
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1

Bruce Auburn
GCIA Practical v.3.3

Intrusion Detection in Depth
July 8, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents

Abstract…………………..………………………………………………….............3

Part 1– Describe the State of Intrusion Detection………………………………..4
 Honeypots Explained………………………………………………………….4

Part 2– Network Detects…………………………….……………………………..11
Detect 1– Scan Socks Proxy Attempt……………………………………..11
Detect 2 - 7/1/03 - More Fragments and Don't Fragment FlagsSet…….17
Detect 3 - 7/6/03–UPNP malformed advertisement……………………..21

Part 3–Analyze This……………………………………………...……………..….25
 Executive Summary…………………………………………………………..25
 Files Analyzed…………………………………………………………………25
 List of Detects………………………………………………………………….25
 Top 10 Alerts…………………………………………………………………..28
 Statistics Generated from Log Files…………………………………………31
 Top Talkers…………………………………………………………………….39
 Registration Information………………………………………………………43
 Link Graph……………………………………………………………………..53
 Defensive Recommendations………………………………………………..55
Description of Analysis Process……………………………………………..55

References…………………………………………………………………………..56

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

Abstract

This paper consists of three main parts. Part one is an explanation of honeypots. Types
of honeypots, legal implications and building a honeypot are discussed. Some actual data
from a honeypot is shown with an explanation of the data.

Part two of the paper details three network detects. The detects were based on data from
daily logs at intrusions.org. The first detect is a scan Socks proxy attempt. Socks servers
are often targets for spammers and other attackers trying to hide behind a legitimate site.
The second detect concerns the TCP “more fragments” and “don’t fragment” flags being
set at the same time. The third detect investigates malformed advertisements associated
with Microsoft’s Universal Plug and Play protocol.

Part three of the paper analyzes five days’ worth of data logs from incidents.org.Alert
files, scan files and out of specification files are examined. Some of the most dangerous
and interesting anomalies are examined in depth.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

Part 1 –Describe the State of Intrusion Detection

Honeypots Explained

What is a Honeypot?

A Honeypot is a device, hardware or software based, that detects and tracks
intruders and attackers. Unlike a bank, the owner of a honeypot wants people to
break in. A honeypot can be virtual, existing only in software, or it can be a
computer, switch or router. The goal of a honeypot is to draw attackers so their
methods can be studied. In this way, security weaknesses can be identified and
future hacking attempts can sometimes be prevented. Honeypots can also act
as sacrificial bait in a system, drawing attackers away from the production
servers. Groups of honeypots can be combined to form a honeynet, or network
of honeypots. This provides a more realistic environment for hackers, who can
be quick to spot a single honeypot. Honeypots should be implemented only by
companies who already have a fairly secure system. The honeypot will do no
good if the other computers in the network can routinely be broken into.

A honeypot is a research tool. It can be deliberately misconfigured to draw
attackers, or it can be set to the highest possible security to see how secure it
really is. There are some disadvantages that come with honeypots. If a
honeypot is compromised, a hacker might gain entrance to the rest of a network
and wreak havoc. Honeypots require manpower to maintain the equipment and
analyze the logs. It is difficult to build a system that can log all events without an
attacker knowing he is being watched. Not all intrusions will be stopped,
because new attack methods are being invented all the time. The honeypot
should not be able to communicate or share files with the other machines on the
network, unless it is part of a honeynet. Kernels can be made non-rewriteable to
avoid damage, and special hardened versions of some operating systems are
available that resist changes. Computers can be set to automatically reboot if
attempts to change the kernel are made. (Spitzner)

Honeypots have their advantages, though. Since they are not performing any
useful functions, all activity into the honeypot can be considered illicit. The
volume of regular data seen with production servers is not present in a honeypot.
Therefore, the data that is logged is smaller in volume and more informative.
There is much less for data for the analyst to wade through. This makes it easier
to discern new exploits that might get lost in the noise of a busy production
system. Honeypots also require limited resources and can run on otherwise
obsolete machines. Log data can be encrypted to thwart defacement.
Honeypots can slow down attacks to gain time for the rest of the network to be

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

protected, especially in the case of worm attacks. One technique is to use a tcp
window size of zero to put an attacker in a holding pattern. Honeypot systems
can be taken offline to analyze what an attacker has done, unlike many
production systems. The data gathered in a honeypot system can be used to
prosecute an attacker.

Honeypot and Honeynet Examples

A group of security professionals has set up a network of computers, configured
like a typical production environment, and has studied the attacks on these
computers for years, amassing a large volume of useful data on hackers. The
results are posted to the www.honeynet.org web site. This site has been helpful
in getting the message out that attacks on computers are a real danger and are
quite common. A lot of system administrators have no idea of the volume of
hacking attempts. (ZDnet)

An example of a honeypot in action: A group of hackers in Pakistan broke into a
network in the United States and used it to attack computers in India. For over a
month, they were not aware that they had actually targeted a honeypot. Every
keystroke was recorded, as were the techniques they used to attack computers
and hide their tracks. (Olsen)

Another example of a honeypot is one that looks like an open proxy. This
attracts email spammers, who are always looking for an open proxy so they can
send millions of spam messages anonymously. A program called Jackpot
simulates an open proxy to attract spammers. The email flows in, but it does not
go out to its intended victims.

An example of an imaginary honeypot: A large Internet security firm with
employees in many countries had their web site compromised and defaced.
Instead of admitting their shortcomings, they claimed that they used their site as
a honeypot and expected such an attack. This has happened more than once. It
turns out that poor security is being called a honeypot by some administrators
looking for an excuse.

Low-Interaction and High-Interaction Honeypots

Honeypots can be characterized as low-interaction or high-interaction. A low-
interaction honeypot limits the options available to the attacker. For instance, the
telnet service might be enabled but be limited to login only, or it may allow a
limited number of telnet commands. This type of honeypot is simple to configure
and capture logs from. Low-interaction honeypots are usually software
emulations. These types of honeypots are easier to set up and operate, and they
run less risk because the hacker does not have access to the actual operating
system. However, an experienced hacker can usually detect that he is on an
emulated system. Some examples of low-interaction honeypots are Specter,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

Honeyd, Deception Tool Kit and KFSensor.

Honeyd is an open source, low-interaction honeypot designed for Unix systems
but ported to Windows. Honeyd logs any traffic to UPD or TCP ports. All
incoming traffic to a port can be logged, including usernames and passwords.
The drawback to Honeyd is that certain behavior is expected of the attacker, and
if the hacker does something unanticipated (as any computer user is guaranteed
to do), the emulator will probably not know how to respond. Honeyd can emulate
services, complete operating systems or even a Cisco router. Even if a hacker
uses a fingerprinting tool like nmap, the emulator responds as an actual system
would.

A high-interaction honeypot gives the attacker a real operating system to work
with. Since the system is the same as an actual production computer, the hacker
is not limited in his scope of operations, nor is he able to figure out as quickly that
he is being watched. Being actual systems, high-interaction honeypots are
harder to set up and maintain than low-interaction ones. Examples are
Symantec Decoy Server and Honeynets. (Tracking-hackers.com)

Honeynets are simply a collection of honeypots configured into a network.
Kernel modules are placed within the honeynet which enable the system to
capture all of the attackers’ activities. A honeywall gateway controls the
attackers’ actions by allowing traffic into the honeynet, but limited traffic out,
which is the opposite of a typical firewall. An example of a honeynet is shown
below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

http://www.honeynet.org/papers/gen2/figureA.jpg

Counterattacking

Some organizations that have been attacked try to turn the tables and
counterattack with some of the same techniques they have fallen prey to. This is
sometimes done illegally, because in many countries it is illegal to intentionally
attack computer systems. Some organizations have set their firewalls to
automatically strike back at what they perceive to be an attack. One drawback to
this aggressive stance is that source addresses are often spoofed, so an
innocent network could find itself being attacked. In a more legal vein, a victim
can use a lookup site such as www.dshield.org to find information about an
attacker (if the source address is not spoofed) and send an email to the system
administrator, who may disable the account. However, most sophisticated
hackers can hide their actual IP address. (Landergren)

Legal Issues

As stated, Counterattacking is illegal in the United States, and it may be a bad
idea because it would only promote further attacks.

Some people think that because honeypots lure attackers, the ability to
prosecute the attackers is reduced. This is not true, because honeypots are
passive and do not advertise themselves. It is a good idea, however, to put a
standard banner page about unauthorized use on any honeypot system. In all
probability, a hacker would not see this banner unless he had cracked a
password, but it is good to have all of the legal angles covered, since a judge or
jury might tend to focus on something that seems pertinent to a case but in reality
has nothing to do with the malfeasance that has taken place.

If you operate a honeypot and an attacker compromises your system, then uses
it in attacks against other systems, there is a chance you will be held liable.
Legal opinion has not yet solidified on this issue. (Windowsecurity.com)

Building a Honeypot

First, decide what information you want to get out of the honeypot. If you want to
test a particular vulnerability, a software honeypot like Honeyd might be the
answer. If you want to see how vulnerable a particular computer or operating
system is, it might be best to build a system typical of the machines within your
network. You must decide what kind of information you want to log and where to
store the logs. The logs must be made inaccessible because the experienced
attacker will want to hide his activity. Somebody must monitor and maintain the
honeypot. After an attack, if a computer is used as a honeypot, it will have to be

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

fixed or rebuilt. This paper will assume a Unix computer is being used as a
honeypot. The computer itself must be interesting enough to attack. If it
obviously being used as a honeypot, the attacker may ignore it, or do his best to
destroy it without leaving you any useful information.

Collecting data is the most important part of a honeypot. The first line of defense
is the firewall, and most firewalls have the ability to log data. This data should be
stored and analyzed. As stated before, the firewall rules should allow traffic in,
but limited traffic out. This will prevent the attacker from using your computer for
other ill deeds. It is probably enough to allow only FTP, ICMP and DNS out. It
may be best to use a dedicated server to store system logs, since the attacker
will most likely alter or destroy the logs on the honeypot. The syslogd program,
which logs system activity, can be recompiled to look at a different configuration
file. The system log will then be written both locally and to the dedicated server.
After an attack the remote and system logs can be compared to see if the
attacker has altered the system log. A sophisticated attacker can sniff packets,
detect the remote logging, and kill the syslogd process. In that case, you might
want to encrypt data or use an entirely different protocol such as IPX to send the
log data to the remote server.

One other way to log hacker activity is by using a sniffer at the firewall. Since all
data has to come through the firewall, all activity down to keystrokes can be
captured. Snort can be used for this and has the advantage of being free.
Having a variety of data logs is important, because there is always a chance that
the attacker will find a way to destroy your logs.

