
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
23 Jun 2003

Fun with Intrusion Detection
SANS GIAC

GCIA
v. 3.3

Samuel C. Adams

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 1
Print Date: 8/4/03

Tuning a Signature Based IDS

Different IDS Technologies
A signature based IDS specializes in alerting on known vulnerabilities using rules that
are custom made or provided by the IDS vendor. One big drawback with a signature
based IDS is that you either have to know what you want to look at or be prepared to
look at what someone else thinks is important. This may or may not include all the
significant and worthwhile traffic on your network and could include a great deal that
isn’t significant or worthwhile. Custom configuration and tuning of signatures is critical to
effective use of this type of IDS. Most IDSs on the market today are primarily signature
based. Some examples would be Snort, NFR, Real Secure and Cisco IDS.

Protocol anomaly detection involves monitoring traffic that differs from what is specified
in the RFCs defining a protocol. By modeling the correct use of a protocol and defining
when changes in the state of a connection should take place – a protocol anomaly
based IDS can inform an analyst of protocol misuse. The advantage to this approach is
that malicious activity can be detected without a pre-generated signature. Two
disadvantages are that there are a number of TCP/IP stacks that do not conform to
protocol specifications and there a number of exploits that do. With the potential for
false positives and false negatives, it is unlikely that a protocol anomaly based IDS will
be effective without tuning. Examples of IDSs that provide protocol anomaly detection
would be Symantec’s ManHunt and Snort. It is worth noting that both of these tools
provide signature based intrusion detection as well.

Statistical anomaly detection involves compiling a pattern of network usage and then
looking for deviations in that pattern. The anomaly detection engine must monitor the
network for a period of time to compile usage statistics. Once these statistics have been
compiled, the IDS is able to use them to detect deviations from the normal pattern of
traffic on the network. These statistics can be particularly useful for detecting port scans
– even the low and slow variety – and denial of service attacks. One problem with
statistical based systems is that malicious traffic can become normal traffic if it is seen
often enough. Also, the traffic pattern for an organization can change frequently and
may cause a need for frequent updates to the normal traffic baseline. Plus, an analyst
must become familiar with normal traffic patterns in order to be able to use this type of
IDS effectively. One example of a statistical anomaly based IDS is Spade – a Snort
preprocessor.

A packet logger provides an important backup to the IDS. Many alerts generated by an
IDS do not provide enough information to accurately diagnose what happened to cause
the alert or how dangerous it is. A system that stores all the data that passed by on the
network and that can be queried in the event of an IDS alert could be a valuable tool in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 2
Print Date: 8/4/03

quickly determining what is going on and how dangerous the traffic might be. Most IDS
tools can be used as packet loggers. Snort and Shadow are open source examples.
Due to high data rates, this is a difficult proposition even on a small network. Yet, it’s
worth thinking about given the value in having extra data available for researching
inscrutable activity.

Importance of Tuning
An organization’s primary IDS is likely to rely on signatures. In order to be effective,
signatures must be kept up to date and unnecessary signatures must be eliminated.
The remaining signatures must be analyzed and modified so they will generate as few
alerts as possible while still highlighting what an analyst needs to see. Two reasons for
signature tuning are to reduce false positives and to improve sensor performance. If
funds are limited, signature tuning can be a key factor in ensuring an IDS is able to
process all the traffic flowing over the network. One important point is that not all IDSs
allow the capability to inspect and alter signatures. If the analyst has no visibility into the
signature it becomes more difficult to discover false positives and impossible to adjust
the signature to make it more effective.

Most IDSs ship with some signatures that aren’t appropriate for every organization.
Some of these can be eliminated and others can be modified to make them more
useful. As an example, Snort 1.9.1 arrived with over 1500 signatures. Snort’s
architecture allows for faster processing by using chain headers (a list of common
packet attributes such as IP address or source/destination port) and chain options
(detection modifier options such as TCP flags or payload content). If the criteria for the
chain header are not met, then there is no need to search the chain options. This
architecture can allow Snort to absorb a large signature set without a significant
performance penalty. However, many IDSs do not work this way and even Snort can be
bogged down with an excessive number of signatures.

In addition to performance issues there are finite analysis resources that can be applied
to IDS alerts. There is always a limit to how long an analyst can stare at a computer
screen and be able to interpret alerts intelligently. Large numbers of false positives can
wear an analyst down and make her complacent. Tuning and reducing signatures will
allow an analyst to focus on what’s important and ensure that significant alerts are not
overlooked.

Tuning Philosophy
The first thing to determine is the priorities for intrusion detection. Many organizations
make a significant investment of time and resources in intrusion detection without
determining what they expect to get out of it. Most intrusion detection analysts must
make sacrifices due to time and resource constraints. Obviously the least important

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 3
Print Date: 8/4/03

things should be sacrificed first. What follows is a list of intrusion detection priorities.
This may not be suitable for all organizations but hopefully works as a starting point.

1. Detecting system compromise as quickly as possible. It’s impossible to ensure
confidentiality, availability or integrity on systems that we no longer control.
Ensuring that an analyst is quickly informed of system compromise should be the
first goal of IDS configuration. An examination of analysis resources and the
traffic passing through an IDS should allow us to determine whether other goals
must be sacrificed in pursuit of this one. The next two goals are important
primarily because they contribute to this one.

2. Improving system security. Occasionally during the course of intrusion detection

analysis will show security flaws in protected systems. If attackers are looking for
something via a scan or even a single connection – we need to know what they
found. Is the system vulnerable remote exploit? Did the attacker find what they
were looking for? Is the system giving out information it shouldn’t be? Even if a
site performs network assessments and penetration testing – how often is this
done? Networks change constantly and sometimes security doesn’t keep pace
with the changes. Ideally an analyst should be able to quickly scan or direct the
scanning of systems that may be vulnerable to compromise or are just giving out
too much information.

3. Improving analysis capability. There is always room for improvement in any

organization. Can signatures be improved or new signatures added to more
effectively pinpoint attackers or eliminate false positives? Or should some
signatures be removed because they have proven to be more trouble than they
are worth? Are there other tools out there that could help us secure out network
more effectively? Maybe there are scripts or programs that could be written to
help view and correlate logs. Keeping up to date on the latest vulnerabilities is
also important. Even if an IDS vendor is providing new signatures, the analyst
still needs to be informed about the vulnerabilities she is trying to detect. During
the course of analysis – the need for improvements of some kind will generally
become apparent. Prioritizing and pursuing these improvements is critical to
successful intrusion detection.

4. Detecting scans. Who is looking at our network? Do we see trends in the sources

of attack? Are they looking for something specific? Are we generating statistics,
graphs and charts? Are these statistics useful – can we respond to them in a
meaningful way? Are we contacting the sources of scans? Perhaps the sources
sites have compromised systems and would appreciate some notification. Or
perhaps the source is an ISP we can complain to – and they can pull connectivity
from the source of the scan. In some organizations this has a way of becoming
top priority because it’s visible to management and leads them to believe

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 4
Print Date: 8/4/03

resources are being well spent. It is the lowest priority here because while charts
and graphs documenting scans can be interesting to look at, they do not have a
great impact on the security of our network. This is not to say that looking at
scans is not important, merely that if something needs to be sacrificed due to
resource constraints, documenting scans should be the first to go.

Once the priorities of intrusion detection have been decided, we can move to prioritizing
signatures. Most of the signatures below are from the stable rule set of April 5, 2003
from http://www.snort.org

Criteria:
The following criteria can be used to choose the most important signatures.

- Unique or rarely seen content match strings. If possible, these should include
content modifiers such as depth, offset, distance and within.

- Alerts on traffic originating from $HOME_NET that might indicate a system
compromise. This would include signatures designed to generate alerts based on
internal system compromise. It might also include well defined attack responses.
It would not include signatures that could be frequently triggered by normal
traffic.

- Alerts which contain a number of different criteria (i.e. port, content and a
modifier) and refer to very high risk network activity

- Alerts that suggest the organization is being specifically targeted – not just part of
a catch all scan.

Signatures to keep:
alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"WEB-IIS MDAC Content-Type
overflow attempt"; flow:to_server,established; uricontent:"/msadcs.dll";
content:"Content-Type\:"; content:!"|0A|"; within:50; reference:cve,CAN-2002-1142;
reference:url,www.foundstone.com/knowledge/randd-advisories-display.html?id=337;
classtype:web-application-attack; sid:1970; rev:1;)

This signature incorporates uricontent, content and within rules. It’s also only triggered
for incoming traffic on $HTTP_PORTS. There is a publicly available exploit for this
signature that has been around for some time. What’s interesting about the way this is
written is that if a new vulnerability involving this library emerges, this signature will most
likely detect exploits for that as well. By looking for large content strings the signature is
designed to detect a buffer overflow sent to MDAC – not any particular exploit. This
technique has been used with some success in other signatures as well.

Another useful signature:
alert tcp $HOME_NET any -> $EXTERNAL_NET 25 (msg:"Virus - Possible FIZZER email and
p2p worm"; content:"AHMAZQByAHYAYwAuAGUAeABl";
reference:url,securityresponse.symantec.com/avcenter/venc/data/w32.hllw.fizzer@mm.html
; reference:url,www.europe.f-secure.com/v-descs/fizzer.shtml; sid:4005;
classtype:trojan-activity; rev:1;)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 5
Print Date: 8/4/03

This is a home grown signature. It is a good signature because the content match is
unlikely to occur for something other than FIZZER and an alert is only triggered when a
protected system is infected. Unfortunately, this signature will only work for this specific
virus. If a new strain or something new comes out, this signature will not be useful.

Other examples:
alert udp $EXTERNAL_NET any -> $HOME_NET 32770: (msg:"RPC rstatd query"; content:"|00
00 00 00 00 00 00 02 00 01 86 A1|";offset:5;
reference:arachnids,9;classtype:attempted-recon; sid:592; rev:3;)

alert udp $EXTERNAL_NET any -> $DNS_SERVERS 53 (msg:"DNS named version attempt";
content:"|07|version"; nocase; offset:12; content:"|04|bind"; nocase; offset: 12;
reference:nessus,10028; reference:arachnids,278; classtype:attempted-recon; sid:1616;
rev:4;)

While these signatures may not detect vulnerabilities as serious as the previous
examples they are unlikely to be triggered by legitimate activity. The DNS signature is
particularly well written (as are all the DNS signatures included in this snort rule set),
combining multiple content and offset modifiers. This may have been simplified by the
predictable layout of DNS packets. Alerts from these signatures would strongly suggest
the organization had been specifically targeted.

Signatures covering individual exploits and shell code might also be included. These
tend to cause minimal false positives. Removing signatures for nonexistent systems
could be worthwhile as well. If the site has no cold fusion web servers – perhaps those
signatures are not needed. This may only be practical for organizations where there is a
close relationship between the people doing the intrusion detection and the people
managing the network. While intrusion detection is far more effective if this relationship
is close – this is not always feasible in large organizations or when intrusion detection is
outsourced.

Elimination of signatures:
Many times it’s easier to determine what signatures can be eliminated than it is to
determine which should be kept. Here are some that generated a lot of noise for little
return. Hopefully this will help in locating other signatures like this with similar
characteristics.

alert tcp $HOME_NET any -> $EXTERNAL_NET !80 (msg:"P2P GNUTella GET";
flow:to_server,established; content:"GET "; offset:0; depth:4; classtype:misc-
activity; sid:1432; rev:3;)

“GET” occurs way too often in protocols other than GNUTella (particularly http) for this
to be effective. Plus, there are lots of other signatures that do a good job of detecting
GNUTella and produce far fewer false positives.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 6
Print Date: 8/4/03

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-CLIENT javascript URL
host spoofing attempt"; flow:to_client,established; content:"javascript\://"; nocase;
classtype:attempted-user; reference:bugtraq,5293; sid:1841; rev:2;)

This is a signature that generated a huge number of false positives (javascript:// is a
pretty common string) for a vulnerability in older versions of Mozilla and Netscape that is
unlikely to occur in an environment where most users use Windows workstations.
Perhaps the signature could be improved with an additional content rule to look for
“cookie”.

alert tcp any 110 -> any any (msg:"Virus - Possible MyRomeo Worm"; content: "I Love
You"; sid:726; classtype:misc-activity; rev:3;)

The “I Love You” virus peaked several years ago and “I Love You” is a common string
to see in email messages. If you really wanted a signature for the “I Love You” virus it
would be much more effective to look for something unique in the virus payload.

alert tcp $EXTERNAL_NET any -> $HOME_NET 5032 (msg:"BACKDOOR NetMetro File List";
flow:to_server,established; content:"|2D 2D|"; reference:arachnids,79; sid:159;
classtype:misc-activity; rev:4;)

This signature came from the backdoor.rules file. A URL that may be of assistance in
determining what backdoor signatures are worth keeping is
http://www.dshield.org/port_report.php. Plug ports into this form to obtain a chart
detailing how popular the port has been for backdoors and what’s been running on it
lately.

The signature for NetMetro has a commonly occurring content string used to detect an
old (1999), rarely seen vulnerability. One thing to note is that many organizations
avoided using the stream4 reassembly preprocessor with Snort 1.9 because of its
vulnerabilities. The NetMetro signature, as well as many others, would undoubtedly be
more useful with stream4 enabled.

Exclusions:
In many cases it is advisable to keep signatures but set up pass rules for certain hosts
or networks. To do this, you may need to use the –o option, which tells snort to look at
pass rules before alert and log rules. Below are some signatures that might require pass
rules (variables would need to be defined first of course):

pass udp $SNMP_TRAP_SRC_IP any -> $HOME_NET 162 (msg:"SNMP trap udp";
reference:cve,CAN-2002-0012; reference:cve,CAN-2002-0013; sid:1419; rev:2; classtype:
attempted-recon;)

Many organizations use snmp traps to obtain updates on the health of their network
devices. While snmp is not a secure protocol, it is so ubiquitous that sometimes its use
is unavoidable. Pass rules can be used to ensure that attackers attempting to obtain

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 7
Print Date: 8/4/03

unauthorized information will not be lost in all the legitimate activity.

pass udp $DNS_UDP_ZT_IP any <> $DNS_SERVERS 53 (msg:"DNS zone transfer UDP"; content: "|00 00 FC|"; offset:14;
reference:cve,CAN-1999-0532; reference:arachnids,212; classtype:attempted-recon; sid:1948; rev:1;)

It’s a good idea, particularly in a large organization, to allow zone transfers from at least
one off site DNS server. While this is not a rule we would want to eliminate altogether,
pass rules for legitimate transactions will help ensure that analysts do not become
desensitized to this alert.
pass tcp $NET_BIOS_SRC any -> $NET_BIOS_DEST 139 (msg:"NETBIOS NT NULL session";
flow:to_server,established; content: "|00 00 00 00 57 00 69 00 6E 00 64 00 6F 00 77 00
73 00 20 00 4E 00 54 00 20 00 31 00 33 00 38 00 31|"; reference:bugtraq,1163;
reference:cve,CVE-2000-0347; reference:arachnids,204; classtype:attempted-recon;
sid:530; rev:7;)
While it is usually not good policy to allow Netbios traffic outside an organization,
sometimes it cannot be avoided. This may be so that remote users can access file
shares or different parts of the organization can share information efficiently (if not
securely). Pass rules like this will ensure that unauthorized traffic doesn’t get lost in all
the legitimate Netbios alerts.

