
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

1/82

Intrusion Detection In Depth

GCIA Practical Assignment

Version 3.3

James Maher

SANS - Darling Harbour

February 3 - 8, 2003

Submitted: 16/07/2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

2/82

Table of Contents
Assignment 1 - State of Intrusion Detection .. 3
'A Brief History of TimeX ,... 3

Abstract .. 3
Perimeter mapping.. 3
1 Firewall spotting.. 4

Acquiring and compiling hping2 .. 5
2 Fire-walking .. 8

Acquiring and compiling Firewalk ... 8
3 Identifying Trust Relationships .. 13

References ... 17
Assignment 2 - Net Detects... 17

Analysis one. .. 18
1. Source of Trace. ... 18
Network Layout ... 18
2. Detect was generated by:.. 21
3. Probability the source address was spoofed: ... 21
4. Description of attack: ... 21
5. Attack mechanism:... 23
6. Correlations: .. 24
7. Evidence of active targeting: .. 25
8. Severity:... 26
9. Defensive recommendation: ... 27
10. Multi Choice question .. 27

Analysis two... 28
1. Source of Trace. ... 28
2. Detect was generated by:.. 29
3. Probability the source address was spoofed: ... 29
4. Description of attack: ... 31
5. Attack mechanism:... 31
6. Correlations: .. 32
7. Evidence of active targeting: .. 33
8. Severity:... 33
9. Defensive recommendation: ... 34
10. Multiple choice test question: ... 34

Analysis three. .. 35
1. Source of Trace. ... 35
2. Detect was generated by:.. 36
3. Probability the source address was spoofed: ... 36
4. Description of attack .. 36
5. Attack mechanism:... 37
6. Correlations: .. 38
7. Evidence of active targeting: .. 38
8. Severity:... 39
9. Defensive recommendation: ... 39
10 Multi Choice Question .. 40

Assignment 3 - Analyse this .. 40

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 Jame s Maher

3/82

Assumptions... 40
Executive Summary.. 41

Suspicious Internal Hosts ... 42
Log Analysis .. 42
Detects List .. 43

Networks of interest ... 46
Most Frequent Alerts ... 46
Ingress Scans: .. 63

Top Talkers .. 64
Five External Candidates.. 67

Analysis process ... 71
Referencesi... 73
Appendix A ... 75
Appendix B.. 76
Appendix C.. 76

Assignment 1 - State of Intrusion Detection

'A Brief History of TimeX ,
..... and other mapping techniques'

Abstract
In this paper I will look at the use of active reconnaissance to probe and map an
organisation's network perimeter. There will be a brief introduction to outline the
fundamental reasons for network reconnaissance followed by an analysis of
three increasingly sophisticated probing techniques. Each of which is intended
to demonstrate the practical application of network reconnaissance to discover
information pertaining to perimeter layout, network security policy, and any
possible trust relationships, all key pieces of information for a targeted attack.
Along with the detailed examination of the theory behind each exploit I will
demonstrate the probe in action. Using network traces and correlated log entries
I will then investigate means of initially identifying such probes and hopefully
some methods for foiling such attempts. Finally for each example I will identify
some areas in which early identification of such probes could be used to the
advantage of the analyst with the propagation of false information.

Perimeter mapping
As you sit here reading this the networks and hosts you are entrusted to protect
are under a constant barrage of attack from a variety of sources. The attacks
can be broken down roughly in to two groups, targeted and non-targeted.
In the latter a 'script kiddie' may be randomly attacking huge swathes of address
space, using the latest tool downloaded from packetstorm. These tools require

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

4/82

little to no knowledge of the exploit nor the hosts that are its intended victims.
Generally these forms of attack tools simply use brute force to attack as many
hosts as possible, based on the statistical probability of success given enough
attempts. The intended goal is to compromise as many hosts as possible, and
the attacker has no interest in whom these hosts may belong too prior to the
attack.
A targeted attack however requires the attacker to have some knowledge of the
system that is being attacked. Either who the victim is, what the system is, or
both. A targeted attack is usually therefore preceded by some form of
information gathering on the part of the would be villain. An attacker may be
looking for a particular type of system to attack, to exploit a known vulnerability
such as a recently published Sendmail vulnerability1. For this they will try and
probe for SMTP servers, to discover what SMTP agent is running and what
version it is.
In another scenario the attacker may be targeting a particular organisation,
YOUR organisation. They will not be targeting a specific attack so their
reconnaissance will be to find out as much as possible about your network and
how you defend it. How is your network configured? What is your security
policy? Are there any trust relationships that can be exploited? Once they have
this information they can formulate some means of breaching your defenses.
It is the security analyst’s job in all scenarios to stop such attacks. With targeted
attacks however we cannot only protect against the attack itself but also the
leakage of security information that a would be hacker will find invaluable. In
addition to this the network analyst must be able to spot possible signs of
reconnaissance and use this information to their advantage.

1 Firewall spotting
In a simpler and friendlier Internet, a long long time ago security was very much
an afterthought. A large number of hosts on the Internet were not protected by
even a simple filtering router, let alone a stateful inspection engine or an
application proxy.
So a fundamental question a hacker of such times may want answered was:

''Is the target I am attacking protected by a firewall?''
One method of finding out was by taking advantage of the implementation of
many older packet-filtering firewalls2. Using shortcuts in the implementation of
the TCP/IP stacks of such devices, some packet filter engines would allow the
attacker to identify whether or not a firewall was blocking traffic rather than a
service simply not being present on the targeted host.
This form of reconnaissance was based on tricking the firewall into responding
to a packet that a normal IP stack would not. According to the RFC for TCP3 a
TCP packet should contain a valid checksum. Should a packet with an invalid

1CERT® Advisory CA -2003-07 Remote Buffer Overflow in Sendmail -March 03 2003
2Note: this is not true of many more modern stateful packet filt ering firewalls
3RFC793

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

5/82

checksum arrive at a host a complying stack should ignore the packet. However
a number of packet filtering engines employed in older firewalls did not check
this checksum as it was considered an unnecessary overhead4. This could be
exploited by a hacker.
First send a packet with a bad TCP checksum to a host that you think may be
behind a simple packet filtering firewall. If you receive a reset then it is most
likely from a packet filtering firewall that does not bother to check the TCP
checksum. If you get no response then the packet is most likely getting to the
end host and the stack is rejecting the packet due to the bad checksum. This
technique is extremely basic and does not take into consideration a number of
factors. No modern packet filtering engines that I have been able to find are at
all susceptible to this attack as they check the TCP checksum5. Secondly many
firewalls are configured to drop packets rather than sending a reset packet,
therefore our assumption that the lack of a reset indicates a listening device
would again be flawed. Finally there is the assumption that the host you are
targeting does indeed have a compliant TCP stack.
However it is a simple demonstration of one category of IDS/Firewall evasion
which can be used to generate some basic perimeter information, and was the
precursor to the more advanced techniques discussed in this paper. It is a
simple form of Insertion attack. This category of attack is one whereby the
attacker crafts a packet that an IDS or firewall will accept but an end-system
rejects. Usually this is done to fool the firewall or IDS into believing the host-
attacker's connection is in a different state than it is, which may allow the
attacker to send data to the host it otherwise might not.6 In this demonstration
we are interested purely in the behavior of the firewall itself. Is it susceptible to
this form of insertion attack?

Acquiring and compiling hping2
This quick demonstration will utilise hping2 a command line tool, styled on the
more ubiquitous ping program, with much greater versatility.7 The hping2 utility
can be downloaded as source from http://www.hping.org, or you can download it
in binary format as a package for some Linux distributions such as Debian. I
installed my client via 'apt-get'8 from a Debian apt mirror, but also downloaded
the source to allow for inspection.

4As recently as Mar 15 2001 this allegation was being leveled at the PIX firewall from Cisco (v5.3)
5As will be seen in my attempts to demonstrate this prototype perimeter mapping technique
6An excellent description of this form of IDS evasion can be found in ''Insertion, Evasion, and Denial of

Service: Eluding Network Intrusion Detection'' http://secinf.net/info/ids/i dspaper/idspaper.html
7Hping ''supports TCP, UDP, ICMP and RAW -IP protocols, has a traceroute mode, the ability to send

files between a covered[sic] channel, and many other features. '' - Sanfilippo, Salvatore
8'apt-get' is a Debian package management system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

6/82

Fig 1 - Lab Network (part-1 & 2)

To exploit the TCP header vulnerability discussed earlier, I set up a simple lab
network outlined above in fig1.
The firewall I used for the demonstration was iptables v1.2, which should not be
fooled by the crafted packets.9 It is configured to send RST packets or UDP Port
unreachables rather than silently dropping packets. The 'hacker host', on the
192.168.1.0/24 external network is attempting to see if there is a firewall
between this host and the targeted web server. The web server is visible from
this external network, but only responds to pings, and HTTP requests.
The firewall rules implemented on the firewall are listed below:

Chain INPUT (policy DROP)
target prot opt source destination
ACCEPT tcp -- 10.40.100.121 10.40.100.159 tcp dpt:22
ACCEPT udp -- 10.34.100.1 10.40.100.159 udp spt:53
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 8
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 0
DROP udp -- 0.0.0.0/0 0.0.0.0/0 udp dpts:137:139
LOG all -- 0.0.0.0/0 0.0.0.0/0 LOG level 4 prefix `DROP IN'

Chain FORWARD (policy DROP)
target prot opt source destination
ACCEPT tcp -- 0.0.0.0/0 192.168.1.10 tcp dpt:80
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp spt:80 dpts:1025:65535
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp spt:53 dpts:1025:65535
ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:53
ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp spt:53
LOG tcp -- 0.0.0.0/0 0.0.0.0/0 LOG level 4 prefix `DROP FORWARD tcp'
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 8
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 0
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 11
LOG udp -- 0.0.0.0/0 0.0.0.0/0 LOG level 4 prefix `DROP FORWARD udp'

9I was unable to find a current firewall which was susceptible to this attack but tho ught a demonstration

and trace analysis was still useful.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

7/82

REJECT tcp -- 0.0.0.0/0 0.0.0.0/0 reject-with tcp-reset
REJECT udp -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
LOG all -- 0.0.0.0/0 10.0.0.0/8 LOG level 4 prefix `SPOOF ->Ext '
DROP all -- 0.0.0.0/0 10.0.0.0/8

First I sent a TCP Syn packet to port 80 on the target host using the following
hping command:
$ hping2 -V -p 80 -S 10.40.100.152

using eth0, addr: 192.168.1.10, MTU: 1500
HPING 10.40.100.152 (eth0 10.40.100.152): S set, 40 headers + 0 data bytes
len=46 ip=10.40.100.152 flags=SA DF seq=0 ttl=63 id=0 win=5840 rtt=0.5 ms
tos=0 iplen=44 seq=2998202135 ack=1207064129 sum=c90b urp=0

As we can see, we got a response presumably from the webserver. Lets check:
tcpdump -ni eth010 'ip'11

05:09:52.927042 192.168.1.10.1211 > 10.40.100.152.80: S 1207064128:1207064128(0) win 512
05:09:52.927155 10.40.100.152.80 > 192.168.1.10.1211: S 2998202135:2998202135(0) ack
1207064129 win 5840 <mss 1460> (DF)
05:09:52.927458 192.168.1.10.1211 > 10.40.100.152.80: R 1207064129:1207064129(0) win 0 (DF)

So the traffic is traversing the firewall and the webserver is responding, as
expected based on the firewall rules.
Next I'll try the same thing only this time to port 25.
$ hping2 -V -p 25 -S 10.40.100.152

using eth0, addr: 192.168.1.10, MTU: 1500
HPING 10.40.100.152 (eth0 10.40.100.152): S set, 40 headers + 0 data bytes

This time the response is a more curt RST packet, but is it from the target,
because it is not running Sendmail or the firewall? To try and test this I shall
send another packet to port 25 only with a bad TCP checksum. Should I receive
a reset, then I know that a firewall is filtering traffic, and also that it must be a
fairly unsophisticated firewall.
$ hping2 -V -p 25 -S 10.40.100.152

hping2 -V -p 25 -S 10.40.100.152 using eth0, addr: 192.168.1.10, MTU: 1500
HPING 10.40.100.152 (eth0 10.40.100.152): S set, 40 headers + 0 data bytes

No reply at all this time, and thankfully the tcpdump running on the inside of the
firewall registers no packets, so the packet was dropped at the firewall12 which
recognised the bad TCP checksum.

Defensive notes
This demonstration was meant more as a lead in to the next two perimeter
probe techniques, so I shall not dwell on the analysis.
The majority of current firewalls should not be susceptible to this form of probe,
as the demonstration proved. Even if the firewall was to take shortcuts and not
examine the TCP checksum then silently dropping packets rather than sending
resets would still evade this technique.
What it does teach us is that all anomalous packets should be treated as
suspicious, and that assumptions have in the past and no doubt will be in the

10This is sniffing the inside of the firewall.
11I am not interested in any arps etc..
12This is confirmed by a reassuring 'DROP FORWARD tcp IN=eth0 OUT=eth1 SRC=192.168.1.10

DST=10.40.100.152 LEN=40 TOS=0x00 PREC=0x00 TTL=63 ID=16876 PROTO=TCP SPT=2162
DPT=25' message in our firewall l ogs

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

8/82

future, exploited by resourceful individuals.

2 Fire-walking
Fire-walking is a technique that can be used to gather information about a
remote network protected by a firewall. In particular it is used to identify the
filtering policy that the firewall implements, which is often different from the
policy the firewall is intending to implement. In this regard it is a useful tool for
both the security professional as well as the ardent hacker.
It is important to understand that this technique demonstrates to the user the
'open' ports on the gateway/firewall, and not the open ports on targeted hosts
within the scrutinised network.
In order to understand the modus operandi of firewalking one needs analyse the
IP TTL13 field and it's practical exploitation by the traceroute program.
According to the Internet Protocol RFC791 the TTL field in an IP header
''indicates the maximum time the datagram is allowed to remain in the Internet
system. If this field contains the value zero, then the datagram must be
destroyed. This field is modified in Internet header processing. ''.
What this means is that all conforming IP packets contain a timed self-destruct
capability. Every time a packet passes through a compliant IP stack it's TTL field
is decremented, and once it hits 0 the packet is annihilated. This is done before
the packet is sent out again (presuming it is being routed on), and an ICMP
time-exceeded in delivery packet is sent back to inform the source host of the
demise of it's packet.
Traceroute takes advantage of this and starting with one, ramps up the TTL on
consecutive packets14. These ill fated ICMP packet are intended to expire and
generate from each router along the route to it's intended destination the ICMP
'timex'15 packet. These 'timex' packets include the source address of the router
sending them, so traceroute knows the packet got to router X after TTL hops.
One after another it learns of the routers on the path to the intended destination.
It knows that it has reached the end of the road when it receives an ICMP
message indicating a UDP port unreachable.16
Basic premise is to send packets with a TTL of one more than the number of
hops to the firewall that is being probed. If it passes the packet through then you
will get an ICMP timeout message from the next hop.

