Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Intrusion Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

GIAC GCIAv3.3 Practical

John Ruiz

Submission date: July 14, 2003

Part 1 — Network Pattern: Under standing Covert channels

Part 2 — Network detects

Part 3— Analyzethis

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

| ntroduction

Covert channels are atopic in the realm of Network Security that has taken a
backseat to the viruses, trojans, and various exploits that have taken prominence in the
minds of security professionals everywhere. Covert channels are still and always have
been a serious threat to the privacy, integrity, and confidentiality aspects of any
organization’s systems and networks. The goal of this paper isto givethe IDS analyst a
foundation in understanding covert channels with an emphasis on how protocol
exploitation factors into their operation. First, an introduction to covert channel concepts
is presented, followed by protocol exploitation strategies an attacker could use when
employing a covert channel. We will then focus on some of the covert channel tools and
attacks. Finally, the Shared Resource Matrix methodology for the discovery of potential
covert channelsis also discussed.

Covert Channe Concepts

The average IDS analyst examines countless connections, sessions, and data
transfers each day, and for him to discern a covert channel from normal communications
requires afirm grasp on what constitutes and defines a covert channel. There are many
iterations of the definition of a covert channel; comprehensively, it can be defined as an
“illicit means of leaking sensitive or private information through system global variables
that usually are not part of the interpretation of data objectsin the security
model.”[2](Shiuh-Pyng Shieh ,1999). In other words, information is transmitted between
computer systemsin aformat that is not consistent with the design of the system. Some
aspect of that system, whether it is a network protocol or an operating system is usually
manipulated for the purposes of leaking information, not what it was originally intended
for. Some of the easiest aspects of a networked computer system to manipulate are the
specific protocols that are being used on that system. It is possible for a protocol to be
altered such that one or more of its controlling aspects become data objects, used to
illegitimately and surrpetiously carry data in unassuming or benign packets. For an
analyst to recognize these illegitimate data objects, he must know how information is
stored in valid data objects. This can be dependent on: 1) the design and intended use of
the system and 2) what an organization’s security policy allows asvalid or invalid; thus
what qualifies as a covert channel can depend on the security policy and is not based
purely on technological factors. Basically, a covert channel exists contrary to the design
of the computer system, policy-wise and/or technology-wise, athough the focus of this
paper will be primarily on the technology aspect.

One of the most important factors a covert channel takes advantage of isthe use
of aglobal variable. Global variables are data objects that store or signal data; they can be
altered or viewed by a process running on alocal or sometimes even remote machine.
What does aglobal variable look like? It could be some mundane variable in your Linux
kernel used to keep track of disk reads. It could also be the TCP initial number sequence
field used to keep track of TCP/IP communications. It could even be a CPU cycle!
Chances areif you can signal or storeabit init, it could be used as an illicit means of
data leakage. Global variables are what distinguish the types of covert channels. Covert
channels can be categorized into two basic types. storage channels and timing channels.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The global variable(s) in a storage channel are the attribute(s) of a shared resource
or system variable which can potentially be used as a vehicle to transfer information, data
isimplied to be stored on some medium(the data must somehow be encoded into the
global variable); the global variable can be altered by a system call (operating system
level), programming function or method (executable level), or application (user level).
Regardless of which level this shared global variable can be changed, a storage channel is
only fully realized if this variable can be viewed or referenced by another process (and
the enclosed data subsequently decoded). See figure 1.1 [2](Shiuh-Pyng Shieh,1999).
Insofar as the schemes used to interpret the data stored in the global variable, thisisup to
the covert channel designer to decide. For example, if the global variable the attacker
decidesto useis afile, more specificaly the file-lock attribute of afile, alock on thefile
would signal a “1” whereas an unlocked file would signal a “0” in a pseudo binary data
signaling scheme. Any one of a number of schemes can be implemented as long as
attackers are credtive.

sender receiver

trusted I:ElltErj .
zoftware o

kermel

Figure 1.1 - A covert storage channel

The other type of covert channel isatiming channel. Timing channels use timing
or ordering relationships for accesses to shared resources as the global variable. This
definition of a global variable differs considerably from the data-container type described
earlier. Data isn’t exactly stored in a memory location as implied by a storage type
channels. You’ll be hard pressed to find bits and bytes stored in atiming channel. Instead,
the bits and bytes are signaled by timed or ordered accesses to a shared resource such asa
CPU. Usually this requires cooperation by both subjects of a covert channel in
referencing arealtime clock. For example, say that two subjects both have access to and
reference the same timer/clock, and that subject A can monitor the amount of time
subject B runs process Z. In yet another pseudo binary signaling scheme, if subject B
runs process Z for more than 10 seconds this would signal a “1”, if subject B runs process
Z for less than 10 seconds than this would signal a “0”. The shared resource in this
particular instance would be the CPU and the global variable would be the signaling
scheme and amount of CPU time taken to run that process.

One obvious characteristic both types of covert channels share is that both involve
asender and receiver. Usually, thereis a subject with access to certain information and
another subject that wishes to have unauthorized access to that information. The sender

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and receiver can be involved in one of two relationships when using a covert channel. If
both subjects use a noisel ess covert channel, this means that they communicate using a
shared resource that is exclusive only to them. If the subjects use a noisy covert channel,
this means that they communicate using a shared resource that is not exclusive to them
and is available to other subjects aswell. Noisy channels are harder to use since the
shared resource can potentially be modified by non-covert channel subjects thus making
it more difficult for the sender and receiver to distinguish extraneous information from
the actual covert channel information flow.

Storage channels are the more “popular” type of covert channel. Storage channel
software and tools are apparently more accessible and numerous than timing channel
software, thus the focus of the remainder of this paper will be on covert storage channels,
unless otherwise noted.

How can an analyst determine if thereis a potential covert channel on their
monitored system? There are severa conditions that must be met for thereto be a
possible covert channd [2] (Shiuh-Pyng Shieh,1999):

1. The sender and receiver of the covert channel have the potential to communicate
in the system.

2. Communications between the sender and receiver is not allowed under the
security policy

3. A globa variable exists in the system so as to be accessible by the sender and
receiver.

4. The sender must be able to alter the value of the global variable.

5. The change made to the global variable must be detectable/observable by the
receiver.

6. The sender and receiver must be able to synchronize their operations so that
information flow can take place.

Ultimately, there must be some condition in the operation of the system that must be met,
that would initialize and enable information flow through the channel. To verify the
existence of an actual covert channel, areal-time scenario must be constructed to fulfill
that condition.

Protocol Exploitation

Protocol exploitation in the context of Internet and network security, isthe
concept of taking advantage of the protocols and standards (or non-standards) that
regul ate data transmission between computers, and manipulating those protocols
deliberately for devious and malicious purposes; in the case of storage covert channels
thiswould beto leak and carry data. Protocol exploitation is often incorporated into the
covert channd strategy and design sinceit is atechnique that is effective in NIDS
evasion. Also, what better way to be covert than to manipulate protocols and still have
the resultant traffic appear legitimate, unassuming, and most importantly undetectable by
your standard NIDS? To hide in plain view, so to speak. Remember those crazy 3-D
stereogram pictures that people had to cross their eyesfor, just to see an image that
popped out of the page? Well, they wouldn’t have known an image was in that picture

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

unless by chance or if someone actually told them, thisis similar to the case with covert
channels. Unless, the analyst knows what to look for to “see” the covert channel, chances
arethey will missit. Although there are other techniques attackers can use to covertly
transmit information (such as image steganography or even encryption), we will
concentrate on the covert channels that exploit the Network and higher layer protocols
(pertaining to the OSI mode!).

Protocol exploitation has become a key component of covert channels for severd
reasons. For one, covert channels which exploit Internet protocols (esp. the transport and
network layers) tend to have less noise introduced into them than covert channels which
use some other aspect of acomputer system such as file attributes or CPU cycles. First,
many of the shared resourcesin a protocol based covert channel, namely the protocol-
controlling fields, options, etc., are exclusive to and modifiable mostly by the peers using
that particular protocol. Although there are intermediate systems such as routers and
firewalls that have the ability to modify certain fields (TTL in IP for example), they
mostly reference these fields to route traffic to their destination. Thus, many of the values
in protocol-controlling fields need to remain static and intact in order to maintain
integrity of communications and are modifiable only by the communicating peers. All in
all, thereis not much in the way of introducing extraneous information in protocol-based
covert channels.

Protocol exploitation isaso useful in NIDS evasion. NIDS evasion techniques
rely heavily on the ambiguous behavior of Internet protocols which can be easily
exploited by an attacker for use in a covert channel. NIDS are susceptible to this
ambiguity in three different wayq[3] (Paxson, Vern & Handley, Mark 2001):

1. The NIDS may not perform complete analysis of the entire range of behavior for a
particular protocol. (i.e. some NIDS will not perform IP packet reassembly),
therefore it cannot detect activity that may have a particular behavior that is not
analyzed and processed by the NIDS.

2. Unlessthe NIDS knows an end systems protocol implementation, it may not
know how that end system will handle peculiar or unusua traffic, since protocol
implementations can vary considerably.

3. The NIDS may never know if traffic will reach itsintended destination, if it does
not know the topology of the network.

This ambiguity will show up among different implementations of a protocol;
erroneous or exceptional conditions are handled in an unstructured manner and some
features or facets of a protocol are used inconsistently (or sometimes not at all). For
example, in some TCP/IP implementations when receiving overlapping fragments, the
TCP/IP stack will give preference to data in preceding fragments when reassembling a
packet; other implementations will include data from the succeeding packets. In a covert
channel, an attacker could use thisinconsistency to his advantage by placing data either
at the end of beginning of overlapping fragments, rendering it undetectable by NIDS that
perform incorrect (or non-existent) packet reassembly. Therereally are too many
examples of protocol variation to list. Ultimately, each protocol will have its own
idiosyncrasies, flaws, and weaknesses. An analyst will have a difficult time; how does
one detect traffic that is evasive in nature? An attacker can examine these protocol

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

weaknesses and inconsistencies in formulating a strategy in the design and use of his
covert channel.

Covert Channel Design

So where does an attacker start out when creating a covert channel? A good initial
strategy would be to try to verify if al the conditions for the existence of a possible
covert channel are true and/or applicable to the target system (assuming it is on aremote
network over the Internet):

1. The sender and receiver of the covert channel have the potential to communicate
in the system.

This addresses the existence characteristic of covert channels, there must be a path
along which information can be transmitted. The Internet is basically a public network,
every host has the potential to communicate with almost any other host aslong as aroute
exists between them. It isrelatively easy to determineif this condition istrue.
Discovering if ahost is availableisfairly straightforward using tools such as traceroute or
ping. However, if the target system is protected by network perimeter defenses (such asa
basic packet-filter) that filter certain protocols or traffic, more advanced techniques and
tools (for example, nmap, hping, firewalk) can be used to discover aternate pathways,
Subsequently, a covert channel could be created by exploiting an alternate protocol or
application that is not blocked, unless the original exploited protocol was absolutely
necessary for the attacker’s purposes.

2. Communications between the sender and receiver is not allowed under the
security policy (when relating to open systems like the Internet though, this
condition by and largeis only partially met due to lenient, poorly-enforced or
non-existent security policies).

A formal security policy may not be in place for a particular organization, but since
the purpose of a covert channel isto leak sensitive or private information, for the most
part this violates the purpose and use of any system, unlessit is ahoneynet. It is difficult
to ascertain what the security policy (assuming one exists and is enforced) of an
organization. What is relevant is that the activity of a covert channel usually is
illegitimate or invalid by that organization’s standards, formal or informal. If thereisno
security policy, the subjects using the covert channel must be in different protection
domains.

3. A globa variable existsin the system so asto be accessible by the sender and
receiver.

With the various protocols being used on the Internet, attackers have a multitude of

ways to hide information in the fields, flags, and options used to control these protocols.
Basically there are many, many potential global variables available for use in a covert

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

channel; all an attacker has to do is choose a protocol to carry the covert channel over and
discover which global variables would be best suited to carry data.

4. The sender must be able to alter the value of the global variable.

There are awide variety of easily attainable tools, APIs and other programming
interfaces that have made it considerably straightforward to develop network/protocol -
manipulating programs. For example, thereis the API libnet which allows a programmer
to inject manipulated packets onto a network. Any attacker with considerable
programming experience should easily be able to do this.

5. The change made to the global variable must be detectable/observable by the
receiver.

In order for the receiver to communicate using a given protocol, they must have the
software and/or applications to handle the protocol that contains the altered global
variable. That way the receiving process has to at least “see” the altered variable even if
doesn’t completely process that particular variable in its protocol implementation (instead
it will be processed by the attacker’s covert channel software). This condition is relatively
more difficult to confirm than the others. The sender must have in depth knowledge of
the receiver’s system, to know that the receiver has the necessary software to process the
global variable.

6. The sender and receiver must be able to synchronize their operations so that
information flow can take place.

Most protocols have built in procedures for coordination between the sender and
receiver (for example, TCP relies on acknowledgements). In fact, it is essential that the
core operability of that protocol be intact on both end systems and intermediate systems,
so that communications between the covert channel sender and receiver may take place.
The sender and receiver, however, must still coordinate the covert channel so that both
will know when the information flow begins and ends. They must also handle the
encoding and decoding of the data stored in the global variable. The availability of the
covert channel must also be considered; isit readily available at all times? Or must the
end systems be alerted so that information flow can take place? The attacker must
incorporate these mechanisms into his covert channel.

If an attacker is confident that the above conditions can be met, the next logical step
in the design of a protocol-based covert channel isto choose a protocol to carry it. It
would be futile to do an exhaustive analysis of every protocol just to seeif it isasuitable
candidate. Knowledge of a protocol’s specifications and its ambiguities is helpful and
selections can be narrowed down based on afew criteria:

1. The manipulated version of the protocol/application must not seriously affect or

be seriously affected by network or systems operations. If it did, thereisthe
possibility that the resultant traffic would exhibit overt anomal ous characteristics

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

that could be observed by the IDS analyst; also, there is the possibility that the
covert channel would drop packets in transmission. The ambiguity in the way
some protocols work contributes to this factor, since ambiguity playsarolein
NIDS evasion.

2. Theglobal variable chosen to carry the data must have enough bitsin it to handle
the “alphabet” the attacker has chosen. For example, if the attacker wanted to leak
atext file, one English character at atime, he would have to choose a global
variable that could accommodate 26 letters or at least 25 bits. The attacker must
also design an encoding/decoding scheme for the data enclosed in the global
variable.

3. Thesignal-to-noise ratio must be acceptable. This factor has more to do with
noisy covert channels than noiseless covert channels. The question is, how much
noise can the covert channel tolerate before the information being sent becomes
garbled and unreadable by areceiving system. Take for example, a covert channel
that uses UDP asits carrier; UDP does not have any mechanisms to ensure that
sent packets will reach their destination. Inevitably, some packets will belost,
regarding a covert channel, how many packets can be lost before the covert
channel losesiits effectiveness?

4. The covert channel must have sufficient privileges/permissions to operate on the
target system. For example, if the target system was a Linux box, would the
covert channel software have to be run with root privilegesin order to
communicate to system on the other end of the channel?

Probably one of the most crucia aspects of covert channels an attacker must
consider and incorporate into its design is the bandwidth. Bandwidth is how rapidly
information can be sent using the covert channel. No protocol should have a problem
handling the bandwidth requirements of a covert channel since covert channels tend to
send only bits of information at atime and unless thereis alot of congestion on the
intermediate networks, it should take only afew moments for a packet to reach its
destination. However, the purpose of a covert channel isto remain covert, so how fast or
slow should packets be sent over the covert channel should be taken into consideration.
Send packets too fast and risk being detected; on the other hand, send packets too slow
and the covert channel becomes virtually useless. The right balance must be found.

The attacker must also decide what type of information he wants to remain covert.
There are severa aspects of the covert communication that the attacker can hide which
include] 1] (Cal oyannides, 2002):

The content of the communication.

The source of the communication.

The identity of the intended recipient.

The fact that the communication is occurring in the first place.

poODNPRE

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Depending on which aspect(s) the attacker decides to hide will affect the level of
complexity of the channel, which doesn’t make it easier for the attacker, nor the analyst.
It isno easy task for the attacker to design a covert channel, there are many, many factors
he must take into consideration in order for the communications to be covert, remain
manageable, and operate within the constraints of the target system.

Actual Covert Channels

Covert channels can be implemented at amost any layer of the OSI model.
Whether an attacker chooses an application layer-based or transport layer-based channel
depends on a number of factors including their design strategy and the architecture of the
network and its systems(perimeter defenses, software architecture). The purpose of this
section isto present a few “real”” and/or potential covert channelsin the context of
protocol exploitation; these occur at different layers and show how covert channels are
not limited to just any one layer.