Changes:
In some cases it may be advisable to change or add new scan rules. The current scan
rules look like this:

alert tcp $EXTERNAL_NET any -> $HOME_NET 1080 (msg:"SCAN SOCKS Proxy attempt";
flags:S; reference:url,help.undernet.org/proxyscan/; classtype:attempted-recon;
sid:615; rev:3;)

This is good for detecting someone knocking on the door but in most cases what we
really want to know is – did the attacker find what he was looking for? Was the scan
successful anywhere? Is there something to fix/improve?

alert tcp $HOME_NET 1080 -> $EXTERNAL_NET any (msg:"SCAN SOCKS Proxy response";
flags:SA; reference:url,help.undernet.org/proxyscan/; classtype:attempted-recon;
sid:???; rev:1;)

This will tell us if any systems on our protected network responded to a scan. Did we
want them to respond? Are there supposed to be systems there? This may require a
few pass rules for legitimate systems depending on the architecture of the protected
network. It may be that a site will want to have both types of scan signatures – or, if
resources are scarce, the first could be eliminated.

Something similar to this could be done with virus signatures. For example, for the klez
virus, something like this might be useful:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 8
Print Date: 8/4/03

alert tcp $HOME_NET 25 -> $EXTERNAL_NET any (msg:"VIRUS Klez Outgoing";
flow:to_server,established; dsize:>120; content:"MIME"; content:"VGhpcyBwcm9";
classtype:misc-activity; sid:1800; rev:2;)

This signature will let an analyst know if one of his protected systems is infected without
distracting him with alerts resulting from traffic from other organizations.

Conclusion:
The most important thing to take away from reading this paper is the value of setting
goals and priorities for intrusion detection. These goals and priorities then need to be
made meaningful by configuring the IDS and applying man-hours to most effectively
achieve them. An initial investment of time and possibly consulting resources to set
priorities and configure an IDS properly will help create analysts as opposed to a bunch
of people sitting around looking at computers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 9
Print Date: 8/4/03

References:
Arach-NIDS. “Trojan-Active-NetMetro”.
http://www.whitehats.com/info/IDS79

Das, Kumar. “Protocol Anomaly Detection for Network-based Intrusion Detection”,
SANS InfoSec Reading Room. 15 Jan 02
http://www.sans.org/rr/intrusion/anomaly.php

Dshield Reports and Database Summaries
http://www.dshield.org/reports.php

Farshchi, Jamil. “Statistical Based approach to Intrusion Detection”.
http://www.sans.org/resources/idfaq/statistic_ids.php

Foundstone Labs. “Remote Buffer Overflow in Microsoft MDAC and Internet Explorer.”
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/r
esources/advisories_template.htm%3Findexid%3D4

Naval Surface Warfare Center. “NWSC Shadow Index”.
http://www.nswc.navy.mil/ISSEC/CID/

Northcutt, Stephen and Novak, Judy. Network Intrusion Detection. 3rd Ed, New Riders,
Indianapolis IA, September 2002.

Roesch, Martin. “Snort – Lightweight Intrusion Detection For Networks”
http://www.snort.org/docs/lisapaper.txt

Roesch, Martin and Green, Chris. “Snort Users Manual”, Sourcefire Inc, 2003
http://www.snort.org/docs/writing_rules/chap2.html#tth_chAp2
http://www.snort.org/docs/writing_rules/chap1.html#tth_sEc1.4

SANS Intrusion Detection FAQ
Liston, Kevin. “Can you explain analysis and anomaly detection?”
http://www.sans.org/resources/idfaq/anomaly_detection.php

SecurityFocus. “Mozilla JavaScript URL Host Spoofing Arbitrary Cookie Access Vulnerability”.
http://www.securityfocus.com/bid/5293

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 10
Print Date: 8/4/03

Part 2 – Network Detects

Network Detect #1
Analysis of Code Red I

1. Source of Trace
http://www.incidents.org/logs/raw/2002.10.17
Although the filename is 2002.10.17 the time stamp on the packets shows a date of 17
Nov 2002. Assuming that all the traffic in this file has been detected by the same IDS,
we can conclude that the site being protected owns the 170.129.0.0/16 network – or at
least a block of addresses of similar size that has been obfuscated to the
170.129.0.0/16 network. There do not appear to be any responses to the scans and
exploits attempted in this file. This could indicate that they failed or were filtered out by
the perimeter defenses or it could mean that we do not have access to that traffic.

Looking at the MAC addresses for the hosts in this file – the same two reappear over
and over again. Both addresses correspond to two different ranges owned by Cisco
Systems. Most likely what this means is that the sensor is between two different types
of Cisco devices. This could mean the sensor is between the organization's perimeter
router and its ISP's router. Or it could mean the sensor is inside the organization's
perimeter router and there is some other Cisco device (such as a Pix Firewall) between
the sensor and the organization's network. The first scenario seems more likely
because of the wide range of destination ports we can see in the raw log file – ports that
would most likely be filtered by a perimeter router.

An attempt at passive fingerprinting of the source using p0f was unsuccessful. While it
has a window size of 32120 characteristic of the Linux 2.0/2.2 TCP/IP stack, the TTL is
240 suggesting an original TTL of 255 – which suggests a different stack. Since the IP
ID field and header checksum (which is incorrect) are both 0 – it seems likely that they –
and perhaps other parts of the header as well - have been modified.

2. Generated by:
Snort 1.9.1 (Build 231), using the rule set included with the Linux snort-1.9.1-
1snort.i386.rpm obtained from www.snort.org running on Redhat 8.0. The command
used to generate the alerts was:

snort -r 2002.10.17 -c /etc/snort/snort.conf -l log -A console -q -k none -d

Note the -k none to disable checksum verification. While most packets in the raw file
had valid IP header checksums and invalid TCP checksums, this packet had an invalid
IP header checksum. The traffic generated the following snort alert:

[**] WEB-IIS ISAPI .ida attempt [**]
11/16-23:36:34.706507 204.106.15.146:1058 -> 170.129.50.3:80

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 11
Print Date: 8/4/03

TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:1504
AP Seq: 0x902295C2 Ack: 0x3BCAD6EB Win: 0x7D78 TcpLen: 20

which was generated by this signature:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS ISAPI .ida
attempt"; flow:to_server,established; uricontent:".ida?"; nocase;
reference:arachnids,552; classtype:web-application-attack; reference:bugtraq,1065;
reference:cve,CAN-2000-0071; sid:1243; rev:8;)

Ethereal dump of relevant packet payload:
Used Ethereal version 0.9.11 from RPMs ethereal-0.9.11-1.80.0 and ethereal-gnome-
0.9.11-1.80.0 also running on RedHat 8.0.

47 45 54 20 2F 64 65 66 61 75 6C 74 2E 69 64 61 GET /default.ida
3F 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E ?NNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
4E 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 N...............
C3 03 00 00 00 78 00 FA 20 25 75 39 30 39 30 25 x.. %u9090%
75 36 38 35 38 25 75 63 62 64 33 25 75 37 38 30 u6858%ucbd3%u780
31 25 75 39 30 39 30 25 75 36 38 35 38 25 75 63 1%u9090%u6858%uc
62 64 33 25 75 37 38 30 31 25 75 39 30 39 30 25 bd3%u7801%u9090%
75 39 30 39 30 25 75 38 31 39 30 25 75 30 30 63 u9090%u8190%u00c
33 25 75 30 30 30 33 25 75 38 62 30 30 25 75 35 3%u0003%u8b00%u5
33 31 62 25 75 35 33 66 66 25 75 30 30 37 38 25 31b%u53ff%u0078%
75 30 30 30 30 25 75 30 30 3D 61 20 20 48 54 54 u0000%u00=a HTT
50 2F 31 2E 30 0D 0A 43 6F 6E 74 65 6E 74 2D 74 P/1.0..Content-t
79 70 65 3A 20 74 65 78 74 2F 78 6D 6C 0A 48 4F ype: text/xml.HO
53 54 3A 77 77 77 2E 77 6F 72 6D 2E 63 6F 6D 0A ST:www.worm.com.

3. Probability the source address was spoofed:
It seems unlikely the source address was spoofed. Although the initial SYN connection
is unavailable – there was most likely a TCP 3-way handshake, otherwise there would
be no hope of the destination system accepting this packet. Although it might be
possible to execute a buffer overflow using only an initial SYN packet – since that’s not
what this is, a response from the destination would have been required for this exploit
attempt to have a chance of success.

4.Description of attack:
This appears to be a buffer overflow attempt on TCP port 80. The specific means used
to exploit the Index Server vulnerability is characteristic of the Code Red worm. Note

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 12
Print Date: 8/4/03

that the signature is characteristic of the original Code Red worm – not Code Red II.
The easiest way to spot the difference is to note the list of N characters as padding in
the payload. Code Red II is characterized by a list of X characters used as padding.
Another characteristic of Code Red (as well as Code Red II) is that it only propagates
from the 1st to the 19th of the month. Since the timestamp on the packet is Nov 17 this
also suggests the Code Red worm.

The snort signature triggered on the presence of .ida? in a URL (uricontent) going from
an external client to an internal web server. While this is a fairly simple signature that
tends to generate lots of false positives – in this case it led us to the attack.

Code Red is categorized as CVE-2001-0500.

5.Attack Mechanism:
A buffer overflow occurs when a program allocates a block of memory (i.e. 128 bytes)
and then puts more data into the block (or buffer) than it was designed to hold (i.e. 129
bytes). The way most system architectures are designed, there is nothing to
differentiate executable code from data. This means that when the when the size of a
block of data is larger than the block of memory it is stored in, the data that overflows
can modify the flow of instruction execution and cause code of the attacker’s choice to
be executed. This architecture design leaves it up to the programmer to ensure that
data placed into allocated blocks of memory is properly checked to make sure it doesn’t
spill out of those blocks. Sadly, some programmers fail to properly check data before
stuffing it into memory buffers. This failure is what leads to buffer overflows. One of the
most popular ways to exploit a buffer overflow vulnerability is through improperly
checked input data.

.ida files contain what Microsoft refers to as Internet Data Administrator scripts. An
unchecked buffer exists in a component of the Index Server (idq.dll) that can be
exploited to gain System level access. Because of script mappings associating .idq and
.ida files with idq.dll these files can be used to exploit the vulnerability. The Code Red
worm uses the script mapping between the default.ida script and idq.dll to take
advantage of the unchecked buffer in idq.dll and attempts to exploit it by passing it more
data than it was designed to hold.

6.Correlations
[1] Danyliw, Roman. CERT Advisory CA-2001-19 “Code Red Worm Exploiting Buffer
Overflow in IIS Indexing Service DLL”. Jul 19, 2001.
http://www.cert.org/advisories/CA-2001-19.html
A short and sweet guide to Code Red. This has a packet capture of what Code Red
looks like and talks about what it looks like when successful.

[2] Danyliw, Roman. CERT Incident Note IN-2001-09. “Code Red II”. August 6, 2001.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 13
Print Date: 8/4/03

http://www.cert.org/incident_notes/IN-2001-09.html
A short and sweet guide to Code Red II. This also has a packet capture and allowed me
to see the difference between the two.

[3] eEye Digital Security. “.ida Code Red Worm”. Jul 17, 2001.
http://www.eeye.com/html/Research/Advisories/AL20010717.html
The definitive guide to Code Red by the folks that discovered it. This gives the intimate
details of Code Red and talks about how and when it spreads.

[4] IEEE Organizationally Unique Identifier Listing
http://standards.ieee.org/regauth/oui/oui.txt
Provides a reference for MAC address allocation.

[5] Litchfield, David. Exploiting Windows NT 4 Buffer Overruns (A Case Study:
RASMAN.EXE)
http://www.atstake.com/research/reports/wprasbuf.html
This article provides an easy to understand explaination of what a buffer overflow is and
how it works.

[6] Microsoft Security Bulletin “Unchecked Buffer in Index Server ISAPI Extention Could
Enable Web Server Compromise”. Jun 18, 2001.
http://www.microsoft.com/technet/security/bulletin/MS01-033.asp
This article gave me all the little details of the buffer overflow. It talks about what idq.dll
is, what's wrong with it and the other files that relate to it.

[7] Young, Paul. GCIA Practical. Jan 2003.
http://www.giac.org/practical/GCIA/Paul_Young_GCIA.pdf
Paul has a good talk on Code Red in the first section of his paper. He is also very
thorough in his network detects and helped me figure out what to talk about.

[8] Zelewski, Michael; Stearns, William. p0f - Passive OS Fingerprinting Tool
http://www.stearns.org/p0f/
A handy tool for analyzing libpcap formatted data to find operating systems.

IP Address: 204.106.15.146
HostName: zylomed3-colo.host.net
Whois:
Doe Spun, Inc.
DOESPU
3500 NW Boca Raton Blvd., Suite 902
Florida

Dshield reports:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 14
Print Date: 8/4/03

No reports for 204.106.15.146.

Given the high probability that parts of the header including the source IP were
obfuscated after the alert was logged, it is not surprising that there are no Dshield
reports on the IP.

7. Evidence of Active Targeting
Code Red spreads itself using a sequence of more or less randomly chosen IP
addresses1. This argues against the hypothesis that the destination address was
specifically targeted even though there is no evidence of previous reconnaissance. This
attack could also have been generated by someone using Code Red to actively target a
web server found through Google or a scan from another host or one that isn’t in the log
file.

According to ARIN the 170.129.0.0/16 network belongs to Standard Microsystems
Corporation. – and DNS records indicate that 170.129.50.3 is www.smsc.com. Since
Code Red is more or less random it seems odd that the attack would go straight to the
web server without fishing around for other targets first. This makes it seem likely that
the site was actively targeted.

8. Severity:

The severity of the attack will be calculated with the following formula:

severity = (criticality + lethality) – (system countermeasures + network
countermeasures)

Each value will be ranked on a scale from 1 (lowest) to 5 (highest).

Criticality - The criticality of a web server depends a good deal on the purpose and role
of the server in the organization. It also depends how much the reputation of the
organization would suffer if the server was compromised. For example, the compromise
of the web server for an organization that specializes in Internet Security would be much
more damaging than the compromise of a web server for an organization that sells
coffee. Since this server appears to be the primary means for the organization to sell its
products, keeping it operational is of the utmost importance. That calls for a 5.

