
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Global Information Assurance Certification

GIAC Certified Intrusion Analyst

Mario R. Ricci
SANS Columbia, MD, USA

December 2002
GIAC GCIA Practical version 3.3

Submit date June 18, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract

This practical assignment is for the GIAC GCIA version 3.3. The practical assignment
consists of three parts, a white paper, three analyses of a specific detect and an analysis of a
weeks worth snort logs from a University.

The white paper provides a Snort preprocessor proof of concept. The Snort preprocessor
exhibits a method of determining if the traffic that the sensor is picking up is normal by
comparing the amount of unicast packets to broadcast packets in normal and different fault
conditions.

The three analyses were of raw logs from the incidents.org web site. The first analysis dealt
with crafted packets with 255.255.255.255 source IP address. The second analysis dealt
with snort rule that triggers when based on content. The analysis showed the content was
simply a jpeg and not an attack. The third analysis dealt with a NMAP scan that was using a
decoy to obscure the real address and some of the problems associated with P2P software.

The week’s worth of snort logs from a University showed active NIMDA within the network
and a barrage of external scans. A detailed analysis was performed on all the alerts as well
as an overall analysis with recommendations.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents
Table of Contents .. 3
Part 1: The State of Intrusion Detection... 6

Detecting Configuration and Architecture Changes ... 6
Summary .. 6
Introduction... 6

Section I: Common Configuration and Architecture Changes .. 6
Change 1: Interface is Discriminating.. 6
Change 2: Switch is Discriminating .. 7
Change 3: Network ReRouting... 8

Section II: Creation of Configuration and Architecture Changes.. 8
Section III: Comparison and Analysis of Captured Data Streams.. 9

Findings.. 9
Section IV: The Snort Preprocessor... 10

Abbreviated List of Steps.. 10
Overview of Snort Program .. 11

References... 15
Part 2: Network Detects... 16

Detect #1: Broadcast from eleet... 16
1. Source of Trace.. 17
2. Detect was generated by.. 17
3. Probability the source address was spoofed. ... 17
4. Description of attack. .. 18
5. Attack mechanism. ... 19
6. Correlations. ... 19
7. Evidence of active targeting. .. 20
8. Severity. ... 20
9. Defensive recommendations. ... 21
10. Multiple choice test questions... 21
11. Results of post to intrusions@incidents.org.. 22

11.1 Reply #1.. 22
11.2 Reply #2.. 24

11.3 Reply #3 ... 24
Detect #2: A visit to gay.com.. 25

1. Source of Trace.. 26
2. Detect was generated by.. 26
3. Probability the source address was spoofed. ... 27
4. Description of attack. .. 27
5. Attack mechanism. ... 28
6. Correlations. ... 28
8. Severity. ... 28
9. Defensive recommendations. ... 28
10. Multiple choice test questions... 28

Detect #3: NMAP SCAN ... 29
1. Source of Trace.. 30
2. Detect was generated by.. 30

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3. Probability the source address was spoofed. ... 31
4. Description of attack. .. 32
5. Attack mechanism. ... 32
6. Correlations. ... 33
7. Evidence of active targeting. .. 34
8. Severity. ... 34
9. Defensive recommendations. ... 34
10. Multiple choice test questions... 35

Part 3: Analyze This .. 36
1. Executive summary.. 36
2. List of files analyzed... 36
3. Meaningful analysis ... 37
4. List of detects, priority by severity or number of occurrences. 38

4.1 SMB Name Wildcard .. 40
4.2 Watchlist 000220 IL-ISDNNET-990517 ... 40
4.3 High port 65535 udp - possible Red Worm - traffic.. 41
4.4 spp_http_decode: IIS Unicode attack detected ... 42
4.5 CS WEBSERVER - external web traffic .. 43
4.6 High port 65535 tcp - possible Red Worm - traffic ... 43
4.7 Tiny Fragments - Possible Hostile Activity... 44
4.8 Incomplete Packet Fragments Discarded.. 45
4.9 TFTP - Internal TCP connection to external tftp server 45
4.10 TCP SRC and DST outside network... 46
4.11 xxx.yyy.30.4 activity.. 47
4.14 Null scan!.. 48
4.15 Watchlist 000222 NET-NCFC... 48
4.16 Queso fingerprint .. 49
4.17 IDS552/web-iis_IIS ISAPI Overflow ida nosize... 50
4.18 SUNRPC highport access! ... 50
4.19 Possible trojan server activity ... 50
4.20 EXPLOIT x86 NOOP .. 51
4.21 CS WEBSERVER - external ftp traffic .. 51
4.22 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize 52
4.23 xxx.yyy.30.3 activity.. 52
4.24 NMAP TCP ping! .. 52
4.25 connect to 515 from outside ... 53
4.26 DDOS mstream handler to client.. 53
4.27 SNMP public access... 53
4.28 EXPLOIT x86 setuid 0 .. 54
4.29 NIMDA - Attempt to execute cmd from campus host.. 54
4.30 IRC evil - running XDCC... 54
4.31 EXPLOIT x86 setgid 0 .. 55
4.32 TFTP - Internal UDP connection to external tftp server 55
4.33 EXPLOIT x86 stealth noop ... 55
4.34 DDOS mstream client to handler.. 55
4.35 TFTP - External TCP connection to internal tftp server 56

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.36 Notify Brian B. 3.56 tcp and 22 Notify Brian B. 3.54 tcp 56
4.37 Attempted Sun RPC high port access .. 57
4.38 SMB C access .. 57
4.39 NETBIOS NT NULL session... 57
4.40 TCP SMTP Source Port traffic.. 57
4.41 FTP passwd attempt... 57
4.42 Probable NMAP fingerprint attempt .. 58
4.43 EXPLOIT NTPDX buffer overflow... 58
4.44 SYN-FIN scan!.. 58
4.45 RFB - Possible WinVNC - 010708-1... 59
4.46 NIMDA - Attempt to execute root from campus host .. 59
4.47 EXPLOIT digital unix noop ... 59
4.48 Trin00 password on tcp .. 60
4.49 External FTP to HelpDesk xxx.yyy.53.29 ... 60
4.50 DDOS shaft client to handler .. 60
4.51 Bugbear@MM virus in SMTP ... 61
4.52 Back Orifice .. 61

5. Top talkers list in terms of scans alerts and OOS and altogether. 61
6. List of 5 external IP address and registration information. ... 62

6.1 Bezeq International... 62
6.2 Chinese Academy of Sciences.. 62
6.3 HanWang Technology Co.LTD... 63
6.4 Estonia Telephone Co.. 63
6.5 MEULUN-CABLE .. 63

7. Correlation from previous practical, GCIA #0209 and above. .. 64
8. A link graph of some portion of the data file to show relationship. 64
9. Insight .. 65
10. Defensive recommendations.. 65
11. Description of your analysis process.. 66

11.1 Retrieving files, reviewing format, determining number of events and validating
data. ... 66
11.1.1 The scans file. ... 66
11.1.2 The alerts file. .. 67
11.1.3 The OOS file.. 67

11.2 Home network identification ... 68
11.3 Packet Correlation.. 68
11.4 Analysis of Alerts ... 69
11.5 Analysis of OOS file. .. 70
11.6 Analysis of Scan File.. 73
References:.. 75

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 1: The State of Intrusion Detection
Detecting Configuration and Architecture Changes

Summary

The Intrusion Detection Systems (IDS) used to collect anomalous data from networks
occasionally exhibit abnormal behavior due to configuration and architecture changes. The
quality and quantity of the data collected by the sensor is compromised due to these
configuration and architecture changes. The focus of this paper is to code a Snort
preprocessor “proof of concept” to detect some common configuration and architecture
changes. The results can be used to alert an analyst when some of the changes occur.

Introduction

Mr. Stephen Northcutt describes in his course material, “Intrusion Detection in Depth,
Intrusion Detection Patterns “[Northcutt, 2002], a situation where his Computer Incident
Response Team (CIRT) observed only echo responses without expected echo requests. At
first it appeared to be an unauthorized back door. It was determined to be a false alarm
when it was discovered that a switch configuration was changed. Similar configuration and
architecture changes can occur that reduce the effectiveness of the sensor due to conditions
external to the sensor software. An analyst could use a smarter sensor that would detect and
alert when they occur.

This paper is comprised of four sections. The first section describes some of the

common configuration and architecture changes that can affect the sensor’s ability to detect
traffic. The second section describes the creation of configuration and architecture changes
to produce data for statistical analysis. The third section analyzes the captured data to
determine if the configuration and architecture changes can be detected through scrutinizing
the data stream. The fourth section describes the process I used in writing the Snort
preprocessor to scrutinize the data and the code for the preprocessor.

Section I: Common Configuration and Architecture Changes

Change 1: Interface is Discriminating

For the IDS sensor to work properly the network interface card software must pass all
traffic to the operating system. Network interface cards usually read all packets that are on
the wire, but the interface card software discriminates by discarding all unicast packets that
are not destined for the device. The sensor’s interface used to collect the traffic must be
placed in promiscuous mode prevent this from happening. In figure 1, the sensor’s network
interface card connected to the switch is not in promiscuous mode, thus the sensor will only
receive packets destined for the sensor’s interface ethernet address and ethernet broadcast
packets.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 ________ ______ ________ ______ ______
Internet	----	Router	---	Firewall	---	Switch	---	Client
Network		______		________		______		___ __

 |
 ______________ ___X__
Figure 1 |Sensor Console|---|Sensor|

The administrator or IDS program not properly changing the interface to promiscuous

mode or another program (tcpdump) turning promiscuous off when it exits can cause this to
occur.

Change 2: Switch is Discriminating

The first Ethernet networks physical topology used a single cable (bus) that all devices
connected to in series to participate on the network. All devices could read packets that were
sent out from any device on the network. With the introduction of the star physical topology
using twisted pair wiring, each device had its own wire connected to a central device know as
a hub. The hub would repeat all signals received to all the devices connected. Intelligence
was later built into the hubs so they learned what devices were connected to each port and
only forwarded uni-cast data intended for the recipient. These intelligent hubs are also known
as switches.

IDS sensors connected to switches require the switch to forward all packets to the

sensor and not discriminate based on the ethernet destination address. Configuring the
Switch Port Analyzer (SPAN) on Cisco switches allows data to be forwarded to the sensor as
well as the intended node. In figure 2, the switch port connecting the sensor must be set to
SPAN the switch in order for the sensor to receive all the traffic entering the switch. Similar
to an interface card being in discriminating mode (non-promiscuous mode), if the port is not
set to SPAN the switch, the sensor will only receive packets destined for the sensor’s
interface address and broadcast packets.

 ________ ______ ________ ______ ______
Internet	----	Router	---	Firewall	---	Switch	---	Client
Network		______		________		___ __		___ __
________	X							
 |
 ______________ ___|__
 Figure 2 |Sensor Console|---|Sensor|

 Configuring another port to SPAN or configuring the active switch configuration and
not saving it to NVRAM are two possible causes for this to occur.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Change 3: Network ReRouting

IDS sensors are usually placed at ingress/egress points where traffic is aggregated.
Aggregation points are usually designed to be fault tolerant. Automated fail over can include
dynamic routing for rerouting of packets due to device failure. A sensor placed on the
primary path may not capture the packets that are rerouted due to a network fault. Of course,
an IDS sensor could be placed on secondary paths as well, but this is not always the case.
In figure 3, a break has occurred between the lower router and the firewall. The data
continues to follow through the upper router and firewall. The sensor could still receive some
traffic or be completely isolated depending on how the fail over is configured.

 ______ ________ ______ ______
 | | | | | | | |
 |Router|---|Firewall|---|Switch|----|Client|
 |______| |________| |______| |______|

 | |
 ________ __|___ ________ ___|__
Internet	----	Router	-X-	Firewall	---	Switch
Network		______		________		______

 ______________ ___|__
Figure 4 |Sensor Console|---|Sensor|

 Network device failure and maintenance is a common cause of network traffic
rerouting.

Section II: Creation of Configuration and Architecture Changes

To create an accurate representative data I used a live network. I was given permission
to capture the data from a live network with the strict adherence to non-disclosure of the
actual data, thus no logs are included. I was also restricted from creating a network rerouting
change since this could impact the network.

The captures were performed using a laptop with Linux Redhat running tcpdump. To

simulate the first change and capture a 1,000 packet baseline, the laptop was connected to a
hub that was inserted between the production IDS sensor and switch. Tcpdump was run with
the options as shown below to capture 1000 packets and stop (-c), capture link layer (-e), not
convert protocol and port numbers (-nn) and write the captured packets to the file withprom (-
w withprom).

tcpdump –c 1000 –e –nn –w withprom

Creating the first change was simple enough. Tcpdump was run with the same options

as the basline capture and –p paramenter , to not put the card in promiscuous mode and of
course a different file name to write the captured packets.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

tcpdump –c 1000 –e –nn –w withoutprom -p

To simulate the second change I moved the laptop connection from the hub and

connected it directly to a switch port of the switch that the hub was connected but was not
configured to SPAN. Tcpdump was run with the same options as the baseline command as
shown below with the exception of a different file name to write the captured packets.

tcpdump –c 1000 –e –nn –w withoutspan

Section III: Comparison and Analysis of Captured Data Streams

I compared the different samples to determine if there was a difference in the
composition of the ethernet unicast to broadcast traffic. As shown in the table below, the
ratio of unicast Ethernet packets to broadcast Ethernet packets clearly indicate the effect of
these changed configurations on the traffic composition.

 Unicast Broadcast % of Unicast
Baseline count 1000 0 100%
Promiscuous disabled 841 159 84%
SPAN disabled 21 979 2.1%

 A capture of a 1,000 packets is not representative of the complete network traffic pattern
but enough to determine that the presence of even a five percentage of broadcasts is
indicative of a configuration or architecture change. Comparing the amount of Ethernet
broadcast to Ethernet unicasts can assist in detecting these changes.

Findings

 The systems we use to collect data from the network configurations and architectures
occasionally change. The composition of Ethernet unicast to Ethernet broadcast data
collected by the sensor maybe altered due to these changes. The comparison of the
broadcast ethernet traffic to unicast ethernet traffic can assist in identifying a changed state.
This can be performed by taking a snapshot of the percentage of ethernet broadcast packets
gained with simple combinations of commands or a more elaborate Perl scripts. A SNORT
preprocessor can also be used to produce alerts when the broadcast percentage exceeds a
certain threshold.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Section IV: The Snort Preprocessor

Abbreviated List of Steps

 The comparison of network traffic composition can be performed in a Snort
preprocessor since it can keep statistics of the many packets as they pass through the Snort
program. The following is an abbreviated list of the steps I took to write the Snort
Preprocessor.

1. Downloaded Snort 2.0 and Snort rules 2.0
2. Used the templates supplied with snort 2.0 to build the preprocessor.
3. Copied the /home/snort/snort-2.0.0/src/template/spp_template.h and

spp_template.c to /home/snort/snort-2.0.0/src/preprocessor/spp_ricci.h and
spp_ricci.c.

4. Changed the references from template to ricci in the files spp_ricci.c and
spp_ricci.h.

5. Added the line #include spp_ricci.h in /home/snort/snort-2.0.0/src/plugbase.h
6. Added the line SetupRicci(); in /home/snort/snort-2.0.0/src/plugbase.c.
7. Ran the make command from directory /home/snort/snort-2.0.0.
8. Ran the make install command from directory /home/snort/snort-2.0.0.
9. Commented out all lines in spp_ricci.c that produced compilation errors and changed

the version number of Snort to show me that the spp_ricci.c preprocessor was
actually being compiled and executed.

10. Created the subdirectory “log”.
11. Ran the Snort command, snort -A full -b -c /snortrules/rules2.0/rules/snort.conf -l log
12. Added the spp_ricci preprocessor and commented all the rules and preprocessors in

the snort.conf .
These steps were repeated over and over and over and over again.
13. Found similar code to use in preprocessor.
14. Found files that needed to be included.
15. Modified spp_ricci.c to perform desired actions.
16. Repeated make and make install commands until desired results were achieved.
17. Produced the following entries in the Snort alerts file.

[**] [1:1:1] broadcast exceeds thershold [**]
06/08-14:38:52.605492 192.168.0.2:3251 -> 192.168.1.100:1143
TCP TTL:128 TOS:0x0 ID:2848 IpLen:20 DgmLen:48 DF
******S* Seq: 0xA17B35FE Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview of Snort Program

The program code logic for counting packets to determine the percentage of broadcast
to unicast is fairly simple. The code for determining the percentage of broadcast packets is
as follows.

This increaments the counter nNumpackets to give the total number of packets.
 nNumPackets++;

This set the memory location bcast to contain the hexadecimal value FFFFFFFFFFFF
 memset(bcast, 0xff, 6);

This compares the current packet ethernet address to the value of bcast. If they match, it
increments the counter nNumBroadcastPackets to give the total number of broadcast
packets.
 if (memcmp((u_char *)p->eh->ether_dst, (u_char *)bcast, 6) == 0)
 {
 nNumBroadcastPackets++;
 }

This triggers the following code when the packet count reaches 100

if (nNumPackets == 100)
 {

This check is to see if the number of broadcasts equals zero. If so, it sets the percent to zero
and skips the following division step. If not, the percent of broadcast is determined by
dividing the number of packets by the number of Broadcast packets. This is necessary to
avoid floating point divide by zero errors.
 if (nNumBroadcastPackets == 0)
 {
 nPercentBroadcastPackets = 0;
 }
 else
 {
 nPercentBroadcastPackets = nNumPackets/nNumBroadcastPackets;
 }

This reset the counters.

nNumPackets = 0;
 nNumBroadcastPackets = 0;

This causes the alert to print when the percentage is greater than to equal to 25%.
 if (nPercentBroadcastPackets >= 25)
 {
 snprintf(outstring, 255, "broadcast exceeds thershold");
 CallAlertFuncs(p, outstring, NULL, &event);
 }
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The difficult part of writing the preprocessor for me was integrating the preprocessor
with the Snort program. The acquiring of the packet data and the outputting to the alert file
took some work on my part. Fortunately there was plenty of source code from other Snort
preprocessor functions that I could review.

The acquiring of the packet data is done through the use of a pointer to the data

structure that contains the packet data. A pointer is simply a variable that contains a memory
address. This is useful in sharing data between programs since the entire packet data
doesn’t have to be transferred between programs. Another section of code that was used in
the acquiring of the data was the data parsing performed in the Snort decode program. The
decode program defined and loaded the data structure to make the data readily accessible by
the preprocessor function. The code p->eh->ether_dst in the if statement if (memcmp((u_char
*)p->eh->ether_dst, (u_char *)bcast, 6) == 0) represent the pointer to the packet data (p) the
pointer to the ethernet header inside of the packet data(eh) and the pointer to the ethernet
destination address inside the ethernet header(ether_dst).

The outputting of messages to the Snort alerts file is done through the Snort log

program functions. The one I used is CallAlertFuncs. The Call Alert Function has to be
passed four arguments. The first is the pointer to the current packet data structure. The
second is a string of charters that will be displayed with the alert. The third can be a Null
value. The forth must be the memory location of the event data.

CallAlertFuncs(p, outstring, NULL, &event);

 The event data is produced with the SetEvent function. The function takes seven

arguments. The first is the memory location of the event variable. The remaining six effects
the way the alert is written to the alerts file.