Logs from an actual honeypot

Following are some traces from a Honeypot designed by Toby Miller. Some of
the data makes it quite apparent what the attacker is doing. This particular
attacker exploited vulnerabilities in OpenSSH, which allow an attacker to gain
root control. SSH is a program that encrypts all Internet traffic and provides
tunneling and authentication. The honeypot had been running about six weeks
before it was compromised. (Miller)

02:49:56.493164 xxx.xxx.xxx.xxx.1153 > 10.10.10.40.ssh: P [tcp sum ok]
1:29(28) ack 22 win 32120 <nop,nop,timestamp 54447663 655960541> (DF)
(ttl 45, id 6952, len 80)
0x0000 4500 0050 1b28 4000 2d06 bb3c xxxx xxxx E..P.(@.-..<...=
0x0010 0a0a 0a28 0481 0016 6618 d792 d4ec 634d ...(....f.....cM
0x0020 8018 7d78 7e82 0000 0101 080a 033e ce2f ..}x~........>./
0x0030 2719 29dd 5353 482d 312e 302d 5353 485f '.).SSH-1.0-SSH_
0x0040 5665 7273 696f 6e5f 4d61 7070 6572 0a00 Version_Mapper..

Above, the attacker is using a scanner program called ScanSSH to scan for SSH
in order to exploit the known vulnerability.

02:50:56.203164 10.10.10.40.syslog > 10.10.10.70.syslog: [udp sum ok]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

udp 85 (ttl 64, id 10463, len 113)
0x0000 4500 0071 28df 0000 4011 291c 0a0a 0a28 E..q(...@.)....(
0x0010 0a0a 0a46 0202 0202 005d ae8b 3c33 343e ...F.....]..<34>
0x0020 4175 6720 3139 2030 333a 3137 3a30 3720 Aug.19.03:17:07.
0x0030 7373 6864 5b32 3432 3636 5d3a 2066 6174 sshd[24266]:.fat
0x0040 616c 3a20 5265 6365 6976 6564 2070 6163 al:.Received.pac
0x0050 6b65 7420 7769 7468 2062 6164 2073 7472 ket.with.bad.str
0x0060 696e 6720 6c65 6e67 7468 2032 3633 3136 ing.length.26316
0x0070 38

Next, the attacker has used a program called SSH-2.0 GOBBLES (above) exploit
to enable him to take over the machine.

02:50:02.953164 10.10.10.40.ssh > xxx.xxx.xxx.xxx.1154: P [tcp sum ok]
2099:2140(41) ack 20846 win 17376 <nop,nop,timestamp 655960554
54448309> (DF) (ttl 64, id 12215, len 93)
0x0000 4500 005d 2fb7 4000 4006 93a0 0a0a 0a28 E..]/.@.@......(
0x0010 xxxx xxxx 0016 0482 b9bd 2672 667b df00 ...=......&rf{..
0x0020 8018 43e0 13f0 0000 0101 080a 2719 29ea ..C.........'.).
0x0030 033e d0b5 7569 643d 3028 726f 6f74 2920 .>..uid=0(root).
0x0040 6769 643d 3028 7768 6565 6c29 2067 726f gid=0(wheel).gro
0x0050 7570 733d 3028 7768 6565 6c29 0a ups=0(wheel).

Above, it can be seen that the attacker has obtained root privileges (uid=0[root[).
After this, the attacker changed the root password, covered his tracks and used
the computer for IRC.

Conclusion

Honeypots are a valuable tool to examine how attackers break into and attack
computer systems. Honeypots must be used with care, or you may find your
entire network damaged. Experience in computer security is necessary, both to
recognize exploits and to discover new exploits as they take place.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

Part 2 –Network Detects

Detect 1: 6/29/03 Scan socks proxy attempt

[**] [1:615:3] SCAN SOCKS Proxy attempt [**]
[Priority: 0]
10/31-20:00:53.696507 216.77.209.189:39627 -> 207.166.90.205:1080
TCP TTL:49 TOS:0x0 ID:32161 IpLen:20 DgmLen:40 ******S* Seq: 0x7B9DE6B
Ack: 0x7B9DE6B Win: 0x400 TcpLen: 20 [Xref => url
help.undernet.org/proxyscan/]

[**] [1:615:3] SCAN SOCKS Proxy attempt [**]
[Priority: 0]
10/31-20:03:07.846507 216.77.209.189:4440 -> 207.166.93.234:1080
TCP TTL:49 TOS:0x0 ID:9325 IpLen:20 DgmLen:40 ******S* Seq: 0x392A32FF
Ack: 0x392A32FF Win: 0x400 TcpLen: 20 [Xref => url
help.undernet.org/proxyscan/]

[**] [1:615:3] SCAN SOCKS Proxy attempt [**]
[Priority: 0]
10/31-20:05:22.036507 216.77.209.189:45276 -> 207.166.246.33:1080
TCP TTL:49 TOS:0x0 ID:34774 IpLen:20 DgmLen:40 ******S* Seq: 0x56B02723
Ack: 0x56B02723 Win: 0x400 TcpLen: 20 [Xref => url
help.undernet.org/proxyscan/]

[**] [1:615:3] SCAN SOCKS Proxy attempt [**]
[Priority: 0]
10/31-20:07:36.256507 216.77.209.189:37100 -> 207.166.140.161:1080
TCP TTL:49 TOS:0x0 ID:6333 IpLen:20 DgmLen:40 ******S* Seq: 0x5E5F5DB1
Ack: 0x5E5F5DB1 Win: 0x400 TcpLen: 20 [Xref => url
help.undernet.org/proxyscan/]

[**] [1:615:3] SCAN SOCKS Proxy attempt [**]
[Priority: 0]
10/31-20:09:50.436507 216.77.209.189:23552 -> 207.166.219.188:1080
TCP TTL:49 TOS:0x0 ID:9259 IpLen:20 DgmLen:40 ******S* Seq: 0x676E539A
Ack: 0x676E539A Win: 0x400 TcpLen: 20 [Xref => url
help.undernet.org/proxyscan/]

[**] [1:615:3] SCAN SOCKS Proxy attempt [**]
[Priority: 0]
10/31-20:12:04.596507 216.77.209.189:53816 -> 207.166.25.146:1080
TCP TTL:49 TOS:0x0 ID:41615 IpLen:20 DgmLen:40 ******S* Seq: 0x1F101DD0
Ack: 0x1F101DD0 Win: 0x400 TcpLen: 20 [Xref => url
help.undernet.org/proxyscan/]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

[**] [1:615:3] SCAN SOCKS Proxy attempt [**]
[Priority: 0]
10/31-20.756507 216.77.209.189:60558 -> 207.166.37.159:1080
TCP TTL:49 TOS:0x0 ID:6982 IpLen:20 DgmLen:40 ******S* Seq: 0x29169515
Ack: 0x29169515 Win: 0x400 TcpLen: 20 [Xref => url
help.undernet.org/proxyscan/]

Return traffic from scanned host:

[**] [1:0:0] Return traffic from Socks port 1080 scan
[**]
[Priority: 0]
10/31-21:52:29.426507 207.166.87.157:63861 -> 216.170.250.223:9284
TCP TTL:124 TOS:0x0 ID:23437 IpLen:20 DgmLen:367 DF ***AP*** Seq:
0xE8FF3803 Ack: 0x1BBB2BD1 Win: 0x4248 TcpLen: 20

[**] [1:0:0] Return traffic from Socks port 1080 scan
[**]
[Priority: 0]
10/31-22:01:21.026507 207.166.87.157:64419 -> 216.209.145.189:6347
TCP TTL:124 TOS:0x0 ID:35459 IpLen:20 DgmLen:360 DF ***AP*** Seq:
0xF1936A65 Ack: 0x2CB9797A Win: 0x40E8 TcpLen: 20

[**] [1:0:0] Return traffic from Socks port 1080 scan
[**]
[Priority: 0]
10/31-22:07:33.436507 207.166.87.157:64665 -> 216.196.129.234:9174
TCP TTL:124 TOS:0x0 ID:46062 IpLen:20 DgmLen:371 DF ***AP*** Seq:
0xF7498BE8 Ack: 0x292284F7 Win: 0x4470 TcpLen: 20

[**] [1:0:0] Return traffic from Socks port 1080 scan
[**]
[Priority: 0]
10/31-00:09:54.406507 207.166.87.157:61797 -> 216.162.111.229:6791
TCP TTL:124 TOS:0x0 ID:3775 IpLen:20 DgmLen:364 DF ***AP*** Seq:
0x6539EAD6 Ack: 0xC8246143 Win: 0x40E8 TcpLen: 20

1. Source of trace:

This trace was obtained from www.incidents.org/logs/Raw/20021001 . The
altered source IP range of 216.77.209.xxx and 216.77.216.xxx are class C. The
destination IP range of 207.166.xxx.xxx is class B. The MAC addresses indicate
a Cisco router. I speculate that the sensor is located close to the Internet router
because of the wide range of potentially harmful traffic seen in the logs.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

2. Detect Generated by:

The detect was generated by Snort, version 2.0.0 running on Windows 2000.
The rule used was: alert tcp any any -> any 1080 (msg:"SCAN SOCKS Proxy
attempt"; flags:S; sid:615; rev:3;). This rule was modified from a proxy rule
obtained from ww.potatosoft.com. 1080 is the signature port for a Socks proxy
attempt. The rule used to examine return traffic was: alert tcp 207.166.219.0/8
any -> 216.77.209.0/8 any (msg: "Return traffic from Socks port 1080 scan";).

3. Probability the source address was spoofed:

The source IP address and TTL do not change in the sample. The ID number
jumps around instead of consistently increasing over time, but with fast scanning
and only 16 bits to work with, the ID number may be wrapping around. This
address is probably legitimate.

A summary of part of the trace is shown in the table
below.

Time Source IP Port Dest IP Dest Port ID TTL

20:00:53 216.77.209.189 39627 207.166.90.205 1080 32161 49
20:03:07 216.77.209.190 4440 207.166.90.206 1080 9325 49
20:05:22 216.77.209.191 45276 207.166.90.207 1080 34774 49
20:07:36 216.77.209.192 37100 207.166.90.208 1080 6333 49
20:09:50 216.77.209.193 23552 207.166.90.209 1080 9259 49
20:12:04 216.77.209.194 53816 207.166.90.210 1080 41615 49
20:14:18 216.77.209.195 60558 207.166.90.211 1080 6982 49

The SYN scan occurs every two minutes and fourteen seconds. The random
nature of the ports and the source IP incrementing by one for each scan suggest
spoofed IPs. The fact that the IP ID numbers jump around so much also point
toward spoofing.

4. Description of Attack

A scanning tool is used to probe networks for open port 1080. If an ACK is
returned from port 1080, a session can be established. There are many
programs freely available (see attack mechanism, below) on the Internet to gain
use of a proxy server. It is likely that the source IP addresses will be spoofed
during the scan, since the object of connecting to a proxy server is usually to hide
one’s identity. Actually, scanning is not always needed since there are web sites
that publish open proxy servers.

5. Attack mechanism

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

Socks is an approved Internet standard, described in RFC 1928. Socks is a
protocol that allows a server to connect to a client without a direct connection, the
socks server acting as an intermediary. When a client computer needs to
connect to an application or data server, it connect to a Socks proxy server,
which then connects to the application or data server. Socks servers also can
provide security and firewall protection.

