silently discard packets, or that the responses simply
weren’t included in the snort logs provided at the incidents.org website.

Severity = (2 + 1) – (2 + 4)
Severity = -3

9. DEFENSIVE RECOMMENDATION
If my assumption is correct that the IDS in this case is sitting in the external,
untrusted segment outside the firewall, then my recommendations would be:
• Ensure these services (SOCKS, Squid, 8080/tcp) are not accessible from the

Internet if not needed;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• If these services are needed, and must be accessible from the Internet, make
sure they are secured appropriately so that they may not be used by
unauthorized individuals;

• Report this scan to the netblock owner, and event aggregation services such as
dshield.org or mynetwatchman.com.

If my assumption is not correct, and the IDS is monitoring a DMZ or internal network,
then my recommendations would be:
• Review the configuration of the firewall, or perimeter security device, and block

these services inbound if not needed;
• If these services are needed, and must be accessible from the Internet, make

sure they are secured appropriately so that they may not be used by
unauthorized individuals;

• Report this scan to the netblock owner, and event aggregation services such as
dshield.org or mynetwatchman.com.

10. MULTIPLE CHOICE TEST QUESTION

A scan for open proxies on TCP ports 1080, 3128, and 8080 would be considered
an attempted reconnaissance classtype. A default configuration of Snort would alert
these with what priority?
A. Critical
B. High
C. Medium
D. Low

Answer: C

The detect was posted to the intrusions@incidents.org mailing list on May 18, 2003.
The text above includes changes that I have made based on the questions/comments
from the list. Andrew Rucker Jones posed the following questions/comments to my
detect:

> You showed above that the addresses are from the Chinese telecom. Could this be a
pool of dialup >addresses? In that case, Your assumption might not be safe. It might not
hurt to mention the political >climate in China as support for this possibility: the
government censors as much of the Internet as they >can, and Chinese citizens are
constantly looking for ways around the censorship. Open proxies are one >way. Not that
this can't be a completely normal open proxy scan that one would find coming from any
>other country.

It is possible that this could be a pool of dialup addresses. Andrew brings up another
reason to suspect that these are indeed scans looking for open proxies, as opposed to
some other activity.

References

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

IEEE. April 2003. URL: http://standards.ieee.org/regauth/oui/oui.txt

“Intrusion Reporting and Response.” April 2003. URL: www.mynetwatchman.com

Northcutt, Stephen. “What Was the Ring Zero Scan?” SANS Intrusion Detection FAQ.
11 October 1999. URL: http://www.sans.org/resources/idfaq/ring_zero.php

DETECT #3 (FTP CWD OVERFLOW – 7350WURM)

1. SOURCE OF TRACE.

The source of the detect was http://www.incidents.org/logs/Raw/2002.10.17. Binary
logs are placed on the incidents website for use by students for their GCIA practical.
These logs are sanitized, and only contain packets that violate the ruleset. Although
not explicitly mentioned, it is assumed that the 170.129.x.x addresses are the
obfuscated addresses. The addresses that are non-local to the organization that is
providing the sanitized logs are used to not be obfuscated, as they will be used in
correlating events with other services (i.e. dshield and mynetwatchman).

It appears that the IDS was watching an untrusted, external segment. I am led to
believe this due to the variety of scans/probes that the IDS saw. There are packets
with a destination port of 0, and there are proxy (SOCKS, Squid, 8080/tcp) scans
with only the SYN bit set. I would not expect that an organization would allow this
type of traffic from the Internet to a DMZ or internal network. I would expect a
filtering router or firewall to block this type of traffic.

In addition, the Media Access Control (MAC) addresses also provide some credence
to this assumption. A MAC address is compromised of a 6-hex-character OUI, and a
device specific 6-hex-character string. All inbound traffic from non-170.129.x.x
addresses have the source MAC address of 00:03:E3:D9:26:C0. All outbound traffic
from 170.129.x.x address have the source MAC address of 0:0:C:4:B2:33.
According to the IEEE (http://standards.ieee.org/regauth/oui/oui.txt), both the
“00:03:E3” and the “00:00:0C” OUIs are registered to Cisco Systems.

2. DETECT WAS GENERATED BY.
The detect was generated by Snort version 1.9.1 (Build 231). The rule which
triggered the event is:

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP wu-ftp bad file
completion attempt {"; flow:to_server,established; content:"~"; content:"{";
distance:1; reference:cve,CVE-2001-0550; reference:cve,CAN-2001-0886;
reference:bugtraq,3581; classtype:misc-attack; sid:1378; rev:10;)

This signature exists in the “ftp.rules” file. This signature matches on packets in
established TCP connections from source addresses matching $EXTERNAL_NET
and a destination address matching $HOME_NET. Also required for this rule to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

match, the TCP connection must have a destination port of 21 (FTP command
channel) and must contain the “~” and “{“ characters in the payload flowing toward
the FTP server.

If this signature matches network traffic, snort will alert with the description that is
contained in the “msg” option. The classtype option for this signatures is “misc-
attack”, and is classified as a medium priority event. The “sid” option is a unique
tracking number for this signature within snort, and the “rev” option tracks the
revision number of this particular signature.

In order to narrow the traffic and alerts down the specific host in question, I ran the
command “snort –r 2002.10.17 –c /etc/snort/snort.conf –l ./2002.10.17-log/specific3/
host 165.154.7.2”. The alert that was generated is:

[**] [1:1378:10] FTP wu-ftp bad file completion attempt { [**]
[Classification: Misc Attack] [Priority: 2]
11/17-07:54:27.836507 165.154.7.2:1982 -> 170.129.50.4:21
TCP TTL:46 TOS:0x0 ID:35321 IpLen:20 DgmLen:68 DF
AP Seq: 0x473AE04D Ack: 0x719E0482 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 648881738 4580813
[Xref => bugtraq 3581][Xref => cve CAN-2001-0886][Xref => cve CVE-2001-
0550]

3. PROBABILITY THE SOURCE ADDRESS WAS SPOOFED.

I believe there is zero chance that the source address was spoofed. Successful
exploitation of this vulnerability requires that the 3-way TCP handshake complete
successfully, and that the attacker would have to supply a valid username/password
pair prior to exploitation. In addition, I believe a published exploit (7350wurm.c) was
used, and this tool does not have the capability to allow the user of the tool to
provide a source IP address.

4. DESCRIPTION OF THE ATTACK.
Before we can discuss the vulnerability and the attack, a short introduction to “file
globbing” is probably necessary. According to the CERT website
(http://www.cert.org/advisories/CA-2001-07.html) that discusses this vulnerability, file
globbing is “the process of expanding short-hand notation into complete file names”.
What this means is transforming “*.html” to mean all files that end in “.html”. Or
transforming “~homedir” into the actual path to the homedir directory (i.e.
/export/home/homedir).

In this case, the vulnerability exploits a buffer overflow that exists when the globbing
routines perform this transformation and provide larger results back to core routines
of the FTP server. The buffer overflow allows for the execution or arbitrary
commands by an attacker.

So, let’s take a look at the traffic from 165.154.7.2:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$ snort -qdvr 2002.10.17 host 165.154.7.2
11/17-07:54:27.776507 165.154.7.2:1982 -> 170.129.50.4:21
TCP TTL:46 TOS:0x0 ID:35277 IpLen:20 DgmLen:560 DF
AP Seq: 0x473ADE51 Ack: 0x719E0279 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 648881732 4580808
43 57 44 20 30 30 30 30 30 30 30 30 30 30 30 30 CWD 000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000
30 30 30 30 F0 FC 40 31 07 08 98 5F 08 08 EB 0C 0000..@1..._....
EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C
EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C
EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C
EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C
EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C
EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C
EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C
EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C
EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C
EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C
EB 0C EB 0C 90 90 90 90 90 90 90 90 90 90 90 90
31 DB 43 B8 0B 74 51 0B 2D 01 01 01 01 50 89 E1 1.C..tQ.-....P..
6A 04 58 89 C2 CD 80 EB 0E 31 DB F7 E3 FE CA 59 j.X......1.....Y
6A 03 58 CD 80 EB 05 E8 ED 0A CA 59 6A 03 58 CD j.X........Yj.X.
80 EB 05 E8 ED FF FF FF FF FF FF 0A

The shell code contained in this packet matches the source code for the
7350wurm.c (http://packetstormsecurity.nl/0205-exploits/7350wurm.c). Specifically:

/* x86/linux write/read/exec code (41 bytes)
 * does: 1. write (1, "\nsP\n", 4);
 * 2. read (0, ncode, 0xff);
 * 3. jmp ncode

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 */
unsigned char x86_wrx[] =
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

 "\x31\xdb\x43\xb8\x0b\x74\x51\x0b\x2d\x01\x01\x01"
 "\x01\x50\x89\xe1\x6a\x04\x58\x89\xc2\xcd\x80\xeb"
 "\x0e\x31\xdb\xf7\xe3\xfe\xca\x59\x6a\x03\x58\xcd"
 "\x80\xeb\x05\xe8\xed\xff\xff\xff";

In addition, I noticed the size of this packet is 560 bytes, with 32 bytes of TCP
header. From the 7350wurm.c exploit code, there is a declaration of a variable
“xpbuf” with appears to contain the payload of this packet. Here is the variable
declaration:

unsigned char xpbuf[512 + 16];

Notice that the size of the variable is 512+16, which is 528 bytes. 528 bytes of
payload, plus the 32 bytes of TCP header yields 560 bytes.