Bunratty Attack

The Bunratty Attack is a potential application layer covert channel that takes
advantage of Microsoft’s Messaging APl (MAPI) and is an excellent example of how a
little knowledge of asimple API can be used in a covert channel. MAPI has several
features and capabilities built into it that aren’t readily apparent to the end user that can
be exploited to secretly transmit messages in standard MAPI format (perhaps this covert
channel wants to hide the fact that communications are occurring in the first place). An
understanding of the MAPI protocol is necessary to comprehend how this all works. In
the MAPI client, the Exchange Inbox, users have access to a message store, Personal
Folders, that contains several folders (Inbox, Outbox) that the user sees as the root of the
directory architecture. In reality, Personal Folders, is one several root level folders, of
which the other folders are not visible to the end user. See accompanying
figure[6] (Gallo,2001):

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ROOT

M
M Secrethiessaces o
t
—1 MAPISP
| Search Root I""'
| FreeBusy Data IS
] i
— Top of Personal b
I
&
Inko
Calendar 'V'
i
Outhox =
i
Sent kems b
Projects I
£

The reason for implementing these hidden folders was so that messages and other data
could be stored so that they would not be accidentally damaged or seen. How are these
hidden folders useful to the attacker who wantsto exploit MAPI for usein a covert
channel? Well, the problem is, that these hidden folders make an excellent choice as a
global variable in a storage type channel; no specia encoding or decoding is needed since
these folders store standard email messages, also, the attackers isn’t really limited by the
amount of bits he can store but rather by the amount of bytes which makes for decent
bandwidth. To alter the information stored in these hidden folders, another capability of
MAPI must be exploited. MAPI uses arouting table to determine which folders messages
should be delivered to. Each message has a property known as the message class.
Depending on what message class a message has associated with it, MAPI will look at
the message class, ook up which folder that message classis associated in its routing
table, and proceed to deliver the message to the appropriate folder. For example, a
message with the message class IPM will be sent to the Inbox folder. How can all these
features be exploited in a covert channel? Let’s take for example an attacker who is
skillful in writing MAPI applications and has written a MAPI-based covert channel. On
the target system, his software has created a hidden folder called SecretMessages that is
in the root level directory. Also, the software has modified the MAPI routing table on the
target system so that any messages with message class “M SG.Secret” would be sent to
the SecretMessages folder (it doesn’t help that the message doesn’t pass through Inbox
first). If the software was capabl e, these messages could contain commands for the
remote control of that system or it could tell it to send back email messages containing
critical or sensitive data. In the end, we have a covert channel based on asimple AP,
sends datain aformat that look like standard email messages, and is amost totally
invisible to the end user.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Covert_tcp

Covert_tcp isaproof of concept covert channel that works at the transport and
network layers; it is a good example of the availability of global variables and how to
creatively use them. In particular, it uses severa fields in the TCP/IP header as global
variables for the transmission of ASCII data. Thesefields are:

1. 1P packet identification field
2. TCPinitia sequence number field
3. TCP acknowledged sequence number field

These particular fields were sel ected because they were less likely to be atered by
perimeter devices/software such as packet filters. The result is a covert channel that is not
serioudly affected by network or systems operations, which lends itself well towards
fidelous and reliable communications. They aso hide the content of communication
quite well, masquerading as packetsin initial connection requests and established
connections.

However, these fields were not meant to carry bytes and bytes of data (they
weren’t even meant to carry data), they were only meant to keep track of state which
requires only afew bits; thus only bits of data are available for the transmission of data.
Thisis enough to accommodate the al phabet of covert_tcp whichisin ASCII. As aresult,
covert_tcp’s bandwidth is only a trickle, transmitting data one ASCII character per packet
at atime. In the actual encoding/decoding scheme, the value in these fields is divided by
some number (depending on if it the packet it is containedinisan IP 1D, TCP ISN or
TCP ACK) to obtain an ASCII vaue. For example, when the IP ID field is used as the
data object for transmission, the receiver upon receipt of the packet will parsethe IP ID
field, obtain the value stored in it and divide that value by 256 to get the numerical
representation of some ASCII character, i.e. sending the word “HELLO” would result in
the following sequence of packets (these sample packets taken from
source] 8] (Rowland)):

Packet One:

18:50: 13.551117 nenesi s. psioni c.com 7180 > bl ast. psi onic.comww. S
537657344: 537657344(0) win 512 (ttl 64, id 18432)

Decoding:...(ttl 64, id 18432/256) [ASCI|: 72(H)]
Packet Two:

18:50: 14. 551117 nenesi s. psi oni c.com 51727 > bl ast. psi oni c. com www.
$1393295360: 1393295360(0) win 512 (ttl 64, id 17664)

Decoding:...(ttl 64, id 17664/256) [ASCI1: 69(E)]

Packet Three:

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18: 50: 15. 551117 nenesi s. psi oni c.com 9473 > bl ast. psi onic.comww. S
3994419200: 3994419200(0) win 512 (ttl 64, id 19456)

Decoding:...(ttl 64, id 19456/256) [ASCI|: 76(L)]

Packet Four:

18:50: 16. 551117 nenesi s. psi oni c. com 56855 > bl ast. psi oni c. com ww.
S3676635136: 3676635136(0) win 512 (ttl 64, id 19456)

Decoding:...(ttl 64, id 19456/256) [ASCII: 76(L)]

Packet Five:

18:50:17.551117 nenesi s. psioni c.com 1280 > bl ast. psi oni c.comww. S
774242304: 774242304(0) win 512 (ttl 64, id 20224)

Decoding: ... (ttl 64, id 20224/256) [ASCIl: 79(O)]

Packet Six:

18:50: 18. 551117 nenesi s. psi oni c. com 21004 > bl ast. psi oni c. com www.
S3843751936: 3843751936(0) win 512 (ttl 64, id 2560)

Decoding:...(ttl 64, id 2560/256) [ASCII: 10(Carriage Return)]

Ostensibly, these packets are part of an established TCP/IP communications session, yet
no session had ever been established.

The other methods covert_tcp uses are also based on the premise of exploiting
TCP/IPin terms of global variable usage, except that they differ in their strategiesin
getting packets to their intended destination. When the TCP initial sequence number field
isused asthe global variable, it aso transmits ASCII characters one packet at atime,
although its 32-bit size makesiit possible to send even larger amounts of data. Using this
method, all the datais sent in packets with the SYN flag set, making it appear as if
multiple connection attempts are occurring on the network. Once a packet is received, the
TCPISN field is parsed and the value in it is divided by 16777216 to obtain the ASCI|
numerical representation. No byte ordering is used when encoding datainto the ISN field,
therefore making it look “natural”.

Analysis Str ategies

What should be of concern to the IDS analyst is that protocol exploitation-based
covert channels are intentionally crafted in such away as to appear legitimate or part of
normal traffic.Unless, the analyst wants an extremely high false positive rate, he cannot
just employ signatures that ook for these covert channels, since the packets they leave
look like every other packet going across the network, normal and unassuming. For that
reason, instead of looking for characteristic imprints in packets, the IDS analyst must
search at another level. Remember, covert channels are based on sharing resources and

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the creative ways in which those resources are used to transmit information; covert
channel detection is based on this principle.

The Shared Resource Matrix Methodology (SRM) is atechnique for the
identification of potential covert channels. It can be used to identify both storage and
timing channels at several levels: English requirements, formal specifications, and
implementation code. The basis for the SRM liesin the identification of the shared
resources in a particular system, their attributes, and relations among processes that
control them. Thisinformation is then used to generate a matrix graph of those relations,
which the analyst must examine for potential covert channels.

Applying the SRM in analysisis atwo part process. The purpose of the first part
isto generate the matrix to be analyzed. Thisinvolves several steps.

1. Identify the shared resources and their attributes; these will label the rows of the
matrix.

2. ldentify the system operations that can reference and/or modify the shared
resources, these will label the columns of the matrix.

Side note: Depending on what level the SRM is applied to, the descriptions and
names on the matrix will vary accordingly. For example, if the level were at English
requirement, than labels might be “file” or “disk” as opposed to “integer” or “string”,
which might be at the implementation code level.

3. Fill inthe matrix by determining which system operations can reference and/or
modify which shared resources/attributes. Some operations can affect one or more
shared resources/attributes.

4. For any cellsnot filled in, use transitive closure to reveal indirect relations.

Sometimes, there is arelationship among operations which allows for the indirect
viewing of resource attributes. These relationships can be defined by transitive closure.
Transitive closure can be defined by the following formula:

If xRy and yRz thenx Rz

Basicaly, if thereis arelationship between x and y, and there is arelationship between'y
and z, then there is also a relationship between x and z. When applied in the Shared
Resource Matrix, this helps in the identification of complex covert channels where
certain attributes can be indirectly referenced or modified by several different operations.
The following is an example of a generic matrix:

Resource | System
Attribute | Operation
A M

B R

C R,.M

D R

E M

F R

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Where R = Reference/View the resource and M = Modify the resource

It is common for there to be more than one system operation (and thus more than one
column). However, for the sake of simplicity, only one system operation was included in
our generic matrix.

Once the matrix is generated, the second part involves actualy identifying
potential covert channels. The first step would involve identifying the shared attributes
that can be modified as well as referenced by the either the same or different system
operations. Remember, covert channels are based on global variables that can be
referenced by areceiving subject and modified by the sender; both need to have accessto
the same shared resource/attribute in order to successfully communicate, thisiswhy it
makes sense to identify attributes that can be referenced and modified by a unique
process.

The 6 conditions for a potential covert channel must also be present. First,
conditions 1-5 must be fulfilled, any attribute which does not fulfill condition 1-5 can be
ignored as being a potential covert channel. The next step isto find a scenario that fulfills
the last condition, which is “The sender and receiver must be able to synchronize their
operations so that communications can take place”. This part requires a bit of creative
thinking on behalf of the analyst. For example, to initiate communications over the
channel, does the sender first need to send UDP packets to port 123 on the receiver which
then starts the process that has access to the attribute being used as a global variable?
There are numerous possibilities as to how covert channel communications can be
initiated and synchronized which could cover awhole paper. The purposeisto find a
weak link in the system.

Once potential covert channels are identified in the generated matrix, they can
classified into severa different typeg 4](Kemmerer,2002):

1) A lega channel already exists between the two communicating processes, thereis
no cause for alarm.

2) The covert channel cannot communicate any useful information.

3) The sending and receiving processes are the same.

4) Thereisagenuine covert channel.

If the analyst believes that they have found a genuine covert channel, what do
they do next? What the analyst should be concerned with is how “effective” the covert
channel is; there are many questions to be addressed. Mainly, how much data can it carry,
what is its bandwidth (bits/sec? bytes/sec?), and what steps can be taken to limit its
bandwidth or eliminate it entirely. The reason we bring up bandwidth is that in some
cases a (potential) covert channel cannot always be eliminated. In that situation, steps are
taken to limit the bandwidth of the channel so much, so that it becomes useless.
Elimination of covert channelsis another story, how many attributes can be used as
global variables? Which processes are they associated with? In the case of protocol-based
covert channels, the easiest way to eliminate a covert channel would be to shutdown the
protocol, in amost all situations thisis not feasible.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

1)Caloyannides, Michael A. “Overview of Covert Communications through networks”
Nov. 2002

URL.: http://minbar.cs.dartmouth.edu/greecom/e eta/second-i ssue.php?downl oad=ej eta-
2002.05.10.15.51.05.pdf

2)Shiuh-Pyng Shieh (1999) “Estimating and Measuring Covert Channel Bandwidth in
Multilevel Secure Operating Systems” Journal of Information Science and Engineering
January 1999, pp.91-106

3)Paxson, Vern & Handley, Mark (2001) “Network Intrusion Detection: Evasion, Traffic
Normalization, and End-to-end Protocol Semantics” IN: Proceedings of 10™ Unix
Security Symposium August 2001

4)Kemmerer, Richard A. (2002) “A Practical Approach to Identifying Storage and
Timing Channels: Twenty Years Later” IN: Proccedings of 18™ Annual Computer
Security Applicationss Conference Dec. 9-13,2002 pp.109

5)Moskowitz, Ira S. & Kang, Myong H. (1994) “Covert Channels — Here to stay?”” IN:
Proceedings of Compass 1994 Gaithersburg, MD IEEE Computer Soc. Press. pp.235-243

6)Gallo, Vince (2001) “The Bunratty Attack” Information Security Bulletin Volume 6.
Issue 5 June 2001 pp.29-34

7)McHugh, John (2001) “Covert Channel Analysis” Navy Handbook for the Computer
Security Certification of Trusted Systems Feb 21, 2000

8)Rowland, Craig H. “Covert Channels in the TCP/IP Protocol Suite
URL: http://www.firstmonday.dk/issues/issue2_5/rowland

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ASSIGNMENT #2

DETECT #1

[**] [1:184:3] BACKDOOR Q access [**]

[Classification: Misc activity] [Priority: 3]

08/24-23:48:27.764488 255.255.255.255:31337 -> 138.97.144.53:515
TCPTTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43

R A*R** Seg: 0XO Ack: 0xO Win: OxO TcpLen: 20

[Xref => arachnids 203]

08/24-23:48:27.764488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
255.255.255.255:31337 -> 138.97.144.53:515 TCP TTL:14 TOS:0x0 I1D:0 IpLen:20 DgmLen:43
X A*R** Seq: 0O Ack: 0xO Win: 0xO TcpLen: 20

0x0000: 00000C 04 B2 330003 E3 D926 C0080045003...&...E.

0x0010: 00 2B 00 00 00 00 OE 06 FF F7 FF FF FF FF 8A 61 +............. a

0x0020: 90 35 7A 69 02 03 00 00 00 00 00 00 00 00 50 14 .5zi.......... P.

0x0030: 000006 1IFO000636B 6FOO0000 ... cko...

[**] [1:184:3] BACKDOOR Q access [**]

[Classification: Misc activity] [Priority: 3]

08/24-00:36:57.784488 255.255.255.255:31337 -> 138.97.82.198:515
TCPTTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43

R A*R** Seg: 0XO Ack: 0xO Win: OxO TcpLen: 20

[Xref => arachnids 203]

08/24-00:36:57.784488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
255.255.255.255:31337 -> 138.97.82.198:515 TCP TTL:14 TOS:0x0 1D:0 IpLen:20 DgmLen:43
x A*R Seg: OO Ack: 0xO Win: 0xO TcpLen: 20

0x0000: 0000 0C 04 B233 0003 E3 D926 C0080045003....&...E.

0x0010: 00 2B 00 00 00 00 OE 06 FF 66 FF FF FF FF8A 61 .+......f....a

0x0020: 52 C6 7A 69 02 03000000 000000000050 14 R.z.......... P.

0x0030: 00 00 43 8E 00 00 63 6B 6F 00 00 00 ..C...cko...

[**] [1:184:3] BACKDOOR Q access [**]

[Classification: Misc activity] [Priority: 3]

08/24-00:43:45.764488 255.255.255.255:31337 -> 138.97.240.167:515
TCPTTL:14 TOS:0x0 I1D:0 IpLen:20 DgmLen:43

X A*R** Seq: 0O Ack: 0xO Win: 0xO TcpLen: 20

[Xref => arachnids 203]

08/24-00:43:45.764488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 1en:0x3C
255.255.255.255:31337 -> 138.97.240.167:515 TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
R A*R** Seg: 0XO Ack: 0xO Win: OxO TcpLen: 20

0x0000: 00 000C 04 B233 0003 E3 D926 C0080045003...&...E.

0x0010: 00 2B 00 00 00 00 OE 06 FF 85 FF FF FF FF 8A 61 .+............. a

0x0020: FO A7 7A 690203 000000000000000050 14 ..zi.......... P.

0x0030: 0000 A3AD0000636B6F0O00000 ... cko...

[**] [1:184:3] BACKDOOR Q access [**]

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[Classification: Misc activity] [Priority: 3]

08/24-01:47:00.784488 255.255.255.255:31337 -> 138.97.197.230:515
TCPTTL:14 TOS:0x0 I1D:0 IpLen:20 DgmLen:43

R A*R** Seg: 0XO Ack: 0xO Win: OxO TcpLen: 20

[Xref => arachnids 203]

08/24-01:47:00.784488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 1en:0x3C
255.255.255.255:31337 -> 138.97.197.230:515 TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
R A*R** Seg: 0XO Ack: 0xO Win: OxO TcpLen: 20

0x0000: 00 000C 04 B2 330003 E3 D926 C0080045003...&...E.

0x0010: 00 2B 00 00 00 00 OE 06 FF 44 FF FF FF FF8A 61 .+......D....a

0x0020: C5 E6 7A 69020300 0000000000000050 14 ..z.......... P.

0x0030: 00 00 D1 6B 00 00 63 6B 6F 00 00 00 ...k..cko...

1. Source of Trace

The trace was obtained from the incidents.org website:
http://www.incidents.org/logs/Raw. The specific log file used was 2002.7.24.

2. Detect was generated by:

The alerts and subsequent packet dumps were generated by a Snort IDSv1.8.3
running on Windows XP Professional. All commands were issued at the DOS command
prompt. The following command was used to generate the aert.ids file and tcpdump
output file:

snort -r 2002.7.24 -c C:\snort\snort.conf -1 C:\Snort\logs.

Thisresulted in the alert.ids file and tcpdump.l0g.1049497140 files. The tcpdump file
was converted into readable ASCII format and written to atext file using the following
command:

snort -vdeX -r tcpdump.log.1049497140 > temp.txt

The rule which generated the detect is the following and isincluded in the default
backdoor.rules files with Snort:

aert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q access'; flags:A+; dsize: >1;
reference;arachnids,203;
Sid:184; classtype:misc-activity; rev:3;)

The detects were logged by this rule because they matched the 3 main criteria of therule
which were:

1)source IP address of 255.255.255.0 w/ any tcp port number going to the subnet
specified by SHOME_NET w/ any tcp port number

alert tcp 255.255.255.0/24 any -> $HOME_NET any

2)TCP flags set to at least ACK and any other flag
flags.A+;

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3) adatagram size greater than 1 byte.

dsize: >1

More specifically, al three detected packets had the same: source IP, 255.255.255.255
with TCP port 31337; TCP flags combination, ACK + RST; and datagram length of 43
bytes.