A proxy server that is not configured correctly is an inviting target for hackers,
since the proxy server can hide the identity of the hacker and be used for scans,
attacks, exploits, etc. An open or insecure server is one that will accept requests
from any computer. Spammers often use insecure proxy servers to distribute
their junk email. Socks servers should only allow connections from their own
local networks. (Socks.permeo.com)

An attacker sends SYN scans until he finds a server with an open port 1080.
Nmap or any other scanning tool can be used. He can then connect to the proxy
server with a self-written program or tool, or programs can be downloaded. A
program called ProxyKing will find open proxy servers
(http://www.proxyking.com/) Below is a partial example of a c program available
on the internet that allows a user to exploit a Socks proxy server:
(http://www.imasy.or.jp/~gotoh/ssh/connect.c). The comments give the novice
hacker concise instructions on how to use the program. (Goto)

/***
* connect.c -- Make socket connection using SOCKS4/5 and HTTP tunnel.
*
* Copyright (c) 2000, 2001 Shun-ichi Goto
* Copyright (c) 2002, J. Grant (English Corrections)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*

Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.
*
*

* PROJECT: My Test Program
* AUTHOR: Shun-ichi GOTO <gotoh@taiyo.co.jp>
* CREATE: Wed Jun 21, 2000
* REVISION: $Revision: 1.68 $
*

*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

* Getting Source
* ==============
* Recent version of 'connect.c' is available from
* Pre-compiled biniary for Win32 is also available:
*
*
* How To Use
* You can specify proxy method in an environment
* variable or in a command line option.
* usage: connect [-dnhs45] [-R resolve] [-p local-port] [-w sec]
* [-H [user@]proxy-server[:port]]
* [-S [user@]socks-server[:port]]
* host port
*
* "host" and "port" is for the target hostname and
* port-number to connect to.
*
* The -H option specifies a hostname and port number of the http proxy
* server to relay. If port is omitted, 80 is used.
* You can specify this
* value in the environment variable HTTP_PROXY and pass the -h option
* to use it.

6. Correlations:

Port 1080 is shown as one of the most frequently scanned ports at
www.incidents.org. In the raw log from the same website that this detect is
based on (www.incidents.org/logs/Raw/20021001), about 3/4 of the activity
consisted of scans to port 1080, so it is very common.

Microsoft.com’s support site has directions on how to secure a socks server.
Www.technerd.net has an Insecure Proxy Scanning Information Center page.

7. Evidence of active targeting:

The attacker did target all of the IP addresses in a class B range, but it is hard to
say if this was not just part of a larger automated scan that included this network.
Scanning for open proxy servers is more of a search than an attack, so malice
towards a particular network is probably not the goal. A given network having a
history of leaving their proxy servers open would certainly get targeted more
often.

8. Severity:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

Since the data was taken from incidents.org, the following factors will be
estimated based on probable use.

Criticality = 4. Socks servers provide applications, data and security functions to
clients. Losing the server could cause anything from inconvenience to severe
disruption.

Lethality = 1. Lethality is limited, because the general idea is to use the proxy
server for hiding identity. Unauthorized use of a proxy server is like a flea on a
dog–the flea may be irritating but it does not generally kill the dog. Of course,
enough unauthorized activity on a proxy server could cause its normal functions
to slow down considerably or even grind to a halt. A computer known to have an
open proxy port could be probed for other weaknesses, however. These proxy
servers are easily found, since web sites routinely publish lists of open proxy
servers. I couldn’t find any data on attacks on openproxy servers compared with
other servers. It would be interesting to see if proxy servers were compromised
at a greater rate than other servers. You could wind up with the odd situation of
one hacker shutting down a server used by a group of other hackers, spammers,
etc.

System Countermeasures = 2. One server did answer a port 1080 scan with the
ACK flag set, so it did respond to outside traffic. If this server was a socks
server, it was configured wrong–it should not have responded.

Network Countermeasures = 4. In the sample I looked at, I could find no
established sessions using port 1080 (I did not find the final ack of the three-way
handshake), so the traffic may have been blocked by a firewall or router.

(4 + 1)–(2 + 4) = -1.

9. Defensive recommendation

It is easy to stop the problem of hijacked proxy servers–limit traffic to the local
network. This can be done within the socks setup or via a firewall. If it is not
feasible to stop non-local traffic entirely, it could at least be limited to an
approved range of addresses.

10. Multiple choice question:

What is the primary reason proxy servers are such
inviting targets?

A. You can hack into them and steal information.
B. They are commonly used for Distributed Denial of Service attacks.
C. They hide the identity of spammers and hackers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

D. You can download free music from them.

Answer: C.

Detect 2/3, 7/1/03 - More Fragments and Don't Fragment Set On.

[**] [1:0:0] BAD TRAFFIC bad frag bits [**]
[Priority: 0]
10/10-05:13:56.246507 62.252.8.218 -> 32.245.26.39
TCP TTL:111 TOS:0x0 ID:15144 IpLen:20 DgmLen:1468 DF
MF
Frag Offset: 0x0000 Frag Size: 0x0014

[**] [1:0:0] BAD TRAFFIC bad frag bits [**]
[Priority: 0]
10/10-05:14:21.216507 62.252.8.218 -> 32.245.26.39
TCP TTL:111 TOS:0x0 ID:17231 IpLen:20 DgmLen:1468 DF
MF
Frag Offset: 0x0000 Frag Size: 0x0014

[**] [1:0:0] BAD TRAFFIC bad frag bits [**]
[Priority: 0]
10/10-05:15:14.116507 62.252.8.218 -> 32.245.26.39
TCP TTL:111 TOS:0x0 ID:20560 IpLen:20 DgmLen:1468 DF
MF
Frag Offset: 0x0000 Frag Size: 0x0014

[**] [1:0:0] BAD TRAFFIC bad frag bits [**]
[Priority: 0]
10/10-05:16:55.566507 62.252.8.218 -> 32.245.26.39
TCP TTL:111 TOS:0x0 ID:26680 IpLen:20 DgmLen:1468 DF
MF
Frag Offset: 0x0000 Frag Size: 0x0014

[**] [1:0:0] BAD TRAFFIC bad frag bits [**]
[Priority: 0]
10/10-06:26:36.226507 80.4.24.124 -> 32.245.236.186
TCP TTL:111 TOS:0x0 ID:2141 IpLen:20 DgmLen:1468 DF MF
Frag Offset: 0x0000 Frag Size: 0x0014

[**] [1:0:0] BAD TRAFFIC bad frag bits [**]
[Priority: 0]
10/10-06:27:06.686507 80.4.24.124 -> 32.245.236.186
TCP TTL:111 TOS:0x0 ID:3161 IpLen:20 DgmLen:1468 DF MF
Frag Offset: 0x0000 Frag Size: 0x0014

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

[**] [1:0:0] BAD TRAFFIC bad frag bits [**]
[Priority: 0]
10/10-06:30:01.636507 80.4.24.124 -> 32.245.236.186
TCP TTL:111 TOS:0x0 ID:10904 IpLen:20 DgmLen:1468 DF
MF
Frag Offset: 0x0000 Frag Size: 0x0014

[**] [1:0:0] BAD TRAFFIC bad frag bits [**]
[Priority: 0]
10/10-06:33:56.346507 80.4.24.124 -> 32.245.236.186
TCP TTL:111 TOS:0x0 ID:22089 IpLen:20 DgmLen:1468 DF
MF
Frag Offset: 0x0000 Frag Size: 0x0014

[**] [116:46:1] (snort_decoder) WARNING: TCP Data
Offset is less than 5! [**]
10/10-09:53:55.446507 62.13.27.29:0 -> 32.245.113.30:0
TCP TTL:234 TOS:0x0 ID:0 IpLen:20 DgmLen:40
*****R** Seq: 0x1EC00EE Ack: 0x1EC00EE Win: 0x0
TcpLen: 0

1. Source of trace:

This trace was obtained from www.incidents.org/logs/Raw/20020910 . The
altered source IP range are most likely spoofed and not significant. The
destination IP range of 32.245.xxx.xxx is class B. The MAC addresses indicate a
Cisco router, probably located close to the Internet router because of the wide
range of potentially harmful traffic seen in the logs.

2. Detect Generated by:

The detect was generated by Snort, version 2.0.0 running on Windows 2000.
The rule used was: alert ip any any -> any any (msg:"BAD TRAFFIC bad frag
bits"; fragbits:MD;). An attempt was made to find any return tcp or icmp traffic,
but none was found.

3. Probability the source address was spoofed:

The source address was probably spoofed. The headers are nearly identical
except for the source address. The fragment sizes are all 20 bytes, the flags set
are always MF and DF, the offset is always 0 and the ID number is constantly
changing. Real fragments would not have these properties. In a real set of
fragments, the more fragments flag would be set on for all but the last fragment,
but the don’t fragment flag would never be set on. The ID number would be the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

same for the entire set of fragments. The fragment offset would start at 0 and
increase by the size of the fragment for each packet. These fragments were
obviously crafted, and they came from a variety of source addresses, so it is
likely that the addresses were spoofed.

4. Description of Attack

Multiple groups of four crafted fragments were sent from one destination address
to the 32.245 network, to the same port. The time between packets increased for
each of the four packets. A typical series of time intervals for the second, third
and fourth packets was about 30 seconds, three minutes and four minutes after
the first packet. It is not known why the same packet was sent four times at wide
intervals. The frag2 preprocessor was tried but no complete fragments were
assembled for the destination IPs in the above sample. So this was not a Denial
of Service attack such as ssping, where highly fragmented traffic is used to clog
the routers. There was no attempt at using overlapping or missing fragments to
avoid the IDS or as an insertion attack.

5. Attack mechanism

This appears to be a scan of some sort. One could speculate that by setting both
the more fragments and the don’t fragment flags, there was an attempt at a
Denial of Service attack as the router waited for more fragments, but the packets
were sent at such a slow rate that this would not have happened. It looks like the
attacker wanted to get an ICMP message back for reconnaissance purposes.
However, no ICMP (or TCP) data was sent back to the source IPs in the sample
above.

6. Correlations:

None found, except in references back to GIAC pages. It is perhaps not
surprising, since this scan did not appear to elicit any response from the targeted
systems. This could have been some sort of experimentation just to see what
would happen.

7. Evidence of active targeting:

The consistency of this data points to active targeting. About ten groups of four
records were aimed at the 32.245 address range over a 24 hour period. It is
probably not accidental or garbage data because of the strangeness of the
information. The more fragments and don’t fragment fields should never be set
at the same time.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

8. Severity:

Criticality–3. The data used was from incidents.org, but it could have been from
any server.

Lethality–2. This traffic did not even elicit an ICMP response. What it would do
on other systems is not known.

System Countermeasures–3. This is unknown since it looks like the router
dropped the packets before they got to the host.

Network Countermeasures–4. It appeared that the MF DF scan was totally
ineffective in doing any damage or gaining information.