SetEvent(&event, 1, 1, 1, 0, 0, 0);

The remainder of the code in the preprocessor program includes files that are required

and creates variables. The code for the spp_ricci.c and spp_ricci.h files follows. The
comments were deleted to save space

spp_ricci.h

/* Id */
/* Snort Preprocessor Plugin Header File Ricci */

/* This file gets included in plugbase.h when it is integrated into the rest
 * of the program. Sometime in The Future, I'll whip up a bad ass Perl script
 * to handle automatically loading all the required info into the plugbase.*
 * files.
 */
#include "snort.h"

#ifndef __SPP_RICCI_H__
#define __SPP_RICCI_H__

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

typedef struct _TemplateData
{
 /* your data goes here! */
} TemplateData;

/* list of function prototypes for this preprocessor */
void SetupRicci();
void RicciInit(u_char *);
void ParseRicciArgs(char *);
void PreprocRicci(Packet *);
/*void PreprocRestartFunction(int);
void PreprocCleanExitFunction(int);*/

#endif /* __SPP_RICCI_H__ */

spp_ricci.c

/* Id */
/* Snort Preprocessor Plugin Source File spp_ricci.c/
 * by Mario Ricci <mricci20012002@yahoo.com>
 * * Version 0.0.1
 */

/* spp_ricci
 *
 * Purpose:
 *
 * The percentage of broadcast to unicast packets in the traffic stream
 * can be used to detect when a fault has occured on the support system.
 * When adding a plugin to the system, be sure to
 * add the "Setup" function to the InitPreprocessors() function call in
 * plugbase.c!
 *
*/
#include "spp_ricci.h"
#include "util.h"
#include "plugbase.h"
#include "debug.h"
#include "detect.h"
#include "log.h"

#include <stdarg.h>
#include <syslog.h>
#include <errno.h>
#include <sys/stat.h>
#include <time.h>
#include <signal.h>
#include <unistd.h>

int nNumPackets = 0;
int nNumBroadcastPackets = 0;
int nPercentBroadcastPackets = 0;
u_int8_t bcast[6];

/* external globals from rules.c */
extern char *file_name;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

extern int file_line;

void SetupRicci()
{
 RegisterPreprocessor("ricci", RicciInit);
 fprintf(stderr, "\n-*> Setup Ricci! <*-\n");

 LogMessage("SetupRicci Function\n");
 DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN,"Preprocessor: Ricci is setup...\n"));
}
void RicciInit(u_char *args)
{
 DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN,"Preprocessor: Ricci Initialized\n"));
 ParseRicciArgs(args);
 LogMessage("RicciInit Function\n");
 AddFuncToPreprocList(PreprocRicci);
}

void PreprocRicci(Packet *p)
{
 nNumPackets++;
 memset(bcast, 0xff, 6);

 char outstring[255];
 Event event;
 snprintf(outstring, 255, "ricci write to alert file");
 /* fprintf(stderr,"outstring is %s:\n", outstring); */
 SetEvent(&event, 1, 1, 1, 0, 0, 0);

 if (memcmp((u_char *)p->eh->ether_dst, (u_char *)bcast, 6) == 0)
 {
 nNumBroadcastPackets++;
 }
 if (nNumPackets == 100)
 {
 if (nNumBroadcastPackets == 0)
 {
 nPercentBroadcastPackets = 0;
 }
 else
 {
 nPercentBroadcastPackets = nNumPackets/nNumBroadcastPackets;
 }
 nNumPackets = 0;
 nNumBroadcastPackets = 0;
 if (nPercentBroadcastPackets >= 25)
 {
 snprintf(outstring, 255, "broadcast exceeds thershold");
 CallAlertFuncs(p, outstring, NULL, &event);
 }
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

Peter Jones September 2002 presentation on Promiscuous Mode and RPR
http://www.ieee802.org/17/documents/presentations/sep2002/pj_prom_03.pdf

http://www.cisco.com/univercd/cc/td/doc/product/lan/c2900xl/29_35xu/olhelp/spancfg.htm

Intrusion Detection in Depth – SANS 2002-2002, Stephen Northcutt, version 4.4

http://www.tcpdump.org/

http://www.snort.org/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 2: Network Detects
Detect #1: Broadcast from eleet

The detect was generated using tcpdump with the command tcpdump –v –r 2002.9.20
src host 255.255.255.255. The format of the detect is as follows

Time src > dst: flags data-seqno ack window urgent options

19:07:57.236507 255.255.255.255.31337 > 32.245.72.31.printer: R [bad
tcp cksum 1714!] 0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43,
bad cksum 2ea3!)

21:30:27.466507 255.255.255.255.31337 > 32.245.191.169.printer: R [bad
tcp cksum 1815!] 0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43,
bad cksum b617!)

21:54:39.476507 255.255.255.255.31337 > 32.245.47.26.printer: R [bad
tcp cksum 1714!] 0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43,
bad cksum 47a8!)

22:03:00.506507 255.255.255.255.31337 > 32.245.24.118.printer: R [bad
tcp cksum 1913!] 0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43,
bad cksum 5f4a!)

22:03:06.466507 255.255.255.255.31337 > 32.245.242.216.printer: R [bad
tcp cksum 1815!] 0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43,
bad cksum 82e8!)

23:01:42.506507 255.255.255.255.31337 > 32.245.185.48.printer: R [bad
tcp cksum 1616!] 0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43,
bad cksum bb92!)

23:51:18.636507 255.255.255.255.31337 > 32.245.128.49.printer: R [bad
tcp cksum 1616!] 0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43,
bad cksum f491!)

00:28:54.706507 255.255.255.255.31337 > 32.245.79.69.printer: R [bad
tcp cksum 1714!] 0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43,
bad cksum 277d!)

02:14:30.246507 255.255.255.255.31337 > 32.245.75.84.printer: R [bad
tcp cksum 1714!] 0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43,
bad cksum 2b6e!)

02:22:24.226507 255.255.255.255.31337 > 32.245.11.174.printer: R [bad
tcp cksum 1913!] 0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43,
bad cksum 6c12!)

02:36:24.306507 255.255.255.255.31337 > 32.245.181.90.printer: R [bad
tcp cksum 1616!] 0:3(3) ack 0 win 0 [RST cko] (ttl 15, id 0, len 43,
bad cksum bf68!)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1. Source of Trace.

The source of the trace is a tcpdump binary file from
Http://www.incidents.org.logs/Raw/2002.9.20. The actual network configuration was not
provided. The sensor appears to be collecting information on packets destined for the class
“A” network 32.0.0.0 subnet with a 16 bit mask, 32.245.0.0.
__________ ___________
		Class A	
Internet	---------------------	Network	
__________			32.245.0.0
 ___|____
 | Snort |
 | Sensor |

2. Detect was generated by.

The detect was generated by a Snort intrusion detection system. The ruleset was not
provided. A modified default Snort rule set from http://www.snort.org/dl/rules/snort-
stable.tar.gz was used. I modified the default snort.rules file by defining a home network of
32.245.0.0/16 and uncommented the backdoor.rules. Snort 1.9.0 processed the detect file
with the modified rules. The file contained 12,455 packets of which all where TCP. Alerts
were triggered on 12,072 packets. The alerts were comprised of 6002 scans on port 8080
(http proxy), 5999 scans on port 3128 (squid proxy), 25 alerts from the spp_portscan2
preprocessor, 6 MISC tiny fragments and 40 BACKDOOR Q access.

This analysis is on the BACKDOOR Q access alerts. The alerts were triggered because the
snort rule BACKDOOR Q access looks for packets with a source IP address that begins with
all 1’s in the first three octets (255.255.255), anything in the last octet (0) and destined for the
variable $HOME_NET which in this case is defined as any packets with an IP address that
has 32. 245 in the first two octets and anything else on the last two octets (0.0). The rule is:

alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q access"; flags:A+; dsize:
>1; reference:arachnids,203; sid:184; classtype:misc-activity; rev:3;)

The snort rule output is:

[**] [1:184:3] BACKDOOR Q access [**]
[Classification: Misc activity] [Priority: 3]
10/19-19:07:57.236507 255.255.255.255:31337 -> 32.245.72.31:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43 ***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
[Xref => arachnids 203]

3. Probability the source address was spoofed.

Definitely spoofed. All devices on the Internet require a unique address. When a device
communicates with another it is through the use of a unique address or unicast. When a
device wants to communicate with more than one device it uses a broadcast addresses. One

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

of these broadcast addresses has all the bits as 1. This equates to an address of
255.255.255.255. Since 255.255.255.255 is a reserved broadcast address it should never
show up as a source address. The address is definitely spoofed. I confirmed this with W.
Richards Stevens TCP/IP Illustrated Volume 1, page 45, figure 3.9.

IP address Can appear as
net ID subnet ID host ID- source? destination?

Description

-1 -1 never OK Limited broadcast never forwarded

-1 means a field of all one bits.

But why would someone send an illegal packet that they knew they would not get a response.
Perhaps a raw IP stack triggers the targeted system to take an action when the
255.255.255.255 source address is received. This would prevent the target from accidentally
being tripped since no one should use this address.

4. Description of attack.

This is a scan to send trojan programs a “cko” command. The action the trojan program will
take is unknown. The signature is similar to the remote shell and admin tool Q. The snort
rule reference to arachnids 203 is listed on the Whitehats webs site
http://www.whitehats.com/ids/. The description is “This indicates an attempt to send a
command to a compromised Q server. Q is a backdoor that allows an attacker to run commands
remotely as root, among other functions. “ The Whitehats web site CVE reference CAN-1999-
0660 description is “A hacker utility or Trojan Horse is installed on a system, e.g. NetBus, Back
Orifice, Rootkit, etc.” There is no reference to Bugtraq or advICE.

The packet contains an invalid source IP address of 255.255.255.255. The source port of
31337 is well known for its use by hackers. The destination IP address is random. No pattern
could be observed.

The destination port of 515 is used by the line printer daemon. Many networks allow for port
515 to enter the network with no authentication to support remote printing. It has no
significance to the host since it should be discarded by the host when it is received.

The IP identification value is 0. A IP ID of 0 is allowed but it should be incremented each
time a packet is sent out so each packet should have a different IP ID even retransmission
would have a different IP ID.

The starting sequence number value, acknowledgement number value, and window size is 0.
Most IP implementations will not use 0 for these values. The time to live (TTL) value of 15 in
all packets indicates they originated from the same source since different sources would have
different hop counts and result in different TTLs where the packet is received. This is a
relatively low number so it is probably being crafted as well.

The ACK and RST flags are set in the packets. The combination of flags signals to
immediately terminate the current session without a response. Since it has no current

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

session no action should take place on the targeted system. The RST flag would suppress
any response from being sent as well.

5. Attack mechanism.

The attack works by having previously installed trojan programs listening for packets received
with a source address of 255.255.255.255. The attack communicates to the trojan program
through raw sockets similar to the Q program, from http://mixter.warrior2k.com/, although the
attack was not generated using the Q program. This allows the attacker to fill the protocol
header fields and listen for raw packets rather than pending on the operating system. The
attack uses a less developed raw sockets program then the Q program since many of the
values in the protocol fields are set to 0. This indicates the programmer didn’t take the time
to create the routines to fill the packets with random values to mimic actual TCP/IP values.

The attack is not targeting the destination service on port 515 (line printer daemon) since the
packet will not make it through the protocol stack to the service since the reset flag is set.
The use of port 515 could be a covert signal to the trojan program or selected as a possible
open port into the network.

The attacker never intends to communicate through the TCP/IP protocol specifications. The
combination of a spoofed IP address, using connection oriented protocol like TCP and setting
the reset flag, all seem to show the originator doesn’t expect to receive a typical packet in
return.

The packets appear to be sent to random IP address. The time interval between the packets
varies from a few seconds to hours. The short internal between the packets and volume of
packets indicates an automated program is performing the probe as opposed to command
line entries. The long interval between packets indicates that the target addresses of the
program are larger than the subnet that is being monitored.

6. Correlations.

A clear consensus doesn’t exist for this type of detect. I listed references that contradict as
well as support my analysis.

Crist Clark contradicts my theory. He suggests the packet is from a broken worm or tool in
his e-mail reply located at http://lists.insecure.org/lists/incidents/2001/Jul/0023.html

“The techniques you referenced all deal with sending packets to a
broadcast or multicast _destination_ address. I am not aware of any
useful attacks using the broadcast address, 255.255.255.255, as the
SOURCE. I believe the general impression is that the 255.255.255.255:31337 to *:515 packets
are the product of a broken worm or tool.”

Trent Riddel has another theory as well. He suggests the detect is an “exploit that is looking
for host that may have unpatched LPR holes and this traffic is coming from poorly configured

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

attack tool or maybe even an attempt at a worm” in his GCIA practical submission located at
http://www.giac.org/practical/Trenton_Riddell_GCIA.doc.

Les Gordon gives three possible scenarios. The third and “fairly likely” scenario supports my
theory. His detailed analysis for his GCIA Practical Detect submission with the same
signature in his located at http://cert.uni-
stuttgart.de/archive/intrusions/2002/10/msg00221.html

1) Somebody playing a prank, although given that this activity has
been going on for quite some time (see correlations), this may not be very
likely, unless this person or persons have way too much time on their hands,
don't get bored quickly, and are very easily amused.

2) Someone is trying to write some malicious software, perhaps a
worm, but don't really know what they are doing. Again, given the period of
time that this has been occurring, I think it's unlikely that someone may
have been simply experimenting for so long without getting some kind of
reward for their efforts. If it were a worm, the exploit mechanism would
have to be something else entirely, as these packets are unlikely to be
exploiting any vulnerability directly. In this case, these packets would
have to be an artifact of something else that the worm was trying to
achieve. A possibility suggested by Christ Clark (see correlations) back in
July 2001 is that it's a worm that cannot bind to the interface properly and
the "all ones" IP address is the result of that.... or perhaps it is a worm
and they really meant to have the worm perform a limited broadcast on the
local network to communicate with other compromised devices - but this is
likely to be noticed at some point and I haven't found any such reports..

3) Reconnaissance - specifically, a potentially covert means of
communication to perhaps activate, or run a command on a back-door program, DDoS server etc (al la
Q, TFN2K etc). This is in my opinion, fairly likely,but this detect is full of contradictions.

A posting to GIAC GCIA Version 3.2 Practical Detect by krautt@cox.net located at
http://cert.uni-stuttgart.de/archive/intrusions/2002/09/msg00112.html , suggests that it is a Q
program that is generating the attack.

7. Evidence of active targeting.

The attack-timing interval varies from a few seconds to over an hour. This indicates that the
attack isn’t targeting the specific subnet 32.245.0.0. I suspect the entire 32.0.0.0 network is
being scanned by the attack.

8. Severity.

The packets themselves pose no significant risk since they require a trojan program to be
installed prior to any action taking place.

The severity is calculated using the formula:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Severity = (criticality + lethality) – (system countermeasures + network countermeasures)

Criticality is rated at two since all systems on the network are suspect to being probed.

Lethality is rated at three since we don’t know what would happen if a trojan program is found
and the trojan probably has root access on the target.

System countermeasures rated at 1 since this is a large scan across many hosts that will
have a percentage that are not properly secured and at risk to being infected by a trojan
program.

Network countermeasures rated at 2 since the packets are obviously crafted and easily
identified but allowed to pass. Network countermeasures currently in place are not evident
from the detects and exact placement of the sensor is unknown.

Severity 2 = (2 + 3) – (1 + 2)

9. Defensive recommendations.

The most efficient recommendation is to stop these packets from entering the network. The
use of an Access Control List (ACL) on a border router or rule in a firewall that discards
source address of 255.255.255.255 would eliminate these packets from the network with little
risk. A stateful inspection protocol would also deny these packets entry into the network.

Standard security practices should be implemented on the hosts to harden them. This
includes installing all recommend patches when they are released, removing all unnecessary
services, following system securing practices (i.e. shadow root, umask …) for the OS and
anti-virus software with frequent updates to reduce the risk of infection by the trojan.
Programs should also be prevented from being downloaded via the web and through e-mail
attachments. Personal firewalls that detect and report unusual activity would be useful in the
event a trojan is triggered and attempts to communicate to the master or attack another
system. They could also discard the 255.255.255.255 packets when they reach the host.

10. Multiple choice test questions.

 When should the address 255.255.255.255 be used as the source IP address?

a) When the source wants the destination to reply to all systems on
the local network.
b) When the source doesn’t have an IP address and is using DHCP to
acquire one.
c) When the source is sending out a broadcast that it doesn’t want a
reply to.
d) It should never be used.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Answer:d The address 255.255.255.255 should never be used as a source
IP address.

11. Results of post to intrusions@incidents.org

Posted on February 10th and March 28th. Did not receive any responses to first to
intrusions@incidents.org posting. Received three responses to second posting. Responses
and replies are listed below.

11.1 Reply #1

Response

Date: Sat, 29 Mar 2003 19:30:37 +0100
From: "Andrew Rucker Jones" <arjones@simultan.dyndns.org>
To: "Mario Ricci" <mricci20012002@yahoo.com>
Subject: Re: Fwd: LOGS:GIAC GCIA Version 3.3 Practical Detect

Reply to response

Date: Fri, 4 Apr 2003 08:09:56 -0800 (PST)
From: "Mario Ricci" <mricci20012002@yahoo.com>
Subject: Re:LOGS:GIAC GCIA Version 3.3 Practical Detect
To: "Andrew Rucker Jones" <arjones@simultan.dyndns.org>
CC: intrusions@incidents.org

Andrew,

Thank you for your reply. I embedded my responses in italics after each
of your comments.

 Andrew Rucker Jones <arjones@simultan.dyndns.org> wrote:

Mario,
A very thorough analysis. I especially liked Your correlations
section. This attack has been beaten to death by GCIA students, and
You did a good job of finding a cross-section of their opinions.

> The actual network
> configuration was not provided. The sensor appears to be collecting
> information on packets destined for the class “A” network 32.0.0.0
> subnet with a 16 bit mask, 32.245.0.0.

How do You arrive at this conclusion and at the network diagram You
included?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I used tcpdump to extract the source and destination addresses from all
the packets. I then greped for common addresses within all the packets.

> the variable $HOME_NET which in this case is defined as any packets with
> an IP address that has 32. 24 in the first two octets and anything else
> on the last two octets (0.0).

Important typo here. "32.245".

Thank you for pointing this out. I will correct it in my analysis.

> This is a scan to send trojan programs a “cko” command.

...and what is a "cko" command?

I have not been able to determine what the "cko" will do. Assume that the
command is for the trojan running on the target so it may have no
relationship to a well known "cko" command.

> The use of port 515
> could be a covert signal to the trojan program or selected as a possible
> open port into the network.

How likely is it that this is a port that is open into the network?

I would say very likely based on my experience. The port is commonly
used for access to LPD print servers. Print access is often over looked or
minimized as a possible vector for attack. Encryption and authentication is
often not available to print clients so the native port 515 has to be used.

> Network countermeasures rated at 1 since the packets are obviously
> crafted and easily identified but allowed to pass.

Are they really allowed to pass? This gets back to Your network
diagram. Where in the target network is the IDS sensor?

The packets are allowed to pass at least to the point where the IDS sensor
is installed. I am assuming the sensor is placed before any firewalls.
Whether the packets are allowed to pass through the firewall cannot be
determined.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

11.2 Reply #2

Response

Date: Fri, 28 Mar 2003 14:44:29 –0700
From: Bryce_Alexander@vanguard.com
To: "Mario Ricci" <mricci20012002@yahoo.com>
Subject: Re: Fwd: LOGS:GIAC GCIA Version 3.3 Practical Detect

Reply to response

Date: Fri, 28 Mar 2003 17:50:56 -0800 (PST)
From: "Mario Ricci" <mricci20012002@yahoo.com
To: Bryce_Alexander@vanguard.com
Subject: Re: Fwd: LOGS:GIAC GCIA Version 3.3 Practical Detect

You say that it is not "Q" in your paper, but, you do not explain
clearly why it isn't. Is this conclusion based on something someone
said in some other link, or because you see the fields that are set to
zero?