3. Probability the source address was spoofed

The source address is definitely spoofed. 255.255.255.255 is a specia type of IP
address that is known as the limited broadcast address. This addressis used when a
sender wants to direct a packet to all hosts on the local segment, this addressis not
routable and cannot be assigned to an individual host. Notice that al of the detected
packets had TCP flags RST-ACK set; a packet with these flags set is sent in response to a
SY N packet which has solicited a connection to a closed port. This suggests that the
destination hosts in all the packets had originaly tried to initiate a connection from port
515 to port 31337 on 255.255.255.255. Since a host cannot have the address
255.255.255.255, it is not possible for 255.255.255.255 to send back a response with
RST-ACK to indicate a serviceis not available; also, the sequence number for al the
packetsis set to 0 as well asthe ACK. There is some heavy TCP/IP protocol
mani pulation occurring.

4. Description of Attack

The rule which generated the detect suggests that this activity isrelated to the Q
Trojan, based on its classification (Snort I1D: 184, arachnids: 203). From the traces, it
appears asif severa print servers had been rejected from establishing connections to
255.255.255.255 on port 31337. Port 31337 does not fall within the range of well known
services (ports 1-1023), but port 515 does, it islisted as the printer port which is used by
the |pd daemon on unix systems. Did severa different hosts from the 138.97.0.0/16
network attempt to initiate communications from the same well-known port to an invalid
|P address on an ephemeral port? Thisis unlikely and uncharacteristic of a print server.
There are several things to note when first looking at the packets and their pattern. The
source IP and TCP port number do not change and always remain as
255.255.255.255:31337. The destination I1P addresses change with each packet but the
port numbers remain the same (TCP port 515). Thisis characteristic of a scan for port
515. Therefore this detect can best be described as some sort of specialized scan. Perhaps
someone trolling the 138.97.0.0/16 network for a host compromised by the Q Trojan.

5. Attack Mechanism
Initially, it appears asif this scan is useless. The nature of the packetsis not

conducive to returning a response to the attacker. The source addressis not routable and
probably spoofed, and the TCP flags used would cause the packets to be silently

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

discarded when received by a host’s TCP/IP stack. It does not seem any sort of valid
connection attempt is occurring; why attempt to connect to port 515 if no response can be
elicited? Well, if this scan does not rely on TCP/IP for aresponse, than perhapsit relies
on something else, like a response from the Q Trojan software previoudly installed on a
system (this would be the server version, known as qd). The Q Trojan (qd) is activated by
raw packets; raw packets are basically packets that are processed or created by an
application other than a host’s TCP/IP stack. Recalling the nature of the packets, they
definitely appeared NOT to come from a normal TCP/IP stack, exhibiting characteristics
that they were created by an application using raw sockets, possibly a client version to the
Q Trojan (known as gs). gs sends raw packets one-way to a Q-compromised host to
signa qd to spawn a Q secure shell or Q session bouncer that would redirect a session to
another host. Based on this further speculation, the classification of this activity asa
“specialized scan” as mentioned in the attack description above, can be upgraded and can
now be described as a “Q Trojan activation scan”. Another strange thing about the
packetsistheir payload, all of the packets payload are virtually the same and contain the
characters “cko”. One would have to know the details of the Q Trojan to know if and how
it processed this string. These packets could be the result of amodified version of gs. Pre
2.0 versions of gs did not use encryption when sending their activation payload (they
usually contained information such as which ports to connect to). The payload of these
packets appears to be in plain text, so we can surmise that if indeed thisisthe Q Trojan
client, apre 2.0 version is being used.

Ultimately, though it seems asif the Snort signature used to capture thistrafficis
too weak to confirm it is actually sent by the client side version of the Q Trojan, gs. The
Q Trojan can use TCP, UDP, or ICMP as the carrying protocol; source IP and port
number can be randomly generated and is not just limited to 255.255.255.255. However,
the traffic is unusua enough in that a scan is definitely occurring, and it exhibits
characteristics of the Q Trojan (one-way raw TCP/IP packets, irrelevant destination TCP
port numbers).

6. Correlations
This type of activity has also been seen by several members of the incidents.org

mailing list. In particular Patrick Cheong Shu Y ang posted his detect of the attack on
May 3, 2001 (http://securityfocus.com/archive/75/181909):

| have also seen the same potential intrusion from our Snort logs as
follows:-

11:05:18.603917 255.255.255.255.31337 > XXX.XXX.XXX.XX.515: R 0:3(3) ack

OwinO

0x0000 4500 002b 0000 0000 0e06 1900 ffff ffff Etn
0x0010 cab9 c914 7a69 0203 0000 0000 0000 0000 . T
0x0020 5014 0000 cd27 0000 636b 6f00 0000 P......cko...

Anyone else seen this and can anyone explain what thisis?!?!

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The traces ook identical to the ones | found with the exception of the timestamp being
different. Other members have specul ated as to exactly what kind of activity thisis, but
none have really been able to confirm what tools or software were used to generate the
activity. Jeff Peterson (http://securityfocus.com/archive/75/182215) speculated that this
might be some sort of IRC Trojan scan as he detected this activity whenever he
connected to a certain IRC. Jason Storm also speculated that this activity might be some
sort of IRC-related Trojan divulging that the IPs he detected the activity on were almost
exclusively used for IRC (http://securityfocus.com/archive/75/182245). All in al no-one
was able to confirm this activity as being the Q Trojan for certain, but there seemed to be
the general conjecture that this was some sort of IRC-related Trojan.

7. Evidence of Active Targeting

It does not seem asif any particular host was targeted in this scan. The IP
addresses scanned seem to be random; there is no pattern to the IP addresses scanned as
they seem to vary widely and there is no pattern to the time interval s between scans .
However, it does seem asif only the 138.97.0.0/16 network was targeted.
8. Severity

Severity is calculated using the following formula:
Severity = (criticality + lethality) — (System countermeasures + network countermeasures)
Criticality: 3 — Since these logs were obtained from www.incidents.org, not much is

known about the criticality of the targeted systems. Therefore we will give Criticality an
“average” score.

Lethality: 5— If this attack were successful, an attacker would be able to execute remote
commands interactively on the target system. The traffic between attacker and target
would be also be encrypted, making it difficult to ascertain what activity the attacker was
performing.

System countermeasures: 3 — Since these logs were obtained from www.incidents.org,
not much is known about what system countermeasures were in place to protect
individua hosts.

Network countermeasures. 1 — First of all, these packets were able to be detected by the
IDS. This could mean several things. These packets had to be routed by some router and
possibly afirewall meaning that they did not filter out the packets even though they had
an invalid source IP. This could signify poor ACL and firewall rules. Also, the target
network possibly has ““allow all not specifically denied” as part of their access control
policy. Thereis no reason why packets with destination TCP port 515 should be able to
get into the network, unless specifically allowed (there really isn’t any reason why
someone from outside your network should be able to print on your network).

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Severity =(3+5)-(3+1) =4.
9. Defensive Recommendations

It is apparent that the ACL and firewall rules do not block on invalid or
unroutable |P addresses. Thisis one of the first things that should be addressed, ACL and
firewalls rules should be added that block on unroutable IP addresses (such as broadcast,
and private/reserved IP addresses). Next, if possible, a “deny all not specifically allowed”
type policy should be implemented, that way people would have access only to necessary
services.

10. Multiple choice test question:

If FIRST sent to a host, which attribute(s) of the following packet is not
conducive to eliciting a response from that host?

08/24-23:48:27.764488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
255.255.255.255:31337 -> 138.97.144.53:515 TCP TTL:14 TOS:0x0 1D:0 IpLen:20 DgmLen:43
R A*R** Seg: 0XO Ack: 0xO Win: OxO TcpLen: 20

0x0000: 0000 0C 04 B233 0003 E3 D926 CO080045003...&...E.

0x0010: 00 2B 00 00 00 00 OE 06 FF F7 FF FF FF FF 8A 61 .+............. a

0x0020: 90 35 7A 69 02 03 00 00 00 00 00 00 00 00 50 14 .57i.......... P.

0x0030: 000006 1IFO0000636B 6FOO0O00O0 ... cko...

a) Source TCP port number
b) ACK-RST flags set

¢) Window sizeof 10

d) Sequence number of O

Answer: B
Intrusions.org mailing list questions and post (originally posted June 18, 2003):
Reply to Andre Comer:

How can you tell that this packet was not blocked ? Do you have information on where
the sensor was located ? What if the sensor is between the ISP edge router and afirewall
and the packet isinbound ?

What information about the packets or patterns can tell us that this packet was detected
behind afirewall? No attributes of an individual packet can tell you for sure. However,
you can infer from TTLs where the router and firewall nodes are in a network.
Depending on what the attacking system is running, TTLs can take on one of severa
values (varying from 32,64,128, etc). If you are "luckY" and there is asingle attacking
system hitting many different subnets and services. Y ou can map out where these nodes
are by looking at the TTLs, the lesser the value of the TTL from that single attackers IP,
the more internal nodes (routers, firewalls) the packet it has passed through. Y ou can get
ageneral idea of how the network looks like, where all the webservers are, dns servers,

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

workstations. Due to the criticality of the systems you can probably guess where a
firewall or IDS should
be, BUT without any sort of network topology on hand, you will never be able to tell.

Y ou seem to beleive that 138.97.0.0/16 is the IP range of the sensor owner. How did you
came to that conclusion ?

Parsing through the logs it seemed as if the 130.85.x.x |P addresses were more prevalent
than any other |P addressess or subnets, and seemed to be the target (on well known
ports) for most of the time. This does not necessarily mean that it is the home

network (and where the IDS sensor resides). However, the other 1P addressess present in
the logs varied very much, it seems too much for any one IP address or subnet to be the
home network. If 130.85 was in fact an external network than it would seem really odd
that all these different IP addressess and subnets would be scanning 130.85. So do its
prevalence the extreme variance in the other IPs/subnets in the logs, chances are 130.85 is
the home network.

Reply to Ken Claussen:

If these were indeed constructed packets, which they appear to be as you say, then why
choose a port which would likely trigger IDS systems as opposed to say 45680 (Random
High Port).

It is possible that this particular activity is due to a script kiddie who obtained some sort
of backorifice/Q scanner (or possibly even backorifice/Q itself, poor kiddie) and
proceeded to scan for port 31337. The nature of the "scan” itself does not lend well to
eliciting aresponse, possibly an amateur mistake. If this were asign of an actual
infection, | believe a"real" attacker would have made the effort to modify the trojan to
listen in on adifferent port, and the scan would have probably been much more stealthy.

Detect #2

[**] [1:579:2] RPC portmap request mountd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
06/07-18:59:15.714488 195.228.243.120:902 -> 46.5.115.153:111
UDP TTL:113 TOS:0x0 1D:9700 IpLen:20 DgmLen:84

Len: 64

06/07-18:59:10.084488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:902 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:9379 IpLen:20 DgmL en:84
Len: 64

0x0000: 0000 0C 04 B233 0003 E3 D926 C0O080045003....&...E.

0x0010: 005424 A3000071 11 D3FFC3E4 F378 2E05 .T$...g..... X..

0x0020: 73 99 03 86 00 6F 00 40 96 39 62 38 A4 AD 0000 s....0.@.9b8....

0x0030: 00 0000 000002000186 A0000000020000cceenvueeee

0x0040: 00 03000000 0000000000000000000000

0x0050: 0000000186 A500000003000000110000cevrneeee

0x0060: 00 00

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[Xref => arachnids 13]

[**] [1:579:2] RPC portmap request mountd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
06/07-18:59:45.084488 195.228.243.120:902 -> 46.5.115.153:111
UDPTTL:113 TOS:0x0 ID:11168 IpLen:20 DgmLen:84

Len: 64

06/07-18:59:10.894488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:902 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:9421 IpLen:20 DgmLen:84
Len: 64

0x0000: 00 000C 04 B2 330003 E3 D926 C0080045003...&...E.

0x0010: 005424 CD 00007111 D3 D5 C3E4F3782E05 .T$...0.....X..

0x0020: 73 99 03 86 00 6F 00 40 96 39 62 38 A4 AD 00 00 s....0.@.908....

0x0030: 00 00 00 00 0002000186 AO0O0O0000020000

0x0040: 00 03 00 00 00 00 00 00 00 00 000000000000

0x0050: 00 00000186 A50000000300000011 0000

0x0060: 00 00

[Xref => arachnids 13]

[**] [1:579:2] RPC portmap request mountd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
06/07-18:59:45.904488 195.228.243.120:902 -> 46.5.115.153:111
UDP TTL:113 TOS:0x0 1D:11207 IpLen:20 DgmLen:84

Len: 64

06/07-18:59:12.504488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:902 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:9508 IpLen:20 DgmLen:84
Len: 64

0x0000: 00 000C 04 B233 0003 E3 D926 C0080045003...&...E.

0x0010: 0054252400007111 D3 7EC3E4F378 2E 05 .T%$..9..~...X..

0x0020: 73 99 03 86 00 6F 00 40 96 39 62 38 A4 AD 0000 s....0.@.9b8....

0x0030: 00 00 00 000002000186 AO0O00000020000

0x0040: 00 03 00 00 00 00 00 00 0000 000000000000

0x0050: 00 00000186 A500000003000000110000

0x0060: 00 00

[Xref => arachnids 13]

[**] [1:579:2] RPC portmap request mountd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
06/07-18:59:47.504488 195.228.243.120:902 -> 46.5.115.153:111
UDPTTL:113 TOS:0x0 ID:11289 IpLen:20 DgmLen:84

Len: 64

06/07-18:59:15.714488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:902 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:9700 IpLen:20 DgmLen:84
Len: 64

0x0000: 0000 0C 04 B233 0003 E3 D926 C0080045003....&...E.

0x0010: 0054 25E40000 7111 D2BE C3E4F3 78 2E 05 .T%...Q......X..

0x0020: 73 99 03 86 00 6F 00 40 96 39 62 38 A4 AD 0000 s....0.@.9b8....

0x0030: 00 0000 000002000186 A0000000020000cceenvuneee

0x0040: 00 03000000 0000000000000000000000

0x0050: 0000000186 A500000003000000110000ccevnvuneee

0x0060: 00 00

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. Source of Trace

The trace was obtained from the incidents.org website:
http://www.incidents.org/logs/Raw. The specific log file used was 2002.5.7.

2. Detect was generated by:

The alerts and subsequent packet dumps were generated by a Snort IDSv1.8.3
running on Windows XP Professional. All commands were issued at the DOS command
prompt. The following command was used to generate the aert.ids file and tcpdump
output file:

snort -r 2002.5.7 -¢ C:\snort\snort.conf -I C:\Snort\logs.

Thisresulted in the aert.ids file and tcpdump.log. files. The tcpdump file was converted
into readable ASCII format and written to atext file using the following command:

snort -vdeX -r tcpdump.log.1050732052 > temp.txt

The rule which generated the detect is the following and isincluded in the default
rpc.rulesfiles with Snort v1.8.3

alert udp $EXTERNAL_NET any -> $HOME_NET 111 (msg:"RPC portmap request mountd";
content:"|01 86 A5 00 00[";offset:40;depth:8; reference:arachnids, 13; classtype:rpc-portmap-decode;
sid:579; rev:2;)

The detects were logged by this rule because they matched the 4 main criteria specified
by therule:

1) Communications were occurring using the udp protocol, with a source IP address
specified by the SEXTERNAL_NET variable on any port, going to a destination 1P
address specified by the SHOME_NET variable on port 111.

alert udp SEXTERNAL_NET any -> $HOME_NET 111

2) The payload of the packet contained certain hex data specified by the content keyword:

content:"|01 86 A5 00 00[";

3) The payload specified by content started at |east 40 bytes into the packet:

offset:40;

4) The maximum search depth is at most 8 bytes from the search point (the offset):
depth:8;

3. Probability the source address was spoofed.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The source address in the traces is probably not spoofed. Thisis probably the case
since the nature of a portmap request requires a response. Portmapper is a service that
when queried by a host, will tell that host which ports are mapped to their appropriate
services. What is unusual though is the source host is contacting the destination host on a
well-known port from a well-known port. Most of the time, the source host will
communicate from an ephemeral port as set by its |P stack. Portmapper does not require
gueries from well-known ports and there is no reason why the source should have
contacted portmapper from udp port 902 which is awell-known port. Therefore, for the
source to have set its source port to 902 would have required manipulation of the UDP
headers.

4. Description of Attack

This attack can be best described as an attempt to query the portmap service
running on a host for the rpc.mountd service. Thisis more of a reconnaissance type of
activity rather than a direct compromise of the target host. The mountd serviceis part of
the NFS (Network File System) which allows remote hosts to mount partitions from a
system and use them asif they werelocal file systems. The purpose of mountd isto
answer NFS clients requests to mount afile system and check if they have the appropriate
access permissions to the exported file systems. This type of activity could be indicative
of an attacker looking to mount an exportable file system for his own use (storage of
warez); or it could be an attacker looking to gain elevated privileges on systems running a
vulnerable version of mountd.

5. Attack mechanism

This reconnaissance activity works by sending UDP packets to the target host to
port 111, which is associated with the portmapper service. These particular packets are
meant to query the portmapper service to determine the port on which the mountd service
runs. IF the portmapper service is running and the mountd service is running on the target
host, the target host will return to the querying host the UDP port number on which to
connect and use the mountd service. The attacker cannot rely on the transport layer
protocol for responses since NFS uses UDP which is stateless. The responses and
information the attacker needs will come directly from portmapper and mountd; their
response depends totally on how they are setup.