=+=

11/17-07:54:27.836507 165.154.7.2:1982 -> 170.129.50.4:21
TCP TTL:46 TOS:0x0 ID:35321 IpLen:20 DgmLen:68 DF
AP Seq: 0x473AE04D Ack: 0x719E0482 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 648881738 4580813
43 57 44 20 7E 2F 7B 2E 2C 2E 2C 2E 2C 2E 7D 0A CWD ~/{.,.,.,.}.

Again, this exact CWD (Change Working Directory) command matches the exploit
code:

net_write (fd, "CWD ~/{.,.,.,.}\n");

=+=

11/17-07:54:28.186507 165.154.7.2:1982 -> 170.129.50.4:21
TCP TTL:46 TOS:0x0 ID:35599 IpLen:20 DgmLen:59 DF
AP Seq: 0x473AE0B5 Ack: 0x719E05B9 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 648881774 4580850
43 57 44 20 7E 7B 0A CWD ~{.

And again:

net_write (fd, "CWD ~{\n");

=+=

$ whois -h whois.arin.net 165.154.7.2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[whois.arin.net]

OrgName: HookUp Communications
OrgID: HKUP
Address: 1075 North Service Road West, Suite 207
City: Oakville
StateProv: Ontario
PostalCode: L6M 2G2
Country: CA

NetRange: 165.154.0.0 - 165.154.255.255
CIDR: 165.154.0.0/16
NetName: HOOKUP-NET-4
NetHandle: NET-165-154-0-0-1
Parent: NET-165-0-0-0-0
NetType: Direct Assignment
NameServer: NS1.SISNA.COM
NameServer: NS2.SISNA.COM
Comment:
RegDate: 1993-06-18
Updated: 2002-12-02

TechHandle: BH922-ARIN
TechName: Harper, Benjamin
TechPhone: +1-801-924-0900
TechEmail: ipadmin@ikano.com

ARIN WHOIS database, last updated 2003-05-16 20:10
Enter ? for additional hints on searching ARIN's WHOIS database.

5. ATTACK MECHANISM

p0f gave no results for the 165.154.7.2 address… but manually looking at the
characteristics of the packets – the source address seems to be a Linux 2.2
machine:

wwww:ttt:mmm:D:W:S:N:I:OS Description

wwww - window size
ttt - time to live
mmm - maximum segment size
D - don't fragment flag (0=unset, 1=set)
W - window scaling (-1=not present, other=value)
S - sackOK flag (0=unset, 1=set)
N - nop flag (0=unset, 1=set)
I - packet size (-1 = irrevelant)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

packets from 165.154.7.2 == 32120:64:???:1:?:?:1:

$ grep ^32120:64 /etc/p0f.fp
32120:64:1460:1:0:1:1:60:Linux 2.2.9 - 2.2.18
32120:64:1460:1:190:1:1:60:Linux 2.2.16
32120:64:1460:0:-1:0:0:44:Linux 2.0.38 (2)
32120:64:1460:1:101:1:1:60:Linux 2.2.15
32120:64:1460:0:-1:0:0:-1:Linux 2.0.33 (1)
32120:64:1460:0:0:1:1:60:Linux 2.2.19
32120:64:1460:1:9:1:1:60:Linux 2.2.x
32120:64:1460:1:100:1:1:60:Linux 2.2.14

6. CORRELATIONS
I consulted dshield.org and mynetwatchman.com to see if there were other reports
of incidents of this type from the same source address. Dshield.org returned none
matches. However, mynetwatchman.com returned 9 incidents, covering over 1300
events since July 2002. One of the incidents in particular, incident #13414043,
contained reports of events on port 21 from the same day in this detect – Nov 17.

Incident
Id

Source
IP

Provider
Domain

Agent
Count

Event
Count

Incident
Status

ISP Resolution
Comments

30089490 165.154.7.2 hookup.net 1 1 Closed No Recent Activity
21453077 165.154.7.2 hookup.net 1 1 Closed No Recent Activity
20392493 165.154.7.2 hookup.net 1 1 Closed No Recent Activity
19467159 165.154.7.2 hookup.net 1 1 Closed No Recent Activity
18315050 165.154.7.2 hookup.net 1 1 Closed No Recent Activity
16405719 165.154.7.2 hookup.net 1 1 Closed No Recent Activity
13414043 165.154.7.2 hookup.net 131 214 Closed No Recent Activity
7845484 165.154.7.2 hookup.net 3 5 Closed No Recent Activity
6442905 165.154.7.2 hookup.net 83 1108 Closed No Recent Activity

As far as the vulnerability, snort provides a list of references in the alert. The
references provided by snort are:

[Xref => bugtraq 3581]
 which refers to Bugtraq BugID 3581, found at

http://www.securityfocus.com/bid/3581

[Xref => cve CAN-2001-0886]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 which refers to Common Vulnerabilities and Exposures (CVE) Candidate 2001-
0886, found at http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-
0886

[Xref => cve CVE-2001-0550]
 which refers to CVE Entry 2001-0550, found at http://www.cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2001-0550

In addition, CERT released a CERT Advisory for this particular vulnerability – CERT
2001-007, which can be found at http://www.cert.org/advisories/CA-2001-07.html.

7. EVIDENCE OF ACTIVE TARGETING
I would say that the possibility of active targeting is very likely. This was the only
machine attacked for this vulnerability on this particular day. Also, on the day of the
attack, no reconnaissance traffic is included in the binary snort logs. I also checked
the three previous days looking for traffic from the same source IP address. It is
possible that the traffic used to identify this machine as an FTP server simply did not
get captured -- for instance if the 170.129.50.4 address was listed in DNS as an FTP
server for this organization, or if there was a preceding scan for hosts with port 21
open.

8. SEVERITY
Severity = (Criticality + Lethality) – (System Countermeasures + Network
Countermeasures)

Criticality = 3
 I think it is safe to assume that if an organization, outside of academia, is

allowing FTP from the Internet, that it is serving a business/organizational
purpose. And that disruption of this service would be business-impacting. It
might not be as critical as DNS, SMTP, or WWW though.

Lethality = 5
 This is a remote root exploit.

System Countermeasures = 2
 We are provided no information on the security of the hosts or network security

mechanisms. Without additional information, it is difficult to determine an
accurate severity based on the system countermeasures.

Network Countermeasures = 4
 If my assumption that the IDS is watching the untrusted, external segment then I

would rate the network countermeasures as a 4. If the organization has snort
monitoring outside the firewall, I think it would be reasonable to assume that they
are fairly security-savvy. If even their network defenses were adequate, this
vulnerability may exist over a service that the organization would allow across

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

their firewall (hopefully to a DMZ segment). It is acknowledged that a firewall or
IDS would not have prevented this attack, but the IDS should (and did) alert on it.

Severity = (3 + 5) – (2 + 4)
Severity = 2

9. DEFENSIVE RECOMMENDATION
My defensive recommendations would be to ensure that all systems that accept
traffic from the Internet maintain a high level of security:
§ Install only the minimum operating system and application components

necessary to provide the services needed;
§ That appropriate security configuration changes of the operating system are

made – for instance, using the benchmarks from www.cisecurity.org
§ That the application/service is secured, or use more secure alternatives. Do not

allow anonymous FTP, enforce good password management (composition,
expiration, lockouts, etc), etc in the case of FTP. If possible, use a more secure
alternative such as scp, which is bundled with OpenSSH;

§ Conduct a security assessment of the FTP server to see if it was vulnerable, and
if an intrusion did occur.

§ Install host-based IDS or file integrity checking software on the server. In the
event that a zero-day exploit is every successfully used against this server, if the
attacker makes any changes to critical system files, the host-based IDS or file
integrity checking software should flag it.

§ Join patch notification mailing lists, and quickly apply security patches.

From a network perspective, ensure that all inbound services from the Internet
terminate on machines in a DMZ segment. This organization obviously has network
IDS in place.

As far as incident response, I would recommend that the organization report this
incident to the netblock owner as well as to 3rd party event aggregation services,
such as dshield.org and mynetwatchman.com. In addition, the organization should
document and track this incident in an internal trouble ticket system, if one exists.
This will provide a record of the incident, the assessment of the server, the
assessment of the success or failure of the attack, any recommendations made to
the system/network administrators, etc.

