
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Intrusion Analysis

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 3.3

Saro Hayan

June 27, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

IINNDDEEXX

SSTTAATTEE OOFF IINNTTRRUUSSIIOONN DDEETTEECCTTIIOONN
Intrusion Prevention - Just a Buzzword?

NNEETTWWOORRKK DDEETTEECCTTSS
DDEETTEECCTT 11
DDEETTEECCTT 22
DDEETTEECCTT 33

AANNAALLYYZZEE TTHHIISS
EEXXEECCUUTTIIVVEE SSUUMMMMAARRYY -- TTHHEE HHEEAAVVYY HHIITTTTEERRSS

LLOOGG FFIILLEESS
Alerts

TCP SRC and DST outside network
spp_http_decode: IIS Unicode attack
High port 65535 udp - possible Red Worm –traffic
CS WEBSERVER - external web traffic
High port 65535 tcp - possible Red Worm - traffic

Scans
Out Of Spec

IINNTTEERREESSTTIINNGG EEXXTTEERRNNAALL HHOOSSTTSS

OOOOSS SSCCRRIIPPTTSS
SSCCAANN SSCCRRIIPPTTSS

RREEFFRREENNCCEESS::

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SSTTAATTEE OOFF IINNTTRRUUSSIIOONN DDEETTEECCTTIIOONN

Intrusion Prevention - Just a Buzzword?

The security threats that face the networks of today have grown in complexity and threat level.
Network administrators now must deal with attacks that vary from simple to crippling, and it is
often very difficult to differentiate between the two at onset. Private companies, government
agencies, educational institutions, etc. now rely heavily on the data network for their day-to-day
operations. Most of these institutions invariably have external connections. These external
connections could consist of peering connections, connections to private networks, connections
to the Internet, etc. These networks must be protected from intrusion from outside entities and
from internal attacks in some cases.

Network administrators must be able to protect the enterprise while still taking into consideration
mission critical services. The first step in security is almost always a firewall to protect the
network at the perimeter or to protect mission critical resources. Some companies have several
firewalls giving them layers of security and segmentation in order to mitigate the damage in case
systems are compromised. The inherent problem with firewalls is that certain traffic must be
permitted through for business functionality. Most firewalls will have rule sets that permit or
deny traffic based on Layer 3 and Layer 4 (OSI model) information. Certain types of firewalls
do inspect a bit deeper into the traffic, but usually at a cost of becoming a bottleneck.

Before we go on, we should quickly look at the types of firewalls and the problems they leave
administrator. There are several types of firewalls (or filtering devices, as routers could play this
role in some instances), below is a short explanation of some of the most often used types of
firewalls, and the some pros and cons of each.

Static packet filter - This is a device that has a static rule set inbound and/or outbound. It usually
permits or denies traffic based on various criteria, such as a source/destination address,
source/destination port and protocol. The device and rule set have no real intelligence; they do
as they are configured. A good example of this is an access control list on a router to permit
HTTP traffic to a web server. The filtering device has no idea what the payload of the traffic it is
permitting. It would permit traffic with malicious intent along with normal traffic.

Major Pros: They are very fast and not very resource intensive.
Major Cons: They, inherently, must permit traffic, but have no way to know the content
and intent of that traffic. They are very easily bypassed by a variety of methods.

Stateful packet filter–These types of firewalls have some intelligence, as there usually is a trust
level associated with each interface, and have a concept of “state”. An example of this would be
where the traffic initiated from the “trusted” interface (for example,a company employee) would
be permitted through to the “un-trusted” interface (for example, connection to the Internet). The
firewall would build a state table entry recording the particulars of the session being started. The
corresponding return traffic would be dynamically permitted back through.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Major Pros: These are also very fast and provide additional security by keeping “state”
information. Certain traffic is permitted dynamically as desired, while others of that
same type of connection are dropped as desired.
Major Cons: As with static filters, these devices usually make their decisions based on
Layer 3 and Layer 4 information. They do not, as with static filters, have any knowledge
of content and intent at higher layers.

Statefule inspection–These take the stateful packet filter to the next level by having the ability
to look deeper into the payload (Layers 5-7) of certain types of connections and make decisions
based on those criteria. FTP would be a very good example of this (PORT mode). The firewall
would look deep enough into the packet to determine the TCP port negotiated for the FTP data
channel. It will dynamically be permitted through.

Major Pros: Provide the additional ability to look into the payload of some types traffic.
They are still rather fast.
Major Cons: Do not look at all the payload, only for specific types of traffic.

Proxy firewalls–These firewalls function in a much more intrusive manner. Client connections
are directed at the proxy firewall where they are checked for validity based on some rule-set,
then a connection on behalf of the client (hence it’s called a proxy since it acts as one) is made
by the proxy. The return traffic is forwarded on to the original client once received by the proxy.
These types of firewalls are able to look deep into the payload (Layer 5-7) of every connection,
and the rules can be made based on payload. These can be considered to perform functions
similar to what we might look for out of Intrusion Prevention Systems, more on this later.

Major Pros: Filtering decisions can be made based on up to Layer 7 information as they
look at all traffic payload.
Major Cons: Speed and throughput are compromised. They are very resource intensive
and are often the bottleneck of a network. Many types of application will simply not
work through these types of devices.

Most networks have at least one of the above types of devices (or some variation of the above
types), some will have more than one in more of a layered design. These devices are usually
deployed at the borders and provide a “crunchy outer shell” of sorts. This usually leaves a “soft
interior” in most cases. Also, unless an institution is utilizing a proxy type device, there is traffic
that is permitted through the perimeter without any knowledge of the content. For these reasons
the use of Intrusion Detection Systems (IDS) became more prevalent. The two popular
implementations of IDS are the host bases IDS (HIDS) and the network based IDS (NIDS).

The IDS has taken on the role of the “other” layer of security. If the firewalls inherently have to
let certain traffic pass, the network administrator needs to identify the malicious portions of that
permitted traffic. The IDS would be deployed at critical points of the network to detect any sort
of malicious activity. The key here is the word DETECT. The intention of the IDS, in the purest
sense, is to detect intrusions and alert the administrator(s) who are hopefully paying attention.
There are some limited prevention capabilities implemented in some types of IDS that we will
discuss in more detail below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As mentioned earlier, there are two popular implementations, NIDS and HIDS. We will look at
each bit more closely and identify their pros and cons.

The NIDS sits on the wire of a network segments and watches all the traffic on that segment.
With the advent of switched networks, the placement of the NIDS is one of the biggest concerns.
The NIDS must be placed in such a way that it can “see” all of the traffic that it is being asked to
watch. Most enterprises utilize mirror ports from their switches or physical taps to ensure the
NIDS sees all the traffic. The NIDS, once it identifies malicious traffic, can take action in a
several ways. Some examples are that it can reset a TCP connection, or it can automatically log
into a router or a firewall and add a rule blocking a particular host.

Major Pros: NIDS can identify malicious activity for a variety of Operating Systems
(this is a pro and a con). The NIDS usually has less chance of being tampered with itself.
It also provides a big picture view into the segment it is watching.
Major Cons: The NIDS is not OS specific. It can invariably miss certain OS specific
traffic. There can be many false positives as well with a NIDS. Because it is not the
intended target of a communication, it must re-assemble all the streams that it sees. It
may not do this correctly in given situations. It cannot deal with encrypted traffic. If the
segment is flooded or experiences high volume; it can drop packets or not see everything
that is occurring. The cons of IDS will be discussed more later.

The HIDS is essentially software that runs on a host computer, a workstation or a server, that is
specific for that operating system; possibly even for the software packages that are installed on
that particular host. It looks at malicious behavior that is aimed directly at that particular host. It
can take action in various ways at the operating system level or at the application level. The
HIDS implementations could more easily provide some intrusion prevention.

Major Pros: They are OS and/or application specific and therefore can provide highly
detailed information with regards to malicious activity. They can also respond with
highly detailed and specific responses.
Major Cons: HIDS can be expensive and difficult to deploy on a large enterprise. They
can also be difficult to manage. Centralized management and reporting have been
improved, but with thousands of hosts to deploy on, it is still a rather hefty task. System
performance is often degraded due to the HIDS. Since the system in question is the
target, an intruder can often corrupt the log data if the system is indeed compromised.

A NIDS or a HIDS use certain techniques to identify malicious traffic. What makes a certain
traffic pattern valid or malicious is determined by the detection mechanism and rules in place for
that mechanism in the NIDS or HIDS. There are a variety of different types of detection, below
are some of the common implementations.

Signature based–The IDS looks for specific patterns in traffic that are known to be of malicious
intent. It can use stateful detection or it can detect malicious activity on a packet-by-packet
basis.

Major Pros: The signatures can be very specific. The signature can look for a specific
part of session to determine if the flow is malicious.
Major Cons: All the detection is based on a database of signatures of well-known attacks
that are static. It is reactionary by nature, an attack is identified, a signature is created,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and that signature is implemented. The attacks always precede the signatures and are
often too rapid and consequently the signatures are not updated fast enough on the
enterprise. Also, developers must continuously keep up with updated signatures.
Possibly most important, another negative of signature based IDS are false positives. The
IDS will on occasion identify normal traffic as being malicious. They will also on
occasion miss identifying malicious traffic.

Anomaly/Behavior based–The IDS looks for transport or protocol anomalies. There are some
types of traffic that are never valid; these types of anomalies are detected. Also, the network
traffic is base-lined and the IDS is used to detect any variations from that baseline. There are no
predefined signatures to rely on for these types of activities..

Major Pros: This type of IDS can identify attacks without the need of specific signatures.
It can detect new attacks in addition to well-known ones. Also, less updates are required
from developers because they don’t have nearly the same dependence on signatures. The
number of false positives is usually much lower with this type of IDS.
Major Cons: There is a lack of information from the attack since the behavior rules are
not based on a specific attack. An attack that doesn’t look anomalous would be able to
go by undetected.

Anomaly and Signature (Hybrid) based–This IDS combines the best of the signature based IDS
and the best of the anomaly based IDS. This gives the administrator the best of both worlds, but
it also carries with it the shortcomings of both worlds. The pros and cons of this type are similar
to that of the signature based and the anomaly based IDS. One type does not make up for the
deficiencies of the other. They inherit the problems of one another.

IDS is not plug and play. Most are also built on the thought that they would detect the attack and
send an alert. The administrators must tune the IDS so they do not drown in alarms. This is, to
put it bluntly, a never-ending pain in the neck. IDS management is not easy work. False
positives have been one of the biggest drawbacks to IDS alerting. Administrators must
constantly tune the IDS so that the information that it reports is valid. This usually requires
knowledge of network resources, operating systems, vulnerabilities, etc. When an IDS alarm is
received by administrators, some of the things they must think about are: What is the attack
(new/old)? Does it affect my systems? Is the vulnerability prevalent on my network? Did it
succeed or fail? Is it ongoing? Implement some countermeasures if it is ongoing, such as
blocking that host with a rule in the firewall. These are just some of the things that an IDS
admin has to think about at the onset of an alarm.

To add to the complexity, administrators will have to deal with a high number of false positives.
This can cause the administrator to be less meticulous when dealing with the alarms, which can
result in real attacks slipping through. In a pure sense, the IDS should take no action on the
attack; it should only alert the administrator of it. Some IDS have added such features as the
ability to manipulate firewall or router rules or to send TCP resets to stop a malicious
connection. These automated features can work fairly well if they are implemented properly.
But, if an attacker finds a weakness in the implementation or if a new vulnerability gives the
attacker the upper hand, they can cause the IDS to denial of service the very network it is trying
to protect. They need to be implemented very carefully.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Firewalls work well but must permit through some traffic without knowing the content. IDS can
be a useful tool in detecting intrusions, but require a great deal of time and effort to be made
efficient. False positives are no fun at all and seem to be never ending. So what next? With all
of that said, are we ready to put the IDS inline…? Maybe!

Security technologies mature and evolve. Things that were once buzzwords are now realities.
There are many types of firewalls and Intrusion Detection Systems in addition to a large number
of other security products. IDS has not developed completely. We went through many of the
negatives about IDS above, but there are things that have come a long way. For example, gigabit
capturing capability is a reality. Companies have put quite a bit of effort in developing
specialized processors that provide speeds that were not available just a few years ago. Also,
many types of the anomaly detection are done with very little false positives. Specific functions
of the IDS are ready for the “big time”.

The philosophy behind Intrusion Prevention Systems (IPS) is to somehow combine the all
positives of firewalls, the positives of IDS, add some new capabilities and put them into one
device. It would be an inline device that utilizes the capabilities of a firewall and an IDS to make
decision on the traffic passing through it. That sounds easy enough. Assuming that all the
hardware parts were in place, the device should be able to have firewall type rules, but would
also be able to look at the payload of the traffic it processes. It would actively make decisions of
what to do with the traffic based on Layer 2 through Layer 7 of the OSI model. It could have the
ability to perform virus detection since it is looking at the payload inline. False positives would
have to be a thing of the past since the device lives in-line. If an IPS had as many false positives
as many of today’s IDS have it would be a complete failure. With IDS, the administrators make
the final decision in most cases. In some instances, the limited active response available on IDS
is used. In the IPS world, it would make the final decision on what should be done with the
traffic based on the rules it is configured with. It could have a variety of responses such as
permit, deny, redirect, rate limit, deny with a TCP RESET, etc. The IPS would have to do all or
most of these things. To top it off, it would have to do all of these while avoiding becoming the
bottleneck in the network.

You can take an IDS and configure it to be “inline”, that’s simple. The question that needs
answering is; how many of the rules would you feel comfortable activating? How many of the
rules in the IDS do you think have a low enough false positive rate that you would feel
comfortable always dropping traffic that matched those signatures? These are the questions that
need to be answered when jumping into the IPS world. When the IDS makes mistakes, you get
more logs to muddle through. If the IPS makes mistakes, you may get pink slips to muddle
through.

I believe that the technology is nearly there for a successful implementation of an IPS. The first
generation devices will probably have the very basic and concrete rule sets. You would probably
add to that a stateful inspection firewall function. Those two components combined would be a
tremendous gain in security. The devices would now be able to make more and more decisions
at higher layer protocols. The goal of the IPS would be to take the best features of firewalls, the
best features of IDS, mix them all together in a big blender, and come out of it with a new

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

device. In my opinion, Intrusion Prevention will become a normal part of the network; whether
it is the appliance protecting the enterprise, or the host based IPS protecting your particular
Operating System from attacks.

NNEETTWWOORRKK DDEETTEECCTTSS

DDEETTEECCTT 11

The usage and specifics about commands is at the end of the analysis in the NOTES section.
References to the NOTES sections will be noted with [SECTION_NAME].

1. Source of Trace:
The trace used for this analysis was from:
http://www.incidents.org/logs/Raw/2002.10.15

The traces contain only the packets that violate the rule set and have been sanitized. More detail
regarding the traces can be found here:
http://www.incidents.org/logs/Raw/README

To help in the analysis of the chosen trace, I did some prep work before getting started. I
downloaded all the traces from www.incidents.org/logs/Raw dated October of 2002 (10/1 -
10/18). I then used a tool called "pcapmerge" to merge the files together. This was done to help
with the analysis by giving an overall picture. The process created a single file called "all-oct"
for the data from October. [PCAPMERGE]

Next I created the Snort alert file for the particular trace that I chose (2002.10.15). Given the
tcpdump binary format trace files, I used Snort version 2.0.0 (Build 72) with a current rule set
and all rules enabled. The following command was used [SNORT]:

gcia# snort -r 2002.10.15 -c /usr/local/snort/snort.conf -l ./10-15

This produced an alert file for the specific day we are concerned with. Below is a sample record
out of that alert file:

[**] [1:524:6] BAD-TRAFFIC tcp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
11/15-05:34:50.446507 211.47.255.24:41104 -> 170.129.195.40:0
TCP TTL:46 TOS:0x0 ID:0 IpLen:20 DgmLen:52 DF
******S* Seq: 0xD30F0032 Ack: 0x0 Win: 0x16D0 TcpLen: 32
TCP Options (6) => MSS: 1460 NOP NOP SackOK NOP WS: 0

To help analyze the alert files, I used a tool called "Snortsnarf"
(http://www.silicondefense.com/software/snortsnarf/index.htm). Snortsnarf is a Perl tool that
takes Snort alert files as input and produces easy to read and easy to analyze HTML reports (for
lack of a better word). Obviously you must have Perl installed and it is recommended that the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Perl time modules written by David Muir Sharnoff (Time::JulianDay) be installed first. The
following command is used to accomplish the task at hand [SNORTSNARF]:

gcia# snortsnarf.pl -d ./snortsnarf10-15 ./10-15/alert

This step helped show that there were 44 alerts with 2 source IP addresses and 3 internal
destination IP addresses. The sources were 211.47.255.23 and 211.47.255.24. The 3 internal
destinations were 170.129.21.249, 170.129.195.40 and 170.129.23.96.