Acquiring and compiling Firewalk
For this analysis I used the Firewalk utility written by Mike D. Schiffman, and the

13Time to live
14Actually most implementations of traceroute usuall y send packets in threes to be sure of the results .

Remembering that packet delivery is not guaran teed by IP, that is the job of the transport protocols.
15ICMP 'Time Exceeded in Transit ' - Type 11, Code 0
16This is the behavior of the Unix version of traceroute which sends a UDP packet to a port greater than

33000 (using V 1.4a12 on Linux traceroute ha s an initial port of 33435). Windows however uses an
icmp echo-request packet and expects an echo reply when it reaches its intended target.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

9/82

ubiquitous tcpdump as always for looking at the network traces.
Firewalk can be obtained from www.packetfactory.net, and is explained
excellently in the paper ''Firewalking A Traceroute-Like Analysis of IP Packet
Responses to Determine Gateway Access Control Lists''.
I used the same lab set up for this as for lab1, with the following firewall rules:

Chain INPUT (policy DROP)
target prot opt source destination
ACCEPT tcp -- 10.40.100.121 10.40.100.159 tcp dpt:22
ACCEPT udp -- 10.34.100.1 10.40.100.159 udp spt:53
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 8
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 0
DROP udp -- 0.0.0.0/0 0.0.0.0/0 udp dpts:137:139
LOG all -- 0.0.0.0/0 0.0.0.0/0 LOG level 4 prefix `DROP IN'

Chain FORWARD (policy DROP)
target prot opt source destination
ACCEPT tcp -- 0.0.0.0/0 192.168.1.10 tcp dpt:80
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp spt:80 dpts:1025:65535
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp spt:119 dpts:1025:65535
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp spt:25 dpts:1025:65535
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp spt:53 dpts:1025:65535
ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp dpts:1025:65535
ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:53
ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp spt:53
LOG tcp -- 0.0.0.0/0 0.0.0.0/0 LOG level 4 prefix `DROP FORWARD tcp'
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 8
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 0
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 11
DROP udp -- 0.0.0.0/0 0.0.0.0/0 udp dpts:137:139
LOG udp -- 0.0.0.0/0 0.0.0.0/0 LOG flags 0 level 4 prefix ` DROP
FORWARD udp packet'

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
LOG all -- 0.0.0.0/0 10.0.0.0/8 LOG level 4 prefix ` SPOOF ->Ext'
DROP all -- 0.0.0.0/0 10.0.0.0/8

The major difference is that I am no longer sending resets but silently dropping
the packets, as would more normally be the case. The rule set17 is designed to
mimic a simple border gateway device, such as a filtering router, many of which
still do not have stateful inspection18, as their primary function has historically
been routing.

Firewalking in action
I first ran a standard nmap scan over the firewall. To reduce output and time, I
limited it to scanning a very small subset of ports. I shall do this for all the future
scans as well. A simple SYN scan such as this requires that the data actually
gets to the target, unlike my firewalk scans. So I have to choose a host that I
know is there. This would often limit me to the gateway itself, or an Internet
facing server such as a webserver.19 The best bet would seem the webserver,

17This rule set was designed in part to be as small as possible while allowing a reasonable demonstration

of the firewalking tool. It is not intended to be a 'good' rule set.
18I have not therefore used stateful inspection here, inst ead relied on a philosophy of allowing in bound

traffic on from well known ports to ephemeral ports on the assumption it is return traffic. I stress again
this is a lab rule set only.

19I would no doubt be able to obtain the address for th is by a DNS lookup of www.target-domiain.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

10/82

and in my lab that is 10.40.100.152.
nmap -sS -p 22,25,53,80 10.40.100.152

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
Interesting ports on (10.40.100.152):
Port State Service
22/tcp filtered ssh
25/tcp filtered smtp
53/tcp filtered domain
80/tcp filtered http
1025/tcp filtered listen
Nmap run completed -- 1 IP address (1 host up) scanned in 57 seconds

Based on this the hacker might assume that the security policy was to filter
ingress traffic to these ports, and move on to a more inviting target. What would
a firewalk show them?
I next ran firewalk to scan for the ports 22, 25, 80, 53 and 1025 using TCP port
80 and then UDP port 53 as the source port.20 I have to provide firewalk with a
destination host as well as the gateway address I intend to scan. Importantly
though the traffic does not have to ever reach this host, in fact it could be off, or
even non-existent.21 I chose a random IP in the 10.34.100.0 subnet.22
firewalk -S 22,25,53,80,1025 -p tcp -s 80 192.168.1.100 10.34.12.21

1 (TTL 1): port 22: Firewalk 5.0 [gateway ACL scanner]
Firewalk state initialization completed successfully.
TCP-based scan.
Ramping phase source port: 80, destination port: 33434
Hotfoot through 192.168.1.100 using 10.34.12.21 as a metric.
Ramping Phase:
expired [192.168.1.100]
Binding host reached.
Scan bound at 2 hops.
Scanning Phase:
no response
port 25: *no response*
port 53: *no response*
port 80: *no response*
port 1025: open (expired) [10.40.100.170]

This first scan using TCP and a source port of 80, shows us that the firewall is
allowing traffic in from port 80 to 10.34.12.21 on port 1025. From this we could
guess that there is a rule allowing return web traffic in to any host on an
ephemeral port. We would want to run the probe again using a different
ephemeral port and target to be sure, but it would seem unlikely that we
randomly chose a host that is specifically allowed traffic through. We also know
that the 10.34.12.21 machine is in a different network to our gateway host, with
a router 10.40.100.170 in between.
Lets see what our next scan gave us.
firewalk -S 22,25,53,80,1025 192.168.1.100 10.34.12.21

 1 (TTL 1): port 22: port 25: port 53: port 80: port 1025: Firewalk 5.0 [gateway ACL
scanner]

20Again this is to save some time and limit the amount of output. Under normal circumstances I might

scan all ports. The use of 53 and 80 as a source port is to see if return traffic from DNS and web
servers is allowed in.

21It does need to be routable, and preferably more than one hop from the gateway.
22The results would h ave been similar had I chosen any IP in any sub net of the 10.0.0.0/8 internal

network other than 1 0.40.100.0/24. This subnet is on the other side of the filtering router so my
packets would never have expired, this can be accommodated for by setting an option in firewalk. It
then acts more like a stand ard scanner , looking fore resets etc..

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

11/82

Firewalk state initialization completed successfully.
UDP-based scan.
Ramping phase source port: 53, destination port: 33434
Hotfoot through 192.168.1.100 using 10.34.12.21 as a metric.
Ramping Phase:
expired [192.168.1.100]
Binding host reached.
Scan bound at 2 hops.
Scanning Phase:
open (expired) [10.40.100.170]
open (expired) [10.40.100.170]
open (expired) [10.40.100.170]
open (expired) [10.40.100.170]
open (expired) [10.40.100.170]

Defensive notes
That is all well and good was this a study on network mapping, but I am more
interested in what we can learn as IDS analysts. Lets look at a trace and see if
there is anything we can use.
#tcpdump -nvxXi eth1

07:04:57.036605 192.168.1.10.80 > 10.34.12.21.33434: S [tcp sum ok] 1274816059:1274816059(0)
win 1024 [ttl 1] (id 12482, len 40)
0x0000 4500 0028 30c2 0000 0106 b125 c0a8 010a E..(0......%....
0x0010 0a22 0c15 0050 829a 4bfc 263b 0000 0000 ."...P..K.&;....
0x0020 5002 0400 ded7 0000 0331 3030 0131 P........100.1
07:04:57.036720 192.168.1.100 > 192.168.1.10: icmp: time exceeded in-transit [tos 0xc0] (ttl
255, id 11512, len 68)
0x0000 45c0 0044 2cf8 0000 ff01 0a42 c0a8 0164 E..D,......B...d
0x0010 c0a8 010a 0b00 cd03 0000 0000 4500 0028 E..(
0x0020 30c2 0000 0106 b125 c0a8 010a 0a22 0c15 0......%....."..
0x0030 0050 829a 4bfc 263b 0000 0000 5002 0400 .P..K.&;....P...
0x0040 ded7 0000
07:04:57.036851 192.168.1.10.80 > 10.34.12.21.22: S [tcp sum ok] 1274816059:1274816059(0) win
1024 (ttl 2, id 12482, len 40)
0x0000 4500 0028 30c2 0000 0206 b025 c0a8 010a E..(0......%....
0x0010 0a22 0c15 0050 0016 4bfc 263b 0000 0000 ."...P..K.&;....
0x0020 5002 0400 615c 0000 0c0d 0e0f 1011 P...a\........
07:04:59.035149 192.168.1.10.80 > 10.34.12.21.25: S [tcp sum ok] 1274816059:1274816059(0) win
1024 (ttl 2, id 12482, len 40)
0x0000 4500 0028 30c2 0000 0206 b025 c0a8 010a E..(0......%....
0x0010 0a22 0c15 0050 0019 4bfc 263b 0000 0000 ."...P..K.&;....
0x0020 5002 0400 6159 0000 0c0d 0e0f 1011 P...aY........
07:05:01.035078 192.168.1.10.80 > 10.34.12.21.53: S [tcp sum ok] 1274816059:1274816059(0) win
1024 (ttl 2, id 12482, len 40)
0x0000 4500 0028 30c2 0000 0206 b025 c0a8 010a E..(0......%....
0x0010 0a22 0c15 0050 0035 4bfc 263b 0000 0000 ."...P.5K.&;....
0x0020 5002 0400 613d 0000 0c0d 0e0f 1011 P...a=........
07:05:03.035016 192.168.1.10.80 > 10.34.12.21.80: S [tcp sum ok] 1274816059:1274816059(0) win
1024 (ttl 2, id 12482, len 40)
0x0000 4500 0028 30c2 0000 0206 b025 c0a8 010a E..(0......%....
0x0010 0a22 0c15 0050 0050 4bfc 263b 0000 0000 ."...P.PK.&;....
0x0020 5002 0400 6122 0000 0331 3030 0131 P...a"...100.1
07:05:05.034952 192.168.1.10.80 > 10.34.12.21.1025: S [tcp sum ok] 1274816059:1274816059(0)
win 1024 (ttl 2, id 12482, len 40)
0x0000 4500 0028 30c2 0000 0206 b025 c0a8 010a E..(0......%....
0x0010 0a22 0c15 0050 0401 4bfc 263b 0000 0000 ."...P..K.&;....
0x0020 5002 0400 5d71 0000 0c0d 0e0f 1011 P...]q........
07:05:05.036967 10.40.100.170 > 192.168.1.10: icmp: time exceeded in-transit (ttl 254, id
33971, len 56)
0x0000 4500 0038 84b3 0000 fe01 078d 0a28 64aa E..8.........(d.
0x0010 c0a8 010a 0b00 7e77 0000 0000 4500 0028 ~w....E..(
0x0020 30c2 0000 0106 b125 c0a8 010a 0a22 0c15 0......%....."..
0x0030 0050 0401 4bfc 263b .P..K.&;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

12/82

There are a number of things that stand out when looking at this trace. Firstly
the repeating patterns within packets, such as the constant IPID, and the trailing
0c0d 0e0f 1011. The latter could well be frame padding as it is after the
reported length of the packet. The former is definite indication of packet craft.
However a signature based on this could easily be thwarted by a minor
modification to the code. It would be better if we could trigger on a pattern that is
an intrinsic part of the probes behavior rather than a coding aberration.
It is important to realise that this is the trace of two, separate phases of the
probe. The initial phase in this case spans the first two packets and is the
'ramping phase. Using the default settings the tool behaves almost identically to
the Unix traceroute tool, sending out UDP packet to a high port with a low TTL
looking for a time out. In the trace above I was using TCP port 80 which would
be easier to spot.
The second phase is the actual scan, which utilises the TTL calculated in the
ramping phase to ensure the probe packets expire one hop after the gateway.23
Again we can see some patterns in the packet such as the static IPID and SEQ
number, which would be used to generate a signature. As well as this there is
the TTL of two, as the packet enters the gateway. Under normal circumstances
the TTL is used to identify routing loops and should not be this low, unless it is
part of a traceroute. Can we use this to our advantage? A traceroute would not
be sending a SYN packet to port 22! Presuming your network has an internal
max distance of x, we could look for incoming packets of less that x+1. So
assuming a value of 5 for x:

Proposed Snort Rule:
alert tcp $EXTERNAL_NET ANY -> $HOME_NET :33000 24 (msg:"Suspicious
TTL, possible Firewalk attempt";ttl:<6; classtype:attempted -recon;)

This rule should trigger on any packet entering our network to a port less than
33,000 with TTL of less than 6. Lets see if it is going to detect our firewalk.25
Additionally to detecting firewalk attempts, you should be looking to stop it.
Blocking egress time exceeded packets is one way26, filtering traffic on
destination IP as well as port is another. That way the hacker would have to
guess the IP of the service, which makes the whole probe a little futile. Defense
in depth will also make the hacker’s job harder, as packets may be dropped by a
filtering router, which tells the hacker nothing about the firewall’s rules. Using a
private RFC1918 address block for your internal network would also help if
everything was NATd behind one Internet address, as the firewalk requires an
internal address which is routable from the internet for it to work properly.

23This can be modified to be greater than one by command line options.
24Unix traceroute usually sends packets to ports greater than 33,000, as there is little chance of a service

listening on such a high port.
25I tested this in the lab set up and it did successfully detect the firewalk, while not generating false

positives on traceroutes etc..
26This would also stop traceroute from being able to map route to your internal servers, but is that such a

bad thing?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

13/82

3 Identifying Trust Relationships
Trust relationships can be exploited to great effect by a hacker who is targeting
your network, as demonstrated by Kevin Mitnick's attack against Tsutomu
Shimomura's system. Mitnick ''detected a trust relationship between two
computers and exploited that relationship''27
A Trust relationship is one whereby privileges or access to one host is granted
to another host simply by virtue of who it is. This was what Mitnick was able to
detect between one of Shimomura's X-terminal workstations and one of his
servers. By impersonating the X-terminal he was able to execute a number of
remote commands 28without any need to authenticate himself. The trick for the
attacker is to identify these trust relationships in order to later exploit them.