Lethality – This is a buffer overflow that would lead to system level access if successful
– that calls for a 5.

System Countermeasures – There was no response from this server to any of the

1 eEye Digital Security

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 15
Print Date: 8/4/03

attacks in the log file. The server never tries to compromise any other hosts using Code
Red – also suggesting the compromise was unsuccessful. And, considering its
importance to the organization it seems likely that they would take measures to protect
it. However, this is a publicly accessible web server and a number of attackers seem to
be aware of it. This calls for a 4.

Network Countermeasures – All attack attempts against this network appear to have
failed. Not only that, it doesn't appear as though any of them were even responded to.
It's possible that servers were compromised but this data is just unavailable. However, it
seems more likely – since there is some outgoing data available from this network – that
no attacks were successful. Furthermore the organization owning the server does still
appear to be in business and continuing to sell their products. This suggests that at
least some attention has been paid to network security. Still, we can't be sure how
much. Since the organization provides a fairly sophisticated public web server – it
exposes itself to some degree of risk. This calls for a 4.

(5 + 5) – (4 + 4) = 2

9. Defensive Recommendations
Assuming we have all the available data, defensive measures appear to have been
adequate. It's difficult to tell what's in place from what we have, however there are
measures that can be taken against Code Red.
- Ensure all appropriate security patches have been applied to the web server
- Unless absolutely necessary, ensure the web server cannot initiate outbound
connections
- Isolate the web server in a DMZ so that if it is compromised an attacker will be unable
to affect other systems
- Attempt to choose software where vulnerabilities are not often found and/or where
code is written and reviewed with security in mind.

10. Multiple choice test question:
How can buffer overflows vulnerabilities be eliminated?
a. A default deny firewall access policy
b. Shutting down unnecessary system services
c. Encrypting packets to ensure data is not compromised
d. Careful programming practices and code auditing

Answer: d

A buffer overflow is one of the most commonly used methods of compromising a remote
system. It's important to know that even if a network is secure and all patches are up to
date – vulnerabilities may still exist. An analyst needs to be aware of this threat and take
what measures she can to counter it.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 16
Print Date: 8/4/03

Questions:
I posted this analysis on Sunday 1 June 2003 and Johnny Calhoun promptly answered
(thanks Johnny).

My words:
> Network Countermeasures - All attack attempts against this
> network appear to have failed. Not only that, it doesn't appear > of
them were even responded to.

Johnny’s comment:
I am curious to know how you can draw upon this conclusion when only
packets that match a Snort Signature are logged.

Answer:
This is a good point. I must admit that I misread the assignment and thought I had a
complete picture of traffic flowing by on the network. Thinking about it now, there does
not seem to be enough traffic for this. I took Johnny’s comment into account for the
other network detects.

My words:
> It's possible that servers were compromised but this
> data is just unavailable. However, it seems more likely –
> since there is some outgoing data available from this network - >
that no attacks were successful.

Johnny’s comment:
You seem to be contradicting yourself here; confuses the reader.
You may want to explain your reasoning and why the information is
unavailable. What would you look for if the information was
available? ex. Web Server Logs, traffic dumps, firewall/router logs,
etc.

Answer:
The point I was trying to make was that, in the outgoing data from the protected
network, there is no evidence the attacks in the log were successful. I would be looking
for outbound Code Red alerts or attack responses indicating other attacks may have
been successful. If other data was available, I would look in the web server logs for
evidence of a successful attack, as well as making sure the server was up to date on
patches. I’d also revisit firewall logs and ACLs to make sure the firewall is blocking what
I want it to block.

Johnny’s comment:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 17
Print Date: 8/4/03

You have a solid analysis overall, but I would have like to seen a
better correlation section, rather than a list of references. You may
want to expand on why you used each reference.

Answer:
Good point. I added some explanations to my correlation section after reading this.

Network Detect 2
DNS Zone Transfer

1. Source of Trace:
This trace was obtained from http://www.incidents.org/logs/Raw. It is from the 2002.10.3
file. The protected network range appears to be 207.166.0.0/16. The MAC addresses
again belong to Cisco Systems but some are the same as the one I analyzed in the
2002.10.17 file – suggesting that they have been modified. There is also broadcast
traffic in the file that would normally be filtered by an external router.

Attempts at passive fingerprinting of the source did not work. The initial TTL appears to
be 255 (meaning the source is probably 6 hops away) but taken with the window size of
32850 – which may correspond to Windows NT – the alerts do not match any p0f
fingerprints. This could indicate that something in the packet has been modified – which
is likely given the incorrect IP and TCP checksums – or it could be that the attacker has
modified his TCP/IP stack settings.

The sensor appears to be on the network perimeter. While this is by no means certain, it
is suggested by the variety source of addresses in the log file. There is also broadcast
traffic from 255.255.255.255 - which most external routers would filter out.

2. Detect Generated by:
Snort 1.9.1(Build 231), using the rule set included with the Linux snort-1.9.1-
snort.i386.rpm obtained from www.snort.org running on Redhat 8.0. I also used
Ethereal version 0.9.11 from RPMs ethereal-0.9.11-1.80.0 and ethereal-gnome-0.9.11-
1.80.0. The command used to extract the data was:

snort -r 2002.10.3 -c /etc/snort/snort.conf -l log -A console -q -k none -d

IP header and TCP checksums in this log file were consistently incorrect. It doesn't look
like there were any UDP packets present. Either they didn't cause any snort alerts or
they've been filtered out.

Snort signature:
alert tcp $EXTERNAL_NET any -> $DNS_SERVERS 53 (msg:"DNS zone transfer
TCP"; flow:to_server,established; content: "|00 00 FC|"; offset:14;
reference:cve,CAN-1999-0532; reference:arachnids,212;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 18
Print Date: 8/4/03

classtype:attempted-recon; sid:255; rev:7;)

Snort alerts:
[**] DNS zone transfer TCP [**]
11/02-23:05:40.766507 167.206.112.181:40541 -> 207.166.87.159:53
TCP TTL:249 TOS:0x0 ID:45261 IpLen:20 DgmLen:66 DF
AP Seq: 0x44F8E361 Ack: 0x7AA4D5A2 Win: 0x8052 TcpLen: 20
6C EE 00 00 00 01 00 00 00 00 00 00 04 58 58 58 l............XXX
58 03 63 6F 6D 00 00 FC 00 01 X.com.....

+=+
] DNS zone transfer TCP []
11/03-17:09:50.396507 167.206.112.181:39333 -> 207.166.87.159:53
TCP TTL:249 TOS:0x0 ID:18843 IpLen:20 DgmLen:66 DF
AP Seq: 0xCD0FE662 Ack: 0x79216BAF Win: 0x8052 TcpLen: 20
0B 93 00 00 00 01 00 00 00 00 00 00 04 58 58 58 XXX
58 03 63 6F 6D 00 00 FC 00 01 X.com.....

Looking at the hex data in the snort alerts we can see the DNS ID in the first 2 bytes of
the packet (0B 93), followed by no flags (00 00), followed by a 00 01 – signifying 1
question. The 6 pairs of zeros that follow mean that there are no answer, authority or
additional resource records. According to Stevens this is normal for a DNS query. The
04 refers to the number of bytes in the label, which has been obscured to XXXX or hex
58 58 58 58 in this case. The obscured label is followed by an 03, indicating the number
of bytes in “com”. Taken together XXXX and com form the name being looked up. This
could be something like fred.com. Finally, we come to the 00 00 FC that triggered the
alert. This corresponds to AXFR or a zone transfer query type. Note how it starts on
byte 21 of the payload. The offset 14 rule seems to refer to the second byte of the first
label, after the count (the second 58 in the hex dump). This is a well written signature.
Because of the predictable layout of DNS packets the chance of a false positive is very
low.

3. Probability the Source Address was spoofed
It seems very unlikely the source address was spoofed. In order to obtain useful
information from a zone transfer the attacker needs to be in a place to receive the
response. It's possible the source was spoofed and the originator waits somewhere
along the return path with a sniffer to obtain the response – this seems unlikely given
the simplicity of a zone transfer and the difficulty involved in ensuring the return packet
takes the appropriate path. It's also possible this is merely a test to see how resilient the
firewall or the DNS server is – what is allowed and what is not. This also seems unlikely
since zone transfers are the only activity seen from this host in the log file and the
resiliency information would need a lot of correlation data to be worthwhile.

4. Description of the Attack
A zone is a separately administered domain in the DNS hierarchy. Some examples of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 19
Print Date: 8/4/03

zones are microsoft.com and cisco.com. Zones can be divided into smaller zones such
as gates.microsoft.com or chambers.cisco.com. Each zone generally has a primary and
at least one secondary or backup DNS server. These servers contain databases, which
hold among other things, the name to IP address mapping for the zone. Typical queries
to a DNS server are for one name or IP address.

Usually only the primary server is updated when entries are added to the DNS
database. The secondary server(s) are expected to update themselves in some
automated fashion. The purpose of a zone transfer is to perform the update efficiently
using one query. Unfortunately a zone transfer can provide an attacker with a wealth of
information about a network – making it commonly used command for attackers.

Even though DNS traffic usually uses UDP, because zone transfers typically require
more than 512 bytes – which is the limit for UDP DNS – they are generally performed
using TCP.

5. Attack Mechanism
There are seven alerts that seem related to this attack. One interesting thing about the
alerts is that there is about 3-3.5 hours between the timestamps. It's difficult to imagine
why an attacker would do this. A zone transfer is not a very subtle attack. Trying to
come in low and slow seems pointless – if the owner of the DNS server is paying any
attention at all, the attacker has already been spotted, if not – then why not just do all
the attempts at once? Perhaps this isn't an attack at all.

ARIN provides this information about the source:
Cablevision Systems Corp (167.206.112.0/24)
111 New South Road
Hicksville NY 11801

And destination:
I-Link Worldwide Inc (207.166.64.0/19, 207.166.96.0/20)
13751 S Wadsworth Park Dr, Suite 200
Draper UT, 84020

The address ranges for the destination do not agree with what's seen in the log file, nor
does there appear to be a DNS server at 207.166.87.159. Most likely this means that
the addresses have been obfuscated. This makes it difficult to tell if there is a business
relationship between the organizations that might suggest this is legitimate traffic.

Other things to note are that all the packets are the same length (80 bytes according to
ethereal), none are fragmented and all use the same TCP flags (ACK and PSH). The
source ports are all above 30000 and while this isn't the best thing to use for passive
fingerprinting it does suggest the OS isn't Linux or Windows, since they start at 1024 by
default. It might be Solaris, but it might also be going through NAT – which would make

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 20
Print Date: 8/4/03

the source port meaningless.

Since a zone transfer between primary and secondary servers is a routine occurrence, it
would be odd not to create a pass rule to prevent it from generating an alert. This and
the lack of any evidence of a relationship between the source and destination leads me
to believe this is an attack and not legitimate traffic.

6. Correlations
[1] CAN-1999-0532 “Zone Transfers”
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0532
This is candidate for inclusion in the CVE list. It was rejected by Steven Northcutt – he
says it is quite appropriate for split DNS implementations. I disagree. CVE stands for
Common Vulnerabilities and Exposures. If it were limited to vulnerabilities – Northcutt
would be right. Zone transfers are a feature of DNS, not vulnerability. However, in many
cases, allowing zone transfers is an unintentional exposure. Even with a split
implementation it still makes sense to restrict who can do a zone transfer.

[2] IEEE Organizationally Unique Identifier Listing
http://standards.ieee.org/regauth/oui/oui.txt
Provides a reference for MAC address allocation

[3] Lao, Steven. “Why is Securing DNS zone transfer necessary?”
http://www.giac.org/practical/GSEC/Steven_Lau_GSEC.pdf
Talks about defensive measures available to prevent zone transfers.

[4] Lowe, Scott. “Block DNS Zone Transfers to your Servers.” Feb 24, 2003.
http://asia.cnet.com/itmanager/netadmin/0,39006400,39113741,00.htm
Covers Microsoft DNS on Windows NT or Windows 2000 complete with pretty pictures.

[5] Roesch, Martin. “Snort Users Manual”, 2003.
http://www.snort.org/docs/writing_rules/
This page has lots of guidance for the rules that make up a signature.

[6] Seifried, Kurt. “Passive OS Detection”
http://www.seifried.org/security/network/20011009-passive-os-detection.html
There are lots of articles on this subject out there but this one has a very good section
on source ports and what they might indicate.

[7] Stevens, Richard. TCP/IP Illustrated. Addison Wesley, 1994.
There's an excellent discussion of the layout of DNS packets in here. This explains how
to interpret each hex field in a DNS packet. It also explains what a zone transfer is, how
it works and in what circumstances it's legitimately performed. In addition, Stevens talks
about why and when TCP and UDP are used for DNS.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 21
Print Date: 8/4/03

[8] Zelewski, Michael; Stearns, William. p0f - Passive OS Fingerprinting Tool
http://www.stearns.org/p0f/
A handy tool for analyzing libpcap formatted data to find operating systems.

Dshield Reports:
IP: 167.206.112.181
Hostname: olympus.srv.hcvlny.cv.net
No reports were available.

7. Evidence of Active Targeting:
This IP looks like it was actively targeted. There is no evidence of any other scanning
from this source in the log file. This may have been an information gathering attempt as
a prelude to further attacks on this site. The attacker may have obtained the address of
the DNS server from ARIN, by querying the domain of a public web site or any number
of other means that wouldn't trigger an alert. He may also have had previous familiarity
with the site. This is likely since we can tell from the TTL that he was probably only six
hops away.

Perhaps the attacker was just looking for any DNS server and not this one in particular.
The openness of the attack suggests this. If he was interested in being more subtle, he
could have done the equivalent of a zone transfer by simply querying all the addresses
in the domain one by one using an automated script. Most likely this would not have
been noticed in all the other traffic seen by a DNS server – particularly if it was done
over a long period of time.

8. Severity
The severity of the attack will be calculated with the following formula:

severity = (criticality + lethality) – (system countermeasures + network
countermeasures)

Each value will be ranked on a scale from 1 (lowest) to 5 (highest).

Criticality – A site is pretty helpless without a DNS server. Almost all incoming and
outgoing traffic must go to the DNS server for IP/hostname resolution first. Shutting
down DNS would criple a site. There is also a great deal of sensitive information on a
DNS server that could give an attacker a map of the internal network. Even with multiple
secondary servers – a DNS server is still a critical system. It rates a 5.

Lethality – The attacker wasn't going for compromise here, he was just getting
information. This attack would have yielded a great deal of useful information if
successful but much more would be needed to cause damage to the organization.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 22
Print Date: 8/4/03

Therefore, this rates a 2.