Before moving on, I created a tcpdump binary file for all of October for later use. The file only
included the packets that we are interested in (TCP port 0). Tcpdump version 3.7.2 was used to
accomplish this [TCPDUMP].

gcia# tcpdump -nve -r all-oct tcp port 0 -w all-oct-tcp0

These steps produced the original trace file (2002.10.15), a file (all-oct) that contained all the
traces from the entire month of October and a file (all-oct-tcp0) that contained only packets
destined for TCP port 0 from the month of October. Next on the agenda was getting the "lay of
the land", so to speak.

I manipulated the trace file a bit (see MAC address section in the Notes section below). I
discovered that there were only two MAC addresses in the 2002.10.15 trace that were the source
or destination of every frame. To verify this, I looked at the source/destination MAC addresses
from the entire month. They were all the same two addresses we found in our original trace.
These addresses were [MAC_ADDRESS]:

00:00:0c:04:b2:33 and 00:03:e3:d9:26:c0.

Both addresses are registered as Cisco Systems devices (see
http://standards.ieee.org/regauth/oui/oui.txt). These two MAC addresses are the only ones
communicating on this segment. Some of the types of devices that would fit this mold would be
routers, firewalls and proxy devices. Cisco only has a web proxy (cache) product but there is
much more than just web traffic on this segment from these devices which led me to eliminate
the possibility either of these devices were proxy device. The following is the network layout
that would make the most sense considering the above information.

Border Device Internal Device
CISCO ROUTER/FW _|_____________________|_ CISCO ROUTER/FW
00:03:e3:d9:26:c0 | ^ | 00:00:0c:04:b2:33
/ | \

/ | \
External Snort Sensor Internal
Networks Networks

The sensor can be implemented in a variety of ways. It could be utilizing a mirror/span port off
of a switch between the two devices. One of these devices may have the ability to have a
mirror/span port configured and the sensor could reside there. There could be a physical tap on
the line between the two devices. Also, it is possible that there is a hub between the two and the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sensor is sitting on one of the ports of the hub. There are other implementation methods that I
haven't mentioned of, but it would be safe to say most IDS implementations fit one of these.

One of the last things I wanted from this segment was information about the rule set
implemented on these devices. This could help determine the type of device
(router/firewall/stateful/static filter/etc...). There isn't enough information in the traces to make
statements regarding the rules with any certainty, but there is enough information to get a good
idea.

A simple way to determine this is to look at connection initiation attempts (packets with SYN bit
set) that are destined for our internal networks. This is done by telling tcpdump to look at the
13th byte offset of TCP header (the flag byte of the TCP header) and making sure its value
equals what we are looking for. In this case I would like the TCP flag byte value to equal 2,
which indicates that the SYN bit and only the SYN bit is set (reference Snort 2.0.0 User's
Manual for detail on the TCP flag byte). NOTE: After analyzing our trace, 170.129.0.0/16 seems
to fit for the internal network).

The following commands will accomplish this:

gcia# tcpdump -n -r 2002.10.15 'tcp[13] = 2 and dst net 170.129.0.0/16' | awk '{print $4}' | awk -
F. '{print $5}' | sort | uniq

The additional awk, sort and uniq commands help us get a list of the destination ports that are
being permitted through border router (there are probably many others, but these are definitely
there according to our evidence). The ports are TCP 0, 53, 1080, 3128, and 8080.

We can also look at UDP traffic destined for UDP ports on the inside with the following
command:

gcia# tcpdump -n -r 2002.10.15 udp and dst net 170.129.0.0/16

The handful of lines that are filtered out with these commands show that there is traffic destined
for UDP port 0 and 111 on the inside. The Neohapsis listing of ports was used to get more
information about the ports we found (http://www.neohapsis.com/neolabs/neo-ports/neo-
ports.html)

There is a variety of source and destination IP addresses in the above packets. This likely
indicates that they are being permitted through border without any real control. I would guess
that the border device is a static filter at best, likely a router. It is difficult to make many more
assumptions from the given data since they aren't full captures. From the information we have
gathered, the revised layout would look as follows:

Cisco Border Router _|_____________________|_ Cisco PIX Firewall
00:03:e3:d9:26:c0 | ^ | 00:00:0c:04:b2:33
/ | \

/ | \
External Snort Sensor 170.129.0.0/16
Networks 207.166.0.0/16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. Detect was generated by:
Snort version 2.0.0 (Build 72)
Snort signature 524 generated these alerts. More information can be found here:
http://www.snort.org/snort-db/sid.html?id=524
The exact signature was:

alert tcp $EXTERNAL_NET any <> $HOME_NET 0 (msg:"BAD-TRAFFIC tcp port 0 traffic";
classtype:misc-activity; sid:524; rev:6;)
For this signature the Snort rule action is "alert", identified by the first word of the rule. The rule
action tells Snort what to do when it finds a packet that matches the rule criteria. There are 5
actions available by default, alert, log, pass, activate, and dynamic (for more information on
these refer to the Snort 2.0.0 User's Manual).

This rule is for bidirectional (identified by the <> bidirectional operator) TCP traffic where port
0 is used by the internal network(s) as defined by the variable $HOME_NET. That is one of two
variables that we see in this signature, the second is $EXTERNAL_NET. Both are variables that
are usually defined in the snort.conf file to indicate which networks are internal and which are
not. I don't want to go into the second part of the rule, refer to the Snort manual for more detail.

3. Probability the source address was spoofed:
I used some passive fingerprinting techniques on the packets to help with this issue. I used the
host identifier table from a passive OS fingerprinting tool called p0f. Below is sample packet
from the trace:

13:08:37.996507 211.47.255.23.46919 > 170.129.23.96.0: S [tcp sum ok]
2202284014:2202284014(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF) (ttl 46,
id 0, len 52)

The first thing to look at is the window size. All the interesting (destined for TCP port 0) packets
have a window size of 5840. Looking at p0f (available at http://www.stearns.org/p0f/p0f.fp), we
can see that there are eight possible OS choices:

Win TTL MSS DF WS sOK nop LEN OS Description
5840 64 1460 1 0 1 1 60 Linux 2.4.2 - 2.4.14 (1)
5840 64 1460 1 0 1 1 52 Linux 2.4.1-14 (1)
5840 64 1460 1 0 1 1 48 Linux 2.4.1-14 (2)
5840 64 1460 0 0 1 1 60 Linux (unknown?) (2)
5840 64 1460 1 0 0 1 60 Linux 2.4.13-ac7
5840 64 1460 1 223 1 1 60 Linux-2.4.13-ac7
5840 128 536 1 0 1 1 48 Windows 95 (3)
5840 128 1460 1 -1 1 1 48 Windows 95 or early NT4
5840 64 1460 1 0 1 1 52 -Source IP of our trace-

Using the table above (a snip directly from the p0f.fp file), we can quickly rule out the Windows
95 systems due to TTL. We can then rule out the "Linux (unknown?)" OS because of the lack of
DF bit being set. The packet size (LEN) field will then eliminate all the other Linux types to
leave us with a Linux 2.4.1-14 (1) kernel OS.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A quick whois query of ARIN (www.arin.net) identified the source network (211.47.255.x)as
part of a block of addresses that are part of APNIC (Asia Pacific Network Information Centre).
A quick APNIC whois query (www.apnic.net) gave the following:

inetnum: 211.47.255.0 - 211.47.255.255
netname: ORG84651-KR
descr: SAEROUNNET
descr: 789-28 sihungdong kumchungu
descr: SEOUL
descr: 153-034
country: KR
admin-c: CK724-KR
tech-c: IJ161-KR
remarks: This IP address space has been allocated to KRNIC.
.../snip/...

Along with these ARIN and APNIC queries, we did a search of the DShield (www.dshield.org),
myNetWatchman (www.mynetwatchman.com), and DeepSight Analyzer by SecurityFocus
(http://analyzer.securityfocus.com) databases for incidents involving the source IP addresses.
Dshield's database indicates that the last complaint regarding these IP addresses was sent in April
(it varies for each of the 5 IP addresses). myNetWatchman also indicates a number of incidents
with regards to these IP addresses and as with DShield, the last noted ones were in April.
DeepSight also indicates the latest incident in March. NOTE: DeepSight Analyzer is a
subscription type of service.

The results of these queries got me interested in whether this network was still active or not.
After a few basic connectivity tests that failed, I decided to check some internet BGP tables to
see if this route is currently being routed on the internet. (www.traceroute.org has several such
route servers/proxies)

gcia# telnet route-server.ip.att.net
#################### route-server.ip.att.net ####################

route-server>show ip bgp 211.47.255.0
% Network not in table

The above command would display any BGP advertisement that included this particular prefix.
According to this output, there are none. I checked several other route servers/proxies, but the
results were the same. Was this net ever routed on the internet? I looked back at some historical
BGP data (http://archive.routeviews.org). This network was still being advertised in March of
2003 as part of a larger block. From data dated March 15th, the following was being advertised:

* 211.47.224.0/19 217.75.96.60 0 16150 8434 2119 8210 4637 3976 9487 i

The things of note in this output are the network advertisement (211.47.224.0/19) and the final
AS (Autonomous System) in the AS path (9487). This network block encompasses the addresses
we are concerned with and the last AS on the list is the AS which advertised it. So according the
internet routing tables, this network stopped being advertised or routed sometime after March.

Back to the question of whether the source addresses were spoofed or not. I do not believe these
were spoofed sources. The source network and AS are/were legitimate (not that that means much

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

by itself). There have been many complaints filed against addresses from this block and
specifically these addresses. Also, the fact that these are lone SYN packets would support the
assumption that these are not spoofed. The SYN would elicit a response but the real source of the
packets would never see them if these addresses were spoofed.

4. Description of attack:
At first glance, this looks like regular session establishment attempts (except for the TCP port 0
part). But upon further review, I believe this to be some sort of OS fingerprinting attempt. The
probing device is attempting to use the responses received to his port 0 probes to accomplish
this. The packets look to be crafted, but there is more here than meets the eye. These do not look
like crafted packets sent by Nmap, hping, Nemesis, Rafale, Packit or a few other packet
automated crafting/scanning tools that I've used. The intervals between packets is 3, 6, 12
seconds. This is typical for a TCP connection retry timer. It is possible that these packets were
crafted and then sent on their way in a fashion more consistent with a normal Linux OS IP stack.
There are many packet crafting scripts out there and beyond this, it is possible that this is a
"home brew" script. The fact that the IP ID never increments on each retry leads me to believe
that these were crafted packets (good read about IP ID and Linux 2.4x kernel in this post by Ofir
Arkin, http://groups.google.com/groups?q=IP+ID+0+TCP&hl=en&lr=&ie=UTF-8&oe=UTF-
8&selm=3CB8955C.10407%40atstake.com&rnum=1). An IP ID of 0 is not illegal, but normal
TCP traffic would increment the IP ID on every retry. I've tried this with several OSes and found
it to be the case.

To summarize, these seem to be crafted packets because the IP ID does not increment on retry
attempts. They seem to be using some normal Linux operating system function to be sent to the
target hosts from a real IP address. I would guess that this is some sort of OS fingerprinting
attempt, in other words reconnaissance. I would assume this is either being done with a tool that
I am not familiar with, options with current tools that I am familiar with, or some combination of
packet crafting and using normal Linux OS functions to send the packet.

5. Attack mechanism:
The probe is sending SYN packets with non-incrementing IP ID to hosts on TCP port 0.
Otherwise the traffic pattern is that of a normal connection attempt. There is no well known
service on TCP port 0 nor is there any known vulnerabilities to such probes. I believe it network
reconnaissance and information gathering attempt to try to determine the OS of the destination
by the response received.

6. Correlations:
Much of this was done while trying to determine if the IP address was spoofed in the section
above. I did not find any specific information on the use of TCP port 0. I also did not find any
specifics positive or negative results of such a scan. This network went "dead" between now and
March sometime as noted by the disappearance of its routes from the internet BGP routing table.
Most of the incidents reported by DShield, myNetWatchman, and DeepSight Analyzer were of
web (IIS mostly) type attacks. Unfortunately most of the incidents did not have very much detail,
possibly because they were not very current.

7. Evidence of active targeting:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

If I was asked to give a yes or no answer, I would lean towards no. There is no evidence that the
probes are directed at active hosts. This could be just a random scan. But I believe it is difficult
to make any claim without more information regarding the destination IP addresses. Are they
active addresses? Are they critical systems? Is there a common application/service? etc. The
destination IP addresses do look to be rather random, but without details about the internal
network I would not disregard the possibility of active targeting.

8. Severity:
The formula:
severity = (criticality + lethality) - (system countermeasures + network countermeasures)

Criticality - We do not have information on the targeted IP addresses. Some testing I've done
indicates that most current OSes will simply treat it as any other connection attempt to a closed
port responding with a RST-ACK packet. I gave this item a 3 because of the unknown factor.
Lethality - If the assumption that this is simple information gathering is correct, this number
would be lower. But, since we do not know with any amount of certainty, I would give this item
a 3.
System countermeasures - We have no information about the internal systems that were targeted.
We do not know if this was blocked or if the hosts simply did not exist. This item gets a 2
because of the unknown factor again.
Network countermeasures - The traffic was either blocked or the hosts did not exist (both can
result in retries). This item gets a 2 as it doesn't look to be getting to any systems but it is getting
past the border.
The answer to the formula:
Severity = (3 + 3) - (2 + 2)
Severity = 2

9. Defensive recommendation:
The attack was likely blocked but did get past the border router. The hesitation is because the IP
addresses being targeted may not have been live. The trace would look the same in either case. I
would recommend this traffic be blocked at the border. It is something should never be permitted
to enter or leave our network. There is no known service or use for it. On a Cisco router the
following could easily block any communication on TCP port 0 if applied (or added to) the
ingress and egress access control lists:

access-list 101 deny tcp any any eq 0
access-list 101 deny tcp any eq 0 any

10. Multiple choice test question:
What would make these packets a normal TCP retry attempt?

05:34:50.446507 211.47.255.24.41104 > 170.129.195.40.0: S [tcp sum ok]
3540975666:3540975666(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF) (ttl 46,
id 0, len 52)
05:34:53.296507 211.47.255.24.41104 > 170.129.195.40.0: S [tcp sum ok]
3540975666:3540975666(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF) (ttl 46,
id 0, len 52)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

05:34:59.466507 211.47.255.24.41104 > 170.129.195.40.0: S [tcp sum ok]
3540975666:3540975666(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF) (ttl 46,
id 0, len 52)
05:35:11.276507 211.47.255.24.41104 > 170.129.195.40.0: S [tcp sum ok]
3540975666:3540975666(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0> (DF) (ttl 46,
id 0, len 52)

A) Positive integer value for TCP destination port
B) Positive integer value for IP ID field
C) 1 second interval between retries
D) Incrementing of the IP ID
E) This is a normal connection initiation attempt.
Answer: D

Detect 1 - NOTES

PCAPMERGE
pcapmerge -r 2002.10.1 -r 2002.10.2 .../snip/... -r 2002.10.18 -w all-oct

-r - input file(s)
-w - output file

SNORT
Snort command line options used:

-l - Log to a specific directory
- The directories must already be created before running this command

-r - Read and process tcpdump file
-c - Specify location of rules file

SNORTSNARF
Snortsnarf command line options used:

-d - Sets the output directory for the HTML files that are created
The syntax is very simple, snortsnarf [options] [alert file]. By default it outputs to the working directory.

From the Snortsnarf pages created for my alert, I gathered the following important bits of information:

Priority | Signature (click for sig info) | # Alerts | # Sources | # Dests |
Detail
---------|--------------------------------|----------|-----------|---------|-

3 | BAD-TRAFFIC tcp port 0 traffic | 44 | 2 | 3 |
Summary
.../snip/...

And also more detailed by IP address:

Sources triggering this attack signature
Source | # Alerts (sig) | # Alerts (total) | # Dsts (sig) | # Dsts
(total)
--------------|----------------|------------------|--------------|-----------

211.47.255.24 | 30 | 30 | 2 | 2
211.47.255.23 | 14 | 14 | 1 | 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Destinations receiving this attack signature
Destinations | # Alerts (sig) | # Alerts (total) | # Srcs (sig) | # Srcs
(total)
---------------|----------------|------------------|--------------|----------

170.129.21.249 | 15 | 15 | 1 | 1
170.129.195.40 | 15 | 15 | 1 | 1
170.129.23.96 | 14 | 14 | 1 | 1

TCPDUMP
Tcpdump command line options used:

-w - Write the raw packets to file
-n - Do not do name lookup on IP addresses in file

- We do this to make things go much faster since DNS lookups don't have to happen
-v - Verbose, gives more information such as the TTL, IP ID, LEN (Packet Length) and checksum information

- The additional information will be key in determining whether the packets were spoofed or not (more later)
-e - Displays link layer header information, which includes source and destination MAC address

- We would like to determine the Layer2 topology, using that information will possibly give us the layout of the
network

The expression used to filter out all but the needed results was 'tcp port 0'. In this expression, the first field identifies
the protocol we are looking for (TCP), the second and third fields identify the port in question (0).