The fields being set to zero are one indication. The practical detect by Les
Gordon listed in my correlations at http://cert.uni-
stuttgart.de/archive/intrusions/2002/10/msg00221.html explains in detail
why it is not "Q".

thanks for the question.

Mario Ricci

11.3 Reply #3

Response

Date: Sat, 19 Apr 2003 20:02:35 -0400
From:"Carlos L. Edwards" <carlos.edwards@verizon.net>
To:"Mario Ricci" <mricci20012002@yahoo.com>
Subject: Re: Fwd: LOGS:GIAC GCIA Version 3.3 Practical Detect

Reply to response

Date: Wed, 23 Apr 2003 16:00:45 -0700 (PDT)
From:"Mario Ricci" <mricci20012002@yahoo.com>
To:"Carlos L. Edwards" <carlos.edwards@verizon.net>
Subject: Re: Fwd: LOGS:GIAC GCIA Version 3.3 Practical Detect

Mario,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

You did an excellent job of presenting this detect with the ability to
review it from multiple perspectives. It was interesting to hear what
the analysis of others yielded.

Personally, I too would consider this as sleeper Trojan that Mr. Evil
was attempting to awaken. Just out of curiosity, as various systems
were targeted, did further analysis reveal any other suspicious
activity at the conclusion of this possible "Q" scans. Just wondering
if the remaining logs showed any activity that could have even
remotely been the aftermath of this "Q" scan that successfully
executed a Backdoor into one of the systems.

Let me know!

Carlos,

 Thank you for the response. Unfortunately I only
have access to alerts log. A review of the log showed
40 packets to all different address. None of these
addresses trigger an alert as a source. Doesn't appear
that a response was generated.

Detect #2: A visit to gay.com

The detect was generated using tcpdump with the command tcpdump –v –r 2002.9.28
host 64.125.138.190 . The format of the detect is as follows

Time src > dst: flags data-seqno ack window urgent options

01:48:49.126507 32.245.166.236.64621 > 64.125.138.190.http: P
1801650240:1801653000(2760) ack 789190 win 33120 [tos 0x10]

02:00:20.226507 64.125.138.190.http > 32.245.166.236.61424: P
2639726813:2639728106(1293) ack 1476343 win 33120 (DF)

02:00:20.756507 64.125.138.190.http > 32.245.166.236.61425: P
1370563110:1370564114(1004) ack 1477309 win 33120 (DF)

02:00:20.876507 64.125.138.190.http > 32.245.166.236.61425: P
1242:2215(973) ack 641 win 33120 (DF)

02:00:21.046507 64.125.138.190.http > 32.245.166.236.61425: P
2454:3555(1101) ack 1281 win 33120 (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

02:00:21.456507 64.125.138.190.http > 32.245.166.236.61425: P
4775:5799(1024) ack 3176 win 33120 (DF)

02:00:21.586507 64.125.138.190.http > 32.245.166.236.61425: P
6038:7309(1271) ack 3816 win 33120 (DF)

02:00:21.696507 64.125.138.190.http > 32.245.166.236.61425: P
7548:8552(1004) ack 4456 win 33120 (DF)

02:00:21.846507 64.125.138.190.http > 32.245.166.236.61425: P
8791:9818(1027) ack 5096 win 33120 (DF)

02:00:21.986507 64.125.138.190.http > 32.245.166.236.61425: P
10056:10682(626) ack 5735 win 33120 (DF)

02:00:22.136507 64.125.138.190.http > 32.245.166.236.61425: .
10921:12301(1380)
ack 6375 win 33120 (DF)

1. Source of Trace.

The source of the trace is a tcpdump binary file from
Http://www.incidents.org.logs/Raw/2002.9.28. The actual network configuration was not
provided. The sensor appears to be collecting information on packets destined for the class
“A” network 32.0.0.0 subnet with a 16 bit mask, 32.245.0.0.
__________ ___________
		Class A	
Internet	---------------------	Network	
__________			32.245.0.0
 ___|____
 | Snort |
 | Sensor |

2. Detect was generated by.

The detect was generated by a Snort intrusion detection system. The rule set was not
provided. A modified default Snort rule set from http://www.snort.org/dl/rules/snort-
stable.tar.gz was used. I modified the default snort.rules file by defining a home network of
32.245.0.0/16 and uncommented all the include rules. I also removed the established flag for
the flow parameter since the capture did not contain the complete session. Snort 1.9.0
processed the detect file with the modified rules. The file contained 4,864 packets of which
4863 where TCP and 1 UDP. Alerts were triggered on 650 packets. The alerts were
comprised of 1 “Potentially Bad Traffic”, 4 “system call detected”, 10 “Web Application
Attack”, 55 “Attempt Information Leak”, 73 “access to a potentially vulnerable web
application”, 131 “Misc activity”, and 375 “Executable code was detected”.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This analysis focuses on the 375 “Executable code detected”. The alerts were triggered
because the snort rule looks for packets with string of 0100 0011 or hex 43 that repeats at
least 24 times within the payload. The rule is:

alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS
(msg:"SHELLCODE x86 inc ebx NOOP"; content:"|43 43 43 43 43 43 43 43
43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43|";
classtype:shellcode-detect; sid:1390; rev:3;)

The snort rule output is:

[**] [1:1390:3] SHELLCODE x86 inc ebx NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
10/28-02:00:20.756507 64.125.138.190:80 -> 32.245.166.236:61425
TCP TTL:50 TOS:0x0 ID:37600 IpLen:20 DgmLen:1044 DF
AP Seq: 0x51B12226 Ack: 0x168ABD Win: 0x8160 TcpLen: 20

3. Probability the source address was spoofed.

The source doesn't appear to be spoofed. The packet is in response to a request for a web
page from the site 64.125.138.190. The address 64.125.138.190 resolves to the web site
www.gay.com.

4. Description of attack.

This is not an attack. This is a false positive. I visited the web site and was able to
reproduce the data stream that triggered the alert. The 24 '43' pattern is contained in a file
image encoded with JPEG Interchange File Format (JFIF) and compressed using the Joint
Photographic Experts Group (JPEG) compression method. A captured packet follows.

2:22:16.154154 64.125.138.190.http > my.net.168.0.3.33238: P [tcp sum ok] 132533:133642(1109) ack 3962

win 32832 <nop,nop,timestamp 1988004643 4906010> (DF) (ttl 55, id 27813, len 1161)
0x0000 4500 0489 6ca5 4000 3706 46e3 407d 8abe E...l.@.7.F.@}..
0x0010 c0a8 0003 0050 81d6 f220 7b8d 939d 466a P....{...Fj
0x0020 8018 8040 4c37 0000 0101 080a 767e 8b23 ...@L7......v~.#
0x0030 004a dc1a ffd8 ffe0 0010 4a46 4946 0001 .J........JFIF..
0x0040 0101 0048 0048 0000 ffdb 0043 000b 0708 ...H.H.....C....
0x0050 0a08 070b 0a09 0a0c 0c0b 0d10 1b12 100f
0x0060 0f10 2118 1914 1b27 2329 2927 2326 252c ..!....'#))'#&%,
0x0070 313f 352c 2e3b 2f25 2636 4a37 3b41 4346 1?5,.;/%&6J7;ACF
0x0080 4746 2a34 4d52 4c44 523f 4546 43ff db00 GF*4MRLDR?EFC...
0x0090 4301 0c0c 0c10 0e10 2012 1220 432d 262d C...........C-&-
0x00a0 4343 4343 4343 4343 4343 4343 4343 4343 CCCCCCCCCCCCCCCC
0x00b0 4343 4343 4343 4343 4343 4343 4343 4343 CCCCCCCCCCCCCCCC
0x00c0 4343 4343 4343 4343 4343 4343 4343 4343 CCCCCCCCCCCCCCCC
0x00d0 4343 ffc0 0011 0800 3900 3703 0111 0002 CC......9.7.....

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5. Attack mechanism.

This is not an attack. This is a false positive. The objective of this type of attack is to insert
commands into memory by sending more data then the target system allocated for the data.
This results in the additional data being written into memory that another program was using.
A problem with this type of attack is the hacker doesn’t know where the system will start
reading memory from. Fillers are sent to assist in having the evil code executed from the
being and occupy more memory. These fillers are no operations commands or NOOP.

6. Correlations.

The snort web site lists no correlations for SID 1390 http://www.snort.org/snort-
db/sid.html?sid=13907. Evidence of active targeting.

No active targeting was taking place since this was not an attack.

8. Severity.

The packets pose no risk since this is a false positive. Since the scale is 1-5 the criticality
and severity are rated at the lowest possible rating of 1.

The severity is calculated using the formula:

Severity = (criticality + lethality) – (system countermeasures + network countermeasures)

Criticality is rated at 1 since the system appears to an end-user workstation that is visiting a
web site.

Lethality is rated at 1 since this is not an attack.

System countermeasures rated at 3 since I am unable to determine what the system
countermeasures are in place on the end-user workstation.
Network countermeasures rated at 4 since I am unable to determine what network
countermeasures are in place with the exception that they were using an IDS system to
monitor the traffic.

Severity -5 = (1 +1) – (3 + 4)

9. Defensive recommendations.

No recommendation since this is not an attack. Possible refinement of snort rules to reduce
false positives.

10. Multiple choice test questions.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The combination of hex strings that snort rules often look for in the content of a packet can
occur in normal traffic. To determine if the alert is a false positive .

a) Look up the source IP to determine where it is coming from.
b) Look to see if the source IP has sent similar packets to other

devices within your network.
c) Look up the source address on web sites that list known attacker

addresses.
d) Reconstruct the session to determine if it was normal traffic.
e) All of the above.
Answer: e) All of the above.

Detect #3: NMAP SCAN

The detect was generated using snort with the command snort -r 2002.9.30 -l log
-c /snortrules/rules/custom.conf –b. I then used the command cat log/alert
| grep nmap -A5 > nmapalerts to extract all the NMAP alerts from log/alert file. I then
deleted packets that didn't have a destination port of 9511.

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/30-04:33:04.926507 67.36.84.5:80 -> 207.166.135.150:9511
TCP TTL:50 TOS:0x0 ID:364 IpLen:20 DgmLen:40
A* Seq: 0x12E Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => arachnids 28]

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/30-04:33:10.006507 67.36.84.5:80 -> 207.166.135.150:9511
TCP TTL:50 TOS:0x0 ID:1086 IpLen:20 DgmLen:40
A* Seq: 0x1A7 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => arachnids 28]

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/30-04:33:15.016507 198.150.73.5:80 -> 207.166.135.150:9511
TCP TTL:50 TOS:0x20 ID:1702 IpLen:20 DgmLen:40
A* Seq: 0x214 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => arachnids 28]

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/30-04:33:20.036507 198.150.73.5:80 -> 207.166.135.150:9511
TCP TTL:50 TOS:0x20 ID:2442 IpLen:20 DgmLen:40
A* Seq: 0x294 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => arachnids 28]
--
[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/30-06:24:16.096507 67.36.84.5:80 -> 207.166.135.150:9511
TCP TTL:50 TOS:0x0 ID:25402 IpLen:20 DgmLen:40
A* Seq: 0x276 Ack: 0x0 Win: 0x578 TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[Xref => arachnids 28]

1. Source of Trace.

The source of the trace is a tcpdump binary file from
Http://www.incidents.org.logs/Raw/2002.9.30. The file contains 15021 packets. The actual
network configuration was not provided. The sensor appears to be collecting information on
packets between two devices. This is based on only two Ethernet addresses were found in
the trace (00:03:e3:d9:26:c0, 00:00:0c:04:b2:33). The source IP address of all packets
generated from the 00:00:0c:04:b2:33 Ethernet address is 207.166.87.157. The destination
IP addresses of all packets with the destination Ethernet address of 00:00:0c:04:b2:33 is
207.166.0.0 . The third octet addresses range from 207.166.3.0 to 207.166.252.0. It appears
the monitored network consists of the network address 207.166.0.0 with a subnet mask of
255.255.0.0.
 ________________ _________________
Internet	---------------------	Network	
00:03:e3:d9:26:c0			00:00:0c:04:b2:33
________________			207.166.0.0
 ___|____
 | Snort |
 | Sensor |

2. Detect was generated by.

This detect was generated by a Snort intrusion detection system. The rule set was not
provided. A modified default Snort rule set from http://www.snort.org/dl/rules/snort-
stable.tar.gz was used. I modified the default snort.rules file by defining a home network of
207.166.0.0/16 and uncommented all the include rules. I also removed the established flag
for the flow parameter since the capture did not contain the complete session. Snort 1.9.0
processed the detect file with the modified rules. The file contained 15,020 packets of which
all were TCP. Alerts were triggered on 11,095 packets and 11,066 were logged. The alerts
were classified as 1 Potentially Bad Traffic, 19 Misc activity, and 11,046 Attempted
Information Leak. The 11,046 attempted information leaks contained 27 SCAN NMAP TCP
alerts. Of these 27 packets, 16 contained the destination port of 9511. This is unusual since
this is not a normal port for services to be listening and thus unusual for a scan. This detect
focuses on these 16 NMAP scan packet alerts. The rule is:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap
TCP";flags:A;ack:0; reference:arachnids,28; classtype:attempted-recon;
sid:628; rev:1;)

The snort rule output is:

[Classification: Attempted Information Leak] [Priority: 2]
10/30-18:24:24.186507 198.150.73.5:80 -> 207.166.135.150:9511

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

TCP TTL:50 TOS:0x20 ID:13404 IpLen:20 DgmLen:40
A* Seq: 0x3B2 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => arachnids 28]

3. Probability the source address was spoofed.

One of source IP addresses appears to be spoofed. The NMAP scan usually requires a
response to collect the desired information. NMAP offers options to attempt to hide the real
source address by using decoy source addresses and idle scans. The decoy source address
packets are sent interspersed with the real source address. This makes it difficult to
determine which was the actual source address that was scanning. The source addresses
are from 2 different devices. The different source addresses along with source port,
destination address and destination port are as follows:

 8 packets from IP address 67.36.84.5 port 80 to 207.166.135.150 port 9511
8 packets from IP address 198.150.73.5 port 80 to 207.166.135.150 port 9511

The following timing interval and TTL of the packets indicates that both packets are coming
from the same device.

05:33:04.926507 67.36.84.5.http > 207.166.135.150.9511: ttl 50
05:33:10.006507 67.36.84.5.http > 207.166.135.150.9511: ttl 50
05:33:15.016507 198.150.73.5.http > 207.166.135.150.9511: ttl 50
05:33:20.036507 198.150.73.5.http > 207.166.135.150.9511: ttl 50

07:24:16.096507 67.36.84.5.http > 207.166.135.150.9511: ttl 50
07:24:21.136507 67.36.84.5.http > 207.166.135.150.9511: ttl 50
07:24:26.046507 198.150.73.5.http > 207.166.135.150.9511: ttl 50
07:24:31.136507 198.150.73.5.http > 207.166.135.150.9511: ttl 50

18:40:59.026507 67.36.84.5.http > 207.166.135.150.9511: ttl 50
18:41:04.036507 67.36.84.5.http > 207.166.135.150.9511: ttl 50
18:41:09.076507 198.150.73.5.http > 207.166.135.150.9511: ttl 50
18:41:14.086507 198.150.73.5.http > 207.166.135.150.9511: ttl 50

19:24:09.016507 67.36.84.5.http > 207.166.135.150.9511: ttl 50
19:24:14.136507 67.36.84.5.http > 207.166.135.150.9511: ttl 50
19:24:19.156507 198.150.73.5.http > 207.166.135.150.9511: ttl 50
19:24:24.186507 198.150.73.5.http > 207.166.135.150.9511: ttl 50

The source addresses are registered as follows.

67.36.84.5 Concordia University , 2701 Alma, Plano, TX
198.150.73.5 WiscNet, Madison, WI

Both addresses respond to a ping but neither of them is listening on port 80. I cannot
determine which of the addresses is the decoy and which is the real one. This could be
done by pinging from where the detect was made and comparing the TTL to the captured
packets.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4. Description of attack.

NMAP is a scan to collect information about devices on a network. It is an opensource
program found at insecure.org. It can be used to determine what devices are on a network,
what ports are listening and what OS a system is running. It also attempts to determine if a
firewall is blocking packets. It runs on most operating systems. The packets are identified
from the 0 ack in the packets and acknowledgement flag being set.

It appears the NMAP is running an ack scan to access the firewall with the decoy option
targeting port 9511. The command could be as follows

 Nmap -sA –D67.36.84.5,ME -g 9511.
 Nmap -sA –DME,198.150.73.5,ME -g 9511.

The packets are sent with a source port of 80 since many firewalls will allow traffic from a
web server into the network that have the flag bits set to appear to be an established session.
This could also be used to asses if a stateful or packet filter firewall is being used.

The description for the CVE Candidate doesn't seem to match the packet. The CAN-1999-
0523 references ICMP packets. These packets are all TCP packets.

5. Attack mechanism.

The NMAP attack is a TCP port scan. This particular attack is sending packets to a targeted
host. The response or no response indicates if the system is up. All packets received by the
host should generate a reset regardless if the port is up or not since the session has not been
established. A no response means the system probably isn't up or it is being filtered. The
NMAP scan could also be trying to determine the operating system by the characteristics of
the reset packet. This is often done with the TTL received, the TCP options and order of TCP
options.

The interesting part of this detect is the target host destination port number of 9511. Port
9511 is not registered with IANA. A look at other alerts with a destination address of
207.166.135.150 and destination port of 9511 showed 73 packets. A look at the contents of
these packets show the 207.166.135.150 is being sent GNUTELLA response packets
(PONG) to a GNUTELLA request sent out (PING) as shown below.

06:44:36.106507 148.63.240.90.2538 > 207.166.135.150.9511: P 1932253194:1932253518(324) win 8192
(DF)0x0000 4500 016c 8113 4000 7106 f5eb 943f f05a E..l..@.q....?.Z

0x0010 cfa6 8796 09ea 2527 732b d80a 0000 0000 %'s+......
0x0020 5e08 2000 8f08 0000 474e 5554 454c 4c41 ^.......GNUTELLA
0x0030 2043 4f4e 4e45 4354 2f30 2e36 0d0a 5573 .CONNECT/0.6..Us
0x0040 6572 2d41 6765 6e74 3a20 4d6f 7270 6865 er-Agent:.Morphe
0x0050 7573 2032 2e30 2e31 2e38 0d0a 582d 556c us.2.0.1.8..X-Ul
0x0060 7472 6170 6565 723a 2046 616c 7365 0d0a trapeer:.False..
0x0070 504f 4e47 2d43 4143 4849 4e47 3a20 302e PONG-CACHING:.0.
0x0080 310d 0a58 2d4d 592d 4144 4452 4553 533a 1..X-MY-ADDRESS:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0x0090 2031 3438 2e36 332e 3234 302e 3930 3a35 .148.63.240.90:5
0x00a0 3835 330d 0a58 2d54 7279 3a20 3231 332e 853..X-Try:.213.
0x00b0 3437 2e32 332e 3139 303a 3934 3630 2c32 47.23.190:9460,2
0x00c0 342e 3137 342e 3133 352e 3234 333a 3835 4.174.135.243:85
0x00d0 3632 2c31 3331 2e39 362e 3131 322e 3439 62,131.96.112.49

 GNUTELLA is a peer to peer (P2P) sharing program. Many GNUTELLA clients are
available that to share files such as Morpheus, Bearshare, Gnucleus, Limewire, Phex,
Swapper and XoloX.