6. Correlations

This type of activity has been seen many times by members of the incidents.org
mailing list. On June 11, 2001 (http://archives.nechapsis.com/archives/sf/linux/2001-
g2/0131.html) Brian Clifton reported this activity in his syslog logs on a system running
RedHat 6.2. In hislogs he observed multiple requests to the portmapper service,
specifically querying for the port on which mountd was running:

Jun 1 14:39:37 linux portmap[27164]: connect from 206.218.166.214 to
getport(mountd): request from unauthorized host

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jun 6 23:49:02 linux portmap[20055]: connect from 212.55.157.163 to
getport(status): request from unauthorized host

| was curious asto if | could recreate similar traces on a unix system by querying a
portmapper service for mountd and by querying a server for exportable mounts. The
following command was issued on aunix system running SunOS 5.8 and the subsequent
traces were logged by running a tcpdump (tcpdump-x —vwv -w temp) on atarget system:

mount -F nfs 192.168.1.1:/usr/data /tmp

The following packets were logged:

01:42:28.503583 sentry3b.33683 > 192.168.1.1.sunrPc: udp 56 (DF) (ttl 255, id 63804, len 84)
0x0000 4500 0054 f93c 4000 ff11 e89e 8ch9 4b5a E..T.<@......KZ

0x0010 c0a8 0101 8393 006f 0040 89c2 3eaf Obda 0.@..>...

0x0020 0000 0000 0000 0002 0001 8620 0000 0002................

0x0030 000OOOO30000 ...

01:42:43.504758 sentry3h.33683 > 192.168.1.1.sunrPc: udp 56 (DF) (ttl 255, id 63805, len 84)
00000 4500 0054 f93d 4000 11 e89d 8cb9 4b5a E..T.=@......KZ

0x0010 c0a8 0101 8393 006f 0040 89¢2 3eaf Obda0.@..>...

0x0020 0000 0000 0000 0002 0001 8620 0000 0002...............

0x0030 0000 0003 0000

These packets will match on newer snort (included in v2.0) rules meant to catch RPC
portmap request mountd scans, this signature is more specific, the content portion of the
rule has changed:

content:"|00 01 86 AQ["; offset:12; depth:4; content:"|[00 00 00 03|"; distance:4; within:4;
byte jump:4,4,relative,aign; byte jump:4,4,relative,align; content:"|00 01 86 A5[";

The content matches are highlighted in red in the packets. Only a portion of the packets
were logged because the default snaplength of 68 bytes was used. Thisiswhy we do not
see the last hex content search string of oo o1 86 A5 in these packets When the tcpdump log
that the original detects came from are run through a Snort 2.0 ruleset they also aert on
“RPC portmap request mountd” on the same traffic, here is a snippet of the aert file:

[**] [1:579:2] RPC portmap request mountd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
06/07-18:59:10.084488 195.228.243.120:902 -> 46.5.115.153:111
UDP TTL:113 TOS:0x0 ID:9379 IpLen:20 DgmLen:84

Len: 56

[Xref => http://www.whitehats.com/info/|DS13]

[**] [1:579:2] RPC portmap request mountd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
06/07-18:59:10.894488 195.228.243.120:902 -> 46.5.115.153:111
UDPTTL:113 TOS:0x0 ID:9421 IpLen:20 DgmLen:84

Len: 56

[Xref => http://www.whitehats.com/info/IDS13]

[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

06/07-18:59:12.504488 195.228.243.120:902 -> 46.5.115.153:111
UDP TTL:113 TOS:0x0 1D:9508 IpLen:20 DgmLen:84

Len: 56

[Xref => http://www.whitehats.com/info/|DS13]

This substantiates that this activity is almost certainly portmapper scans for mountd.
7. Evidence of Active Targeting

The only host that was targeted by the RPC mountd scans was 46.5.115.153. This
destination IP did not trigger on any other alerts nor was there any other alert generated
by the source IP 195.228.243.120. Therefore it seems asif these scan were very specific
in their target.
8. Severity

Severity is calculated using the following formula:
Severity = (criticality + lethality) — (system countermeasures + network countermeasures)
Criticality: 3 — Since these logs were obtained from www.incidents.org, not much is

known about the criticality of the targeted systems. Therefore we will give Criticality an
“average” score.

Lethality: 1 — The activity in question will not result in the compromise or elevation of
privileges on the target system. However, any positive responses elicited from the target
will result in the attacker gaining knowledge about if the mountd serviceis running. The
attacker can then take further action such as trying to mount an exportable partition or
finding a vulnerability for mountd.

System Countermeasures: 2 — These traces were obtained from www.incidents.org, so not
much is known about what system countermeasures are in place to protect the host from
this particular activity. Thereis one thing to note though in favor of the target system.
The attacker sent several requests to the portmapper service over atime period of severd
seconds, this could indicate that he was not able to elicit a response due to portmapper or
mountd not running on the target system.

Network Countermeasures: 1 — After briefly viewing analyzing the tcpdump log from
which these detects came, it is apparent that the target network is not well protected.
Thereisavariety of activity detected by Snort which could have easily been blocked by a
firewall, such asinvalid ip addresses (255.255.255.255) and reflexive TCP ports (port
80).

Severity = (3+1) - (2+1) =1

9. Defensive recommendations

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Unless allowed by the security policy, it is not wise to allow incoming
connections to portmapper/mountd. If any stranger was allowed to mount an exportable
share from the target system, he could use it to store his own files, or possibly fill up the
hard drive on the target system causing some sort of storage DOS. Not to mention there
are also various vulnerabilities in mountd (remote command execution, root-account
creation). The first course of action | would recommend be to block incoming TCP/UDP
connections to the portmapper port either in arouter ACL or afirewall. However, if the
network mandates that the NFS service be able to external users, there are afew steps one
can take to tighten down NFS and limit its usage only to legitimate users.

Most of what can be done to secure and restrict access to NFS can be achieved
through modifying the /etc/exportsfile. To restrict access to an NFS file system by IP
address, just specify the IP address after the partition’s entry in /etc/exports for example,
to restrict access to the /home directory to 192.168.1.101 the entry would look like:

/home 192.168.1.101

To prevent an NFS client from mounting an NFS file system on the server, one can add
the parameter “secure” to an item in /etc/exports:

/home 192.168.1.101(secure)

To restrict permissions on an NFS file system specify the permissions on that particular
item in /etc/exports:

/home 192.168.1.101(ro)

Thislist isnot al inclusive, there are various other waysto lock down NFS. Common
sense a so takes precedence too, patches must applied to the system running NFS and to
NFS aswell.

10. Multiple choice test question
Regarding these traces, the portmapper service which operates over UDP:

a) Likeevery other network service/daemon on ahost, requires that clients connect
from awell-known port (in this it would be port 902)

b) Like every other network service/daemon on a host depends on the transport
layer’s (UDP) functions to send back a response

c) Likeevery other UDP-based network service/daemon on a host depends on that
particular application to respond to clients’ requests.

d) Like every other UDP-based network service/daemon on a host, will not respond
to clients connecting from a well-known port.

ANSWER: C

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2004,

DETECT #3

07/10-14:21:43.515473 [**] [1:1070:5] WEB-MISC webdav search access[**] [Clas

sification: access to a potentially vulnerable web application] [Priority: 2] {

TCP} 216.127.202.112:3603 -> small.isp.net:80

07/10-14:21:43.515473 216.127.202.112:3603 -> small.isp.net:80
TCPTTL:112 TOS:0x0 1D:9586 IpLen:20 DgmLen:1420 DF
*Rk Ax*RE Seg: 0xX11C8464 Ack: OXD65F53FB Win: 0x2058 Tcplen: 20

534541524348202F4141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
TRUNCATED FOR LENGTH

07/10-14:21:43.515477 [**] [1:1070:5] WEB-MISC webdav search access [**] [Clas

SEARCH /AAAAAAAA

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

sification: access to a potentially vulnerable web application] [Priority: 2] {

TCP} 216.127.202.112:3603 -> small.isp.net:80

07/10-14:21:43.515477 216.127.202.112:3603 -> small.isp.net:80
TCPTTL:112 TOS:0x0 1D:9586 IpLen:20 DgmLen:1420 DF
*rx Arxxk Se: 0x11C8464 Ack: OXDB5F53FB Win: 0x2058 TcpLen: 20

534541524348202F4141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141

SEARCH /AAAAAAAA

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

As part of GIAC practical repository.

Author retains full rights.

© SANS Institute 2004,

41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
TRUNCATED FOR LENGTH

1.Source of Trace

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

These logs were obtained with permission from aformer employer (asmall ISP
and hosting company) whom | had set up an IDS system for. The packet captures are
truncated, otherwise they would have taken up much more space.

2. Detect was generated by:

The alerts and subsequent packet dumps were generated by a Snort IDSv2.0.0
running on RedHat 7.2. The alert file was readily available, however the Snort log file

was still in binary format and was read into an ASCI| text file using the following

command:

snort —r snort.log > detect.txt

The rule which generated this dert is the following and is included in the default ruleset

with Snort v2.0.0:

aert tcp SEXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC WebDAV
search access'; flow:to_server,established; content: "SEARCH "; depth: 8; nocase;reference:arachnids,474;
classtype:web-application-activity; sid:1070; rev:6;)

As part of GIAC practical repository.

Author retains full rights.

The ISP did have Windows 11S servers on their network but only very few, thusthisrule
and several others were examined and customized slightly. But core criteria remained
essentially the same, this resulted in the following rule:

aert tcp SEXTERNAL_NET any -> $HOME_NET 80 (msg:"WEB-MISC WebDAV search access';
flow:to_server,established; content: "SEARCH "; depth: 8; nocase;reference:arachnids,474; classtype:web-
application-activity; sid:1070; rev:6;)

The detects were logged by this rule because they matched the 5 main criteria specified
by therule:

1) Communications were occurring using the tcp protocol, with a source IP address
specified by the SEXTERNAL_NET variable on any port, going to adestination IP
address specified by the SHOME_NET variable on destination port 80

aert tcp $SEXTERNAL_NET any -> $HOME_NET 80

2) The payload of the packet contained certain ASCII data specified by the content
keyword:

content:"SEARCH";

3) The ASCII content specified is matched, case insensitive

NOCasE;

4) The maximum search depth is at most 8 bytes from the search point (beginning of
payload data):

depth:8;

5) The traffic flow of the packet is towards the SHOME_NET subnet, and the traffic is
part of an established session (A+ flags set):

flow:to_server,established;

3.Probability the source address was spoofed:

This particular exploit could be used for either reconnai ssance or a denial -of -
service attack. In this particular detect it appears that the attacker chose to attempt a
denial-of-service attack. Therefore it would be logical for the attacker to spoof the source
address, avoiding discovery just in case the target system’s administrators had procedures
for maintaining an audit trail.

4.Description of the attack:

This particular attack appears to be a buffer overflow targeting Microsoft 11S
WebDAYV feature, more specifically the SEARCH request feature.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5. Attack Mechanism

The Snort rule that captured this detect suggests that could be one of two
activities: recon activity or DoS (http://www.snort.org/snort-db/sid.html ?sid=1070). It
does not appear that this attack requires any specialized tools or software to use.
Apparently, it can be as simple as typing in a URL request in abrowser aimed at the
target system. First, there would have to be an established web session between the
attacker and the target. The basic URL request an attacker would have to make is for
“SEARCH”, which when processed by vulnerable 11S (running WebDAV) systems could
potentially return adirectory listing on that server. This URL could look like:
http://ww.target.conl SEARCH . When the attacker wants to exploit the
DoS capability of this vulnerability which iswhat appears to be happening in this detect,
all they would have to do is append an exceptionally long string of repeated characters to
the “SEARCH” query which could result in IIS restarting. In this particular detect, the
attacker chose to append a long string of the repeated character “A”. The reason that this
particular vulnerability existsis because there is an unchecked buffer in ntll.dll (astring
handling API routinein ntll.dll) and in a Windows component used by WebDAYV (for
more information:
http://www.microsoft.com/technet/treeview/defaul t.asp?url =/technet/security/bulletin/ms
03-007.asp). In the actual mechanism of an attack, arequest is made to the 11S server.
Some of these requests are actually extensions to basic HTTP requests (GET, POST) and
include requests such as. PROPFIND, LOCK or SEARCH. Thisrequest is processed by
the function GetFileAttributesExW, which calls the function
RtlDosPathNameToNtPathName U, which is exported by the ntll.dll. The WebDAV
request is not limited in the length of the filename it can request;
RtIDosPathNameToNtPathName U depends on unsigned shorts for string lengths and
thus the string cannot be more than 65535 bytes long. The vulnerability depends on this
string being at least 65536 bytes long. (http://www.nextgenss.com/papers/ms03-007-

ntdll.pdf).

6. Correlations

This particular vulnerability was alerted on by SANS
(http://www.sans.org/webcasts/031803.php) which then put out an informative flash
broadcast describing the vulnerability, known and theoretical exploits, and defensive
recommendations (. ISS’s X-force was able to capture several detects which in the
webdav request contained the “ccjs”. It was also suggested that a character sled of “N”’s
could be used to perform a buffer overflow attack against WebDAV enabled 11S 5.0
servers. George Guninski (www.guninski.com) also posted code on the Bugtraq for a
buffer overflow against the SEARCH method
(http://www.securityfocus.com/archive/1/169837).

A search through several prominent websites, mailing lists and forums (including
bugtraqg, incidents.org, insecure.org, whitehats.com) did not reveal any detects similar to
this one. Unfortunately, only the first packet was available in the logs so it is not known
whether the attacker tried to append a command at the end of the “A” character sled

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

which is acommon characteristic of buffer overflow attacks. This detect would have to
be classified as an attempted DoS.

7. Evidence of active targeting:
This particular detect was directed towards the ISP’s network, however the
machine it did hit was running a hardened Unix system that wasn’t running any http

services. Since this particular attack is intended for Windows machines running
WebDAV -enabled IIS 5.0, it would have to be classified as a probable “wrong number”.

8. Severity:

Severity is calculated using the following formula:
Severity = (criticality + lethality) — (System countermeasures + network countermeasures)
Criticality: 2— Thetarget system was one of several Unix servers running mail services.
Lethality: 1 — The target system would never be susceptible to this attack, since the attack
isintended for Windows systems running a particular application and the target systemis
aUnix system.
System Countermeasures. 4 — The targeted system was a Unix system with al necessary
services shut off and with tcp wrappers wrapped around the necessary applications and

services.

Network Countermeasures: 3 — This particular network has an IDS system and asimple
packet filtering firewall with very few rules enabled

Severity = (2+1) — (4+3)=-4
9. Defensive Recommendations

This attack hit a Unix system that was invulnerable to the vulnerability. However,
there do reside vulnerable Windows I1S 5.0 systems on the network, and several steps can
be taken to protect against this attack as suggested by SANS:

e Apply the Microsoft patch (M S03-07) to vulnerable systems
e Disable WebDAV
e Redtrict the URL buffer size to recommended size (16kb)

10. Multiple choice test question:

07/10-14:21:43.515477 216.127.202.112:3603 -> small.isp.net:80
TCPTTL:112 TOS:0x0 1D:9586 IpLen:20 DgmLen:1420 DF

*Rk AKERE Se: 0xX11C8464 Ack: OXD65F53FB Win: 0x2058 TcplLen: 20
5345415243 48 20 2F 41 41 41 41 41 41 41 41 SEARCH /AAAAAAAA

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2004,

41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

Which of the following is most likely in the trace above?

a) A scanfor I1S5.0 webservers
b) A request for adirectory listing

c) A buffer overflow attempt using non-standard http request
d) A buffer overflow attempt using a standard http request

ANSWER: C

As part of GIAC practical repository.

Author retains full rights.

ASSIGNMENT #3

Executive Summary

A security audit was provided at the request of the University based on severa
days’ worth of aert, scans, and oos logs. Several custom Java programs were written to
process through these logs and mine relevant information that would be useful in the
anaysis. This datawas analyzed and the analysis divided into two categories. Volume
Analysis and Severity Analysis, of which severa interesting patterns and detects were
discovered. However, the analysis was only of limited value due to the fact that only
Snort alert logs, Scans logs, and OOS logs were provided. Additional verification of
actual attacks would have occurred and would have been much more effective had the
University provided information about the network topology and had provided payload
data, which would have greatly aided in the confirmation of suspect alerts. Nonetheless,
defensive recommendations were made as best as possible given the data.

Files Analyzed

The University provided five consecutive days’ worth of log files to be analyzed:
April 18, 2003 through April 22, 2003, it should be noted however that for the OOS logs,
the date suggested by log file name did not correspond to the timestamp and dates as
reported IN the log file. For example, the name suggested by log file
OOS Report_2003 04 19 8227 implied that the data contained within was for the 19"
of April, however, only at the end of the log file would you find avery small amount of
datafor the 19™. The rest of the file (over 90%) contained data for the 18" as suggested
by timestamps. This was the case for the rest of the OOS logs, therefore the data
suggested by the log file name actually contains data for the previous day. That said, the
log files were analyzed were:

ALERT

PORTSCAN

00s

alert.030418

scans.030418

OOS_Report_2003 04_19 8227

alert.030419

scans.030419

OOS Report 2003 04 20 8227

alert.030420

scans.030420

OOS_Report_2003 04 21 8227

aert.030421

scans.030421

OOS Report_2003 04 22 8227

alert.030422

scans.030422

OOS_Report_2003 04 23 8227

It is recommended that the next time files are provided by the University that packet
dumps are included as well so that a more complete analysis can occur. The reason for
this request is because for the files provided, especially the dert files, the only way to
confirm whether an alert was triggered by an actual attack or is afalse positiveisto view
the packet payload. Otherwise, there is no way tell whether an attack actually occurred

and the analyst must make some assumptions that he would not have normally.