MAC_ADDRESS
giac# tcpdump -nve -r 2002.10.15 | awk '{print $2, $3}' | sort | uniq
0:0:c:4:b2:33 0:3:e3:d9:26:c0
0:3:e3:d9:26:c0 0:0:c:4:b2:33

For this step, I used the unix text manipulation tools of "sort", "uniq" and "awk" to help with the analysis. I found
that through the entire trace file, there were only two source and destination MAC addresses. To support this
information, I ran the "all-oct" file created above from the entire month's worth of traces through the same command
with the same results:

gcia# tcpdump -nve -r all-oct | awk '{print $2,$3}' | sort | uniq
0:0:c:4:b2:33 0:3:e3:d9:26:c0
0:3:e3:d9:26:c0 0:0:c:4:b2:33

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Intrusions.org Mailing list Post –posted 6-24-2003

http://cert.uni-stuttgart.de/archive/intrusions/2003/06/msg00338.html

One recommendation I'd like to make is to read this (and perhaps your entire practical) as a reviewer would. For
example, use more "I" or "you–meaning the reader" rather than "we". When I read some paragraphs, it almost
infers that you worked on this as a member of a team - of course you did not *grin*.
From: "Dave van Nierop" <dvn@campana.com>

The fact that the IPID never increments on each retry leads me to believe that these were crafted packets (good read
about IP ID and Linux 2.4x kernel in this post by Ofir Arkin,
http://groups.google.com/groups?q=IP+ID+0+TCP&hl=en&lr=&ie=UTF-8 &oe=UTF-
8&selm=3CB8955C.10407%40atstake.com&rnum=1). An IP ID of 0 is not illegal, but normal TCP traffic would
increment the IP ID on every retry. I've tried this with several OSes and found it to be the case. Ref: http://www.sys-
security.com/archive/bugtraq/ofirarkin2002-02.txt says: The Linux Kernel 2.4.x way: Linux Kernel 2.4.x is using IP
ID values of zero in several circumstances, whenever the DF is set: The IP ID = 0 do not really indicate that it is a
crafted packet.. Some kernels do have ID = 0 when the packet is not fragmented and DF = 0 What do you think ?
From: Ashley Thomas <athomas@cc.gatech.edu>

---------response-------
Yes, I agree with you completely. IP ID of 0 by no means implies that it is a crafted packet. There were a few
factors as to why I thought the packet was crafted. The trace that I had contained all SYNs. Ofir specifically talked
about SYN/ACKs with the DF bit set having the possibility of an IP ID of 0. In fact, I did some simple tests and
saw just that. The problem I had with the this trace was that they were all SYNs (I haven't seen non-changing IP ID
of 0 anywhere with regards to SYNs) and that each retry attempt, the IP ID did NOT increment. That's why I
thought the packets were crafted. Again, thanks for taking the time.
Saro

Hey Saro,
Great Job! In looking through it the only things I felt I could comment on where kind of petty however I will shot
them off anyway.
##
Comment 1
> The SYN would elicit a
> response but the real source of the packets would never see them if these
> addresses were spoofed.

If an attacker has control of a router that is located in the return
path the attacker could use a spoofed address to elicit a response.

---------response-------

THanks for commenting...
> Comment 1
> The SYN would elicit a
> response but the real source of the packets would never see them if these addresses were spoofed.
> If an attacker has control of a router that is located in the return
> path the attacker could use a spoofed address to elicit a response.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Couldn't argue that point much, good thinking.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DDEETTEECCTT 22

1. Source of Trace:
This trace was from my work network.
The alerts were collected from Sourcefire (http://www.sourcefire.com/) sensors. Also, tcpdump
was used to capture the questionable activity as it was happening. The trace and set of packets
we were interested in were a large number of fragments that had the DF (don’t fragment) and the
MF (more fragments) bits set. That would seem to be anomalous at first glance. I wanted to
investigate.

The following is the sample screenshot of these particular events.

Event Data

Message BAD-TRAFFIC bad frag bits Generator ID 1

Classification Misc activity Snort ID 1322

Priority 3 Revision 5

Rule
alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-
TRAFFIC bad frag bits"; fragbits:MD; sid:1322; classtype:misc-
activity; rev:5;)

Deactivate

Ethernet Header

SRC MAC: 00:D0:05:40:13:FC DST MAC: 08:00:20:96:1E:62 Type: 0x0800

IP Header

Version: 4 Header Len: 5 TOS 0 Total Len (in bytes) 1500

16-bit ID 41933 Frag Flags DF MF 13-bit offset 0x0000 (0)
TTL 62 Protocol UDP

Source IP X.X.176.144
Destination IP Y.Y.252.47

After being notified of this alert, we were able to get a tcpdump of this exact activity and were
able to capture the full conversation between these two hosts. We also used “snoop” on a Solaris
system to capture the same traffic. Snoop is a packet capture implementation on Solaris. We
found some interesting differences between the two, which I will get into later. The following
commands were used for tcpdump and snoop respectively:

giac # tcpdump–i eth0–s 1500 -X–w nfstcpdump.cap host Y.Y.252.47
giac # snoop–d hme0–o snoop.cap host Y.Y.252.47

The tcpdump capture of an entire transaction is shown below (tcpdump–T rpc–nXv–r
nfstcpdump). The “-T rpc” indicates there is rpc traffic and willforce tcpdump to interpret them
as such:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15:41:36.409929 X.X.176.144 > Y.Y.252.47: udp (frag 4680:928@7400) (ttl 63, len 948)
0x0000 4500 03b4 1248 439d 3f11 c42c XXXX XXXX E....HC.?..,....
0x0010 YYYY YYYY 0000 0000 0000 0000 0000 0000
.../snip/...
15:41:36.410356 X.X.176.144 > Y.Y.252.47: udp (frag 4680:1480@5920+) (ttl 63, len
1500)
0x0000 4500 05dc 1248 62e4 3f11 a2bd XXXX XXXX E....Hb.?.......
0x0010 YYYY YYYY 0000 0000 0000 0000 0000 0000
.../snip/...
15:41:36.410494 X.X.176.144 > Y.Y.252.47: udp (frag 4680:1480@4440+) (ttl 63, len
1500)
0x0000 4500 05dc 1248 622b 3f11 a376 XXXX XXXX E....Hb+?..v....
0x0010 YYYY YYYY 0000 0000 0000 0000 0000 0000
.../snip/...
15:41:36.410550 X.X.176.144 > Y.Y.252.47: udp (frag 4680:1480@2960+) (ttl 63, len
1500)
0x0000 4500 05dc 1248 6172 3f11 a42f XXXX XXXX E....Har?../....
0x0010 YYYY YYYY 0000 0000 0000 0000 0000 0000
.../snip/...
15:41:36.410660 X.X.176.144 > Y.Y.252.47: udp (frag 4680:1480@1480+) (ttl 63, len
1500)
0x0000 4500 05dc 1248 60b9 3f11 a4e8 XXXX XXXX E....H`.?.......
0x0010 YYYY YYYY 0000 0000 0000 0000 0000 0000
.../snip/...
15:41:36.411101 X.X.176.144.2049 > Y.Y.252.47.890970796: reply ok 1472 (frag
4680:1480@0+) (ttl 63, len 1500)
0x0000 4500 05dc 1248 6000 3f11 a5a1 XXXX XXXX E....H`.?.......
0x0010 YYYY YYYY 0801 03fd 2088 b034 351b 22ac45.".
.../snip/...
15:41:36.411144 X.X.176.144.2049 > Y.Y.252.47.890970797: reply ok 112 (DF) (ttl 63, id
0, len 140)
0x0000 4500 008c 0000 4000 3f11 dd39 XXXX XXXX E.....@.?..9....
0x0010 YYYY YYYY 0801 03ff 0078 a916 351b 22adx..5.".
.../snip/...
15:41:36.412752 Y.Y.252.47.0x351b22ae > X.X.176.144.0x6f: 168 set 100003.3 (DF) (ttl
255, id 30965, len 196)
0x0000 4500 00c4 78f5 4000 ff11 a40b YYYY YYYY E...x.@.........
0x0010 XXXX XXXX 03ff 0801 00b0 c816 351b 22ae5.".
.../snip/...
15:41:36.413134 X.X.176.144.2049 > Y.Y.252.47.890970798: reply ok 112 (DF) (ttl 63, id
0, len 140)
0x0000 4500 008c 0000 4000 3f11 dd39 XXXX XXXX E.....@.?..9....
0x0010 YYYY YYYY 0801 03ff 0078 a915 351b 22aex..5.".

As can be seen here, without dumping the HEX (tcpdump–X option) of the packet, we would
not notice the DF/MF bits being set. The highlighted fields above note the fragmentation bit
settings. A hex 6 in this position indicates that both the DF and MF bits are set, a 4 indicates that
the DF bit is set, and a 2 indicates the MF bit is set.

All the fragmented packets should have datagram length of 1500 (MTU of the Ethernet network
it is on) except for the last fragment. The header length field for each can been seen highlighted
above. 05dc HEX translates to 1500 and 03b4 translates to 948. This is normal fragmentation
behavior.

A note of the these highlights in the above output. Tcpdump seems to think that these are the
destination ports for these NFS (source UDP 2049) packets. This does not seem to be correct.
Once I noticed this phenomena, I did the same capture with both snoop and tcpdump. Below is
the output from snoop (snoop -V -i nfssnoop).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1 0.00000 X.X.176.144 -> Y.Y.252.47 ETHER Type=0800 (IP), size = 962 bytes
1 0.00000 X.X.176.144 -> Y.Y.252.47 UDP continuation ID=4680

2 0.00042 X.X.176.144 -> Y.Y.252.47 ETHER Type=0800 (IP), size = 1514 bytes
2 0.00042 X.X.176.144 -> Y.Y.252.47 UDP continuation ID=4680

3 0.00013 X.X.176.144 -> Y.Y.252.47 ETHER Type=0800 (IP), size = 1514 bytes
3 0.00013 X.X.176.144 -> Y.Y.252.47 UDP continuation ID=4680

4 0.00005 X.X.176.144 -> Y.Y.252.47 ETHER Type=0800 (IP), size = 1514 bytes
4 0.00005 X.X.176.144 -> Y.Y.252.47 UDP continuation ID=4680

5 0.00011 X.X.176.144 -> Y.Y.252.47 ETHER Type=0800 (IP), size = 1514 bytes
5 0.00011 X.X.176.144 -> Y.Y.252.47 UDP continuation ID=4680

6 0.00044 X.X.176.144 -> Y.Y.252.47 ETHER Type=0800 (IP), size = 1514 bytes
6 0.00044 X.X.176.144 -> Y.Y.252.47 IP D=Y.Y.252.47 S=X.X.176.244LEN=1500, ID=4680
6 0.00044 X.X.176.144 -> Y.Y.252.47 UDP D=1021 S=2049 LEN=8328
6 0.00044 X.X.176.144 -> Y.Y.252.47 RPC R XID=890970796 Success

7 0.00004 X.X.176.144 -> Y.Y.252.47 ETHER Type=0800 (IP), size = 154 bytes
7 0.00004 X.X.176.144 -> Y.Y.252.47 IP D=Y.Y.252.47 S=X.X.176.244LEN=140, ID=0
7 0.00004 X.X.176.144 -> Y.Y.252.47 UDP D=1023 S=2049 LEN=120
7 0.00004 X.X.176.144 -> Y.Y.252.47 RPC R XID=890970797 Success

8 0.00160 Y.Y.252.47 -> X.X.176.144 ETHER Type=0800 (IP), size = 210 bytes
8 0.00160 Y.Y.252.47 -> X.X.176.144 IP D=X.X.176.244S=Y.Y.252.47 LEN=196, ID=30965
8 0.00160 Y.Y.252.47 -> X.X.176.144 UDP D=2049 S=1023 LEN=176
8 0.00160 Y.Y.252.47 -> X.X.176.144 RPC C XID=890970798 PROG=100003 (NFS) VERS=3
PROC=1
8 0.00160 Y.Y.252.47 -> X.X.176.144 NFS C GETATTR3 FH=5054

9 0.00038 X.X.176.144 -> Y.Y.252.47 ETHER Type=0800 (IP), size = 154 bytes
9 0.00038 X.X.176.144 -> Y.Y.252.47 IP D=Y.Y.252.47 S=X.X.176.244LEN=140, ID=0
9 0.00038 X.X.176.144 -> Y.Y.252.47 UDP D=1023 S=2049 LEN=120
9 0.00038 X.X.176.144 -> Y.Y.252.47 RPC R (#8) XID=890970798 Success
9 0.00038 X.X.176.144 -> Y.Y.252.47 NFS R GETATTR3 OK

The two highlighted numbers from the tcpdump output are also highlighted in the snoop output.
But strangely enough, snoop identifies these as RPC transaction IDs. A quick search of Google
did not reveal much with regards to this. I concluded that somehow tcpdump is misinterpreting
the transaction ID as the destination port. As a sidenote, snoop and tcpdump cannot natively
read one another’s files. A tool like Ethereal (http://www.ethereal.com) can be used to open both
and save them in different formats.

I have the luxury of knowing what the layout of network is around this sensor as it was
implemented by some of my co-workers. Below is a simple diagram. The two hosts are on
different routed segments. Routing between the two vlans is done on the MSFC (routing
module) of the Cisco Catalyst 6509. A span (mirror) port is set up on the Catalyst which takes
in/out traffic from both vlans and send them to the Sourcefire IDS.

Vlan 100_|________Cisco_____________|_Vlan 200
/ | Catalyst | \

/ 6509 (routing) \
/ | \

/ |SPAN port \
X.X.176.144 | Y.Y.252.47

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Sourcefire

This sensor was implemented to monitor traffic within our network. Because of that, rules
implemented (or Active) on the Sourcefire are few as our IDS team (person) is in the process of
getting it tuned so that he is not drowning in data. As an example, attached below (next page) is
the “Event Statistics” from our sensors (Graphic 1). It is painfully obvious that the number of
alerts over the 10-day period is overwhelming. The interesting signature itself had seen 2500
hits in a ten-day period.

2. Detect was generated by:
The versions of the sensor were as follows: Management Console v2.7.0 (build 13) running on
Sourcefire Linux OS v3.0.0.

The specific signature was:
Snort Rule #1322 ACTIVE
alert ip $EXTERNAL_NET any -> $HOME_NET any
msg:"BAD-TRAFFIC bad frag bits" fragbits:MD sid:1322 classtype:misc-activity rev:5

This rule is unidirectional (identified by the -> operator) and applies to IP traffic from the
networks defined with the $EXTERNAL_NET variable to networks defined by the
$HOME_NET variable. It specifically alerts on packets that have the DF bit and the MF bits set.
The Snort SID states that the expected response for this type of packet would be an ICMP Type 3
Code 4 (it actually states type 5 Source Route Failed, but I believe that to be a mistake),
Destination Unreachable - Fragmentation needed and don't fragment was set (more on this later).