IPID Scans
There are a number of techniques available to identify trust relationships, which
vary from simple social engineering, to more technical network probes and
passive network analysis. I will concentrate on one method, which uses an
active network probe.
No talk on network reconnaissance could be complete without mentioning
Nmap29 developed by Fyodor. In his own words ''Nmap ("Network Mapper") is
an open source utility for network exploration or security auditing.'' It is an
extremely rich tool which is often simply used to determine what ports are open
on a particular host, but it's functionality is much greater than this. Amongst it's
myriad of features is a implementation of Antirez' so called idle scan30. The idle
scan is an extremely stealthy port scan where the scanner sends his crafted
packets to the target but spoofs the source IP to be of a 3 rd party. I shall refer to
this 3rd party host as our 'zombie.' This allows his activity to go on without the
victim being able to correctly identify the true source. An important factor to note
in this description is that the port scan is therefore done from the perspective of
the zombie. The offshoot of all this is that by careful choice of the zombie our
hacker can start to map out possible trust relationships.
eg. Choose the zombie to be the address of the targets external webserver
etc...

Idle Scan in action
In this Demonstration I will use the following network which contains a trust
relationship between 'Server A' and 'Workstation B'. In this case unlike the
Mitnick attack I have chosen the SSH protocol. This is a much more secure
administration tool as it provides both strong authentication of both client and

27 Northcutt, Stephen & Novak, Judy - Network Intrusion Detection, an Analyst's Handbook - Second

Edition
28The 'r-commands' are a number of commands such as rsh - remote shell, rcp - remote copy, rlogin -

remote login etc.. which are listed as number six in SANS Un ix top vulnerabilities list (May 5 2003).
The are unencrypted so the content can be sniffed in the clear and suffer from poor ho st authent ication.

29 www.insecure.org
30First identified in a posting made by Salvatore Sanfi lippo of Intesis SECURITY LAB in Dec 17 199 8

outlining the technicalities of such a probe.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

14/82

server as well as an encrypted data channel. In my example however I am
looking at perimeter mapping trust relationships. In this scenario the internal
Server is protected by a firewall, however SSH traffic is allowed in to it from the
administrators home workstation to facilitate after hours troubleshooting. Should
an SSH vulnerability be found such as CERT® Advisory CA-2002-1831 then the
internal server is vulnerable should an attacker discover this trust relationship.
Often it is more vulnerable services such as FTP access to the companies
internal webserver etc...
The networks used in this lab are all non internet routable RFC 1918 addresses
for test purposes. The two external workstations are on the same segment in
this example which would make the exploitation of a trust relationship easier.
However I am solely focusing on the discovery of trust relationships as a part of
perimeter mapping. The technique I am investigating does not rely on the two
machines being on the same network segment.
In this setup all hosts were running Debian Linux (2.4 kernel). The IDS sensor
had it's interfaces running in promiscuous mode and was not configure with an
IP address. The router is filtering using iptables with the following configuration:

Chain INPUT (policy DROP)
target prot opt source destination
ACCEPT tcp -- 10.40.100.121 10.40.100.159 tcp dpt:22
ACCEPT udp -- 10.34.100.1 10.40.100.159 udp spt:53
ACCEPT icmp -- 0.0.0.0/0 10.40.100.159
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 8
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 0
DROP udp -- 0.0.0.0/0 0.0.0.0/0 udp dpts:137:139
LOG all -- 0.0.0.0/0 0.0.0.0/0 LOG level 4 prefix `DROP IN'

Chain FORWARD (policy DROP)
target prot opt source destination
ACCEPT tcp -- 0.0.0.0/0 10.40.100.152 tcp dpt:80
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 state ESTABLISHED
ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 state ESTABLISHED
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 8
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmp type 0
ACCEPT tcp -- 192.168.1.150 10.40.100.152 tcp dpt:22
ACCEPT tcp -- 192.168.1.150 10.40.100.152 tcp dpt:20
ACCEPT tcp -- 192.168.1.150 10.40.100.152 tcp dpt:21
ACCEPT tcp -- 0.0.0.0/0 10.34.100.2 tcp dpt:25
ACCEPT udp -- 192.168.5.1 10.34.100.1 udp dpt:53
ACCEPT tcp -- 192.168.5.1 10.34.100.1 tcp dpt:53
LOG tcp -- 0.0.0.0/0 0.0.0.0/0 LOG level 4 prefix `DROP --> tcp'
LOG udp -- 0.0.0.0/0 0.0.0.0/0 LOG level 4 prefix `DROP --> udp'
LOG icmp -- 0.0.0.0/0 0.0.0.0/0 LOG level 4 prefix `DROP --> icmp'

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
LOG all -- 0.0.0.0/0 10.0.0.0/8 LOG level 4 prefix ` SPOOF ->Ext '
DROP all -- 0.0.0.0/0 10.0.0.0/8

As can be seen from the above rule set the firewall/router is allowing traffic in to
port 22, and ports 21 and 20 on the webserver from the external management
host. These are of course the 'Well Known Ports' for SSH and FTP as allocated
by IANA32. No other traffic is allowed in except some limited ICMP traffic, and

31CERT® Advisory CA -2002-18 OpenSSH Vulnerabiliti es in Challenge Response Handling - December

6, 2002.
32Internet Assigned Numbers Authority. - http://www.iana.org/§

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

15/82

traffic that is part of an ESTABLISHED outgoing session.
A standard SYN scan of this perimeter would show all incoming TCP traffic
being blocked except HTTP destined for the webserver, as demonstrated in the
following scan.

Standard Nmap scan of internal network.
#nmap -sS -F 10.40.100.152 33

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
Interesting ports on (10.40.100.152):
(The 1099 ports scanned but not shown below are in state: filtered)
Port State Service
80/tcp open http

Nmap run completed -- 1 IP address (1 host up) scanned in 910 seconds

As expected the Syn scan came up empty apart from the allowed web traffic.
What about an idle scan using the management host as a zombie?

Idle Nmap scan of internal network.34
#nmap -F -sI 192.168.1.150 10.40.100.152

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
Idlescan using zombie 192.168.1.150 (192.168.1.150:80); Class: Incremental
Interesting ports on (10.40.100.152):
(The 1097 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
22/tcp open ssh
80/tcp open http

Nmap run completed -- 1 IP address (1 host up) scanned in 920 seconds

So from the perspective of the chosen 'zombie' the firewall is not as daunting.
The question is how can we as analysts protect ourselves from such scans?
The problem an IDS analyst faces is that this traffic is going to look like
expected management traffic, so if the scanner is patient enough, it could be
very hard for the analyst to spot. Even if a pattern is observed, tracking the true
source of the traffic will be extremely difficult.

Analysis of traces
First there is a small flurry of SYNs from the scanning host and subsequent
RSTs from the proposed zombie. This is to determine if we can reliably predict
the IPID.
tcpdump -nvi eth1

05:52:08.427456 192.168.1.10.45473 > 192.168.1.150.1025: S [tcp sum ok]
1210372252:1210372252(0) ack 0 win 23826 (ttl 58, id 28336, len 40)
05:52:08.427573 192.168.1.150.1025 > 192.168.1.10.45473: R [tcp sum ok] 0:0(0) win 0 (ttl
128, id 55571, len 40)
05:52:08.466501 192.168.1.10.45474 > 192.168.1.150.1025: S [tcp sum ok]
1210372253:1210372253(0) ack 0 win 23826 (ttl 58, id 4912, len 40)
05:52:08.466588 192.168.1.150.1025 > 192.168.1.10.45474: R [tcp sum ok] 0:0(0) win 0 (ttl
128, id 55572, len 40)

33-sS indicates a Syn scan, -F sets nmap to inly scan ports listed in the /etc/services file, and is much faster

than scanning all 65,535 possible ports.
34I used nmap by Fyodor as it is a highly stable network scanner, and it also i mplements IPID scans. In

the demonstrations I took advantage of the fact that I knew the internal network to speed up the sca ns
and increase the readability of the output. It does not effect the results.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

16/82

05:52:08.506499 192.168.1.10.45475 > 192.168.1.150.1025: S [tcp sum ok]
1210372254:1210372254(0) ack 0 win 23826 (ttl 58, id 35997, len 40)
05:52:08.506585 192.168.1.150.1025 > 192.168.1.10.45475: R [tcp sum ok] 0:0(0) win 0 (ttl
128, id 55573, len 40)
05:52:08.546499 192.168.1.10.45476 > 192.168.1.150.1025: S [tcp sum ok]
1210372255:1210372255(0) ack 0 win 23826 (ttl 58, id 51387, len 40)
05:52:08.546585 192.168.1.150.1025 > 192.168.1.10.45476: R [tcp sum ok] 0:0(0) win 0 (ttl
128, id 55574, len 40)
05:52:08.586495 192.168.1.10.45477 > 192.168.1.150.1025: S [tcp sum ok]
1210372256:1210372256(0) ack 0 win 23826 (ttl 58, id 32491, len 40)
05:52:08.586582 192.168.1.150.1025 > 192.168.1.10.45477: R [tcp sum ok] 0:0(0) win 0 (ttl
128, id 55575, len 40)
05:52:08.626494 192.168.1.10.45478 > 192.168.1.150.1025: S [tcp sum ok]
1210372257:1210372257(0) ack 0 win 23826 (ttl 58, id 39914, len 40)
05:52:08.626579 192.168.1.150.1025 > 192.168.1.10.45478: R [tcp sum ok] 0:0(0) win 0 (ttl
128, id 55576, len 40)

After this the probe in earnest begins. The probes to our network are
interspersed with SYN RST pairs from the scanning host to the zombie, as
illustrated below in the following tcpdump extract:

05:52:09.446473 192.168.1.10.45602 > 192.168.1.150.1025: S 4007888134:4007888134(0) ack
899391217 win 3072
05:52:09.446559 192.168.1.150.1025 > 192.168.1.10.45602: R 899391217:899391217(0) win 0
05:52:09.446660 192.168.1.150.1025 > 10.40.100.152.22: S 897127136:897127136(0) win 3072
05:52:09.446725 192.168.1.150.1025 > 10.40.100.152.53: S 897127136:897127136(0) win 3072
05:52:09.463312 10.40.100.152.22 > 192.168.1.150.1025: S 60877630:60877630(0) ack 897127137
win 5840 <mss 1460> (DF)
05:52:09.463398 192.168.1.150.1025 > 10.40.100.152.22: R 897127137:897127137(0) win 0
05:52:09.506466 192.168.1.10.45717 > 192.168.1.150.1025: S 4007888634:4007888634(0) ack
899391217 win 3072
05:52:09.506552 192.168.1.150.1025 > 192.168.1.10.45717: R 899391217:899391217(0) win 0

The scanning system is looking to see if the IPID has changed, indicating a
reply from the target to our zombie.
Looking at the extract for the entire scan this pattern is fairly regular and easy to
spot. I was able to collect this data due to the fact that both external hosts were
on the same segment, so my IDS sensor saw all the traffic. This would not
normally be the case so what is the solution? This brings to the fore two aspects
of IDS forensics I feel are often neglected.

1.Your Firewall/application/Operating system logs are all useful Intrusion
detection tools do not forget them.
2.Correlation of data from multiple sources can be invaluable for spotting
stealthy attacks and probes.

How does all this help our fight against IPID scans? Firstly if you must have a
trust relation between hosts, it is imperative that you take active steps to protect
both machines! It is no use firewalling you webserver if all an attacker needs is
to compromise an external host to gain access via a trust relationship. Log all
system, ids and firewall logs, to a central place to allow correlation of data35.
The pattern above is hard enough to spot in one log, let alone split into many
separate logs on different servers that are not time synced!36
Using some form of stateful log analysis tool such as 'logsurfer37' will aid in the

35Try not to allow this to be exploited for a possibl e DOS of your analysis capabilities however.
36Implementing a standard time is essential for a useful log correlation implementation, signals form GPS

satellites propagated via NTP is one solution.
37'logsurfer' is a log watching tool similar to swatch. It i s stateful in it can anal yse a log line in the context

of preceding lines etc.. and can add dynamic rules.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

17/82

ability to spot patterns such as the one above, provided the logs are collected
appropriately.

References
1.CERT® Advisor y CA-2002-18 OpenSSH Vulnerabilities in Challenge Response Handling -
December 6, 2002. - http://www.cert.org/advisories/CA-2002-18.html (May 05 2003)

2.'Ed3f' - Firewall spotting and networks anal ysis with a broken CRC', Phrack Volume60
URL:http://www.phrack.org/show.php ?p=60&a=12 (5 April 2003)

3.Fyodor, Insecure.org - Idle Scanning and related IPID games UR L: http://www.insecure.org
May 05 2003)

4.Goldsmith , David and Schiffman ,Michael - Firewalking A Traceroute -Like Analysis of IP
Packet Responses to Determine Gateway Access Control Lists,
URL:http://secinf.net/info/ids/idspaper/idspaper.html (May 05 2003)

5.IANA well known ports listing http://www.iana.org/assignments/port -numbers (May 05 2003)

6.Ley, Wolfgang and Ellerman, Uwe - Logsurfer URL:http://www.cert.dfn.de/eng/logsurf/ (July
12 2003)

7.Northcutt, Stephen & Novak, Ju dy - 'Network Intrusion Detection, an Analyst's Handbook -
Second Edition' – NewRiders 2001

8.Postal, John - RFC 793 Transmission Control Protocol
URL:http://www.faqs.org/rfcs/rfc7 93.html (May 05 2003)

9.Ptacek , Thomas H. and Newsham , Timothy, "Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection", Secure Networks, January 1998
URL:http://www.insecure.org/stf/secnet_ids/secnet_ids.html (20 March 2003)

10.RFC791 - Internet protocol, DARPA internet program protocol specification
URL:http://www.faqs.org/rfcs/rfc791.html (April 20 2003)

11.Sanfilippo, Salvatore - hping.org URL:http://www.hping.org/ (July 8 2003)

12.SANS Top Vulnerabilities –URL: http://www.sans.org/top20/#U6 (May 05 2003)

13.Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Reading: Addison Wesle y Longman, Inc,
1994.