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

Analysis Description

Thefirst step in the analysis process involved the devel opment of custom Java
programs that could parse through each of the different types of logs (alerts, scans, and
OOS logs) provided by the university. In al, 3 java programs were devel oped:
Scans.java, Alert.java, and OOS.java. The purpose of these programs was to compute
various statistics such as total counts and unique counts, and also to find any relationships
among the various | P addresses that generated these logs. However several issues had to
be addressed when coding since there were several problems with the logs. One of the
first issues addressed in writing these programs was log corruption, some of the logs
appeared to be corrupted, with missing destination IPs, and incomplete log entries. Each
of these programs was customized to handle these inconsistencies by ignoring corrupted
entries and not including them in the final statistics. The next issue addressed was
inconsistent log format, particularly for the snort generated Alerts; more specifically,
some alert entries would not be followed by source and destination | P addresses,
particularly “spp portscan” alerts; this was accounted for by including those specific
alertsin the statistics for the number of aerts but not including them in statistics for
source and destination |P addresses.

After these issues were addressed and coded for the next phase entailed
organizing the provided files for analysis by the programs. As stated before, 5 days worth
of logs was provided by the University for analysis, these were concatenated together
according to whether they were Alerts, Scans or OOS logs.

1. Togeneratethefileto be analyzed by Alertsjavathe aertsfileswere
concatenated together by using the command:

cat alert.030418 alert. 030419 al ert. 030420 al ert. 030421 alert. 030422
> al ertapr 18t hru22.t xt

2. Togenerate thefileto be analyzed by Scans,javathe scansfiles were
concatenated together by using the command:

cat scans. 030418 scans. 030419 scans. 030420 scans. 030421 scans. 030422
> scansapr 18t hru22. t xt

3. To generate the file to be analyzed by oos.javathe oos files were concatenated
together by using the command:

Cat OOS_Report_2003_04_19_8227 OOS_Report_2003_04_20_16512
OO0S_Report _2003_04_21 32071 OOS_Report_2003_04_22_9834
O0S_Report _2003_04_23 30637 oosapr 18t hru22. t xt

Each of the resulting files were then analyzed by their appropriate programs to generate
statistics:

1. java Alert alertapr18thru22.txt

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. java Scans scansapr 18t hru22.t xt
3. java Scans oosapr 18t hru22.t xt

The resulting output can be found later in the Analysis section of this report and source
code for al the programs can be found in the Reference section.

Once al pertinent statistics were generated, focus shifted to analysis. Analysis
was performed on the concatenated files as a whole except in afew specified instances.
The output was then analyzed and several key pieces of information were then extracted
from these statistics. These include from across the board: the most prevalent source and
destination IP addresses, the most prevaent aerts, the most accessed well-known ports
(external and internal), the most accessed ephemeral ports (external and internal), and
other custom ones according to log file type.

The next step consisted of constructing a volume and severity matrices; these
were based on which 1P addresses were conducting scans, triggering aerts, and
producing OOS packets. The matrices were used to determine: the volume of
attacks/scang/targets and which IP addresses, especially external, were conducting the
most complex attacks. Complex meaning how many and the variety of alerts triggered;
the amount of scans and the portstargeted, if there are scans aswell as alerts, and a
variety of other factors. The purposeis to discover how many and if any concerted efforts
are being directed toward the University’s network. Emphasis was not placed on the
number of times a particular aert occurred but on what other aertsit aerted with. For
example, if there are 100 instances of a particular alert towards a host does it mean that a
hacker tried the same attack 100 times? The odds are that they are the result of false
positives stemming from normal traffic and poor signatures or misconfigured devices.
Activity that would probably be indicative of a genuine attacker, would include varied
attacks and activity against asingle IP, not the same attack 100 timesin arow (unlessitis
an attacker scanning arange of addresses). The analysis was based on that conjecture,
thus one of the goals was to find correlation among the different types of logs. For
example, did the attacker scan the target host to discover which services were available
(detected in the scans 10gs), then try sending Out-of-spec packets to try to discover host
OS (detected in the OOS logs), and then finally try specific attacks based on his findings
(detected in the aert logs). In constructing the matrix, the most complex attacks were
hand-picked from the statistics generated from the custom java programs. Although the
complexity can perhaps be viewed as subjective, it is the analyst’s personal opinion that
severity based on complexity is better than severity based on the volume of attacks.

Volume analysis

A top talkers list was generated based on each and/or a combination of the log
files provided. There were several objectivesin doing this. Thefirst objective was to
discover the most active attackers. The second objective was to discover which hosts on
the University’s network were most actively targeted by scans. The third objective was to
determine what were the most popular targeted ports.

To achieve thefirst objective, the top 10 attackers were determined by counting
their number of log entries in the concatenated scans log file.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Scans— Top 10 Active External Source IPs | Count
1. 146.164.34.42 12962
2. 193.11.250.21 11323
3. 213.84.229.115 10926
4. 217.40.73.165 10374
5. 217.70.4.246 9202
6. 216.137.3.107 8838
7. 81.56.209.187 7212
8. 152.1.193.6 6750
9. 158.36.40.5 4122
10. 80.14.15.28 3010

The top 10 scanning external source IPs were listed so that the University may identify
and block the most active |Ps/subnets that had no legitimate reason for their scanning. It
isinteresting to note that volume of scans did not correlate with period of time over
which the scanning occurred; overall scanning occurred anywhere from arange of 30
minutes to afew hours. The top two I1Ps 146.164.34.42 and 193.11.250.21 each scanned
for avery short period of time, approximately 30 minutes, and both scanned alarge
portion of the University’s class B subnet for TCP port 443. Of particular note,
213.84.229.115 scanned for 13 hours straight beginning at approximately 1500hours on
April 19" endi ng approximately 0400hours on Apiril 20" Apparently, the only IP being
scanned was 130.85.195.163 which was the top targeted internal destination I1P. Scanning
activity for this pair included many packets with odd or invalid TCP flag combinations
(esp. null scans— TCP packets with no TCP flags set) directed towards 130.85.195.163,
but oddly enough this did not show up in the OOS logs. Here is a snippet of that traffic:

Apr 19 15:01:42 213.84.229.115:0 -> 130.85.195.163: 0 NULL ******=*x*

Apr 19 15:01:47 213.84.229.115:0 -> 130.85.195.163: 0 NULL ******=*x*

Apr 19 15:01:52 213.84.229.115:0 -> 130.85.195.163: 0 NULL ***#***xx

Apr 19 15:01:55 213.84.229.115:0 -> 130.85.195.163: 0 NULL ***#***xx

Apr 19 15:01:55 213. 84.229. 115: 59479 -> 130. 85. 195. 163: 2829 | NVALI DACK
*2*AFRF

Apr 19 15:01:58 213.84.229.115:0 -> 130.85.195.163: 0 NULL *****x*x*

Apr 19 15:02:01 213.84.229.115:0 -> 130.85.195.163: 0 NULL ***#***xx

Apr 19 15:02: 03 213. 84.229. 115: 58680 -> 130. 85. 195. 163: 41436 UNKNOWN
12UA**** R

Apr 19 15:02:04 213. 84.229.115:0 -> 130. 85. 195. 163:
Apr 19 15:02:12 213.84.229.115:0 -> 130. 85. 195. 163:

o NULL *kkkkkkk*%
0
Apr 19 15:02: 14 213.84.229.115:0 -> 130. 85. 195. 163:
0
0
3

NULL kkkkkkk*x
NULL kkkkkkk*x
NULL kkkkkkk*x
NULL *kkkkkk%x
63: 47254 SYNFIN

Apr 19 15:02:20 213.84.229.115:0 -> 130. 85. 195. 163:
Apr 19 15:02:22 213. 84.229.115:0 -> 130. 85. 195. 163:
Apr 19 15:02: 24 213. 84. 229. 115: 34946 -> 130. 85. 195.
1*****8': RE

Apr 19 15:02:31 213.84.229.115:0 -> 130.85.195.163: 0 NULL ***=***xx
Apr 19 15:02:46 213.84.229.115:0 -> 130.85.195.163: 0 NULL ***=***xx
Apr 19 15:02: 46 213.84.229. 115: 46267 -> 130. 85. 195. 163: 58600 FULLXMAS
* 2UAPRSF

POOOOO

The fact that this IP was able to scan for so many hours is possibly indicative of a poor
security policy, poor perimeter security, or no human intervention, this was noted in the
defensive recommendations section. The other 1Ps that recorded short targeted scans were

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

also recommended as possible candidates to be blocked by a perimeter device, these are:
217.40.73.165, 81.56.209.187, 152.1.193.6, 158.36.40.5, and 80.14.15.28. It should be
noted that though unlikely, it is possible that some IPsin thislist may not actually be
scanning and the activity detected could be a part of normal network activity.

To achieve the second objective, the top 10 internal scan targets were determined
by counting their number of log entries in the concatenated scans log file.

Scans— Top 10 Targeted Internal Destination IPs | Count
130.85.195.163 10928
130.85.203.230 6752
130.85.208.222 428
130.85.249.194 417
130.85.87.244 325
130.85.194.223 289
130.85.236.146 200
130.85.220.178 197
130.85.24.22 190
130.85.196.171 128

Thetop 10 targeted internal destination 1Ps were listed so that the University may
identify those internal hosts which are the most targeted by outside attackers and take
steps to mitigate the risk against those hosts. There are several interesting things to note.
130.85.195.163 and 130.85.203.230 appear to be much more targeted hosts than others
on the list, with counts in the thousands as opposed to the other 1Ps which had countsin
the hundreds. 130.85.195.163 was the target of extended https scans with odd TCP flags
combinations. The number two targeted internal 1P 130.85.203.230 was the target of
SY N scansfor relatively high ephemeral ports, possibly indicative of a scan for a
trojaned host. Grepping through the alert or oos files did not reveal any evidence of
returned responses, but that does not mean there are no hosts infected with avirus or
trojaned. However, that could also depend on the type of signatures that are deployed on
sensors, especially one that ook for signs of infected or trojaned hosts. There are 3389
unique internal destination IPs in the concatenated scans log which means that 1Ps that
are NOT in thetop 10 list have only been scanned at most several hundred times. This
could indicate that the top 10 hosts: are some sort of high-volume servers and that the
scanning activity is legitimate(consultation with the University’s systems administrators
are necessary to confirm this), are favorite targets of hackers, are relatively unprotected
when compared to other hosts, and/or are the target of a DOS attack. It should be noted
that some IPsin thislist may not be scan targets are but the scanning activity detected
could be a part of normal network activity.

To achieve thefirst part of the third objective, the top 10 targeted well-known
ports were determined by counting the number of log entries in the concatenated scans

log file.

Scans — Top 10 targeted Internal Well-Known ports | Count
443 25432
445 22417

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

139 16782
80 13892
0 8791
21 5795
135 3541
25 1468
22 164
110 93

The top 10 targeted well-known ports were listed to get an idea of the type of activity
present on the network (many “scans” could actually be due to legitimate activity from
chatty protocols), to discover if any particular services were being targeted, to discover if
there were any strange ports being accessed, and to get an idea of the security policy as
applied to network perimeter security devices. There does not appear to be anything
terribly unusual about which ports were being scanned. There were 180 unique internal
destination well-known ports scanned. The number one port being scanned was port 443
which carries https traffic over TCP. Scans for port 443 were short and targeted,
occurring al in one day, April 20™. Other target ports include 135,139, and 445 which are
used for Windows NetBIOS; 80 which is used to carry http traffic; 0, which is commonly
associated with fragmented traffic; 21, which is the command port for ftp; 22, which
carries ssh; 25, which carries smtp traffic; and 110 which is used for mail retrieval using
the POP3 protocol. Consultation with the University’s systems administrators are
necessary to determine if any of these ports should be open to the public, though they
seemed normal because all carried traffic associated with normally used web-
applications.

To achieve the second part of the third objective, The top 10 targeted ephemeral
ports were determined by counting the number of log entries in the concatenated scans

log file.

Scans— Top 10 targeted Internal Ephemeral ports | Count
1433 23277
4000 2603
1080 1794
8080 1785
3128 1773
6588 1762
4588 1744
3389 1562
6346 1258
6112 942

Thetop 10 targeted ephemeral ports were listed to discover any potential

Trojan/backdoor ports, as many use high-numbered ephemeral ports. Severa of the ports
scanned are worthy of note. Port 1433 is the port for Microsoft’s SQLserver which was
the target of the SQLslammer worm earlier in the year. While grepping through the aert
filefor aerts on port 1433, there did not appear to be any attacks aimed specifically at the

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MS-SQLserver application. However, that could be due to there were no signatures
employed to detect SQL specific attacks. This was the only scan which was in the tens of
thousands. Second in volume was port 4000 used by Terabase, which is a search engine
for highly complex databases; this activity could be explained by the fact that many
universities house large databases, especially in departments which are involved in any
type of research whose data either needs to be publicly accessible or exchanged with
other ingtitutions, of course consultation with the systems administratorsis needed to
confirm this conjecture. Other services to note (as implied by their port number) include:
http-proxy, squid-proxy, socks-proxy, gnutella, dtscpd, and ms-wbt-server. Many scans
in the log seemed like they could have easily been blocked at arouter (using ACLS) or
simple packet filtering firewall. Many of the ports that were able to get through it seems,
should not be allowed by a “Deny all not specifically allowed” security policy (proxy
ports, Gnutella). This observation is noted in the “Defensive Recommendations” section.

Severity Analysis

A different approach was used when analyzing the alertsfiles; in addition to
counting the volume of alerts (counting can only tell so much as sometimes al it takesis
one packet to successfully compromise a host), |Ps were selected by the variety and
seriousness (results in compromise, or symptoms of compromise) of alerts they triggered
on, this approach was taken in the hopes of finding the most serious attackers who were
willing to try more than one method of attack and had a strategy of attack. Another goal
was to find internal hosts that were possibly infected by avirus, trojaned, or
communicating via covert channel. They were hand picked by manually parsing through
the output generated by the Alerts.java program on the concatenated Alerts file. The three
categories that were of most concern were Internal Source IPs, Internal Destination IPs,
and Externa Source IPs. An Alert Analysis was then performed as part of the Severity
Analysisto help find authentic attacks. An attempt to find correlation with the other types
of log files was a so incorporated to help find authentic attacks.

MY .NET.97.88 o |DS552/web-iis 1ISI1SAPI Overflow idaINTERNAL 40
nosize
e NIMDA - Attempt to execute cmd from campus host 7
MY .NET.97.191 e NIMDA - Attempt to execute cmd from campus host 2
o |DS552/web-iis 1IS1SAPI Overflow idaINTERNAL 3
nosize
e spp_http_decode: 11S Unicode attack detected 4
MY.NET.251.70 e spp_http_decode: 11S Unicode attack detected 19
e spp_http_decode: CGI Null Byte attack detected 1
e High port 65535 udp - possible Red Worm - traffic 3
e TFTP- Internal TCP connection to external tftp server 1556

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MY .NET.98.35 o |DS552/web-iis IISI1SAPI Overflow idaINTERNAL 4
nosize
e NIMDA - Attempt to execute cmd from campus host 1
MY .NET.201.106 e spp_http decode: CGI Null Byte attack detected 2
e spp_http_decode: 11S Unicode attack detected 14
e TFTP - Internal TCP connection to external tftp server 11
e High port 65535 tcp - possible Red Worm — traffic 12
e High port 65535 udp - possible Red Worm — traffic 4
213.84.229.115 e Null scan! 9229
e Probable NMAP fingerprint attempt 116
e SYN-FIN scan! 21
e Queso fingerprint 15
e High port 65535 tcp - possible Red Worm — traffic 8
219.52.154.110 e Null scan! 294
e Queso fingerprint 2
e High port 65535 tcp - possible Red Worm — traffic 2
e SYN-FIN scan! 1
24.159.126.37 e Externa RPC call 1
e connect to 515 from outside 1
e Possibletrojan server activity 16
131.118.254.130 e EXPLOIT x86 setgid 0 3
o EXPLOIT x86 NOOP 68
e EXPLOIT x86 setuid 0 2
o EXPLOIT x86 steath noop 11
66.196.72.55 e CSWEBSERVER - externa web traffic 25
e MY.NET.30.4 activity
MY .NET.195.163 e Null scan! 9224
e Probable NMAP fingerprint attempt 116
e SYN-FIN scan! 21
e Queso fingerprint 15
e High port 65535 tcp - possible Red Worm - traffic 6

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

e SMB Name Wildcard 4
MY .NET.24.47 e SMB Name Wildcard 10

e FTP passwd attempt 7

e Queso fingerprint 2

e FTPDoS ftpd globbing 1
MY .NET.24.23 e Watchlist 000220 IL-ISDNNET-990517 2

e Queso fingerprint 100

e SMB Name Wildcard 72

e High port 65535 tcp - possible Red Worm - traffic 2

e Bugbear@MM virusin SMTP 1
MY .NET.205.118 e EXPLOIT x86 setgid 0 1

e SMB Name Wildcard 18

e High port 65535 udp - possible Red Worm - traffic 2

o EXPLOIT x86 setuid 0 3

e [UMBC NIDSIRC Alert] IRC user /kill detected, 1

possible trojan.

e EXPLOIT identd overflow 12156
MY .NET.225.66 e SMB Name Wildcard 236

e spp_http_decode: CGI Null Byte attack detected 61

e spp_http_decode: 11S Unicode attack detected 323

e Watchlist 000220 IL-ISDNNET-990517 227

e Queso fingerprint 22

e TFTP- Interna TCP connection to external tftp server 4

e Possibletrojan server activity 8

e NMAP TCP ping! 1

e High port 65535 tcp - possible Red Worm - traffic 2

e EXPLOIT x86 setgid O 1

e EXPLOIT x86 setuid 0 1

Alert Analysis

Alert analysis was based on selecting and analyzing those a erts from the Severity
Analysiswhich were aerted on. In thefirst part of Alerts Analysis, the Internal Source

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

| Ps section was singled out to help identify those alerts which indicate possibly infected
hosts or otherwise illegimate activity. An attempt was made to place these alerts into
those different classes where applicable and to qualify those alerts as either “Authentic”
or “False Positive” depending on avariety of factors especially on how difficult it isto
trigger those aerts. The second part of Alerts Analysisinvolved analyzing externa
source |Ps which appeared to have the most coordinated and planned attacks.