System Countermeasures – It would seem logical that the attacker would have stopped
attempting to perform a zone transfer if any attempts had succeeded. Since the attacker
tried seven times, it seems likely that all attempts failed. Given that there was no
additional traffic from this server over the two days spanned by the log file it can’t be the
most desirable of targets. This suggests at least some system countermeasures and
calls for a 3.

Network Countermeasures - The number of outbound GNUTella requests suggest that
this site either needs a better acceptable use policy or needs to enforce its existing one.
However, there is no evidence of any outbound attack, suggesting that none of the
exploit attempts worked. Since the site is employing some sort of intrusion detection
(hence the existence of this log file) there appears to be some concern for security. This
seems to rate a 3.

Severity
(5+2) – (3+3) = 1

9. Defensive Recommendations:
Probably the most important thing to do to prevent successful zone transfers by
unauthorized parties is to ensure DNS servers are only configured to allow transfers
from authorized hosts. In Bind 8 and 9 this can be done with the allow-transfer
statement in the options section of the Bind configuration file

options {
 allow-transfer {192.168.1.1; };
};

This option can also be set for individual zones. The statement below creates zone
bedrock.org, which does not allow zone transfers.

zone bedrock.org {
 type slave;
 master { 192.168.1.1; };
 file bedrock.zone.cache;
 allow-transfer { none; };
};

In Bind 4.9 an administrator can use the xfrnets directive
xfrnets 192.168.1.1&255.255.255.255

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 23
Print Date: 8/4/03

With Windows NT DNS use the Notify Tab of the Zone Properties window and check:
Only Allow Access from Secondary servers included on Notify List.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 24
Print Date: 8/4/03

On Windows 2000 uncheck the Allow zone transfers box in the Zone Transfers tab or use
the radio buttons for Only to servers listed in the name servers tab or
Only the following servers

Another thing to consider would be to prevent inbound TCP port 53 requests to DNS
servers via a firewall or filtering router. This will disallow some legitimate traffic in
addition to zone transfers so some thought should be put into it prior to implementation.
Split DNS servers are also valuable. Many sites have at least two sets of DNS servers:
primary and secondary internal DNS servers as well as primary and secondary external
DNS servers. This way, only the internal DNS servers need to have the layout of the
internal network and these servers can be tucked away safely behind the firewall. Only
the external DNS servers would be accessible to the outside world and all they would
need to list are publicly available systems such as the web server and mail server. The
site may also need to include throw-away hostnames for user workstations to satisfy
remote sites that do reverse DNS lookup.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 25
Print Date: 8/4/03

10. Multiple Choice Question:

Why is TCP normally used for zone transfers?
a. Zone transfers are important transactions and UDP is not reliable enough
b. Zone transfers usually contain too much data to use UDP
c. Because of the way the packet is structured – it can be handled more efficiently with
TCP
d. UDP needs to be kept available to handle other types of DNS queries

Answer: b

Questions:
Since I learned something from the first post, I went ahead and posted this one as well
(5 Jun 03). Donald Smith was kind enough to respond (also 5 Jun 03).

My words:
> Attempts at passive fingerprinting of the source did not work. > The
initial TTL appears to be 255 (meaning the source is
> probably 6 hops away) but taken with the window size of 32850 - >
which may correspond to Windows NT – the alerts do not
> match any p0f fingerprints. This could indicate that something
> in the packet has been modified - which is likely given the
> incorrect IP and TCP checksums - or it could be that the
> attacker has modified his TCP/IPstack settings.

Donald’s question:
Did you try googling for the hex version of the window size Win:
0x8052? It may not be common but it is a known size:-)

Answer:
The Window size does in fact correspond to a p0f fingerprint from Windows NT. I guess
from the way I worded things this was unclear. However, taken with the TTL, it doesn’t
match any known fingerprints. After reading this, I did try googling. There is a page with
this window size (http://www.corfu1.com/eee/h.TXT) however, the fingerprint seems
different from our host. In this URL the TTL is 41 (vs our 249) indicating a probable
initial TTL of 64 and the ephemeral port used is 1729 (vs our >30000). This seems to
indicate a different type of OS.

My words:
> Even though DNS traffic usually uses UDP, because zone
> transfers usually require more than 512 bytes - which is the
> limit for UDP DNS - they are generally performed using TCP.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 26
Print Date: 8/4/03

Donald’s question:
What happens when a zone transfer doesnt fit in a udp packet?

Answer:
When a zone transfer doesn’t fit in a UDP packet, TCP is used. This happens fairly
frequently since most zones have more than 512 bytes of data. I have occasionally
seen UDP zone transfers and there is a snort signature for them so I guess other
people have seen them as well. This is why it’s important to configure your DNS server
to only allow zone transfers from authorized hosts and not rely on a firewall that blocks
TCP DNS connections.

My words:
> Dshield Reports:
>
> IP: 167.206.112.181
>
> Hostname: olympus.srv.hcvlny.cv.net

Donald’s comments:
Ok does that host name mean anything?
srv could be a server.

hcvlny. cv.net

cv is probably Cablevision Systems Corp
ny probably newyork

So this could be a part Cablevision systems corp.

I googled hcvlny.cv.net and found LOTS of pages all refering to
systems like
mta9.srv.hcvlny.cv.net

Odviously a mail server. Seems like Cablevision systems puts their at
least some of thier servers in a domain named srv.hcvlny.cv.net. So
your it could be normal traffic (not an attack) is not a bad guess.

If it was normal traffic what do you think it is.
What kind of system would attempt to do a zone transfer about
every 3 hours or so?

Answer:
This could be a slave server going to a master server. The time between zone transfers
is configurable so while every three hours seems a little too frequent to me, maybe it is
suitable for this organization.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 27
Print Date: 8/4/03

Network Detect 3
Front Page Extensions

1. Source of the Trace
http://www.incidents.org/logs/raw/2002.10.14
This file appears to be from a sensor on the 170.129.0.0/16 network, the same network
as the 2002.10.17 log file. It uses the same MAC addresses and seems to have some
of the same servers. Attempts at automated passive fingerprinting on the source were
again unsuccessful and there are no outbound packets from the destination to
fingerprint.

Looking at what we can from the source – the original TTL appears to have been 128 –
suggesting that the source is 16 hops from the destination. This would most likely
indicate a MS Windows NT/2000 system but the initial window size of 64894
corresponds to no p0f fingerprint. Since the window size does increase between the two
packets – it may have started off as a different number. There are Windows NT 5.1
fingerprints with the right TTL, a similar window size, and the Don't Fragment bit set.
Also, the source ports of 3336 and 3340 suggest a Microsoft Windows system. Given
that the port and sequence numbers increase between the two packets it would seem
that they are not crafted, or that the crafter is just more clever than average.

Both IP header checksums are correct while the TCP checksums are incorrect. The
web site has been obfuscated which is a little puzzling if the headers are in fact
accurate and 170.129.50.3 is the web site that was attacked.

2. Generated by:
Snort 1.9.1(Build 231), using the rule set included with the Linux snort-1.9.1-
snort.i386.rpm obtained from www.snort.org running on Redhat 8.0. I also used
Ethereal version 0.9.11 from RPMs ethereal-0.9.11-1.80.0 and ethereal-gnome-0.9.11-
1.80.0. The command used to extract the data was:

snort -r 2002.10.14 -c /etc/snort/snort.conf -l log -A console -q -k none -d

Snort signatures:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS
_vti_inf access";flow:to_server,established;
uricontent:"_vti_inf.html"; nocase; classtype:web-application-
activity; sid:990; rev:5;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-
FRONTPAGE _vti_rpc access"; flow:to_server,established;
uricontent:"/_vti_rpc"; nocase; reference:bugtraq,2144; classtype:web-
application-activity; sid:937; rev:6;)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 28
Print Date: 8/4/03

The signatures are pretty straightforward. They cause alerts to trigger when someone
(in this case $EXTERNAL_NET was set to any) sends _vti_inf.html or _vti_rpc
respectively to $HTTP_SERVERS – in this case also any. Note the flow and nocase
rules, causing the alerts to trigger only when the traffic is sent to (not from) the server
with either upper or lowercase characters. Taken singly these signatures could be better
since in most situations when an alert is triggered there is no indication as to whether
the attacker succeeded or failed. This may not be possible if IIS does not reliably give a
unique response indicating success.

Snort alerts:
[**] WEB-IIS _vti_inf access [**]
11/14-16:55:07.816507 12.217.179.244:3336 -> 170.129.50.3:80
TCP TTL:112 TOS:0x0 ID:65414 IpLen:20 DgmLen:305 DF
AP Seq: 0xB7198FF Ack: 0x28042406 Win: 0xFD7E TcpLen: 20
47 45 54 20 2F 5F 76 74 69 5F 69 6E 66 2E 68 74 GET /_vti_inf.ht
6D 6C 20 48 54 54 50 2F 31 2E 31 0D 0A 44 61 74 ml HTTP/1.1..Dat
65 3A 20 54 68 75 2C 20 31 34 20 4E 6F 76 20 32 e: Thu, 14 Nov 2
30 30 32 20 32 31 3A 35 31 3A 33 33 20 47 4D 54 002 21:51:33 GMT
0D 0A 4D 49 4D 45 2D 56 65 72 73 69 6F 6E 3A 20 ..MIME-Version:
31 2E 30 0D 0A 41 63 63 65 70 74 3A 20 2A 2F 2A 1.0..Accept: */*
0D 0A 55 73 65 72 2D 41 67 65 6E 74 3A 20 4D 6F ..User-Agent: Mo
7A 69 6C 6C 61 2F 32 2E 30 20 28 63 6F 6D 70 61 zilla/2.0 (compa
74 69 62 6C 65 3B 20 4D 53 20 46 72 6F 6E 74 50 tible; MS FrontP
61 67 65 20 34 2E 30 29 0D 0A 48 6F 73 74 3A 20 age 4.0)..Host:
77 77 77 2E 58 58 58 58 58 58 58 58 0D 0A 41 63 www.XXXXXXXX..Ac
63 65 70 74 3A 20 61 75 74 68 2F 73 69 63 69 6C cept: auth/sicil
79 0D 0A 43 6F 6E 74 65 6E 74 2D 4C 65 6E 67 74 y..Content-Lengt
68 3A 20 30 0D 0A 43 6F 6E 6E 65 63 74 69 6F 6E h: 0..Connection
3A 20 4B 65 65 70 2D 41 6C 69 76 65 0D 0A 43 61 : Keep-Alive..Ca
63 68 65 2D 43 6F 6E 74 72 6F 6C 3A 20 6E 6F 2D che-Control: no-
63 61 63 68 65 0D 0A 0D 0A cache....

[**] WEB-FRONTPAGE _vti_rpc access [**]
11/14-16:55:08.076507 12.217.179.244:3340 -> 170.129.50.3:80
TCP TTL:112 TOS:0x0 ID:2695 IpLen:20 DgmLen:430 DF
AP Seq: 0xB719B9B Ack: 0x2811ADC9 Win: 0xFFFF TcpLen: 20
50 4F 53 54 20 2F 5F 76 74 69 5F 62 69 6E 2F 73 POST /_vti_bin/s
68 74 6D 6C 2E 65 78 65 2F 5F 76 74 69 5F 72 70 html.exe/_vti_rp
63 20 48 54 54 50 2F 31 2E 31 0D 0A 44 61 74 65 c HTTP/1.1..Date
3A 20 54 68 75 2C 20 31 34 20 4E 6F 76 20 32 30 : Thu, 14 Nov 20
30 32 20 32 31 3A 35 31 3A 33 34 20 47 4D 54 0D 02 21:51:34 GMT.
0A 4D 49 4D 45 2D 56 65 72 73 69 6F 6E 3A 20 31 .MIME-Version: 1
2E 30 0D 0A 55 73 65 72 2D 41 67 65 6E 74 3A 20 .0..User-Agent:
4D 53 46 72 6F 6E 74 50 61 67 65 2F 34 2E 30 0D MSFrontPage/4.0.
0A 48 6F 73 74 3A 20 77 77 77 2E 58 58 58 58 58 .Host: www.XXXXX
58 58 58 0D 0A 41 63 63 65 70 74 3A 20 61 75 74 XXX..Accept: aut
68 2F 73 69 63 69 6C 79 0D 0A 43 6F 6E 74 65 6E h/sicily..Conten
74 2D 4C 65 6E 67 74 68 3A 20 34 31 0D 0A 43 6F t-Length: 41..Co
6E 74 65 6E 74 2D 54 79 70 65 3A 20 61 70 70 6C ntent-Type: appl
69 63 61 74 69 6F 6E 2F 78 2D 77 77 77 2D 66 6F ication/x-www-fo

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 29
Print Date: 8/4/03

72 6D 2D 75 72 6C 65 6E 63 6F 64 65 64 0D 0A 58 rm-urlencoded..X
2D 56 65 72 6D 65 65 72 2D 43 6F 6E 74 65 6E 74 -Vermeer-Content
2D 54 79 70 65 3A 20 61 70 70 6C 69 63 61 74 69 -Type: applicati
6F 6E 2F 78 2D 77 77 77 2D 66 6F 72 6D 2D 75 72 on/x-www-form-ur
6C 65 6E 63 6F 64 65 64 0D 0A 43 6F 6E 6E 65 63 lencoded..Connec
74 69 6F 6E 3A 20 4B 65 65 70 2D 41 6C 69 76 65 tion: Keep-Alive
0D 0A 43 61 63 68 65 2D 43 6F 6E 74 72 6F 6C 3A ..Cache-Control:
20 6E 6F 2D 63 61 63 68 65 0D 0A 0D 0A 6D 65 74 no-cache....met
68 6F 64 3D 73 65 72 76 65 72 2B 76 65 72 73 69 hod=server+versi
6F 6E 25 33 61 34 25 32 65 30 25 32 65 32 25 32 on%3a4%2e0%2e2%2
65 32 36 31 31 0A e2611.

3. Probability the source was spoofed:
It's very unlikely the source was spoofed. This is an attack that requires an established
TCP connection, which is what both of these packets appear to be part of. The attacker
is still in the information gathering stages so she would need to be able to get data
back. While it's possible that the IP has been spoofed and the attacker has arranged to
have the traffic pass through a sniffer – this is unlikely because of its complexity and the
dynamic nature of traffic flow.

4. Description of the Attack:
Microsoft FrontPage was originally developed by Vermeer Tech Inc. - a company that
was purchased by Microsoft shortly after FrontPage 1.0 emerged. FrontPage
extensions allow a departure from the usual method of updating a web server which
involves editing files on a local workstation and then uploading them to the server.
Instead the extensions permit an administrator to update content using the HTTP POST
method in combination with the Common Gateway Interface (CGI). FrontPage
extensions can be used in conjunction with Netscape, Apache or IIS servers. Full
functionality can only be utilized in conjunction with Microsoft IIS.