Severity = (3 + 2)–(3 + 4) = -2

9. Defensive recommendation

It looks like the firewall dropped these packets before they reached the host.
Since fragmentation attacks such as Teardrop have been around for a while,
routers and firewalls have been configured to stop most of these types of attacks.
Since Ethernet is so predominant, MTUs tend to be pretty consistent nowadays,
fragmentation is relatively rare, and any fragment is worth scrutinizing.

10. Multiple choice question:

A datagram has become fragmented on its travels through the internet.
Comparing the second fragment to the first, you will see:

A. A higher fragment offset number
B. A higher fragment ID number
C. The More Fragments flag set for both fragments
D. A and C
E. A, B and C

Answer: D.

Reply 1 to detect:

1. A lack of correlations seems odd. I can recall seeing several discussions on
similar detects, and when I do a search on Google using the snort alert "BAD
TRAFFIC bad frag bits" I get a couple thousand hits. Did you look at those hits
and for some reason feel that none correlated with your detect?

2. You mention a MAC address, but do not include any trace output to validate
you clain, could you include it in a trace? It would also be helpful to see the IP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

headers in a raw format so that we can see the bits have been set rather than
just an interpretation by Snort. (I have a reason for asking that based on what I
saw in the search by Google).

Comments on Reply 1 to detect:

I did restrict my search too much. I looked for the string “MF DF”, and the “BAD
TRAFFIC bad frag bits” string does generate more replies.As far as the missing
MAC addresses, they seem to have been lost in the fog of battle. I am
reasonably sure I saw the Cisco code.

Reply 2 to detect

Interesting detect. I think that you can do a little more correlation, as pointed out
by others. My comments are inline below.

Yes, one could speculate that this could be a DoS against a router, but Is there
anything to back you up there? Any known vulnerabilities in anything that would
back you up on this?

Comments on Reply 1 to detect:
In my searches for similar flag settings, I found many instances of the MF DF
flags, but not any good explanations as to why they were the way they were.

Detect 3, 7/6/03 –UPNP malformed advertisement

[**] [1:1384:2] MISC UPNP malformed advertisement [**]
[Classification: Misc Attack] [Priority: 2]
04/26-13:34:55.198004 2:A0:24:BB:7E:EB ->
1:0:5E:7F:FF:FA type:0x800 len:0x1CB
192.168.0.1:1900 -> 239.255.255.250:1900 UDP TTL:4
TOS:0x0 ID:28749 IpLen:20 DgmLen:445
Len: 417
[Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0877][Xref
=>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0876]

[**] [1:1384:2] MISC UPNP malformed advertisement [**]
[Classification: Misc Attack] [Priority: 2]
04/26-13:34:55.227231 2:A0:24:BB:7E:EB ->
1:0:5E:7F:FF:FA type:0x800 len:0x183
192.168.0.1:1900 -> 239.255.255.250:1900 UDP TTL:4
TOS:0x0 ID:28751 IpLen:20 DgmLen:373

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

Len: 345
[Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0877][Xref
=>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0876]

[**] [1:1384:2] MISC UPNP malformed advertisement [**]
[Classification: Misc Attack] [Priority: 2]
04/26-13:34:55.277475 2:A0:24:BB:7E:EB ->
1:0:5E:7F:FF:FA type:0x800 len:0x1B9
192.168.0.1:1900 -> 239.255.255.250:1900 UDP TTL:4
TOS:0x0 ID:28753 IpLen:20 DgmLen:427
Len: 399
[Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0877][Xref
=>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0876]

[**] [1:1384:2] MISC UPNP malformed advertisement [**]
[Classification: Misc Attack] [Priority: 2]
04/26-13:34:55.317915 2:A0:24:BB:7E:EB ->
1:0:5E:7F:FF:FA type:0x800 len:0x1C7
192.168.0.1:1900 -> 239.255.255.250:1900 UDP TTL:4
TOS:0x0 ID:28755 IpLen:20 DgmLen:441
Len: 413
[Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0877][Xref
=>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0876]

The following entries are from my home computer:

[**] [1:1384:2] MISC UPNP malformed advertisement [**]
[Classification: Misc Attack] [Priority: 2]
07/05-20:53:26.686638 192.168.1.1:1900 ->
239.255.255.250:1900
UDP TTL:4 TOS:0x0 ID:3355 IpLen:20 DgmLen:306
Len: 278
[Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0877][Xref
=>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0876]

[**] [1:1384:2] MISC UPNP malformed advertisement [**]
[Classification: Misc Attack] [Priority: 2]
07/05-20:53:26.690060 192.168.1.1:1900 ->

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

239.255.255.250:1900
UDP TTL:4 TOS:0x0 ID:3356 IpLen:20 DgmLen:362
Len: 334
[Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0877][Xref
=>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0876]

1. Source of trace

I initially saw this alert on my home computer. Since my computer triggered the
alert, I wasn’t too alarmed, but in researching the alert I found some information
on a vulnerability on Windows systems. The first four log entries above were
found from the site
http://roninsoftwaregroup.com.hosting.domaindirect.com/mysql/alert.ids.txt
and the last two entries are from my home computer.

2. Detect Generated by:

My detect was generated by Snort, version 2.0.0 running on Windows XP. The
standard snort.conf file was used to generate the alerts. The detects from the
Internet look like they also came from Snort, using the same rule set.
Henceforth, I will be referring only to the trace that did not come from my home
computer.

3. Probability the source address was spoofed:

The issue of spoofing is moot here because the source address is private,
probably generated behind a router. The contents of the packet could have been
crafted. The datagram lengths are all different, which could be normal or a sign
of crafting.

4. Description of Attack:

Universal Plug and Play (UPnP) is a set of protocols designed to allow
computers and devices to work together with little or no configuration. The
NOTIFY directives have a vulnerability to buffer overflows, the result being the
ability of a hacker to run commands on a target computer with administrative
privileges.

5. Attack mechanism:

A couple of attack mechanisms have been discovered. The first method involves
sending malformed advertisements at various speeds in order to cause access
violations on the target machine, which caused pointers to be overwritten. This

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

allows an attacker to insert commands and gain control of the target computer.
The second attack depends on Windows XP searching for an “Internet Gateway
Device”, which Microsoft invented to encourage manufacturers to make UPnP-
compatible devices. An attacker can force the XP client to connect back to a
specified IP address.
http://www.eeye.com/html/Research/Advisories/AD20011220.html

6. Correlations:

CERT has a page with links about this problem:
http://www.kb.cert.org/vuls/id/951555. Microsoft has patches available at:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/MS01-059.asp
.

7. Evidence of active targeting:

The two sample traces do not indicate active targeting. The datagrams sent from
my home computer match the other sample. Although this can be a dangerous
attack on an unpatched machine, XP routinely spits out these packets that trigger
Snort. It may be possible to reconfigure the rule so that the normal discovery
process is ignored and malicious UPnP traffic is detected. The sample data I
have represent false positives.

8. Severity:

Criticality - 3. This is an estimate, since my sample destination IPs are multicast
addresses.

Lethality–5. If successful, the attacker can gain control of the target computer.

System Countermeasures–3. Assuming the computer is patched, this exploit
will not be successful. I turned off the Universal Plug and Play service on my
computer, the average user probably does not. Patched or not, the furor over
this bug seems to have died
down in recent months. It may be that the exploit is difficult to actually carry out
even though the potential is there.

Network Countermeasures–3. Snort can detect these malformed packets, and
resumably other IDS systems can also.

Severity = (3 + 5)–(3 + 3) = 2.

9. Defensive Recommendation:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

Patches are available from Microsoft. Universal Plug and Play services can be
turned off. If UPnP catches on, there will probably be other attempts at attacking
this protocol.

10. Multiple Choice Question

What is the greatest weakness of Universal Plug and Play?

A. It can be used in a DDoS attack.
B. It is a relatively new protocol with bugs and vulnerabilities.
C. It can give administrative control to an attacker.
D. All of the above
E. A and B
F. B and C

Answer: F

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

Part 3 –Analyze This

1. Executive Summary

The analysis performed is based on data collected during the June 13, 2003 to
June 18, 2003 period. Alert, scan and out of spec files were combined and
summarized with Perl scripts. High volume and dangerous exploits observed in
the logs were analyzed.

The alert logs show a high volume of potentially malicious activity. There is also
a large amount of data resulting from file sharing and other student activity.
There is a lot of traffic outbound from the network that needs to be examined,
such as port scanning.

The sheer volume of alerts points out the need to stay current with upgrades, to
limit services, to have a coherent security policy, and to be aware of the latest
trends in malicious activity.

2. Files Analyzed:

Scan Files Alert Files OOS Files
scans.030613 alert.030613 oos_rpt_030613
scans.030614 alert.030614 oos_rpt_030614
scans.030615 alert.030615 oos_rpt_030615
scans.030616 alert.030616 oos_rpt_030616
scans.030617 alert.030617 oos_rpt_030617

3. Lists of Defects

Number of Alerts by date

91331 June 13, 2003
108305 June 14, 2003
59640 June 15, 2003
96016 June 16, 2003
118426 June 17, 2003

Alerts by message type

146758 CS WEBSERVER - external web traffic

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

68442 [UMBC NIDS IRC Alert] IRC user /kill detected
57130 SMB Name Wildcard
45351 spp_http_decode: IIS Unicode attack detected
25960 EXPLOIT x86 NOOP
22752 MY.NET.30.4 activity
18320 MY.NET.30.3 activity
15623 Queso fingerprint
10661 spp_http_decode: CGI Null Byte attack detected
7435 High port 65535 udp - possible Red Worm - traffic
6361 High port 65535 tcp - possible Red Worm - traffic
5648 TCP SRC and DST outside network
1635 IDS552/web-iis_IIS ISAPI Overflow ida nosize
1342 Null scan!
995 FTP DoS ftpd globbing
800 NMAP TCP ping!
663 External RPC call
645 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
534 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Reque...
410 connect to 515 from outside
392 SUNRPC highport access!
329 SMB C access
326 Possible trojan server activity
303 NIMDA - Attempt to execute cmd from campus host
255 DDOS mstream handler to client
254 scan (Externally-based)
214 Incomplete Packet Fragments Discarded
195 SNMP public access
73 Notify Brian B. 3.54 tcp
71 Notify Brian B. 3.56 tcp
71 EXPLOIT x86 setuid 0
69 EXPLOIT x86 setgid 0
68 [UMBC NIDS IRC Alert] Possible sdbot floodnet detected ...
68 TFTP - Internal UDP connection to external tftp server
68 FTP passwd attempt
61 ICMP SRC and DST outside network
36 EXPLOIT x86 stealth noop
30 RFB - Possible WinVNC - 010708-1
28 NIMDA - Attempt to execute root from campus host
28 TFTP - Internal TCP connection to external tftp server
23 NETBIOS NT NULL session
23 DDOS shaft client to handler
22 Attempted Sun RPC high port access
19 Probable NMAP fingerprint attempt
18 EXPLOIT NTPDX buffer overflow
12 [UMBC NIDS IRC Alert] K\:line'd user detected
11 TCP SMTP Source Port traffic