Although the GNUTELLA packets appear to be a GNUTELLA response to a GNUTULLA
request, all the GNUTELLA packets are retransmitted. It appears something is blocking the
response packets from reaching 207.166.135.150.

My analysis is the 207.166.135.150 is running GNUTELLA and listening on port 9511. It has
advertised this to the P2P community. Several devices have tried to communicate with
207.166.135.150 but failed because of an intervening firewall device. Someone has picked
up on the fact that 207.166.135.150 is listening on this port and is attempting reconnaissance
from the IP address 67.36.84.5 or 198.150.73.5 for possible future exploits.

Allowing GNUTELLA is a risk to a network because it provides access to workstations. Some
of the GNUTELLA clients also include spyware, adware and push 3rd party software to report
on the activity of workstations. Vulnerabilities in the GNUTELLA, GNUTELLA clients and 3rd
party software open the network up to attack. The transferring of files can also introduce
viruses into the protected network.

6. Correlations.

The mechanism for how NMAP works as well as the different options was found at
Insecure.org web page http://www.insecure.org/nmap/idlescan.htm

Other references found are as follows.
The snort reference http://www.snort.org/snort-db/sid.html?sid=628
Whitehats reference http://www.whitehats.com/info/IDS28
The description for the CVE Candidate doesn't seem to match the packet. The CAN-1999-
0523 references ICMP packets. These packets are all TCP.
CVE http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0523
advICE http://www.iss.net/security_center/advice/Intrusions/200310/default.htm

A good reference for how GNUTELLA works can be found at
http://www.toadnode.com/site_how_toadnode_works.ilx

Toadnode is a client that uses GNUTELLA. An overview of GNUTELLA can be found at
http://www.sans.org/rr/threats/gnutella.php

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

7. Evidence of active targeting.

The host with the IP address 207.166.135.150 port 9511 appears to be targeted. No
packets were captured scanning other devices on the network from the same source
addresses.

8. Severity.

The severity is calculated using the formula:

Severity = (criticality + lethality) – (system countermeasures + network countermeasures)

Criticality is rated at 1 because the system appears to be workstation. No web, DNS or
SNMP requests destined for this device.

Lethality is rated at 2 since a NMAP scan is designed to collect information about device not
actually attack or compromise them.

System countermeasures rated at 1 since the person running the software doesn't
understand the inherent risk associated with running P2P software and computer security.
Assuming this is a workstation and the user is not familiar with computer security, the system
is not hardened.

Network countermeasures rated at 3 since IDS detected the NMAP scan as well as the
GNUTELLA packets. The retransmitted GNUTELLA and NMAP packets indicate the
packets were being blocked when they attempt to enter the nework but the GNUTELLA
software is communicating with other systems . This indicates that a stateful firewall is being
used disallow packets that don't have an established session.

Severity -3 = (1 + 2) – (1 + 4)

9. Defensive recommendations.

The network appears to be able to hinder the GNUTELLA communications. It is not totally
effective in stopping it because the workstation was able to transmit the address and port.
GNUTELLA is designed to bypass firewalls and other network security measures. The most
effective method would be to eliminate the GNUTELLA software from the network. An
acceptable use policy should be drafted to make the use of P2P software inappropriate.
Systems using this software would be removed from the network or users found be
disciplined. Depending on the environment, the workstations could be locked down to
prevent the loading of unapproved software.

A stateful inspection firewall would also reduce the effectiveness of NMAP to recon the
network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

10. Multiple choice test questions.

The NMAP contains options to attempt to hide or obscure the address system performing the
scan. Which of the following NMAP options are available? .

a) -sI, Idle scan. Sending packets with a third parties address that
has a predictable IPID.

b) -b FTP bounce. Using a FTP server that allows proxies to scan other
systems.

c) -D decoy scan. Sends spoofed packets along with scan packets to
obscure true source.

d) All of the above.

Answer: d) All of the above.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 3: Analyze This
1. Executive summary

 Since this document will be publicly available, the actual University name and network
addresses will not be used to protect the identity of the University. Any references to this
specific University will use the term UNIVERITY. Any occurrences of the actual
UNIVERSITY addresses will have the first two octets changed to xxx.yyy.

The UNIVERSITY in cooperation with SANS, provides logs to SANS to be analyzed as
part of the SANS certification process. The logs are produced from a Snort IDS system with
a typical configuration. The Snort system produces three sets of logs for each day, the alert,
the scan and oos. The alert log is generated using the Snort fast option logs minimal packet
information when the packets match the rules criteria. The scan log is produced from Snort
Preprocessor portscan2 when a high number attempts are made from the same source to
different systems. Portscan2 also logs packets with unusual flag combinations. The oos file
contains full packet captures (up to the Snort limit) of packets with unusual header
combinations.

The UNIVERSITY network is under constant scan activity and directed attacks. The

UNIVERSITY network is also attacking other external systems. File-sharing software (P2P)
runs unchecked throughout the network using up bandwidth opening vectors for attack. The
Snort IDS sensor is being overloaded with false positives and traffic that should be blocked.

Four local systems appear to be infected with the NIMDA virus and numerous other systems
appear to be infected with the Red Worm virus. Immediate actions should be taken to
contain and eradicate these viruses. Immediate actions should also be taken to avoid and
mitigate the risk associate with being connected to the Internet.

 Detailed recommendations are listed with each separate alert. A comprehensive
description of long term recommended actions is listed under the Defense
Recommendations.

 A detailed security assessment of the UNIVERSITY network cannot be performed with
just the output of Snort IDS system. Many assumptions are made throughout this analysis in
regards to the network architecture, security policy, firewalls, router ACLs and such due to
the lack of information provided. This should be taken as a piece of the overall network
security picture.

2. List of files analyzed

The files for this analysis were downloaded from http://www.incidents.org/logs. Five
consecutive days of files were downloaded. I selected the dates April 1st through April 5th.
The scan and alert files names represent the date that the data was captured. The OOS file
names do not represent the data within the file. Most of the OOS files contain data from the
previous day. The OOS data for April 5th was contained in the file named

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

OOS_Report_2003_04_07_31826. The files were generated by Snort with a fairly standard
rulebase. The alert files are the output of snort running with -A fast option. The scan files are
the output of the Snort Portscan Preprocessor. The OOS files are the output of Snort
logging.

April 1st, 2003 OOS_Report_2003_04_02_24924 alert.030401.gz scans.030401.gz
April 2nd, 2003 OOS_Report_2003_04_03_9924 alert.030402.gz scans.030402.gz
April 3rd, 2003 OOS_Report_2003_04_04_29217 alert.030403.gz scans.030403.gz
April 4th, 2003 OOS_Report_2003_04_05_3459 alert.030404.gz scans.030404.gz
April 5th, 2003 OOS_Report_2003_04_07_31826 alert.030405.gz scans.030405.gz

3. Meaningful analysis

 The University network appears to be a large network based on the analysis of the snort
logs. The combined alerts and scans file contains entries from 915 University systems that
generated packets, but 43,379 UNIVERSITY systems are being sent packets. The five days
of the alerts, not including the scansfile, contained 237,366 entries. The five days of the
scans contained 1,416,553 entries. That is an average of 47,473 alerts per day, 1,978 per
hour, 32 per minute and 1 every 2 minutes. The scans has an average of 283,310 per day,
11,804 per hour, 196 per minute and 3 per second. This sheer volume of alerts, scans and
oos logs makes it difficult to tease the hostile activity from the normal traffic.

 The Snort sensor appears to be placed on a network segment that is receiving and sending
packets to the Internet. Minimal filtering appears to be occurring on the external perimeter
router, based on the amount of NETBIOS packets that are being received. A filtering device
does appear to be block egress from the network based on the NETBIOS packets not being
recorded from any internal device.

 Based on the source port of an entry with the UNIVERSITY source IP address, the
UNIVERSITY had the following active services. These services were verified by accessing
them. Other services were found using DNS references and Sam Spade.

Http on port 80
xxx.yyy.6.7 http://www.gl.UNIVERSITY.edu/
xxx.yyy.24.34 http://www.UNIVERSITY.edu/
xxx.yyy.100.165 linuxserver1.cs.UNIVERSITY.EDU
xxx.yyy.222.110 resnet2-348.resnet.UNIVERSITY.edu

https on port 443
xxx.yyy.24.20 https://listproc.UNIVERSITY.edu/lpUNIVERSITY/
xxx.yyy.24.33 https://my.UNIVERSITY.edu/fcgi-bin/myUNIVERSITY.fcgi

POP3 on port 110
xxx.yyy.100.230 mailserver-ng.cs.UNIVERSITY.edu v7.59

TFTP on port 69
xxx.yyy.105.48 aciv316pc-2.UNIVERSITY.EDU

SNMP on port 25
xxx.yyy.24.21 mx1in.UNIVERSITY.EDU sam spade
xxx.yyy.24.23 mx3in.UNIVERSITY.edu

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

xxx.yyy.6.34 mx3del.UNIVERSITY.EDU sam spade
xxx.yyy.6.35 mx2del.UNIVERSITY.EDU sam spade
xxx.yyy.6.40 mx4del.UNIVERSITY.EDU sam spade
xxx.yyy.6.47 mx1del.UNIVERSITY.EDU sam spade

DNS on port 53
xxx.yyy.1.2 UNIVERSITY2.UNIVERSITY.EDU sam spade
xxx.yyy.1.3 UNIVERSITY3.UNIVERSITY.EDU
xxx.yyy.1.4 UNIVERSITY4.UNIVERSITY.EDU sam spade
xxx.yyy.1.5 UNIVERSITY5.UNIVERSITY.EDU sam spade

Summary of import findings from detects.

Four internal systems, xxx.yyy.97.88, xxx.yyy.184, xxx.yyy.98.157 and xxx.yyy.97.66, appear
to be infected with the NIMDA virus. Other systems may be compromised as well but not
enough activity is recorded to substantiate this conclusion. The aggressive nature in which
NIMDA spreads makes it a high probability that other systems within the UNIVERSITY are
infected. A review of the content of these systems should be performed as well as actions to
contain and eradicate the virus from the network.

Evidience ot the Red worm virus is also present on 66 internal systems. Of these 66, 9 are
involved in other activity. There are address are as follows,

xxx.yyy.222.110, xxx.yyy.91.108, xxx.yyy.210.130, xxx.yyy.242.42,
xxx.yyy.210.222 xxx.yyy.87.70, xxx.yyy.233.78, xxx.yyy.206.74, xxx.yyy.163.135

A review of the content of these systems should be performed as well as actions to contain
and eradicate the virus from the network.

An internal system is spoofing with Micosoft’s IP address and sending packets out to the
external network.

Egress and ingress filter should be performed to reduce the amount of alerts by removing the
traffic from the network. The alerts should be left in place in the event the filtering should fail.
Examples of this would be to drop all SMB packets, anti-spoofing and bad packet
combinations.

The IDS senosrs are not tuned properly. The oos file contains may entries that are using the
new ECN protocol and should not be log. The oos file also contains many entries from the
Gnutella P2P networking software with illegal flag combinations that could be dropped rather
than logged.

The alerts file contains a summary of the scans file and the oos file. The oos file also
contains packets with bad flag combinations and many entires from Gnulleta. The oos
external source addresses were not involved in significant attacks logged in the alerts as
noted in the later analysis process section. The Gnutella traffic that is not an attack but does
consume bandwidth and make another vector for act.

4. List of detects, priority by severity or number of occurrences.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Here is the complete list by number of occurrences from the alerts file.

 109258 SMB Name Wildcard
 39363 Watchlist 000220 IL-ISDNNET-990517
 18176 High port 65535 udp - possible Red Worm - traffic
 14165 spp_http_decode: IIS Unicode attack detected
 9399 CS WEBSERVER - external web traffic
 8453 High port 65535 tcp - possible Red Worm - traffic
 7591 Tiny Fragments - Possible Hostile Activity
 5564 Incomplete Packet Fragments Discarded
 3965 TFTP - Internal TCP connection to external tftp server
 3951 TCP SRC and DST outside network
 3086 xxx.yyy.30.4 activity
 2803 External RPC call
 2711 spp_http_decode: CGI Null Byte attack detected
 1610 Null scan!
 1254 Watchlist 000222 NET-NCFC
 1175 Queso fingerprint
 854 IDS552/web-iis_IIS ISAPI Overflow ida nosize
 687 SUNRPC highport access!
 548 Possible trojan server activity
 473 EXPLOIT x86 NOOP
 307 CS WEBSERVER - external ftp traffic
 304 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
 220 xxx.yyy.30.3 activity
 214 NMAP TCP ping!
 181 connect to 515 from outside
 170 DDOS mstream handler to client
 128 SNMP public access
 117 EXPLOIT x86 setuid 0
 114 NIMDA - Attempt to execute cmd from campus host
 85 IRC evil - running XDCC
 79 EXPLOIT x86 setgid 0
 75 TFTP - Internal UDP connection to external tftp server
 74 EXPLOIT x86 stealth noop
 71 DDOS mstream client to handler
 26 TFTP - External TCP connection to internal tftp server
 22 Notify Brian B. 3.56 tcp
 22 Notify Brian B. 3.54 tcp
 16 Attempted Sun RPC high port access
 11 SMB C access
 8 NETBIOS NT NULL session
 7 TCP SMTP Source Port traffic
 7 FTP passwd attempt
 5 Probable NMAP fingerprint attempt
 3 EXPLOIT NTPDX buffer overflow
 2 SYN-FIN scan!
 2 RFB - Possible WinVNC - 010708-1
 2 NIMDA - Attempt to execute root from campus host
 2 EXPLOIT digital unix noop
 1 Trin00 password on tcp
 1 External FTP to HelpDesk xxx.yyy.53.29
 1 DDOS shaft client to handler
 1 Bugbear@MM virus in SMTP
 1 Back Orifice

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.1 SMB Name Wildcard

This can be normal traffic generated by Windows computers to collect information about
other devices on the network. It can also be used to perform reconnaissance to collect
intelligence to launch an attack at a later date. The important distinction is if the traffic is
being generated from the inside of the network or the outside. Because this is a possible
information leak this traffic should not be allowed to enter or exit the network. External
attempts should be viewed as hostile activity since it is an attempt to reconn the network or
attack a system. Specifically, the 911 worm executes the “net view //” which generates a
SMB wildcard packet. Out of the 109,258 packets 22,976 unique sources and 35,752 unique
destinations. All the packets were from the external IP addresses entering the network.

Recommendation: Implement filter on the border router to eliminate this traffic from entering
the network.

References: http://archives.neohapsis.com/archives/snort/2000-01/0222.html

http://www.cert.org/incident_notes/IN-2000-03.html

4.2 Watchlist 000220 IL-ISDNNET-990517

These 39,363 packets appear to be alerted on because of their source IP network address
212.179.0.0. As the name suggests in the alarm description, these packets are coming from
ISDNNET. ISDNNET is registered to a company in Israel.

BEZEQINT HOSTMASTERS TEAM
bezeq-international
40 hashacham
petach tikva, 49170, Israel

A search for other alerts triggered by 212.179 showed 142 other alerts from this network.
Most of the alerts were from SMB Wildcard alerts, but there was a NMAP scan, 3 possible
red worm, and a CS WEBSERVER - external web traffic alert. A search for the destination
address with 212.79 in the noScansAlerts file showed no packets. A search in the scans file
showed the following.

Apr 5 09:37:57 xxx.yyy.194.223:55909 -> 212.179.201.233:5062 SYN ******S*
Apr 5 09:52:45 xxx.yyy.194.223:60754 -> 212.179.201.233:5062 SYN ******S*
Apr 5 09:44:52 xxx.yyy.194.223:57996 -> 212.179.201.233:5062 SYN ******S*
Apr 5 15:28:52 xxx.yyy.194.247:13139 -> 212.179.220.217:13139 UDP

This is cause for concern since the xxx.yyy of my.net is originating these packets.

I could not find any listing for TCP port 5062. James Bliss found that the UDP 13139 was
from someone installing gamespy on their computer.

Http://lists.suse.com/archive/suse-security/2002-Feb/0374.html

The Internet Storm Center lists this port as registered for neverwinternights gaming server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://isc.incidents.org/port_details.html?port=13139

Recommendations: The 212.179 network must have a history of scanning the network.
Sending an e-mail abuse@bezeqint.net complaining about the large amount of scans being
performed. If no access to the UNIVERSITY is required then block the address range. The
two devices, xxx.yyy.194.223 and xxx.yyy.194.247 that are initiating sessions need to be
reviewed.

4.3 High port 65535 udp - possible Red Worm - traffic

The alerts file contained 18,176 of these alerts, with 214 unique sources to 248 unique
destinations. Out of the 18,176 alerts, 7,883 were from the internal device xxx.yyy.201.58. I
could not find the signature in the alert rules file. Sixty-six other internal systems alerted this
rule. The following internal address were also involved in other alerts,

xxx.yyy.222.110, xxx.yyy.91.108, xxx.yyy.210.130, xxx.yyy.242.42, xxx.yyy.210.222, xxx.yyy.87.70,
xxx.yyy.233.78, xxx.yyy.206.74, xxx.yyy.163.135.

The three internal systems xxx.yyy.242.42, xxx.yyy.210.222 and xxx.yyy.87.70 also appeared
as accessing an external TFTP server with the address 24.236.251.22 and 209.126.214.14
which resolve to

OrgName: Charter Communications, Michigan Region
OrgID: CC03
Address: 359 US Hwy 41 East
City: Negaunee
StateProv: MI
PostalCode: 49866
Country: US

And

California Regional Internet, Inc. CARI

The Red Worm affects Linux systems. The port 65535 is the port the worm opens when it is
activated. It also sends out e-mail to four different e-mail addresses.

Recommendations: Block pings from the outside to prevent the worm from going active.
Monitor port 25 traffic for e-mail being sent from a system that shouldn’t be sending out e-
mail. Investigate all the 9 systems listed in this alert since it appears the UNIVERSITY
network maybe is infected with the Red worm virus.

References: http://www.sans.org/rr/malicious/code_red8.php

 http://www.sans.org/rr/casestudies/outbound.php
 http://www.giac.org/practical/GCIA/Susan_Kovacevich_GCIA.pdf

http://www.europe.f-secure.com/v-descs/adore.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.4 spp_http_decode: IIS Unicode attack detected

The alerts file contained 14,165 of these alerts with 765 unique sources to 904 unique
destinations. Out of these 14,165 alerts, 13,551 were from the internal network from 528
unique internal devices. Of these 528 internal sources 46 triggered multiply alerts. The 46
addresses are as follows

xxx.yyy.97.48, xxx.yyy.153.119, xxx.yyy.226.206, xxx.yyy.97.88, xxx.yyy.206.74, xxx.yyy.97.86,
xxx.yyy.206.14, xxx.yyy.242.14, xxx.yyy.84.235, xxx.yyy.189.37, xxx.yyy.153.112, xxx.yyy.104.57,
xxx.yyy.201.234, xxx.yyy.152.11, xxx.yyy.240.70, xxx.yyy.97.126, xxx.yyy.97.68, xxx.yyy.98.11,
xxx.yyy.97.96, xxx.yyy.236.10, xxx.yyy.108.34, xxx.yyy.222.110, xxx.yyy.84.147, xxx.yyy.88.193,
xxx.yyy.233.78, xxx.yyy.97.45, xxx.yyy.86.110, xxx.yyy.210.130, xxx.yyy.250.254, xxx.yyy.88.182,
xxx.yyy.97.169, xxx.yyy.163.135, xxx.yyy.196.161, xxx.yyy.19.11, xxx.yyy.129.212, xxx.yyy.152.101,
xxx.yyy.203.234, xxx.yyy.97.21, xxx.yyy.97.14, xxx.yyy.217.30, xxx.yyy.152.177, xxx.yyy.220.110,
xxx.yyy.86.102, xxx.yyy.189.45, xxx.yyy.97.101, xxx.yyy.87.70, xxx.yyy.240.14

The following internal addresses also alerted for connecting to external TFTP servers as
follow,

 xxx.yyy189.37 to 80.212.98.5,
 xxx.yyy.236.10 to 205.188.11.236, 205.188.6.52 and 64.12.26.248,
 xxx.yyy.84.147 to 4.60.136.43,
 xxx.yyy.189.45 to 4.60.136.43,
 xxx.yyy.87.70 to 259.126.214.14.