The latest version of Snort that was available during the timestamp of the log files
was version 2.0.0. Thusit is assumed that the ruleset used to generate alertsin the alerts
log files was from that version of snort.

The unique aerts which alerted for Internal Source IPs and were of concern were:
NIMDA - Attempt to execute cmd from campus host

IDS552/web-iis [I1S ISAPI Overflow ida INTERNAL nosize

spp_http_decode: 11S Unicode attack detected

spp_http_decode: CGI Null Byte attack detected

High port 65535 udp - possible Red Worm — traffic

TFTP - Internal TCP connection to external tftp server

NIMDA - Attempt to execute cmnd from campus host

Thisalert is acustom alert, thus thereis no official documentation and one can
only infer from the name the specific signature details employed to detect this attack
“from campus host”. There are several things we can glean from the dert file, the logs,
and from the name of the aert. First, the source host specified before the “->" at the head
of the snort rule should be from the MY .NET subnet which satisfies the “from campus
host” criteria, this is also evident in the alert file logs as all the source IPs in the log for
this signature are from the MY .NET subnet (4 unique hosts alerted, MY .NET.97.191,
MY .NET.249.214, MY .NET.98.35, MY .NET.97.88). This alert seems to trigger only on
destination port 80 as seeninthe aert log files:

04/ 18-22: 16: 39.599407 [**] NIMDA - Attenpt to execute cnd from canpus
host [**]

MY. NET. 97.191: 3709 -> 64.122.72.107: 80
04/ 18-22: 48:45.699087 [**] NIMDA - Attenpt to execute cnd from canpus
host [**]

MY. NET. 249. 214: 4397 -> 64.33.51. 156: 80
04/ 18-22:28:17.566855 [**] NIMDA - Attenpt to execute cnd from canpus
host [**]

MY. NET. 97. 191: 4743 -> 169. 132. 74. 100: 80
04/ 22-02: 25:19. 758403 [**] NIMDA - Attenpt to execute cnd from canpus
host [**]

MY. NET. 98. 35: 2200 -> 130. 49. 66. 95: 80
04/ 22-03:35:10.223836 [**] NIMDA - Attenpt to execute cnd from canpus
host [**]

MY. NET. 97. 88: 2649 -> 130. 158.117. 81: 80
04/ 22-03: 35: 47.660369 [**] NIMDA - Attenpt to execute cnd from canpus
host [**]

MY. NET. 97. 88: 4029 -> 130. 158. 200. 14: 80
04/ 22-03:39:22.758274 [**] NIMDA - Attenpt to execute cnd from canpus
host [**]

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MY. NET. 97. 88: 2160 -> 207.7.10. 226: 80
04/ 22- 03:53: 30.933006 [**] NIMDA - Attenpt to execute cnd from canpus
host [**]

MY. NET. 97. 88: 2662 -> 130. 158. 55. 178: 80
04/ 22-03: 54: 15. 717222 [**] NIMDA - Attenpt to execute cnd from canpus
host [**]

MY. NET. 97. 88: 3936 -> 130. 158. 213. 94: 80
04/ 22-03:54:18.007722 [**] NIMDA - Attenpt to execute cnd from canpus
host [**]

MY. NET. 97. 88: 2573 -> 209. 229. 121. 151: 80
04/ 22-03: 29: 39. 649122 [**] NIMDA - Attenpt to execute cnd from canpus
host [**]

MY. NET. 97. 88: 1068 -> 130. 150. 183. 119: 80

However, al the rules present for Nimda that come with Snort-2.0.0 are written to
trigger on destination port 139. We have to assume that the Nimda attack vector this alert
is attempting to detect is the Unicode Web Traversal Exploit which targets Microsoft
Web Server software 11S 4.0 and 5.0
(http://www.microsoft.com/technet/security/bulletin/ms00-078.asp) This exploit entails
constructing a specialy crafted URL to perform a directory traversal to gain access to
cmd.exe executable, which when passed the proper parameters can be used to execute a
variety of commands on the target system with the privilege of the lUSR_machinename
account. In the actual payload of the packet, the string “cmd.exe” or “root.exe” would
have to be present (http://www.cert.org/advisories/ CA-2001-26.html). A snort rule based
on these conjectures would probably resemble:

alert tcp $HOVE NET any -> any 80 (msg: ” NIMDA - Attenpt to execute
cnd from campus host”; content:”cmd.exe”)

There aren’t a lot of reasons why the string “cmd.exe” should be present in any payload
destined for port 80, although it can false positive say for example if someoneis doing
research on the web on Nimda and happens to download a description which contains the
string “cmd.exe”, this has happened in the analyst’s personal experience several times.
However, this alert is difficult to trigger by chance, so it isbeing classified as
“Authentic”. The chances that the alerts represent an actual NIMDA infection however is
guestionable, since NIMDA tries many different URL variantsin its scanning phase;
these particular 1Ps are only aerting no more than afew timeson NIMDA. Itis
recommended that any internal source IP which triggers this alert be investigated
immediately and be disconnected from the network.

IDS552/web-iis [ISISAPI Overflow ida INTERNAL nosize

This signature is one available at whitehats.com
(http://www.whitehats.com/info/IDS552). This signature is meant to detect attacks
attempting to exploit a buffer overflow vulnerability in Microsoft’s IIS software. More
specifically, overflowing an unchecked buffer in the Index Server ISAPI extension could
result in the IIS server’s compromise.
(http://www.microsoft.com/technet/security/bulletin/M S01-033.asp). This vulnerability

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

exists because there is a section of codein idg.dll that has an unchecked buffer init. The
ISAPI extension which handles URL input (for example, default.ida) can be exploited to
gain full privileges under the SY STEM account. All an attacker would have to do is send
aspecially crafted URL consistent with a buffer overflow in an established web session
to avulnerable 1S server. It might look something like this (from
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids552& view=signatures):

06/ 19-12:53:01. 728385 10.51. 141. 239: 1505 -> 10. 10. 00. 01: 80

TCP TTL: 61 TOS: 0x0 | D: 59632 | pLen: 20 Dgnien: 350 DF

*xx APr** Seq: OXEB4FOCDC Ack: 0x68644817 Wn: 0x7D78 TcplLen: 32
TCP Options (3) => NOP NOP TS: 62082230 O

47 45 54 20 2F 4E 55 4C 4C 2E 69 64 61 3F 58 58 GET /NULL.ida?XX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXKXXXXXXXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXKXXHXXXKXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXHXXXKXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXOXXXXXXXXXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXKXXXXXXXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXHXXXKXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXKXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXOXXXXXXXXXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXHXXXKXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXX XXX
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXOXXXXXXXXX
58 58 58 58 58 58 58 58 3D 58 20 48 54 54 50 2F XXXXXXXX=X HTTP/

31 2E 31 OD OA 48 6F 73 74 3A 20 32 34 2E 32 37 1.1..Host: 10.10

2E 36 38 2E 38 33 0D OA 0D OA .00.01....

The Snort signature meant to capture an attempted exploit as specified by WhiteHats is:

alert TCP $EXTERNAL any -> SINTERNAL 80 (msg: “IDS552/web-iis_I1S | SAPI
Overflow ida”;dsize: >239; flags:A+;uricontent: “.ida?”;classtype:
systemor-info-attenpt;reference: arachni ds, 552;)

This signatureis prone to false positives and is not particularly effective for several
reasons. Doug Kite (GCIA #0609) also reported a multitude of this activity except that
he detected alerts in the thousands as opposed to the dozens reported this particular audit.
We must analyze the main triggers of this aert to understand this. The purpose of this
signature is to detect a buffer overflow in an established web session against the ISAPI
extensions (*.ida); the “flags:A+”, and “uricontent: .ida?” components of the signature do
well to detect established requests for the ISAPI extension *.ida. But, the “dsize:>239”
component is not sufficient to detect a buffer overflow. Any URL request which results
in the packet payload size being larger than 239bytes (with other criteria satisfied as well,
of course) is prone to trigger this signature. It is not uncommon to find very long URLS,
because of that and because there are over 1000 such aerts, any host which triggers this
alarm only are classified as “False Positive”. There are several interesting things to note
concerning this alarm. For only Internal Source IPs (3 unique hosts alerted,

MY .NET.97.191, MY .NET.98.35, and MY .NET.97.88) this aert only showed up when

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

paired with the alert “NIMDA - Attempt to execute cmd from campus host”. Without
actual payload data and logs, one can only surmise asto why thisisthe case. The strategy
here would be to combine the key triggers of both signatures to infer what happened.
From the first inferred signature, for “NIMDA.....”, it is assumed that the “cmd.exe”
string can be anywhere within the payload of the packet. From the second known
signature, we know that the URL must result in there being at least a 239byte size packet
that will hopefully catch a buffer overflow. The purpose of most buffer overflowsisto
take control of the execution path that a particular buffer isin, and instead replace it with
an attacker’s commands/code. What could be happening is that a buffer overflow was
attempted against the target host(s) with “cmd.exe” appended to the end of that overflow
with the hopes of executing. Therefore, all hosts which alert on ISAPI overflow AND
NIMDA are classified as “Authentic”. Once again, payload data would be needed to
confirm anything at all.

spp http decode: 11S Unicode attack detected & spp http decode: CGIl Null Byte attack
detected

Both of these derts are part of the http_decode preprocessor. Basically, after
decoding of packets and before they are passed through the detection engine, http_decode
will normalize http requests from their encoded form into their ASCII equivaents. When
the double_encode option is specified in the snort.conf file for http_decode.,“IIS
Unicode attack detect” will alert on URL requests where the percent sign has been
encoded into hexadecimal, double encoded so to speak. For example, in the actual URL
request you might see “%255c¢” where the “%25” translates into “%” and after a second
round of decoding %255¢ would translate into “/”. It is not uncommon to find Unicode
encoded text over http, so thereis agood possibility that this alert will false positive. For
the “CGI Null Byte attack”, if the http_decode preprocessor decodes and finds a “%00”
inaURL request it will alert. However this aert is prone to giving false positives on SSL
encrypted traffic and cookies with urlencoded binary data. Both alerts are also subject to
false positive on malformed http requests and are infamous on security mailing lists to
generating many false positives. All IPs (MY .NET.251.70, MY .NET.201.106) that
triggered on these alerts also alerted on “TFTP - Internal TCP connection to external tftp
server” and “High port 65535 udp - possible Red Worm — traffic”, judgement about
whether or not the IPs that generated these alerts are “Authentic” will be held until the
next section when those alerts are also analyzed.

TFTP - Internal TCP connection to external tftp server

Thisaert isacustom aert, aswith the NIMDA alert, severa pieces of
information can be gleaned from the name of this alert and the rule that triggersit can be
partialy inferred. First, this alert looks for internal hosts using TCP as the transport
protocol:

alert TCP $HOVE_NET any ->

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The second part of the rule (to completion) looks for a connection (it is not known if this
isfor aninitial or established connection) to an external host for the TFTP service (port
69):

alert TCP $HOVE_NET any -> $EXTERNAL_NET 69 (msg:”TFTP - Internal TCP
connection to external tftp server”)

The name of the rule does not hint at sort of content-based triggering, but we cannot
know for sure. TFTP, which stands for Trivial FTP, isbasicaly avery ssimple ftp service
which runs over udp and does not provide for much in the way of security. It is often

used to boot diskless workstations and back up (Cisco) router configuration files, and 10S
images . TFTP can be a security problem because the service is not password protected,
and systems can be left wide open if the serviceis not shut off. This (inferred) ruleis easy
to trigger and is thus being classified as “Authentic”.

High port 65535 udp - possible Red Worm — traffic

This alert was also a custom alert as well, however it is harder to deduce the rule
from name of the alert than it is for the other alerts. There are no keywords such as
“from”, “to”, “external”, or “internal” to help infer the direction of traffic in which this
ruleis alerting on. The only keywords which give any hint as to how the rule is written
for this alert are the port number and protocol type, 65535 and udp respectively. A bit of
research (http://www.qgiac.org/practical/gsec/Anthony Dell GSEC.pdf) revealed more
about the mechanism of the Red Worm and how a rule might be written to detect
resultant traffic. The Red worm also known as the Adore worm, tries exploits for several
servicesincluding LPRng, rpc-statd, and BIND. It also replaces severa binaries with
Trojan versions, of particular importance is klogd which is replaced with a program
named “icmp”. When icmp receives a particular ICMP packet which is 77 bytesin
length, it starts a backdoor on TCP (or as suggested by this alert, UDP) port 65535 which
gives root access to anyone who telnets to that port; it also sends captured system
information to several email addresses. From this, we can deduce that the header of the
Snort alert rule might look something like:

For established backdoor sessions
alert UDP $HOVE _NET 65535 -> $EXTERNAL_NET any(fl ags: A+;)
or for connecting to the backdoor:

al ert UDP $EXTERNAL_NET any -> $HOVE NET 65535(fl ags:S;)

The content portion of the rule (if there is one) would have to be considerably dynamic,
since atelnet session is available over port 65535. Triggering this alert would not exactly
be difficult but a bit more uncommonplace for a reason. Port 65535 is the last valid port
in the range of ephemeral ports available, for someone to initiate a connection to the
backdoor would require a ephemeral port to port 65535 connection which is unusual
since most services are bound to well-known (<1024) ports. It is aso abit unusual,

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

though perfectly legitimate, to connect from port 65535 to awell-known service, this
would definitely generate aerts on the first possible rule for established backdoor.
sessions. In the concatenated aerts file, there were 35456 aerts for Red Worm (tcp and
udp) and 10322 alerts for Red Worm udp alone. All in al Red Worm traffic accounted
for approximately 10% of total traffic (35456 / 334854 total alerts), this means either
there are alot of Red Worm infected hosts or the Snort rule is too loosely written and is
generating alot of false positives. On its own accord, this aert would have to be
classified as “False Positive”, based on theinferred rule and volume of alerts.

Referring back to whether or not the http_decode alerts (spp_http_decode: 11S
Unicode attack detected & spp_http_decode: CGI Null Byte attack detected) are
“Authentic”, we must try to comprehend why these aerts occurred collectively with the
TFTP and Red Worm alertson MY .NET.251.70 and MY .NET.201.106. First, three out
of the four aertstrigger on port 80 and one alert on port 69. These could possibly be
attributed to Unicode-encoded URL requests that originate from the MY .NET clients on
port 65535 with some data being transferred over UDP. The TFTP alert is more unusual.
As stated before, TFTP is often used to boot diskless workstations and for backing up
certain router information. So this brings about two possibilities, the hosts that triggered
these alerts are either routers or diskless workstations; being that the systems analyzed
arein aUniversity environment, it is common to find diskless workstations. If these hosts
were routers, one would expect router backups (possibly through TFTP) on aregular
basis; however grepping through the logs reveals that the TFTP alerts for both |Ps occur
in arelatively short amount of time, lessthan aday for MY .NET.251.70 (truncated):

04/ 21-04:17:43.375127 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] 81.5.166.85:69 -> MY. NET. 251. 70: 4840

04/ 21-04:17:47.086533 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.251.70: 4840 -> 81.5.166. 85: 69

04/ 21-04:17:48.383176 [**] TFTP Internal TCP connection to externa
tftp serv

er [**] MY.NET.251.70: 4840 -> 81.5. 166. 85: 69

04/ 21-04: 07: 27.360767 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] 81.5.166.85:69 -> MY. NET. 251. 70: 4782

04/ 21-04:17:49. 129661 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.251.70: 4840 -> 81.5. 166. 85: 69

04/ 21-04:17:50.339929 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.251.70: 4840 -> 81.5. 166. 85: 69

04/ 21-04:17:59. 055758 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.251.70: 4840 -> 81.5. 166. 85: 69

04/ 21-04:07:36.359178 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.251.70:4782 -> 81.5. 166. 85: 69

04/ 21-04:18: 02. 194035 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.251.70: 4840 -> 81.5.166. 85: 69

04/ 21-04:18: 14. 187863 [**] TFTP - Internal TCP connection to externa
tftp serv

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

er [**] MY.NET.251.70: 4840 -> 81.5. 166. 85: 69

04/ 21-04:18: 14. 196894 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] 81.5.166.85:69 -> MY. NET. 251. 70: 4840

04/ 21-04:18: 14.198092 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.251.70: 4840 -> 81.5. 166. 85: 69

04/ 21-04:18:14.198221 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.251.70: 4840 -> 81.5. 166. 85: 69

04/ 21-04: 07: 54. 680745 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.251.70:4782 -> 81.5.166. 85: 69

and in the case of MY .NET.201.106, less than a minutel!!:

04/ 18- 08: 49: 14. 911451 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] 63.231.14.237:69 -> M. NET. 201. 106: 4409

04/ 18- 08: 49: 15. 945433 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.201. 106: 4409 -> 63.231. 14. 237: 69

04/ 18-08:49:17.485979 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] 63.231.14.237:69 -> M. NET. 201. 106: 4409

04/ 18-08: 49: 17.804963 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.201. 106: 4409 -> 63.231. 14. 237: 69

04/ 18- 08:49:18.697506 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] 63.231.14.237:69 -> M. NET. 201. 106: 4409

04/ 18- 08: 49: 20. 488588 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.201. 106: 4409 -> 63.231. 14. 237: 69

04/ 18-08:49:21.076290 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] 63.231.14.237:69 -> M. NET. 201. 106: 4409

04/ 18-08:49:21.078798 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.201. 106: 4409 -> 63.231. 14. 237: 69

04/ 18- 08:50: 10. 871430 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.201. 106: 4409 -> 63.231. 14.237: 69

04/ 18- 08:50:43.508948 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.201. 106: 4409 -> 63.231. 14. 237: 69

04/ 18- 08: 50: 43.510220 [**] TFTP - Internal TCP connection to externa
tftp serv

er [**] MY.NET.201. 106: 4409 -> 63.231. 14. 237: 69

The chances are that MY .NET. 201.106 and MY .NET.251.70 are diskless workstations
and not routers. Notice that both hosts are apparently attempting repeated connection
attempts to the external tftp servers with responses back from the external 1Ps,

MY .NET.251.70 to 81.5.166.85, and MY .NET.201.106 to 63.231.14.237. One would
think that if these were routers that they would back up their filesto host on alocal or

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

possibly neighboring network. Instead they are making connections on arelatively
uncommon used service to addresses way outside their network. For instance,
81.5.166.85 resolves to a network in Great Britain, and 63.231.14.237 resolvesto a
network in Colorado, TFTP connections across such distances seem alittle odd and
suspicious. It is possible that 251.70 and 201.106 are misconfigured diskless
workstations. Regarding the alerts that trigger on port 80 collectively with the suspicious
tftp alerts/activity, they are classified as “Authentic”.