10. MULTIPLE CHOICE TEST QUESTION
The Mitre CVE is an excellent resource for:
A. Repository of exploit code
B. Discussions surrounding how to code new exploits
C. Secure programming examples
D. A dictionary of vulnerabilities and exposures

Answer: D

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References
Carnegie Mellon University CERT. “CERT® Advisory CA-2001-07 File Globbing
Vulnerabilities in Various FTP Servers.” 9 May 2001. URL:
http://www.cert.org/advisories/CA-2001-07.html

IEEE. April 2003. URL: http://standards.ieee.org/regauth/oui/oui.txt

“Intrusion Reporting and Response.” April 2003. URL: www.mynetwatchman.com

Stearns, Bill. “p0f.” Bill Stearns’ web site. 18 May 2003. URL:
http://www.stearns.org/p0f/

TESO. “7350 wurm.” Packet Storm Security Tools Archive. 2001. URL:
http://packetstormsecurity.nl/0205-exploits/7350wurm.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ASSIGNMENT #3: “ANALYZE THIS”

EXECUTIVE SUMMARY

As a part of the GCIA Practical, one of the assignments is to analyze 5 consecutive
days of network security logs. For each day, there are 3 separate log files. All of the
log files are generated by Snort. The purpose is for the student to demonstrate a
strong understanding of the concepts covered in the GCIA course material, and to
be able to apply them in a given scenario.

No other information regarding the other security measures/policies in place are
provided, or information on network topology. Without a complete understanding of
all the security measures or what networks contain critical computing infrastructure,
it is not possible to provide a definitive assessment. However, based on the network
traffic that we do have, we can provide some statistical information regarding the
number and types of security events and alert them to compromised machines and
other malicious traffic on their network. In addition, we can make some
recommendations on how this organization can increase the security of their
network.

Over the course of 5 days, from Sunday May 10th through Wednesday May 14th.
During this time, snort detected thousands of alerts and scans. So many in fact, that
we are only going to address the hosts involved in generating the most events and
some other significant events. Many of these events are serious in nature, and
require prompt attention. We will discuss other events that were detected, while
they do not constitute a compromise, involve protocols/services that should be
addressed from both a policy and technical standpoint.

Date Alerts Scans
May 10 262761 849285
May 11 455033 400869
May 12 144059 765336
May 13 159120 574013
May 14 190392 1211760
TOTAL 1211365 3801263

The data above clearly indicates that too many events exist for a reasonably-sized
security team to review and resolve. Tuning of the IDS system, and incremental
improvements in security should hopefully diminish these numbers to a more
manageable amount.

The analysis below will provide details on machines that are compromised, or are
being used by local users in malicious ways. One machine is scanning large
portions of the Internet for machines tht have already been infected with a Trojan.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Another system is falsifying its’ source address to attack a machine on the Internet.
Still yet another machine is generating fragments of packets, most likely for some
malicious purpose.

The analysis below will also provide details on how local users are misusing network
bandwidth for the purpose of transmitting and receiving songs, that are most likely
copyrighted. While this file sharing does not in itself pose a significant security risk,
it does expose the users (and possibly the organization) to liability. This filesharing
consumes valuable Internet bandwidth, that approved activities are also competeing
for.

It is important to understand that there is risk associated with connecting an
organization to the Internet. The analysis will show the shear magnitude at which
the MY.NET systems and networks were scanned and probed by external
organizations. Hopefully, this will emphasize the importance of good security policy
and practices.

FILES ANALYZED
I selected files from the timeframe of May 10-May 14, 2003 to analyze. Each day
consists of 3 different files: a scans file, an alerts file, and an OOS file. The scans
file for each day contains information on portscans. The alerts file for each day
contains information on the alerts that occurred – but only the bare minimum of
information: date/time, the alert message from the signature, source IP address and
port, and the destination IP address and port. The OOS, or Out-of-Spec, files
contain malicious, or abnormal, traffic. The OOS files contain the packets that
generated alerts. It also contains packets that snort has deemed to be abnormal,
such as an invalid TCP flag combination or the lack of any TCP flags.

The alert files to be analyzed:

Filename File Size
Alert.030510 23918429 bytes
Alert.030511 45332854 bytes
Alert.030512 13156809 bytes
Alert.030513 13787961 bytes
Alert.03514 17263604 bytes

The scan files to be analyzed:

Filename File Size
Scans.030510 60169420 bytes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Scans.030511 27433835 bytes
Scans.030512 55843775 bytes
Scans.030513 41698343 bytes
Scans.030514 88248394 bytes

The OOS files to be analyzed:

Filename File Size
OOS_Report_2003_05_11_20776 1443843 bytes
OOS_Report_2003_05_12_28902 1469443 bytes
OOS_Report_2003_05_13_31237 6379523 bytes
OOS_Report_2003_05_14_9396 1141763 bytes
OOS_Report_2003_05_15_16609 1372163 bytes

You will notice that the dates on the OOS files seem to indicate that they are from
the May 11 – May 15 timeframe. Actually, the files contain the previous days OOS
packets – thus the 2003_05_11 file actually contains data from May 10. Therefore,
even though the filenames indicate that they cover May 11 – May 15, they actually
cover the timeframe of interest, which is May 10 – May 14.

ANALYSIS
During the 5 day period, 49 different Snort signatures triggered from a pool of
1,211,365 total alerts. I think given the quantity of alerts and scans, it would be
beneficial to focus on the major offenders in terms of alerts and portscans. Tod
Beardsley, in his practical, focused on alerts of 10,000 events or more. This seems
to be an adequate breakpoint at which to address the specific alerts individually.

Quantity Snort Signature
323541 Incomplete Packet Fragments Discarded
199460 SMB Name Wildcard
47694 High port 65535 udp - possible Red

Worm – traffic
23279 Tiny Fragments – Possible Hostile

Activity
22991 spp_http_decode: IIS Unicode attack

detected
17383 CS WEBSERVER – external web traffic
15919 High port 65535 tcp - possible Red

Worm – traffic

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

11309 TFTP – Internal TCP connection to
external tftp server

Incomplete Packet Fragments Discarded
In the course of normal network operation, it may be necessary to fragment larger
packets to traverse links that have smaller maximum transmission unit (MTU). The
MTU defines the maximum size of a packet that can traverse the communications
link. When reaching the other end of the link, the fragments may be reassembled –
this requires the remote end to hold the fragments in volatile memory until all the
fragments are received and reconstructed to be passed along. Attackers have
exploited this scenario to consume memory on the remote end, and cause a denial
of service. This scenario was described in Ptacek and Newsham’s paper entitled
“Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”
(http://www.snort.org/docs/idspaper/). It would be beneficial for devices to drop
packet fragments that they have held for a period of time. Doug Kite, in his practical,
indicates that these events are generated by a faulty NIC or that there is nefarious
activity occurring. I am not inclined to believe this may be related to faulty
hardware/NIC. During 4 of the 5 days, the alerts are very light throughout most of
the day. Then for small timeframes in the evening, bursts of these alerts roll in. On
May 11th, the activity was constant and strong all day. The internal IP address
MY.NET.202.238 accounted for 99.98% of all these alerts, and of those alerts, 98%
involved the external address 213.64.169.124 as the destination. The IP address
213.64.169.124 is registered to Telia. If this was a faulty NIC, I would have
expected to see similar alerts to a multitude of destination addresses. In addition,
the “scans” logfiles indicate a significant correlation to the amount of UDP traffic from
MY.NET.202.238 to the 213.64.169.124 destination. The source ports associated
with this traffic are mostly in the 1500-5000 range, however the destination ports
appear to be random. The UDP protocol is used by streaming media applications, as
it does not require the robustness, and thus the performance impact, of TCP.
Perhaps these alerts coincide with an application/service that is running between
these two hosts, for which the protocol is broken or not completely understood by
snort and is being misinterpreted.

SMB Name Wildcard
SMB Name Wildcard is also known as NetBIOS Name Query, according to IDS177
at whitehats.com. The NetBIOS Name Query is covered as part of RFC 1002 –
Protocol Standard For A NetBIOS Service On a TCP/UDP Transport. According to
the whitehats.com summary, “Windows machines often exchange these queries as
a part of the filesharing protocol to determine NetBIOS names when only IP
addresses are known”. While it is possible that a percentage of these events are
related to the normal Windows NetBIOS name resolution process, we will describe a
couple of hosts where this activity is related to scanning and information gathering.
A SMB Name Wildcard request is a request for a list of any NetBIOS names known
to the destination machine. An attacker could use these queries to determine the
machine name, the domain the machine is in, and the username of the person
logged in to the machine. This would be an information gathering/reconnaisance

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

type activity. All of these events, except 1, originated from outside of the MY.NET
network. The alerts are fairly evenly distributed over the 5 day period:

alert.030510

48559 events from 5502 sources

alert.030511

34114 events from 5029 sources

alert.030512

34871 events from 6129 sources

alert.030513

39974 events from 6800 sources

alert.030514

41977 events from 6641 sources

There were 27,815 unique source IP addresses responsible for all 199,460 SMB
Name Wildcard events (roughly about 7 events per source IP address). Only two
source addresses was responsible for more than 500 SMB Name Wildcard events:

1 210.96.203.72 with 1,309 events to 1,309 unique destinations across 161

different Class C networks in the MY.NET network. All events were generated
during roughly 2 hours on May 14th. The logs in the alert files are not exactly in
time order. When sorting them in time order, it would appear that this source
address scanned the entire MY.NET address space starting with MY.NET.1.0/24.
The distribution across the 161 networks does not show any significant
preference to any particular network – with the MY.NET.199.0/24 network having
the highest number of events at 18. I generated a breakdown of SMB Name
Wildcard events by destination network from this source address using the script
smb-source1-dest-breakdown. It is not clear how the source selected the
destination addresses – there is no indications in the scan logs for these 5 days.