The following two internal addresses also alerted for IRC evil connections, xxx.yyy.203.234
and xxx.yyy.220.110.

The following system was target by an external system according to the oos file may have
been successfully compromised xxx.yyy.153.112

The http IIS Unicode attack works by passing file representation characters '../' or '..\' in
Unicode. The Microsoft IIS security server performs a security check to make sure the
request doesn't use any '../' to go outside the normal inetpub directory, but doesn't check to
see if the unicode contains any of these characters. This is fine but the Snort preprocessor
doesn't know what is outside the inetpub so this maybe normal traffic.

The following internal devices were also recorded in participating in scanning activity and
should be investigated.

 spp_http_decode: IIS Unicode attack detected
 xxx.yyy.104.117 xxx.yyy.104.118 xxx.yyy.104.119 xxx.yyy.104.120
 xxx.yyy.104.121 xxx.yyy.104.124 xxx.yyy.104.126 xxx.yyy.108.34
 xxx.yyy.143.107 xxx.yyy.144.51 xxx.yyy.153.10 xxx.yyy.153.105
 xxx.yyy.153.106 xxx.yyy.153.107 xxx.yyy.153.108 xxx.yyy.153.109
 xxx.yyy.153.110 xxx.yyy.153.111 xxx.yyy.153.112 xxx.yyy.153.114
 xxx.yyy.153.115 xxx.yyy.153.117 xxx.yyy.153.118 xxx.yyy.153.119
 xxx.yyy.153.120 xxx.yyy.153.121 xxx.yyy.153.122 xxx.yyy.153.123
 xxx.yyy.153.124 xxx.yyy.153.125 xxx.yyy.153.126 xxx.yyy.153.127
 xxx.yyy.153.136 xxx.yyy.153.145 xxx.yyy.153.150 xxx.yyy.153.159
 xxx.yyy.153.165 xxx.yyy.153.170 xxx.yyy.153.176 xxx.yyy.153.177

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 xxx.yyy.153.180 xxx.yyy.153.182 xxx.yyy.153.185 xxx.yyy.153.186
 xxx.yyy.153.187 xxx.yyy.153.188 xxx.yyy.153.198 xxx.yyy.153.199
 xxx.yyy.153.201 xxx.yyy.153.203 xxx.yyy.153.206 xxx.yyy.153.209
 xxx.yyy.153.213 xxx.yyy.153.45 xxx.yyy.153.46 xxx.yyy.153.71
 xxx.yyy.163.125 xxx.yyy.163.135 xxx.yyy.163.78 xxx.yyy.168.179
 xxx.yyy.168.28 xxx.yyy.168.29 xxx.yyy.168.70 xxx.yyy.168.75
 xxx.yyy.183.25 xxx.yyy.183.59 xxx.yyy.189.37 xxx.yyy.189.45
 xxx.yyy.193.211 xxx.yyy.193.217 xxx.yyy.193.53 xxx.yyy.194.189
 xxx.yyy.194.191 xxx.yyy.194.227 xxx.yyy.194.5 xxx.yyy.196.161
 xxx.yyy.197.22 xxx.yyy.209.154 xxx.yyy.210.254 xxx.yyy.212.82
 xxx.yyy.221.78 xxx.yyy.222.110 xxx.yyy.224.114 xxx.yyy.233.78
 xxx.yyy.236.50 xxx.yyy.236.90 xxx.yyy.240.38 xxx.yyy.240.70
 xxx.yyy.242.14 xxx.yyy.242.250 xxx.yyy.54.210 xxx.yyy.84.147
 xxx.yyy.86.110 xxx.yyy.87.70 xxx.yyy.88.156 xxx.yyy.88.229
 xxx.yyy.97.102 xxx.yyy.97.105 xxx.yyy.97.13 xxx.yyy.97.133
 xxx.yyy.97.134 xxx.yyy.97.136 xxx.yyy.97.138 xxx.yyy.97.139
 xxx.yyy.97.140 xxx.yyy.97.149 xxx.yyy.97.155 xxx.yyy.97.165
 xxx.yyy.97.170 xxx.yyy.97.171 xxx.yyy.97.177 xxx.yyy.97.178
 xxx.yyy.97.188 xxx.yyy.97.198 xxx.yyy.97.202 xxx.yyy.97.203
 xxx.yyy.97.226 xxx.yyy.97.230 xxx.yyy.97.233 xxx.yyy.97.246
 xxx.yyy.97.31 xxx.yyy.97.36 xxx.yyy.97.37 xxx.yyy.97.62
 xxx.yyy.97.75 xxx.yyy.97.86 xxx.yyy.97.88 xxx.yyy.97.92
 xxx.yyy.97.98 xxx.yyy.98.16

Recommendations: Check the systems listed above since they had multiply alerts.
Determine if the TFTP connections listed above were authorized. Correlate the packets to
only the servers listening open on the firewall for http within the network and log the
remainder since they will not succeed.

References: http://www.snort.org/docs/writing_rules/chap2.html#tth_sEc2.4.1
 http://www.snort.org/docs/faq.html#4.17
 http://lists.suse.com/archive/suse-security/2001-Mar/0371.html

4.5 CS WEBSERVER - external web traffic

The alerts file contained 9,399 of these alerts with 4,261 unique sources to 1 unique
destination. The 1 unique destination is xxx.yyy.100.65, which is resolved to
www.UNIVERSITY.edu/engineer/cse. I could not find this rule in the default ruleset. This
appears to be a rule to capture packets that are not from the xxx.yyy.0.0 destined for the
www.UNIVERSITY.edu/engineer/cse as the name implies.

Recommendations: Change the rule from alert to log to avoid filling up the alert log but not
loosing the logs of who is accessing the www.UNIVERSITY.edu/engineer/cse web server.

 References: www.UNIVERSITY.edu/engineer/cse

4.6 High port 65535 tcp - possible Red Worm - traffic

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The alerts file contained 8,453 of these alerts, with 123 unique sources to 119 unique
destinations. Out of the 8,453 alerts, 53 were from the internal device. The following 17
internal address were also involved in other alerts. The addresses are as follows.

xxx.yyy.86.110, xxx.yyy.226.206, xxx.yyy.201.234, xxx.yyy.202.206, xxx.yyy.240.14, xxx.yyy.87.70,
xxx.yyy.105.48, xxx.yyy.100.230, xxx.yyy.249.134, xxx.yyy.88.193, xxx.yyy.194.13, xxx.yyy.24.33,
xxx.yyy.202.222, xxx.yyy.233.78, xxx.yyy.242.14, xxx.yyy.86.102, xxx.yyy.189.37.

The internal systems xxx.yyy.105.48 appears to be acting as an TFTP server, and
xxx.yyy.86.102 appears to be as accessing an external TFTP server with the address
80.212.98.5 which is registered as

netname: NO-NEXTRA-ADSL-1
descr: Telenor Business Solution AS
country: NO

The 17 internal addresses are systems that have been infected and are now infection other
machines.

The following internal devices were also recorded in participating in scanning activity and
should be investigated.

xxx.yyy.100.230 xxx.yyy.189.37 xxx.yyy.194.13 xxx.yyy.194.223 xxx.yyy.224.90 xxx.yyy.233.78
xxx.yyy.234.174 xxx.yyy.242.14 xxx.yyy.250.226 xxx.yyy.86.110 xxx.yyy.87.70 xxx.yyy.163.135
xxx.yyy.193.213 xxx.yyy.195.209 xxx.yyy.201.218 xxx.yyy.203.46 xxx.yyy.204.8 xxx.yyy.205.198
xxx.yyy.208.66 xxx.yyy.210.222 xxx.yyy.217.178 xxx.yyy.222.110 xxx.yyy.224.170 xxx.yyy.228.50
xxx.yyy.233.78 xxx.yyy.237.226 xxx.yyy.238.214 xxx.yyy.241.78 xxx.yyy.242.42 xxx.yyy.251.126
xxx.yyy.251.30 xxx.yyy.253.102 xxx.yyy.87.70 xxx.yyy.91.109

The Red Worm affects Linux systems. The port 65535 is the port the worm opens when it is

Recommendations: Block pings from the outside to prevent the worm from going active.
Monitor port 25 traffic for e-mails being sent from a system that shouldn’t be sending out e-
mails. Investigate all the 17 systems listed in this alert since it appears the UNIVERSITY
network is infected with the Red worm virus.

References: http://www.sans.org/rr/malicious/code_red8.php

 http://www.sans.org/rr/casestudies/outbound.php
 http://www.giac.org/practical/GCIA/Susan_Kovacevich_GCIA.pdf

http://www.europe.f-secure.com/v-descs/adore.shtml

4.7 Tiny Fragments - Possible Hostile Activity

The alerts file contained 7,591 of these alerts, with 8 unique sources to 224 unique
destinations. The rule that triggered it appears below but it should only alert when a packet
from the external network is destined for the xxx.yyy.0.0 network, although 7,480 alerts were
logged with xxx.yyy.240.78 as the source. This is probably an indication that the
$HOME_NET variable is not defined or the rule was modified. The default rule is listed
below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC Tiny Fragments";
fragbits:M; dsize: < 25; classtype:bad-unknown; sid:522; rev:1;)

An E-mail from Jeff Oxenreider describes his finding GNUTELLA as generating these types
of packets.

The following internal devices were also recorded in participating in scanning activity and
should be investigated.

xxx.yyy.240.78 xxx.yyy.240.78

Recommendations: Capture complete packets to investigate the contents.

References: http://www.snort.org/snort-db/sid.html?sid=522
 http://archives.neohapsis.com/archives/snort/2000-05/0115.html

4.8 Incomplete Packet Fragments Discarded

The alerts file contained 5,564 of these alerts with 67 unique sources to 53 unique
destinations. I could not find the rule in the default snort rules. The packets all appear to
have a source port of 0 and a destination port of 0. Both TCP and UDP port 0 is listed on the
IANA website as reserved. Of the 5,564 alerts, 5,055 were from one address
xxx.yyy.252.166 to the address 63.210.47.23. This activity occurred within a two-hour period
from 09:09:43 on 04/05/2003 to 11:16:16 on 04/05/2003. Other source and destination also
seem to occur in short bursts but only between devices. The use of port 0, the short burst of
traffic and specific targets indicates a denial of service attack. A look at some of the captured
packets may reveal this in not the case.

The following internal device was also recorded in participating in scanning activity and
should be investigated, xxx.yyy.252.166

Recommendations: Capture some of these packets to determine if it is an actual attack or
just a broken program. Since port 0 is reserved, it should not be on the network. Block all
TCP and UDP packets with a source or destination port of 0. Review the configuration and
programs installed on xxx.yyy.252.166.

Contact the owner of 63.210.47.23 to see if they have any logs of this activity. It is listening
on port 80 and responds with “unknown.Level3.net”. It is registered to Level 3
Communications, 1025 Eldorado Blvd., Broomfield, CO, 80021, US. Complaints should be
sent to abuse@level3.com

References: http://www.iana.org/assignments/port-numbers

4.9 TFTP - Internal TCP connection to external tftp server

The alerts file contained 3,965 of these alerts with 36 unique sources to 34 unique
destinations. I could not find the rule in the default snort rules. The packets all appears to
have a source port of 69 and a destination IP network of xxx.yyy.0.0 or a destination port of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

69 and a source IP network of xxx.yyy.0.0. This alerts when a packet is sent to a TFTP
server from the internal network or when a packet from a TFTP server is sent to the internal
network.

A test of two of the external addresses showed them as TFTP servers. These appear to be
valid TFTP sessions from the internal network to external sites. TFTP file transfers can allow
the download of malicious code. Many vulnerabilities are associated with TFTP. A listing at
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=TFTP provide further information on the
types. TFTP is also used by NIMDA to download the worm to the IIS server.

The following internal devices were also recorded in participating in scanning activity and
should be investigated.

 TFTP - Internal TCP connection to external tftp server
 xxx.yyy.189.37 xxx.yyy.132.23 xxx.yyy.178.19 xxx.yyy.189.45
 xxx.yyy.210.222 xxx.yyy.236.90 xxx.yyy.242.42 xxx.yyy.84.147
 xxx.yyy.87.70 xxx.yyy.91.109

Recommendation: Block access from the internal network to TFTP servers or capture the
files beginning downloaded to check for malicious content. Ascertain if the TFTP servers are
used for authorized or malicious purposes.

References: http://www.portsdb.org/bin/portsdb.cgi?portnumber=69&protocol=ANY

http://www.cert.org/advisories/CA-2001-26.html

4.10 TCP SRC and DST outside network

The alerts file contained 3,951 of these alerts with 1,928 unique sources to 81 unique
destinations. I could not find the rule in the default snort rules. It appears that the packets do
not contain the internal network address of xxx.yyy.0.0 as the source or destination. I
suspect these are packets from within the internal network that are using private address,
misconfigured devices or spoofed address.

Out of the almost 4,000 alerts, 235 contain the private address of 192.168.0.0, 7 contain the
private address 172.28.0.0, 603 contain the private address 252.0.0.0 and 1,269 contain the
private address of 251.255.0.0.

Misconfigured packets would include 42 alerts with the address 0.0.0.0

Some 1,745 alerts were from the source address network of 207.46.0.0. This address is
registered to Microsoft. These where probably spoofed by someone from the internal
network.

Recommendations: Institute anti-spoofing on the network security device to disallow any
packets from leaving the network if they don't have an internal source address.

References:http://ws.arin.net/cgi-bin/whois.pl

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.11 xxx.yyy.30.4 activity

The alerts file contained 3,086 of these alerts with 257 unique sources to 1 unique
destination. I could not find the rule in the default snort rules. As name indicates, the alert
appears to trigger for every packet destined for the internal device xxx.yyy.30.4. A look at the
log file showed most of the packets has a destination port 80. A quick check with my favorite
browser showed this site as the UNIVERSITY Novell Netstorage device.

Recommendations: Log these packets rather than alert.

References: http://xxx.yyy.30.4/

4.12 External RPC call

The alerts file contained 2803 of these alerts with 16 unique sources to 2,747 unique
destinations. I could not find the rule in the default snort rules. The name of the alert and
packets captured with it implies the rule alerts on packets from $EXTERNAL_NET to
$INTERNAL_NET with a destination port of 111. Out of the 2,802 alerts, 2,788 were
received from the two sources 62.65.192.30 (1811) and 203.197.255.90 (977). The many
different address is an indication these systems were performing a scan for a server listening
for RPC portmapper requests. Portmapper is used by RPC to identify which services are
running on what high number ports. This information can be used to attempt to connect to
the RPC services. The first scan was performed in a little over three minutes the second was
done on two different days in less than a minute for the first and less than three minutes for
the second scan. Neither of the addresses appeared in the scans file as scanning any other
systems nor where they involved in any other alerts. Concern would be in order if these two
addressees attempted access to the commonly used RPC high ports 32771 – 32789.

Recommendations: Block destination port 111 from entering the network.

4.13 spp_http_decode: CGI Null Byte attack detected

The alerts file contained 2,711 of these alerts with 127 unique sources to 119 unique
destinations. The alert is generated by the snort preprocessor for http decodes. This alert is
an indication that a “%00” was detected in the content. This can be a false positive from
cookies with urlencoded binary.

Of the 127 unique sources 37 internal systems are involved in other alerts. The majority of
other alerts are the spp_http_decode: IIS Unicode attack detected. The following lists the
systems that had other alerts.

xxx.yyy.97.48 xxx.yyy.97.99 xxx.yyy.98.11 xxx.yyy.153.112 xxx.yyy.97.96 xxx.yyy.97.21
xxx.yyy.97.68 xxx.yyy.97.14 xxx.yyy.217.30 xxx.yyy.202.206 xxx.yyy.84.185 xxx.yyy.218.214
xxx.yyy.152.177 xxx.yyy.108.34 xxx.yyy.153.119 xxx.yyy.226.206 xxx.yyy.97.86 xxx.yyy.97.126
xxx.yyy.229.18 xxx.yyy.233.78 xxx.yyy.206.14 xxx.yyy.152.11 xxx.yyy.236.90 xxx.yyy.153.122
xxx.yyy.97.45 xxx.yyy.97.169 xxx.yyy.199.250 xxx.yyy.86.102 xxx.yyy.97.101 xxx.yyy.183.59
xxx.yyy.201.234 xxx.yyy.84.235 xxx.yyy.91.109 xxx.yyy.98.23 xxx.yyy.88.182 xxx.yyy.163.135
xxx.yyy.250.254

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Out of these 37, 6 internal addresses also alerted on possible Red worm. The addresses are
xxx.yyy.202.206 xxx.yyy226.206 xxx.yyy.233.78 xxx.yyy.86.102 xxx.yyy201.234 xxx.yyy163.135

Out o the same 37 above, 2 internal addresses also alerted on TFTP to external site. The
internal addresses are

xxx.yyy.236.90 xxx.yyy.91.109

Both addresses accessed the same external server 209.126.214.14. Several other internal
addresses access this TFTP server as well as listed below.

TFTP - Internal UDP connection to external tftp server [**]
xxx.yyy.210.222:11544 -> 209.126.214.14:69
TFTP - Internal UDP connection to external tftp server [**]
xxx.yyy.210.222:11544 -> 209.126.214.14:69
TFTP - Internal UDP connection to external tftp server [**] xxx.yyy.87.70:9634
-> 209.126.214.14:69

The following system was targeted according to the oos file and may have been successfully
compromised since appears it is attacking other systems. xxx.yyy.97.45.

The address 209.126.214.14 is registered to California Regional Internet, Inc. CARI.

The following internal devices were also recorded in participating in scanning activity and
should be investigated.

xxx.yyy.108.34 xxx.yyy.114.252 xxx.yyy.143.154 xxx.yyy.153.112 xxx.yyy.153.119 xxx.yyy.153.122
xxx.yyy.163.135 xxx.yyy.183.59 xxx.yyy.196.161 xxx.yyy.205.174 xxx.yyy.233.78 xxx.yyy.236.62
xxx.yyy.236.90 xxx.yyy.91.109 xxx.yyy.97.132 xxx.yyy.97.173 xxx.yyy.97.38 xxx.yyy.97.86
xxx.yyy.98.169

Recommendations: Capture the content to determine if this is an attack or false positive.
Limit captures only to internal HTTP servers to reduce false positives. Determine if the
209.126.214.14 is being used by hackers or authorized purposes.