For the second part of Alerts Analysis, external hosts which appeared to have the
most coordinated and strategic plan of attack were identified and analyzed. The hosts that
were identified were 213.84.229.115 and 131.118.254.130.

213.84.229.115 alerted on the following: “Null scan!”, “Probable NMAP
fingerprint attempt, SY N-FIN scan!”, “Queso fingerprint”, “High port 65535 tcp —
possible Red Worm — traffic”. 219.52.154.110 triggered on the same alerts except for
“Probable NMAP fingerprint attempt”, this is why 213.84.229.115 was chosen as having
a more coordinated attack. The rule for “Probable NMAP fingerprint attempt” is hard to
false positive on; searching on this exact alert message did not bring up any Snort alert
documentation however, searching for the keywords “NMAP fingerprint attempt” in the
Snort alert documentation did bring up an alert documentation for “SCAN nmap
fingerprint attempt”. The rule for this particular alert is:

alert tcp $EXTERNAL_NET any -> SHOME NET any (msg:”SCAN nmap
fingerprint

attempt”;flags:SFPU;reference:arachnids, 05;classtype:attempted-
recon; sid: 629;rev: 1;)

Assuming that both aerts are based on the same rule, the alerts would have to be
classified as “Authentic”. The reason for this is that the TCP flags that have to be set, to
set off thisrule arein an invalid combination, and would almost certainly have to be
crafted. Thisalert isthe basis for classifying 213.84.229.115 as having performed one of
the most coordinated attacks, that and the other alertsit triggered also had their basisin
TCP flag manipulation, especially those resulting in invalid TCP flag combinations.

131.118.254.130 generated four unique alerts which had very similar names, all
beginning with the word “EXPLOIT x86”. Searching the Snort alert documentation
actually listed the alerts as “SHELLCODE x86”. Reviewing these rules revealed that the
traffic needed to set off these alerts would have to be specific for the x86 processor
platform. This could mean that the attacker either had previous knowledge of the machine
or istrying exploits meant for x86 blindly. We have to assume that this particular set of
events is “Authentic”. The knowledge required to perform these attacks would be
significantly higher than that of the average user: shellcode, NOOP sleds, system calls.
The “setgid 0” and “setuid 0” require knowledge of x86 assembly code to change the
group and user id respectively, to those which have root privileges. The NOOP alerts
also require knowledge x86 assembly code, specifically the NOOP code for x86, which
when repeated the right amount of times and occupy the right amount of memory can
constitute a buffer overflow attack. The variety yet homogeneity of these events suggest a
coordinated and/or skilled attack.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Alert Link Graph

An adert link graph was created based on Internal Destination IPs so that the
University’s Systems Administrators and upper management could get an indication as to
the complexity of attacker activity. The alerts were divided into two categories, Probes
and Exploits. Probes being any activity meant to licit aresponse from a server for
information gathering purposes. Exploits being any activity that could potentially result
in the compromise of the target system, command being executed on the target system, or
the target system exhibiting symptoms of having software that is self-replicating or vira
in nature. Thislink graph could be useful in ascertaining how their security devices
should be configured and/or if any additional security measures need to be implemented.

Generaly speaking, one can interpret the density of vertices converging on the
Internal Destination IP nodes as correlating with complexity. The more dense anodeis,
the more complex attack is directed at it. From looking at the link graph, it is apparent
that MY .NET.225.66 has been the target of avariety of probes AND exploits. Perhaps
thisisan indication that the subnet it islocated on is not very well protected, but at |east
it seemsthe IDSis capable. MY .NET.24.47 was the target of two different FTP attacks, it
should be looked into whether or not ftp is allowed for the department it belongsto and a
temporary firewall rule be implemented to block ftp. If the link graph was generated for
different subnets of MY.NET and it was noticed that some subnets contained much more
“dense” nodes than others, this could be a sign of a weak link somewhere in their security
structure. For example, from looking at the “PROBES/SCANS” nodes, “Queso
Fingerprint” is one of the most popular type of probe/scans and has targeted various hosts
on MY .NET. Queso scans are performed not surprisingly, with the Queso scanner, which
triesto guess the OS of atarget host by sending an assortment of valid and invalid tcp
packets to first elicit aresponse from the target host and then compare those responses
against alist of known responses for various operating systems. The Snort signature
written to capture Queso traffic checks for the TCP flags ECN and CWR set, and for high
TTL. Since the purpose of Queso scansisto discover remote host OS, one of the patterns
that was looked for was OS specific attacks against the Queso scanned hosts. To be on
the safe side, one must assume that there was a high probability that hosts that were
scanned returned OS specific responses. Two of the hosts that were Queso scanned were
hit with OS specific attacks. But they did not appear to be coordinated. Assuming that
these hosts were hit with “Authentic” attacks, MY .NET.24.23 was hit with Red Worm
and Bug Bear which are meant to attack Unix and Windows platforms respectively and
MY .NET.225.66 was hit with attacks targeting 11S (which runs on Windows servers) and
the EXPLOIT x86 attacks which target Linux systems. There are several possibilitiesto
explain this: either the Queso scan returned an inconclusive response on OS detection, the
attacker does not know their exploits, or the different attacks came from attackers which
did not perform the Queso scan and were quite random.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

PROBESISCANS EXPLOITSIATTACKS
+High Port 65535 tcp - ‘

Possible Red Worm
traffic

[+ e INTERNAL +High Port 655356 udp -
::|)=.E$STINATION Possible Red Worm ‘

Ltraffic

kA MET 13235 163 +FTF Passwd attemptj

/(+FTP Dos ftpd glnbbin@

+Bugbear@MmM virus in
SMTP

+Probable NMAP
fingerprint attempt

b NIET . 24 47

[+Ouesc- Fingerprint FEXPLOIT x86 setgid O j

MY NET 244 .23

+EXPLOIT x86 setuid Dj

[+SMB NMame Wildcard Alert] IRC user fkill

detected, possible
trojan.

++[UMBC NIDS IRC ‘

[y MET 205115

FNMAP TCP ping!

++EXPLOIT identd]

MY NET. 225 66 A nil=d

C Gl MNull Byte attack

+WWatchlist 000220
1 detected

+spp_http_decode:
L-ISDNNET-220517

+spp_http_decode: IS
Unicode attack detecte

[+SYN-FIN Scan

+Possible trojan server
activity

Defensive Recommendations

Overal, there were severa particular activities that warranted recommendations
concerning security policy, security device configuration, and administration. One of
these activities was the extensive and continuous activity of 213.84.229.115, which was
ableto scan 130.85.195.163 for thirteen hours straight and accounted for the top spot of
130.85.195.163 in the Top 10 Internal Destination IPs. A simple rule could have been
placed in the router ACLsto stop this; for example:

access-list deny ip 213.84.229.115 0.0.0.0 any;

would be very effective. This also bringsinto question the human factor of security, if an
attacker was able to scan for thirteen hours straight, what level of human interaction was
present to defend the University’s network, if any at all? It did not ook like any action
was taken on behalf of this activity. This could be due to several things. Perhaps there
was no system of realtime alert, maybe logs were not reviewed on aregular basis. It
doesn’t take much to detect a scan of that scope and length, scripts can easily be written
to generate some sort of real-time alert if athreshold is exceeded; there are also many
free open-source tools and software available that can monitor as well. Because of this
activity, it is recommended that the University implement as procedure the practice of
reviewing system logs (firewall, syslog, etc) on a semi-hourly basis. If no oneis able to

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

oversee the reviewing of the logs in off hours, than they should at least be reviewed on a
daily basis.

Another activity that was of concern was that of two interna hosts,
MY .NET.201.106 and MY .NET.251.70, which initiated connections to externa hosts on
arelatively unused and obscure port (TFTP, port 69). This activity bringsinto focus the
egress security of the University (which could also easily be managed via ACLs and
firewalls). This aspect of security is more difficult to implement than security that deals
with ingress traffic, most people are concerned with attacks originating external to their
home network and thus have their security software/devices set to detect for the most part
incoming attacks. These hosts could have been participating in unauthorized transfer of
sensitive information, but no logs were provided to confirm this. Another aspect of this
activity that isworrisome is that the criticality of these two hosts was not known, since no
configuration management documentation was provided to find out what their purposes
were, one cannot say for sureif the data on those hosts needed to remain confidential
(student records and personal information perhaps). Overall, to mitigate the risks
associated with the above factors, the following defensive recommendations are proposed
to the University:

e To address egress security - It is recommended that any suspicious egress activity
be blocked egress at the router ACLs until the activity can be confirmed as
legitimate or illegitimate (after regular log analysis has been established of
COourse).

e To address unauthorized data transfer - Logs showing the amount of data transfer
must be provided the next time analysisis performed to confirm illegitimate data
transfer.

e To address host criticality issues - Configuration management documentation
must be present and readily available to confirm whether questionable activity is
legitimate for a particular host or set of hosts.

Regarding overall security of the University’s network, two issues are addressed:
reducing the volume of attacks and reducing the severity of attacks. Many of the actions
recommended to reduce both go hand-in-hand. One of the activities that was noticed was
that most of the internal ephemeral ports that were targeted were associated with well-
documented applications including (gnutella, ms-sgl server, http-proxy). If the
University’s perimeter security policy was of the type “Deny all not specifically
allowed”, the Internal Ephemeral portslist may have looked much different, consistent
with that of established sessions. The ephemeral ports may have included more varied
(and undocumented ports). Therefore it is recommended that the University implement a
“Deny all not specifically allowed” perimeter policy regarding TCP and UDP ports;
allowing ingress traffic destined for specifically unblocked ports. This can easily be done
with asimple packet-filtering firewall. This action will help reduce the overall volume of
scans and attacks and will also have an impact in reducing severity of attacks, especially
against those ports which are blocked.

Regarding severity of attacks, many of the alerts triggered were for scans
attempting to elicit aresponse from the target hosts, either to discover open ports or for
remote OS detection (e.g., Queso fingerprint, SYN-FIN, Null scan) thisis an important

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

part of an attacker’s strategy, so that he/she may plan for the appropriate exploits. It is
recommended that the University install on critical hosts, software that is discriminating
in who and how it responds to hosts. This can include TCP wrappers which “wrap”
around various services such as telnet or ssh, and introduce flexible access control. If the
University’s systems administrators are skilled enough, they can modify and/or tune the
TCP/IP stacks on their critical hosts to limit how it responds to out-of-spec or otherwise
invalid packets. Thiswill make it harder to detect the OS. Programs such as ndd for Sun
Solaris can be used to do this. For windows, certain TCP/IP parameters are accessible
through the registry. It is recommended that the system administrator have expert
knowledge of TCP/IP to do this.

In conclusion, al defensive recommendations are made in lieu of all available and
provided data/logs. If all defensive recommendations are implemented, that University
will have made significant steps in reducing the volume and severity of attacks.

| dentification of Dangerous | Ps

Severa IPswere identified for further investigation. All registration information was
obtained through www.arin.net and www.ripe.net where applicable. If the University
decides to pursue further action, the following information is available (with explanation
and registration information):

1. 63.231.14.237

This address was deemed suspicious because an internal host had attempted to
connect to it on TFTP (and subsequently alerted on “TFTP — Internal TCP connection
to external tftp server”), a service not normally known for Internet-wide
communications.

Or gNane: U S VWEST Internet Services
Ogl D Usw

Addr ess: 950 17th Street

Addr ess: Suite 1900

Cty: Denver

St at eProv: CcO
Post al Code: 80202

Country: us

Net Range: 63.224.0.0 - 63.231. 255. 255
Cl DR 63.224.0.0/ 13

Net Name: USW | NTERACT99

Net Handl e: NET-63-224-0-0-1

Par ent : NET- 63-0-0-0-0

Net Type: Direct Allocation

NameSer ver: NS1. USWEST. NET
NameSer ver: NS2. DNVR. USVWEST. NET

Comment : ADDRESSES W THIN THI S BLOCK ARE NON- PORTABLE
RegDat e: 1999- 06- 07
Updat ed: 2002- 08-12

TechHandl e: ZU24- ARI N
TechNane: U S VEST | SOps
TechPhone: +1-612-664-4689

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TechEmmi | : abuse@swest . net

O gAbuseHandl e: Q A2- ARIN

O gAbuseNane: Qnest

| P Abuse

O gAbusePhone: +1-703-363-3001
O gAbuseEmai | : abuse@west . net

O gNOCHandl e: Q N- ARI N

| P NOC

Or gNOCNane: Quest

Or gNOCPhone: +1-703-363-3001
O gNOCEnwmi | : support @westi p. net

OrgTechHandl e: Q A-ARI N

O gTechNane: Qnest

I P Admi n

O gTechPhone: +1-888-795-0420
O gTechEnmi | : i padm n@west. com

2. 81.5.166.85

This address was al so deemed suspicious because an internal host had also attempted
to connect to it on TFTP (alerting as well on “TFTP — Internal TCP connection to

external tftp server”).

i net num 81.5.166.0 - 81.5.166. 255
net name: UK- ECLI PSE- ADSLSTATI C
descr: ECLI PSE ADSL STATICI P
country: GB

adm n-c: El R3- Rl PE

tech-c: El R3- Rl PE

changed: jimaeclipse. net.uk 20030320
notify: as-guardi an@cl i pse. net. uk
mmt - by: ECLI NET- NMC

source: Rl PE

st at us: ASS|I GNED PA

remar ks: | NFRA- AW

route: 81.5.128.0/18

descr: Ecl i pse Networking Ltd.
origin: AS12513

notify: as-guardi an@cl i pse. net. uk
mmt - by: ECLI NET- NMC

changed: jimaeclipse. net.uk 20020530
source: Rl PE

rol e: Eclipse Internet - R pe Adm n
addr ess: Ecl i pse Internet,

addr ess: Portl and House, Longbrook Street,
addr ess: Exeter, Devon EX4 6AB

addr ess: GB

phone: +44 1392 333300

f ax- no: +44 1392 333310

e-mail: support @cl i pse. net. uk
troubl e: spam and abuse conplaints = mailto:abuse@clipse. net. uk
adm n-c: JT5873- Rl PE

tech-c: JB15805- Rl PE

tech-c: GH9237- Rl PE

tech-c: JT5873- Rl PE

ni c- hdl : El R3- Rl PE

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

remarks:
notify:
mmt - by:
changed:
source:

Ecl i pse Internet
jim@clipse. net. uk

ECLI NET- NMC
jimaeclipse. net.uk 20020819
Rl PE

3. 146.164.34.42

This external address alerted on scanning for a wide range of the University’s Class B

network on port 443.
O gNane: Federal University of Rio de Janeiro
O gl Dt FURDJ
Addr ess: Nucl eo de Conputacao El etronica
Addr ess: Cai xa Postal 2324
Addr ess: CEP 20.001
Addr ess: Ri o de Janeiro, RJ
Cty:
St at eProv:
Post al Code:
Country: BR
Net Range: 146.164.0.0 - 146. 164. 255. 255
Cl DR 146. 164. 0.0/ 16
Net Nane: REDE- UFRJ
Net Handl e: NET-146-164-0-0-1
Par ent : NET- 146-0-0-0-0
Net Type: Di rect Assignnent
NameSer ver: ULTRI X1. NCE. UFRJ. BR
NameSer ver: CEOPLl. REDERI O. BR
NameSer ver: NOC. CERF. NET
Conmment :
RegDat e: 1991- 02- 15
Updat ed: 1992-10- 15
TechHandl e: CML69- ARI N
TechNane: Mendes, Carl os
TechPhone: +55 021 598-3118
TechEmai |l : carl os@eopl. rederio. br

4. 213.84.229.115
This host warrants further investigation because it attempted what appeared to be a
concerted effort to remotely identify the OS of MY .NET.195.163.

i net num
net name:
descr:

country:
adm n-c:
adm n-c:
tech-c:
tech-c:
st at us:
renmar ks:
renmar ks:
notify:

© SANS Institute 2004,

213.84.192.0 -
XS4ALL- ADSL
ADSL Static |IP nunbers

NL

CB127

oD45

CcB127

oD45

assi gned PA

Pl ease send emnil to "abuse@sdall.nl" for conplaints
regardi ng portscans, DoS attacks and spam

net mast er @xs4al | . nl

213. 84. 255. 255

As part of GIAC practical repository.