2 218.29.219.1 with 617 events to 404 unique destinations across 4 different Class
C networks in the MY.NET nework. All events were generated in under an hour
on May 10th. The 404 events are fairly evenly distributed across the 4 networks
(103, 93, 99, and 109). The source was using two different source ports, 137
and 1025, often to the same destination. The SMB Name Wildcard events occur
with other probes from this source address for other Microsoft services. The
scan logs indicate connections for 139/tcp, 445/tcp, and 137/udp during the same
timeframe as the SMB Name Wildcard events.

My analysis does not lead me to believe that any one specific machine was singled
out and targeted.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

High port 65535 udp - possible Red Worm – traffic
The Red Worm, also known as Adore. According to F-Secure (http://www.f-
secure.com/v-descs/adore.shtml), this worm infects Linux systems. The worm auto-
propagates, attempting to infect other hosts by picking addresses at random, and
exploiting known vulnerabilities in LPRng, rpc-statd, wu-ftpd, and BIND. If the worm
is successful in exploiting one of these vulnerabilities, it will retrieve the worm code
from a web server on the Internet. Once a machine has been infected, the worm
installs a backdoor shell that listens on port 65535.

One host, MY.NET.201.58, was responsible for generating 40000+ of these alerts.
Upon closer inspection, I believe that the MY.NET.201.58 host might be generating
false positives. The scan logs indicate outgoing connections from port 65535 UDP
to various hosts on the Internet with a destination ports of 5121 UDP and 13139
UDP. In addition, there are other connection events in the scan logs involving this
host and with source and destination ports of 13139 UDP. Utilizing Google, I have
discovered that the 13139 and 5121 ports are common, default ports for a game
called Neverwinter – part of the GameSpy network. If you remove all the snort alerts
for “High port 65535 udp – possible Red Worm – traffic” that involve ports 5121 and
5122, only 2657 alerts remain from the original 47,694 events. The connection
between these game ports and 65535 UDP are not clear – google searches have
not produced any clues. If packet traces are available, check to see if the traffic can
be identified as a backdoor being accessed, or if the traffic appears to be related to a
game. Otherwise, I still think it would be wise to investigate the MY.NET.201.58
host.

In the remaining 2657 alerts, if you break down the alerts by port number, obviously
65535 exists in all of them – but, port 6257 occurs in 2110 of the remaining 2657
alerts. UDP port 6257 is listed as WinMX in the portsdb.org database. WinMX is a
Windows peer-to-peer filesharing program. The connection between the UDP port
6257 and UDP port 65535 are not clear – google searches have not produced any
clues.

An interesting linkage diagram can be drawn from connections involving port 6257
and the 218.116.0.0/16 network on the Internet. The 218.116.0.0/16 address space
is registered to SoftBank BB Corp in Japan. The activity involves two hosts on the
218.116.0.0/16 network and three hosts on the MY.NET network:

218.116.20.35
218.116.84.139
MY.NET.218.222
MY.NET.225.90
MY.NET.250.162

What is interesting is that it appears that there is some communication between the
two hosts on the 218.116.0.0/16 network, whereby they are sharing/using
information about hosts on the MY.NET network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

There are three pairs of UDP “connections” that indicate that there may be some
level of communication between the 218.116.0.0 hosts:

1A At 2:42 AM on May 10th, snort alerted on traffic from 218.116.20.35:65535 to

MY.NET.218.222:6257. There were no prior alerts, scan logs, or OOS
packets involving these two hosts.

1B At 6:01 AM on May 10th, snort alerted on traffic from 218.116.84.139:65535 to
MY.NET.218.222:6257. There were no prior alerts, scan logs, or OOS
packets involving these two hosts. In fact, there was no activity from either of
the 218.116. hosts between 2:42 AM and this alert at 6:01 AM.

2A At 4:52 PM on May 10th, snort alerted on traffic from 218.116.84.139:65535 to
MY.NET.250.162:6257. There were no prior alerts, scan logs, or OOS
packets involving these two hosts.

2B At 8:17 AM on May 11th, snort alerted on traffic from 218.116.20.35:65535 to
MY.NET.250.162:6257. There were no prior alerts, scan logs, or OOS
packets involving these two hosts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3A At 12:39 PM on May 11th, snort alerted on traffic from 218.116.20.35:65535 to
MY.NET.225.90:6257. There were no prior alerts, scan logs, or OOS packets
involving these two hosts.

3B At 9:56 PM on May 11th, snort alerted on traffic from 218.116.84.139:65535 to
MY.NET.225.90:6257. There were no prior alerts, scan logs, or OOS packets
involving these two hosts.

For the second host to know the IP address and the port number, without scanning
all hosts in the MY.NET network, seems impossible without the second host
receiving information from another source. Another source could be the first host, or
it could be from an application/service source – such as a worm or filesharing
network.

If packet traces are available, check to see if the traffic can be identified as a
backdoor being accessed, or if the traffic appears to be related to peer-to-peer
filesharing. Otherwise, I still think it would be wise to investigate the three hosts
MY.NET.218.222, MY.NET.225.90, and MY.NET.250.162.

Tiny Fragments – Possible Hostile Activity
According to the misc.rules file in my default Snort 1.9.1 installation, this rule detects
IP packets with the More Fragments (MF) bit set, and length of less than 25 bytes.
RFC1825 indicates that tiny fragment attacks are used to pass traffic through filters
that are configured to disallow traffic. While the RFC refers to attacks with less than
8 bytes beyond the IP header, the snort rule flags on packet lengths of less than 25
bytes – or less than 5 bytes beyond the IP header (assuming no IP options have
been set). The first four bytes beyond the IP header are the source port number (2
bytes) and the destination port number (2 bytes).

An internal machine, MY.NET.235.110, accounted for over 22,088 of these alerts
spread over 849 destinations. The destination IP address seems to remain constant
for lengths of times.

I can identify at least two possible causes behind the traffic that has been detected
from MY.NET.235.110 – streaming media and actual attacks. Laurie Zirkle, in a post
(http://www.incidents.org/archives/intrusions/msg02850.html) to the incidents.org
intrusions mailing list, forwarded an e-mail that explained what she was seeing in her
logs. The forwarded e-mail indicated that the source of the traffic she was seeing
was a global traffic balancer. It was explained that the global traffic balancer probed
her server in response to a request for streaming contents. The fact that the
destination address remains constant for periods of time is then explainable if these
alerts were indeed caused by streaming media.

The other explanation, and this seems more likely, is that the traffic is actually the
MY.NET.235.110 host scanning/attacking other hosts. The number of destinations
seems to high to all be related to streaming content. Additionally, if this was related
to streaming media, I would expect to see more hosts on the MY.NET network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

involved, and I would have expected the MY.NET.235.110 host to be the detination
of the Tiny Fragments, not the source. The Tiny Fragment alerts are already in full
swing in the first day’s log files that I analyzed, so if this machine was compromised,
it was done prior to May 10th. I recommend investigating this machine as soon as
possible.

spp_http_decode: IIS Unicode attack detected
The use of unicode encoding to attempt to bypass tradition string-matching IDS
signatures. A system is required for representing all characters (letters, punctuation,
numbers) as numbers for computers to deal with them, referred to as encoding.
Different encoding methods were used for languages with different character sets –
which led to confusion and conflicts. A single encoding method was needed so that
all character sets for all languages – unicode. Some attackers try to take advantage
of some signature based IDS systems by encoding their attack strings in unicode, in
hopes of bypassing the string-matching of the IDS system.

There were 22991 IIS Unicode “attacks” against 1104 different webservers, of which
281 are internal to MY.NET. It is safe to assume that these machines are indeed
running webservers, because a TCP 3-way handshake would need to complete prior
to the HTTP request which contained the unicode. While not strictly prohibited by
RFC 793, data is not generally transmitted during the TCP 3-way handshake –
therefore, for snort to trigger on an HTTP request containing unicode, the TCP 3-
way shake must have already occurred. For the TCP 3-way handshake to have
occurred, something must have been listening on port 80 of the destination machine.

There are only two MY.NET web servers that saw more than 50 IIS unicode
attempts directed at them -- MY.NET.204.26 with 54 attempts, and MY.NET.222.166
with 615 attempts.