3. Probability the source address was spoofed:
As in the first detect above, I used p0f to do some passive OS fingerprinting. Below is a TCP
SYN packet from the tcpdump data collected above from the source and the destination:

00:36:30.020904 X.X.176.144.32789 > Y.Y.252.47.ssh: S [tcp sum ok]
3790844184:3790844184(0) win 5840 <mss 1460,sackOK,timestamp 11790190 0,nop,wscale 0>
(DF) (ttl 64, id 22134, len 60)
00:42:09.653709 Y.Y.252.47.45497 > X.X.176.144.ssh: S [tcp sum ok]
2067802396:2067802396(0) win 24820 <nop,nop,sackOK,mss 1460> (DF) (ttl 62, id 63114,
len 48)

We will use the Window Size, TTL, MSS and LEN fields to create a list of possible hosts from
the p0f host table (http://www.stearns.org/p0f/p0f.fp)

Window
Size TTL MSS DF WS sackOK nop LEN OS Description
SOURCE Possibilities
5840 64 1460 1 0 1 1 60 Linux 2.4.2 - 2.4.14 (1)
5840 64 1460 1 0 0 1 60 Linux 2.4.13-ac7
5840 64 1460 0 0 1 1 60 Linux (unknown?) (2)
5840 64 1460 1 223 1 1 60 Linux-2.4.13-ac7
DESTINATION Possibilities
24820 64 1460 1 0 0 1 48 SCO UnixWare 7.1.0 x86 ? (3)
24820 64 1460 1 -1 1 1 48 SunOS 5.8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

We have narrowed it down to a some version of Linux for the source and either SCO Unix or
SunOS 5.8 (Solaris 8) for the destination. So now we can use the DF flag and the sackOK flag to
make our final determination. The source was Linux 2.4.2-2.4.14 (1) and the destination was
SunOS 5.8.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Graphic 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3. Probability the source address was spoofed (continued):
I did a search of our internal network managers listing for these IP addresses. Fortunately both
were associated with live human beings!! As with many static lists and databases, the records
can sometimes be incomplete and dated. I contacted them and asked permission to do a quick
scan for the hosts and both agreed. Below is the output:

giac# nmap -O X.X.128.59

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Warning: OS detection will be MUCH less reliable because we did not find at least 1
open and 1 closed TCP port
Interesting ports on XXXXXXXX (X.X.128.59):
(The 1600 ports scanned but not shown below are in state: filtered)
Port State Service
22/tcp open ssh
Remote operating system guess: Linux Kernel 2.4.0 - 2.5.20
Uptime 1.386 days (since Mon Jun 23 15:39:37 2003)

giac# nmap -O Y.Y.252.47

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on YYYYYYYY (Y.Y.252.47):
(The 1588 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
79/tcp open finger
111/tcp open sunrpc
512/tcp open exec
513/tcp open login
514/tcp open shell
515/tcp open printer
4045/tcp open lockd
32771/tcp open sometimes-rpc5
32772/tcp open sometimes-rpc7
Remote operating system guess: Solaris 8 early access beta through actual release
Uptime 112.762 days (since Tue Mar 4 06:39:59 2003)

Nmap run completed -- 1 IP address (1 host up) scanned in 54 seconds

As we can see, nmap’s guess matched my guess based on some of the collected packets from
these two systems. It is interesting that nmap seemingly accurately identified the source host
with only one open port. I will mention again a very interesting post from Ofir Arkin regarding
Linux Kernel 2.4.x and IP ID values
(http://groups.google.com/groups?q=IP+ID+0+TCP&hl=en&lr=&ie=UTF-8&oe=UTF-
8&selm=3CB8955C.10407%40atstake.com&rnum=1)

My conclusion would be that these hosts were not spoofed. They are live hosts on our internal
network. More importantly, the question now is what is causing this traffic and is one of these
systems compromised?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4. Description of attack:
Below is the alerts from the Sourcefire sensor. It was expored as a csv file:
Message Timestamp Sensor IP IP Src IP Dst Src Prt Dst Prt Class Priority Proto

BAD-TRAFFIC bad frag bits 5/24/2003 0:08 Z.Z.47.226 X.X.176.44 Y.Y.252.47 0 0 Misc activity 3 UDP

BAD-TRAFFIC bad frag bits 5/24/2003 0:08 Z.Z.47.226 X.X.176.44 Y.Y.252.47 0 0 Misc activity 3 UDP

BAD-TRAFFIC bad frag bits 5/24/2003 0:06 Z.Z.47.226 X.X.176.44 Y.Y.252.47 0 0 Misc activity 3 UDP

BAD-TRAFFIC bad frag bits 5/24/2003 0:06 Z.Z.47.226 X.X.176.44 Y.Y.252.47 0 0 Misc activity 3 UDP

BAD-TRAFFIC bad frag bits 5/24/2003 0:05 Z.Z.47.226 X.X.176.44 Y.Y.252.47 0 0 Misc activity 3 UDP

BAD-TRAFFIC bad frag bits 5/24/2003 0:05 Z.Z.47.226 X.X.176.44 Y.Y.252.47 0 0 Misc activity 3 UDP

BAD-TRAFFIC bad frag bits 5/24/2003 0:03 Z.Z.47.226 X.X.176.44 Y.Y.252.47 0 0 Misc activity 3 UDP

BAD-TRAFFIC bad frag bits 5/24/2003 0:03 Z.Z.47.226 X.X.176.44 Y.Y.252.47 0 0 Misc activity 3 UDP

BAD-TRAFFIC bad frag bits 5/24/2003 0:01 Z.Z.47.226 X.X.176.44 Y.Y.252.47 0 0 Misc activity 3 UDP

A detail of a one of these packets is attached below:

Packet Display
Resolve IP Display Session
Event Data

Message BAD-TRAFFIC bad frag bits Generator ID 1

Classification Misc activity Snort ID 1322

Priority 3 Revision 5

Rule
alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-
TRAFFIC bad frag bits"; fragbits:MD; sid:1322; classtype:misc-
activity; rev:5;)

Deactivate

Ethernet Header

SRC MAC: 00:D0:05:40:13:FC DST MAC: 08:00:20:96:1E:62 Type: 0x0800

IP Header

Version: 4 Header Len: 5 TOS 0 Total Len (in bytes) 1500

16-bit ID 41931 Frag Flags DF MF 13-bit offset 0x00B9 (185)
TTL 62 Protocol UDP

Source IP X.X.176.144
Destination IP Y.Y.252.47

I would not classify this as an attack yet. From the tcpdump file we notice that this are
fragmented UDP NFS packets. The thing that sets them apart from being completely normal is
that the DF and the MF bits are both set. It is possible that there is some sort of vulnerability that

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the source station is looking to exploit. All this assumes that either the user on the source station
has malicious intent or the system has been compromised. For argument’s sake, I will assume
the user (an employee at our facility), would not partake in such terrible activities.
From the information we have already gathered, we know that only TCP port 22 (SSH) is
listening on source system. It is possible that an SSH vulnerability was used to get into the
source. I wouldn’t call this an OS fingerprinting attempt because from our nmap scan of the
destination host, that information was too easily available to go through this type of trouble. If
this was an attack, it was a specifically targeting something on the system.

X.X.176 red hat
Y.Y.252.47 solaris 2.8

5. Attack mechanism & 6. Correlations:
A search of Google was in order at this point. I was specifically looking for information about
UDP NFS packets with both the DF and MF bits set. Interestingly enough I ran across this
following writeup:
http://kerneltrap.org/node.php?id=579
and again on RedHat’s site:
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=58084

A post on the RedHat Bugzilla page for this problem quoted the RFC
(http://www.faqs.org/rfcs/rfc1191.html):

Also, since a single NFS operation cannot be split across several UDP
datagrams, certain operations (primarily, those operating on file names and
directories) require a minimum datagram size that may be larger than the PMTU.
NFS implementations should not reduce the datagram size below this threshold,
even if PMTU Discovery suggests a lower value.(Of course, in this case
datagrams should not be sent with DF set.)

These are apparently a well-known set of packets that are easily reproducible. It was also
apparent was a split as to what the right way of doing things was.

7. Evidence of active targeting:
This was determined to be legitimate NFS traffic from a Linux system to a Solaris system. It is
the NFS implementation on Linux that seems to be generating these packets. After the above
analysis was completed, the two network managers were asked to reproduce the connection for
the purposes of data capture to verify that this was legitimate traffic. It was determined to
legitimate traffic.

8. Severity:
The formula:
severity = (criticality + lethality) - (system countermeasures + network countermeasures)

Criticality–1, this was legitimate traffic.
Lethality - 1, this was legitimate traffic.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

System countermeasures - 3, although this was legitimate traffic the destination host had many
listening TCP ports. We do not know if it had TCPwrappers or the equivalent for securing the
system. The source host, on the other hand, seemed have very few listening ports (only 1, but
that was a limited portscan).
Network countermeasures–2, from the portscan of the destination host, it was apparent that
quite a bit was being permitted into that network.

Severity = (1 + 1) - (3 + 2)
Severity = -3

9. Defensive recommendation:
This was not an attack, but, I would still recommend that the destination host implement some
sort of host-based firewall. It is possible that TCPwrappers (or something like it) has been
implemented on the system, but we don’t know that information. I would also recommend that
depending on the needs, some things be filtered from coming into these network. Firewalls or
firewall type functionality should be implemented to better protect the systems within.

10. Multiple choice test question:
All fragmented packets, except for the last fragment, should have datagram length of _________.

A) 1500
B) 1480
C) MTU size of the medium on which it is traveling.
D) MTU of the source host
E) It is variable.
Answer: A) 1500

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DDEETTEECCTT 33

1. Source of Trace:
This trace was from my work network.
The alerts were collected from Cisco IDS sensors (www.cisco.com). The Cisco IDS has the
capability to capture certain signatures into binary capture files. Opening these files can
sometimes be tricky. eEye’s Iris works well at doing this (www.eeye.com). Ethereal, tcpdump,
and windump were unable to open the binary file. The alert that caught my attention was a CDE
buffer overflow attack known as “CDE dtspcd overflow”. CDE, or Common Desktop
Environment, is a window manager for X Windows (http://www.opengroup.org/cde). This alert
triggers when the sensor detects a buffer overflow attempt to the CDE daemon (dtspcd) on TCP
port 6112. The priority level of this signature is a 5, which on Cisco sensor is high. The
following is the explanation of the signature for Cisco:

Exploit Signature
CDE dtspcd overflow

ID: 3700 Sub ID: 0

Default
Alarm Level:

HIGH (5) Signature
Type:

NETWORK

Signature
Structure:

COMPOSITE Implementation: CONTENT

Release
Version:

S15

Description: This signature will fire if a buffer overflow attack to
the CDE sub-process control daemon (dtspcd) on TCP port 6112 is
detected.

Benign Trigger(s): No known triggers.

Recommended Signature Filter: No recommended filters.

Data Field Information Tag: None

Related Vulnerabilities: 1003700

User Notes: User Notes Page

I did find a two CERT advisories on this particular type of attack.
http://www.cert.org/advisories/CA-2002-01.html
http://www.cert.org/advisories/CA-2001-31.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The newer advisory, CA-2002-01, has a specific hex packet dump and information on what to
look for exactly. From CA-2002-1:

The signature can be found at bytes 0x3e-0x41 in the following attack packet from a
tcpdump log (lines may wrap):

09:46:04.378306 10.10.10.1.3592 > 10.10.10.2.6112: P 1:1449(1448) ack 1 win
16060 <nop,nop,timestamp 463986683 4158792> (DF)
0x0000 4500 05dc a1ac 4000 3006 241c 0a0a 0a01 E.....@.0.$.....
0x0010 0a0a 0a02 0e08 17e0 fee2 c115 5f66 192f ...f........_f./
0x0020 8018 3ebc e1e9 0000 0101 080a 1ba7 dffb ..>.............
0x0030 003f 7548 3030 3030 3030 3032 3034 3130 .?uH000000020410
0x0040 3365 3030 3031 2020 3420 0000 0031 3000 3e0001..4....10.
0x0050 801c 4011 801c 4011 1080 0101 801c 4011 ..@...@.......@.
0x0060 801c 4011 801c 4011 801c 4011 801c 4011 ..@...@...@...@.

The value 0x103e in the ASCII (right) column above is interpreted by the server as the
number of bytes in the packet to copy into the internal 4K (0x1000) buffer. Since
0x103e is greater than 0x1000, the last 0x3e bytes of the packet will overwrite memory
after the end of the 4K buffer.

Iris was used to read the file created from the Cisco IDS and then dump the entire packet to a text
file. Below is the packet dump of the packet that triggered this signature in hex along with a
packet back from the destination:

Timestamp: 12:14:02:046
MAC source address: 00:D0:00:2C:63:FC
MAC dest address: 00:0B:46:B3:6E:00
Frame type: IP
Protocol: TCP->DTSPCD
Source IP address: X.X.105.131
Dest IP address: 210.242.84.67
Source port: 57424
Destination port: 6112
SEQ: 711286895
ACK: 2576160
Packet size: 1514

Packet data:
0000: 00 0B 46 B3 6E 00 00 D0 00 2C 63 FC 08 00 45 00 ..F.n....,c...E.
0010: 05 DC A3 D8 40 00 3E 06 81 C6 XX XX XX XX D2 F2@.......i...
0020: 54 43 E0 50 17 E0 2A 65 60 6F 00 27 4F 20 50 18 TC.P..*e`o.'O P.
0030: C1 E8 02 EC 00 00 F7 43 B4 05 09 03 01 00 00 00C........
0040: 00 00 00 00 5A 3A 2D EA 48 4D 33 57 00 00 00 00Z:-.HM3W....
0050: 7C 63 30 30 30 30 30 30 66 66 5A 6F 61 74 6F 72 |c000000ffZoator
0060: 20 54 44 20 32 2E 30 7C 72 00 70 0D 00 00 0A 00 TD 2.0|r.p.....
0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=========================// SNIP//====================================
0570: 97 28 49 26 91 A2 44 6A 25 4A F0 4E C1 A2 09 3A .(I&..Dj%J.N...:
0580: 92 A5 AF 25 9C 28 B4 03 3D 13 D0 93 E2 70 0A 70 ...%.(..=....p.p
0590: A8 BA C4 A1 0F 16 A1 DB 39 42 97 18 5C 0D 42 0A9B..\.B.
05A0: B8 D7 5D 10 9F 57 1E DA E5 E1 AC 7F 15 BC 4C AD ..]..W........L.
05B0: 4F B9 FD 1F 8A 48 0E C7 C7 DD DE 4B 28 6B 0E 0A O....H.....K(k..

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

05C0: 2E 50 60 06 B2 0E 40 4F 8D 28 15 DE CD A1 E4 31 .P`...@O.(.....1
05D0: 28 00 BB E1 14 32 1D 58 E2 F3 03 F7 7A 29 20 94 (....2.X....z) .
05E0: CA 50 88 16 60 11 56 0A 5D 22 .P..`.V.]"

===

Timestamp: 12:14:02:046
MAC source address: 00:0B:46:B3:6E:00
MAC dest address: 00:00:0C:07:AC:01
Frame type: IP
Protocol: TCP->DTSPCD
Source IP address: 210.242.84.67
Dest IP address: X.X.105.131
Source port: 6112
Destination port: 57424
SEQ: 2576160
ACK: 711288355
Packet size: 64

Packet data:
0000: 00 00 0C 07 AC 01 00 0B 46 B3 6E 00 08 00 45 00F.n...E.
0010: 00 32 0F 60 40 00 6D 06 EC E8 D2 F2 54 43 XX XX .2.`@.m.....TC..
0020: XX XX 17 E0 E0 50 00 27 4F 20 2A 65 66 23 50 18 i....P.'O *ef#P.
0030: 22 38 9E BD 00 00 F7 45 0A 00 03 09 01 00 00 00 "8.....E........
0040:

2. Detect was generated by:
The sensor was a Cisco 4230 running version 3.1(3)S46 code. The following is the actual
signature that the Cisco IDS used to trigger this event:

The highlighted field called “SigStringInfo” is what the IDS is looking for to trigger this alert
along with a TCP port of 6112. The rule is basically looking for any TCP port 6112 traffic with
the above pattern in it (circled in red). This detected was generated by a host on my network
X.X.105.131 and was destined for Y.Y.84.67 on a remote network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3. Probability the source address was spoofed:
To do this, I first want to gather some information about the destination. I already know the
source is on my local network.

Liu, Hui-Min
No. 27-3, Lin Shen Rd,
Pingtung Taiwan
TW

Netname: LIU-HUI-MIN-PT-NET
Netblock: 210.242.84.0 - 210.242.84.255

Administrator contact:
Hui Min Liu (HML2-TW) hn80090325@hn.hinet.net
TEL: +886-8-722-8771

Technical contact:
Hui Min Liu (HML2-TW) hn80090325@hn.hinet.net
TEL: +886-8-722-8771

Interestingly enough, usually attacks are being sourced from Asian networks. In this case, they
seem to be the target.

This particular attack is very targeted. The attacker would not gain much if his source address
was spoofed and he was attempting a buffer overflow. That said, I tried some basic connectivity
testing to see if this host was alive:

gcia# ping X.X.105.131
PING X.X.105.131 (X.X.105.131): 56 octets data
64 octets from X.X.105.131: icmp_seq=0 ttl=255 time=1.5 ms
64 octets from X.X.105.131: icmp_seq=1 ttl=255 time=0.4 ms
64 octets from X.X.105.131: icmp_seq=2 ttl=255 time=0.4 ms
64 octets from X.X.105.131: icmp_seq=3 ttl=255 time=0.4 ms

--- 128.196.128.4 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 0.4/0.6/1.5 ms

So this host is alive on the network. Based on this data and the type of exploit that we are
looking at. I would be fairly comfortable saying the source is not spoofed.

4. Description of attack:
I followed the example set in the CERT advisory to manually look for this particular exploit in
the packet dump. Below is part of the initial packet that is believed to have the malicious data in
it.

Timestamp: 12:14:02:046
MAC source address: 00:D0:00:2C:63:FC
MAC dest address: 00:0B:46:B3:6E:00
Frame type: IP
Protocol: TCP->DTSPCD
Source IP address: X.X.105.131
Dest IP address: 210.242.84.67
Source port: 57424
Destination port: 6112

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SEQ: 711286895
ACK: 2576160
Packet size: 1514

Packet data:
0000: 00 0B 46 B3 6E 00 00 D0 00 2C 63 FC 08 00 45 00 ..F.n....,c...E.
0010: 05 DC A3 D8 40 00 3E 06 81 C6 XX XX XX XX D2 F2@.......i...
0020: 54 43 E0 50 17 E0 2A 65 60 6F 00 27 4F 20 50 18 TC.P..*e`o.'O P.
0030: C1 E8 02 EC 00 00 F7 43 B4 05 09 03 01 00 00 00C........
0040: 00 00 00 00 5A 3A 2D EA 48 4D 33 57 00 00 00 00Z:-.HM3W....
0050: 7C 63 30 30 30 30 30 30 66 66 5A 6F 61 74 6F 72 |c000000ffZoator
0060: 20 54 44 20 32 2E 30 7C 72 00 70 0D 00 00 0A 00 TD 2.0|r.p.....