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

9 IRC evil - running XDCC
7 TFTP - External UDP connection to internal tftp server
5 Tiny Fragments - Possible Hostile Activity
4 External FTP to HelpDesk MY.NET.70.50
3 Traffic from port 53 to port 123
2 SYN-FIN scan!
2 External FTP to HelpDesk MY.NET.83.197
2 External FTP to HelpDesk MY.NET.53.29
2 External FTP to HelpDesk MY.NET.70.49
2 [UMBC NIDS IRC Alert] User joining XDCC channel detecte...
1 Fragmentation Overflow Attack
1 Bugbear@MM virus in SMTP
1 DDOS mstream client to handler

Number of Scans by Type

6971342 UDP scan (Externally-based)
2158978 SYN scan (Externally-based)
525 UNKNOWN scan (Externally-based)
416 FIN scan (Externally-based)
387 NULL scan (Externally-based)
350 INVALIDACK scan (Externally-based)
155 NOACK scan (Externally-based)
66 VECNA scan (Externally-based)
22 XMAS scan (Externally-based)
16 NMAPID scan (Externally-based)
7 FULLXMAS scan (Externally-based)
7 scan (Externally-based)
3 SPAU scan (Externally-based)
3 SYNFIN scan (Externally-based)
2 14 scan (Externally-based)
1 ******S* scan (Externally-based)
1 15 scan (Externally-based)
1 130.85.141.21:4039 scan (Externally-based)
1 13 scan (Externally-based)
1 -> scan (Externally-based)
1 130.85.70.207:12203 scan (Externally-based)
1 130.85.153.190:6257 scan (Externally-based)
1 218.98.64.33:57052 scan (Externally-based)
1 130.85.1.3:32814 scan (Externally-based)
1 130.85.18.36:1357 scan (Externally-based)

Top 10 Alerts –Description

Following is a brief description of the top ten alerts by frequency of occurrence.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

1. CS Webserver–This traffic is directed at port 80, the http port. Looking in the
out of spec reports for the five day period, it can be seen that certain IPs are
making multiple scans of port 80, perhaps for reconnaissance. These scans
tend to increment the source port by 1 each time, with each scan spaced about
ten seconds apart.

2. UMBC NIDS IRC Alert - IRC user /kill detected. IRC stands for internet relay
chat, invented in 1988 by Jarkko Oikarinen. It is used for connecting groups of
people together via the Internet for discussions. A /kill signal will remove a user
from an IRC session. These signals can be used legitimately to remove abusive
users from a chat room, or they can be used maliciously. Many of these packets
are coming from the 195.159.000.000 network, port 6667. This can be part of a
Trojan attack. The Trojan is spread via email, which leads to a distributed denial
of service attack against IRC servers. Many thousands of computers can be
involved in an attack, halting the IRC service. (Olavsrud)

3. SMB Name Wildcard–These probes are directed at the MY.NET subnet, the
destination port always being 137, the netbios-ns port. SMB is used to share
information over networks. Currently, port 137 is the most attacked port
according to incidents.org, so it is obviously a good target for hackers. When
coming from an external network, a port 137 probe is used to gain information
about workstation names, domains and logged-in users. (Finchaven.com)

4. spp_http_decode: IIS Unicode attack detected–This attack is directed at port
80 of a server running Microsoft Internet Information Server. There is a
divergence of opinion on the severity of this attack. Some analysts say that it is
the result of errant search engines while others say it can be used to gain access
to cmd.exe on a Windows server. There are large numbers of these packets
both coming into the MY.NET network and leaving the network. Unless MY.NET
was being used as a proxy by attackers, I believe the packets originating from
MY.NET are false positives. The incoming packets could be part of a Nimda
attack. (Mcabee)

5. EXPLOIT x86 NOOP–No-ops are often involved in a buffer overflow attack,
and this is no exception. This attack utilizes a buffer overflow to perform an
attack on Internet Information Server. A user can get a directory listing with this
exploit and later gain administrative control. There are patches available for this
problem. Most, but not all of these are packets are directed at port 119, the nntp,
or news transfer protocol port. Some of the destination addresses resolve to
news servers (using nslookup), while others are from .gov addresses, so it looks
like there are some false positives here. (Richard)

6. MY.NET.30.4 activity–This activity is directed at MY.NET.30.4 port 80. It
turns out to be harmless search and indexing activity from Inktomi and Google. If

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

the destination computer is not used as a web server, it might be advisable to
block traffic to port 80 entirely or rewrite the IDS rules to avoid false positives.

7. MY.NET.30.3 activity–This activity is directed at MY.NET.30.3, a variety of
ports. Typically, traffic is sent from one destination IP address/port to a specific
port at MY.NET.30.3, such as 524 and 8080. The source records are sent many
times a second, so it looks almost like some kind of denial of service attempt.
The source IP numbers do resolve to actual names using nslookup.

8. Queso fingerprint–Queso is a program like nmap which attempts to discover
a host’s operating system and version by sending a variety of datagrams to a
destination and analyzing the return packets. Queso uses a variety of
techniques to fingerprint operating systems, from sending FIN probes to setting
TCP options. In fact, some of the alerts can be found in the out of spec logs, and
they have a variety of TCP options set, five options in all of the cases I examined.
Curiously enough, the source and destination IPs and ports did not change for all
of the scans, nor did anything in the IP header except the ID number. It looked
the source computer was stuck in a loop, because a working fingerprint program
would be trying different things to map the operating system of the destination
computer. Or perhaps the hacker had misconfigured Queso. (Fyodor)

9. spp_http_decode: CGI Null Byte attack detected - The majority of these alerts
were outgoing traffic from MY.NET to popular .com sites and were probably false
positives. A ‘%00’ in an http request will trigger this warning. Sites using
urlencoded binary data for cookies can be the cause of this false positive. The
incoming packets triggering this alarm that I examined came from
www.shockwave.com, a legitimate site. Null bytes can be injected into
commands to pass malicious code. Null bytes can also fool a web site into
thinking a different file type had been requested. So it is possible for a null byte
alarm to be legitimate. (Zenomorph)

10. High port 65535 udp - possible Red Worm–traffic The Red Worm exploit is
another attack on the vulnerabilities of the Microsoft IIS. The worm selects
random IP addresses and sees if port 80 is open. If it is, it send a copy of the
buffer overflow attack to that machine. Computers that are low on the list of
random IP addresses are likely to be probed again and again, resulting in a
denial of service attack. Computers can be infected multiple times, with
hundreds of worm threads running at one time. (CIAC)

Other Statistics Generated from Alert and Scan Logs

Alerts by source IP

8979 68.49.35.0
7709 207.151.67.140

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

6397 205.160.101.121
4801 68.81.2.19
4464 193.225.219.29
3770 217.35.117.209
3686 213.156.45.224
3540 169.254.45.176
2518 61.22.152.64
2330 192.168.2.21
2007 216.231.171.27
1991 62.70.32.143
1964 216.39.48.127
1866 80.205.39.114
1504 64.124.5.10
1499 217.88.127.125
1431 66.168.226.143
1397 68.33.11.236
1392 67.74.230.212
1325 210.101.152.2
1304 80.15.10.217
1207 138.88.165.81
1029 216.87.56.44
1000 24.35.42.249
995 81.49.150.21
980 68.55.52.234
888 134.192.42.4
719 195.243.41.154
710 211.126.198.22
663 130.227.86.130
631 12.65.37.251
629 66.196.73.45
596 68.65.111.226
580 66.196.72.94
579 62.103.247.147
561 66.196.72.90
554 66.196.72.54
551 217.21.39.18
547 66.196.72.40
529 66.196.72.60
528 213.140.8.170
526 66.196.72.78
525 66.196.72.57
522 66.196.72.35
520 66.196.72.25
509 66.196.65.24
504 217.128.169.110
504 66.196.72.51

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

499 66.196.72.109
489 66.196.72.16
486 66.196.72.23
482 66.196.72.59
481 66.196.72.12
478 66.196.72.19
478 66.196.72.15
475 66.196.72.31
474 66.196.72.53
470 203.200.106.39
468 66.196.72.17
467 66.196.72.14
465 66.196.72.52
460 66.196.72.33

Alerts by relationship - external

8677 68.49.35.0->MY.NET.30.3
6395 205.160.101.121->MY.NET.83.100
4688 68.81.2.19->MY.NET.30.3
4464 193.225.219.29->MY.NET.100.165
2864 207.151.67.140->MY.NET.100.158
2817 207.151.67.140->MY.NET.130.157
2518 61.22.152.64->MY.NET.15.216
2007 216.231.171.27->MY.NET.70.207
1963 216.39.48.127->MY.NET.100.165
1431 66.168.226.143->MY.NET.30.4
1401 213.156.45.224->MY.NET.86.19
1398 217.35.117.209->MY.NET.110.224
1397 68.33.11.236->MY.NET.30.4
1393 217.35.117.209->MY.NET.86.19
1392 67.74.230.212->MY.NET.30.4
1207 138.88.165.81->MY.NET.30.3
1128 64.124.5.10->MY.NET.100.165
1123 217.88.127.125->MY.NET.130.122
995 81.49.150.21->MY.NET.114.116
896 24.35.42.249->MY.NET.30.3
888 134.192.42.4->MY.NET.30.4
884 68.55.52.234->MY.NET.30.3
709 211.126.198.22->MY.NET.153.145
626 66.196.73.45->MY.NET.100.165
606 80.205.39.114->MY.NET.110.224
600 213.156.45.224->MY.NET.110.224
596 68.65.111.226->MY.NET.30.4
591 80.205.39.114->MY.NET.86.19
551 217.21.39.18->MY.NET.100.165

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

528 213.140.8.170->MY.NET.100.165
470 203.200.106.39->MY.NET.100.165
455 80.15.10.217->MY.NET.86.19
454 66.196.72.60->MY.NET.30.4
451 66.196.72.23->MY.NET.100.165
450 66.196.72.17->MY.NET.100.165
450 66.196.72.54->MY.NET.100.165
447 66.196.72.14->MY.NET.100.165
447 66.196.72.52->MY.NET.100.165
447 66.196.72.18->MY.NET.100.165
444 66.196.72.15->MY.NET.100.165
442 80.15.10.217->MY.NET.110.224
442 66.196.72.16->MY.NET.100.165
440 66.196.72.12->MY.NET.100.165
439 66.196.72.28->MY.NET.100.165

Alerts by relationship / ports - internal

19379 MY.NET.83.100
4940 MY.NET.153.185
2852 MY.NET.97.71
2702 MY.NET.97.20
2519 MY.NET.15.216
1567 MY.NET.70.207
1435 MY.NET.153.190
1280 MY.NET.97.41
1277 MY.NET.97.98
1251 MY.NET.163.76
1153 MY.NET.168.98
1144 MY.NET.91.151
1144 MY.NET.97.194
1129 MY.NET.97.248
1020 MY.NET.75.107
915 MY.NET.97.219
858 MY.NET.97.204
771 MY.NET.83.171
730 MY.NET.84.216
665 MY.NET.97.40
661 MY.NET.168.229
650 MY.NET.150.121
649 MY.NET.97.84
645 MY.NET.97.80
632 MY.NET.153.201
628 MY.NET.81.58
589 MY.NET.17.54
566 MY.NET.153.116