There are twelve CVE entries relating to FrontPage extensions. They can be found
here:
http://www.cve.mitre.org/cgi-bin/cvekey.cgi?keyword=frontpage+extensions

The snort signature for _vti_rpc references Security Focus bugID 2144 which describes
a denial of service that can be exploited by supplying unexpected data to one of Front
Page server extension functions.

Several of the above could have been the goal of our attacker. It appears she was trying
to obtain information about the server and FrontPage extensions. This may have been
part of an attempt to upload new content to the server or it could have been an effort to
exploit one of vulnerabilities above.

5. Attack Mechanism:
The attacker attempted to access two files. _vti_inf.html contains basic configuration

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 30
Print Date: 8/4/03

information about Front Page extensions including the version and location on the
server. _vti_rpc is a server binary that can be used to establish a protocol for
communication between client and server and informs the client of what functions the
server provides. It is generally accessed prior to modifying web server content.

The post data in the _vti_rpc alert corresponds exactly to that listed in Sonzi’s “Using
Webfolders” paper. The expected response includes the server version (the client may
have already obtained this in _vti_inf.html) which can be used to communicate with the
web server and possibly modify content or perform administrative tasks.

6. Correlations:
[1] Edward, Perry. “Re: More Microsoft debri”.
http://www.insecure.org/sploits/Microsoft.frontpage.insecurities.html
A short email that describes _vti_inf.html and _vti_rpc. This email is archived all over
the place and I kept bumping into it while I was searching for information on Google.

[2] Fugjostle. “Guide to IIS Exploitation”
http://g0tr00t.mson.org/releases/fugjostle/docs/ReD2.txt
Provides a short description about _vti_inf.html and _vti_rpc and explained the origins of
Front Page,

[3] Microsoft. “Files and permissions on Apache”
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/sharepnt/proddocs/admindoc/owsk0
2.asp
This has some information on front page extensions and a bunch of charts describing
what permissions should look like on a Unix system.

[4] “Microsoft IIS Front Page Server Extension DoS Vulnerability”. Dec 22, 2000.
http://www.securityfocus.com/bid/2144/discussion/
Discusses a front page DoS vulnerability. This is what the snort alert references but it
doesn't seem to have much to do with the alerts captured in our log file.

[5] Microsoft. “Security”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vidref98/html/viconsecurity.asp
Best practices for using front page extensions. Explains appropriate permissions
settings for dll files.

[6] Sonzi. “Using webfolders”
http://www.xato.net/Reference/webfolders.txt
An excellent reference. Explains different components of Front page and how the relate.
Also goes into how to secure front page extensions and how to exploit insecure
configurations. This article shows what POST data to _vti_rpc might look like (exactly as
it does in our alert) and explains what goals an attacker might have for doing a GET
request on _vti_inf.html.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 31
Print Date: 8/4/03

[7] Zelewski, Michael; Stearns, William. p0f - Passive OS Fingerprinting Tool
http://www.stearns.org/p0f/
A handy tool for analyzing libpcap formatted data to find operating system information.

DShield Reports:
IP Address: 12.217.179.244
HostName: 12-217-179-244.client.mchsi.com
No reports.

AT&T WorldNet Services (12.0.0.0/8)
400 Interpace Parkway
Parsippany NJ 07054

The layout of the hostname suggests dialup or DSL. Given that this IP is registered to
AT&T either seems likely.

7. Evidence of Active Targeting:
Since there are only two alerts from the source address it seems likely that it is actively
targeting the web server. Given that there is a web server at this address, 170.129.50.3
appears to be the actual IP. Perhaps the attacker is a disgruntled customer or
employee. It's also possible the attacker didn't intend to attack at all but was merely
using FrontPage to browse. It's difficult to tell from the alerts since at most the attacker
gained information about the web server. Most likely the alerts were a prelude to
modification of server content since that is Front Page's primary purpose and there is no
evidence of a relationship between the source (looks like a dialup or DSL user) and the
destination (a corporate web site).

8. Severity:

The severity of the attack will be calculated with the following formula:

severity = (criticality + lethality) – (system countermeasures + network
countermeasures)

Each value will be ranked on a scale from 1 (lowest) to 5 (highest).

Criticality – The destination IP address does not appear to have been modified since it
currently refers to a corporate web server. This web server seems to be a means for the
corporation to market its products. This makes it a critical asset and rates a 5.

Lethality – The attacker was only gathering information that may or may not have led to
a future attack. The information would only have been useful for this particular web

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 32
Print Date: 8/4/03

server. However, given the number of vulnerabilities in Front Page – the attacker would
have had a number of choices in how best to continue toward her goal. This calls for a
2.

System Countermeasures – It is suggested by the way the second packet follow the first
in standard FrontPage query form that the request for _vti_inf.html was successful. The
TCP ack numbers do increase between the two packets but the increase is by 887235.
This would mean that 887235 bytes were passed from the destination to the source in
the .26 seconds between the _vti_inf.html query and the _vti_rpc POST. That is unlikely
to be accurate given that the maximum Ethernet packet size is 1500 bytes and that
would involve at least 592 packets. Also, other ack and sequence numbers for other
entries in the log file appear to have been modified.

Since a number of other hosts tried to perform the same attack on this server's front
page extensions and some of them tried multiple times – it appears that they failed.
However, given the number of attacks from so many different sources, it seems safe to
say that this server does have Front Page extensions loaded. Given the number of
vulnerabilities in the extensions and the difficulty in securing them this site shows a
disturbing willingness to trade security for convenience. This calls for a 3.

Network Countermeasures – The number of outbound GNUtella alerts indicates either a
poorly enforced or an inadequate acceptable use policy. However, GNUtella appears to
be the only outbound alert. There is no evidence that any attack performed in this file
succeeded. While it's still possible some attacks were successful, given their simplicity
and visibility it seems unlikely we wouldn't have seen something. The site also seems to
have some form of intrusion detection. This seems to rate a 3.

Note that this is different from the first detect even though it is the same network. This is
because I made the first assessment based on the assumption that I could see all the
traffic and all the attacks had failed. Johnny Calhoun corrected this, pointing out that
only traffic generating snort alerts was captured. While the lack of outbound alerts
suggests the attacks failed, there is much more room for doubt than I thought in the first
detect.

Severity:
(5+2) – (3+3) = 1

9. Defensive Recommendations:
- Do not use or even install Front Page extensions on a FAT file system. FrontPage
determines who may perform a given request by the ACLs on dynamic linked libraries
(dll) in the _vti_bin directory. Since there are no ACLs on a FAT file system, these files
are impossible to secure.
- Remember that FrontPage extensions only need to be installed to be exploited. Even if

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 33
Print Date: 8/4/03

they have never been used, the site may still vulnerable.
- Ensure the FrontPage web is password protected. If the authorized author doesn't
need to enter a password, then neither does anyone else.
- Ensure ACLs on dll files in the _vti_bin directory are restricted to authorized users.
Even read access to some files (particularly author.dll and admin.dll) is dangerous.
- Consider uploading web content using secure shell or an encrypted terminal server
session.

10. Multiple choice question:
How do you securely operate Front Page extensions on a FAT file system?
a. Ensure permissions on dll files in the _vti_bin directory are set so only authorized
users may access the dll files
b. Password protect the FrontPage web
c. Put the Front Page web on a different partition than operating system files
d. All of the above
e. It's not possible to secure Front Page on a FAT file system

Answer: e

Hopefully everyone will get this one – I think most people applying for this certification
know FAT file systems don’t have ACLs - but at least we got to sneak in some ways to
secure a FrontPage server. Even c is a good best practice.

Questions:
I posted this one to the intrusions mailing list as well (6 Jun at 1454) and got a response
from Rocker on 7 Jun at 1355. Many thanks to him. He had this to say:

Samuel,

Judged from the snort alert, I suspect that two mentioned alarts ar of 2
different TCP stream from the host. The logic is that

(1) TCP source ports are different. ==>2 different TCP stream
(2) it is detecte by the snort rule because of established session (after
TCP handshake). ==> this is not SCAN.
(3) Most of the modern OS , the ISN of TCP will be highly randomized.
(http://razor.bindview.com/publish/papers/tcpseq.html)

The logic of victim's response to the stimulus based SEQ/ACK is not
conclusive.
Hope it helps....

Answer:
Perhaps I could have worded the 3rd part of this detect better. I did not mean to imply
that I thought both alerts were part of the same TCP session. I meant that both packets
appeared to be part of established TCP sessions, not necessarily the same one. In

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 34
Print Date: 8/4/03

Perry Edward’s paper he describes the process the Front Page software goes through
when posting to a server with Front Page extensions. First the software goes for
_vti_inf.html, then tries to post to _vti_rpc. The _vti_inf.html files contains data that
FrontPage needs to post data to the server. FrontPage processes the information and
the does the post to vti_rpc.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 35
Print Date: 8/4/03

Part 3 - Analyze This

Executive Summary

The following logs were reviewed as part of a security audit of GCIA University.

Alert Files Size Scan files Size Out of Spec Files Size
alert.030501.gz 493999 scans.030501.gz 187806 OOS_Report_2003_05_01_31055 701443
alert.030502.gz 1289933 scans.030502.gz 1128995 OOS_Report_2003_05_02_28431 1387523
alert.030503.gz 5217006 scans.030503.gz 2195075 OOS_Report_2003_05_03_7239 993283
alert.030504.gz 3648489 scans.030504.gz 2585730 OOS_Report_2003_05_04_21395 1141763
alert.030505.gz 1455662 scans.030505.gz 1711158 OOS_Report_2003_05_05_25821 747523

The scan and alert files contain information captured by snort during the first 5 days of
May 2003. The OOS files cover 30 April to 4 May. There were 1277731 alerts, 846774
scans and 12192 OOS alerts. Only 876658 alerts and 846660 scans were analyzed.
The others entries were corrupted.

The most important thing that came to light during the audit is the two hosts that are
probably compromised: MY.NET.97.48 and MY.NET.97.181. These systems should be
investigated immediately.

There is a great deal of peer to peer traffic occurring on University networks. If it isn’t in
place already, the University should have a signed copy of the acceptable use policy for
each network user. This policy should include a prohibition against using University
networks to share copyrighted material. GCIA University should also ensure that
network users are fully aware of the risks associated with the use of peer to peer
applications.

The Snort rule set and preprocessors appear to be very out of date. A signature based
IDS like Snort is much less effective without a current rule set. Plus, recent upgrades to
Snort’s engine and preprocessors, such as fragment and stream reassembly, have
drastically improved the IDS’s functionality. Upgrading to the latest version of Snort
should be a priority.

It appears that ingress and egress filtering have not been implemented on the University
perimeter. This is highly recommended to prevent address spoofing and abuse of
protected system trust relationships from hosts outside the University. Also, a security
policy where protocols are denied by default is highly recommended.

There appear to be some systems that aren’t up to date and may have insecure
configurations. Scanning systems with ISS or Nessus would be advisable to pinpoint
vulnerabilities and insecure configurations.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 36
Print Date: 8/4/03

Alerts:
 In

te
rn

al
 S

rc

In
te

rn
al

 D
st

Ex
te

rn
al

 S
rc

Ex
te

rn
al

 D
st

To
ta

l

Alerts Uniq Hosts

Incomplete Packet Fragments Discarded 2 66 99 3 355259
TCP SRC and DST outside network 0 0 198880 2192 208267
SMB Name Wildcard 0 40906 22474 1 174110
High port 65535 udp - possible Red Worm - traffic 78 109 163 222 27260
CS WEBSERVER - external web traffic 0 2 5319 1 24934
High port 65535 tcp - possible Red Worm - traffic 64 68 83 92 23629
Tiny Fragments - Possible Hostile Activity 1 21 21 900 13531
TFTP - Internal TCP connection to external tftp server 11 12 33 31 9337
spp_http_decode: IIS Unicode attack detected 528 174 275 706 8770
EXPLOIT x86 NOOP 0 147 168 0 6019
connect to 515 from outside 0 4873 3 0 5033
[UMBC NIDS IRC Alert] XDCC client detected attempting to IRC 12 0 0 21 5023
Null scan! 0 109 115 1 2460
spp_http_decode: CGI Null Byte attack detected 119 6 35 127 1823
Queso fingerprint 0 123 328 1 1577
[UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan. 0 63 74 0 1562
MY.NET.30.4 activity 0 1 294 0 1343
Possible trojan server activity 21 179 48 24 921
MY.NET.30.3 activity 0 1 44 0 804
CS WEBSERVER - external ftp traffic 0 1 147 0 781
[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC 3 0 0 11 746
IDS552/web-iis_IIS ISAPI Overflow ida nosize 0 580 455 0 717
SUNRPC highport access! 0 23 30 0 520
TFTP - Internal UDP connection to external tftp server 31 19 14 33 395
[UMBC NIDS IRC Alert] User joining Warez channel detected. Possible XDCC bot 0 5 9 0 271
[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected. 0 11 11 0 194
IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize 2 0 0 167 188
IRC evil - running XDCC 15 0 0 14 168
[UMBC NIDS IRC Alert] User joining XDCC channel detected. Possible XDCC bot 0 5 6 0 149
External RPC call 0 149 4 0 149
NMAP TCP ping! 0 60 41 0 145
EXPLOIT x86 setuid 0 0 106 118 0 128
SNMP public access 0 9 5 0 98
NIMDA - Attempt to execute cmd from campus host 2 0 0 58 60
EXPLOIT x86 setgid 0 0 48 50 0 53
EXPLOIT x86 stealth noop 0 6 12 0 51

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 37
Print Date: 8/4/03

TCP SMTP Source Port traffic 0 12 3 0 34
Notify Brian B. 3.54 tcp 0 1 21 0 26
Back Orifice 0 26 2 0 26
Notify Brian B. 3.56 tcp 0 1 20 0 22
SMB C access 0 9 11 0 13
Probable NMAP fingerprint attempt 0 9 8 0 12
Attempted Sun RPC high port access 0 3 3 0 10
RFB - Possible WinVNC - 010708-1 4 4 4 4 8
[UMBC NIDS IRC Alert] K:lined user detected, possible trojan. 0 4 6 0 7
FTP passwd attempt 0 2 3 0 7
TFTP - External UDP connection to internal tftp server 1 4 4 1 6
DDOS shaft client to handler 0 2 2 0 4
TFTP - External TCP connection to internal tftp server 1 2 2 1 3
NIMDA - Attempt to execute root from campus host 1 0 0 3 3
SYN-FIN scan! 0 2 2 0 2
EXPLOIT x86 NOPS 0 1 1 0 2
[UMBC NIDS IRC Alert] Possible trojaned machine detected 0 1 1 0 1
site exec - Possible wu-ftpd exploit - GIAC000623 0 1 1 0 1
Bugbear@MM virus in SMTP 0 1 1 0 1
DDOS TFN Probe 0 1 1 0 1

The chart above lists the alert messages, unique sources and destinations and total
analyzed. This served as a useful reference during the analysis. The alert messages
that correspond to messages in the Snort 1.9.1 rule set are italicized.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 38
Print Date: 8/4/03

Alert #1
Incomplete Packet Fragments Discarded (355259 alerts)

There were 354768 Incomplete Packet Fragment Discarded alerts from
MY.NET.210.114 to 213.97.198.23. This is 99.8% of the total for this alert. These alerts
were generated between 11:45 on 3 May and 16:53 on 4 May. Most of the time there
were 2 or 3 alerts per second. 213.97.198.23 resolves to 23.Red-213-97-
198.pooles.rima-tde.net - this name strongly suggests a dial-up or broadband user.
dshield.org reported no prior activity. The RIPE Whois registry says this IP is part of a
/16 CIDR block registered to Telefonica De Espana in Spain.