Looking at the alert, it’s pretty apparent why this packet triggered that signature. I’ve
highlighted the HEX responsible for triggering the alert. A similar set of 3030 3030 3030
appears in the CERT advisory example. According to the CERT advisory, the actual buffer
overflow portion of the attack packet is found at bytes 0x3e– 0x41. I’ve highlighted those bytes
in our packet above. It seems as though this packet does not match the attack packet described in
the advisory. The buffer size is 4K (0x1000). We were looking for a value of something larger
than that (0x103e was the CERT sample). If the packet was larger than 0x1000, the difference
between the values would overwrite memory after the end of the 4K buffer. I would have to
come to the conclusion that this is a false positive. I would say that the signature that the Cisco
IDS is using is too broad and needs to be tuned.

5. Attack mechanism
The attack mechanism, in this case, would have been the 4K buffer being overwritten by data
larger than 4K that would overwrite memory after that buffer. According to SecurityFocus.com
(http://www.securityfocus.com/bid/3517/info) with regards to this vulnerability, the overflow is
in the libDtSvc library. The ‘Subprocess Control Service’ uses this library. The vulnerability is
then exploited via the ‘dtspcd’ service on the end station.

Unfortunately (well, fortunately for the destination host, but unfortunately for the analysis of this
detect, this was a false positive. The signature is a bit too general and should be more specific as
to which bytes it is searching for. The byes are well known and documented. It should be a
simple of matter of adjusting the rule to cut down this false positive.

6. Correlations:
Even though this was determined to be a false positive alert, I still had some interest in seeing
whether this internal host was the culprit of other malicious activities. Whether this was a buffer
overflow or not, I question the need to connect to the dtspcd service on a system in Taiwan. I did
a search of the usual suspects, Dshield, myNetWatchman, and DeepSight Analyzer (Security
Focus). Nothing turned up on Dshield but I did find some very interesting on the other two sites.
MyNetWatchman had a record of this host attempting the same buffer overflow to another
external host. Below is the record:

Most
Recent
Event

Date/Tim
e

(UTC)

Agent
Alias

Agen
t

Type

Log
Type Target Ip

of
IPs

Targete
d

IP
Protoco

l

Targe
t

Port

Port/
Issue

Descriptio
n

Sourc
e

Port

Explanatio
n

Even
t

Coun
t

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

25 Jun
2003
04:02:54

Readyte
k Perl

Cisc
o
PIX

63.226.x.
x 1 6 6112

dtspcd
CDE Buffer
Overflow

56302 mNW Info 5

A search of DeepSight Analyzer gave a report of several types of malicious activity from this
host.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The fact that this is a false positive seems to be the exception and the rule in this case. It’s pretty
apparent that this host has been involved in some malicious activity in the very recent past.
Luckily, my hunch about CDE traffic destined for Taiwan was right, otherwise I would have
wasted my time analyzing something that did not need any more analysis.

8. Severity:
The formula:
severity = (criticality + lethality) - (system countermeasures + network countermeasures)

Criticality–2–This did not turn out to be the buffer overflow attempt, but it may very well have
been a reconnaissance attempt to see if the remote host would answer on that port.

Lethality–3–If we only look at the fact that this was a false positive, I would have said a 1.
The results from DeepSight Analyser and myNetWatchman, added to the thought that this may
have been a recon attempt, (a dry run of sorts) put this category up to a three for me.

System Countermeasures–1–In most normal cases, a host in Taiwan should not be responding
to CDE traffic from the United States, and vise versa.

Network Countermeasures–1–This traffic was never filtered out, from source to destination. I
would think that most networks would not want this type of traffic coming into their enterprise.
Systems across the globe do not need to communicate with CDE on my host.

Severity = (2 + 3) - (1 + 1)
Severity = 3

9. Defensive recommendation:
First, the remote system should be set up with some sort of protection that would block or refuse
a TCP port 6112 connection attempt from across the world. The host would appear to be running
with little or no control if this service is left listening. Next, I would expect the network of the
remote system to not permit TCP 6112 CDE traffic in to its internal network. This should be one
of the things that gets blocked at the border along with all the other “never leave the borders”
type rules.

10. Multiple choice test question:
This particular signature caused a false positive. What could have been added to the signature to
help reduce the chance of it re-occurring?
A. Nothing, false positives are fact of life.
B. The rule should have searched for the 0x1000 buffer in the data
C. The rule should have searched for a value larger than 0x1000 in the buffer
D. The rule should have used the known start byte field of the signature
Answer: D

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

AANNAALLYYZZEE TTHHIISS

EXECUTIVE SUMMARY - THE HEAVY HITTERS

Over the five day period, there were nearly 1.9 (1,888,848) million events. There was 1,042,074
alerts and 846,774 scanning entries. Of these events, 11,742 Out of Spec packets were detected.
The following graph (Graph 1) better illustrates this over the five days.

Alerts, Scans and Out of Spec Data by Day

472297

350299

21059

120413

175475

1991 1423

86526 95831

37121

235305

294522

263828482842
0

100000

200000

300000

400000

500000

5/1/2003 5/2/2003 5/3/2003 5/4/2003 5/5/2003

Alerts

Scans

Out of Spec

Graph 1

To see the trends with better detail, I also looked at the number of events per hour (Graph 2).
Alerts, Scans and Out of Spec Data by Hour

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

May 1, 12:00 AM

May 1, 10:00 AM

May 1, 8:00
PM

May 2, 6:00
AM

May 2, 4:00
PM

May 3, 2:00
AM

May 3, 12:00 PM

May 3, 10:00 PM

May 4, 8:00
AM

May 4, 6:00
PM

May 5, 4:00
AM

Alerts

Scans

215740

Graph 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

At first glance, this is a tremendous amount of alerts. It seems that the sensor rules need to be
tuned so the sheer noise level is reduced. With this much noise, it is difficult to do proper
analysis of an event. In fact, it events could very easily be missed. I will go through the top 93%
of these alerts to help tune this sensor and get it to a state where the alerts we see are less often
false positives. I will start with the heavy hitters in the alerts files and will use the scan and OOS
file to correlate data and help in the analysis of this sensor.

LOG FILES

There was three different types of log files that were provided for analysis. I chose to use the
files dated from May 1st through May 5th. The following table (Table 1) provides some basic
details about the files:

Alert Files Scan Files Out of Spec Files
alert.030501.g
z

scans.030501.g
z

OOS_Report_2003_05_02_28431.tx
t

alert.030502.g
z

scans.030502.g
z OOS_Report_2003_05_03_7239.txt

alert.030503.g
z

scans.030503.g
z

OOS_Report_2003_05_04_21395.tx
t

alert.030504.g
z

scans.030504.g
z

OOS_Report_2003_05_05_25821.tx
t

alert.030505.g
z

scans.030505.g
z OOS_Report_2003_05_06_7938.txt

Table 1

The log files were generated by Snort with a standard rulebase. I chose to analyze all the logs as
complete sets. The five files of each type from above were merged into one each. For
simplicity, I called them all.alerts, all.scans, and all.oos. There was a strange anomaly that I
noticed in the date stamp of the data from the OOS (Out of Spec). It seems the records with a
file are one day behind the date of the file itself. For example, to get OOS data for May 5th, I
used the OOS file dated May 6th.

When creating the all.alerts file, all the port scan entries (clearly labeled with spp_portscan) were
filtered out. The following is a sample of a record in the alerts file:

05/01-11:20:22.757565 [**] SMB Name Wildcard [**] 165.247.107.139:137 ->
MY.NET.24.34:137
05/01-11:31:01.381487 [**] SMB Name Wildcard [**] 148.220.29.18:1033 ->
MY.NET.56.28:137
05/01-11:20:22.793455 [**] SMB Name Wildcard [**] 67.31.249.251:137 ->
MY.NET.24.34:137

There were also a large number of malformed entries in the alerts logs that were scraped out with
Unix text manipulation tools like grep and tr so that all the data was normalized.

The format of the scan file records was as follows:

May 1 11:20:47 69.22.247.251:2648 -> MY.NET.130.228:445 SYN ******S*
May 1 11:31:40 MY.NET.1.3:32832 -> 212.100.224.80:53 UDP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

May 1 11:31:40 MY.NET.1.3:32832 -> 209.208.92.254:53 UDP

The format of the OOS files was as follows:

=+

05/01-00:06:20.935520 133.11.36.55:47976 -> MY.NET.24.34:80
TCP TTL:53 TOS:0x0 ID:17430 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x42F1E07D Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 111256683 0 NOP WS: 0

=+

05/01-00:06:21.575096 133.11.36.35:47532 -> MY.NET.24.34:80
TCP TTL:53 TOS:0x0 ID:7221 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x45280763 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 111287126 0 NOP WS: 0

A custom Perl script was written to help with the formatting of this file to so it could be
processed and pertinent information gained from it [OOS Scripts].

Alerts
The table (Table 2) below is a numerically sorted listing of all the alerts from the alerts file.

Percent
of Total Count Alert

39.4033% 355527 Incomplete Packet Fragments Discarded

23.1139% 208552 TCP SRC and DST outside network

19.3096% 174226 SMB Name Wildcard

3.3738% 30441 spp_http_decode: IIS Unicode attack detected

3.0232% 27278 High port 65535 udp - possible Red Worm - traffic

2.7646% 24944 CS WEBSERVER - external web traffic

2.6201% 23641 High port 65535 tcp - possible Red Worm - traffic

1.5005% 13539 Tiny Fragments - Possible Hostile Activity

1.0352% 9340 TFTP - Internal TCP connection to external tftp server

0.6676% 6024 EXPLOIT x86 NOOP

0.5580% 5035 connect to 515 from outside

0.5569% 5025 [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC

0.5564% 5020 spp_http_decode: CGI Null Byte attack detected

0.2743% 2475 Null scan!

0.1748% 1577 Queso fingerprint

0.1732% 1563 [UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan.

0.1490% 1344 MY.NET.30.4 activity

0.1021% 921 Possible trojan server activity

0.0891% 804 MY.NET.30.3 activity

0.0866% 781 CS WEBSERVER - external ftp traffic

0.0827% 746 [UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC

0.0795% 717 IDS552/web-iis_IIS ISAPI Overflow ida nosize

0.0576% 520 SUNRPC highport access!

0.0438% 395 TFTP - Internal UDP connection to external tftp server

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0.0300% 271 [UMBC NIDS IRC Alert] User joining Warez channel detected. Possible XDCC bot

0.0215% 194 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected.

0.0208% 188 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize

0.0186% 168 IRC evil - running XDCC

0.0165% 149 External RPC call

0.0165% 149 [UMBC NIDS IRC Alert] User joining XDCC channel detected. Possible XDCC bot

0.0161% 145 NMAP TCP ping!

0.0142% 128 EXPLOIT x86 setuid 0

0.0109% 98 SNMP public access

0.0066% 60 NIMDA - Attempt to execute cmd from campus host

0.0059% 53 EXPLOIT x86 setgid 0

0.0057% 51 EXPLOIT x86 stealth noop

0.0038% 34 TCP SMTP Source Port traffic

0.0029% 26 Back Orifice

0.0029% 26 Notify Brian B. 3.54 tcp

0.0024% 22 Notify Brian B. 3.56 tcp

0.0014% 13 SMB C access

0.0013% 12 Probable NMAP fingerprint attempt

0.0011% 10 Attempted Sun RPC high port access

0.0009% 8 RFB - Possible WinVNC - 010708-1

0.0008% 7 FTP passwd attempt

0.0008% 7 [UMBC NIDS IRC Alert] K\:line'd user detected, possible trojan.

0.0007% 6 TFTP - External UDP connection to internal tftp server

0.0004% 4 DDOS shaft client to handler

0.0003% 3 NIMDA - Attempt to execute root from campus host

0.0003% 3 TFTP - External TCP connection to internal tftp server

0.0002% 2 EXPLOIT x86 NOPS

0.0002% 2 SYN-FIN scan!

0.0001% 1 Bugbear@MM virus in SMTP

0.0001% 1 DDOS TFN Probe

0.0001% 1 [UMBC NIDS IRC Alert] Possible trojaned machine detected

0.0001% 1 site exec - Possible wu-ftpd exploit - GIAC000623
902,278 TOTAL ALERTS

Table 2
We can see from this data that the first three items make up a majority of the alerts.

355527 Incomplete Packet Fragments Discarded
208552 TCP SRC and DST outside network
174226 SMB Name Wildcard
30441 spp_http_decode: IIS Unicode attack detected
27278 High port 65535 udp - possible Red Worm - traffic
24944 CS WEBSERVER - external web traffic
23641 High port 65535 tcp - possible Red Worm - traffic

In fact, they make up nearly 82% of the alerts (738,305 of the 902,278 total). We will take a
quick look at each of the above alerts.

Incomplete Packet Fragments Discarded
Background:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

These alerts are not a result of a rule. They come from Snort’s de-fragmentation preprocessor.
According to Dragos Ruiu, the person who wrote the preprocessor, the alert is sent when
“…packets bigger than 8k that are more than half empty when the last fragment is received are
discarded.” (Ruiu, http://www.geocrawler.com/archives/3/4890/2001/2/350/5151528). Some of
the caused Dragos gives for this sort of traffic is transmission errors, broken stacks, or a
fragmentation attack. Also, according to Marty Roesch, older versions of the defrag
preprocessor had a tendency to misbehave (http://archives.neohapsis.com/archives/snort/2001-
11/0822.html).

Analysis:
In our alerts files, we found a total of 355,129 of these events from the source host
MY.NET.210.114. Of these, 354,920 were sourced from port 0 and destined to port 0. Here is a
sample of these alerts:

05/03-11:46:05.978952 [**] Incomplete Packet Fragments Discarded [**]
MY.NET.210.114:0 -> 213.97.198.23:0
05/03-11:46:06.535087 [**] Incomplete Packet Fragments Discarded [**]
MY.NET.210.114:0 -> 213.97.198.23:0
05/04-16:44:58.407868 [**] Incomplete Packet Fragments Discarded [**]
MY.NET.210.114:0 -> 213.97.198.23:0
05/04-16:44:58.765082 [**] Incomplete Packet Fragments Discarded [**]
MY.NET.210.114:0 -> 213.97.198.23:0

All the logs for these fragments were dated 5/3 and 5/4. There was no occurrence of this traffic
pattern from this host on other days. For purposes of correlation, I searched the alert logs for
anything from this host that was not one of the events seen above on those two days. Below are
the results of that query:

05/03-13:17:00.074019 [**] TFTP - Internal UDP connection to external tftp server
[**] MY.NET.210.114:4589 -> 213.97.198.23:69
05/03-13:17:00.151041 [**] TFTP - Internal UDP connection to external tftp server
[**] MY.NET.210.114:4589 -> 213.97.198.23:69
05/03-13:17:00.160476 [**] TFTP - Internal UDP connection to external tftp server
[**] MY.NET.210.114:4589 -> 213.97.198.23:69

05/04-07:28:01.066431 [**] TFTP - Internal UDP connection to external tftp server
[**] MY.NET.210.114:1631 -> 213.97.198.23:69
05/04-13:07:33.787560 [**] TFTP - External UDP connection to internal tftp server
[**] MY.NET.210.114:69 -> 213.97.198.23:30698

These alerts identify the same two hosts from above participating in TFTP sessions on those two
days.

In addition to this data, I searched the scan file to find some correlations. The internal host,
MY.NET.210.114, and the external host, 213.97.198.23, seem to have been carrying on quite a
conversation. The scan file shows 64,602 entries for UDP packets between these two hosts. Of
these, 11,241 were sourced and destined for UDP port 0. The rest of the entries, 53,353, looked
to be an old fashioned UDP port scan. A sample of each type of scan record follows:

May 3 11:54:00 MY.NET.210.114:4928 -> 213.97.198.23:42450 UDP
May 3 11:54:00 MY.NET.210.114:1610 -> 213.97.198.23:35487 UDP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

May 3 11:54:00 MY.NET.210.114:0 -> 213.97.198.23:0 UDP
May 3 12:12:48 MY.NET.210.114:0 -> 213.97.198.23:0 UDP

Neither one of these hosts had any records in the OOS files.

Conclusion and Recommendations:
Although this particular signature has a tendency of being “noisy”, from our logs we seem to
have discovered some strange activity. This host is using TFTP (UDP port 69) to connect to an
external host. In most circumstances, blocking all TFTP at the borders is strongly recommended.
This doesn’t seem to be the case on this network. This is a noisy alert that may be a false
positive, but the existence of TFTP connections between these same two hosts during the same
timeframe is a point of concern. I do not believe it is a false positive, I believe the source system
should be investigated. As a side note, the TFTP rule seems to be a local rule as there is no entry
for it in the current 2.0 Snort rules files.