References: http://archives.neohapsis.com/archives/snort/2000-11/0244.html

4.14 Null scan!

The alerts file contained 1,160 of these alerts with 68 unique sources to 78 unique
destinations. All the packets are coming from the external to the internal network. It
appeared at first that all the packets had a source and destination port of 0. After looking at
all the packets I found 212.202.193.59:1658 -> xxx.yyy.237.6:1872. I looked for this packet
in the scan file and found 212.202.193.59:1658 -> xxx.yyy.237.6:1872 NULL ********. along
with the other null scan packets. This snort rule alerts when no TCP flags are set.

Recommendations: Block all packets entering the network with no TCP flags.

4.15 Watchlist 000222 NET-NCFC

The alerts file contained 1,254 of these alerts. The packets appear to be alerted on because
of their source IP network address 159.226.0.0. I could not find the rule in the default snort

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

rules. These packets are coming from Computer Network Center Chinese Academy of
Sciences. ISDNNET is registered to a company in China.

The Computer Network Center Chinese Academy of Sciences
Address: P.O. Box 2704-10
Institute of Computing Technology Chinese Academy of Sciences
Beijing 100080, China

A search for other alerts triggered by a 159.226.0.0 showed 17 other alerts from this network.
Most of the alerts were from SMB Wildcard, but there was a Queso, and a CS WEBSERVER
- external web traffic alert. A search for address with 159.226.0.0 in the oos and scans gave
me 14 packets.

oos130:04/01-22:02:20.111923 159.226.113.140:44755 -> xxx.yyy.130.14:80
oos130:04/01-22:47:18.817356 159.226.113.140:46066 -> xxx.yyy.130.14:80
oos130:04/02-02:35:54.042964 159.226.113.140:53650 -> xxx.yyy.130.14:80
oos130:04/02-02:36:02.562933 159.226.113.140:53651 -> xxx.yyy.130.14:80
oos130:04/02-04:33:49.026361 159.226.113.140:57370 -> xxx.yyy.130.14:80
oos130:04/02-07:12:29.094078 159.226.162.168:1357 -> xxx.yyy.100.237:9080
scans_130:Apr 2 02:36:02 159.226.113.140:53651 -> xxx.yyy.130.14:80 SYN
12****S* RESERVEDBITS
scans_130:Apr 2 05:16:17 xxx.yyy.97.88:3915 -> 159.226.155.101:80 SYN ******S*
scans_130:Apr 4 04:03:06 xxx.yyy.1.3:32790 -> 159.226.1.1:53 UDP
scans_130:Apr 4 04:03:11 xxx.yyy.1.3:32790 -> 159.226.118.1:53 UDP
scans_130:Apr 4 04:03:21 xxx.yyy.1.3:32790 -> 159.226.1.1:53 UDP
scans_130:Apr 4 04:03:22 xxx.yyy.1.3:32790 -> 159.226.1.1:53 UDP
scans_130:Apr 4 04:03:25 xxx.yyy.1.3:32790 -> 159.226.1.1:53 UDP
scans_130:Apr 5 02:55:51 xxx.yyy.137.7:29460 -> 159.226.1.1:53 UDP

Recommendations: The 159.226.0.0 network has a history of scanning the network. If no
access to the UNIVERSITY is required then block the address range. No contact information
was listed at the ARIN website.

References: http://ws.arin.net/cgi-bin/whois.pl

4.16 Queso fingerprint

The alerts file contained 1,175 of these alerts with 293 unique sources to 110 unique
destinations. I could not find the rule in the default snort rules. A look at the Queso
fingerprint alerts for the file didn't reveal anything unusual but the search for one of the alerts
source/destination pair showed the following.

Apr 1 07:20:03 193.232.119.109:47513 -> xxx.yyy.221.194:6881 SYN 12****S*
RESERVEDBITS

A search for all 12****S* strings in the scans file showed the same number as Queso alerts.
It appears this snort rule triggers when the first two reserved bits are set along with the Syn
bit. These are probably false positives due to diverse number of source addresses and the
new implementation of rfc3168 to detect congestion. This was also recorded in the oos file

Recommendation: Tune the IDS to ignore these packets and filter the illegal combinations at
the firewall. Even without the ECN bits the flag combination is illegal since it doesn’t contain

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

an ACK or SYN flag. A more detailed description is give for these flag combinations in the
oos analysis section.

Reference:http://www.icir.org/floyd/papers/rfc3168.txt

4.17 IDS552/web-iis_IIS ISAPI Overflow ida nosize

The alerts file contained 854 of these alerts with 607 unique sources to unique 699
destinations. Most of the packets are from external addresses with the exception of three.
The snort rule that probably triggered is below:

alert TCP $EXTERNAL any -> $INTERNAL 80 (msg: "IDS552/web-iis_IIS ISAPI
Overflow ida"; dsize: >239; flags: A+; uricontent: ".ida?"; classtype:
system-or-info-attempt; reference: arachnids,552;)

This event shows someone maybe trying to exploit a flaw in Microsoft IIS. An index server
on the Microsoft IIS Index Server has a buffer that doesn't check for size. An attacker can
gain system access through this exploit. This may also be a false positive since it alerts any
time a packet that contains “.ida?”, ACK flag and others, and data over 239.

Recommendations: Ensure web servers are patched. Block port 80 access to any device
except know hardened web servers that require external access.

References: http://www.giac.org/practical/Edward_Peck_GCIA.doc
 http://www.whitehats.com/IDS/552

4.18 SUNRPC highport access!

The alerts file contained 687 of these alerts with 65 unique sources to 42 unique destinations.
Most of the packets are from the external addresses with the exception of one. The snort
rule that probably trigger is below:

alert tcp any any -> any 32771 (msg: "SUNRPC highport access!";)

The rule is triggered every time a packet has a destination port number 32771. Since this is
an ephemeral port number it can be used in valid traffic. The pattern of one to one and short
time span between the packets indicates a scan for an open port was not being performed.

Recommendation: Modify rule to only alert on packets destined for the internal network.
Block access to all Sun servers that don't require external access.

References: http://h30097.www3.hp.com/demos/ossc/doc/snort-1.8p1/RULES.SAMPLE

4.19 Possible trojan server activity

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The alerts file contained 548 of these alerts with 72 unique sources to 47 unique destinations.
Packets are from the both the external and internal addresses. The rule is triggered when a
packet has a source or destination port number 27374. Since this is an ephemeral port
number it can be used in valid traffic. This is a well-known TCP port for SubSeven 2.1.

The Internal address the with the number of each occurrences is as follows

190 xxx.yyy.240.70 131 xxx.yyy.226.226 67 xxx.yyy.223.226
11 xxx.yyy.6.7 2 xxx.yyy.24.33 2 xxx.yyy.24.20
2 xxx.yyy.222.110 2 xxx.yyy.201.106 2 xxx.yyy.194.13
1 xxx.yyy.249.134 1 xxx.yyy.24.341 1 xxx.yyy.194.117
1 xxx.yyy.150.133 1 xxx.yyy.100.230

The following internal devices were also recorded in participating in scanning activity and
should be investigated.

 Possible trojan server activity

 xxx.yyy.100.230 xxx.yyy.194.117 xxx.yyy.194.13 xxx.yyy.201.106
 xxx.yyy.222.110 xxx.yyy.240.70

Recommendation: Modify rule to only alert on a packet with a source of 27374 from the
internal network. Ensure all windows platforms are running current patches and anti-virus
software. Inspect all internal systems to ensure they are not harboring a trojan program.

References: http://www.sans.org/y2k/subseven.htm

4.20 EXPLOIT x86 NOOP

The alerts file contained 473 of these alerts with 116 unique sources to 95 unique
destinations. All the packets are from external addresses. The snort rule that probably
trigger is below:

alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS (msg:"SHELLCODE x86
inc ebx NOOP"; content:"|43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43
43 43 43 43 43 43 43|"; classtype:shellcode-detect; sid:1390; rev:3;)

The alert is triggered from the content of a packet. Like any content filter it is suspect to false
positives.

Recommendation: Block all access to internal web servers that don't require external access.
Ensure the web servers are patched and hardened.

Reference: http://archives.neohapsis.com/archives/sf/ids/2002-q2/0018.html

4.21 CS WEBSERVER - external ftp traffic

The alerts file contained 307 of these alerts with 115 unique sources to 1 unique destination.
All the packets are from external addresses. It appears the rule triggers on packets with a
destination port of 21.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Recommendations: Block all access to internal FTP servers that don't require external
access. Ensure public FTP servers are hardened.

4.22 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize

The alerts file contained 304 of these alerts with 4 unique sources to 264 unique destinations.
All the packets are from external addresses. The reference for this is the same as 4.17 854
IDS552/web-iis_IIS ISAPI Overflow ida nosize.

The following internal devices were also recorded in participating in scanning activity and
should be investigated.

 xxx.yyy.97.66 xxx.yyy.97.88 xxx.yyy.98.157 xxx.yyy.98.184

Recommendations: Ensure web servers are patched. Block port 80 access to any device
except know hardened web servers that require external access.

Reference: http://www.whitehats.com/IDS/552

4.23 xxx.yyy.30.3 activity

The alerts file contained 220 of these alerts with 44 unique sources to 1 unique destination.
The one destination address is xxx.yyy.30.3 as the name of the alert implies. All the packets
are from external addresses. Destination ports are 80, 119, 139, 445, 524, 1433, and 3128.
Most of the ports are 524. Port 524 is associated with NetWare file services. The
xxx.yyy.30.3 is open to the public and seems to have the default installation page. It appears
similar to the xxx.yyy.30.4 activity.

Recommendations: Ensure the web server is patched and hardened. Replace default web
page to hide the fact it is a NetWare server.

References: http://www.geocrawler.com/archives/3/90/2001/9/0/6722577/

4.24 NMAP TCP ping!

The alerts file contained 214 of these alerts with 45 unique sources to 76 unique destinations.
The time interval and one to one correspondence shows this was not a scan. I could not
locate the rule in the default snort rules. I found a rule on the web as shown below.

tcp any -> any msg:"IDS028 - PING NMAP TCP"; flags:A; ack:0; dlevel: 1;

It alerts when a packet has the ack bit set and the ack number of 0.

Recommendations: Watch the traffic pattern to determine if a scan is taking place.

Reference:
http://www.cipherdyne.com/cgi/viewcvs.cgi/psad/psad_signatures.diff?r1=1.19&r2=1.20

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.25 connect to 515 from outside

The alerts file contained 181 of these alerts with 24 unique sources to 3 unique destinations.
All the packets are from external IP addresses destined for port 515. Port 515 is used for
remote printing.

Recommendations: Block access to port 515 from external sources unless access is
required. Identify what external addresses are required and restrict access to these
addresses.

References: http://www.portsdb.org/bin/portsdb.cgi?portnumber=515&protocol=ANY

4.26 DDOS mstream handler to client

The alerts file contained 170 of these alerts with 1 unique source to 2 unique destinations.
All the packets are from internal IP addresses destined for port 12754 or 15104. The two
snort rules are below.

alert tcp $HOME_NET 12754 -> $EXTERNAL_NET any (msg:"DDOS mstream handler to
client"; content: ">"; flags: A+;reference:cve,CAN-2000-0138;
classtype:attempted-dos; sid:248; rev:1;)
alert tcp $HOME_NET 15104 -> $EXTERNAL_NET any (msg:"DDOS mstream handler to
client"; content: ">"; flags: A+; reference:cve,CAN-2000-0138;
classtype:attempted-dos; sid:250; rev:1;)

The alert triggers when packets from the internal network are destined for the external
network with the port number 12754 or 15104 and the content of “>”. The “>” is an indication
of the system mstream program responding.

Recommendation: Capture the packets and search for the mserver commands, stream,
servers, ping, who and mstream.

References:http://www.cipherdyne.com/cgi/viewcvs.cgi/psad/psad_signatures.diff?r1=1.6&r2
=1.7

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0138
http://www.ciac.org/ciac/bulletins/k-037.shtml

4.27 SNMP public access

The alerts file contained 128 of these alerts with 14 unique sources to 13 unique destinations.
All the packets are from external IP addresses destined for port 161, which contain the string
public. The snort rule is below.

alert udp $EXTERNAL_NET any -> $HOME_NET 161 (msg:"SNMP public access udp";
content:"public"; reference:cve,CAN-1999-0517; reference:cve,CAN-2002-0012;
reference:cve,CAN-2002-0013; sid:1411; rev:3; classtype:attempted-recon;)

The public string is a common default string for SNMP read access.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Recommendations: Block all access into the network for SNMP access by blocking port 161.
Verify that the 13 destination addresses do not contain the default read string of public and
the write string of private.

References: http://www.portsdb.org/bin/portsdb.cgi?portnumber=161&protocol=ANY

4.28 EXPLOIT x86 setuid 0

The alerts file contained 117 of these alerts with 107 unique sources to 94 unique
destinations. All the packets are from external IP addresses destined for internal IP
addresses. It appears that the alert triggers when a packet with an external IP address is
destined to an internal IP address with the content of setuid(0).

Recommendation: Capture the packet to analyze the content to determine if it is an attack or
false positive.

References: http://www.securiteam.com/exploits/5JP0A1P9GQ.html

4.29 NIMDA - Attempt to execute cmd from campus host

The alerts file contained 114 of these alerts with 4 unique sources to 111 unique destinations.
All the packets are from internal IP addresses destined for external IP addresses with
destination port 80. The internal addresses are xxx.yyy.97.66, xxx.yyy.98.157, xxx.yyy.97.88
and xxx.yyy.98.184. I can't locate the signature in the default snort rules. All four sources
triggered other alerts. The alert probably alerts on the string '/winnt/system32/cmd.exe?'. As
any content alert these could be false positives but they also alerted on IIS ISAPI, IIS
Unicode and Attempt to execute root from campus host.

The following internal devices were also recorded in participating in scanning activity and
should be investigated.

xxx.yyy.97.66 xxx.yyy.97.88 xxx.yyy.98.157 xxx.yyy.98.184

Recommendation: Investigate all four systems for possible NIMDA infection. See section
4.46.

References: http://www.sans.org/rr/malicious/nimda3.php

4.30 IRC evil - running XDCC

The alerts file contained 85 of these alerts with 20 unique sources to 22 unique destinations.
All the packets are from internal IP addresses destined for external IP addresses with
destination port range 6665 – 6669 used by IRC. I could not locate the snort rule.

The following internal device was also recorded in participating in scanning activity and
should be investigated, xxx.yyy.114.11.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Recommendation: Block ports 6665 - 6669

References: http://www.russonline.net/tonikgin/EduHacking.html

4.31 EXPLOIT x86 setgid 0

The alerts file contained 79 of these alerts with 73 unique sources to 69 unique destinations.
All the packets are from external IP addresses destined for internal IP addresses with various
source and destination ports. It appears that the alert triggers when a packet with an
external IP address is destined to an internal IP address with the content of setuid(0).

Recommendation: Capture the packet to analyze the content to determine if it is an attack or
false positive.

4.32 TFTP - Internal UDP connection to external tftp server

The alerts file contained 75 of these alerts with 15 unique sources to 15 unique destinations.
The packets are from both internal and external IP addresses, with port number 69 as the
source or destination ports.

TFTP file transfers can allow the download of malicious code. Many vulnerabilities are
associated with TFTP. A listing at http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=TFTP
provide further information on the types. TFTP is also used by Nimda to download the worm
to the IIS server.

Recommendation: Block access to internal TFTP servers unless required. Ensure TFTP
servers are hardened.

References: http://www.cert.org/advisories/CA-2001-26.html

4.33 EXPLOIT x86 stealth noop

The alerts file contained 74 of these alerts with 16 unique sources to 15 unique destinations.
All the packets are from external IP addresses destined for internal IP addresses with various
source and destination ports. The alert is triggered from the packet content. One of the
source addresses, 131.118.254.130, was the source for many of the same type of alerts.
This address is registered to the University of Maryland.

Recommendations: Ensure all systems are patched. Capture packets to analysis the
contents. Contact the University of Maryland to ensure they are not harboring a hacker.

4.34 DDOS mstream client to handler

The alerts file contained 71 of these alerts with 27 unique sources to 3 unique destinations.
All the packets are from external IP addresses destined for internal IP address with port
12754 or 15104. The two snort rules are below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

alert tcp $EXTERNAL_NET 12754 -> $HOME_NET any (msg:"DDOS mstream client to
handler"; content: ">"; flags: A+;reference:cve,CAN-2000-0138;
classtype:attempted-dos; sid:247; rev:1;)

alert tcp $EXTERNAL_NET 15104 -> $ HOME_NET any (msg:"DDOS mstream client
to handler"; content: ">"; flags: A+; reference:cve,CAN-2000-0138;
classtype:attempted-dos; sid:249; rev:1;)

The alert triggers when packets from the external network are destined for the internal
network with the port number 12754 or 15104 and the content of ‘>’. The “>” is an indication
of the system mstream program responding.

Recommendation: Capture the packets and search for the mserver commands, stream,
servers, ping, who and mstream.

References:http://www.cipherdyne.com/cgi/viewcvs.cgi/psad/psad_signatures.diff?r1=1.6&r2
=1.7

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0138
http://www.ciac.org/ciac/bulletins/k-037.shtml

4.35 TFTP - External TCP connection to internal tftp server

 The alerts file contained 26 of these alerts with 13 unique sources to 15 unique destinations.
The packets are from both internal and external IP addresses, with port number 69 as the
source or destination port. The only internal address is xxx.yyy.105.48.

TFTP file transfers can allow the download of malicious code. Many vulnerabilities are
associated with TFTP. A listing at http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=TFTP
provides further information on the types. The Nimda worm also uses TFTP to transfer the
worm to the IIS server.

Recommendation: Block access to internal TFTP servers, port 69, unless required. Ensure
the public TFTP servers are authorized and hardened.

References: http://www.cert.org/advisories/CA-2001-26.html

cve.mitre.org/cgi-bin/cvekey.cgi?keyword=TFTP

4.36 Notify Brian B. 3.56 tcp and 22 Notify Brian B. 3.54 tcp

The alerts file contained 44 of these alerts, 22 for each. The 3.56 alerts contained 21 unique
sources to 1 unique destination. The 3.56 alerts contained 19 unique sources to 1 unique
destination. All the packets are from external IP addresses destined for two internal IP
addresses xxx.yyy.3.56 and xxx.yyy.3.54 with any source or destination port. I suspect these
are honeypots to catch unusual traffic and attacking IP address.

Recommendations: Watch log for other alerts from the same address. Ensure rules are in
the correct order so these rules don't fire first.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.37 Attempted Sun RPC high port access

The alerts file contained 19 of these alerts with 4 unique sources to 3 unique destinations. All
the packets are from external IP addresses destined for internal IP addresses with
destination port 32771. The port number is register as High Ports used in Solaris for RPC
services.

Recommendations: Implement a stateful inspection firewall. Block external access not
required.

4.38 SMB C access

The alerts file contained 11 of these alerts with 10 unique sources to 8 unique destinations.
All the packets are from external IP addresses destined for internal IP addresses with
destination port 139. The port number is register as NETBIOS-ssn.

Recommendations: Block all port 139 from entering the network.

4.39 NETBIOS NT NULL session

The alerts file contained 8 of these alerts with 1 unique source to 5 unique destinations. All
the packets are from an external IP address destined for internal IP addresses with
destination port 139.

The IP address range, 210.160.200.0 – 210.160.203.255, is registered by APNIC to a
company in China as shown below.

HWT,
HanWang Technology Co.LTD,
Technology,
BeiJing, CN

Recommendation: Block the 210.160.200.0 – 210.160.203.255 range of addresses or
closely monitor it. Investigate the xxx.yyy.30.3 to see if it is compromised.