Assignment 2 - Net Detects
Posted: https://cert.uni-stuttgart.de/archive/intrusions/2003/07/msg00060.html

The following three net detects highlight a number of things about intrusion
detection.
Firstly false positives are everywhere, but still need to be analysed. In detect
one I look at a packet which I initially thought to be crafted, but with greater
analysis proves a better candidate for a false positive. It is taken from
incidents.org.
Secondly correlation of data can be invaluable in determining the true nature of
an IDS detect. In detect two I look at a fairly simple trace of some scanning, and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

18/82

use additional data sources such as firewall logs. It is taken from my home
network.

Analysis one.

1. Source of Trace.
This detect was extracted from the following raw log downloaded off the GIAC
assignment site as per the instructions in the current assignment 3.3.
'Raw/2002.5.10.log'. From the readme file at incidents.org,
'/logs/Raw/README' I noted that the checksum errors found in the tcpdump and
snort outputs are a result of the sanitisation process these raw logs were put
through prior to being posted.
The first time stamp in the data file is '12:18:48' and the last is ' 11:52:36' this
indicates a time period of roughly 24 hours for the data collected on Friday the
10 May 2002 as indicated by the file name.
I used the following snort command to generate an alert file from the binary file.
snort -c snort.conf -l ./ -r 2002.5.10

The alert entry that I decided to investigate was:
 [**] [1:523:3] BAD TRAFFIC ip reserved bit set [**]
[Classification: Misc activity] [Priority: 3] 06/11 -01:41:19.544488
218.2.129.171 -> 46.5.188.185 TCP TTL:231 TOS:0x0 ID:0 IpLen:20
DgmLen:40 RB Frag Offset: 0x11F1 Frag Size: 0xFFFFEE23

In order to find the packets that had generated this alert I used tcpdump to find
any packets to or from 218.2.129.171.
tcpdump -vvr 2002.5.10.log host 218.2.129.171
01:41:19.544488 218.2.129.171 > 46.5.188.185: (frag 0:20@36744)
(ttl 231, len 40, bad cksum 178!)
06:51:14.694488 218.2.129.171 > 46.5.142.232: (frag 0:20@32+) (ttl
231, len 40, bad cksum a136!)

Network Layout
Since the trace was taken from the incidents.org web site as a single snort
binary log there is no way of knowing for sure any details of the originating
network's topology. One can however examine the data and make some
observations about a probable topology.
First I examined the file for a list of unique source and destination MAC
addresses38.
To do this I used a combination of awk, tcpdump, sort and uniq all common Unix
commands to isolate the unique source and destination MAC addresses.
Tcpdump when given the -e flag will print the link-level header on each dump
line. The format of the output means that the second and third tokens are the
source and destination mac addresses respectively. eg.

38Media Access Control address, a hardware address that uniquely identifies each node of a ne twork. -

http://www.webopedia.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

19/82

13:02:17.164488 0:3:e3:d9:26:c0 0:0:c:4:b2:33 ip 1514:
203.177.0.39.www > 46.5.180.250 .62119: . [bad tcp cksum f9f9!]
1814404202:1814405662(1460) ack 247126970 win 7765 (DF) (ttl 110,
id 10401, len 1500, bad cksum 35a9!)

I was therefore able to use the following command to extract the unique source
mac addresses for all the packets in the log file:
tcpdump -er 2002.5.10.log | awk '{print $2}' | sort -n | uniq
0:0:c:4:b2:33
0:3:e3:d9:26:c0

The following command was used to get a list of unique destination mac
addresses:
tcpdump -er 2002.5.10.log | awk '{print $3}' | sort -n | uniq
0:0:c:4:b2:33
0:3:e3:d9:26:c0

This shows that there are only two unique MAC addresses in the log file which
suggests that the sniffer or ids probe was probably placed either between a
perimeter router and a firewall, or the perimeter router/firewall and the ISPs
perimeter router/firewall.
Next I tried to identify the MAC address using the searchable MAC
address/Vendor database at http://www.coffer.com/mac_find/. By using the first
three octets of the MAC addresses I was able to determine that both belonged
to Cisco hardware.
Further investigation of the traffic showed that there were 146 unique
destination addresses all in the 46.5.0.0/16 range.
#tcpdump -vn -r 2002.5.10.log | awk '{print $4}' | sed s/ \\.[0-9]*:// |
sort -n | uniq | grep ^46.5| wc -l
 146

This includes the network address 46.5.0.0, so a more accurate figure is 145.
This compares to a total of 234 unique destination addresses. This is
augmented by the fact that a whois search39 for this address revealed that it is a
reserved network.

Trying whois -h whois.arin.net 46.5.0.0 OrgName: Internet Assigned Numbers Authority
OrgID: IANA Address: 4676 Admiralty Way, Suite 330
City: Marina del Rey
StateProv: CA
PostalCode: 90292-6695
Country: US
NetRange: 46.0.0.0 -46.255.255.255
CIDR: 46.0.0.0/8
NetName: RESERVED-46
NetHandle: NET-46-0-0-0-0
Parent:
NetType: IANA Reserved
Comment:
RegDate:
Updated: 2002-08-23

 OrgTechHandle: IANA-ARIN
OrgTechName: Internet Corporation for Assigned Names and Number
OrgTechPhone: +1-310-823-9358
OrgTechEmail: res-ip@iana.org
ARIN WHOIS database, last updated 2003-06-05 21:05

39I used www.samspade.org to perform this lookup.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

20/82

Enter ? for additional hints on searching ARIN's WHOIS database.
We know from the accompanying README file40 that the protected network has
had it's IP addresses obfuscated to a different network. This seems to confirm
our suspicions that this is indeed the protected network.
All packets destined to this address range have a destination MAC address of,
0:0:C:4:B2:33.
$ tcpdump -ner 2002.5.10.log 'src net 46.5.0.0/16' | wc -l
 3860
$ tcpdump -ner 2002.5.10.log 'ether src 0:0:c:4:b2:33 and src net
46.5.0.0/16' | wc -l
 3860
$ tcpdump -ner 2002.5.10.log 'ether dst 0:0:c:4:b2:33 and dst net
46.5.0.0/16' | wc -l
 448
$ tcpdump -ner 2002.5.10.log 'dst net 46.5.0.0/16' | wc -l
 448

It seems logical therefore to assume that this is the address range of the target
network41 situated behind the proposed Cisco router/firewall (0:0:C:4:B2:33).
Based on this information a probable network layout may well be as follows.

Analysis of the traffic using p0f42 might reveal the type of hosts in this network.
It is important to note that p0f only looks at SYN packets for the tell tale IP and
TCP details which act as a signature for a particular operating system. It could
therefore shed no light upon the source of our suspicious packet which is a
fragment. I used the following command to see if I could find out any more
interesting data about the target network using p0f.
$ p0f -s 2002.5.10.log
p0f: passive os fingerprinting utility, version 1.8.3
(C) Michal Zalewski <lcamtuf@gis.net>, William Stearns <wstearns@pobox.com>
p0f: file: '/etc/p0f.fp', 207 fprints, iface: 'lo', rule: 'all'.
64.228.63.154 [15 hops]: Linux 2.4.2 - 2.4.14 (1)

Unfortunately this was the only host p0f was able to identify from the log file,
and it is not within the suspected interior network of 46.5.0.0/16.

40See Apendix A
41This is not the true address range though as this has been modified to protect the identity of the target

network. All addr esses in this file have been modified in a consi stent manner according to the
accompanying text file.

42p0f is a remote passive system fingerprinting tool written by Michal Zalewski < lcamtuf@coredump.cx>
.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

21/82

2. Detect was generated by:
Snort Intrusion detection system.
version 1.9
Rule:

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD TRAFFIC ip
reserved bit set"; fragbits:R; sid:523; classtype:misc -activity;
rev:3;)

3. Probability the source address was spoofed:
There is no evidence of source address spoofing that can be gathered from this
packet. So we are forced to rely upon motive. This is discussed in great detail in
section five, where I will conclude that this packet is probably non-malicious.
Given this assumption the probability that the packet has it's source address
spoofed is negligible. The source address is routable, and an allocated address
used by Chinanet-js, a large Chinese telecom subsidiary, according to a 'whois'
search.43 The only evidence to go against this could be the lack of other packets
from this IP address. This can be discounted however, as the logs in question
only contain packets that triggered the IDS, so the other 'good' packets may well
have been present but obviously did not trigger the sensors.

4. Description of attack:
Initial log alert entry in 2002.5.10.log

[**] [1:523:3] BAD TRAFFIC ip reserved bit set [**]
[Classification: Misc activity] [Priority: 3] 06/11 -01:41:19.544488
218.2.129.171 -> 46.5.188.185 TCP TTL:231 TOS:0x0 ID:0 IpLen:20
DgmLen:40 RB Frag Offset: 0x11F1 Frag Size: 0xFFFFEE23

tcpdump -vvr 2002.5.10.log host 2 18.2.129.171
01:41:19.544488 218.2.129.171 > 46.5.188.185: (frag 0:20@36744)
(ttl 231, len 40, bad cksum 178!)
06:51:14.694488 218.2.129.171 > 46.5.142.232: (frag 0:20@32+) (ttl
231, len 40, bad cksum a136!)

packet dump
tcpdump -vvxXr 2002.5.10.log host 218.2.129.171
01:41:19.544488 218.2.129.171 > 46.5.188.185: (frag 0:20@36744)
(ttl 231, len 40, bad cksum 178!)
0x0000 4500 0028 0000 91f1 e706 0178 da02 81ab E ..(.......x....
0x0010 2e05 bcb9 8329 0050 02fa f904 02fa f904 ).P........
0x0020 5004 0000 f402 0000 0000 0000 0000 P

06:51:14.694488 218.2.129.171 > 46.5.142.232: (frag 0:20@32+) (ttl
231, len 40, bad cksum a136!)
0x0000 4500 0028 0000 2004 e706 a136 da02 81ab E ..(.......6....
0x0010 2e05 8ee8 81db 0050 0416 b6e8 0416 b 6e8 P........
0x0020 5004 0000 a522 0000 0000 0000 0000 P "........

Second packet we notice triggered on

43An Internet utility that returns information about a dom ain name or IP address., the results of which can

be seen in the Correlation section.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

22/82

[**] [1:522:1] MISC Tiny Fragments [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
06/11-06:51:14.694488 218.2.129.171 -> 46.5.142.232
TCP TTL:231 TOS:0x0 ID:0 IpLen:20 DgmLen:40 MF
Frag Offset: 0x0004 Frag Size: 0x0010

Looking at IP[6] on each of these packet we can see that the second packet is
OK as far as the reserved bit is concerned. Masking this byte with 0xE0 gives us
the 3 bits we are interested in, the IP flags. The two low order bits are the MF
and DF flags (More Fragments and Don't Fragment) respectively. The high
order bit however is the infamous reserved bit (according to RFC-791 "Bit 0:
reserved, must be zero").
The 6th and 7th bytes are 0x91f1, but the first nibble also contains the reserved
bit. Closer inspection of this nibble reveals the following bit pattern:

1001
So the first packet has a fragment offset of 0x11f1 or 4593 (8 byte words), or
36744 bytes. It contains however, only 20 bytes of data, or does it? The total
size of the packet is 0x28, or 40 bytes. The IP header is 5*(4 byte words) or 20
bytes, so this leaves 20 bytes for the payload (in this case a fragment). I
presume this includes some padding, as the last four bytes of the packet are all
zeros. Why would such a large packet get fragmented so small, unless it was
the last packet? The MF bit is not set which would indicate that this is the last
fragment (the so called runt). The Fragment ID of 0 is somewhat suspicious
though.
There are a number of circumstances under which the Linux IP stack (up to
kernel 2.4.5) would always create a packet with an IP ID of zero44.

1.ICMP: Kernel 2.4.0-2.4.4 will use the value of zero (0) for the IP ID field
value whenever sending an ICMP query messages or producing ICMP
replies. This behavior was changed with Kernel 2.4.5 and above, and now
only when generating ICMP query messages the IP ID field value will be set
to zero.
2.Whenever sending or answering for a UDP datagram the IP ID will be zero
when the DF bit will be[sic] set.
3.TCP: In several circumstances, like a SYN-ACK answer for a SYN, the IP
ID will be zero when the DF bit will be[sic] set.

 However as we have indicated this is not likely to be an ICMP packet, and
obviously the DF bit is not set as this is a fragmented packet! So the IP ID
remains somewhat suspicious.
The Reserved bit on packet one is set which is what triggered this alert, yet
according to the RFC for IP (RFC791) this bit should always be zero. I shall
examine possible reasons for this is my discussion of the attack mechanism.

44The following bullet points are excerpts from 'A crash course with Linux Kernel 2.4.x, IP ID values;

RFC 791' - Ofir Arkin (13 Apr 2002)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

23/82

5.Attack mechanism:

Possibility one: Abnormal45 packets as a form of OS identification.
This is one possible explanation for this packet. Common tools such as nmap
will use abnormal packets as stimuli to attempt to identify a remote OS, based
on the lack of conformity in the stack implementations of various OSs. An
example of such an abnormal packet is the 'reserved bit set' packet.
In a post to Nmap Hacker, Ofir Arkin put forward the use of such a technique.46
In this post he demonstrated the possibilities by differentiating Sun Solaris and
OpenBSD replies from HPUX 11.0 responses. This analysis was made based
simply on the reply to an ICMP echo-request packet with the reserved bit set.
Interesting though this is, it does not fit well with our wild packet. The packet we
captured was a TCP packet and not an ICMP packet. IP[9] is set to 0x06 which
indicates the embedded protocol is TCP. This technique could however be
extended to TCP as well as ICMP, so this does not in itself rule out the
possibility.
Why make the packet so obvious? There is no need to craft such an ugly packet
for this technique to work, all that is needed is to set the reserve bit and know
the response that different stacks will give. Unless of course the packet is being
crafted to look like it is mangled rather than crafted, or perhaps the use of a
fragment is intended to get the packet past some simple packet filtering
firewalls.47 One then needs to ask why an attacker would go to so much trouble.
There was only one anomalous packet to this host in the alert logs. Either the
attacker is extremely patient or this is not a serious attempt at probing the target
host. Nor was there any similar packets to other hosts in the network which
would seem to rule out a generic sweep of the network. Perhaps this packet is
from a tool under development or some proof of concept code.