This noise level from this host fortunately caused us to look at it in more detail. In many cases,
rules that create this much noise usually get ignored. This source host should definitely be
visited. It has either been compromised and is being used for scanning, or, the person using it is
up to no good. Either way, it is something that needs to be looked at. I will gather some
additional information about the external that seems to have been involved in some interesting
traffic patterns on the internal network.

TCP SRC and DST outside network
Background:
This rule kicks off an alert when the sensor sees traffic that is sourced and destined for an outside
network. In other words, an internal address is neither the source nor the destination of these
packets.

Analysis:
Below are a few samples of the 208,552 alerts that this signature initiated:

05/02-22:17:31.471343 [**] TCP SRC and DST outside network [**] 0.0.0.0:49823 ->
140.99.99.99:80
05/03-02:01:10.435715 [**] TCP SRC and DST outside network [**] 192.168.2.100:4197 ->
216.149.164.100:80
05/03-11:47:35.456153 [**] TCP SRC and DST outside network [**] 18.173.203.23:1291 ->
216.200.173.18:6667

I searched through the scan and OOS files for any packets that didn’t have a source or a
destination of MY.NET.x.x and found none. From the sample of packets, it’s obvious that some
of the addresses are abnormal (0.0.0.0), some are private (192.168.2.100), and others are
legitimate (18.173.203.23). Because of this variety of addresses, I decided to take a closer look
at all the sources. A quick sort of all the above entries led me to an interesting observation. All
the IP addresses (both source and destination) in these packets looked like [1-223].X.X.X, where
the X seemed to be somewhat random but every network between 1 and 223 was used. It was
not done sequentially, but after sorting the data by IP address the addressing/spoofing scheme
was very obvious.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The next thing I looked for was the destination port of these packets. Of the 208,552 records,
205,501 were destined for TCP port 6667. This port is generally used for IRC (which is a sign of
trouble as install IRC related services is very prevalent on compromised systems), but a quick
search of the Neohapsis’ ports list (http://www.neohapsis.com/neolabs/neo-ports/neo-ports.html)
revealed that there are many Trojans that utilize this port as well:

6667 tcp [trojan] Dark FTP
6667 tcp [trojan] EGO
6667 tcp Internet Relay Chat
6667 tcp IRCU
6667 tcp Kaitex Trojan
6667 tcp [trojan] Maniac rootkit
6667 tcp [trojan] Moses
6667 tcp [trojan] ScheduleAgent
6667 tcp [trojan] ScheduleAgent
6667 tcp [trojan] Subseven 2.1.4 DefCon 8
6667 tcp [trojan] SubSeven
6667 tcp [trojan] The Thing (modified)
6667 tcp [trojan] Trinity
6667 tcp [trojan] WinSatan

The scan file had a handful of entries for traffic destined to TCP port 6667, but it was not nearly
at the level that we saw in the alerts. There was a total of 84 entries, a sample is below:

May 5 08:42:17 130.85.97.46:4304 -> 194.68.45.50:6667 SYN ******S*
May 5 09:06:14 130.85.97.46:2325 -> 194.68.45.50:6667 SYN ******S*

Also, there was one record in the OOS file that was directed at TCP port 6667. It was logged as
Out of Spec because it had both ECN bits. We will talk about ECN a bit later in this document.
Below is the record from the OOS file:

=+

05/05-02:27:13.576207 65.33.99.232:52126 -> MY.NET.70.198:6667
TCP TTL:45 TOS:0x0 ID:15406 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x5257372E Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 560794368 0 NOP WS: 0

Conclusion and Recommendations:
This is definitely spoofed traffic. We do not have enough information with regards to
who/where the actual source host is, but it is likely a system on the internal network. I will make
that statement with the caveat that assumes this network has proper ingress and egress filtering
applied at the borders. From looking at the alert and scan files, I do not feel comfortable about
statement. This traffic pattern may also be a compromised system or the user is using it for
malicious purposes. I would definitely recommend that this problem be tracked down. Spoofed
addresses are sometimes difficult to find, but not impossible. Depending on network layout, a
tcpdump trace may be helpful in determining the source. It’s unclear what is to be gained by this
type of activity since the return traffic would never get back to the host that initiated it. The fact
that it is targeted at a specific port that has a history of trouble is a cause for concern, hence the
“malicious intent” label.

SMB Name Wildcard

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Background:
This traffic pattern is usually normal windows traffic. It is usually a result of normal queries to
determine NetBIOS names on a network. It would normally not be a concern, but these are all
packets sourced from external networks. There has been some activity with regards to this port
and traffic pattern being related to the “network.vbs” malicious VBScript. A good explanation of
this traffic pattern and the some of the possible reasons behind it can be found at
www.sans.org/resources/idfaq/port_137.php, in an Sans FAQ written by Bryce Alexander. Also,
there is a CERT Incident Note (http://www.cert.org/incident_notes/IN-2000-02.html) on this
particular topic. Although the patterns we see don’t exactly match that CERT note, there is some
distinct similarities. Even more information is available at Whitehats.com
(http://whitehats.com/info/IDS177).

Analysis:
These alerts look very much like a targeted scan of the MY.NET.x.x/16 network. The third octet
of all the destination addresses (MY.NET) increases sequentially. Also, the source addresses,
when sorted, look like [1-221].[1-255].x.x. Once sorted, it is obvious that this is not normal
traffic and is being spoofed. It seems that both the source and destination generated in some
fashion and the packet is sent on its way. Below is a few sample packets:

05/01-11:20:21.688063 [**] SMB Name Wildcard [**] 218.14.155.3:11306 ->
MY.NET.2.212:137
05/01-11:20:22.757565 [**] SMB Name Wildcard [**] 165.247.107.139:137 ->
MY.NET.24.34:137
05/01-11:31:01.381487 [**] SMB Name Wildcard [**] 148.220.29.18:1033 ->
MY.NET.56.28:137
05/01-11:20:22.793455 [**] SMB Name Wildcard [**] 67.31.249.251:137 ->
MY.NET.24.34:137
05/01-11:20:23.161837 [**] SMB Name Wildcard [**] 61.141.87.194:1026 ->
MY.NET.31.99:137

To add to the above data, there was a set of 5 external source IP addresses that generated quite a
bit of this traffic. Most of the source addresses appeared in anywhere from 1-100 packets. The
following hosts appeared in many more than that:

Count Address
8410 133.82.241.150
2639 216.78.180.128
2031 195.167.225.233
1898 143.248.115.88
1503 66.1.191.80

For correlation purposes, I searched the alert logs for other instances from these hosts. There
were a few records from the 66.1.191.80 source:

05/02-10:43:15.917571 [**] EXPLOIT x86 NOOP [**] 66.1.191.80:2208 ->
MY.NET.190.93:139
05/02-10:43:18.000293 [**] EXPLOIT x86 NOOP [**] 66.1.191.80:2218 ->
MY.NET.190.93:139

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Unfortunately, this signature is one that is known to have many false positives. According to the
Snort signature database, simply transferring large files can trigger it.

Checking into the scan logs, we find that top talker for this alert, the external host
133.82.241.150, was involved in a rather large scan of UDP port 137. It scanned 961 hosts on
the internal network in a matter of about 15 minutes. The scanned hosts started with
MY.NET.104.X and went all the way to MY.NET.252.X. The address was being changed
sequentially in the 3rd octet and every number was hit. The 4th octet only had a handful numbers
used (around 20 in most cases) with this scan. There were no entries in the OOS file with
regards to this external host.

It would seem that along with spoofed addresses, some real addresses are being used for these
probes. I checked a route server from one of a list that can be found at www.traceroute.org for
all 5 of these networks. They are all actively routed on the Internet.

Conclusion and Recommendations:
In many circumstances these alerts can be false positives. They can be generated by legitimate
NetBIOS name query traffic on a network. The data in the alerts that we have does not suggest
that. These packets are externally sourced destined for out internal network on NetBIOS ports.
Most of the source addresses may be spoofed. But, we are possibly seeing some real addresses
mixed in with the spoofed sources. The malicious host(s) are possibly attempting to blend
themselves in with the “noise” in an attempt to avoid being noticed. It is an IDS evasion
technique that is often used, drown the IDS in meaningless logs and send your real packets
through with them hoping to blend in with the garbage and get thrown out without detection.
The final thought on this trace is that NetBIOS traffic should always be filtered at the borders,
both ingress and egress. I would recommend that the network administrators immediately place
access control lists at their borders to block NetBIOS traffic from getting in or out of their
enterprise. We’ll gather some additional information regarding the top talking external host later
in this document.

spp_http_decode: IIS Unicode attack
Background:
This is another alert, as seen with the fragmentation alert above, which comes from a
preprocessor. This seems to be a source of many false positives. The Snort-users archives are
littered with people complaining about this particular preprocessor and false positives. In fact, in
the Snort FAQ, (http://www.snort.org/docs/faq.html#4.17) there is a specific section with regards
to this. The job of this preprocessor is to convert any Unicode to plain ASCII text so that it can
be passed on the normal Snort rules and processed. Unicode is often used to disguise malicious
web requests in order to compromise a system. This conversion helps Snort in dealing with web
requests and determining if the activity is malicious or not. John Berkers, on the Snort-users
mailing list archives, has a post in which he describes this process and some details about the
preprocessor (http://archives.neohapsis.com/archives/snort/2001-08/0075.html). Apparently,
sites with multi-byte characters tend to trigger this event (such as Simplified Chinese). Here is
one of the CERT references with regards to directory traversal with the use of Unicode,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.kb.cert.org/vuls/id/111677. Also, here is one of the CVEs with regards to directory
traversal, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884.

Analysis:
This preprocessor rule generated 30,441 alerts. Below is a sample of the records found in the
alerts file with regards to this alert.

05/01-11:20:11.136064 [**] spp_http_decode: IIS Unicode attack detected [**]
MY.NET.153.124:2274 -> 211.117.63.210:80
05/01-11:20:11.136064 [**] spp_http_decode: IIS Unicode attack detected [**]
MY.NET.153.124:2274 -> 211.117.63.210:80
05/01-11:20:11.136064 [**] spp_http_decode: IIS Unicode attack detected [**]
MY.NET.153.124:2274 -> 211.117.63.210:80

Also, the following are the top 5 talkers for this alert:

Count Top 5 Sources
2388 MY.NET.153.143
2200 MY.NET.97.213
1825 MY.NET.153.176
1701 MY.NET.153.165
1321 MY.NET.153.149

Count Top 5 Destinations
2482 218.153.6.197
2162 211.233.29.9
1997 218.153.6.229
1573 210.219.197.11
1483 218.153.6.244

Count Top 5 Flows (Src/Dst Pairs)
2066 MY.NET.97.213 -> 211.233.29.9
1242 MY.NET.153.143 -> 218.153.6.229
887 MY.NET.153.143 -> 218.153.6.212
853 MY.NET.106.107 -> 210.219.197.11
839 MY.NET.97.216 -> 211.233.29.51

There is a lack of information with regards to these connections. It’s difficult to know if these
are false positives without seeing the actual packets. There has been quite a bit of chatter on
mailing lists with regards to this rule triggering many false positives and filling up log files. A
whois query indicates that all the top talking external hosts are parts of address blocks out of
Korea.

Conclusion and Recommendations:
There is not enough information to draw to any reliable conclusions. It is well documented that
cookies with URL encoded binary data can cause this. Certain types of pop-up ads have been
known to trip of this. We would need the packet dumps to make a better assessment of what
really is going on here.

Speaking of just the top talkers, it is very possible that these Korean use multi-byte characters on
their corresponding web pages and that is what is triggering the alerts. Also, this looks to be

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

outbound traffic destined for port 80, which would support that theory as well. There is no
inbound traffic, at least with the top talkers group.

From the shear number of sources and destination (804 sources and 880 destinations), I would
definitely recommend more investigation into this. If this is not a false positive, the ramification
can be terrible. Nimda, Code Red, Sadmind are nothing to scoff at. I would recommend further
investigation and possible tuning of the preprocessor. One recommendation on tuning this came
from Marty Roesch in a message on Snort-users
(http://archives.neohapsis.com/archives/sf/ids/2001-q2/0286.html). He recommended a BPF
filter at startup, something along the lines of:

snort <options> not port 80 and not net MY.NET

High port 65535 udp - possible Red Worm –traffic
Background:
Port 65535 is not an oft-used port. It is the last available TCP or UDP port. In this case, we
have a bunch of alerts sourced and destined to port 65535 bi-directionally in and out of our
network. I was not able to find much detail as to what this port is used for specifically. There
are multiple Trojans listed for this port, but they are all TCP (which is covered later in this
document). This seems to be local rules.

Analysis:
The first thing I did was gather some numbers on these packets. We have a total of 27,278 UDP
alerts. I will look at UDP first. The first table (Table 3a) below lists out the top sources and
destinations for the UDP traffic from these alerts, along with the number of destinations and
sources they communicated with. The second table (Table 3b) lists the top source-destination
port pairs. Those are followed by a few sample alerts.

Count Top UDP Src # of Dsts Count Top UDP Dst # of Srcs
13433 MY.NET.201.58 46 10628 MY.NET.201.58 27
1839 65.120.111.17 1 1992 65.120.111.17 1
1469 64.118.111.251 1 1678 66.42.68.210 1
1045 66.42.68.210 1 1604 64.118.111.251 1
945 62.75.136.123 1 1114 12.235.90.8 1

Table 3a
Count Top UDP Src Port – Dst Port Pairs
12959 65535 -> 5121
10373 5121 -> 65535
1495 6257 -> 65535
1282 65535 -> 6257

Table 3b

05/01-13:24:51.897144 [**] High port 65535 udp - possible Red Worm - traffic [**]
MY.NET.201.58:65535 -> 68.96.49.118:5121
05/01-13:24:51.897155 [**] High port 65535 udp - possible Red Worm - traffic [**]
MY.NET.201.58:65535 -> 24.165.6.237:5121

We can see from this data that a single host (MY.NET.201.58) on the internal network is
responsible for 24,061 (88.2%) of these alerts (13,433 as a source and another 10,628 as a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

destination). I did a quick search of the alerts file for this host along with the its most used
source and destination ports in these connections:

Count Src Port Count Dst Port
13421 65535 12952 5121
10370 5121 10629 65535

From this table we can see that almost all the communication from or to MY.NET.201.58 had a
source or destination port of either 5121 or 65535. UDP port 5121 is the default port for a online
game called Neverwinter Nights (http://nwn.bioware.com/support/techfaq.html). This is a
multiplayer online game according to the following blurb from the official website:

...But the Neverwinter experience is not just for one person- adventure
with all your friends. Neverwinter Nights can be played online with up
to 64 friends, all sharing in the adventure...

The technical FAQ implies that connections must be permitted “through the firewall” for UDP
5121. My guess would be that the hosts involved in playing together would have to
communicate with one another via this port. Another note to add to this, there was a total of 43
addresses that our internal gaming host was communicating with, supporting the idea that this
gaming traffic.

Also, for correlation, I searched the scan logs for this particular host. The results also supported
the notion that this is merely gaming traffic. We saw a total of 2166 UDP scans records
involving this host. Of those, 1483 were destined for UDP either port 5121 (832 of those
sourced from port 65,535) or one of the other recommended ports for Neverwinter Nights (5120-
5129). The rest of the traffic was UDP packets sourced and destined to port 13139. This is the
GameSpy (service used for online game play) custom UDP ping port.

This left us with the last two entries in the source-destination port pairs table (Table 3b) above:

1495 6257 -> 65535
1282 65535 -> 6257

UDP port 6257 is the default port WinMX, a peer to peer file sharing tool. This traffic may be
just that, but we would need more information (for example a packet capture).

Conclusion and Recommendations:
In my estimation, the majority of the “UDP High Port” alerts are caused by a single host
(MY.NET.201.58) playing an multiplayer online game across the Internet. All the evidence
points to these alerts being mostly false positives. The other heavy hitters, even though the
numbers weren’t really comparable, seemed to be WinMX traffic. Other than possibly breaking
copyright violations and Acceptable Use Policies, there is nothing malicious about that program.
I would recommend that this rule be tuned to cut down on the noise. It seems to be too general,
which makes it a poor and noisy rule.

CS WEBSERVER - external web traffic
Background:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This alert seems to be firing on every connection to this web server. The alerts are rather straight
forward and not out of the ordinary. It looks as though this system provides web services to the
world, but it seems a custom rule has been written to alert on that traffic when connections are
made.

Analysis:
In the 5 day period, we saw 5326 unique source hosts attempting to make a connection to this
web server via port 80. There were a total of 25,730 alerts generated by different packets from
the above-mentioned 5326 sources. One interesting thing of note is that the majority of the
connections coming into this server were from 1 IP address. 14,014 alerts out of the 25,730
(54.4%) were from the source host 216.39.48.127. This would be an interesting host to follow
up do some investigating.