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

554 MY.NET.97.37
541 MY.NET.97.212
530 MY.NET.53.41
512 MY.NET.97.172
511 MY.NET.153.198
495 MY.NET.98.14
465 MY.NET.97.52
444 MY.NET.153.115
439 MY.NET.97.198
419 MY.NET.153.187
408 MY.NET.97.63
390 MY.NET.88.150
369 MY.NET.97.96

Alerts by source ports - internal

2527 1074
1953 6257
1567 12203
1322 1249
475 3633
460 4029
386 4026
371 4069
332 4027
330 1690
269 80
268 4054
258 3331
256 4321
255 12754
239 3627
234 1240
233 4330
227 2060
224 2177
205 2059
196 2190
194 4059
182 4630
181 2436
179 2189
165 2435
162 2366
160 4111
160 4074

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

157 4110
155 1239
153 1031
153 1689
150 1144
144 2176
142 65535

Alerts by relationship - internal to external

12630 MY.NET.83.100->64.235.110.34
5374 MY.NET.83.100->208.194.163.37
2505 MY.NET.15.216->61.22.152.64
2476 MY.NET.97.20->203.161.233.132
1503 MY.NET.97.71->207.200.86.97
1479 MY.NET.70.207->216.231.171.27
1251 MY.NET.163.76->209.116.81.5
1210 MY.NET.153.185->218.153.6.33
1206 MY.NET.97.71->207.200.86.66
1144 MY.NET.91.151->212.161.35.251
1115 MY.NET.97.194->216.241.219.14
1102 MY.NET.97.248->203.161.233.132
915 MY.NET.97.219->211.58.254.253
895 MY.NET.83.100->155.207.19.204
858 MY.NET.153.185->218.153.6.197
672 MY.NET.153.185->211.233.29.52
667 MY.NET.168.98->211.233.29.5
650 MY.NET.150.121->199.104.95.15
636 MY.NET.168.229->192.151.53.10
632 MY.NET.153.201->216.26.171.19
628 MY.NET.97.40->202.103.69.100
604 MY.NET.153.185->218.153.6.244
511 MY.NET.153.198->216.241.219.22
479 MY.NET.83.100->205.160.101.121
361 MY.NET.153.187->216.26.171.19
327 MY.NET.97.41->61.78.53.27
295 MY.NET.97.172->211.239.164.250
293 MY.NET.153.190->220.55.212.137
289 MY.NET.97.52->211.117.63.214
287 MY.NET.151.99->192.151.53.10
282 MY.NET.98.14->211.233.29.54
270 MY.NET.83.171->220.90.215.249
262 MY.NET.97.212->211.234.108.26
256 MY.NET.153.190->219.160.152.151
255 MY.NET.84.235->80.100.101.176
252 MY.NET.84.216->211.239.164.248

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

241 MY.NET.97.41->211.176.60.147
239 MY.NET.97.217->211.233.53.235
232 MY.NET.153.185->211.233.79.236
223 MY.NET.98.36->211.239.164.250
218 MY.NET.88.150->211.233.29.54
218 MY.NET.97.198->64.12.54.24
216 MY.NET.97.204->211.39.133.122
210 MY.NET.7.26->192.151.53.10

Alerts by destination port - internal

192275 80
57113 137
14829 524
13923 21
6498 113
6451 25
6038 51443
3517 3019
2519 1074
2024 12203
1741 6257
692 8009
663 111
467 2200
414 32771
410 515
396 2736
352 139
261 53
226 4662
220 8088
195 161
181 119
149 143
127 443
122 1624
98 58115
97 65535
90 6346
65 1034
62 8080
59 3347
55 2335
52 81
48 8888

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

47 8000

Alerts by destination port - external

12630 64.235.110.34
5374 208.194.163.37
3578 203.161.233.132
2727 67.80.77.94
2505 61.22.152.64
1592 192.151.53.10
1566 207.200.86.97
1479 216.231.171.27
1394 202.103.69.100
1345 218.153.6.33
1266 207.200.86.66
1251 209.116.81.5
1208 216.26.171.19
1144 212.161.35.251
1115 216.241.219.14
996 211.239.164.250
916 211.58.254.253
895 155.207.19.204
858 218.153.6.197
789 211.233.29.5
709 199.244.218.42
696 211.233.29.52
650 199.104.95.15
649 64.12.54.25
643 220.90.215.249
623 64.12.54.24
621 64.12.54.217
479 205.160.101.121
444 211.39.133.122

Scan by source IP - external

2526454 130.85.1.3
420331 130.85.1.4
388692 130.85.83.170
381910 130.85.153.190
250322 130.85.97.16
245000 130.85.100.230
191746 130.85.88.198
191248 130.85.97.37
160003 130.85.97.129
156294 130.85.97.71

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

150580 130.85.97.81
147491 130.85.18.36
141519 130.85.98.50
131747 130.85.97.231
128445 218.98.64.33
107725 130.85.97.90
103197 130.85.141.21
103146 130.85.70.207
102503 130.85.132.24
95956 130.85.98.69
94608 130.85.97.96
93174 130.85.153.223
92625 130.85.84.178
85230 130.85.97.80
78909 130.85.97.88
76351 130.85.91.252
69421 130.85.98.49
62180 130.85.97.27

Scan by destination IP - external

82174 192.26.92.30
70416 205.231.29.244
57962 205.231.29.243
53864 192.148.252.171
52040 130.94.6.10
35719 192.5.6.30
34739 216.109.116.17
30076 192.52.178.30
29043 192.12.94.30
28182 213.130.63.233
27893 66.33.98.17
26023 209.208.92.254
25269 207.191.192.130
23099 147.91.242.1
22682 208.185.43.73
20756 192.84.159.20
19393 63.87.242.172
19211 131.118.254.33
19132 209.73.205.123
16642 131.118.254.34
16608 205.236.189.10
16199 131.118.254.35
16070 198.102.86.4
14995 209.227.18.5
14209 208.48.34.135

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

13524 165.230.209.227
13460 128.8.10.90
13364 209.208.0.104
12970 202.96.64.68
12723 128.121.26.10
12694 206.183.198.240
12511 209.208.0.97
12354 206.183.198.241
12058 209.208.0.96

Scan by destination port - external

2958412 53
1715341 137
738163 80
548234 6257
263738 25
184535 17300
184397 22321
174658 445
168629 7674
136862 139
91822 4000
90229 41170
57603 21
49483 8000
49109 8888
46634 8080
46058 6346
42224 3128

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

4. Top Talkers

Quantity Source IP Destination IP Type
8979 68.49.35.0 MY.NET.30.3:524 Scan?
7709 207.151.67.140 MY.NET.000.000:80 Exploit x86 NOOP
6397 205.160.101.121 MY.NET.83.100:113 Queso fingerprint
4464 193.225.219.29 MY.NET.100.165:21 External ftp traffic
6395 205.160.101.121 MY.NET.83.100 SYN scan
19379 MY.NET.83.100 208.194.163.37:6667 IRC Alert
2526454 130.85.1.3:32814 Various UDP scan
6971342 130.85.97.000 Various SYN scan
3770 217.35.117.209 Not Listed Portscan Detected
3540 169.254.45.176 MY.NET.000.000:137 SMB Name

Wildcard

Alerts by source IP

8979 68.49.35.0
7709 207.151.67.140
6397 205.160.101.121
4464 193.225.219.29
3770 217.35.117.209
3540 169.254.45.176

Alerts by relationship - external

6395 205.160.101.121->MY.NET.83.100 syn 12****s* reserved bits

Alerts by relationship / ports - internal

19379 MY.NET.83.100

Alerts by relationship - internal to external

2476 MY.NET.97.20->203.161.233.132

Number of Scans by Type

6971342 UDP scan (Externally-based)
2158978 SYN scan (Externally-based)

Scan by source IP –external

2526454 130.85.1.3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

The top talkers list was selected from the lists of alerts and scans above. I tried
to choose a few from each list, especially where there are high volumes of alerts
or scans. With greater experience in intrusion detection, I’m sure my selection
criteria would be different. In actual practice, the very latest exploits that a given
network is not prepared for represent the greatest threat. Since I am using logs
from sans.org, I do not know what patches have been applied to the system. I
thought the external traffic causing alerts was the most important and potentially
dangerous traffic, so I gave six of the ten slots to that kind of traffic. The other
four slots were based on the relationship lists shown above.

Top Talker 1- Port 524 scan: I couldn’t find much information on port 524 scans.
Port 524 is used by Netware 5.x file servers and was once used to exploit Linux
systems. The source address resolves to a md.comcast.net address. This looks
like a denial of service attack in that many packets are sent per second to the
same address.

Top Talker 2 –Exploit x86 NOOP: This alert is explained in the top ten alerts
previously (number 5/10) as a buffer overflow attack against an Internet
Information Server or possibly as a false positive.

Top Talker 3 –Queso: This is also explained in the top 10 alert list (8/10) as a
fingerprinting technique. However, like Top Talker 1, you see the same source
and destination address and port over and over, as if a poor hacking attempt was
made or a router got stuck in a loop.

Top Talker 4 –External FTP traffic: This traffic is coming from an IP address in
Hungary (if the address has not been spoofed) every few seconds. Looking in
the alert file, there are often port 80 scans from another IP address (202.3.71.26)
which directly precede these port 21 scans, suggesting spoofed addresses. Port
21 probes are commonly used to gain FTP services information as a prelude to
an attack, such as a Ramen worm.

Top Talker 5 –SYN Scan: Port 113 is the Ident port and is often left open by
firewalls. This port is used when a user connects to a mail server or IRC server
to find out who is using the service. In this case, the attacker is manipulating
TCP options, Sequence numbers and TCP IDs in a reconnaissance attempt.

(From the out of spec files)
=+=
06/16-18:07:11.584641 205.160.101.121:56979 -> MY.NET.83.100:113
TCP TTL:52 TOS:0x0 ID:61251 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x4B2106C0 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 298510723 0 NOP WS: 0
=+=

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

06/16-18:07:11.703390 205.160.101.121:56980 -> MY.NET.83.100:113
TCP TTL:52 TOS:0x0 ID:49702 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x4ABC2BA9 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 298510735 0 NOP WS: 0
=+

Top Talker 6 –IRC Alert: The host on the home network is attempting to join an
IRC session. Using nslookup, the name returned is Irctoo.net, which is a chat
network. There is nothing stealthy about this, as the destination IP address and
port are the same each time. The scans are typically minutes apart. The home
address of MY.NET.83.100 stays the same, but the ports are constantly
changing. It looks like an application on the source computer may be trying to
establish an IRC session.