Top 10 Alert Sources (by number of alerts)
Internal SRC Alerts External Dest Alerts DNS Reverse Lookup

1 MY.NET.210.114 354801 216.39.48.127 14010 buildrack52.sv.av.com
2 MY.NET.201.58 13423 133.82.241.150 8412 cuapfs0.imit.chiba-u.ac.jp
3 MY.NET.235.110 9161 12.207.10.226 4965 12-207-10-226.client.attbi.com
4 MY.NET.201.38 4026 128.46.117.76 4872 civl1240pc2.ecn.purdue.edu
5 MY.NET.198.221 3926 67.161.246.193 3294 c-67-161-246-193.client.comcast.net
6 MY.NET.226.250 3457 24.45.157.41 2966 ool-182d9d29.dyn.optonline.net
7 MY.NET.201.42 1721 216.78.180.128 2639 adsl-78-180-128.lft.bellsouth.net
8 MY.NET.226.206 1427 218.141.54.99 2551 YahooBB218141054099.bbtec.net
9 MY.NET.223.114 1071 195.167.225.233 2032 Unresolved
10 MY.NET.233.134 890 143.248.115.88 1898 xide.kaist.ac.kr

Queries:
 select srcip,count(*) as count from alerts where srcip LIKE 'MY.NET%' group by srcip order by count desc limit 10;
 select srcip,count(*) as count from alerts where srcip NOT LIKE 'MY.NET%' group by srcip order by count desc limit 10;

Top 10 Alert Destinations (by number of alerts)
Internal SRC Alerts External SRC Alerts DNS Reverse Lookup

1 MY.NET.100.165 25831 213.97.198.23 354775 23.Red-213-97-198.pooles.rima-tde.net
2 MY.NET.201.58 10637 64.202.103.12 106932 giving.head.for-money.net
3 MY.NET.234.82 4972 65.116.88.75 43804 75.88.116.65.sharpnet.net
4 MY.NET.201.38 3384 146.100.53.56 29559 Unresolved
5 MY.NET.226.250 2552 216.200.173.18 25217 Unresolved
6 MY.NET.24.34 1811 67.161.246.193 3944 c-67-161-246-193.client.comcast.net
7 MY.NET.226.206 1739 205.188.149.12 3926 undernet.irc.aol.com
8 MY.NET.201.42 1538 218.141.54.99 3456 YahooBB218141054099.bbtec.net
9 MY.NET.30.4 1347 65.120.111.17 1992 65-120-111-17.velocity.net
10 MY.NET.233.134 1245 66.42.68.210 1678 66-42-68-210.stkn.mdsg-pacwest.com

Queries:
 select dstip,count(*) as count from alerts where dstip LIKE 'MY.NET%' group by dstip order by count desc limit10
 select dstip,count(*) as count from alerts where dstip NOT LIKE 'MY.NET%' group by dstip order by count desc limit10

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 39
Print Date: 8/4/03

In answer to a question about alerts like this posted to the snort users mailing list Marty
Roesch explains that seeing lots of these alerts

“...means that you're using the defrag preprocessor instead of the newer
frag2 preprocessor...”2

He goes on to recommend upgrading to frag2 since the defrag preprocessor fails
frequently and unpleasantly. Since this preprocessor has been deprecated for some
time now it was not surprising that documentation on what these alerts might mean was
a bit sparse. We can guess that the preprocessor attempts to perform fragment
reassembly and if it is unable to find all the fragments for a given fragment ID then it will
generate an alert. Since this preprocessor was deemed broken and has since been
replaced it's hard to tell if these alerts are something worth investigating or a false
positive.

Doug Kite noted activity like this in his practical and suggested that the packets were a
result of hostile activity3. He correlated them with 155 portscan alerts and suggested
that fragmented packets might be used to bypass a firewall or IDS. In our log files there
were 64663 outbound scans from MY.NET.210.114. 64601 of these scans were to
213.97.198.23 and all were UDP scans to various ports. To a degree, the times
correlate with our alerts. They began at 11:53 on 3 May and ended at 14:14 on 4 May.
Unfortuneately there was nothing in the OOS files from either IP.

It is worth noting that there were also 4 outbound UDP tftp alerts (3 on 3 May and 1 on 4
May) from MY.NET.210.114 to 213.97.198.23 and 1 inbound from 213.97.198.23 to
MY.NET.210.114. The outbound udp alert on 4 May correlates exactly with a scan alert
at the same time. Perhaps the fragmented packets were generated as part of a data
transfer between 2 very distant hosts.

Recommendations:
Given the number of alerts and outbound scans it might be worthwhile to talk to the
owner of this system and find out what software she's running. This may be some
multimedia application. It would also be a good time to upgrade snort, particularly the
defrag preprocessor.

Alert #2
TCP SRC and DST outside network (208267 alerts)

This appears to be a custom alert designed to detect traffic with both addresses outside
the protected range.

2Roesch, Marty. “http://www.ultraviolet.org/mail-archives/snort-users.2001/3408.html”
3Kite, Doug. Page 28

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 40
Print Date: 8/4/03

DstIP Alerts %
64.202.103.12 106932 51
65.116.88.74 43804 21
146.100.53.56 29995 14
216.200.173.18 25217 12

Alerts to the four destination IP addresses in the table above total 205948 (99%). All
but 8 have port 6667 as a destination port. The alerts occurred between 11:43 and
11:55. There were 152947 distinct source IP addresses.

According to ARIN 64.202.103.12 (giving.head.for-money.net) is registered to an ISP in
Western Australia, 65.116.88.74 (74.88.116.65.sharpnet.net) is registered to an ISP in
Ohio, 146.100.53.56 (did not resolve) is registered by RIPE in Italy and ARIN says
216.200.173.18 (did not resolve) is from an ISP in Seattle Washington. Given the
destination port for all the traffic and that all of these addresses appear to be assigned
to ISPs they are most likely IRC servers.

This activity appears to be a scan in reverse. With the number of mangled alerts in the
alerts files it's difficult to say with certainty that these alerts were accurately reported.
Assuming they were, perhaps the srcIPs were spoofed and someone on MY.NET was
trying to cause a denial of service on four IRC servers. This would explain the huge
number of alerts in such a short period of time. This should not be possible with proper
egress filtering but since this alert is included in our rule set - it is unlikely that proper
egress filtering is in place.

Michael Wilkinson suggested that this alert would only be generated if a local system
was misconfigured.4 This does appear to be what's going on for about 500 or so of the
alerts in our log files but not for these alerts. There are simply too many alerts from too
many different sources. Plus having such a large number in such a short time - with
very little at any other time - does not suggest a misconfiguration.

Recommendations:
Implement proper ingress and egress filtering on all perimeter routers. If this is not
possible for some reason, (one would think this would have been implemented by now if
it were possible) it might be worthwhile to track this person down using his MAC
address. It does appear to be one person (or at least a few people in coordination)
given the time from and the targeting of IRC servers. Perhaps by tracking the MAC
address for these alerts and correlating it with the MAC address for other traffic the
owner of this system could be tracked down and discouraged from doing this kind of
thing.

4Wilkinson, Michael. Page 66

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 41
Print Date: 8/4/03

Alert #3
SMB Name Wildcard (174110)

Most likely the signature for this rule looked something like this:

alert udp any any -> $HOME_NET 137 (msg:"SMB Name Wildcard";
content:"CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|0000|";)5

It appears to have been taken out of the current snort rule set. Becky Bogle suggests
that this is because this alert is frequently caused by benign activity, such as a Windows
system attempting to obtain the Netbios name of other systems it communicates with6.

There were 22474 distinct source IPs and 40907 distinct destination IPs associated with
this alert. The top talker among the source IPs 133.82.241.150 with 8412 alerts (5%).
These alerts occurred between 10:24 on 3 May and 22:55 on 4 May. The source port
was consistently 54799. This is worth noting since queries using nbtstat generally use
port 137 as source and destination port. 133.82.241.150 was associated with no other
alerts, scans or OOS alerts.

133.82.241.150 resolved to cuapfs0.imit.chiba-u.ac.jp. dshield.org reported no activity.
The JPNIC database reports that the IP is part of a block belonging to Chiba University -
which agrees with the hostname.

dshield.org lists port 137 as the most popular port for network scans. It also lists 5 CVE
vulnerabilities associated with port 137. The activity does not appear to be a scan at first
glance since the destination addresses are not sequential and it takes place over a long
period of time. However, there are 7862 different destinations and the traffic only occurs
during two days - suggesting the source either achieved his goal or gave up.

Recommendations:
If possible prevent all Netbios traffic (ports135,137,138,139) from crossing the network
perimeter. Another idea would be to prevent anonymous access to Netbios shares.
Many attackers try to establish a null or anonymous session in an attempt to access
improperly secured network shares. This reference explains how to disable anonymous
session access: http://securecomputing.stanford.edu/alerts/lioten.html. Note that
following the instructions in the reference may render necessary services unusable -
some experimentation may be required.

5Staniford-Chen, Stuart
6Bogle, Becky. Page 26

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 42
Print Date: 8/4/03

Top 5 Alert Source ports under 1024 (internal source IP)
SRC Port Protocol/Top SrcIP(#alerts) Alert Message(s) Count

1 80 HTTP MY.NET.24.34(9) Possible Trojan Server/possible Red Worm 29
2 25 SMTP MY.NET.24.22(12) High port 65535 tcp - possible Red Worm 17
3 0 N/A MY.NET.210.114 (10) Incomplete Packet Fragments Discarded 10
4 143 IMAP MY.NET.12.4 (5) Possible Trojan Server Activity/Red Worm 5
5 443 HTTPS MY.NET.24.33 (5) High port 65535 tcp - possible Red Worm 5

Sample queries
select srcport,srcip,dstip,count(*) as count from alerts where srcport < 1024 AND NOT dstport = 0
 AND srcip LIKE 'MY.NET%' group by srcport order by count desc limit 10;
select message,srcip,count(*) as count from alerts where srcport = 25 AND srcip LIKE MY.NET%'
 group by srcip order by count desc;

12 Selected Alert Destination Ports (internal dest IP)
Dest Port Protocol/Top Dest IP (#alerts) Top Alert Message(s) Count

1 137 Netbios-NS MY.NET.24.34 (1797) SMB Name Wildcard (174088) 174092
2 80 HTTP MY.NET.100.165 (24931) CS Webserver - external web traffic (24931) 32106
3 515 Printer MY.NET.70.199 (160) connect to 515 from outside (5032) 5033
4 524 NCP MY.NET.30.3 (723) MY.NET.30.3 (723)/MY.NET.30.4 (247) 970
5 21 FTP MY.NET.100.165 (781) CS Webserver - external ftp traffic (781) 794
6 32771 SunRPC MY.NET.194.187(353) SUNRPC Highport Access! (520) 530
7 139 Netbios-SSN MY.NET.190.93 (415) EXPLOIT x86 NOOP (414) 428
8 1214 Kazaa MY.NET.194.13 Queso Fingerprint (249) 415
9 25 SMTP MY.NET.24.22 (70) Queso Fingerprint (281) 318

10 110 POP3 MY.NET.6.7 (190) Queso Fingerprint (190) 201
11 27374 SubSeven MY.NET.202.14 (3) Possible Trojan Server Activity (166) 166
12 111 SunRPC MY.NET.53.222(1) External RPC call (149) 149

Sample Queries:
select dstport,dstip,count(*) as count from alerts where dstport < 1024 AND NOT srcport = 0
 AND dstip LIKE 'MY.NET%' group by dstport order by count desc limit 15;
select message,dstip,count(*) as count from alerts where dstport = 137 AND dstip LIKE 'MY.NET%'
 group by dstip order by count desc limit 50
select message,dstip,count(*) as count from alerts where dstport = 137 AND dstip LIKE 'MY.NET%'
 group by message order by count desc limit 50

7 Selected Alert Destination Ports (external dest IP)
Dest Port Protocol/Top Src IP (#alerts) Top Alert Message(s) Count

1 6667 IRC MY.NET.198.221 (3925) TCP Source and Dest Outside Network (205501) 210531
2 5121 Neverwinter MY.NET.201.58(12952) High port 65535 udp possible Red Worm traffic 12952
3 80 HTTP MY.NET.84.218 (398) spp_http_decode: IIS Unicode attack (8228) 10261
4 69 TFTP MY.NET.201.42 (1721) TFTP - Internal TCP connection to external server 5168
5 6661-6669 IRC MY.NET.97.128 (389) Possible sdbot floodnet detected attempting to IRC 847
6 27374 Subseven MY.NET.220.50 (461) Possible Trojan Server Activity (570) 571
7 33450 Unk MY.NET.238.78 (214) High port 65535 tcp - possible Red Worm (214) 214

Sample Queries:
select message,dstip,dstport,count(*) as count from alerts where dstip NOT LIKE 'MY.NET%' group by dstport
 order by count desc limit 50;
select message,srcip,count(*) as count from alerts where dstport = 6667 AND dstip NOT LIKE 'MY.NET%'
 group by dstip order by count desc limit 50;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 43
Print Date: 8/4/03

Alert IDS552
IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize

As suggested by the IDS552 (Arach-NIDS identifier) at the beginning of the alert
message, the signature that generated this alert probably looks like this:

alert TCP $INTERNAL any -> $EXTERNAL 80 (msg: "IDS552/web-iis_IIS ISAPI
Overflow ida"; dsize: >239; flags: A+; uricontent: ".ida?"; classtype:
system-or-info-attempt; reference: arachnids,552;)7

This is similar to the signature in the standard snort ruleset except that it includes a
dsize option and uses flags instead of the flow option. Since our alert message says
“nosize”, most likely the dsize option has been eliminated. This signature is designed to
detect an exploit of a buffer overflow in Microsoft IIS's Index Server.