Possibility two: Attempted insertion attack
An interesting post to the firewalls mailing list by Cy Ardoin
(ardoin@cycon.com)48 made the point that some kernel code behaves
unexpectedly when a packet has the IP reserved bit set. His observation was
that the kernel code will "test for ip_offset &~ DONTFRAG but if the reserved bit
is set, this test will yield true." What he is saying is that this simple mask
presumes the reserved bit is not set. This form of assumption is a possible
security problem as many packet filters only filter on the first fragment, which
could be fooled should the reserved bit be set and the filtering code assumes
otherwise. A malicious user could then insert packets into the network that the
firewall is expected to block, as the filtering code would believe them to be

45Abnormal may not be an accurate description of thi s packet, in fact '''Technically, it should be 'Out of

Spec' or 'Malformed' packet according to RFC792. '' - As pointed out by 'rocker'
<starplanet1000@yahoo.com.hk > , in his/her response to my posting this detect on the incidents.org
mailing list.

46(http://lists.insecure.org/lists/nmap -hackers/2000/Jul-Sep/0068.html)
47Many packet filtering firewalls only filter on the first fragment.
48http://www.netsys.com/firewalls/firewalls -9610/0570.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

24/82

fragments. For this to be the case here, we would expect to see some payload
in the packet. There is only 20 bytes of payload however which would require an
extremely tightly coded exploit. The payload is not very interesting.

 8329 0050 02fa f904 02fa f90 4 ).P........
0x0020 5004 0000 f402 0000 0000 0000 0000 P

There is a repeating pattern of 4 bytes 0x02fa f904 and large section of nulls,
but little else of interest. The payload did not trigger snort, nor do we see any
evidence of prior reconnaissance, which would surely be needed for such a
targeted attack. There is also no evidence of the exploited machine being used
by the attacker. This could be simply because the attack failed or perhaps the
traffic was not unusual enough for it to trigger the IDS.

Possibility three: packet mangled
A more likely scenario for this packet I feel is that it has been mangled either by
a stressed router or some other host on it's route to its destination. There is no
other activity related to either the source or destination IP address to indicate
malicious activity. There is no real payload in the packet so it is unlikely it is
some form of insertion attack. There were only two packets picked up from this
IP address that triggered the IDS which indicates it was not reconnaissance
activity (unless our hacker is extremely cautious). Also the amount on
information that can be gathered by one TCP packet in isolation is relatively low
unless the packet was targeted, which I do not believe it was. 49 The data
section of the packet is more interesting in the context of a mangled packet than
of an 'insertion attack'. It seems more likely that this packet is the victim of a
router with a memory problem. The data section seems to include the TCP
header from another packet!
If one was to analyse data section as the start of a TPC packet, then the
destination port would be port 80, with an ephemeral source port (33577). The
sequence number and the acknowledgment number would both be 0x02fa f904
(50002180), and the flags would indicate a Reset packet. Which would make
sense as Resets do not usually contain or acknowledge data.
Without more data to look at I would conclude that the most likely analysis is
that this is just a 'mangled packet'. I would however consider adding a snort rule
to capture data from this address range, or TCP packets with IPIDs of zero to
see if any pattern emerged.

6. Correlations:

DShield50
Dshield did not report anything on this address

49see 7. Evidence of Targeting for details.
50 Dshield or the Distributed Intrusion Detection System is ''an attempt to collect data about cracker

activity from all over the intern et. This data will be cataloged and summarized. It can be used to
discover trends in activity and prepare better firewall rules. '' - http://www.dshield.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

25/82

MyNetWatchman51
The MyNetWatchman report generated two hits as shown below. It seems that
this IP is owned by China Telecom and probably allocated by DHCP (which is
common with large ISPs). This means it is highly unlikely that this packet
originated from the perpetrator of the alerts listed below. China however is a
major contributor to detected attacks, ranking second on the country breakdown
at incidents.org when I checked (12/05/2003).

Country Reports52
 US 3,182,035
 CN 1,693,863
 JP 1,074,211
TW 888,999
DE 539,873

Incident Report

Incident Id Source IP Provider
Domain Agent Count Event Count Incident Status ISP Resolution Comments

17745271 218.2.129.17 chinanet-js.cn 1 1 Closed No Recent Activity
5088605 218.2.129.17 chinanet-js.cn 1 6 Closed No Recent Activity

Incident Detail
Incident Id : 17745271 Source Ip : 218.2.129.17
Provider Domain : chinanet-js.cn
DNS Name :
Total Event Count : 1 Total Distinct Agent : 1/0

Most Recent
Event

Date/Time
(UTC)

Agent
Alias

Agent
Type

Log
Type

Target
Ip

of IPs
Targete

d

IP
Protoc

ol

Target
Port

Port/
Issue

Description

Source
Port

Explanatio
n

Event
Count

2 Jan 2003
18:19:54

Pengwy
n win32 Zone

Alarm
10.0.x.
x 1 17 137

NETBIOS Name
Service
W32.Opaserv
Worm?

1025 mNW Info 1

7. Evidence of active targeting:
Given that the conclusion I have drawn is that this packet is not malicious the
evidence of a targeted attack is moot. However lack of evidence of a targeted
attack could help to corroborate my assumption.
As there is no attack signature for this attack no conclusion can be drawn as to
whether the attack is targeted to the environment or host in question. Ie if it were
an IIS exploit and the target was indeed an IIS host the probability of the attack
being targeted is increased.
There is no other supporting traffic in the IDS logs to indicate prior
reconnaissance. This would again have increased the chances of the attack
being targeted, as a successful targeted attack requires detailed information
about the target to succeed.

51 MyNetwatchMan is a ''Security Event Aggregator''. It allows multiple firewalls and ids sensors to

upload there detects to a central d atabase which can then be used to identify trends, track abusive
usage patterns based on IP. It is somewhat similar in concept as Dshield -
http://www.mynetwatchman.com/

52 Internet Storm Center - Country Breakdown - 12/05/2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

26/82

8. Severity:
The severity was calculated using the following formula:

severity = (criticalit y + lethality) - (system countermeasures + network countermeasure s)
Each value is to be ranked on a scale from 1 (lowest) to 5 (highest).

Criticality:
There is little we know about the target in question based on these logs files, as
there are no other packets, nor indeed any whole packets recorded in the snort
logs. This could be simply because no other packets to or form this machines
matched a snort signature, or this is the only traffic to or from the host, or the
host is simply not there. The latter case assumes that a fragment is being sent
to a non existent host. This would be characteristic of a non targeted attack,
however there are no other similar packets destined to other hosts, and indeed
only one other packet that triggered snort from the same source. Interestingly
though this is another fragment, although not such a strange one. It seems even
more unlikely that this is the only traffic to or from that host, as this is not even a
complete packet!
The first hypothesis seems the most likely, that there was other legitimate traffic
between the target and other hosts including the generator of our mystery
fragment, but that non of their packets triggered our IDS.
Being a professional paranoid the analyst must in this scenario assume the
worst and give the host a criticality of five.

Lethality:
The Lethality of the attack is based on what damage would be done should the
attack prove successful. In my analysis I have decided the attack is non
malevolent, therefore there is no risk of damage being done to the target system
from this packet.
Based on this I give the lethality of this attack a score of one.

System Countermeasures:
Again it is very difficult to attribute a score for system countermeasures from the
information of one fragmented IP packet. In this scenario I will again assume the
worst and give a score of one.

Network Countermeasures:
From the log files we can see a large number of established sessions inbound
from the internet to the protected network. This would indicate that the filtering
policy is not extremely tight for this network.
$ tcpdump -nr ../2002.5.10.log '(dst net 46.5.00/16) and (tcp[13] & 0x02 !=2)
and (tcp[13] & 0x04 !=4)' | wc -l
 322
$ tcpdump -nr ../2002.5.10.log '(dst net 46.5.00/16) and (tcp[13] & 0x02 !=2)
and (tcp[13] & 0x04 !=4)' | awk '{print $4}' |sed s: \\.:\ :g |awk '{ print
$5}' | sed s/://g | awk '{ if ($1 < 1024) print $1}' | sort -nu
 21

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

27/82

 53
 80
 137

This check for well-known ports reveals inbound established connections to
HTTP, DNS, FTP, NETBIOS Name Service.
However the network does use IDS at least at its perimeter, which indicates
some form of knowledge at least of the need for network counter measures.
According to the README file53 that accompanied this log all ICMP traffic has
been removed. This might have been useful in better identifying the filtering
policy employed by this network.
Based on all this I will give the Network countermeasures a mid range score of
three.

Severity:
Therefore the total score works out to be:
(5+1) - (1+3) = 2

9. Defensive recommendation:
Seeing as a packet similar to this one could potentially be used in a
fingerprinting scan, it may be worth blocking it. This would be a legitimate tactic
as technically it is a non-RFC compliant packet.
In addition to this as I suggested in my analysis of the attack, more data could
shed light on the true nature of this and similar packets. Adding some snort
rules to log packets with an IPID of zero, or from this IP range, for a period of
time would be a worthwhile activity.

10. Multi Choice question
The following packet is found in your binary logs.

01:41:19.544488 218.2.129.171 > 46.5.188.185: (frag 0:20@36744)
0x0000 4500 0028 0000 91f1 e706 0178 da02 81ab E..(.......x....
0x0010 2e05 bcb9 8329 0050 02fa f904 02fa f904 ).P........
0x0020 5004 0000 f402 0000 0000 0000 0000 P.............

Which of the following is the most accurate description?
a) This is a standard IP fragment containing a TCP payload.
b) This is a crafted HTTP packet with a spoofed source address.
c) This is a mangled IP fragment, with no TCP header information.
d) This is a fragment of an packet that contains an HTTP request.
The best answer is c.
This is a fragment as can be seen from the friendly tcpdump output. It is also
a TCP packet (protocol 6), but it is not the first fragment (offset of 36744) so
there is no TCP header here, the 0x0050 in bytes 22:23 is a red herring. It
may well be part of an HTTP conversation but we cannot tell from this
fragment. It is however mangled, as the IP reserved bit is set. Although it

53See Appendix A

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

28/82

could be crafted we cannot be sure from this capture in isolation.

Comments:
Rocker <starplanet1000@yahoo.com.hk>

'Interesting. Is there any other similar analysis in prev GCIA ?'
I could not find any previous GCIA report that covered a similar alert, however
"Thomas B. Granier" submitted a detect to the incidents.org mailing list on 27
Nov 2002, which included a number of fragmented packets with the reserved bit
set. The detects do not seem to correlate however. In his detect there were over
100 packets in a short time frame. My packet does match up with his patten, as
outlined below by Thomas.54

0x0000 4500 0028 0000 <gggg> ec06 <chksm> c001 01bc
0x0010 <dest ip> <xxxx> 0050 <yyyy yyyy> <yyyy yyyy>
0x0020 0004 0000 <zzzz> 0000 0000 0000 0000

<xxxx> is a 2 byte value for which I was unable to determine any pattern.
<gggg> is the off set and IP flags.
<yyyy yyyy> is a 4 byte pattern that is repeated twice.
<zzzz> is a 2 byte value for which I was unable to determine any pattern.

Having a larger number of packets to analyse makes this sort of pattern stand
out, and led in Thomas to the conclusion that the packets were generated by a
reconnaissance scan tool, designed to evade the IDS. This may well be the
case, however a standard install of SNORT includes the 'bad-traffic.rules', which
would catch these packets.

Analysis two.
[**] [1:477:1] ICMP Source Quench [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
07/07-12:39:33.894095 81.224.217.33 -> X.X.106.74
ICMP TTL:232 TOS:0x0 ID:45691 IpLen:20 DgmLen:56
Type:4 Code:0 SOURCE QUENCH

Posted: https://cert.uni-stuttgart.de/archive/intrusions/2003/07/msg00139.html

1. Source of Trace.
This detect was taken from a network I am employed to protect. This gives me a
far better understanding of the network topology, and baseline traffic profile. It
also allows me to look at the security policy implementation such as filtering
rules etc..

54I have made the adjustment of inserting a variable for the Fragment offset and IP flags bytes, as the

offset in Thomas' packets differed from mine.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

29/82

The basic layout of the network perimeter is shown in the following illustration,
some parts of the network are simplified as they add nothing to the analysis of
this attack.

Fig 2

In fig2 above the blue links indicate 'one way' or 'read-only' taps for the two IDS
hosts. The detect I am investigating was picked up on the external tap, between
our border router and our ISP.

2. Detect was generated by:
Snort Intrusion detection system running a default rule set and preprocessors.
Version 2.0
Rule:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Source
Quench"; itype: 4; icode: 0; classtype:bad -unknown; sid:477;
rev:1;)

This rule is intended to alert on ICMP source quench packets entering the
network to any internal host. Such packets could be a sign of a DOS attack as
we will see.

3. Probability the source address was spoofed:
The triggering packet is a source quench packet from 81.224.217.33, as I will
show later in part 4, it is claiming to be in response to a packet destined for port
80 on host 81.224.192.173 from X.X.106.74, the latter being an address
allocated to my network. It is not currently being used however, and although
the entire /28 block is being routed traffic destined to the unused addresses are
currently blocked at the perimeter router. Is this then a legitimate packet replying
to a potentially spoofed one, as there is no reason a legitimate packet could
have originated from X.X.106.74 ?
The TTL on the ICMP packet is 0xE8 or 232 in decimal. Can we deduce if this is
reasonable? A quick traceroute to 81.224.217.33 takes 21 hops to reach its
destination. This would indicate an original TTL of 253, so perhaps 255 was the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

30/82

real TTL as routes on the Internet are often not symmetrical. It would appear then
that this packet's credentials check out. Further more 81.224.217.33 does appear
to be the last hop on my route to 81.224.192.173.
An active OS fingerprint scan of the host might give us a few last clues.
$ nmap -sS -O -osscan-guess 81.224.217.33
Starting nmap 3.28 (www.insecure.org/nmap/) at 2003 -07-10 14:56 XXST
Interesting ports on fls20o1078.telia.com (81.224.217.33):
(The 1634 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh
25/tcp filtered smtp
53/tcp open domain
80/tcp open http
1080/tcp filtered socks
3128/tcp filtered squid -http
4480/tcp filtered proxy -plus
6588/tcp filtered analogx
8080/tcp filtered http -proxy
Remote operating system guess: BSDI BSD/OS 4.0.1 Kernel
Uptime 113.845 days (since Tue Mar 18 18:41:06 2003)

So perhaps this is a router or firewall for this network. What else can we learn?
Oh Dear! It looks like it is running an open proxy55 of some kind.