4.40 TCP SMTP Source Port traffic

The alerts file contained 7 of these alerts with 1 unique source to 2 unique destinations. The
packet is from an external IP address destined for internal IP addresses with source and
destination port 25. Some attempts are made to use a source port of 25 to bypass a firewall
and go to other ports. This is not the case since the destination port is 25 as well.

4.41 FTP passwd attempt

The alerts file contained 7 of these alerts with 1 unique source to 7 unique destinations. The
packet is from external IP address destined for internal IP addresses with destination port 21.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The alert triggers when a packet is from the external to internal with a destination port of 21
and content of ' passwd'. Since this is a content alert, the packets should be captured for
analyzed. The sources where not involved in other alerts.

4.42 Probable NMAP fingerprint attempt

The alerts file contained 5 of these alerts with 5 unique sources to 5 unique destinations. All
the packets are from external IP addresses destined for internal IP addresses with various
source and destination ports. Two of these source address, 212.159.60.110 and
61.145.139.65, are involved in other alerts. Both address are registered to the same place
as shown below.

212.159.60.110
210.160.200.0 - 210.160.203.255
CHINANET-GD
CHINANET Guangdong province network
Data Communication Division
China Telecom
CN

61.145.139.65
61.145.0.0 - 61.145.255.255
HINANET-GD
CHINANET Guangdong province network
Data Communication Division
China Telecom
CN

Recommendations: Block all traffic from these networks.

References: http://www.giac.org/practical/Mike_Bell_GCIA.doc

4.43 EXPLOIT NTPDX buffer overflow

The alerts file contained 3 of these alerts with 3 unique sources to 3 unique destinations. All
the packets are from external IP addresses destined for internal IP addresses with a source
or destination port of 123.

Recommendations: Block all NTP port 123 accesses into the network except from a trusted
source and to a hardened timeserver. All timeservers should reference this server or other
internal servers.

Reference: http://www.xfocus.net/exploits/linux_ntpd.txt

4.44 SYN-FIN scan!

The alerts file 2 of these alerts with contained 1 unique source to 1 unique destination. The
packet is from an external IP address destined for an internal IP addresses with both the syn
and fin bits set. The source IP address 213.219.90.74 was involved in multiply other scans
against the same address.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Estonian Telephone Co/Estpak Data Ltd.
Sole str 14, Tallinn, Estonia

Recommendations: Place a watch on this address. Block network address range
 213.219.89.0 – 213.219.90.255.

4.45 RFB - Possible WinVNC - 010708-1

The alerts file contained 2 of these alerts with 2 unique sources to 2 unique destinations.
The packets are from both internal IP addresses and external IP addresses with a source or
destination port of 5900. WinVNC uses port 5900.

Recommendation: Scan internal IP addresses for systems listening on port 5900.

4.46 NIMDA - Attempt to execute root from campus host

The alerts file contained 2 of these alerts with 2 unique sources to 2 unique destinations. All
the packets are from internal IP addresses destined for external IP addresses with the
destination port 80. The two destination addresses are xxx.yyy.98.157 and xxx.yyy.97.66.
Both addresses were alerted on other numerous other attacks.

The xxx.yyy.98.157 has a total of 44 entires in the alerts log. It shows xxx.yyy.98.157 was
involved in SMB Name Wildcard, ISAPI Overflow and portscans as follows.

[**] SMB Name Wildcard [**] 62.11.88.61:1026 -> xxx.yyy.98.157:137
[**] SMB Name Wildcard [**] 65.27.128.245:1030 -> xxx.yyy.98.157:137
[**] IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize [**] xxx.yyy.98.157:2580 -> 130.158.70.194:80
[**] NIMDA - Attempt to execute cmd from campus host [**] xxx.yyy.98.157:2706 -> 130.158.163.182:80
[**] spp_portscan: PORTSCAN DETECTED from xxx.yyy.98.157 (THRESHOLD 12 connections exceeded in 4
seconds) [**]
 [**] SMB Name Wildcard [**] 203.243.242.131:1026 -> xxx.yyy.98.157:137

The xxx.yyy.97.66 has a total of 3243 entries in the alerts log. It shows xxx.yyy.98.157 was
involved in SMB Name Wildcard, ISAPI Overflow and portscans as well. I have not included
the log entries due to the large number.

Recommendation: Review logs to see what other systems were attacked and attempt to
determine when it was infected. Follow the cert advisory CA-2001-26 to recover, contain and
eradicate the worm.

References: http://www.cert.org/advisories/CA-2001-26.html.

4.47 EXPLOIT digital unix noop

The alerts file contained 2 of these alerts with 1 unique source to 1 unique destination. The
packet is from one external IP address destined for an internal IP address with the
destination port 20. The alert is trigger based on content.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 130.94.149.162:20 -> xxx.yyy.24.47 4519

Recommendations: Since port 20 is used by FTP for file transfers, these are probable false
positives. Capture packers to analyze the content.

4.48 Trin00 password on tcp

The alerts file contained 1 of this alert with 1 unique source to 1 unique destination. The
packet is from an external IP address destined for an internal IP address with the source port
80 and the destination port 3382. I could not locate the snort rule on the default
configuration. Assume it is triggering on the content of the packet.

 209.100.212.5:80 -> xxx.yyy.168.168:3382

No other suspicious activity was logged from the source or destination.

Recommendation: Capture the packet to analysis the content, inpect xxx.yy.168.168 for
Trin00.

4.49 External FTP to HelpDesk xxx.yyy.53.29

The alerts file contained 1 of this alert with 1 unique source to 1 unique destination. The
packet was from an external IP address to the internal IP address xxx.yyy.53.29 with the
destination port 21. The one source is registered to as shown below.

213.245.23.0 - 213.245.23.255
MEULUN-CABLE
Chello France
Meulun
Private customer Cablemodems
FR

Recommendations: Block access to all internal FTP systems unless required.

4.50 DDOS shaft client to handler

The alerts file contained 1 of this alert with 1 unique source to 1 unique destination. The
packet is from an external IP address destined for an internal IP address with the source port
80.

213.219.122.10:80 -> xxx.yyy.221.22:20432

Rule that triggered it is

alert tcp $EXTERNAL_NET any -> $HOME_NET 20432 (msg:"DDOS shaft client to
handler"; flags: A+; reference:arachnids,254; classtype:attempted-dos;
sid:230; rev:1;)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Recommendations: Capture packet for further analysis.

4.51 Bugbear@MM virus in SMTP

The alerts file contained 1 of this alert with 1 unique source to 1 unique destination. The
packet is from an external IP address destined for internal IP address with source port 25.

129.78.64.15:58040 -> xxx.yyy.6.47:25

Recommendation: Capture packets to analyze the contents. Scan internal system for
backdoor ports. If this is an SMTP host assure that it is protected by an Anti-Virus application
with current signatures.

Reference: www.itc.virginia.edu/desktop/virus/results.php3?virusID=53

4.52 Back Orifice

The alerts file contained 1 of this alert with 1 unique source to 1 unique destination. The
packet is from an external IP addresses destined for an internal IP addresses with destination
port of 31337. Since 31337 is an ephemeral port if may be a false positive.

63.250.207.64:61610 -> xxx.yyy.88.154:31337

Recommendations: Capture packets to analyze the content to ensure it an attack and not a
false positive. Inspect 63.250.207.64 to see if it contains Back Orifice.

5. Top talkers list in terms of scans alerts and OOS and altogether.

Top ten external source addresses from alerts file, based on number of packets.

Number of packets Source IP address
 9896 212.179.101.68
 9111 212.179.48.2
 5389 66.42.68.210
 2383 212.179.102.138
 2288 24.66.182.171
 2063 4.46.32.83
 1812 62.65.192.30
 1783 212.179.85.46
 1745 207.46.134.190
 1533 212.179.35.118

Top ten external sources address from the scans file, based on number of packets.

Number of packets Source IP address
 32155 218.68.216.47
 6992 172.186.87.8
 5655 217.21.114.148
 5235 217.21.114.154
 4049 63.250.195.10
 3543 216.173.52.200
 2835 217.59.215.194

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 2653 61.133.3.146
 2076 64.5.44.143
 1795 62.65.192.30

Top ten external sources address from the oos file, based on number of packets.

Number of packets Source IP address
 1099 68.54.93.181
 612 209.191.132.40
 356 66.140.25.157

162 148.63.151.3
159 61.114.222.241
152 62.142.15.248
147 212.244.86.66
136 80.26.5.150
136 216.95.201.23
119 216.95.201.34
117 69.3.109.174

6. List of 5 external IP address and registration information.

These 5 were chosen because of their foreign registration and hostile activity directed at the
UNIVERSITY network.

6.1 Bezeq International

The address range, 212.179.192.0 - 212.179.255.255, is registered to the BEZEQINT,
HOSTMASTERS TEAM, bezeq-international, 40 hashacham address, petach tikva, 49170,
Israel.

This address range triggered 39,363 alerts due to a rule that watches for this address range.
In addition to these 39.363 alerts, 212.179 showed 142 other alerts. This consisted of a
NMAP scan, 3 possible red worm, and a CS WEBSERVER - external web traffic alert. A
search for address with 212.79 in the oos file showed no packets. A search in the scans file
showed

Apr 5 09:37:57 xxx.yyy.194.223:55909 -> 212.179.201.233:5062 SYN ******S*
Apr 5 09:52:45 xxx.yyy.194.223:60754 -> 212.179.201.233:5062 SYN ******S*
Apr 5 09:44:52 xxx.yyy.194.223:57996 -> 212.179.201.233:5062 SYN ******S*
Apr 5 15:28:52 xxx.yyy.194.247:13139 -> 212.179.220.217:13139 UDP

I could not find a reference for port 5062 but 13139 is used by Gamespy software. This
could be used by a foreign host to gain a vector of attack to collect information from the
UNIVERSITY systems.

6.2 Chinese Academy of Sciences

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The address range, 159.226.0.0 -159.226.0.0, is registered to the The Computer Network
Center Chinese Academy of Sciences, P.O. Box 2704-10, Institute of Computing
Technology, Chinese Academy of Sciences, Beijing 100080, China

This address range triggered 1,254 alerts due to a rule that watches for this address range.
In addition to these 1,254 alerts, 212.179 showed 17 other alerts. This consisted of SMB
Wildcard, but there was a Queso, and a CS WEBSERVER - external web traffic alert. A
search for address with 159.226.0.0 in the oos130 and scans_130 14 packets showed.

oos130:04/01-22:02:20.111923 159.226.113.140:44755 -> xxx.yyy.130.14:80
oos130:04/01-22:47:18.817356 159.226.113.140:46066 -> xxx.yyy.130.14:80
oos130:04/02-02:35:54.042964 159.226.113.140:53650 -> xxx.yyy.130.14:80
oos130:04/02-02:36:02.562933 159.226.113.140:53651 -> xxx.yyy.130.14:80
oos130:04/02-04:33:49.026361 159.226.113.140:57370 -> xxx.yyy.130.14:80
oos130:04/02-07:12:29.094078 159.226.162.168:1357 -> xxx.yyy.100.237:9080
scans_130:Apr 2 02:36:02 159.226.113.140:53651 -> xxx.yyy.130.14:80 SYN 12****S* RESERVEDBITS
scans_130:Apr 2 05:16:17 xxx.yyy.97.88:3915 -> 159.226.155.101:80 SYN ******S*
scans_130:Apr 4 04:03:06 xxx.yyy.1.3:32790 -> 159.226.1.1:53 UDP
scans_130:Apr 4 04:03:11 xxx.yyy.1.3:32790 -> 159.226.118.1:53 UDP
scans_130:Apr 4 04:03:21 xxx.yyy.1.3:32790 -> 159.226.1.1:53 UDP
scans_130:Apr 4 04:03:22 xxx.yyy.1.3:32790 -> 159.226.1.1:53 UDP
scans_130:Apr 4 04:03:25 xxx.yyy.1.3:32790 -> 159.226.1.1:53 UDP
scans_130:Apr 5 02:55:51 xxx.yyy.137.7:29460 -> 159.226.1.1:53 UDP

References: http://ws.arin.net/cgi-bin/whois.pl

6.3 HanWang Technology Co.LTD

The address 210.160.200.2 performed a NETBIOS null scan of 6 different internal systems.
The address 210.160.200.2 also alerted on a rule that watches for traffic to xxx.yyy.30.3. It
appears to be a NETBIOS null scan as well.

The address range, 210.160.200.0 -210.160.203.255 , is registered to the HanWang
Technology Co.LTD, BeiJing, China.

6.4 Estonia Telephone Co

The address 213.219.90.74 performed a SYN-FIN scan and was listed for over 200 other
alerts.

The address range, 213.219.89.0 - 213.219.90.255 , is registered to the Estonian Telephone
Co/Estpak Data Ltd., Sole str 14, Tallinn, Estonia.

6.5 MEULUN-CABLE

The address 213.245.23.68 performed a SYN scan of 1,323 internal addresses and
attempted a FTP to the HelpDesk.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 External FTP to HelpDesk xxx.yyy.53.29 [**] 213.245.23.68:4101 -> xxx.yyy.53.29:21

The address range, 213.245.23.0 – 213.245.23.255, is registered to
MEULUN-CABLE, Chello France, UPC Technology, Internet Services, Erlachplatz 116, A-
1100, Vienna, Austria

7. Correlation from previous practical, GCIA #0209 and above.

 Correlations to specific alerts are listed under the specific alert under the references
section. The correlation of recommendations and conclusions are as follows.

 John Melvin analyzed logs from October 14th through Oct 18th, 2002. He agreed with my
conclusion that an ACL should be setup on the border routers and the IDS sensors be tuned.

www.giac.org/practical/GCIA/John_Melvin_GCIA.pdf

 Fred Thiele analyzed logs from November 27th through December 1st, 2002. He concurs
that a strict security policy needs to be in place with firewalls rules that only allow services
that are in use should be permitted to pass through the firewall.

www.giac.org/practical/GCIA/Fred_Thiele_GCIA.pdf

 Donald Gregory analyzed logs from August 1st through August 5th, 2002. He concurs in his
security recommendations section that the IDS sensor is noisy and the firewall should
disallow unauthorized hosts and service.

www.giac.org/practical/GCIA/Donald_Gregory_GCIA.pdf

Further correlations can be found in the references section of the detail analysis in section 4.

8. A link graph of some portion of the data file to show relationship.

The link graph shows hostile activity from two UNIVERSITY systems infected with the
NIMDAS virus. Specifically, the internal xxx.yyy.98.157 scanned 25 systems on the Internet
and performed 36 attacks. The xxx.yyy.97.66 scanned 23,033 scans and 305 attacks.
Since they systems are infected with they are probably attacking internal UNIVERSITY
systems as well but are not logged based on the placement of the sensor.

Two UMC
computers

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

9. Insight

Four internal systems, xxx.yyy.97.66, xxx.yyy.98.157, xxx.yyy.97.88 and xxx.yyy.98.184,
appear to be infected with the NIMDA virus. Other systems may be compromised as well but
not enough activity is recorded to substantiate this conclusion. A review of the content
should be performed.

Internal systems are using Mircosoft’s IP address to send packets to the external network.
Using somebody else’s IP address is usually a sign of malicious activity.

Packets with previously reserved ECN bits are being captured in the oos when it appears
they are only using the new congestion notification technique.

Content needs to be captured and reviewed.

Firewall/router filtering policy is inadequate to protect the UNIVERSITY network. The SMB
wildcards, external to external and IDS systems are logging many false positives. Tuning
needs to be performed to reduce the amount of alerts.

10. Defensive recommendations

The UNIVERSITY network needs to adopt a defense in depth posture. Policy, Intrusion
Detect Sensors, Firewalls, Access control lists and virus scanning needs to be a combined to
create multilevel of defense from outside attacks as well as inside attacks.

The Policy of the UNIVERSITY network is not apparent from the alerts and scans but it is
apparent that there is a lot of P2P activity, addresses being spoofed and other questionable
activity inside the UNIVERSITY network. If not already done, a clear policy should be
adopted and distributed to users of the network. Violations of the policy should result in
denial of the UNIVERSITY network access.

The IDS picks up way too much traffic to make timely response possible. Many of the alerts
can be logged instead alerting, for later investigation. Much of the traffic should be blocked
at the border router or internal firewall. Content needs to be captured as well to be able to
analyze whether the alert is a false positive. The active NIMDA and other suspicious activity

xxx.yyy.97.66

xxx.yyy.98.157

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

in the network may warrant the placement of additional IDS devices inside the network. It
may also be helpful to have IDS on the inside of the firewall to see what got through.

The firewall appears to be allowing internal devices to send out packets with private address
and obviously spoofed address. It appears the firewall is blocking specific ports since a now
of the internal web servers seemed to be under attack from the Internet. A stateful firewall or
proxy based should be used to enhance the ability to block scans.

The access control list on the Internet facing router should be blocking all NETBIOS traffic.
This would eliminate the flood of alerts on the IDS system. Access lists can also be used to
block foreign addresses that continue to exhibit hostile activity.

The virus software appears to be marginally effective since only four machines are showing
strong signs of an active NIMDA and Red Worm infection. Many others systems are involved
in suspicious activity that should be investigated since NIMDA and Red Worm have multiply
vectors for attack that become available for propagating the virus when the virus is
introduced into a network.

A final recommendation would be to create security zones within the network to segregate
the students from the servers and other valuable assets as well as separating the public from
the private systems.

11. Description of your analysis process.

The steps I went through in my analysis process.

11.1 Retrieving files, reviewing format, determining number of events and
validating data.

I download the three sets of files for each of the days from April 1st to April 5th. I then
concatenated the same file types to get all 5 days in one file. I viewed the files to see what
type of data was in each file.

11.1.1 The scans file.

The scans file appears to be the output of the portscan preprocessor.
The scans contain one-line entries. The format is

Month Day time sourceIP:sourceport -> destinationIP:destinationport protocol

Sample as follows:

Apr 1 00:46:44 xxx.yyy.210.182:14567 -> 12.224.147.97:3522 UDP

Since each entry consisted of one line, running it through 'wc -l' gave me 1,416,564 entries.
A quick look at the file contents shows that all the entries seem to be with the UDP protocol.
I used grep UDP scans -c to find the number of lines in the file where UDP is 1,287,936,
a difference of 128,628 packets. I grepped the scans file with the -v option to extract lines

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

without UDP 'grep UDP scans -v > scansnoUDP'. The file contains 128,628 entries.
Most of them appear to be packets with bad TCP flag combinations. The UDP scan entries
are ten times greater than the TCP scan entries.

11.1.2 The alerts file.

The alert file appears to be the output of Snort -A fast option. The alerts file also contains
one line per entry. The format is

DateTime [**] alert description [**} sourceIP:sourceport -> destIP:destport

Sample as follows:

04/01-00:00:11.222529 [**] TFTP - Internal TCP connection to
external tftp server [**] 205.188.11.236:69 -> MY.NET.240.94:4976

Since each entry consists of one line, running it through 'wc -l' gave me 317,653 lines.