Author retains full rights.

mmt - by:
changed:
changed:
sour ce:
route:
descr:
origin:
notify:
mmt - by:
changed:
sour ce:
per son:
addr ess:
addr ess:
addr ess:
addr ess:
phone:
f ax- no:
e-mai | :
ni c- hdl :
mmt - by:
changed:
sour ce:
per son:
addr ess:
addr ess:
addr ess:
phone:
f ax- no:
e-mail :
ni c- hdl :
notify:
changed:
changed:
sour ce:

XSAALL- MNT
oliver@s4all.nl 20010711
oliver @s4all.nl 20020710
RI PE

213.84.0.0/ 16

XS4ALL net wor ki ng

AS3265

as- guardi an@s4al | . nl
XSA4ALL- MNT

eri k@s4all.net 20000329
RI PE

Cor Bosman

XS4ALL | nternet BV
Post bus 1848

1000BV Amst er dam

The Net herl ands

+31 20 3987654

+31 20 3987601

cor @s4al |l . net

CB127

XS4ALL- MNT

cor @s4all.nl 19980503
Rl PE

A iver Daudey

XS4ALL Internet B.V.
Eekholt 42

1112 XH Anst erdam
+31 20 3987654

+31 20 3987601

oliver @s4all.nl

o45

ol i ver @s4al | .nl
oliver@s4all.nl 19980422
rencovz@s4al |l . net 20010312
Rl PE

5. 131.118.254.130
This host warrants further investigation because it attempted what appeared to be a

concerted effort to perform platform and OS specific attacks.

Or gNane:
O gl D
Addr ess:
Addr ess:
Cty:

St at eProv:

Post al Code:

Country:

Net Range:
Cl DR:

Net Narme:
Net Handl e:
Par ent :
Net Type:

NameSer ver :

© SANS Institute 2004,

Uni versity of Maryl and
UNI VER- 270

System Adm ni stration
3300 Metzerott Road
Adel phi

VD

20783

us

131.118.0.0 - 131.118. 255. 255
131.118.0.0/ 16

M NCNET

NET- 131-118-0-0-1

NET- 131-0-0-0-0

Di rect Assignnent

NS. USMD. EDU

As part of GIAC practical repository.

Author retains full rights.

NameSer ver: UMCPNOC. UVS. EDU
NameSer ver: NOC. USNVD. EDU
NameSer ver: TRANTOR. UVD. EDU

Commrent :
RegDat e: 1988-11-15
Updat ed: 1998-11-24

TechHandl e: NML62- ARI N

TechNane: Mal mber g, Norwi n
TechPhone: +1-301-445-2758
TechEmai | : mal nber g@smh. usnd. edu

Overall Recommendations

This analysis would have been much more complete if the University had
provided full packet captures, network topology, and configuration documentation.
Analysis was performed to the best of the analyst’s ability given the limited data set. It is
strongly recommended that the University review their security policy and procedures as
well astheir perimeter security.Hopefully, next time an audit is performed all needed data
will be provided.

Java Programs

The following is a Java program developed to parse through the alert files and
calculate various statistics. The programs written to parse through the scans and oos files
are very similar and thus were not included due to length.

i mport java.io.*;
i mport java.util.*;

public class Alert

{

public static void main(String[] args)

{

String tinmestanp, miscl, alertNane, src, dst, srclP, dstlP, tenp;
String line, service, src_port, length, rule,tenpKey,tenpKeyVal ue;

int count=0, alertCount=0;
I nteger event _Count = new Integer(0), tenmplnt = new Integer(0);

ScansObj ect[] alertArray;
Vect or theVector;

Hasht abl e al ert Hash = new Hasht abl e();

Hasht abl e i nt SrcAl ert| PHash new Hasht abl e();
Hasht abl e ext SrcAl ert| PHash new Hasht abl e();
Hasht abl e i nt Dst Al ert | PHash new Hasht abl e();

Col | ection val ues;
Iterator keylter, valuelter;
Set keys;

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Fil eReader fr = new Fil eReader(args[0]);
Buf f eredReader br = new BufferedReader(fr);
line = br.readLine();

whil e(linel=null)
{

StringTokeni zer str = new StringTokenizer(line);

i f(str.countTokens() < 4)

{

line = br.readLine();
conti nue;

}

ti mestanmp = str. next Token();
m scl = str.nextToken();
al ert Nane = get Al ert Nane(str);

if(!(alertName.equal sl gnoreCase("portscan")))

i f(str.hasMoreTokens())
{

src = str.next Token();
StringTokeni zer ipaddress = new StringTokeni zer(src,

srcl P = i paddress. next Token();

if(srclP.startsWth("M.NET"))

{
if(!'intSrcAl ertlPHash. contai nsKey(srclP))

{

t heVect or = new Vector (20);
t heVect or . addEl erent ((Stri ng) al ert Name) ;
i nt SrcAl ertl PHash. put (srclP, theVector);

el se if(intSrcAlertlPHash. contai nsKey(srclP))
{

i nt SrcAl ertl PHash. get (srclP);

t heVector = (Vector)

i f(!'theVector.contains((String)
al ert Nane))

{
t heVect or . addEl ement ((String)
al ert Nane) ;
i nt SrcAl ertl PHash. put (srcl P,
t heVector);
}
}
}
el se
{

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

i f(!extSrcAl ertlPHash. contai nsKey(srclP))
{

t heVect or = new Vect or (20);
t heVect or . addEl erent ((Stri ng) al ert Name) ;
ext SrcAl ert | PHash. put (srcl P, t heVector);

el se if(extSrcAl ertlPHash. contai nsKey(srclP))

t heVector = (Vector)
ext SrcAl ert | PHash. get (srcl P);

i f(!'theVector.contains((String)
al ert Nane))

{
t heVect or. addEl ement ((String)
al ert Nane) ;
ext SrcAl ert | PHash. put (srcl P,
t heVect or);
}
}
}
}
i f(str.hasMoreTokens())
{
st r. next Token();
}
i f(str.hasMoreTokens())
{
dst = str.next Token();
StringTokeni zer ipaddress = new StringTokeni zer (dst,
n : II) ;
dstl P = i paddr ess. next Token();
if(dstlP.startsWth("M.NET"))
{
i f(!'intDstAl ertlPHash. contai nsKey(dstlP))

{

t heVect or = new Vect or (20);

t heVect or. addEl emrent ((St ri ng) al ert Nane) ;
i nt Dst Al ert | PHash. put (dst | P,
t heVector);

}
el se

i f(intDstAlertlPHash. containsKey(dstlP))
{

t heVector = (Vector)
i nt Dst Al ert | PHash. get (dstIP);

i f(!theVector.contains(

{

(String) alertNanme))

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

t heVect or. addEl erment (
(String) alertNane);

i nt Dst Al ert | PHash. put (dstI P, theVector);
}
}

i f(!al ertHash. contai nsKey(al ert Nane))
{

al ert Count ++;
event _Count = new I nteger(1);
al ert Hash. put (al ert Name, event_Count);

el se if(al ert Hash. cont ai nsKey(al ertNane))

{
count = O;
count = ((Integer)al ertHash.get(al ertName)).intValue();
count +=1,
event _Count = new I nteger(count);
al ert Hash. put (al ert Nane, event _Count) ;
}

line = br.readLine();
}//end while

}
cat ch(Fi | eNot FoundException e)
{

Systemout.println("Snort alert file unreadable!");

}
cat ch(| OException e)
{

Systemout.println(e);

}

/********

debug

*******/

System out. println("Nunber of Unique Alerts: " + alertCount);

keys = al ertHash. keySet () ;
keylter = keys.iterator();
alert Array = new ScansObj ect[al ert Count];

for(int i =0; (i < alertCount) && keylter.hasNext(); i++)

{
(String)keylter.next();

(I'nteger) al ertHash. get (tenpKey);

t enpKey
t enpl nt

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

count = tenplnt.intValue();
alertArray[i] = new ScansObj ect (tenpKey, count);

}

/***********************************

*Sort the top 10

************************************/

int k;
for(int p=0; p < alertArray.length; p++)
{
ScansObject tnmp = alertArray[p];
for(k = p; k >0 & tnp.conpareTo(alertArray[k-1]) < 0; k--)
alertArray[k] = alertArray[k-1];
alertArray[k] = tnp;
}
for(int i = (alertArray.length - 1); i > (alertArray.length - 12); i--)

Systemout.printin(alertArray[i].theCbject + " " +
alertArray[i].count + "\n");

/***************

Internal Source IP Alerts

****************/

&/Stem Out.println("****************************\n*******lI\ITERI\IAL
SOURCE | P ALERTS*****xx").

keys = intSrcAl ertl PHash. keySet () ;

keylter = keys.iterator();

whi | e(keyl ter. hasNext())

{
tenpKey = (String)keylter.next();
t heVector = (Vector)intSrcAl ertl PHash. get (tenpKey);
i f(theVector.size() >= 2)
{
Systemout.printin("\nAlerts for | NTERNAL SOURCE | P
address " + tenpKey);
Iterator thelterator = theVector.iterator();
whil e(thelterator. hasNext ())
{
System out. println(" "+ ((String)
thelterator.next()));
}
}
}

/*****************

External Source |IP Alerts

******************/

Syst em Out . prl ntl n("****************************\n*******EXTERNAL
SOURCE | P ALERTS*******xn) .

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

keys = ext SrcAl ertl PHash. keySet () ;
keylter = keys.iterator();

whi | e(keylter.hasNext ())

tenpKey = (String)keylter.next();
t heVector = (Vector)extSrcAl ertl PHash. get (t enpKey);

i f(theVector.size() >= 2)

{
Systemout.printin("\nAlerts for EXTERNAL SOURCE | P
address " + tenpKey);
Iterator thelterator = theVector.iterator();
whil e(thelterator. hasNext ())
{
System out. println(" "+ ((String)
thelterator.next()));
}

/*****************

Internal Destination IP Alerts

******************/

System Out.println("****************************\n*******lN-I—ERNAL
DESTI NATI ON | P ALERTS*******x")

keys = intDst Al ertl PHash. keySet () ;

keylter = keys.iterator();

whi | e(keyl ter.hasNext())

{
tenpKey = (String)keylter.next();
t heVector = (Vector)intDstAl ertl PHash. get (tenpKey);
i f(theVector.size() >= 2)
{
Systemout.println("\nAlerts for | NTERNAL DESTI NATI ON
| P address " +
t enpKey) ;
Iterator thelterator = theVector.iterator();
whil e(thelterator. hasNext ())
{
System out. println(" "+ ((String)
thelterator.next()));
}
}
}

}//end main

public static String getAl ertNane(StringTokeni zer str)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

{

String tenmp="", alertName="";
tenp = str.next Token();

if(tenp.startsWth("spp_portscan"))

{
return "portscan";
}
el se
whi | e(str. hasMoreTokens())
{
al ert Nane = al ert Nane. concat (temp + " ");
tenp = str.next Token();
if(tenp.startsWth("[**]"))
{
return al ert Name;
}
}
return al ert Name;

}

}//end cl ass

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Last Updated: December 10th, 2016

Upcoming Training

CERTIFIED!

Community SANS Albany/Cohoes SEC503 Albany, NY Dec 12, 2016 - Dec 17, 2016 [Community SANS
SANS Security East 2017 New Orleans, LA Jan 09, 2017 - Jan 14, 2017 Live Event
SANS Brussels Winter 2017 Brussels, Belgium Jan 16, 2017 - Jan 21, 2017 Live Event

Community SANS Nashville SEC503 Nashville, TN Jan 16, 2017 - Jan 21, 2017 [Community SANS
Mentor Session - SEC503 Oceanside, CA Jan 31, 2017 - Apr 04, 2017 Mentor
SANS Oslo 2017 Oslo, Norway Feb 06, 2017 - Feb 11, 2017 Live Event

Community SANS Las Vegas SEC503

Las Vegas, NV

Feb 06, 2017 - Feb 11, 2017

Community SANS

SANS Secure Japan 2017 Tokyo, Japan Feb 13, 2017 - Feb 25, 2017 Live Event
SANS Scottsdale 2017 Scottsdale, AZ Feb 20, 2017 - Feb 25, 2017 Live Event
SANS Secure India 2017 Bangalore, India Feb 20, 2017 - Mar 14, 2017 Live Event

Community SANS Chicago SEC503

Chicago, IL

Feb 20, 2017 - Feb 25, 2017

Community SANS

Community SANS Charleston SEC503

Charleston, SC

Mar 13, 2017 - Mar 18, 2017

Community SANS

SANS Tysons Corner Spring 2017 McLean, VA Mar 20, 2017 - Mar 25, 2017 Live Event
SANS 2017 Orlando, FL Apr 07, 2017 - Apr 14, 2017 Live Event
SANS 2017 - SEC503: Intrusion Detection In-Depth Orlando, FL Apr 09, 2017 - Apr 14, 2017 vLive
Community SANS New York SEC503 New York, NY Apr 10, 2017 - Apr 15, 2017 [Community SANS
SANS Baltimore Spring 2017 Baltimore, MD Apr 24, 2017 - Apr 29, 2017 Live Event

Community SANS Pittsburgh SEC504

Pittsburgh, PA

May 01, 2017 - May 06, 2017

Community SANS

SANS Security West 2017

San Diego, CA

May 09, 2017 - May 18, 2017

Live Event

Community SANS Baton Rouge SEC503

Baton Rouge, LA

May 15, 2017 - May 20, 2017

Community SANS

SANS Zurich 2017 Zurich, Switzerland May 15, 2017 - May 20, 2017 Live Event
SANS Houston 2017 Houston, TX Jun 05, 2017 - Jun 10, 2017 Live Event
Security Operations Center Summit & Training Washington, DC Jun 05, 2017 - Jun 12, 2017 Live Event
SANS Columbia, MD 2017 Columbia, MD Jun 26, 2017 - Jul 01, 2017 Live Event
SANS London July 2017 London, United Jul 03, 2017 - Jul 08, 2017 Live Event
Kingdom
SANSFIRE 2017 Washington, DC Jul 22, 2017 - Jul 29, 2017 Live Event
SANS Adelaide 2017 Adelaide, Australia Aug 21, 2017 - Aug 26, 2017 Live Event
SANS vLive - SEC503: Intrusion Detection In-Depth SEC503 - 201709, Sep 11, 2017 - Oct 18, 2017 vLive
SANS OnDemand Online Anytime Self Paced
SANS SelfStudy Books & MP3s Only Anytime Self Paced

http://www.giac.org/registration/gcia
http://www.sans.org/link.php?id=45787&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=45567&mid=98
http://www.sans.org/security-east-2017
http://www.sans.org/link.php?id=45007&mid=98
http://www.sans.org/brussels-winter-2017
http://www.sans.org/link.php?id=46345&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=47947&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=47092&mid=98
http://www.sans.org/oslo-2017
http://www.sans.org/link.php?id=44817&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=45607&mid=98
http://www.sans.org/secure-japan-2017
http://www.sans.org/link.php?id=45642&mid=98
http://www.sans.org/scottsdale-2017
http://www.sans.org/link.php?id=45612&mid=98
http://www.sans.org/secure-india-2017
http://www.sans.org/link.php?id=45337&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=46325&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=45657&mid=98
http://www.sans.org/tysons-corner-spring-2017
http://www.sans.org/link.php?id=46215&mid=98
http://www.sans.org/sans-2017
http://www.sans.org/link.php?id=47857&mid=98
http://www.sans.org/vLive
http://www.sans.org/link.php?id=47087&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=46220&mid=98
http://www.sans.org/baltimore-spring-2017
http://www.sans.org/link.php?id=48332&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=46230&mid=98
http://www.sans.org/sans-security-west-2017
http://www.sans.org/link.php?id=48272&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=47767&mid=98
http://www.sans.org/zurich-2017
http://www.sans.org/link.php?id=46255&mid=98
http://www.sans.org/houston-2017
http://www.sans.org/link.php?id=47122&mid=98
http://www.sans.org/security-operations-center-summit-2017
http://www.sans.org/link.php?id=47037&mid=98
http://www.sans.org/columbia-2017
http://www.sans.org/link.php?id=46300&mid=98
http://www.sans.org/london-july-2017
http://www.sans.org/link.php?id=46305&mid=98
http://www.sans.org/sansfire-2017
http://www.sans.org/link.php?id=46160&mid=98
http://www.sans.org/adelaide-2017
http://www.sans.org/link.php?id=47957&mid=98
http://www.sans.org/vLive
http://www.sans.org/link.php?id=1032&mid=98
http://www.sans.org/ondemand/about.php
http://www.sans.org/link.php?id=208&mid=98
http://www.sans.org/selfstudy/