$ telnet 81.224.217.33 80
Trying 81.224.217.33...
Connected to 81.224.217.33.
Escape character is '^]'.
GET http://www.google.com HTTP/1.0

HTTP/1.0 302 Found
Date: Thu, 10 Jul 2003 03:19:55 GMT
Content-Length: 206
Content-Type: text/html
Set-Cookie: PREF=ID=55e938d467798350:CR=1:TM=1057807196:LM=1057807196:S=_5F6mv-svIL3EzU3;
expires=Sun, 17-Jan-2038 19:14:07 GMT; path=/; domain=.google.com
Server: GWS/2.1
Location: http://www.google.co.xx/cxfer?c=PREF%3D:TM%3D1057807196:S%3DFE087cBARf_cpkDv
Via: 1.1 nc2-acld (NetCache NetApp/5.3.1R2D4)
<HTML><HEAD><TITLE>302 Moved</TITLE></HEAD><BODY>
<H1>302 Moved</H1>
The document has moved
here.
</BODY></HTML>
Connection closed by foreign host.

A 'NetApp NetCache' appliance by the look of it, even Fyodor gets it wrong
sometimes I guess.56 Nice to know these plug and play appliance solutions are
so secure by default!
Based on the evidence I do no believe the source address was spoofed.

55Open proxies are proxy servers (usuall y HTTP or SOCKS) that allow anyone to make us e of them. They

are often used by hackers as a 'connection laundering' proces s, as it makes life harder for the IP
detectives to track them down.

56The NetCache could well run on a BSDI derived OS, but I could find nothing on their web page to
support this.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

31/82

4. Description of attack:
Lets have a closer look at the packet that triggered this alert:

2:39:33.894095 81.224.217.33 > X.X.106.74: icmp: source quench
0x0000 4500 0038 b27b 0000 e801 b8cc 51e0 d921 E..8.{......Q..!
0x0010 XXXX 6a4a 0400 72de 0000 0000 4500 0028 .0jJ..r.....E..(
0x0020 0100 0000 6c06 fdc7 XXXX 6a4a 51e0 c0ad l....0jJQ...
0x0030 093d 0050 b93c c757 .=.P.<.W

If we look at the payload of this ICMP packet as with all ICMP error messages, it
contains the 'Internet Header + 64 bits of Original Data Datagram'57 which
caused the error condition. Digging it our of the source quench packet we can
see the following:

4500 0028 0100 0000 6c06 fdc7 XXXX 6a4a .0jJ..r.....E..(
51e0 c0ad 093d 0050 b93c c757 l....0jJQ...

So it is an IPv4 packet with a standard header length of 40 bytes. The transport
protocol was TCP, again with a default header length of 40, so no TCP options.
The packet was not a fragment as it has a fragment offset of zero and no MF58
bit set. It had a slightly suspicious ID of 0x0100 or 256. The TTL is 107, which
as I indicated earlier makes the originating TTL probably 128, if it was coming
from my network. The source address would be X.X.106.74, which is not used.
The SEQ number is 0xB93CC757, but we cannot see what the ACK was nor
what TCP flags were set.
Looking at the external IDS sensor, which also runs an instance in 'flight
recorder' mode monitoring and recording all data, which is kept for 7 days, there
is no evidence of any traffic from this network to any addresses in the
81.224.0.0/26 block during this period.
So this packet is either a stimulus packet that is it is not responding to a packet
from our network at all, or it is responding to a packet that was spoofing our
X.X.106.74 address.

5. Attack mechanism:
The lack of any genuine stimulus packet for this 'Source Quench' message
leads me to the conclusion that this alert was the result of a DOS attack of some
sort, which utilised source address spoofing to hide the true identity of the
attacker(s). One of the addresses spoofed would appear to be the X.X.106.74
address allocated to one of my networks.
A DOS attack is designed to use up all of the victim's resources. In this case
network resources were chewed up, as indicated by the router 81.224.217.33
sending the plea for help in the form of the ICMP source quench packet. In
order to mask the attackers identity DOS attacks often use source address
spoofing. Normally the spoofed addresses would be either unallocated
addresses, or idle quiet machines, this has the added benefit of stopping the
spoofed hosts from sending RSTs which might help the victim in the case of a

57According to RFC792 'Internet Control Message Protocol', in this case we have less to deal with due to

the snap-length of the IDS sensor.
58More Fragments. - indicates there are more fragments to follow.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

32/82

SYN flood for example. The /28 address block that this address is in was only
allocated in the last couple of months which may explain this.
It is somewhat strange that we only saw one source quench packet, however
this was not the only one sent, as indicated by the correlating complaints on the
MyNetWatchman site.

6. Correlations:
There was only one GCIA practical I could find that analysed traces of 'source
quench' packets. In his GCIA practical, Viriya Upatising concluded his ICMP
source quench packets were 'not an attack but a genuine request for the server to slow
down the data transfer rate.'

There have been a number of posts on various mailing lists such as Security
incidents, where suggestions have been made that the packets are the result of
tools such as tcpnice59. Which is designed to ' slow down specified TCP
connections on a LAN via "active" traffic shaping.' according to it's man page. It
does this by either forging a tiny TCP window on outgoing packets or by
additionally forging 'ICMP Source Quench' packets.
The MyNetWatcman report for 81.224.217.33, indicates we were not alone in
receiving ICMP Source Quench, and interestingly the reports generally tally with
ours for the time period, between 0:39 and 1:05 on the 7th (UTC).

Incident Id : 35594359 Source Ip : 81.224.217.33
Provider Domain : telia.com DNS Name : fls20o1078.telia.com
Total Event Count : 10 Total Distinct Agent : 9/9
Response : No Response
Most

Recent
EventDate/
Time(UTC)

Agent
Alias

Agent
Type

Log
Type

Target
Ip

of Ips
Targete

d

IP
Proto

Target
Port

Port/Issue
Descriptio

n

Src
Port

Event
Count

10 Jul 2003
12:12:24

ashram win32 Zone
Alarm

67.85.x.x

1 1 4

ICMP
Source
Quench 0 2

7 Jul 2003
01:05:45

theserve
r

Perl iptables 68.20.x.x

1 1 4

ICMP
Source
Quench 65535 1

7 Jul 2003
01:00:35

TunaMa
xx

win32 Zone
Alarm

24.84.x.x

1 1 4

ICMP
Source
Quench 0 1

7 Jul 2003
00:56:39

wed Web Web
Form

68.67.x.x

1 1 4

ICMP
Source
Quench 4 1

7 Jul 2003
00:49:52

Clarke21
9

win32 Zone
Alarm

68.118.x.
x

1 1 4

ICMP
Source
Quench 0 1

7 Jul 2003
00:43:08

LupwaSt
uff

win32 Zone
Alarm

66.75.x.x

1 1 4

ICMP
Source
Quench 0 1

7 Jul 2003
00:39:18

jhauva win32 Zone
Alarm

200.50.x.
x

1 1 4

ICMP
Source
Quench 0 1

6 Jul 2003
23:40:26

ecc win32 Zone
Alarm

66.9.x.x
1 1 4

ICMP
Source 0 1

59Part of the Dsniff tool set written by Dug Song.
Another tool put forward was TIDCMP.C proof of concept code by J. Oquendo.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

33/82

Most
Recent

EventDate/
Time(UTC)

Agent
Alias

Agent
Type

Log
Type

Target
Ip

of Ips
Targete

d

IP
Proto

Target
Port

Port/Issue
Descriptio

n

Src
Port

Event
Count

Quench
6 Jul 2003
16:42:58

zippie Perl iptables 65.121.x.
x

1 1 4

ICMP
Source
Quench 65535 1

7. Evidence of active targeting:
This traffic was not part of a targeted attack against my network, but was most
likely a side effect of a DOS attack either directly on 81.224.192.173, or using
this open proxy in a DOS attack on another victim.

8. Severity:
Severity was calculated using the following formula:

severity = (criticality + lethality) - (system countermeasures + network countermeasures)

Criticality:
The packet was destined for an IP address that does not exist so it is hard to
identify the criticality of the target host. The address is an Internet routable
address intended for use on externally available resources, so as such it would
usually be a critical server. Based on these two factors I will give the criticality a
two.

Lethality:
The packet was not malicious, but a plea for help from a server under attack
somewhere in Sweden. I shall therefore give a score of one for the lethality of
this detect.

System Countermeasures.
As the IP address this packet was destined for is not allocated to a host at
present, system countermeasures are somewhat moot. All outward viable
servers however are hardened before going into production. They are constantly
patched to guard against new vulnerabilities, and are run with the guiding
principles of 'minimilisation' and least privilege. All hosts in this trust domain also
run integrity checking software, have their logs automatically monitored for
anomalies, and run a host firewall where possible. Given all this I will give the
countermeasures score four.

Network Countermeasures.
Giving a score for the network countermeasures is not easy either. My
colleagues and I have recently redesigned the network security infrastructure,
but I will try and be impartial and resist giving it a five.
The network uses the principles of defense in depth, and explicit access control.
That is there are multiple access control points, and only that which is explicitly
permitted is allowed, all other traffic is blocked. This includes egress and ingress

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

34/82

traffic. Very little ingress traffic is allowed at all. Namely return traffic for
specified services such as HTTP and DNS, as well as SMTP, and IPSec VPN
traffic.
The architecture is comprised of a mix of different vendors, and different
technologies. Eg packet filtering, application proxies etc...
The entire system is then backed up with a number of IDS sensors. I will
therefore give the network countermeasures a score of four.

Severity = (2+1) - (4+4) = -5
What looked like a promising detect has ended up with a score of -5. Though
pleasing for the 'sys-admin' half of my soul, a little disappointing from the 'IDS
analyst' half.

9. Defensive recommendation:
As with this network, there is really no need to allow in 'source quench' packets.
They could be used in an active DOS attack60, or to form part of a covert
channel. Many trojans are activated by ICMP packets as well, so it is a good
idea to limit ICMP in to your network to as little as is needed. In our case that is
TIMX packets to some hosts and stateful echo-replies, ie replies to our
outbound echo-requests, which are limited to a couple of hosts in this high trust
domain.61

10. Multiple choice test question:
The following packet is best described by which statement?62

02:05:15.024880 61.155.14.32 > 192.168.1.1: icmp: source quench (ttl 234, id 18870, len 56)
0x0000 4500 0038 49b6 0000 ea01 dab9 3d9b 0e20 E..8I.......=...
0x0010 c0a8 010a 0400 d57b 0000 0000 4500 003c {....E..<
0x0020 fe2b 0000 ea01 000c c0a8 010 ca66 6198 .+..0........fa.
0x0030 0040 07a9 f91c 255a .P....%Z

a) It is an ICMP echo request packet, used by the ping program.
b) It is source quench packet from 61.155.14.32 indicating congestion.
c) It is a crafted source quench packet possibly intended as a DOS.
d) It is an IP fragment that has been misinterpreted by tcpdump.

The best answer is c, although the packet is indeed a source quench packet,
and not a echo-request nor a fragment, it can't be valid. It is claiming to be in
response to a source quench packet from 192.168.1.1 to 202.102.97.152 yet,

An ICMP error message is never generated in re sponse to an ICMP Error message. 63

Comments: Andrew Rucker Jones
Referring to my portscan of 81.224.192.173:

“Dude, this is so unethical. See the discussion from today about legality, ethics,

60A malicious user could spoof an upstream router (such as your ISP's) and force you to stop sending it as

much data, effectively strangling your upstream bandwidth.
61In other words, no machines on the internal LAN can ping any external hosts.
62The checksums will fail as the packet has been obfuscated. The RFC1918 address is also a product of

the obfuscation.
63Stevens, W Richard - p70

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

35/82

portscanning, and so on.”
Response: Interestingly I started the thread Andrew is referring too. I believe that a
portscan is a useful tool for the security professional. It should not be abused however,
nor capable of damage or excessive network use.64
Andrew :
‘I am still on the side of blocking everything, including ICMP, if it is not necessary, man y people
on that list [OpenBSD] were of the opinion that ICMP is necessary. They took it to the other
extreme and wanted to allow all ICMP everywhere, but they had some good points. ICMP is
intended to make IP functional. Source quench packets aren't likel y to hurt You, and they may
even help You. If i recall correctly (or can believe what i read), sendmail makes use of source
quench packets. Although we don't want to make it easy for an attacker to create covert
channels, a determined attacker will, and th ere's really no getting around that. All in all, i
personally don't see the sense in blocking source quench packets. All that being said, a good
stateful firewall will handle source quench packets appropriatel y and reduce the risk associated
with them even farther. Explicitly all owing or denying them shouldn't reall y be necessary.’
Response: I agree that allowing in some ICMP to the network can be useful. My
argument is to limit the ICMP to that which is truly required. DOS attacks, and covert
channels are two obvious reasons uses for ICMP. A number of network mapping
techniques make use of ICMP as well. A good stateful firewall should only be one of the
components of a secure perimeter. Defense in depth would encourage me to block
traffic before it hit my firewall at border routers etc.. Often these are not ‘good stateful
firewalls’ as routers are built primarily to route packet.

Analysis three.
Posted: https://cert.uni-stuttgart.de/archive/intrusions/2003/07/msg00141.html

1. Source of Trace.
The following trace was taken from the IDS logs of my home network. This gave
me much greater insight into the network layout. As well as a good
understanding of baseline traffic behavior. I also have access to traditional log
files such as firewall logs, squid logs etc...
The network is very simple consisting of two Linux based PCs, one OpenBSD
PC and occasionally a Linux laptop. One of the Linux hosts acts as a server for
the other machines. It is the Internet gateway, and also runs a squid proxy. The
gateway box runs iptables v1.2.6a and NATs the internal network behind one
static Internet address. The internal LAN uses a 192.168.0.0/24 RFC1918
address range. The gateway also runs snort on both interfaces, externally with a
full rule set, and internally with a much more limited rule set. The latter mainly as
a check that the firewall is up and doing it's job as expected65, and no
unexpected traffic is turning up inside the network.

64 Are Portscans ill egal? - https://cert.uni-stuttgart.de/archive/intrusions/2003/07/msg00161.html
65I also run netcat via a cron job to generate a packet that should be blocked by a specific rule in the

firewall. If I do not get an alert every X minutes for this, it triggers an alert via logsurfer.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

36/82

A brief outline of this set up is illustrated above.
Here is the alert that was registered in the snort alert logs from my external
sensor.