Top Talker 7 –UDP scan to port 53: These records come from the scan logs.
Most of the scans are from 130.85.1.3, port 32814. The destination IPs seem to
be random, so it does not look like a flood. The rate is as high as 50 per second.
It looks like this host is being used by someone else, given the random nature of
the destination addresses. DNS queries can provide “information gain” in that
they can return ten times as many bytes as are received. The logs do not show
information coming back from the targeted servers, but it is possible that a denial
of service was being launched against the source host by making it receive back
large amounts of DNS information. The source, if not spoofed, is from the
network at the University of Maryland, Baltimore County.

Top Talker 8 –UDP scan to port 137: This is very similar to Top Talker 7.
Dozens of UDP packets per second are sent from the 138.85 network, this time
from ports in the 1024–1028 range, to random IP addresses, port 137. In the
late 1990s, floods to port 137 could bring down WINS service within seconds.
This traffic could be using a spoofed source address in order to flood the (source)
network with UDP data. Sending NetBIOS name requests to insecure networks
makes all Windows computers with NetBIOS enabled and Unix computers
running Samba reply to it. (Vigo)

Top Talker 9 –Portscan detected from 217.35.117.209. These alerts are
triggered by too many connections occurring in too short a time frame. Little else
can be determined because the alert log in this case provides only a source
address.

Top Talker 10 –SMB name wildcard: See Top Ten alerts, number three. The
source address cannot be found with nslookup, nor does a Google search yield
any information, so the address was most likely spoofed. This is a slow scan–
one every minute or so. The destination is to selected subnets in MY.NET,
always to port 137.

5. Selected Addresses–Registration Information

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

I selected addresses based on the potential danger of the activity and frequency.
Any address can be spoofed. I looked at incoming attacks only. I assumed
random addresses attacking one IP address or a subnet were either spoofed or a
distributed attack. I looked for one IP address consistently targeting a small
range of addresses. I also gave greater weight to foreign source IPs and
sources that showed other attack attempts according to dshield.org.

Source 1: Queso fingerprinting - 212.106.150.180. These attacks originated
from the Selesian Institute of Technology in Gliwice, Poland. As seen below, this
network has been responsible for other attacks, according to Dsheild.org.
Universities are prime locations for hackers because of the concentration of
talent and availability of computer facilities. Never trust a student. (Dshield.org)

IP Address:212.106.150.180
HostName:212.106.150.180
DShield Profile:Country:PL

Contact E-mail:gucio@polsl.gliwice.pl
Total Records against IP: 831
Number of targets: 4
Date Range:2003-06-12 to 2003-06-13

Update Summary

Top 10 Ports hit by this source:

Port Attacks Start End
7541 731 2003-06-11 2003-06-13
4662 8 2003-06-09 2003-07-03
6881 8 2003-06-11 2003-06-11
53796 5 2003-06-11 2003-06-11
52153 3 2003-06-11 2003-06-11
5632 2 2003-06-11 2003-06-11
1281 2 2003-06-11 2003-06-11
63296 2 2003-06-11 2003-06-11
54609 2 2003-06-11 2003-06-11
2178 2 2003-06-11 2003-06-11

Last Fightback Sent: not sent
Whois:% This is the RIPE Whois server.

% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

inetnum: 212.106.128.0 - 212.106.191.255
netname: PL-CKPOLSL-981207
descr: Silesian University of Technology
descr: PROVIDER LOCAL REGISTRY
country: PL
admin-c: SASK1-RIPE
tech-c: SASK1-RIPE
status: ALLOCATED PA
notify: hostmaster@silweb.pl
mnt-by: RIPE-NCC-HM-MNT
mnt-lower: PL-CKPOLSL-MNT
mnt-routes: PL-CKPOLSL-MNT
changed: hostmaster@ripe.net 19981207
changed: hostmaster@ripe.net 19981209
changed: hostmaster@ripe.net 20010307
changed: lir-help@ripe.net 20011217
changed: hostmaster@ripe.net 20020222
changed: hostmaster@ripe.net 20020227
source: RIPE

route: 212.106.128.0/19
descr: PL-CKPOLSL-NET-19981207-COM
origin: AS15744
mnt-by: AS8508-MNT
changed: marpros@polsl.gliwice.pl 20001212
source: RIPE

role: PL-CKPOLSL Hostmaster Team
address: Silesian University of Technology
address: Computer Center
address: ul. Akademicka 16
address: 44-100 Gliwice
address: Poland
phone: +48 32 2307686
fax-no: +48 32 2372175
e-mail: hostmaster@silweb.pl
mnt-by: PL-CKPOLSL-MNT
changed: hostmaster@silweb.pl 20020124
source: RIPE

Source 2: Possible Red Worm–217.209.142.239. This traffic originated in
Stockholm, Sweden. Dshield.org did not show any other attacks for this source.
The fact that these datagrams were all aimed at port 65535 makes this very
suspicious. I did find this source address listed on a “Dogs of War” gaming page,
so it is possible this could be the result of a multiplayer game, although why it

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

would use such a high port is unknown. On the other hand, there are probably a
lot of hackers who are avid game players. (Dogs of War Sweden)

IP Address: 217.209.142.239
HostName: h239n2fls31o1008.telia.com
DShield Profile: Country: SE
Contact E-mail: mntripe@telia.net
Total Records against IP: not processed
Number of targets: select update below
Date Range: to
Summary was recently updated.

Top 10 Ports hit by this source:
Port Attacks Start End

Last Fightback Sent: not sent
Whois: % This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 217.209.0.0 - 217.209.255.255
netname: TELIANET
descr: Telia Network Services
descr: ISP
country: SE
admin-c: TR889-RIPE
tech-c: TR889-RIPE
status: ASSIGNED PA
notify: backbone@telia.net
mnt-by: TELIANET-LIR
changed: fia@telia.net 20011204
changed: aca@telia.net 20020109
source: RIPE

route: 217.208.0.0/13
descr: TELIANET-BLK
origin: AS3301
mnt-by: TELIANET-RR
changed: rr@telia.net 20010508
source: RIPE

role: TeliaNet Registry

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

address: Telia Network Services
address: Carrier & Networks
address: Box 10707
address: SE-121 29 Stockholm
address: Sweden
nic-hdl: TR889-RIPE
notify: mntripe@telia.net
mnt-by: TELIANET-LIR
changed: fia@telia.net 20020319
changed: eva@telia.net 20020821

Source 3: Null scan–63.251.52.75. I include this as an example of a false
positive. It comes from Shockwave.com, a legitimate commercial site. A user
may have been downloading some graphics or games from this site to trigger the
IDS. Dshield.org does not show any attacks coming from this site.

IP Address: 63.251.52.75
HostName: www.shockwave.com
DShield Profile: Country: US
Contact E-mail: abuse@internap.com
Total Records against IP: 20
Number of targets: 3
Date Range: 2003-05-20 to 2003-05-20
Summary was recently updated.

Top 10 Ports hit by this source:
Port Attacks Start End

Last Fightback Sent: sent to noc@INTERNAP.COM on 2003-02-17 18:45:49

Whois:
CustName: Shockwave.com
Address: 650 Townsend Street, #450
City: San Francisco
StateProv: CA
PostalCode: 94103
Country: US
RegDate: 2000-08-24
Updated: 2000-08-24

NetRange: 63.251.52.0 - 63.251.52.255
CIDR: 63.251.52.0/24
NetName: PNAP-SFO-SWAVE-RM-01
NetHandle: NET-63-251-52-0-1
Parent: NET-63-251-0-0-1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

NetType: Reassigned
Comment:
RegDate: 2000-08-24
Updated: 2000-08-24

ARIN WHOIS database, last updated 2003-04-15 20:10
Enter ? for additional hints on searching ARIN's WHOIS database.

OrgName: Internap Network Services
OrgID: PNAP
Address: 250 Williams Street
Address: Suite E100
City: Atlanta
StateProv: GA
PostalCode: 30303
Country: US

NetRange: 63.251.0.0 - 63.251.255.255
CIDR: 63.251.0.0/16
NetName: NETBLK-PNAP-11-99
NetHandle: NET-63-251-0-0-1
Parent: NET-63-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.PNAP.NET
NameServer: NS2.PNAP.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 1999-12-02
Updated: 2002-06-17

TechHandle: INO3-ARIN
TechName: Network Operations Center, InterNap Network
TechPhone: +1-206-256-9500
TechEmail: noc@internap.com

OrgTechHandle: INO3-ARIN
OrgTechName: Network Operations Center, InterNap Network
OrgTechPhone: +1-206-256-9500
OrgTechEmail: noc@internap.com

OrgAbuseHandle: IAC3-ARIN
OrgAbuseName: Internap Abuse Contact
OrgAbusePhone: +1-206-256-9500
OrgAbuseEmail: abuse@internap.com

ARIN WHOIS database, last updated 2003-04-15 20:10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

Enter ? for additional hints on searching ARIN's WHOIS database.

OrgName: Internap Network Services
OrgID: PNAP
Address: 250 Williams Street
Address: Suite E100
City: Atlanta
StateProv: GA
PostalCode: 30303
Country: US
Comment:
RegDate: 1996-07-18
Updated: 2003-02-11

AdminHandle: INO3-ARIN
AdminName: Network Operations Center, InterNap Network
AdminPhone: +1-206-256-9500
AdminEmail: noc@internap.com

TechHandle: INO3-ARIN
TechName: Network Operations Center, InterNap Network
TechPhone: +1-206-256-9500
TechEmail: noc@internap.com

AbuseHandle: IAC3-ARIN
AbuseName: Internap Abuse Contact
AbusePhone: +1-206-256-9500
AbuseEmail: abuse@internap.com

Source 4: FTP DoS ftpd globbing from 81.49.150.21. Ftpd is an ftp daemon
used in Linux and Unix systems. An attacker can execute code with root
privileges if the attack is done correctly. This appears to come from an ISP in
France called Wannado.

IP Address: 81.49.150.21
HostName: APoitiers-101-1-5-21.w81-49.abo.wanadoo.fr
DShield Profile: Country:
Contact E-mail:
Total Records against IP: not processed
Number of targets: select update below
Date Range: to
Summary was recently updated.