The two source IPs associated with this alert are MY.NET.97.181 (184 alerts) and
MY.NET.97.48 (4 alerts). MY.NET.97.181 was most likely compromised since it
generates alerts going to multiple, widely varying IP addresses over the course of a few
seconds. It's difficult to imagine a legitimate reason for traffic like that, particularly since
it continues for 2 hours. The status of MY.NET.97.48 is more difficult to determine. The
four alerts could have occurred under legitimate circumstances but they are all to
different destinations and the times are within 3 minutes of each other. There are also 3
NIMDA cmd attempts originating from this host.

Recommendations:
One or both of these hosts have probably been compromised. An investigation of these
systems would be worthwhile. It might also be a good idea to scan MY.NET with ISS or
Nessus to make sure other systems do not have well known vulnerabilities.

7Whitehats. http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids552&view=signatures

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 44
Print Date: 8/4/03

Scan #1
152.1.193.6 (15962)

This is a comprehensive port scan that took place between 15:29 and 15:47 on 5 May.
All scan activity was directed against MY.NET.132.26. From alerts that where generated
while this scan was going on it appears that ports 69 (tftp) and 139 (Netbios-ssn) were
open. Port 69 appears open since there was an outbound alert from MY.NET.132.26 on
port 69 that was generated in the same second that the port was scanned. Port 139
appears open since an SMB C$ access alert was generated and the current signature
requires an established connection to generate an alert. It is also possible that ports
111, 515, 445 and 80 were open. We can deduce this from alerts on the former 111 and
515 and scans from other sources to ports 445 and 80. Port 111 is unlikely to be open
on a windows system since it is usually used for SunRPC.

According to ARIN 152.1.193.6 (chjlpc4.chem.ncsu.edu) belongs to a /16 CIDR block

Portscan Top 10s
External Src Reverse DNS Lookup Count Internal Src Count

1 152.1.193.6 chjlpc4.chem.ncsu.edu 15962 1 MY.NET.210.114 64663
2 217.88.231.137 pD958E789.dip.t-dialin.net 13949 2 MY.NET.240.62 39797
3 217.84.122.16 pD9547A10.dip.t-dialin.net 11688 3 MY.NET.87.50 32582
4 198.144.65.56 nt-001-00055.greenapple.com 9160 4 MY.NET.250.98 29274
5 64.212.144.139 unresolved 8313 5 MY.NET.97.190 26833
6 80.161.34.13 0x50a1220d.kd4nxx15.adsl-dhcp.tele.dk 8244 6 MY.NET.1.3 21844
7 66.130.208.97 modemcable097.208-130-66.que.mc.videotron.ca 7663 7 MY.NET.234.158 20909
8 213.204.66.141 unresolved 7040 8 MY.NET.205.150 16738
9 208.163.46.185 port0185-cvx-pmbk.cwjamaica.com 6939 9 MY.NET.153.152 15298
10 12.16.131.99 unresolved 6932 10 MY.NET.225.230 13686

External Dst Reverse DNS Lookup Count Internal Dest Count
1 213.97.198.23 23.Red-213-97-198.pooles.rima-tde.net 64601 1 MY.NET.132.26 15967
2 64.39.186.133 dsl-cust-133.openweb.ca 1779 2 MY.NET.234.82 923
3 66.66.126.241 roc-66-66-126-241.rochester.rr.com 1732 3 MY.NET.249.194 457
4 66.167.144.245 h-66-167-144-245.MCLNVA23.covad.net 1624 4 MY.NET.238.230 310
5 24.42.0.66 unresolved 1620 5 MY.NET.207.254 285
6 68.165.25.243 h-68-165-25-243.PHLAPAFG.covad.net 1570 6 MY.NET.86.66 235
7 68.13.93.150 ip68-13-93-150.om.om.cox.net 1217 7 MY.NET.218.254 213
8 12.245.31.155 12-245-31-155.client.attbi.com 1212 8 MY.NET.6.7 206
9 68.81.50.22 pcp01413723pcs.potshe01.pa.comcast.net 1185 9 MY.NET.211.26 145
10 68.82.22.172 pcp03173548pcs.fairvw01.pa.comcast.net 1178 10 MY.NET.252.110 122

Sample Queries:
select srcip,count(*) as count from scans where srcip NOT LIKE '130.85%' group by srcip order by count desc limit 10;
select dstip,count(*) as count from scans where dstip LIKE '130.85%' group by dstip order by count desc limit 10;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 45
Print Date: 8/4/03

registered to North Carolina State University. The host name suggests the Chemistry
department. Dshield.org had no record of the IP. There was no activity from 152.1.193.6
that did not involve MY.NET.132.26, nor was there any sign of a catalyst from MY.NET
that may have caused this.

Recommendations:
Considering the depth of this scan it might be worthwhile to check MY.NET.132.26 to
make sure it's been properly secured. The presence of a tftp server and access to port
139 is definitely cause for concern. The SMB C$ Access alert is designed to detect
attempts to access the C: file system8. Since this is usually the primary file system
where system files are stored an attacker with access can cause a great deal of
damage.

Scan #2
MY.NET.240.62 (64663)

MY.NET.240.62 scanned 25339 different destinations from 157 source ports to 3361
different destination ports. There were 39630 UDP scans and 167 TCP scans. Several
of the TCP ports were known IRC server ports such as 6666 (8 scans) and 7000 (10
scans). The udp destination ports varied widely but the source ports were limited to
6257 (WinMX - 22777 scans) and 2468 (qip_msgd - 16853 scans). WinMX is a popular
peer to peer file sharing utility but there is little information available on qip_msgd. Since
the scans on port 2468 sometimes occur within seconds of the port 6257 scans perhaps
2468 is a custom configured file sharing port for WinMX or for some other utility with
similar functionality.

MY.NET.240.62 was involved in 2 OOS alerts. The first was from 210.153.216.10. This
address resolved to pl010.nas921.yokkaichi.nttpc.ne.jp. There was no record of activity
at dshield.org. According to the JPNIC this IP is from a block belonging to Infosphere - a
communications company (possibly an ISP) in Japan. The TTL of 107 (original was
likely 128 - usually Windows or Linux) and source port of 2257 (Windows systems
generally start at 1024 whereas Linux usually uses 32768-61000) suggest a Windows
system9. The data is all unreadable but there are no TCP flags and the TCP length is 0.
While this exact IP does not appear in any scans, 11 other addresses from Infosphere
do appear. This may be a subtle attack on MY.NET.240.62 but most likely it's peer to
peer traffic that became corrupted. It is worth noting that there are 13 SMB Name
Wildcard alerts from Infosphere to various MY.NET IPs. These occur over several days
and do not appear malicious.

8Whitehats. http://www.whitehats.com/info/IDS339
9Seifried, Kurt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 46
Print Date: 8/4/03

The second OOS alert was from 65.24.141.137. This address resolved to dhcp065-024-
141-137.columbus.rr.com. dshield.org had no record of activity. According to ARIN this
IP is part of a /14 CIDR block belonging to Road Runner (AOL's broadband ISP
subsidiary) in Virginia. In this case the destination port is 2468 but the protocol is TCP.
The source port of 4872 and TTL of 111 again suggest a Windows system. There are
no flags and the acknowledgement number and TCP length are both 0. The data portion
contains 8 bytes of unreadable data. An acknowledgement number of 0 in a packet
other than the initial SYN sometimes signifies an early version of the Nmap scanner.
Nmap is an unlikely source since there are no other scans or alerts from this address.
Most likely this is an attempt at file sharing that was somehow garbled.

MY.NET.240.62 was also the destination for 152 alerts. 147 of these were SMB Name
Wildcard alerts - possibly attempts to gather information. Most likely the peer to peer
traffic drew attention to the IP and made it a target for multiple attacks.

Recommendations:
Peer to peer file sharing has become so widespread that it may be unrealistic to try to
shut it down. To insulate the University from possible lawsuits due to copyright
infringement, an acceptable use policy prohibiting the use of peer to peer applications
might be worthwhile. It also might be wise to inform students of the risks of file sharing.
These risks include the potential for downloading trojans and viruses, possible legal
repercussions of sharing copyrighted material and the possibility of making a student's
PC a into a target for information gathering or attack.

OOS #1
68.54.93.181 (1528)

In addition to generating the largest number of OOS alerts this address generated 190
Queso fingerprint alerts and 189 scans all to MY.NET.6.7 and all on port 110 (pop3).

68.54.93.181 resolves to pcp01781292pcs.howard01.md.comcast.net. According to
ARIN the IP is part of a /20 CIDR block assigned to Comcast Cable in Baltimore - an
ISP. All packets from this address had the same fingerprint characteristics. The window
size of 5840, MSS of 1460, Selective acknowledgement OK, unset window scale and
packet length of 60 bytes suggest a Linux 2.4 kernel.

A Possible trojan server activity alert generated by a response from MY.NET.6.7 on
port 80 to 66.157.117.78 tells us MY.NET.6.7 is probably a web server. This alert is
most likely a false positive since it appears to be triggering on the 27374 (SubSeven)
destination port. This was probably just selected as the ephemeral port for a connection
to MY.NET.6.7 on port 80. This correlates with ??? The 167 SMB Name Wildcard
alerts with MY.NET .6.7 as a destination suggest this is a Windows system with Netbios

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 47
Print Date: 8/4/03

services open.

The OOS alerts took place between 30 April at 00:09 and 4 May 13:11. Queso
fingerprint alerts began on 12:37 on 1 May ended at 12:45 on 4 May. None of the times
on the OOS alerts appear to correlate with the Queso fingerprint alerts. The OOS alerts
do have both ECN bits set - which may have been enough to generate the alerts even
though this is common for traffic from recent Linux systems.

The signature for the Queso Fingerprint attempt probably looks much like this:

alert tcp any any -> any any (msg: "Possible Queso Fingerprint attempt";
flags: S12;)10

This signature was found to generate numerous false positives and an alternative was
suggested by Max Vision to the snort-users mailing list and added to the Arach-NIDS
signature database.11

alert TCP $EXTERNAL any -> $INTERNAL any (msg: "IDS29/scan_probe-Queso
Fingerprint attempt"; ttl: >225; flags: S12; classtype: info-attempt;
reference: arachnids,29;)12

The new signature would eliminate the alerts above. Queso usually starts with a TTL of
255 whereas most Linux systems have a default TTL of 64. This is mostly academic
since Nmap has replaced Queso as the tool of choice for remote OS fingerprinting.

Recommendations:
All these alerts seem to have been false positives. Looking at our OOS alerts it appears
that the vast majority (10886 - 89%) have the ECN bits along with the SYN flag set.
Most of these seem to have been generated by Linux systems doing something other
than OS fingerprinting. This traffic seems to add another reason to look into upgrading
snort and updating the signature set.

OOS #2
148.64.48.213 (223)

148.64.48.213 resolves to vsat-148-64-48-213.c050.t7.mrt.starband.net. dshield.org has
no record of activity from this address. According to the ARIN whois registry this
address is part of several CIDR blocks belonging to Spacenet Inc in Virginia. Their web
site indicates that they provide commercial grade Satellite connectivity.

10Cipherdyne
11Neohapsis Archives
12Whitehats. http://whitehats.com/cgi/arachNIDS/Show?_id=ids29&view=signatures

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 48
Print Date: 8/4/03

There were other addresses that generated more OOS alerts but they appear to have
been very similar to OOS #1. This IP generated no alerts or scans. However, there were
732 total OOS alerts, 4 alerts and 105 scans originating from the addresses registered
to Spacenet Inc.

All traffic from 148.64.48.213 goes to MY.NET.235.202 on port 3516. This port is not
listed on any port lists and a search on google.com yields little of value. dshield.org
reported a spike in activity on this port on June 3 and 4 but has no insight on what
services might run on it. The data portion of the OOS alerts indicates Kazaa - a peer to
peer file sharing tool.

Link Diagram:

This diagram illustrates the risk of peer to peer file sharing. MY.NET.240.62 is used as
an example. Arrows pointing out represent outbound peer to peer scans. Numbers in
parentheses for outbound arrows indicate a connection count. Incoming scans show a
port number and a count. Because of his extensive file sharing, MY.NET.240.62 has
become a target. This graph could be shown to students to help them understand the
dangers of the use of peer-to-peer applications.

MY.NET.240.62

203.218.25.55
(21679)

24.112.73.128
(129) 130.160.76.137

(421)

217.88.231.137
port 445, 2

216.78.180.128
port 137, 1

200.160.236.219
(63)

134.60.236.203
(56)

80.230.78.240
port 135, 1 12.102.106.220

port 139, 1

63.127.205.9
port 80, 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 49
Print Date: 8/4/03

Analysis Process:

Tools:
Redhat Linux 8.0
- MySQL 3.23.56
- Perl 8.0
- Perl Database drivers for MySQL 2.1017
- OpenOffice 1.0.1

Windows 2000
-Microsoft Excel 2000
-Microsoft Word 2000

I used the following shell script commands similar to these to concatenate, sort,
eliminate duplicates and eliminate obviously mangled alerts in the alert files:
gzcat alert* > alert.all
sort -n alert.all | uniq > alert.uniq
grep “^05” alert.uniq > alert.whole

A similar process was done to concatenate, sort and eliminate duplicates among the
scans. Then, using Gary Morris' perl scripts as a starting point, I wrote perl scripts to
parse the files and insert them into MySQL. The database was created using Les
Gordon's create_gciadb.sql script. I also used a simple drop_gcia.sql script so I could
easily destroy and recreate the database while I was working on the scripts to parse the
data. I used query.pl to create the table of alert messages. Brandon Newport's sql
queries were extremely helpful in extracting data from the database. I also used Hee So
and Les Gordon's practicals as a guide for making tables and the layout of the practical.

Lessons Learned:
I would have used a MySQLversion after 4.0 so I could have taken advantage of using
the union keyword in my queries. This would have made it much easier to combine data
from multiple tables.