[**] [1:1841:2] WEB-CLIENT javascript URL host spoofing attempt [**]
[Classification: A ttempted User Privilege Gain] [Priority: 1]
06/15-23:38:31.712634 64.12.152.56:80 -> 192.168.13.13:33095
TCP TTL:62 TOS:0x0 ID:1663 IpLen:20 DgmLen:1500
A* Seq: 0x91362E5A Ack: 0xC6FF921D Win: 0x4000 TcpLen: 32
TCP Options (3) => NOP NOP TS: 100 289073 74105548
[Xref => http://www.securityfocus.com/bid/5293]

2. Detect was generated by:
The detect was generated by Snort, Version 2.0.0 (Build 72). It was triggered by
the following rule:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB -
CLIENT javascript URL host spoofing attempt";
flow:to_client,established; content:"javascript \://"; nocase;
classtype:attempted-user; reference:bugtraq,5293; sid:1841; rev:2;)

3. Probability the source a ddress was spoofed:
The source address for this detect was almost certainly not spoofed. It was
traffic from an established session66 between the web server 64.12.152.56 and
the internal client.

4. Description of attack
bugtraq: 5293 sid: 1841

The alert listed above was triggered at 23:38 on the 15th June, by the external
snort IDS sensor.
The source of the offending packet was 64.12.152.56, which resolves to beta-
search-vip1.netscape.com. The packet appears to be coming from a webserver
(port 80), which matches the modus operandi of this attack, although it also
matches the pattern one would expect of a legitimate webserver.
There is no prior traffic to or from this site that triggered the IDS, and

66Evidence on this is presented later in the 'Description of attack section'

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

37/82

unfortunately the flight recorders are rolled once every 5 days to save space so I
do not have access to these. There is evidence in the squid logs however:
1055673509.645 455 192.168.5.254 TCP_MISS/200 16059 GET http://search.netscape.com/nscp_index.adp
- DIRECT/64.12.152.56 text/html
1055673511.891 1067 192.168.5.254 TCP_MISS/200 2144 GET
http://search.netscape.com/images/search_button.gif - DIRECT/64.12.152.56 image/gif
1055673511.212 945 192.168.5.254 TCP_MISS/200 728 GET
http://ar.atwola.com/html/64001910/853209912/aol? - DIRECT/64.12.174.249 application/x-javascript
1055673511.276 1446 192.168.5.254 TCP_MISS/200 329 GET
http://search.netscape.com/images/line.gif - DIRECT/64.12.152.18 image/gif
1055673512.364 1093 192.168.5.254 TCP_MISS/200 3249 GET

The site in question is a Netscape search portal just the sort that likes to set
cookies67 for 'site personalisation'. The snort signature that triggered the alarm
is intended to alert on attempts to steal cookies from a site other than the site
that set the cookie.

5. Attack mechanism:
The problem is that Mozilla allows javascripts to set and read cookies. This does
not sound like much of a problem, so long as they are still only allowed to set
and read their own. However ''for javascript URLs the host and path for the
cookie is pulled out as: 'javascript:[host][path]'. Cookie security is based only on
restricting access to correct matching host and path. By carefully crafting a
mallicious[sic] javascript URL opened in a new frame/iframe/window, it is
possible to access and alter cookies from other domains.''68 This bug is listed
with Bugtraq and has an ID of 5293. At the time of writing this all Mozilla based
browsers prior to v1.01 were vulnerable.69
The following example was given by Andreas Sandblad in a post to the Bugtraq
mailing list on Jul 24 2002 2:45PM. It demonstrates how to steal a cookie.

<body onload=init()>
<iframe name=f height=0 width=0 style=visibility:hidden></iframe>
<script>
function init(){
 f.location = "javascript://www.google.com/\n"+
 "'<body onload=alert(document.cookie)>'";
}
</script>

This example will steal, and display the contents of your 'www.google.com'
cookie should you have one.

67Cookies are chunks of information generated by a web server that is stored on the clients PC. The re are

two general types of cookies, that a web server will set. One is a session cookie,these are cookies set
by the web server, and stored by the client for the duration of th e session. They are often used by on
line stores to keep track of the users shopping cart etc.. The other type of cookie is the persistent
cookie. These are a popular means for a server to store information about particular users, often used
to personalise sights such as search engines, or on line shoppi ng sites. So that when you request a web
page from the server, it reads th e cookie it set last time and knows you are interested in prewar Polish
poetry etc... The storing and retrieving of information from cookies generally goes on unnoticed by the
user. Importantly cookies are associ ated with a particular server, eg Yahoo.com. Only this server is
supposed to be able to read this particular cookie.

68Sandblad, Andreas
69This includes Netscape 6.2.2 and older.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

38/82

Why steal a cookie?
There could be many reasons for this; the most obvious is for commercial
reasons. The same reason companies like 'double-click' are embedding their
cookies in web sites all over the Internet. Companies are desperate to get the
edge in selling you things you never knew you wanted. To better know what you
need to buy, they want to profile you. Where on the Internet do you go,
Snowboarding.com, or philatelists.org? So rather than pay to put their cookie
setting code into 3rd party web pages, they could just steal the information.
Another more dangerous use could be to steal session cookies. However these
have a limited life span so the attacker would need to know where you are
going, and then somehow divert your traffic to there server while the session is
still active.
You can see from the following excerpt from the Netscape search engine's
HTML page that this alert was triggered by a similar 'javascript://' directive to the
example.

 <a href="javascript://"
onclick="openWindow('search_tips.html','searchTips','460','420','resizable,scrollbars');
return true;" class=size1>Search Tips

I have highlighted the offending javascript in red. In this case though, it is simply
opening a javascript window to display the 'search tips' when a user clicks a
designated HTML anchor. Not particularly malicious, if a little irritating. There is
no server associated with the ''javascript://'' directive, so it is clearly not trying to
pose as another sight. There is also no attempt to read or write a cookie in this
segment. It would seem then that this alert is a false positive.

6. Correlations:
I found no previous GCIA practicals that looked into this alert, which was one of
the reasons I decided to investigate it. I did find a number of comments on it on
the snort users mailing list. Two in particular reflected some of my own thoughts.
Both Shane Hickey and Paul Schmehl were of the opinion that the growing
number of alerts for this signature in their snort logs were false positives just as I
believe mine to be. Paul's alerts were all to the local 'credit union' a site that he
knew was frequented regularly by the users at his organisation. They were both
critical of the signature, believing it to be written in a manner that leads to the
number of false positives.70

7. Evidence of active targeting:
This attack is part of a legitimate HTTP conversation between an internal host
and a Netscape search engine web server. It is therefore targeted, even if it is
not an attack.
The earlier squid log extracts indicate the ongoing HTTP transactions between
these two machines, as do a large number of similar entries that are left out for
brevity.

70 I shall expand on this in a little more detail in the Defensive Recommendati ons.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

39/82

8. Severity:
Severity was calculated using the following formula:

severity = (criticalit y + lethality) - (system countermeasures + network countermeasures)

Criticality:
The system that was targeted in this attack was a personal workstation. It does
however contain some non-replicated data relating to my partners University
work. It would therefore be personally devastating for her to have this data lost.
As a network security professional it would also be extremely embarrassing, if
somewhat educational to have one of my home systems compromised. Not to
mention the financial cost of resource theft such as network bandwidth. The
system however is not mission critical to any large organisations, so I shall give
it a four.

Lethality:
The attack was a false positive, and therefore no damage would result from this
particular attack. The lethality of this attack would therefore have to be given a
one.

System Countermeasures.
The host system is a Linux host that is patched regularly. It also runs iptables as
a form of host protection. I shall only give this system a three, as although it is
patched regularly it is used by other users, who have root access.

Network Countermeasures.
The host in question is on a well monitored network. I use snort IDS sensors on
the inside and outside of the network monitoring for suspicious network activity.
It is also behind a reasonably restrictive firewall. I do not allow any inbound
connections what so ever, only return traffic for established connections.71 I also
only allow outbound connections for web traffic from the proxy server, SMTP
from the same host, POP3 from all internal hosts, as well as ICMP from all and
DNS from all internal hosts. The firewall/server machine is also regularly
patched. I shall err on the side of caution and allocate a four .

Severity = (4 + 1) - (4 + 3) = -2

9. Defensive recommendation:
Although this is not a true attack therefore there are no real defensive measures
needed, there are a few things that cropped up while researching this alert
which could bear some improvement.
Cookies are a useful artifact of the web, but by no means essential. Cookies can
be turned off in most web browsers, and indeed Mozilla will allow you to specify
sites that are allowed or denied the right to set cookies. This is a feature, which I

71This is not quite true anymore as I now allow icmp echo -requests, and TIMX packets in, although I

restrict them to 2 per second with a burst max of 5.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

40/82

now employ, as much to protect my privacy from prying marketers than as a
form of defense.
The snort alert rule seems a little easy to trigger for a false positive.
Presuming the stream4 preprocessor72 has been configured to perform stream
reassembly. This ensures the entire javascript function can bee seen by the
detection engine, then improving the signature to match something similar to:

content:"javascript \://\w+''; 73
Would seem a better option. I am using a '\w+' to indicate one or more 'word'
characters in this hypothetical rule. 74
Upgrading your web browser to a version greater than v1.01 if it is a Mozilla
variant, and turning off this snort rule would seem the best course of action,
especially if you feel your Internet experience would be tarnished by the lack of
cookies my first suggestion may impose.

10 Multi Choice Question
The following is best described by which statement?

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB -
CLIENT javascript URL host spoofing attempt";
flow:to_client,established; content:"javascript \://"; nocase;
classtype:attempted-user; reference:bugtraq,5293; sid:1841; rev:2;)

a) A snort alert generated by a javascript URL similar to:
<a href = "javascript ://" onclick = "openWindow('search_tips.html'); return true;" Search Tips

b) A snort rule intended to match on web pages with embedded javascript.
c) A snort rule intended to match a javascript URL that is possibly forging it's
identity, prior to requesting a clients cookie.
d)A snort rule intended to match an HTTP session with an attempt to write a
cookie on the client host.

The best answer is c, although the first option does outline an HTML excerpt
that would trigger this rule, it is a rule not an alert. The second option is simply
untrue, although javascript is detected by this rule it is a specific use of it, that it
is meant to trigger on. Finally option d is way off the mark. The rule is intended
to alert the improper access of cookies, it does not trigger on the cookie access
but the 'identity forgery'.

Assignment 3 - Analyse this

Assumptions
The protected network of the University was deduced to be MY.NET.0.0/16,
which has been obfuscated prior to the logs being analysed.75 The data used for
analysis was incomplete in so much as I often only had snort alerts to work with.

72'preprocessor stream4_reassemble: client port 80 ' - would be sufficient .
73The upcoming 'Regex' feature would be required for this sort of match. (Documented in the 'Writing

snort rules ' guide at snort.org)
74Both Paul Schmehl, and Shane Hickey intimated at this in there posts to the snort users mailing list.
75Analysis leads me to believe that this is in fact 130.85.0.0/16 used by the University of Maryland.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

41/82

Usually no packets or even packet headers. I also had no intimate knowledge of
the University's standard traffic patterns; this may have resulted in some
systems being identified as suspicious when they may in reality be totally
legitimate.

Executive Summary
During the five day period these logs relate to, the University's IDS system
captured a total of 2,287,720 scans, 18,596 out of spec packets and 998,821
attack alerts.
There are numerous internal hosts which are running externally accessible
services, ranging form peer-to-peer file sharing, web servers, TFTP servers, and
IRC servers to name but a few. The University should think very carefully about
whether all internal computers should be allowed to host these services, and if
these services should be accessible from the Internet. One of the fundamental
tenets of network security is 'Deny all except that which is explicitly allowed'.
This is particularly pertinent to incoming connections. For example, is there any
reason for PCs in the campus dormitories to be running IRC servers that are
accessible from the Internet?
Even if a default 'deny incoming connections' policy is not implemented the
University's perimeter filtering leaves a great deal to be desired. Incoming
netbios, LPD, should simply be blocked unless there are legitimate reasons for
the traffic, in which case exception rules should be made. Incoming SNMP
should certainly be blocked except for explicit allowed instances.
A great deal of the IDS rules employed by the University are generating more
noise than real alerts, and could be easily tightened up. Rules such as the 'High
port 65535' for example should only be triggering on SYN packets to internal
hosts and the 'Exploit x86 NOOP' alert should be limited to ignore certain ports
susceptible to false positives. There is also a great deal of noise from some of
the preprocessors which are either out of date such as the defrag preprocessor,
or poorly configured such as the 'spp_http_decode' processor.
If the University is to tolerate the use of it's network for peer -to-peer networking
or internet gaming it's rule sets should represent this. This could be achieved by
ignoring scans from internal hosts to known game ports76. This would need to
be kept up to date to add new games and prune older games etc... An
alternative approach might be to limit external bandwidth to the majority of
university hosts (such as dormitory PCs etc..). This would require some traffic
shaping but could be a good compromise.
Alternately the IDS could be allowed to continue to trigger as is, but a second
layer be introduced such as 'swatch' or 'logsurfer'. The latter with it's
statefulness and ability to insert dynamic rules could be very useful. This gives
the advantage of still having the alerts for later analysis should it be required.
There is also evidence of spoofed packets being generated on the campus
network. If the University’s routers are not dropping these then they should be

76Unless they match trojan ports.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

42/82

configured to do so. They should also log the MAC addresses of such packets
to allow the offenders to be identified.

Suspicious Internal Hosts
The following hosts were identified during the course of this Analysis as
requiring further examination.

Scanners and gamers
130.85.168.109 130.85.153.187 130.85.137.7 130.85.97.143 130.85.235.110 130.85.202.238
130.85.97.36 130.85.97.233 130.85.97.65 130.85.97.34 130.85.168.177
130.85.97.172 130.85.97.97 130.85.97.83 130.85.1.3 130.85.242.250

nimda
MY.NET.202.238 MY.NET.97.105 MY.NET.97.97

Services listening on port 65535
130.85.222.22 130.85.234.190 130.85.249.122 130.85.252.78 130.85.201.58

Tiny fragments
MY.NET.235.110 MY.NET.250.194 MY.NET.250.50

possible XDCC compromised hosts, or IRC trojans
MY.NET.112.199 MY.NET.227.246 MY.NET.207.78 130.85.196.193 130.85.226.178
MY.NET.97.122 MY.NET.205.146 MY.NET.97.37 MY.NET.97.43 MY.NET.195.99

Null scans
MY.NET.252.134
In addition to these I detected over 1,000 different hosts actively searching for
peer-to-peer ports, be it KaZaa, WinMX, Blublser, Napster, or Gnutella etc...
This is eating heavily into the Universities internet bandwidth, as indeed are the
two suspected XDCC hosts.