MY.NET.222.166 saw IIS Unicode attacks from 369 different sources. The most
prolific source of the IIS Unicode alerts against this server was from
131.194.195.200, with 19 alerts. This address is registered to Trinity University in
San Antonio, Texas. In addition to the 19 IIS Unicode alerts, there were also 3 CGI
Null Byte attack alerts detected. In a post
(http://archives.neohapsis.com/archives/snort/2000-11/0244.html) to the snort-users
mailing list, Joe Stewart indicates that the CGI Null Byte alerts are raised when the
http preprocessor detects the presence of “%00” in the http request. All the alerts
were generated on the morning of May 13th, between 8-10 AM. There are no other
alerts involving this source address, and there are no scan log or OOS packets that
involve this host. I began to suspect that there may have been some active
targeting going on, but the same pattern (8-15 IIS Unicode alerts, a couple of CGI
Null Byte alerts, and nothing in the scan logs or OOS logs) held for the top 6 sources
of IIS Unicode alerts against MY.NET.222.166.

MY.NET.204.26 saw IIS Unicode attacks from 3 different sources, with 1, 15, and 38
events. Again, the same pattern – mix of mostly IIS Unicode attack alerts with a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

couple of CGI Null Byte alerts, with nothing in the scan or OOS log files – exists with
MY.NET.204.26.

For these two hosts, I would investigate the webserver to see if it contains URLs that
match the snort rule criteria for both the IIS Unicode attack and CGI Null Byte alerts.
These specific rules do not exist in my default snort 1.9.1 installation, so I am unable
to determine why network traffic is matching this signature.

Based on my personal experiences with a commercial IDS product, I have found a
significant number of IIS Unicode “attacks” to be false positives.

CS WEBSERVER - external web traffic
Apparently, the organization is tracking external access to a web server in the CS
department. This event seems to be specific to this organization.

High port 65535 tcp - possible Red Worm – traffic
The Red Worm, also known as Adore. According to F-Secure (http://www.f-
secure.com/v-descs/adore.shtml), this worm infects Linux systems. The worm auto-
propagates, attempting to infect other hosts by picking addresses at random, and
exploiting 4 known vulnerabilities. If the worm is successful in exploiting one of
these vulnerabilities, it will retrieve the worm code from a web server on the Internet.
Once a machine has been infected, the worm installs a backdoor shell that listens on
port 65535.

Of primary concern in this case would be any machines on MY.NET that we suspect
are infected with the Red Worm, and thus only those alerts that involve traffic to or
from a MY.NET host on TCP port 65535. In order to generate a list of machines that
meet this criteria, I ran the red-worm-tcp-processing script. The results of the script
include a count of the number of “High port 65535 tcp – Red Worm” alerts. The
script generated 119 alerts across 18 hosts.

One host in particular, MY.NET.195.3, accounted for 79 of the 119 alerts. The 79
alerts are involve 73 distinct source IP addresses. I would definitely investigate the
MY.NET.195.3 host, however, I think something other than Red Worm infection
might be occurring. If someone discovered this as a Red Worm infected machine, I
would expect to see fewer source addresses, but higher numbers of connections
from those source addresses.

Another host, MY.NET.249.122, generated 5 alerts. The souce ports used to
connect to MY.NET.249.122 are all 6348. The default port for the GNUtella
filesharing protocol is 6346. This caused me to investigate the OOS logs for packets
that include MY.NET.249.122. Sure enough, I found 125 SYN packets directed at
MY.NET.249.122 for TCP port 6346. If packet traces are available, I would
investigate these 5 connections to see whether or not these are associated with file
sharing.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

TFTP - Internal TCP connection to external tftp server
This snort signature is triggering on traffic on port 69/TCP between hosts on the
MY.NET network and hosts that are not on the MY.NET network. Trivial File
Transfer Protocol (TFTP) is a simple file transfer protocol that does not require
authentication – only knowledge of the filename and location. One scenario where I
know tftp is used often is in the storage and retrieval of configuration information for
network devices (routers and switches).

We do not have the packet traces to confirm whether or not this is indeed TFTP
traffic. However, if this is TFTP traffic, all the TFTP servers are external to the
MY.NET network, and all the clients are on the MY.NET network. I was unable to
correlate events prior to the TFTP connections that might indicate that the TFTP was
occurring after some exploitation of the MY.NET machines. In some cases, there
were no alerts involving the MY.NET machine prior to the TFTP alerts. In other
cases, there was SMB Name Wildcard probes directed at the MY.NET machine prior
to the TFTP alerts. In yet other cases, the MY.NET clients were generating IIS
Unicode alerts while communicating to external web servers.

Of the 11300+ events, over 10500 events involve 43 tftp servers in the 64.12.x.x
address space. This address space is registered to America Online (AOL). Another
address space which is registered to America Online, 205.188.x.x, added another 9
tftp servers. Google searches did not turn up any clues as to the reason, or potential
reasons, behind this traffic. Steve Lukacs noted similar alerts involving AOL
destination addresses in the 64.12.x.x address space, but he did not shed any
additional details.

There were 36 hosts total on the MY.NET network that were responsible for
generating all the alerts. In particular, the 7 hosts below generated 98% of the
alerts.

 MY.NET.205.234 3568 alerts (all involve AOL address space)
 MY.NET.240.10 3439 alerts (all involve AOL address space)
 MY.NET.224.242 1800 alerts (all involve AOL address space)
 MY.NET.242.34 943 alerts (all involve AOL address space)
 MY.NET.194.91 630 alerts (all involve a 12.212.105.26 – AT&T)
 MY.NET.223.114 467 alerts (all involve AOL address space)
 MY.NET.235.114 399 alerts (all involve AOL address space)

The scan logs, the OOS logs, and the alert logs (other than the external tftp server
alerts) did not turn up common items of interest involving these 7 hosts.

There were other significant alerts that, based on their severity, deserve to be
mentioned.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Trojan Server Activity
In my default snort 1.9.1 installation, I do not have a signature that matches this alert
message. Judging by the fact that all 3324 valid alerts include a host with a source
or destination port of 27374, I will assume that is the extent of the signature logic. In
984 of the alerts, the source port is 27374 – which can occur during normal system
operation. If the signature is just looking for SYN packets, these are more likely
candidates for false positives than the others. If there is some content matching in
the signature that is looking for content from the server to the client, then there is a
higher degree of confidence that these are valid alerts.

A Bell Canada customer, 67.68.231.154, scanned 13 Class C netblocks in the
MY.NET.0.0/16 network looking for hosts with port 27374 listening. This scanning
generated 213 alerts, but I suspect that some traffic was missed or dropped along
the way. The source port used by 67.68.231.154 increased with the same frequency
as the destination IP address’ last octect. Sorting the Trojan Server alerts involving
this source address, gaps exist between the alerts – if the destination address
skipped 3 IP addresses, then the source port also skipped 3 ports. I assume that
the scan went sequentially through the address space, but we are only seeing a
subset of the alerts.

Site Exec – Possible wu-ftpd exploit
On May 11th, an alert was raised indicating that a remote host might be attempting to
exploit a vulnerability in an FTP server running on MY.NET.222.30. The reported
source of the attack is 24.186.224.197, registered to Optimum Online. During the 5
days being analyzed, I see no other activity from this source address in the alert,
scan, or OOS logs. The only other alert involving the MY.NET.222.30 host is an
SMB Name Wildcard attempt several days later from a source address in Belgium.
No entries appear in the scan or OOS logs for the MY.NET.222.30 host.

While the alert message does not exactly match any signature in my default snort
1.9.1 installation, it would appear that this alert is referring to SID 361 or SID 1971.

If it is referring to SID 361, a vulnerability was discovered in the way wu-ftpd was
configured to handle the “site exec” command for users with a valid ftp account. If
“site exec” is enabled on the server, and it is running a wu-ftpd version 2.4.1 or
earlier, an attacker with a valid ftp account could gain root access remotely. While
not specifically mentioned, I would assume anonymous ftp would be considered a
valid ftp account.

If it is referring to SID 1971, a format string vulnerability was discovered with wu-ftpd
in the routines that handle user input to the “site exec” command. Versions of wu-
ftpd earlier than 2.6.2 are vulnerable. If “site exec” is enabled on the server, and it is
running a vulnerable version of wu-ftpd, an attacker with a valid ftp account could
gain root access remotely. Anonymous ftp is considered a valid ftp account.
Multiple exploit scripts are available to exploit this vulnerability.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The machine is running an FTP server, because the user would have to be logged in
to execute the “site exec” command. This would mean that the TCP 3-way
handshake has already occurred, and that the user is logged in. If packet traces are
available, the banner from the ftp server might be in the packet traces. This will give
an indication what ftp server and what version of the ftp server are running. If the
server is running wu-ftpd, ensure it is not vulnerable. If packet traces are not
available, and if time and resources permit follow-up with the system administrator or
owner of this host to be sure. Given that we have seen no other malicious traffic to
or from this host since the “site exec” alert occurred, I suspect that no exploitation
has occurred.