I spent too much time on the parsing scripts. I think it would have been easier to turn all
the files into comma separated lists and then load them into the database the way Les
Gordon did. I also should have spent more time studying the alert files before writing the
scripts. The alerts were mangled in more ways than I anticipated and I had to rewrite
the parsing script several times to take unforeseen input into account.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 1
Print Date: 8/4/03

Appendix
Perl Scripts

#!/usr/bin/perl
parseAlerts.pl
Written by Gary Morris
#modified by sca

use DBI;
use strict;
use warnings;

my $inFile = shift;
my $dbUser = "root";
my $dbPassword = "";
my ($line, $date, $time, $temp, $datetime, $srcIP, $srcPort, $dstIP, $dstPort,
$srcString, $dstString, $query);
my ($raw1, $raw2, $raw3);
my @alert;
my $info;
my $hosts;
my $sth;

open (MYFILE, "$inFile") || die "Cannot find file $inFile: $!\n";
open (DEBUG, ">/usr/local/sans/status.alert") || die "Can't write to status: $!\n";
open (MANGLED, ">/usr/local/sans/mangled.alert") || die "Can't write to mangled:
$!\n";

my $dbh = DBI->connect('DBI:mysql:gcia', $dbUser, $dbPassword) or die 'OUCH
$DBI::errstr\n';

while (<MYFILE>) {
 chomp;
 @alert = (split/\[**\]/);
 unless (@alert == 3) {
 print MANGLED "Alert array is: $#alert $_\n";
 next;
 }
 ($raw1, $raw2, $raw3) = @alert;

 # parse date and time
 ($date, $time) = split/\-/, $raw1;
 ($time, $temp) = split/\./, $time;
 $date = "2003/" . "$date";
 $datetime = $date . " " . $time;

 $raw2 =~ s/\s//;
 $raw2 =~ s/\s$//;
 if ($raw2 =~ /spp_portscan/) {
 #Ignore portscan unless we got all of it
 unless ($raw2 =~ /End of portscan/) {
 print MANGLED "Not end of portscan $_\n";
 next;
 }

 ($srcIP,$info) = (split(/:/, $raw2))[1,2];
 $srcIP =~ s/.*from\s+//;
 unless (checkIP($srcIP)) {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 2
Print Date: 8/4/03

 print MANGLED "Invalid src or dst IP for portscan src: $srcIP
$_\n";
 next;
 }

 $info =~ s/\s//;
 $info =~ s/\s$//;
 $info =~ /hosts\((\d+)\)/;
 $hosts = $1;
 $query = "INSERT INTO spp_scan_alerts (dttime,alert,hosts,srcip,info)
 VALUES
('$datetime','$raw2','$hosts','$srcIP','$info')";
 }
 else {
 ($srcString, $dstString) = split/\-\>/, $raw3;
 if (!defined($srcString) || !defined($dstString)) {
 print MANGLED "Undefined src or dst string $_\n";
 next;
 }

 ($srcIP, $srcPort) = split(/:/, $srcString);
 ($dstIP, $dstPort) = split(/:/, $dstString);

 $srcIP =~ s/\s//g;
 $dstIP =~ s/\s//g;

 unless (checkIP($srcIP) && checkIP($dstIP)) {
 print MANGLED "Invalid src or dst IP src: $srcIP dst: $dstIP
strS: $srcString dstS: $dstString\n";
 next;
 }

 if (!defined($srcPort) or $srcPort eq "") {
 $srcPort = 0;
 }
 else {
 $srcPort =~ s/ //;
 }
 if (!defined($dstPort) or $dstPort eq "") {
 $dstPort = 0;
 }
 else {
 $dstPort =~ s/ //;
 }

 $raw2 =~ s/\'//;
 $query = "INSERT INTO alerts
(dttime,message,srcip,srcport,dstip,dstport)
 VALUES ('$datetime','$raw2','$srcIP',$srcPort,'$dstIP',$dstPort)";
 }

 print DEBUG "Query is: $query\n";

 $sth = $dbh->prepare($query) or die "Line: $. - Can't prepare: $query. Reason:
$!";
 $sth->execute;
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 3
Print Date: 8/4/03

($dbh->disconnect or die "Can't disconnect from database. Reason: $DBI::errstr" and
undef $dbh);
close MYFILE;

sub checkIP {
 my $ip = shift;
 return ($ip =~ /^[\w\d]{1,3}\.[\w\d]{1,3}\.\d{1,3}\.\d{1,3}$/);
}

#!/usr/bin/perl
parsescan.pl
Written by Gary Morris
modified by sca

use DBI;
use strict;
use warnings;

my $inFile = shift;
my $dbUser = "root";
my $dbPassword = "";
my
($line,$month,$day,$time,$datetime,$srcIP,$srcPort,$dstIP,$dstPort,$srcString,$dstStri
ng,$info,$scantype,$flags);

open (MYFILE, "$inFile") || die "Cannot find file $inFile: $!\n";
open (DEBUG, ">/usr/local/sans/status.scans") || die "Can't write to status: $!\n";
#open (MANGLED, ">/usr/local/sans/mangled") || die "Can't write to mangled: $!\n";

my $dbh = DBI->connect('DBI:mysql:gcia', $dbUser, $dbPassword) or die 'OUCH
$DBI::errstr\n';

while (<MYFILE>) {
 $month = "05"; #hardcode 05 since all our data is from May
 my ($day,$time,$srcString,$dstString,$info) = (split(/\s+/,$_,7))[1,2,3,5,6];

 chomp($info);
 $day = sprintf("%02d",$day);
 $datetime = "2003/$month/$day $time";

 ($srcIP,$srcPort) = split(/:/,$srcString);
 ($dstIP,$dstPort) = split(/:/,$dstString);
 ($scantype,$flags) = (split(/\s+/, $info))[0,1];

 $flags = 0 unless defined($flags);

 my $query = "INSERT INTO scans
(dttime,srcip,srcport,dstip,dstport,scantype,flags,info)
 VALUES
('$datetime','$srcIP',$srcPort,'$dstIP','$dstPort','$scantype','$flags','$info')";
 print DEBUG "Query is: $query\n";

 my $sth = $dbh->prepare($query) or die "Line: $. - Can't prepare: $query.
Reason: $!";
 $sth->execute;
}

($dbh->disconnect or die "Can't disconnect from database. Reason: $DBI::errstr" and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 4
Print Date: 8/4/03

undef $dbh);
close MYFILE;

#!/usr/bin/perl
ParseOOS.pl
Written by Gary Morris
Modified by sca
use DBI;
use warnings;
use strict;
use English;

my $inFile = shift;
my $dbUser = "root";
my $dbPassword = "";

open (MYFILE, "$inFile") || die "Cannot find file $inFile: $!\n";
open (DEBUG, ">/usr/local/sans/status.oos") || die "Can't write to status: $!\n";
open (MANGLED, ">/usr/local/sans/mangled.oos") || die "Can't write to mangled: $!\n";

my $dbh = DBI->connect('DBI:mysql:gcia', $dbUser, $dbPassword) or die 'OUCH
$DBI::errstr\n';

my $line;
my
($timestr,$srcString,$dstString,$datetime,$date,$time,$srcIP,$srcPort,$dstIP,$dstPort)
;
my ($proto,$TTL,$TOS,$ID,$headlen,$packlen,$ipopt);
my ($flags,$seq,$ack,$win,$paylen);
my ($tcpopt,$data);

while ($line = <MYFILE>) {
 $tcpopt = 0;
 $data = 0;

 #Get Time and IP/port info from first line
 if($line =~ m#^\d+/\d+#) {
 ($timestr, $srcString, $dstString) = (split(/\s+/,$line))[0,1,3];
 $datetime = gettime($timestr);
 ($srcIP, $srcPort) = split(/:/, $srcString);
 ($dstIP, $dstPort) = split(/:/, $dstString);
 }
 else {
 next;
 }

 #Forget about alert if any of this is missing
 unless (defined($datetime) && defined($srcIP) && defined($dstIP)) {
 print MANGLED "$line";
 while (<MYFILE>) {
 print MANGLED;
 last if /^=\+=\+=*/;
 }
 next;
 }

 $line = <MYFILE>;
 ($proto,$TTL,$TOS,$ID,$headlen,$packlen,$ipopt) = split(/\s+/,$line,7);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 5
Print Date: 8/4/03

 $TTL = (split(/:/,$TTL))[1];
 $TOS = (split(/:/,$TOS))[1];
 $ID = (split(/:/,$ID))[1];
 $headlen = (split(/:/,$headlen))[1];
 $packlen = (split(/:/,$packlen))[1];
 chomp($ipopt);

 $line = <MYFILE>;
 if($line =~ /^Frag/) {
 $srcPort = 0;
 $dstPort = 0;
 $flags = 0;
 $seq = 0;
 $ack = 0;
 $win = 0;
 $paylen = 0;
 }
 else {
 ($flags,$seq,$ack,$win,$paylen) = (split(/\s+/,$line))[0,2,4,6,8];
 }

 $line = <MYFILE>;
 if($line =~ /^TCP/) {
 $tcpopt = $line;
 $tcpopt =~ s/TCP Options //;
 chomp($tcpopt);
 }
 while (<MYFILE>) {
 last if /^=\+=\+=*/;
 }
#Putting hex data in the database is not useful - decided to take it out
$data = 0;
if($line =~ /^[\dA-F]{2}/) {
$data = $line;
while (<MYFILE>) {
last unless /^[\dA-F]{2}/;
$data = "$data" . "$_";
}
$data =~ s/\'//g;
}

 my $query = "INSERT INTO oos
(dttime,srcip,srcport,dstip,dstport,ip_ttl,ip_tos,ip_id,ip_len,length,ip_flags,tcp_fla
gs,tcp_seqno,tcp_ackno,tcp_win,tcp_options,hexdata)
 VALUES
('$datetime','$srcIP',$srcPort,'$dstIP',$dstPort,'$TTL','$TOS','$ID','$headlen','$pack
len','$ipopt','$flags','$seq','$ack','$win','$tcpopt','$data')";
 print DEBUG "$query\n";

 my $sth = $dbh->prepare($query) or die "Line: $INPUT_LINE_NUMBER - Can't
prepare: $query. Reason: $!";
 $sth->execute;
}

($dbh->disconnect or die "Can't disconnect from database. Reason: $DBI::errstr" and
undef $dbh);
close MYFILE;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 6
Print Date: 8/4/03

sub gettime {
 my $str = shift(@_);
 my $date;
 my $time;

 ($date, $time) = split/\-/, $str;
 ($time) = (split(/\./, $time))[0];
 $date = "2003/" . "$date";
 return "$date $time";
}

#!/usr/bin/perl
#Takes as input a file with all alert messages
Commented out lines can be used to query external hosts

use strict;
use warnings;
use English;
use DBI;

my $dbUser = "root";
my $dbPassword = "";
my ($query,$squery,$dquery,$bquery,$total);
my ($dbh,$sirc,$dst,$both);
my ($scnt,$dcnt,$bcnt,$ext);
#my ($scnt,$dcnt,$bcnt,$int);
my @row;

my $qsrc = shift;
open (MESSAGES, "$qsrc") || die "Cannot find file $qsrc: $!\n";
open (OUTPUT, ">/usr/local/sans/part3/queries/uniq") || die "Can't write to
output file: $!\n";
#open (OUTPUT, ">/usr/local/sans/part3/queries/extuniq") || die "Can't write
to output file: $!\n";
open (ALERTS, ">/usr/local/sans/part3/queries/alerts") || die "Can't write to
alerts file: $!\n";
$dbh = DBI->connect('DBI:mysql:gcia', $dbUser, $dbPassword) or die 'OUCH
$DBI::errstr\n';

while (<MESSAGES>) {

 next unless /\t/;

 ($query,$total) = (split(/\t/));
 $squery = "select count(distinct srcip) from alerts where srcip LIKE
'MY.NET%' and message = \'$query\'";
 $dquery = "select count(distinct dstip) from alerts where dstip LIKE
'MY.NET%' and message = \'$query\'";
$squery = "select count(distinct srcip) from alerts where srcip NOT LIKE
'MY.NET%' and message = \'$query\'";
$dquery = "select count(distinct dstip) from alerts where dstip NOT LIKE
'MY.NET%' and message = \'$query\'";

 print ALERTS "$query\n";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 7
Print Date: 8/4/03

 $src = $dbh->prepare($squery) or die "Line: $. - Can't prepare:
$squery. Reason: $!";
 $dst = $dbh->prepare($dquery) or die "Line: $. - Can't prepare:
$dquery. Reason: $!";
 $src->execute;
 $dst->execute;

 @row = $src->fetchrow_array;
 $src->fetchrow_array;
 $scnt = shift(@row);

 @row = $dst->fetchrow_array;
 $dst->fetchrow_array;
 $dcnt = shift(@row);

 print OUTPUT "$scnt,$dcnt,$total";
}
$dbh->disconnect;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 1
Print Date: 8/4/03

References (for Analyze This):

Bogle, Becky. “GIAC Certification Practical.” 2001.
http://www.giac.org/practical/Becky_Bogle_GCIA.doc

Cipherdyne. “Diff for /psad/psad_signatures between version 1.4 and 1.5”. April 16 2001.
http://www.cipherdyne.com/cgi/viewcvs.cgi/psad/psad_signatures.diff?r1=1.4&r2=1.5

Common Vulnerabilities and Exposures. Mitre Corporation. Jun 2003.
http://www.cve.mitre.org

Distributed Intrusion Detection System.
http://www.dshield.org

Kite, Doug. “Intrusion Detection in Depth.” July 2002.
http://www.giac.org/practical/GCIA/Doug_Kite_GCIA.pdf

So, Hee. “Giac Intrusion Detection In Depth.” Feb 2002.
http://www.giac.org/practical/Hee_So_GCIA.doc

Gordon, Les. “Intrusion Analysis – The Director’s Cut.” May 2002.
http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc

Morris, Gary. “Contemporary Intrusion Detection and Analysis.” Oct 2002.
http://www.giac.org/practical/GCIA/Gary_Morris_GCIA.doc

Neohapsis. “Ports List.” 20 May 2003.
http://www.neohapsis.com/neolabs/neo-ports/neo-ports.html

Neohapsis Archives. “Snort Users”. Mar 15 2001.
http://archives.neohapsis.com/archives/snort/2001-03/0317.html

Newport, Brandon. Level Two Intrusion Detection In Depth. May 2001.
http://www.giac.org/GCIA_500.php

Seifried, Kurt. “Passive OS Detection and Source Ports”. 10 Sep 2001.
http://www.seifried.org/security/network/20011009-passive-os-detection.html

Staniford-Chen, Stuart. “Re: IDS: Source port of Samba Scans?” 11 Mar 2000
http://www.shmoo.com/mail/ids/mar00/msg00065.shtml

ITS Information Security. “Yale University Windows 2000 Workstation Security Guidelines”.
http://www.yale.edu/its/security/new-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Samuel C. Adams GCIA Certification

Page 2
Print Date: 8/4/03

index.html?http://www.yale.edu/its/security/Procedures/Securing/NT/w2k/

Whitehats. “IDS29 Probe-Queso Fingerprint Attempt”. 2001.
http://whitehats.com/cgi/arachNIDS/Show?_id=ids29&view=signatures

Whitehats. “IDS 339 Netbios-SMB-C$Access.” 2001.
http://www.whitehats.com/info/IDS339

Whitehats. “IDS552 IIS ISAPI OVERFLOW IDA" . 2001.
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids552&view=signatures

Wilkinson, Michael. GCIA Practical for SANS Darling Harbour.
http://www.giac.org/practical/michael_wilkinson_gcia.doc

Many thanks to my colleagues Dan Russell, Scott Higgins, Craig Taylor, and Chris
Koentopp for proofreading this paper and for their helpful suggestions.