I checked the OOS and the scan files and did find some correlations. It seems that handful (89)
of these packets had the ECN bits set along with the SYN bit. These may actually be normal IP
packets, but they may be coming from segments on the Internet that utilize the ECN bits. ECN
stands for Explicit Congestion Notification. It is a relatively new development that is meant to
help with relieving congestion from heavily loaded links. ECN uses the two high order bits of
the TCP flag byte. These bits used to be reserved. Part of the problem with ECN is that not all
vendors have fully supported it and some will explicitly drop packets that have the ECN bits set.
They consider them anomalous packets because the once reserved high order bits are set. For
correlation purposes I looked through the scan file for this web server and found a bit data that
went along with what was found in the OOS file.

Conclusion:
This seems to be alert that is specifically looking to log all web traffic destined for the
MY.NET.100.165 web server. If that is the goal, then it is doing a fine job of it. If that wasn’t
the goal and this rule was put to monitor some malicious traffic, this rule would have been
changed. At this point it is alerting on normal traffic. It would likewise alert on abnormal
traffic, but because of the noise from the normal traffic, the malicious packets may go
undetected. I would recommend making this rule something more useful than logging every
HTTP connection.

See Link Graph below for these alerts.

High port 65535 tcp - possible Red Worm - traffic
Background:
TCP port 65535 has a handful of Trojans that are associated with it. There is no legitimate use
for this port that we know of as yet. Some of the Trojans that are associated with it are:

65535 tcp [trojan] Adore worm
65535 tcp [trojan] RC1 trojan
65535 tcp [trojan] Sins

There is a good description of the Adore worm and how it works here at DialogueScience, Inc.
(http://www.dials.ru/english/inf/linux_adore.htm). It is a Linux worm propagates itself

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

previously known vulnerabilities in Washington University's ftp server (wu-ftpd), Remote
Procedure Call stat server (rpc.statd), LPRng (lpd), and BIND DNS server (bind). According to
the article, it uses the same methods as previous worms such as Linux.Ramen and Linux.Lion.
The end result is a host that is listening on port 65535 with a root shell session waiting for a
connection.

Analysis:
We found 23,641 TCP High Port alerts. We would like to do the same type of breakdown for
TCP as we did for the UDP version of this alert. The first table below (Table 5a) is a list of the
top sources and top destinations, along with the number of destinations and sources they
communicated with. The second table (Table 4b) lists the top source-destination port pairs.
Those are followed by a few sample alerts.

Count Top TCP Src # of Dsts Count Top TCP Dst # of Srcs
3945 130.85.201.38 1 3944 67.161.246.193 1
3456 130.85.226.250 1 3454 218.141.54.99 1
3295 67.161.246.193 1 3294 130.85.201.38 1
2550 218.141.54.99 1 2549 130.85.226.250 1
1697 213.161.3.60 1 1697 130.85.226.206 1
1320 130.85.226.206 1 1320 213.161.3.60 1
1215 217.127.167.6 1 1212 130.85.233.134 1

Table 4a
Count Top TCP Src Port - Dst Port Pairs
3944 4606 -> 65535
3454 1857 -> 65535
3293 65535 -> 4606
2549 65535 -> 1857
1697 65535 -> 4688
1320 4688 -> 65535
1212 65535 -> 1327
846 1327 -> 65535

Table 4b

05/01-17:24:21.277691 [**] High port 65535 tcp - possible Red Worm - traffic [**]
MY.NET.205.14:3933 -> 81.86.75.175:65535
05/01-17:24:25.207093 [**] High port 65535 tcp - possible Red Worm - traffic [**]
MY.NET.205.14:3933 -> 81.86.75.175:65535

There is definitely some correlation between the source-destination port pair and the top source
and destination hosts. The alert numbers are almost identical (and in some cases they are). We
can also see that all the top source hosts and top destination hosts are only communicating with
one system.

The problem I had with analyzing this alert was a complete lack of information in every aspect.
There were no entries in the OOS files and there were also no entries in the scan files. Port
65535 does not seem to be a destination on the internal network, which lowered my level of
concern a bit. That said, only a two of the ports being used (other than 65535) are listed as
having a legitimate use.

1857 tcp DataCaptor
1327 tcp Ultrex

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

I don’t think either of these applies in this scenario. It is possible that this is some sort of custom
application or something of that nature. But, looking at the external hosts, they all have
broadband customer DNS names, for example:

Name: c-67-161-246-196.client.comcast.net
Address: 67.161.246.196

Conclusion:
This would definitely need to be investigated further. The internal hosts would need to be
examined to determine the source of this data and to determine if there has been a compromise.
Without any packet captures or additional data, it is difficult to analyze this further. My
suggestion would be to research the cause of this rule.

Scans
The scan log was processed next using a combination of custom scripts and Snortsnarf
(www.silicondefense.com/software/snortsnarf/index.htm) [Scan Scripts]

During the five-day period, a variety of scan types were logged. The first table (Table 3) and
graphs (Graph 3 and Graph 4) provide details about TCP flag byte settings in each of the scans in
the scan log for TCP and a general UDP line item.

TCP Port Scans Broken Out TCP Reserved (RSV) Bit Scans Broken Out
283273 Total Scans 2356 Total Reserved Bit Scans
275634 SYN Scans 1591 RSV SYN Scan
2504 NULL Scans 218 RSV Invalid ACK Scan
2356 Reserved Bit Scans 198 RSV Unknown Scan
1627 FIN Scans 196 RSV No ACK Scan
545 No ACK Scans 58 RSV VECNA Scan
296 VECNA Scans 48 RSV XMAS Scan
241 Invalid ACK Scans 14 RSV NULL Scan
37 XMAS Scans 14 RSV FIN Scan
21 NMAPID Scans 9 RSV NMAPID Scan
9 SPAU Scans 7 RSV SPAU Scan
3 SYN-FIN Scans 3 RSV SYN-FIN Scan

Table 5
563501 Total UDP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Types of Scanning

283273

563501

275634

2504 2356 1627 545 296 241 37 21 9 3
0

100000

200000

300000

400000

500000

600000

Total TCP

Total UDP

SYN
NULL

RSV
FIN

No ACK

VECNA

Invalid ACK

XMAS

NMAPID

SPAU
SYN-FIN

Graph 3

Types of Scanning (Reserved Bit Probes Only)

2356

1591

218 198 196 58 48 14 14 9 7 3
0

500

1000

1500

2000

2500

Total Reserved Bit

RSV
SYN

RSV
Invalid ACK

RSV
Unknown

RSV
No ACK

RSV
VECNA

RSV
XMAS

RSV
NULL

RSV
FIN

RSV
NMAPID

RSV
SPAU

RSV
SYN-FIN

Graph 4

We now have a good grasp what general types of scanning was going on. We wanted a better
idea of what was being scanned, who was being scanned and who was doing the scanning. For
this we analyzed the scan files for top source host scanners, top destination host scanners, top
source ports and destination ports (all by the number of scans). (Table 6a and 6b).

Count Top UDP Src IP Count Top UDP Dst IP
64658 130.85.210.114 64602 213.97.198.23
39633 130.85.240.62 1779 64.39.186.133
32605 130.85.87.50 1737 66.66.126.241
29283 130.85.250.98 1624 66.167.144.245
26384 130.85.97.190 1620 24.42.0.66
21849 130.85.1.3 1570 68.165.25.243
20866 130.85.234.158 1219 68.13.93.150
16736 130.85.205.150 1212 12.245.31.155

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15285 130.85.153.152 1186 68.81.50.22
13679 130.85.225.230 1179 68.82.22.172

Count Top UDP Src
Port Count Top UDP Dst Port

43924 6257 WinMX 77862 137 NB NS
32417 27022 41738 6257 WinMX
29443 2921 25287 53 DNS
24546 7674 24547 7674
21822 32832 16088 27005 FlexLM
20877 2315 13592 22321 Wnn6
16867 2468 11260 0 Unknown
16756 3708 6055 1214 Kazaa
15554 1025 5949 13139 GameSpy
13692 2305 5059 43620

Table 6a

Count Top TCP Src IP Count Top TCP Dst IP
15962 152.1.193.6 15967 130.85.132.26
13949 217.88.231.137 924 130.85.234.82
11688 217.84.122.16 457 130.85.249.194
10633 130.85.97.181 310 130.85.238.230
9160 198.144.65.56 285 130.85.207.254
8313 64.212.144.139 235 130.85.86.66
8244 80.161.34.13 213 130.85.218.254
7663 66.130.208.97 206 130.85.6.7
7037 213.204.66.141 175 200.77.81.95
6939 208.163.46.185 145 130.85.211.26

Count Top TCP Src Port Count Top TCP Dst Port
3819 139 NB SSN 79206 445 MS-DS
2932 0 Unknown 62512 80 HTTP
152 1131 42281 1433 MSSql
147 1128 28647 135 Loc-Serv
143 1130 18029 139 NB SSN
143 1125 5942 22 SSH
143 1120 4905 515 LPR
138 1107 4796 21 FTP
138 1103 4086 6346 Gnutella

137 1142 2960 17300 Kuang2
Virus

Table 6b

The following graphs will help visualize this numbers (Graph 4a and 4b).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Top UDP Destination Ports

77862

41738

25287 24547
16088 13592 11260

6055 5949 5059

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

137 NB
NS

6257
W

inMX

53 DNS

7674
27005

22321

0 1214
Kazaa

13139 Gam
eSpy

43620

Graph 4a

Top TCP Destination Ports

79206

62512

42281

28647

18029

5942 4905 4796 4086 2960

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

445 M
S-DS

80 HTTP

1433
MSSql

135 Loc-Serv

139 NB
SSN

22 SSH

515 LPR

21 6346
Gnutella

17300

Graph 4b

Out Of Spec
The out of spec file contains records of packets that were somehow not quite right. For example,
it contained the packets that had the reserved bit set in the TCP flag byte. Another example
would be all the packets that had a bad combination of the TCP flags set (i.e. NULL, XMAS,
SYN/FIN). Below is the table (Table 7) and breakout of how many of each type was seen. In
the table and the graph that follows, the first two characters of each type mark the reserved bits.
A 12SYN, for example, indicates SYN packets with both the ECN bits set. In a case where no
ECN bit is set, a plus sign “+” indicates that. For example ++VECNA indicates a VECNA scan
with no reserved bits set. 1+VECNA would indicate a VECNA scan with only the first ECN bit
set.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Count Type of OOS Alert
11717 Total OOS Alerts
10656 OOS 12SYN
787 OOS ++VECNA
96 OOS ++NULL
85 OOS 12UNKOWN
21 OOS 12NOACK
15 OOS 12INVACK
10 OOS 12XMAS
8 OOS +2INVACK
7 OOS 1+INVACK
6 OOS ++NOACK
5 OOS 1+NOACK
5 OOS 12VECNA
3 OOS +2NMAPID
3 OOS ++NMAPID
2 OOS +2NOACK
2 OOS 12SYNFIN
2 OOS ++INVACK
2 OOS ++SYNFIN
1 OOS 1+NMAPID
1 OOS 12SPAU

Table 7

To help visualize, the table (Table 7) is graphed below (Graph 5).

Out of Spec Logs

11717
10656

787
96 85 21 15 10 8 7 6 5 5 3 3 2 2 2 2 1 1

0

2000

4000

6000

8000

10000

12000

14000

Total OOS
Alerts

OOS
12SYN

OOS
++VECNA

OOS
++NULL

OOS
12UNKOW

N

OOS
12NOACK

OOS
12INVACK

OOS
12XMAS

OOS
+2INVACK

OOS
1+INVACK

OOS
++NOACK

OOS
1+NOACK

OOS
12VECNA

OOS
+2NMAPID

OOS
++NM

APID

OOS
+2NOACK

OOS
12SYNFIN

OOS
++INVACK

OOS
++SYNFIN

OOS
1+NMAPID

OOS
12SPAU

Graph 5

From the table and graph, we see that SYN packets with the reserved bit set are the most popular
entry. This could be a viewed in a variety of ways. It could have come from a network on the
Internet that is utilizing the ECN bits. It could be that someone is attempting to the ECN bits as
some sort of stealth technique. To get a better idea, we will look at the talkers for 12SYN.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Count Top Src IP
1562 209.123.49.137
1318 68.54.93.181
462 213.197.10.95
365 81.218.114.59
338 64.28.101.9
318 210.233.23.128
270 81.218.109.79
250 66.140.25.157
201 210.253.214.117
129 151.42.126.19
117 216.95.201.33
104 193.233.7.104

It appears that 209.123.49.137 and 68.54.93.181 are the top talkers with regards to SYN packets
with the ECN bits set. We will gather some more information regarding the two top talkers later
in this document.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

LINK GRAPH

TCP 80

TCP 21

Ephemeral to TCP 80
Alert Count 14013

216.39.48.127

Ephemeral to TCP 80
Alert Count 271

66.77.73.236

Ephemeral to TCP 80
Alert Count 179
134.193.129.68

Ephemeral to TCP 80
Alert Count 140
213.207.200.33

Ephemeral to TCP 80
Alert Count 108
131.107.163.50

Ephemeral to TCP 80
Alert Count 90

61.159.214.214

Ephemeral to TCP 80
Alert Count 72

213.224.83.182

Ephemeral to TCP 80
Alert Count 68
218.145.25.11

Ephemeral to TCP 80
Alert Count 63

209.237.238.175

Ephemeral to TCP 80
Alert Count 56
65.214.36.156

Ephemeral to TCP 21
Alert Count 142
147.32.163.69

Ephemeral to TCP 21
Alert Count 50
213.140.31.170

Ephemeral to TCP 21
Alert Count 35
213.140.31.171

Ephemeral to TCP 21
Alert Count 26
213.156.52.135

Ephemeral to TCP 21
Alert Count 21
213.140.10.138

Ephemeral to TCP 21
Alert Count 20
213.140.8.168

Ephemeral to TCP 21
Alert Count 19
213.140.14.139

Ephemeral to TCP 21
Alert Count 17
62.101.125.229

Ephemeral to TCP 21
Alert Count 14
62.101.125.225

Ephemeral to TCP 21
Alert Count 14
213.156.54.138

MY.NET.100.165

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

INTERESTING EXTERNAL HOSTS

Top Talker of Incomplete Fragment Alert Top Talkers with SYN Packets with ECN Bits set
213.97.198.23 209.123.49.137
inetnum: 213.97.0.0 - 213.97.255.255 OrgName: Net Access Corporation
netname: RIMA OrgID: NAC
descr: Telefonica De Espana SAU (NCC#2000013794) Address: 1719 STE RT 10E
descr: Red de servicios IP Address: Suite 111
descr: Spain City: Parsippany
country: ES StateProv: NJ
admin-c: LJP5-RIPE PostalCode: 07054
tech-c: FLT14-RIPE Country: US
rev-srv: scmrro3.nombres.ttd.es
rev-srv: scmrro4.nombres.ttd.es NetRange: 209.123.0.0 - 209.123.255.255
rev-srv: ns.ripe.net CIDR: 209.123.0.0/16
status: ASSIGNED PA NetName: NAC-NETBLK02
remarks: ** NetHandle: NET-209-123-0-0-1
remarks: For ABUSE/SPAM/INTRUSION issues Parent: NET-209-0-0-0-0
remarks: PLEASE CONTACT THROUGH LINK NetType: Direct Allocation
remarks: http://www.telefonicaonline.com/nemesys/ NameServer: NS1.NAC.NET
remarks: or send mail to nemesys@telefonica.es NameServer: NS2.NAC.NET
remarks: any mail to adminis.ripe@telefonica.es will be
ignored

NameServer: NS5.NAC.NET

remarks: ** Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-
PORTABLE

notify: adminis.ripe@telefonica.es Comment:
mnt-by: MAINT-AS3352 Comment: * Reassignment information for this network is available
changed: adminis.ripe@telefonica.es 20000302 Comment: * available at whois.nac.net 43
changed: adminis.ripe@telefonica.es 20020530 RegDate: 1997-08-06
changed: administracion.ripe@telefonica-data.com 20030121 Updated: 2001-08-22
source: RIPE

TechHandle: ZN77-ARIN
route: 213.97.0.0/16 TechName: Net Access Corporation
descr: TTDNET (Red de servicios IP) TechPhone: +1-800-638-6336
origin: AS3352 TechEmail: legal@nac.net
mnt-by: MAINT-AS3352
mnt-routes: MAINT-AS3352 68.54.93.181
mnt-lower: MAINT-AS3352 Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-0-

0-1)
changed: administracion.ripe@telefonica-data.com 20010308 68.32.0.0 - 68.63.255.255
changed: administracion.ripe@telefonica-data.com 20020118 Comcast Cable Communications, Inc. BALTIMORE-A-4 (NET-68-