TCP SRC and DST outside network
At first, these alerts didn’t seem all that interesting or significant. During the 5 days
being analyzed, 126 source addresses were responsible for generating the 805
alerts. I was fully expecting to see traffic from RFC 1918 address space and from
the 169.254.x.x address space. When you remove the 23 source addresses from
these reserved address spaces, the remaining 103 source addresses are fairly
evenly distributed.

Looking at the destination addresses of the traffic that raised these alerts was a little
more interesting. Of the 235 unique destination addresses, one host, 67.80.77.94,
was the recipient in 485 of the 805 alerts. For these 485 alerts, there were 88
different source addresses used. Not only was the destination address the same,
but the destination port was the same as well, TCP port 6112. It would appear that
this might be related to the dtspcd vulnerability described in CERT Advisory 2002-
01, located at http://www.cert.org/advisories/CA-2002-01.html. Given that the
source of these packets are not on the MY.NET network, we might assume that
someone is crafting these packets. Since this is TCP, the attacker is going to have a
difficult time exploiting this using spoofed source addresses, unless the attacker is in
the path of the return packets.

I would recommend implementing egress filtering (if it is not already being done) and
tracking down the source of these packets. One method of tracking these back to
the real source of the traffic is a little resource and time intensive. Start at the
perimeter, and using a sniffer, capture traffic directed at the 67.80.77.94 address.
Take a look at the packet captures, and note the source MAC address. This MAC
address should tell you what device is putting these packets on the network you are
currently monitoring. Once at that device, there may be several networks that feed
that device that you may need to monitor to get the next hop back to the real source,
but the process is the same.

External Scanners
Another analysis I conducted on the data is to determine would the most active,
external scanners of the 130.85.x.x (aka MY.NET) were for each day, and
cumulative for all 5 days.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

May 10
IP Address # Scans
195.222.17.185 12272
217.80.156.54 10358
12.208.65.249 7795
207.88.65.223 7014
211.167.135.133 6986
65.69.50.176 6255
211.90.196.118 6188
210.15.63.85 5121
213.47.191.249 4537
61.32.63.43 3812

May 11

IP Address # Scans
210.202.229.175 4346
216.127.216.104 4082
61.54.97.241 3914
218.13.101.56 3871
218.61.105.129 3596
67.210.104.5 3282
61.170.217.99 2685
62.56.133.69 2629
4.47.43.245 2154
129.93.16.76 1926

May 12
IP Address # Scans
210.6.114.193 6787
195.18.251.123 5468
213.77.159.197 3416
134.36.208.69 2271

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

208.206.10.122 1650
64.220.130.22 1168
206.55.70.34 851
68.210.178.210 475
68.37.242.151 300
207.21.208.83 212

May 13

IP Address # Scans
128.125.49.73 7561
61.33.165.112 3294
81.91.66.73 2580
24.164.137.149 2377
218.18.83.219 1863
62.169.145.25 1748
211.189.77.86 1713
149.169.24.248 1645
81.50.68.53 1202
220.114.224.191 1139

May 14

IP Address # Scans
220.71.31.138 6809
128.218.163.179 4120
155.135.17.1 3592
130.15.159.91 3589
139.130.198.160 3476
220.32.132.12 3041
12.235.52.207 2624
218.216.155.94 2578
217.230.59.205 2092
205.188.228.1 1960

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5-day Cumulative

IP Address # Scans
195.222.17.185 12272
217.80.156.54 10358
12.208.65.249 7795
128.125.49.73 7561
207.88.65.223 7093
211.167.135.133 6986
220.71.31.138 6809
210.6.114.193 6787
65.69.50.176 6255
211.90.196.118 6188

From these 6 tables, two interesting statistics stand out. First, 7 of the 10 most
active, external scanners for the 5-day period were from Saturday, May 10th. This is
contrary to what my organization experiences week after week. The second
interesting statistic is that the all but one of the external scanners were contained to
a single day. The one scanner (207.88.65.223) that was not contained to a single
day, however, 98.8% of the portscan events from this host were on May 10th.

TOP TALKERS

Top Talkers (Alerters)
Alerts Source IP

Address
330521 MY.NET.202.238
103096 MY.NET.196.193
25947 MY.NET.235.110
23522 MY.NET.201.58
12370 66.42.68.210
8131 MY.NET.227.198
6026 140.142.19.69
4745 MY.NET.195.99
4110 216.78.252.220

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3607 213.77.159.197

Top Talkers (Scans)
Scans Source IP

Address

2874935 130.85.196.193
94441 130.85.202.238
55696 130.85.227.198
22976 130.85.97.83
22241 130.85.251.142
14575 130.85.204.46
14549 130.85.249.178
14071 130.85.87.50
13675 130.85.236.178
13625 130.85.210.202

Top Talkers (OOS)

Events Source IP
Address

18513 213.77.159.197
1041 66.117.21.91
802 209.123.49.137
404 148.63.137.221
392 210.253.206.180
160 200.167.111.33
156 209.47.197.14
155 81.218.92.11
152 213.186.35.9
151 209.47.197.12

** One of the top scanners did not show up in the scan logs. The source address 213.77.159.197
generated 18513 OOS packets by turning on the 2 reserved TCP flags (“1” and “2”) with the
SYN flag set. These packets were flagged as OOS, but did not show up in the scan logs. **

GATHER REGISTRATION INFORMATION ON 5 EXTERNAL SOURCES

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I have selected the top 5 sources of external scans, from the Analysis section. The
reason I selected these addresses for further investigation is so that an e-mail
address for the netblock owner could be determined so that the scanning activity
could be reported.

Host: 195.222.17.185

[whois.ripe.net]
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 195.222.17.184 - 195.222.17.191
netname: EE-VIRONE
descr: Virone Reisiburoo AS - Kaubamaja 6
country: EE
admin-c: EV106-RIPE
tech-c: EV106-RIPE
status: ASSIGNED PA
mnt-by: RIPE-NCC-NONE-MNT
changed: cougar@data.ee 19970714
changed: cougar@data.ee 19980508
source: RIPE

route: 195.222.0.0/19
descr: Data Telecom, 195.222.0/19
origin: AS3327
notify: ripe@data.ee
mnt-by: AS3327-MNT
changed: tarmo@data.ee 19960819
source: RIPE

person: Enn Vilgo
address: Virone Reisiburoo AS
address: Kaubamaja 6
address: Tallinn
address: Estonia
phone: +372 2 422 264
fax-no: +372 2 421 056
nic-hdl: EV106-RIPE
notify: ripe@data.ee
changed: cougar@data.ee 19970714
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Host: 217.80.156.54

[whois.ripe.net]
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 217.80.0.0 - 217.89.31.255
netname: DTAG-DIAL14
descr: Deutsche Telekom AG
country: DE
admin-c: DTIP
tech-c: DTST
status: ASSIGNED PA
remarks: **
remarks: * ABUSE CONTACT: abuse@t-ipnet.de IN CASE OF HACK
ATTACKS, *
remarks: * ILLEGAL ACTIVITY, VIOLATION, SCANS, PROBES, SPAM, ETC.

*
remarks: **
mnt-by: DTAG-NIC
changed: ripe.dtip@telekom.de 20001026
changed: ripe.dtip@telekom.de 20030211
source: RIPE

route: 217.80.0.0/12
descr: Deutsche Telekom AG, Internet service provider
origin: AS3320
mnt-by: DTAG-RR
changed: rv@NIC.DTAG.DE 20001027
source: RIPE

person: DTAG Global IP-Addressing
address: Deutsche Telekom AG
address: D-90449 Nuernberg
address: Germany
phone: +49 180 5334332
fax-no: +49 180 5334252
e-mail: ripe.dtip@telekom.de
nic-hdl: DTIP
mnt-by: DTAG-NIC
changed: ripe.dtip@telekom.de 20030210

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

source: RIPE

person: Security Team
address: Deutsche Telekom AG
address: Germany
phone: +49 180 5334332
fax-no: +49 180 5334252
e-mail: abuse@t-ipnet.de
nic-hdl: DTST
mnt-by: DTAG-NIC
changed: abuse@t-ipnet.de 20030210
source: RIPE

Host: 12.208.65.249

[whois.arin.net]

OrgName: AT&T WorldNet Services
OrgID: ATTW
Address: 400 Interpace Parkway
City: Parsippany
StateProv: NJ
PostalCode: 07054
Country: US

NetRange: 12.0.0.0 - 12.255.255.255
CIDR: 12.0.0.0/8
NetName: ATT
NetHandle: NET-12-0-0-0-1
Parent:
NetType: Direct Allocation
NameServer: DBRU.BR.NS.ELS-GMS.ATT.NET
NameServer: DMTU.MT.NS.ELS-GMS.ATT.NET
NameServer: CBRU.BR.NS.ELS-GMS.ATT.NET
NameServer: CMTU.MT.NS.ELS-GMS.ATT.NET
Comment: For abuse issues contact abuse@att.net
RegDate: 1983-08-23
Updated: 2002-08-23