11.1.3 The OOS file.

The OOS file contains header information of each packet as well as the hex and ASCII
decodes of the packet header and beginning of the payload data. The first packet in the file
OOS_Report_2003_04_01_21757 had a timestamp of 03/31-00:06:09. Further investigation
showed that all the OOS files were from the day before the name of the file indicated except
for the 5th. The OOS data for the 5th was contain in a file label indicating April the 7th. This
showed that the file label indicates the day or days after the capture was taken, not the day of
capture. The amount of data for each packet varies depending on the amount of data in the
payload. The format of the header of each packet is

First line

DateTime sourceIP:sourceport -> destinationIP:destinationport

Second line

TCP TTL:(time to live value) TOS:(Type of Service Value) ID:(TCP
packet ID) IpLen:(Ip header length) DgmLen:(datagram length)
Fragmentation bits

Third line

(TCP bits) Seq: (TCP sequence number) Ack: (TCP packets
acknowledged) Win: (windos size) TcpLen: (TCP header length)

Fourth line

TCP Options (number of TCP options) => (TCP options)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Sample as follows

04/01-01:09:34.063825 64.71.184.56:44646 -> MY.NET.24.22:25
TCP TTL:51 TOS:0x0 ID:11035 IpLen:20 DgmLen:60 DF
12****S* Seq: 0xCB5CCA05 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 1536750246 0 NOP WS: 0

Each packet is separated with a line of repeating =+=+=+=+. A grep of the combined OOS
files for the +=+=+=+=+= string 'grep +=+=+=+= oos -c' plus one gave me 9,400 lines.

As noted in the following correlation section. The oos file was analyzed separate from the
alerts and scans file for interesting traffic then correlated to alerts and scans.

11.2 Home network identification

This section of the analysis has been deleted since it contains a methodology that can be
used to determine the identity of the University that supplied log files.

11.3 Packet Correlation

In order to match the scans file to the oos and alerts I needed to either change the my.net in
the alerts and oos to xxx.yyy or change the scans from xxx.yyy to my.net. Since the scans
file is much bigger than the oos and alerts combined I decided to change the alerts and oos
files. I did this by running the files through sed replacing my.net with xxx.yyy.

cat alerts | sed s/MY.NET/xxx.yyy/g > alerts1xxx and cat oos | sed
s/MY.NET/xxx.yyy/g > oosxxx

I verified all instances of MY.NET were replace by grepping for the MY.NET sting in both
files.

Now that I had the files cleaned up and data consistent I devised the theory that some of the
scans data would show up in the alerts file and the oos entries would appear in the scans file
TCP entries. I extracted the UDP scan source addresses,

grep UDP scans | cut -f4 -d ' '| sed "s/\:/ /" | cut -f1 -d ' ' | sort
| uniq -c > scansUDPsource

and then grepped for some of these addresses from the scans in the alerts file. Several
matches were found as follows.

04/04-03:29:02.872654 [**] spp_portscan: portscan status from
xxx.yyy.132.23: 90 connections across 1 hosts: TCP(0), UDP(90) [**]
04/04-03:29:03.109355 [**] spp_portscan: portscan status from
xxx.yyy.132.23: 130 connections across 1 hosts: TCP(0), UDP(130) [**].

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This makes sense since the spp_portscan is what made the entries in the scans log. Now I
did the same thing for the alert and oos files. Some matched as follows.

Alert file matches.

04/01-01:23:26.116013 [**] Queso fingerprint [**]
66.140.25.157:34384 -> xxx.yyy.60.16:8000

oos file matches.

04/01-01:23:26.116017 66.140.25.157:34384 -> xxx.yyy.60.16:8000

But other entries in the oos file did not match in the alerts files. The oos file contained many
KaZaa packet captures, which did not have a corresponding entry in the alerts file as shown
below.

oos file without matches.

04/01-00:52:37.376980 148.63.155.220:2487 -> xxx.yyy.237.114:1382
TCP TTL:112 TOS:0x0 ID:26929 IpLen:20 DgmLen:444 DF
****P*** Seq: 0x168700A Ack: 0x0 Win: 0x2000 TcpLen: 20
47 45 54 20 2F 2E 68 61 73 68 3D 39 34 63 62 39 GET /.hash=94cb9
38 34 63 30 30 36 34 63 65 37 30 36 62 64 64 32 84c0064ce706bdd2
64 36 33 63 31 65 33 62 62 36 63 66 63 64 32 33 d63c1e3bb6cfcd23
36 38 34 20 48 54 54 50 2F 31 2E 31 0D 0A 48 6F 684 HTTP/1.1..Ho
73 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx st: xxx.yyy.237.1
31 34 3A 31 33 38 32 0D 0A 55 73 65 72 41 67 65 14:1382..UserAge
6E 74 3A 20 4B 61 7A 61 61 43 6C 69 65 6E 74 20 nt: KazaaClient

Based on this I decided to analyze the alerts file with the scans file since it appeared to be a
summary of the scans and examine the oos on its own. The detailed alerts analysis includes
packets with the same source address that was found in the scans file. The oos file was
analyzed separately.

11.4 Analysis of Alerts

I extracted the alerts from the alerts files and sort, removed duplicates and resorted to get a
count of how many of each alert.

cat alertsxxx | cut -f4- -d' ' | cut -f1 -d'[' | sort | uniq -c | sort -r > alertsSummary

Unfortunately the portscan lists the IP address in the alert message so I received 14776
unique alerts. To fix this I extracted all the lines without the spp_portscan in the alert
message.

grep spp_portscan alerts130 -v > alertsNOscan

Then ran it through the extract again.

cat alertsxxxNOscan | cut -f4- -d' ' | cut -f1 -d'[' | sort | uniq -c | sort -r > alertsSummary

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A quick wc -l on the output file shows 76 lines, much better. A look through the output filed
showed some junk as follows

 1 :2489
 1 -> 218.50.53.17:137
 1 :2092

It appears that there are some parts of lines in the alerts file as were in the scans file. Most
appear to be the last of the entry so to clean up the file I extracted all the lines that contained
a “[“.

cp alertsxxxNOscan alertsxxxNOscanold
grep '\[' alertsxxxNOscanold > alertsxxxNOscan

Then ran it through the extract again.

cat alertsxxxNOscan | cut -f4- -d' ' | cut -f1 -d'[' | sort | uniq -c | sort -r > alertsSummary

Another wc – on the output file showed 53 lines. More improvement.

I then ran the alerts file through SnortSnarf. After 26 hours SnortSnarf was still running. I
aborted the program and reduce the alerts file by removing all the SMB alerts. I used the
SnortSnarf output to in the analysis of all the alerts with the exception of the SMB alerts.

A complete analysis is shown under section 2 along with a brief description.

11.5 Analysis of OOS file.

The combined oos file contains 9399 entries of which 8558 have reserved bits in the flag field
set with the syn bit (12****S*). The reserved bits can now be used with the syn bit to contain
the flag combination 12****S*. This is defined in rfc3168 . The complete packet header
follows.

04/01-00:13:34.307707 216.99.199.78:36847 -> xxx.yyy.202.214:6346
TCP TTL:46 TOS:0x0 ID:8300 IpLen:20 DgmLen:60 DF
12****S* Seq: 0xE2B6F842 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 361683285 0 NOP WS: 0

These packets are probably false positives and will be deleted from further analysis. I
deleted the entries by writing a perl script.

I then used the following string of commands to determine what other flag combinations were
present and how many different combinations occurred.

grep Seq oosNOecnpl | cut -f1 -d' '| sort | uniq -c | sort -n
grep Seq oosNOecnpl | cut -f1 -d' '| sort | uniq -c | sort | wc -l

There were 85 different flag combinations. With all these variations of packets, I needed to
find a list of legal/illegal flag combinations. The following is a list of the legal flags and the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

illegal flag combinations. I derived this from the website
http://www.securityfocus.com/infocus/1200.

List of flag rules.

1. At least one of these six flags must be set in each TCP packet; each flag corresponds to a
particular bit in the TCP header.

2. Except for the initial SYN packet, every packet in a connection must have the ACK bit set.

3. SYN FIN is probably the best known illegal combination. Remember that SYN is
used to start a connection, while FIN is used to end an existing connection. It is
nonsensical to perform both actions at the same time. Many scanning tools use SYN
FIN packets, because many intrusion detection systems did not catch these in the
past, although most do so now. You can safely assume that any SYN FIN packets
you see are malicious.

4. SYN FIN PSH, SYN FIN RST, SYN FIN RST PSH, and other variants on SYN FIN
also exist. These packets may be used by attackers who are aware that intrusion
detection systems may be looking for packets with just the SYN and FIN bits set, not
additional bits set. Again, these are clearly malicious.

5. Packets should never contain just a FIN flag. FIN packets are frequently used for
port scans, network mapping and other stealth activities.

6. Some packets have absolutely no flags set at all; these are referred to as "null"
packets. It is illegal to have a packet with no flags set.

Some other bad flag combinations where found at http://www.linuxhelp.net/guides/iptables/

IPTables Firewall Script except

7. FIN,URG,PSH
8. SYN,RST,ACK,FIN,URG
9. SYN,RST
10. ECN bits can be used with any combination of other flags that are legal.

I also needed a explanation on how the ECN bits work. Extracts from the website
ftp://ftp.isi.edu/in-notes/rfc3168.txt explain the use of the ECN bits in the following.

“Explicit congestion Notification (ECN) is performed in the IP header but requires the
support of the transport layer. This is provided with the use of two of the TCP flag bits
previously reserved. The new flag bits are Congestion Window Reduced (CWR) and
ECN-echo (ECE). The new flag bit order is CWR, ECE, URG, ACK, PSH, RST, SYN
and FIN respectivly. The new flag fields have very little to do with the other flags and
where they do they can occur in any combination.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

With the list of flag combinations, criteria for non-ECN legal and illegal flag combinations, and
a explanation of ECN flag bits, I created the a list with the number of occurrences, the
different flag combinations and the possible reason they are flagged.

I then reduced this list by rewriting my perl script to remove the entries that seemed to trip for
just the ECN flags being set as denoted by rule10. This left 70 different flag combinations
and 871 packets. In reviewing the perl script output I noticed most of the packets were from
Kazaa using Gnutella software with the flag pattern ****P***. This appears to be legitimate
traffic with poor TCP code. To confirm all the ****P*** packets were of this type I modified the
perl script again to extract all packets with the ****P*** flag combination. I ran following shell
commands script to collect the source IP addresses and number of occurrences.

 grep '\->' kz | cut -d' ' -f2 | sed "s/\./ /2" | cut -d' ' -f1 | sort | uniq -c | sort -nr

The output follows.

 315 148.63
 95 148.64
 30 64.86
 28 200.167
 2 203.177
 1 4.63

I modified the perl script to delete these entries as well since they appear to be legitimate
traffic although many Gnulleta clients install spyware and create a possible vector for attack.
This left 340 packets with 69 different flag combinations. There are 124 different source
addresses with eight internal addresses and 147 different destination addresses with 103
internal addresses.

I then combined the two lists and deleted the internal address. I used the list as input for
search stings with grep for external addresses and ran it against the alerts file.

grep '\->' oosnokz | cut -d' ' -f2 | sed "s/\:/ /" | cut -d' ' -
f1 | sort | uniq > oosaddresses
grep -foosaddresses alertsxxx

This matched with 278 packets. Out of the 278 packets 264 were related to a scan which
was triggered due to the illegal flag combination. The remaining 14 packets are as follows.

EXPLOIT x86 setgid 0 [**] 168.143.179.114:80 -> xxx.yyy.204.110:4815
Queso fingerprint [**] 216.95.201.39:52122 -> xxx.yyy.24.22:25
spp_http_decode: IIS Unicode attack detected [**] xxx.yyy.153.112:4346 -> 168.143.179.114:80
spp_http_decode: IIS Unicode attack detected [**] xxx.yyy.153.112:4346 -> 168.143.179.114:80
spp_http_decode: IIS Unicode attack detected [**] xxx.yyy.153.112:4346 -> 168.143.179.114:80
CS WEBSERVER - external ftp traffic [**] 213.156.61.154:3629 -> xxx.yyy.100.165:21
Queso fingerprint [**] 216.95.201.39:37173 -> xxx.yyy.6.40:25
Probable NMAP fingerprint attempt [**] 66.96.222.130:50684 -> xxx.yyy.70.107:23
NMAP TCP ping! [**] 66.96.222.130:50687 -> xxx.yyy.70.107:1
Queso fingerprint [**] 216.95.201.39:37525 -> xxx.yyy.24.22:25
Probable NMAP fingerprint attempt [**] 67.41.169.248:17105 -> xxx.yyy.9.11:80
SUNRPC highport access! [**] 67.41.169.248:12164 -> xxx.yyy.9.11:32771

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

CS WEBSERVER - external web traffic [**] 68.33.106.217:1723 -> xxx.yyy.100.165:80
spp_http_decode: CGI Null Byte attack detected [**] xxx.yyy.97.45:1294 -> 168.143.179.114:80

The NMAP and Queso alerts were also triggered due to illegal flag combinations so I deleted
them as well as the packets from external devices which left me with the following.

spp_http_decode: IIS Unicode attack detected [**] xxx.yyy.153.112:4346 -> 168.143.179.114:80
spp_http_decode: CGI Null Byte attack detected [**] xxx.yyy.97.45:1294 -> 168.143.179.114:80

I include these results under each of the appropriate detailed alerts section to indicate that
they may have been successfully compromised by an external system.

11.6 Analysis of Scan File

Since being scanned from devices from the Internet appears to be a part of being on the
Internet, I focused my attention to extracting the internal addresses that are scanning. I then
correlated this to the alerts file to determine if the internal address are involved in any other
suspicious activity.

I used the command string to extract the source internal IP addresses with the following
command.

cut -d' ' -f5 scans_130 | sed 's/:/ /' | cut -d' ' -f1 |
grep xxx.yyy | sort | uniq > scans_interal

The output file, scans_interal, contained 254 entries. I used the scans_interal as the pattern
match file to input into grep to extract alerts with any of these internal addresses.
 grep -fscans_interal alerts > alerts-scans.

The output file contained 89,519 entries. I then deleted the timestamps to better summarize
the data.

cut -d' ' -f2- alerts-scans > alerts_scans2

Since the previous grep also matched on internal address as the destination I reduced the
alerts_scans2 file by greping for the pattern '] xxx.yyy” to get just the packets with the internal
source address. Since the alerts from the portscans does not contian this string all the
portscan alerts were elimated as well.

grep '] xxx.yyy' alerts_scans2 > alerts_scans_src, entries 14,152

I wanted to see how many alerts I was left with so I ran the following command to give me all
the unique alerts in the alerts_scans_src.

cat alerts_scans_src | cut -d']' -f2 | sort | uniq

The following is a list of the alerts I had left.

xxx.yyy.30.4 activity [**
 High port 65535 tcp - possible Red Worm - traffic [**
 High port 65535 udp - possible Red Worm - traffic [**
 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize [**
 Incomplete Packet Fragments Discarded [**
 IRC evil - running XDCC [**

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 NIMDA - Attempt to execute cmd from campus host [**
 NIMDA - Attempt to execute root from campus host [**
 Possible trojan server activity [**
 SMB Name Wildcard [**
 spp_http_decode: CGI Null Byte attack detected [**
 spp_http_decode: IIS Unicode attack detected [**
 TCP SRC and DST outside network [**
 TFTP - Internal TCP connection to external tftp server [**
 TFTP - Internal UDP connection to external tftp server [**
 Tiny Fragments - Possible Hostile Activity [**
 Watchlist 000220 IL-ISDNNET-990517 [**

Next I wanted to eliminate the destination IP addresses and source ports so I could
summarize the source addresses with the alerts. I tried to use the “:” as a delimiter in the cut
command but the spp_http_decode contained a “:” in the alert description so I extracted the
spp_http_decodes with the following commands while removing the destination IP address
and source port.

grep spp_http_decode alerts_scans_src | cut -d':' -f1-2 > spp_http_decode

I then eliminated the spp_http_decode from the rest of the alerts while removing the
destination IP address and source port.

grep spp_http_decode -v alerts_scans_src | cut -d':' -f1 > no_spp_http

The tiny fragments alerts doesn't include a source port so the “:” was missing thus they still
contained the destination addresses. To fix this I extracted the tiny fragments to another file
and removed the destination address using the “-” delimiter.

grep Tiny no_spp_http | cut -d'-' -f1-2 > tiny_no_src

I then removed the tiny fragments from the rest of the alerts file.
grep Tiny -v no_spp_http > no_tiny_alerts

Now I combined the three files back together using the following cat command.

cat spp_http_decode tiny_no_src no_tiny_alerts > combined_no_src

I then sorted and list all the unique entries to determine what systems were scanning as well
as triggering other alerts.

sort combined_no_src | uniq > comb_uniq

The comb_uniq file contains 220 entries.

I included the source IP address under each of the alerts in the detail alerts section stating
these internal addresses also participated in scanning activity as follows,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References:

archives.neohapsis.com/archives/sf/ids/2002-q2/0018.html
archives.neohapsis.com/archives/snort/2000-01/0222.html
archives.neohapsis.com/archives/snort/2000-05/0115.html
archives.neohapsis.com/archives/snort/2000-11/0244.html
cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0138
h30097.www3.hp.com/demos/ossc/doc/snort-1.8p1/RULES.SAMPLE
isc.incidents.org/port_details.html?port=13139
lists.suse.com/archive/suse-security/2001-Mar/0371.html
lists.suse.com/archive/suse-security/2002-Feb/0374.html
ws.arin.net/cgi-bin/whois.pl
www.ciac.org/ciac/bulletins/k-037.shtml
www.cipherdyne.com/cgi/viewcvs.cgi/psad/psad_signatures.diff?r1=1.19&r2=1.20
www.cipherdyne.com/cgi/viewcvs.cgi/psad/psad_signatures.diff?r1=1.6&r2=1.7
www.europe.f-secure.com/v-descs/adore.shtml
www.geocrawler.com/archives/3/90/2001/9/0/6722577/
www.giac.org/practical/GCIA/Donald_Gregory_GCIA.pdf
www.giac.org/practical/Edward_Peck_GCIA.doc
www.giac.org/practical/GCIA/Fred_Thiele_GCIA.pdf
www.giac.org/practical/GCIA/John_Melvin_GCIA.pdf
www.giac.org/practical/Mike_Bell_GCIA.doc
www.giac.org/practical/GCIA/Susan_Kovacevich_GCIA.pdf
www.giac.org/practical/Tod_Beardsley_GCIA.doc
www.iana.org/assignments/port-numbers
www.icir.org/floyd/papers/rfc3168.txt
www.itc.virginia.edu/desktop/virus/results.php3?virusID=53
www.portsdb.org/bin/portsdb.cgi?portnumber=161&protocol=ANY
www.portsdb.org/bin/portsdb.cgi?portnumber=515&protocol=ANY
www.portsdb.org/bin/portsdb.cgi?portnumber=69&protocol=ANY
www.russonline.net/tonikgin/EduHacking.html
www.sans.org/rr/casestudies/outbound.php
www.sans.org/rr/malicious/code_red8.php
www.sans.org/rr/malicious/nimda3.php
www.sans.org/y2k/subseven.htm
www.securiteam.com/exploits/5JP0A1P9GQ.html
www.silicondefense.com/software/snortsnarf
www.snort.org/docs/writing_rules/chap1.html - tth_sEc1.3
www.snort.org/docs/writing_rules/chap2.html#tth_sEc2.4.1
www.snort.org/docs/writing_rules/chap2.html - tth_sEc2.4.2
www.snort.org/snort-db/sid.html?sid=522
www.symantec.com
www.UNIVERSITY.edu/engineer/cse
www.whitehats.com/IDS/552
www.xfocus.net/exploits/linux_ntpd.txt
ftp://ftp.isi.edu/in-notes/rfc3168.txt
http://www.cert.org/incident_notes/IN-2000-03.html
http://www.cert.org/advisories/CA-2001-26.html