54-80-0-1)
changed: administracion.ripe@telefonica-data.com 20020313 68.54.80.0 - 68.54.95.255
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Top Talkers of IIS Unicode Attack Top Talkers of IIS Unicode Attack
211.233.29.9 and 211.233.29.51 218.153.6.229 and 218.153.6.212
IP Address : 211.233.28.0-211.233.31.255 IP Address : 218.153.4.0-218.153.11.255
Network Name : KIDC-INFRA-SERVERROOM-
DAUM

Network Name : KORNET-NETINFRA-
JUNGANG

Connect ISP Name : KIDC Connect ISP Name : KORNET
Connect Date : 20001213 Connect Date : 20020812
Registration Date : 20011115 Registration Date : 20030516

[Organization Information] [Organization Information]
Orgnization ID : ORG231919 Orgnization ID : ORG204104
Org Name : Daum Communication Org Name : CENTRAL DATA

COMMUNICATION OFFICE
State : SEOUL State : SEOUL
Address : Gangnam-gu, Yeoksam-dong, DACOM
B/D 12F. 706-1

Address : 128-9 YEUNKEONDONG
JONGROKU

Zip Code : 135-987 Zip Code : 110-460

[Admin Contact Information] [Admin Contact Information]
Name : Hanju Kim Name : DongJoo Lee
Org Name : Daum Communication Org Name : KOREA TELECOM
State : SEOUL State : SEOUL
Address : Gangnam-gu, Yeoksam-dong, DACOM
B/D 12F. 706-1

Address : 128-9 Youngundong Chongroku

Zip Code : 135-987 Zip Code : 110-460
Phone : +82-2-6446-6407 Phone : +82-2-747-9213
Fax : +82-2-6446-6499 Fax : +82-2-747-8701
E-Mail : hankim@daumcorp.com E-Mail : ip@ns.kornet.net

[Technical Contact Information] [Technical Contact Information]
Name : youngchul Lee Name : GyungJun Kim
Org Name : Daum Communication Org Name : KOREA TELECOM
State : SEOUL State : SEOUL
Address : Gangnam-gu, Yeoksam-dong, DACOM
B/D 12F. 706-1

Address : 128-9 Youngundong Chongroku

Zip Code : 135-987 Zip Code : 110-460
Phone : +82-2-6446-6407 Phone : +82-2-747-9213
Fax : +82-2-6446-6499 Fax : +82-2-747-8701
E-Mail : uniace@daumcorp.com E-Mail : ip@ns.kornet.net

210.219.197.11

Top Talker of SMB Wildcard Alert [ISP IP Admin Contact Information]

133.82.241.150 Name : IP Administrator

Network Information: Phone : +82-2-3149-4999
a. [Network Number] 133.82.0.0 Fax : +82-2-365-4046
b. [Network Name] CU-NET E-Mail : ip-adm@elim.net
g. [Organization] Chiba University
m. [Administrative Contact] SS1986JP [ISP IP Tech Contact Information]
n. [Technical Contact] SO014JP Name : IP manager
n. [Technical Contact] YN3644JP Phone : +82-2-3149-4999
n. [Technical Contact] MO4342JP Fax : +82-2-365-4046
p. [Nameserver] nanohana.cix.chiba-u.ac.jp E-Mail : ip@elim.net
p. [Nameserver] ns.chiba-u.ac.jp
y. [Reply Mail] cunet-admin@chiba-u.ac.jp [ISP Network Abuse Contact Information]
[Assigned Date] Name : Network Abuse
[Return Date] Phone : +82-2-3149-4999
[Last Update] 2002/04/12 11:15:36 (JST) Fax : +82-2-365-4046

okano@imit.chiba-u.ac.jp E-Mail : abuse@elim.net

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

OOS Scripts

reformat-oos
#!/usr/bin/perl -w
General Plan:
Skip lines till we find a line that begins with \d\d/\d\d-\d\d:
(i.e., a date/time looking entity).
Join lines together that are part of this entry into an single line.
Special fiddling for entries that have a data portion, so we put all
the hex together followed by all the ASCII, rather than intermingling
them, as would happen if we just catenated the lines.
#
All data is read from standard input, and the results are written
to standard output.

use strict;

sub findstart();
sub processentry($);

main
{
while(my $line = findstart()) {

print "finstart returned ($.) = $line.\n";
$line = processentry($line);
print "$line\n";

}
exit(0);

} # main

sub findstart() {
while(my $line = <>) {
chomp($line);
next if($line !~ /^\d\d\/\d\d-\d\d:/);
return($line);

}
return(undef);

}

sub processentry($) {
my($line) = @_;
my($asc, $hex);

while($line !~ /TcpLen:\s+\d+/) {
my $curline = <>;
chomp($curline);
$line .= " " . $curline;

}
Now we have all the pieces of the header - sniff a bit to see
if there is additional data - don't depend on length fields
in the header, since I'm not real sure how they relate to the
data as formatted. It appears that DgmLen values > 60 imply
DgmLen - 60 + TcpLen data bytes follow, but...
$asc = "";
while(my $curline = <>) {
chomp($curline);
if($curline =~ /^TCP Options/) {

$line .= " " . $curline;
next;

}
return($line . " " . $asc) if($curline =~ /^\s*$/);
$line .= " " . substr($curline,0,47);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

$line =~ s/\s+$/ /;
$asc .= substr($curline,49);

}
return($line . " " . $asc);

}
#
#-end

Scan Scripts

tcp-scantype

#!/bin/tcsh
#
Each step is annotated below

Break the all.scan file (all 5 days) into UDP/TCP
#
grep UDP all.scans > all.UDP.scans
grep -v UDP all.scans > all.TCP.scans

SYN Scans, only SYN flag set
#
grep "******S*" all.TCP.scans | grep -v "RESERVEDBITS" > all.TCP.SYN.scans

NULL Scans, no TCP flags set
#
grep "NULL" all.TCP.scans | grep -v "RESERVEDBITS" > all.TCP.NULL.scans

FIN Scans, only FIN flag set
#
grep "*******F" all.TCP.scans | grep -v "RESERVEDBITS" > all.TCP.FIN.scans

Scans, combination of U,P,R,S,F without an ACK
Some flag combinations (may include reserved bits)
U*S*
U*SF
UR** , *****R*F
UR*F , *****RS*
URS* , *****RSF
URSF , ****P*S*
U*P*S* , **P*SF
U*PR , ****PR**
U*PR*F , **PR*F
U*PRS* , **PRS*
U*PRSF , **PRSF
#
grep "NOACK" all.TCP.scans | grep -v "RESERVEDBITS" > all.TCP.NOACK.scans

Incomplete XMAS scan with
http://lists.insecure.org/lists/nmap-hackers/1999/Oct-Dec/0012.html
Some flag combinations (may include reserved bits)
U***
****P***
U*P*
****P**F
U**F
#
grep "VECNA" all.TCP.scans | grep -v "RESERVEDBITS" > all.TCP.VECNA.scans

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Invalid ACK scans
http://archives.neohapsis.com/archives/snort/2000-03/0241.html
Some flag combinations (may include reserved bits)
UAS* ,
UASF , ***A**SF
UA*R , ***A*R*F
UA*R*F , *A*RS*
UA*RS* , *A*RSF
UA*RSF , *AP*S*
UAP*SF , *AP*SF
UAPR , ***APR*F
UAPR*F , *APRS*
UAPRS* , *APRSF
#
grep "INVALIDACK" all.TCP.scans | grep -v "RESERVEDBITS" > all.TCP.INVACK.scans

XMAX scan, all bits set
#
grep "XMAS" all.TCP.scans | grep -v "RESERVEDBITS" > all.TCP.XMAS.scans

Part of Nmap OS fingerprinting scan
http://archives.neohapsis.com/archives/snort/2000-02/0055.html
#
grep "NMAPID" all.TCP.scans | grep -v "RESERVEDBITS" > all.TCP.NMAPID.scans

SYN/FIN scans, only these flags set
http://archives.neohapsis.com/archives/snort/2000-07/0180.html
#
grep "SYNFIN" all.TCP.scans | grep -v "RESERVEDBITS" > all.TCP.SYNFIN.scans

SPAU scans, SYN, PSH, ACK, and URG flags set
#
grep "SPAU" all.TCP.scans | grep -v "RESERVEDBITS" > all.TCP.SPAU.scans

Reserved Bit Scans, one or both Reserved bits set
#
grep "RESERVEDBITS" all.TCP.scans > all.TCP.RSV.scans

Traffic with reserved bits broken out
#
grep "****S*" all.TCP.RSV.scans > all.TCP.RSV.SYN.scans
grep "NULL" all.TCP.RSV.scans > all.TCP.RSV.NULL.scans
grep "*****F" all.TCP.RSV.scans > all.TCP.RSV.FIN.scans
grep "NOACK" all.TCP.RSV.scans > all.TCP.RSV.NOACK.scans
grep "VECNA" all.TCP.RSV.scans > all.TCP.RSV.VECNA.scans
grep "INVALIDACK" all.TCP.RSV.scans > all.TCP.RSV.INVACK.scans
grep "XMAS" all.TCP.RSV.scans > all.TCP.RSV.XMAS.scans
grep "NMAPID" all.TCP.RSV.scans > all.TCP.RSV.NMAPID.scans
grep "SYNFIN" all.TCP.RSV.scans > all.TCP.RSV.SYNFIN.scans
grep "SPAU" all.TCP.RSV.scans > all.TCP.RSV.SPAU.scans
grep "UNKNOWN" all.TCP.RSV.scans > all.TCP.RSV.UNKNOWN.scans

Reporting Functions
#
rm tcp-scantype-report
touch report-tcp
touch report-tcp-rsv
touch tcp-scantype-report
#
wc all.TCP.FIN.scans | awk '{print $1,"\t"$4}' >> report-tcp
wc all.TCP.INVACK.scans | awk '{print $1,"\t"$4}' >> report-tcp
wc all.TCP.NMAPID.scans | awk '{print $1,"\t"$4}' >> report-tcp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

wc all.TCP.NOACK.scans | awk '{print $1,"\t"$4}' >> report-tcp
wc all.TCP.NULL.scans | awk '{print $1,"\t"$4}' >> report-tcp
wc all.TCP.SPAU.scans | awk '{print $1,"\t"$4}' >> report-tcp
wc all.TCP.SYN.scans | awk '{print $1,"\t"$4}' >> report-tcp
wc all.TCP.SYNFIN.scans | awk '{print $1,"\t"$4}' >> report-tcp
wc all.TCP.VECNA.scans | awk '{print $1,"\t"$4}' >> report-tcp
wc all.TCP.XMAS.scans | awk '{print $1,"\t"$4}' >> report-tcp
wc all.TCP.scans | awk '{print $1,"\t"$4}' >> report-tcp
wc all.TCP.RSV.scans | awk '{print $1,"\t"$4}' >> report-tcp
#
wc all.TCP.RSV.scans | awk '{print $1,"\t"$4}' >> report-tcp-rsv
wc all.TCP.RSV.FIN.scans | awk '{print $1,"\t"$4}' >> report-tcp-rsv
wc all.TCP.RSV.INVACK.scans | awk '{print $1,"\t"$4}' >> report-tcp-rsv
wc all.TCP.RSV.NMAPID.scans | awk '{print $1,"\t"$4}' >> report-tcp-rsv
wc all.TCP.RSV.NOACK.scans | awk '{print $1,"\t"$4}' >> report-tcp-rsv
wc all.TCP.RSV.NULL.scans | awk '{print $1,"\t"$4}' >> report-tcp-rsv
wc all.TCP.RSV.SPAU.scans | awk '{print $1,"\t"$4}' >> report-tcp-rsv
wc all.TCP.RSV.SYN.scans | awk '{print $1,"\t"$4}' >> report-tcp-rsv
wc all.TCP.RSV.SYNFIN.scans | awk '{print $1,"\t"$4}' >> report-tcp-rsv
wc all.TCP.RSV.UNKNOWN.scans | awk '{print $1,"\t"$4}' >> report-tcp-rsv
wc all.TCP.RSV.VECNA.scans | awk '{print $1,"\t"$4}' >> report-tcp-rsv
wc all.TCP.RSV.XMAS.scans | awk '{print $1,"\t"$4}' >> report-tcp-rsv

cat report-tcp | sort -nr | sed 's/all\./ /g' | \
sed 's/\./ /g' | sed 's/ TCP scans/--++ALL TCP Scans++--/g' | \
sed '1s/^/\nTCP Port Scans Broken Out\n/g' | \
sed '3s/^/-------------------------\n/g' >> tcp-scantype-report

cat report-tcp-rsv | sed 's/^[\t]*//'| sort -nr | \
sed 's/all\./ /g' | sed 's/\./ /g' | \
sed 's/ TCP RSV scans/--++ALL TCP RSV Scans++--/g' | \
sed '1s/^/\nItems w\/TCP Reserved Bits --detail-- \n/g' | \
sed '3s/^/-----------------------------------\n/g' >> tcp-scantype-report

rm report-tcp
rm report-tcp-rsv

tcp-dst-ip
(one of several, for each of “sort”)
#!/bin/sh
#
rm tcp-dst-ip-report
touch tcp-dst-ip-report

FILES=" \
all.TCP.SYN.scans \
all.TCP.NULL.scans \
all.TCP.RSV.scans \
all.TCP.FIN.scans \
all.TCP.NOACK.scans \
all.TCP.VECNA.scans \
all.TCP.INVACK.scans \
all.TCP.XMAS.scans \
all.TCP.NMAPID.scans \
all.TCP.SPAU.scans \
all.TCP.SYNFIN.scans \
all.TCP.RSV.SYN.scans \
all.TCP.RSV.INVACK.scans \
all.TCP.RSV.UNKNOWN.scans \
all.TCP.RSV.NOACK.scans \
all.TCP.RSV.VECNA.scans \
all.TCP.RSV.XMAS.scans \

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

all.TCP.RSV.NULL.scans \
all.TCP.RSV.FIN.scans \
all.TCP.RSV.NMAPID.scans \
all.TCP.RSV.SPAU.scans \
all.TCP.RSV.SYNFIN.scans
"
#

for file in $FILES; do
echo "" >> tcp-dst-ip-report
echo "Top 20 Destination IP Addresses for$file" | sed 's/all//g' | sed 's/\./ /g' >>
tcp-dst-ip-report
echo " Count IP-Address" >> tcp-dst-ip-report
echo " ----- ----------" >> tcp-dst-ip-report
cat $file | awk '{print $6}' | awk -F: '{print $1}' | sort | uniq -c | sort -r | head
-20 >> tcp-dst-ip-report
echo ""
done

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Refrences:

Linux NFS Material
http://marc.theaimsgroup.com/?l=linux-nfs
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=58084
http://www.faqs.org/rfcs/rfc1191.html

SANS Information and Data
www.incidents.org/logs/Raw/2002.10.15
www.incidents.org/logs/Raw/README

Snortsnarf
www.silicondefense.com/software/snortsnarf/index.htm

List of Route Servers, Proxies, Looking Glass
www.traceroute.org

IEEE OUI Table
http://standards.ieee.org/regauth/oui/oui.txt

Ports List
www.neohapsis.com/neolabs/neo-ports/neo-ports.html

p0f Passive OS Fingerprinting Tool (fingerprint table)
www.stearns.org/p0f/p0f.fp

DeepSight Analyzer by SecurityFocus
http://analyzer.securityfocus.com

Dshield
www.dshield.org

myNetWatchman
www.mynetwatchman.com

BGP Routing Table Archives
http://archive.routeviews.org

Ofir Arkin (ofir@atstake.com)
Subject: A crash course with Linux Kernel 2.4.x, IP ID values & RFC 791

http://groups.google.com/groups?q=IP+ID+0+TCP&hl=en&lr=&ie=UTF-8&oe=UTF-
8&selm=3CB8955C.10407%40atstake.com&rnum=1

Fyodor {fyodor@insecure.org)
Remote OS detection via TCP/IP Stack FingerPrinting

http://www.insecure.org/nmap/nmap-fingerprinting-article.html
[Forescout]. "The First 15 Minutes - Critical Technical Considerations for Defending Enterprise Networks Against
the Next Wave of Internet Threats" - http://www.forescout.com

Harrington, Chad [Entercept]. "Defense in Depth: Combining Behavioral Rules and Signatures" -
http://www.entercept.com/products/entercept/whitepapers/downloads/defenseindepth.pdf

DeShon, Markus [SecureWorks]. "Intrusion Prevention versus Intrusion Detection" -
http://www.secureworks.net/techResourceCenter/fullTechArticle.php?article=IpsVsIds

[Netscreen]. "Intrusion Detection and Prevention - Protecting Your Network from Attacks" - www.netscreen.com

Cummings, Joanne. "From Intrusion Detection to Intrusion Prevention" Network World Fusion, Sept. 23, 2002.
http://www.nwfusion.com/buzz/2002/intruder.html

Information Systems Security Association -- Austin Chapter. Incident Response Plan Template.
http://austin.issa.org/WhitePapers/ISSAITD.pdf