TechHandle: DK71-ARIN
TechName: Kostick, Deirdre
TechPhone: +1-919-319-8249
TechEmail: help@ip.att.net

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

OrgAbuseHandle: ATTAB-ARIN
OrgAbuseName: ATT Abuse
OrgAbusePhone: +1-919-319-8130
OrgAbuseEmail: abuse@att.net

OrgTechHandle: ICC-ARIN
OrgTechName: IP Customer Care
OrgTechPhone: +1-888-613-6330
OrgTechEmail: qhoang@att.com

OrgTechHandle: IPSWI-ARIN
OrgTechName: IP SWIP
OrgTechPhone: +1-888-613-6330
OrgTechEmail: swipid@nipaweb.vip.att.net

ARIN WHOIS database, last updated 2003-05-21 20:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Host: 128.125.49.73

[whois.arin.net]

OrgName: University of Southern California
OrgID: USC-6
Address: University Computing Services
Address: University Park
City: Los Angeles
StateProv: CA
PostalCode: 90089-0251
Country: US

NetRange: 128.125.0.0 - 128.125.255.255
CIDR: 128.125.0.0/16
NetName: USCNET
NetHandle: NET-128-125-0-0-1
Parent: NET-128-0-0-0-0
NetType: Direct Assignment
NameServer: KAUS.USC.EDU
NameServer: USC.EDU
NameServer: SCF-FS.USC.EDU
NameServer: UUCP-GW-1.PA.DEC.COM
Comment:
RegDate: 1986-05-12
Updated: 1999-02-17

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

TechHandle: UNA2-ARIN
TechName: Network Administration, USCnet Network
TechPhone: +1-213-740-5555
TechEmail: netadmin@usc.edu

ARIN WHOIS database, last updated 2003-05-21 20:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Host: 207.88.65.223

[whois.arin.net]

OrgName: XO Communications
OrgID: XOXO
Address: Corporate Headquarters
Address: 11111 Sunset Hills Road
City: Reston
StateProv: VA
PostalCode: 20190-5339
Country: US

NetRange: 207.88.0.0 - 207.88.255.255
CIDR: 207.88.0.0/16
NetName: XOXO-BLK-2
NetHandle: NET-207-88-0-0-1
Parent: NET-207-0-0-0-0
NetType: Direct Allocation
NameServer: NAMESERVER1.CONCENTRIC.NET
NameServer: NAMESERVER2.CONCENTRIC.NET
NameServer: NAMESERVER3.CONCENTRIC.NET
NameServer: NAMESERVER.CONCENTRIC.NET
Comment:
RegDate:
Updated: 2002-04-03

TechHandle: DIA-ORG-ARIN
TechName: DNS and IP ADMIN
TechPhone: +1-408-817-2800
TechEmail: hostmaster@concentric.net

OrgAbuseHandle: XCNV-ARIN
OrgAbuseName: XO Communications, Network Violations
OrgAbusePhone: +1-866-285-6208

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

OrgAbuseEmail: abuse@xo.com

OrgTechHandle: XCIA-ARIN
OrgTechName: XO Communications, IP Administrator
OrgTechPhone: +1-703-547-2000
OrgTechEmail: ipadmin@eng.xo.com

ARIN WHOIS database, last updated 2003-05-21 20:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Bonus Host: 213.77.159.197

[whois.ripe.net]
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 213.77.159.128 - 213.77.159.255
netname: MIELEC-SDI
descr: TP S.A. SDI
descr: Mielec
country: PL
admin-c: WW199-RIPE
tech-c: SW3859-RIPE
status: ASSIGNED PA
mnt-by: TPNET
changed: tkielb@cst.tpsa.pl 20000913
source: RIPE

route: 213.77.0.0/16
descr: TPNET
descr: for abuse: abuse@tpnet.pl
origin: AS5617
mnt-by: AS5617-MNT
changed: nabn@tpnet.pl 20030228
source: RIPE

person: Wojciech Wozniak
address: ZT Rzeszow
address: POLAND
phone: +48 17 8525995
e-mail: wozniak@zt.rzeszow.tpsa.pl
nic-hdl: WW199-RIPE
mnt-by: TPNET
changed: tkielb@cst.tpsa.pl 19971104

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

changed: tkielb@cst.tpsa.pl 20020618
source: RIPE

person: Slawomir Wijowski
address: Zaklad Telekomunikacji Rzeszow
address: ul. Wyspianskiego 35
address: 35-001 Rzeszow
address: Poland
phone: +48 17 8525995
phone: +48 17 8525818
fax-no: +48 17 8525616
e-mail: wozniak@zt.rzeszow.tpsa.pl
nic-hdl: SW3859-RIPE
mnt-by: TPNET
changed: tkielb@cst.tpsa.pl 20000131
source: RIPE

ANY INSIGHTS INTO INTERNAL MACHINES SUCH AS COMPROMISE OR POSSIBLE DANGEROUS OR
ANOMALOUS ACTIVITY.

Based on the sources of log entries in the scan log files, 130.85.196.193 is cause for
concern. This host generated over 2.8 million portscan log entries while scanning
large portions of the Internet for port 17300/TCP. According to www.portsdb.org,
port 17300/tcp is associated with the Kuang2 Trojan. Information on this trojan can
be obtained at www.glocksoft.com/trojan_list/Kuang2_the_virus.htm.

The scanning that was detected during these 5 days is corroborated by external
event aggregation sources – dshield.org and mynetwatchman.com. On dshield.org,
I performed an “IP Info” report on 130.85.196.193, and the results indicated that
1200+ attacks were reported on May 13th. My query to mynetwatchman.com
resulted in incident ID 30282139. This incident ID covers the timeframe from May
7th through May 16th. During this timeframe, 16 agents reported over 1000 events.

This machine may either being directly controlled, or controlled through an IRC
BotNet. I consider the later a possibility, due to the existence of a significant IRC
connections each day from that host.

A machine on the MY.NET network appears to be spoofing packets from various
source addresses, and appears to be attacking a single machine out on the Internet.
Since the source addresses are forged, I cannot provide an address or machine
name to track this activity back to.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Snort alerted on 40000+ events of the backdoor associated with Red Worm/Adore
for the MY.NET.201.58 host. This signature should be reviewed for false positives,
but in the meantime, the network traffic associated with these alerts should be
reviewed. If it turns out that the network traffic is indeed Red Worm/Adore, than the
MY.NET.201.58 host is infected, and very active.

From the OOS and scan logs, some users on the MY.NET network are engaging in
peer-to-peer filesharing. The risks associated with peer-to-peer file sharing are both
legal and technical. The industry groups that are chartered to protect artists have
gotten more active in using the legal system to curtail peer-to-peer filesharing. From
a technical perspective, peer-to-peer filesharing is an avenue for the introduction of
malware, and can consume valuable Internet bandwidth.

A machine on the MY.NET network, specifically MY.NET.235.110, is generating
traffic that is being alerted on by snort as containing “Tiny fragments”. Tiny
fragments can be used to bypass security filters, and cause instability on the
destination host. MY.NET.235.110 is responsible for virtually all the 23279 “Tiny
Fragment” alerts during the 5 day period of May 10th through May 14th.

I would contact America Online (AOL), and see if the TFTP traffic that was detected
is expected bahvior or not.

DEFENSIVE RECOMMENDATIONS BASED UPON YOUR ANALYSIS.
There appears there might be some malicious use of systems on the MY.NET
network and existence of worm and trojan activity, but given the user base I believe
this is to be expected. The hope is that these incidents of worm and trojan activity
are confined to user workstations and do not include the systems the organization
relies upon for conducting operations. Anti-virus software, and frequent updates,
should be a requirement to connecting a client system to the MY.NET network.

I would advocate tighter restrictions on inbound/outbound traffic to/from the
organization, but I believe culturally this may be a challenge. At a minimum, I would
recommend filtering NetBIOS in either direction at the perimeter, unless there are
requirements for NetBIOS access across the perimeter. I would also recommend
egress filtering at the perimeter. The organization should segregate critical
computing infrastructure (DNS servers, SMTP servers, Web servers, etc) off from
the rest of the network, and apply granular access control for access to those
resources – if they haven’t done so already.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I think increased user awareness is one area where this organization could realize
some benefit. In parsing through the OOS data, I noticed a significant amount of
peer2peer file sharing. The RIAA recently sent letters to university officials urging
them to clamp down on file-swapping by students. I was unable to find a working
link to the actual letter on the RIAA website, but the letter was covered in this
news.com article -- http://news.com.com/2100-1023-961637.html. The threat of
legal action from the RIAA, such as http://www.idg.net/ic_1281008_9691_1-
5056.html, may be enough to deter some users. Using traffic shaping products,
such as Packeteer’s PacketShaper, give network administrators the ability to assign
very little bandwidth to file sharing protocols. However, this may quickly escalate
into an arms race with clever users, who merely alter the ports that their file-
swapping activities use.