Top 10 Ports hit by this source:
Port Attacks Start End

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

Last Fightback Sent: not sent
Whois: % This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 81.49.150.0 - 81.49.150.255
netname: IP2000-ADSL-BAS
descr: BSPOI101 Poitiers Bloc2
country: FR
admin-c: WITR1-RIPE
tech-c: WITR1-RIPE
status: ASSIGNED PA
remarks: for hacking, spamming or security problems send mail to
remarks: postmaster@wanadoo.fr AND abuse@wanadoo.fr
mnt-by: FT-BRX
changed: gestionip.ft@francetelecom.com 20021014
changed: gestionip.ft@francetelecom.com 20030318
source: RIPE

route: 81.49.0.0/16
descr: France Telecom
descr: Wanadoo Interactive
remarks: ---
remarks: For Hacking, Spamming or Security problems
remarks: send mail to abuse@wanadoo.fr
remarks: ---
origin: AS3215
mnt-by: RAIN-TRANSPAC
changed: karim@rain.fr 20020916
source: RIPE

role: Wanadoo Interactive Technical Role
address: WANADOO INTERACTIVE
address: 48 rue Camille Desmoulins
address: 92791 ISSY LES MOULINEAUX CEDEX 9
address: FR
phone: +33 1 58 88 50 00
e-mail: abuse@wanadoo.fr
e-mail: technical.contact@wanadoo.com
admin-c: WITR1-RIPE
tech-c: WITR1-RIPE
nic-hdl: WITR1-RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

mnt-by: FT-BRX
changed: gestionip.ft@francetelecom.com 20010504
changed: gestionip.ft@francetelecom.com 20010912
changed: gestionip.ft@francetelecom.com 20011204
changed: gestionip.ft@francetelecom.com 20030428
source: RIPE

Source 5: Exploit NTPDX buffer overflow–63.250.195.10. NTP is a time
synchronization service and is vulnerable to a buffer overflow attack. If
successful, the attacker can gain root privileges and execute commands. Below,
the query to Dshield.org shows that this address has been used in other attacks.

IP Address: 63.250.195.10
HostName: l8.cache.vip.dal.yahoo.com
DShield Profile: Country: US
Contact E-mail: netops@broadcast.com
Total Records against IP: 2445
Number of targets: 195
Date Range: 2003-05-20 to 2003-06-28
Update Summary

Top 10 Ports hit by this source:

Port Attacks Start End
1235 52 2003-06-19 2003-07-02
0 24 2003-06-06 2003-06-13
4014 23 2003-06-19 2003-06-19
1776 18 2003-06-20 2003-06-20
3720 15 2003-06-11 2003-06-11
1350 15 2003-06-10 2003-06-11
2382 14 2003-06-20 2003-06-23
1267 14 2003-06-12 2003-06-12
4207 13 2003-06-27 2003-07-02
3533 13 2003-06-11 2003-06-11

Last Fightback Sent: sent to netops@broadcast.com on 2003-06-27 02:06:28

Whois:
OrgName: Yahoo! Broadcast Services, Inc.
OrgID: YAHO
Address: 701 First Avenue
City: Sunnyvale
StateProv: CA
PostalCode: 94089
Country: US

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

NetRange: 63.250.192.0 - 63.250.223.255
CIDR: 63.250.192.0/19
NetName: NETBLK2-YAHOOBS
NetHandle: NET-63-250-192-0-1
Parent: NET-63-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.YAHOO.COM
NameServer: NS2.YAHOO.COM
NameServer: NS3.YAHOO.COM
NameServer: NS4.YAHOO.COM
NameServer: NS5.YAHOO.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 1999-11-24
Updated: 2002-03-27

TechHandle: NA258-ARIN
TechName: Netblock Admin, Netblock
TechPhone: +1-408-349-7183
TechEmail: netblockadmin@yahoo-inc.com

ARIN WHOIS database, last updated 2003-04-20 20:10
Enter ? for additional hints on searching ARIN's WHOIS database.

OrgName: American Registry for Internet Numbers
OrgID: ARIN
Address: 3635 Concorde Parkway, Suite 200
City: Chantilly
StateProv: VA
PostalCode: 20151
Country: US

Comment:
RegDate: 1997-04-25
Updated: 2002-08-23

OrgNOCHandle: ARINN-ARIN
OrgNOCName: ARIN NOC
OrgNOCPhone: +1-703-227-9840
OrgNOCEmail: noc@arin.net

OrgTechHandle: IP-FIX-ARIN
OrgTechName: ARIN IP Team
OrgTechPhone: +1-703-227-0660
OrgTechEmail: hostmaster@arin.net

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

7. Link Graph and Analysis

205.160.101.121

68.81.2.19

193.225.219.29

207.151.67.140

61.22.152.64

216.231.171.27

216.39.48.127

66.168.226.143

213.156.45.224

217.35.117.209

68.49.35.0

68.33.11.236

217.35.117.209

67.74.230.212

MY.NET.30.3

MY.NET.83.100

MY.NET.70.207

MY.NET.100.158

MY.NET.100.157

MY.NET.15.216

MY.NET.100.165

MY.NET.30.4

MY.NET.86.19

66.196.72.0

MY.NET.110.224

MY.NET.130.122

MY.NET.114.116

MY.NET.153.145

MY.NET.100.165

other

other

other

other

other

other

other

other

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

As the link graph demonstrates, there are concentrations of attackers and
victims. Heavy traffic should be investigated because it implies successful
hacking attempts, items of interest at a particular address or merely a high
volume of unacceptable activity. It may be feasible to block the addresses of the
high volume attackers, although the addresses may be spoofed.

9. Defensive Recommendations

1. The snort rules could be tightened up to avoid false positives.
2. Subnets sending large amounts of malicious traffic could be blocked, as long

care is taken not to eliminate legitimate traffic.
3. Shut down unessential services and ports, such as FTP, telnet, etc.
4. Use ingress and egress filtering to stop file sharing (Kazaa) and music

downloads.
5. Use stateful filtering to help catch insertion attempts and other exploits that

require the NIDS to make conclusions about a series of packets.
6. Remove any compromised machines on the network.
7. Make sure security policy is up to date, is known and understood, and have

designated people responsible for it.
8. Make sure patches are up to date. The Snort filter caught a lot of Internet

Information Server exploits that would harm an unpatched server.
9. Run vulnerability scans on a regular basis. Nessus Security Scanner,

NetRecon and ISS Internet Scanner are examples of scanner products.
10. Either allow IRC and file sharing by students, block it with a firewall or IDS, or

move it to other servers.
11. There was a lot of outbound scanning activity. Make students aware of policy

and discipline inside hackers.
12. Monitor the SANS top 20 list and keep abreast of the latest trends.
13. Make sure servers do not have example and test programs loaded that are

vulnerable to hackers.
14. Design automated scripts that perform the types of analysis done in this

assignment. If scans, alerts and out-of-spec files were contained in one
database, the tables could be joined in meaningful ways. You could have
other tables with useful information, such as known bad addresses, the most
dangerous traffic, etc. There are analysis tools available, but it is nice to be
able to run any type of custom query, as hackers are ingenious and always
working to defeat the latest technology.

10. Description of Analysis Process

The five days’ worth of files were downloaded to a Linux machine. The ‘cat’
command was used to join all of the alert, scan and out-of-spec files into three
large files. After many attempts to use the ‘awk’ and ‘sed’ commands, I
concluded my Linux expertise was wanting. Snortsnarf brought my machine to a
halt (even after adding more memory) so I could not use it. I located some
excellent Perl scripts from a previous GIAC student paper written by Tod

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54

Beardsley. (Beardsley) A script called csv.pl converted the Snort data in to
comma delimited files and a script called summarize.pl grouped the data into
summary files. These summary files were then used for my analysis.

http://www.giac.org/practical/Tod_Beardsley_GCIA.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
55

References

Spitzner, Lance. “Building a Honeypot.” URL:
http://rootprompt.org/article.php3?article=210 (10 May 2003).

Johnson, Keith. “Hackers Caught in Security ‘Honeypot’” Wall Street Journal
Online. 4 Oct 2000. URL:
http://zdnet.com.com/2100-11-526520.html?legacy=zdnn (12 May 2003).

Tracking-hackers.com. “Honeypots Solutions” URL:
http://www.tracking-hackers.com/solutions/ (1 Jul 2003.)

Olsen, Jen. “Hackers caught in security honeypot.” 19 Dec 2000.
http://www.linuxsecurity.com/articles/hackscracks_article-2151.html (7 May
2003).

Landergren, Pia. “Hacker Vigilantes Strike Back”IDG News Service 18 Jun 2001.
URL: www.security.itworld.com/4362/IDG010618hacks/pfindex.html (20 May
2003).

Windowsecurity.com. “Intrusion Detection Systems FAQ.”URL:
www.windowsecurity.com/faqs/Intrusion_Detection/ (12 May 2003).

Miller, Toby. “Intelligence Gathering: Watching a Honeypot at Work.” URL:
http://www.securityfocus.com/infocus/1656 (1 Jun 2003).

Socks.permeo.com. “Socks Overview.”
http://www.socks.permeo.com/AboutSOCKS/SOCKSOverview.asp (8 Jun 2003

Goto, Shun-ichi. “Make Socket Connection Using Socks4/5 and HTTP Tunnel.”
URL: http://www.imasy.or.jp/~gotoh/ssh/connect.c (24 Apr 2003).

Roninsoftwaregroup.com. “Alert Logs.” URL:
http://roninsoftwaregroup.com.hosting.domaindirect.com/mysql/alert.ids.txt (12
Jun 2003).

eEye Digital Security. “UPNP –Multiple Remote Windows XP/ME/98
Vulnerabilities.” URL:
http://www.eeye.com/html/Research/Advisories/AD20011220.html (19 Jun
2003).

Olavsrud, Thor. “Could Attack on DALnet Kill IRC?”Internetnews. 27 Jan 2003.
URL: http://www.isp-planet.com/news/2003/irc_030127.html (25 Jun 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
56

Finchhaven.com. “Two Examples of udp:137 netBIOS name table probes.” URL:
http://www.finchhaven.com/pages/incidents/030102_udp_137.html (2 Jul 2003).

Mcabee.org. “RE: [Snort-users] spp_http_decode: IIS Unicode attack detected.”
URL: http://www.mcabee.org/lists/snort-users/Aug-01/msg01261.html (16 May
2003).

Richard, Matthew. ”SANS Intrusion Detection Practical v2.7.” 27 Feb 2001.URL:
http://www.giac.org/practical/matthew_richard_gcia.doc (3 Jun 2003).

Fyodor. “Remote OS detection via TCP/IP Stack Fingerprinting.” Phrack
Magazine. 18 Oct 1998. URL: http://kaizo.org/mirrors/phrack/phrack54/p54-09
(20 Jun 2003).

Zenomorph. “Fingerprinting Port 80 attacks.” URL:
http://www.cgisecurity.com/papers/fingerprint-port80.txt (19 Jun 2003).

CIAC. “L-117 The Code Red Worm.” 19 Jul 2001. URL:
http://www.ciac.org/ciac/bulletins/l-117.shtml (25 Jun 2003).

Vigo, Francesco. “NetBIOS could be used as network flood amplifier.” URL:
http://www.securityfocus.com/archive/1/317365/2003-03-31/2003-04-06/0 (27
Jun 2003.)

Dshield.org. “IP Info.” URL:
http://www.dshield.org/ipinfo.php?ip=212.106.150.180 (25 Jun 2003).

Dogs of War Sweden. “Player Profile for TDC.” URL:
www.dow-swe.com/dow/stats/full/player_Mjk4NDUyMg.php (18 May 2003).

Beardsley, Tod.“Intrusion Detection and Analysis: Theory, Techniques, and
Tools.”11 Mar 2002. URL:
http://www.giac.org/practical/Tod_Beardsley_GCIA.pdf (2 Jul 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
57