In addition, two of the top 5 snort alerts were SMB Name Wildcard and Red Worm
activity. Providing information to users on simple steps they can take to secure their
machines may help prevent them from becoming compromised or infected. Snort
will still see probes, and attempts from external sources.

ANALYSIS PROCESS
Given the overwhelming amount of alerts and scans, my approach was first to
identify the signatures or hosts that were generating an abnormally high number of
events. I want to first identify, quantify, and understand the number of the events
that were being generating while watching network traffic to and from MY.NET. The
hope is that by addressing the hosts or signatures that were causing the majority of
the events, that we could reduce the amount of events the security staff has to deal
with down to a more manageable level.

The next step I took in my analysis process was to determine the major sources of
scans from external sources. You may be asking why is this important, because
there is probably very little that can be done with this information. These external
machines are not under your control, and you might not ever identify the
system/network administrator to determine the cause of the probe or scan. The
benefit of gathering this information is in informing the netblock owner of the activity
– in hopes of experiencing fewer probes/scans from the user or organization
responsible. I have been unable to find any statistics or studies to support this
theory, or how the use of 3rd party event aggregation services would be beneficial.

In order to categorize and quantify events and scans, I used a variety of shell scripts.
The basis of the scripts are from Chris Calabrese’s Practical, which can be found at
http://www.giac.org/practical/Chris_Calabrese_GCIA.html.

The data files were kept separate to allow for easily looking at criteria from a day-by-
day perspective, but it also allows us to aggregate the day for the 5-day period. A
methodology that you will see in most of the scripts that were used to analyze the
data.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SCRIPTS USED
I would like to acknowledge Chris Calabrese. In his practical, Chris documented the
scripts that he used in generating his data. My choice was also to analyze the files
using command-line tools, such as awk, grep, sort, and uniq. Using Chris’ scripts as
a basis was very beneficial.

Permission was obtained from Chris to use and modify the scripts from his practical.

top-scan-src-hosts
echo "Day-by-day breakdown"
for n in scan*
do
echo $n
cat $n | awk '$5 == "->" { print $4 }' | cut -d : -f 1 | sort | uniq -c | sort -rn | head
done
echo "Totals over 5-day period"
cat scan* | awk '$5 == "->" { print $4 }' | cut -d : -f 1 | sort | uniq -c | sort -rn | head

top-alerters
echo "Day-by-day breakdown"
for n in alert*
do
echo $n
grep '\[**\]' $n | grep -v "End of portscan" | awk '/spp_portscan/ { print $7; next } {
a=NF-2; print $a }' | cut -d : -f 1 | s
ort | uniq -c | sort -rn | head
done
echo "Total over 5 day period"
grep '\[**\]' alert* | grep -v "End of portscan" | awk '/spp_portscan/ { print $7; next }
{ a=NF-2; print $a }' | cut -d : -f 1
 | sort | uniq -c | sort -rn | head

top-scan-src-hosts-ext
echo "Day-by-day breakdown"
for n in scan*
do
echo $n
cat $n | grep -v " 130.85." | awk '$5 == "->" { print $4 }' | cut -d : -f 1 | sort | uniq -c |
sort -rn | head
done
echo "Totals over 5-day period"
cat scan* | grep -v " 130.85." | awk '$5 == "->" { print $4 }' | cut -d : -f 1 | sort | uniq -c
| sort -rn | head

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

find-number-of-sources-of-smb-name-wildcard
for n in alert.03051*
do
grep "SMB Name Wildcard" $n | awk '{ print $7 }' | awk -F: '{ print $1 }' | sort | uniq -c
| wc -l
done

find-internal-machines-possibly-infected-with-redworm
grep "possible Red Worm - traffic" alert.03051* | awk '{ print $14; print $16 }' | grep
"65535" | sort | uniq -c | sort –n

find-all-hosts-involved-in-iis-unicode
grep "IIS Unicode attack detected" alert.03051* | awk '{ print $9; print $11 }' | sort |
uniq -c | sort -n >> iis-unicode

 find-internal-servers-involved-in-iis-unicode
 cat iis-unicode | grep ":80" | grep "MY.NET"

 find-external-servers-involved-in-iis-unicode
 cat iis-unicode | grep ":80" | grep -v "MY.NET"

find-source-of-tiny-fragments
grep "Tiny Fragments" alert.03051* | awk '{ print $10 }' | sort | uniq -c | sort –n

 how-many-hosts-did-he-tiny-fragment
 grep "Tiny Fragments" alert.03051* | grep "MY.NET.235.110 ->" | awk '{ print $12
}' | sort | uniq -c | sort -n | wc –l

top-talkers-alerts
grep '\[**\]' alert* | grep -v "End of portscan" | awk '/spp_portscan/ { print $7; next }
{ a=NF-2; print $a }' | cut -d : -f 1 | sort | uniq -c | sort -rn | head

top-talkers-scans
cat scan* | awk '$5 == "->" { print $4 }' | cut -d : -f 1 | sort | uniq -c | sort -rn | head

find-smb-sources
for n in alert.03051*
do

grep “SMB Name Wildcard” $n | awk ‘{ print $7 }’ | awk –F: ‘{ print $1 }’ >> smb-
sources

done

find-smb-sources-count
cat smb-sources | sort | uniq –c | sort –n

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

smb-source1-dest-breakdown
for n in alert.03051*
do
 grep “210.96.203.72” $n | grep “SMB Name Wilcard” >> tmp-smb-source-raw-log
done
cat tmp-smb-source-raw-log | awk ‘{ print $9 }’ | awk –F: ‘{ print $1 }’ | awk –F. ‘{ print
$3 }’ | sort –n | uniq –c

tinyfrag-235-110-raw
for n in alert.03051*
do
 grep “Tiny Fragments” $n | grep “MY.NET.235.110”>>235-110-tinyfrag-alerts-raw
done

tinyfrag-235-110-destination-breakdown
cat 235-110-tinyfrag-alerts-raw | awk ‘{ print $12 }’ | sort –n | uniq –c | sort –n >>
235-110-tinyfrag-alerts-destination-breakdown-results

red-worm-tcp-processing
for n in alert.03051*
do
 grep “High port 65535 tcp” $n >> red-worm-tcp-alerts
done
cat red-worm-tcp-alerts | awk ‘{ print $14; print $16 }’ >> red-worm-tcp-hosts
grep ^MY.NET red-worm-tcp-hosts | grep $65535 >> red-worm-tcp-hosts-mynet-
65535
sort red-worm-tcp-hosts-mynet-65535 | uniq –c | sort –n

References
Beardsley, Tod. “Intrusion Detection and Analysis: Theory, Techniques, and Tools.”
GCIA Practical. 8 May 2002. URL: www.giac.org/practical/Tod_Beardsley_GCIA.doc

Borland, John. “Hollywood Chases Down Campus Pirates.” Cnet. 10 October 2002.
URL: http://news.com.com/2100-1023-961637.html

Calabrese, Chris. “SANS GCIA Intrusion Detection In Depth GCIA Practical
Assignment.” GCIA Practical. December 2001. URL:
http://www.giac.org/practical/Chris_Calabrese_GCIA.html.

Evers, Joris. “RIAA Sues Students for File-Swapping.” IDG News Service. 4 April 2003.
URL: http://www.idg.net/ic_1281008_9691_1-5056.html,

F-Secure. “F-Secure Computer Virus Information Pages: Adore” April 2001. URL:
http://www.f-secure.com/v-descs/adore.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

G-Lock Software. “Kuang2 the Virus.” Trojan Port List. May 1999. URL:
http://www.glocksoft.com/trojan_list/Kuang2_the_virus.htm

“The Internet Ports Database.” 17 January 2002. URL: http://www.portsdb.org

Kite, Doug. “Intrusion Detection in Depth.” GCIA Practical. July 2002. URL:
www.giac.org/practical/GCIA/Doug_Kite_GCIA.pdf

“Protocol Standard for a NetBIOS Service on a TCP/UDP Transport: Detailed
Specifications.” RFC 1002. March 1987. URL: ftp://ftp.rfc-editor.org/in-notes/rfc1002.txt

Reed, D; Traina, P; Ziemba, G. “Security Considerations for IP Fragment Filtering.” RFC
1858. October 1995. URL: ftp://ftp.rfc-editor.org/in-notes/rfc1858.txt

Vision, Max. “IDS177 NetBIOS-Name-Query.” arachNIDS: The Intrusion Event
Database. 2001. URL: http://whitehats.com/info/IDS177

Zirkle, Laurie. “Explanation of Snort MISC Tiny Fragments from 211.13.231.126.”
Intrusions Mailing List at Incidents.org. 22 January 2002. URL:
http://www.incidents.org/archives/intrusions/msg02850.html