Log Analysis
The University was able to supply me with three different formats of data, for a 5
day period. These are listed below in the table. The files were either alert files,
OOS files of scan files. This meant one file per day except for the OOS data for
the 08/05 which was supplied in two files.

OOS Files.
The OOS files are Out of Specification packet alerts. That is any packets that do
not conform to the normal tcp/ip standards are logged here. These logs include
the entire packet rather than just the header as in the case of the alert files.
These packets can be very interesting and are often a sign of serious network
problems, scanning activity or other malicious activities. Packets used in active
fingerprinting are often found here, as they frequently break the RFCs as a
means of identifying different OS stacks.

Alert Files.
Each line in the alert files corresponds to a packet that matches one of the snort

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

43/82

rules that the university's IDS is configured to use. Presuming a vanilla install of
snort this would equate to approximately 1900 rules. These can be tailored to a
sites needs by adding custom rules, and also pruning unrequited rules such as
IIS rules for a site that runs solely apache web servers etc... A typical entry from
the alert file would look like this:
05/07-00:46:13.953360 [**] CS WEBSERVER - external web traffic [**]
66.196.72.13:40777 -> MY.NET.100.165:80

Where the first field is a date/timestamp. This is followed by a delimiter field and
then the signature description and a further delimiter. Finally in this example we
have a source IP address:port pair, followed by a destination IP address:port
pair.

Scan Files.
The scan files are the result of triggers from the snort portscan preprocessor
'spp_portscan.c'.

File List:
Out of Spec Alert Scans

OOS_Report_2003_05_08_19128 alert.030507 scans.030507
OOS_Report_2003_05_08_19136 alert.030508 scans.030508
OOS_Report_2003_05_09_1240 alert.030509 scans.030509
OOS_Report_2003_05_10_3171 alert.030510 scans.030510
OOS_Report_2003_05_11_20776 alert.030511 scans.030511
OOS_Report_2003_05_12_28902

Detects List
The following table lists the attacks caught by the IDS of the five-day period,
sorted by type and listed in order of 'hits'. I have also listed the number of
different hosts and ports each attack/scan was seen being used against. If the
number of hosts or ports was less than three they are listed, this is indicated by
an 'H:' or a 'P:' preceding the list, otherwise I have simply listed the total
number. The signatures which generated greater than 5,000 alerts are in bold,
and will be examined further. These 14 attacks are responsible for over 75% of
all the alerts generated over the five-day period.

Attack/Scan Types

Description Hits # unique src
hosts

unique dst
hosts

unique
dst Ports

Incomplete Packet Fragments Discarded 317,240 112 71 4
TCP SRC and DST outside network 264,573 260024 168 90
SMB Name Wildcard

221,089 28548 41708
P: 137,
56464

High port 65535 udp - possible Red Worm
- traffic 38,044 315 356 46
Tiny Fragments - Possible Hostile Activity 25,549 19 1366 P: 56464
spp_http_decode: IIS Unicode attack
detected 23,157 1166 1023 3
CS WEBSERVER - external w eb traffic

19,038 6675
H: MY.NET.100.165,

233.2.171.1
P: 80,
56464

High port 65535 tcp - possible Red Worm -
traffic 16,926 407 169 51

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

44/82

Description Hits # unique src
hosts

unique dst
hosts

unique
dst Ports

[UMBC NIDS IRC Alert] IRC user /kill
detected possible trojan. 13,097 92 76 6011
TFTP - Internal TCP connection to external
tftp server 12,045 56 69 79
[UMBC NIDS IRC Alert] Possible sdbot
floodnet detected attempting to IRC 9,457 6 20 9
spp_http_decode: CGI Null Byte attack
detected 8,678 222 143

P: 80, 8080

Null scan! 7,393 126 126 342
EXPLOIT x86 NOOP 5,387 190 161 113
TCP SMTP Source Port traffic

2,963

H:
128.32.124.219,
211.147.25.99 2919 3

Queso fingerprint 2,708 405 159 89
MY.NET.30.4 activity 1,617 307 H: MY.NET.30.4 10
[UMBC NIDS IRC Alert] XDCC client detected
attempting to IRC 1,555 11 17 5
IDS552/web-iis_IIS ISAPI Overflow ida nosize 1,114 641 860 P: 80
SUNRPC highport access! 1,014 51 38 P: 32771
connect to 515 from outside 891 3 3 P: 515
CS WEBSERVER - external ftp traffic 865 156 H: MY.NET.100.165 P: 21
Possible trojan server activity 812 66 98 20
MY.NET.30.3 activity 571 45 H: MY.NET.30.3 7
TFTP - Internal UDP connection t o external
tftp server 508 36 50 13
[UMBC NIDS IRC Alert] Possible Incoming
XDCC Send Request Detected. 360 13 8 17
External RPC call 257 4 257 P: 111
NMAP TCP ping! 209 75 83 74
IRC evil - running XDCC 147 11 17 5
SNMP public access 146 15 12 P: 161
EXPLOIT x86 setuid 0 121 115 99 95
EXPLOIT x86 setgid 0 71 65 63 55
IDS552/web-iis_IIS ISAPI Overflow ida
INTERNAL nosize 66 7 63

P: 80

[UMBC NIDS IRC Alert] User joining Warez
channel detected. Possible XDCC bot 57 10 7 12
Notify Brian B. 3.54 tcp 42 37 H: MY.NET.3.54 6
Notify Brian B. 3.56 tcp 40 36 H: MY.NET.3.56 6
Probable NMAP fingerprint attempt 30 14 14 18
SMB C access 30 25 11 P: 139
EXPLOIT x86 stealth noop 24 9 8 8
NIMDA - Attempt to execute cmd from
campus host 21 5 21

P: 80

FTP passwd attempt
16 13

H: MY.NET.24.27,
MY.NET.24.47

P: 21

SYN-FIN scan! 13 7 6 13
[UMBC NIDS IRC Alert] User joining XDCC
channel detected. Possible XDCC bot 7 6

5
7

RFB - Possible WinVNC - 010708-1

3

H:
MY.NET.70.225,
MY.NET.202.14

H: 68.55.61.117,
24.55.220.133

3
TFTP - External UDP connection to internal
tftp server 2

H:
MY.NET.202.238

H: 213.64.169.124 P: 4258,
122

[UMBC NIDS IRC Alert] K \:line'd user
detected possible trojan.

2

H: 66.252.13.46,
38.115.134.46

H:
MY.NET.205.118,
MY.NET.201.26

P: 3353,
3509

Attempted Sun RPC high port access
2

H: 129.6.15.29,
216.148.215.98

H: MY.NET.163.23,
MY.NET.117.25

P: 32771

DDOS mstream client to handler 2 H: 64.237.37.253 H: MY.NET.205.42 P: 12754
EXPLOIT NTPDX buffer overflow 1 H: 12.129.72.179 H: MY.NET.84.198 P: 123

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

45/82

Description Hits # unique src
hosts

unique dst
hosts

unique
dst Ports

Back Orifice 1 H: 66.28.238.131 H: MY.NET.163.119 P: 31337
site exec - Possible wu-ftpd exploit -
GIAC000623 1

H:
24.186.224.197

H: MY.NET.222.30 P: 21

NETBIOS NT NULL session
1

H:
216.201.238.148

H: MY.NE T.132.26 P: 139

Fragmentation Overflow Attack 1 H: 64.109.11.16 H: MY.NET.235.202 P: 0
NIMDA - Attempt to execute root from
campus host 1

H:
MY.NET.97.105

H: 130.223.20.60 P: 80

DDOS TFN Probe 1 H: 129.41.2.24 H: MY.NET.16.13

 Hosts List77
Host Service Host Service Host Service

mirrors.umbc.edu ftp 130.85.249.18 www-http resnet1-
64.resnet.umbc.edu

 www-http

linux1.gl.umbc.edu ssh 130.85.252.251 www-http resnet4-252-133-
r.resnet.umbc.edu

 www-http

media.umbc.edu telnet resnet2-
221.resnet.umbc.edu

 www-http www.umbc.edu www-http

resnet-gw.umbc.edu
telnet

telnet 130.85.130.167 www-http psc-a.engr.umbc.edu www-http

media.umbc.edu telnet telnet pp1.umbc.edu www-http 130.85.130.14 www-http
zinc.hhmi.umbc.edu
smtp

smtp resnet2-
752.resnet.umbc.edu

 www-http rwd-233.umbc.edu www-http

resmail.umbc.edu smtp smtp 130.85.130.34 www-http rwd-226.umbc.edu www-http
accessct-
server.umbc.edu

 smtp cyclone.umbc.edu www-http lab1-05.ifsm.umbc.edu www-http

mailserver -
ng.cs.umbc.edu

 smtp 130.85.130.131 www-http 130.85.130.21 www-http

ppp-
041.dialup.umbc.edu

 smtp resnet1-
150.resnet.umbc.edu

 www-http bio-86-
19.pooled.umbc.edu

 www-http

resnet2-
525.resnet.umbc.edu

 smtp resnet3-
46.resnet.umbc.edu

 www-http baltimore.umbc.edu www-http

asp1.umbc.edu smtp 130.85.194.245 www-http ehs.UMBC.EDU www-http
techport.umbc.edu smtp 130.85.112.216 www-http userpages.umbc.edu www-http
mx2in.umbc.edu smtp resnet4-250-

122.resnet.umbc.edu
 www-http pplant-80-

232.pooled.umbc.edu
 www-http

130.85.5.14 smtp resnet3-
437.resnet.umbc.edu

 www-http rwd-237.umbc.edu www-http

mx3in.umbc.edu smtp resnet2-
690.resnet.umbc.edu

 www-http rwd-97.umbc.edu www-http

mx4del.umbc.edu smtp 130.85.130.86 www-http resnet1-
208.resnet.umbc.edu

 www-http

kai.umbc.edu smtp chem-87-
44.pooled.umbc.edu

 www-http resnet2-
362.resnet.umbc.edu

 www-http

mx1in.umbc.edu smtp 130.85.130.64 www-http lan2.umbc.edu www-http
ariel2.lib.umbc.edu smtp noah.umbc.edu www-http linux2.gl.umbc.edu pop3
mx1del.umbc.edu smtp 130.85.130.122 www-http news.umbc.edu nntp
UMBC3.UMBC.EDU domain ndms.umbc.edu www-http 130.85.190.36 snmp
ecs335pc02.cs.umbc.e
du

 www-
http

ccrf.umbc.edu www-http laserjet-
304b.umbc.edu

 snmp

wt-pubpol-
printer.umbc.edu

 www-
http

130.85.130.91 www-http wtchem-
printer.umbc.edu

 snmp

linux3.gl.umbc.edu www-
http

cms.umbc.edu www-http 130.85.130.200 snmp

bb-app4.umbc.edu www- 130.85.137.18 www-http physics205printer.um b snmp

77These Hosts were deemed to be running the following services based on alerts generated and DNS

resolution. Some seem expected such as SMTP to mailserver-ng.cs.umbc.edu, others such as snmp to
the printers, and the mass of www servers and number of smtp servers perhaps less expected.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

46/82

Host Service Host Service Host Service
http c.edu

wireless-168-
218.umbc.edu

 www-
http

bookstore.umbc.edu www-http gestprinter.umbc.edu snmp

vm-db.umbc.edu www-
http

resnet1-
277.resnet.umbc.edu

 www-http resnet3-
457.resnet.umbc.edu

 synoptics -
trap

umbc7.umbc.edu www-
http

130.85.130.27 www-http 130.85.3.56 microsoft -ds

130.85.249.135 www-
http

130.85.130.40 www-http 130.85.3.54 microsoft -ds

resnet3-
155.resnet.umbc.edu

 www-
http

project.umbc.edu www-http lan1.umbc.edu microsoft -ds

tfc184.umbc.edu www-
http

centrelearn.umbc.edu www-http ecs125xerox.ucs.umbc
.edu

 printer

resnet1-
223.resnet.umbc.edu

 www-
http

resnet3-
113.resnet.umbc.edu

 www-http newprint.umbc.edu printer

 anubis.cs.UMBC.EDU www-http mail.umbc.edu imap

Networks of interest
The following networks were identified during the course of the analysis:

IP Range Suspected network IP Range Suspected network
130.85.201.0 - 253.0 resnet 130.85.115.0-116.0 biology
130.85.168.0 – 171.0 wireless (154 guest -

wireless)
 130.85.97.0-98.0 dialup

130.85.166.0 , 100.0, 99.0 Computer Science 130.85.99.0 engineering
130.85.162.0-163.0 physiscs 130.85.90.0 ifsm
130.85.145.0 maths 130.85.130.0 UCS
130.85.140.0 chemistry 130.85.53 55 56.0 ucslab
130.85.138.0 ucslab 130.85.54.0 acslab (Macs)
130.85.136.0 dcs 130.85.7.0 IRC

Most Frequent Alerts

Alert #1 ''Incomplete Packet Fragments Discarded''
Snort Rule:-n/a- This message is generated by a preprocessor rather than a
snort signature rule. It indicates the university is using the 'frag2' or 'defrag'
preprocessor.
Snort SID: n/a Alerts: 317,240
Unique Hosts - SRC : 112 DST : 71
The frag2 preprocessor was a replacement for the defrag preprocessor, both
are used to reassemble packet fragments so that the snort detection engine can
be run on the entire packet. They will often trigger when the first fragment is not
seen, which can be an indication of an attempted attack, such as an attempt to
DOS the IDS, to allow other attacks to take place. Insertion attacks also often
use partial fragments.
The majority of alerts were triggered by these two hosts.

Alert Message Src Host Src Port Dst Host Dst port Total
 Incomplete Packet Fragments
Discarded MY.NET.202.238 0 213.64.169.124 0 316,286

That is 316,286 out of a total of 317,240 alerts, or 99.6% of all alerts. The
source and destination port indicated by this alert are seriously suspicious, or
are they? Remember that these fragments have triggered the preprocessor to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

47/82

alert because they were incomplete, so we can assume that the TCP header
was missing hence the lack of port information.
So who is our mystery external host and why is MY.NET.202.238 sending him
all these fragments that are triggering the preprocessor?
First off lets look at the external host.78
nslookup 213.64.169.124
h124n2fls33o812.telia.com

So this host is another RIPE address, this time it is situated somewhere in the
Netherlands.
A quick check on MyNetWatchman reveals the following:79

Most
Recent

Event Date

Agent
Alias

 Agent
Type

Log
Type

Target Ip # of
Ips

Proto Target
Port

Port/Issue Dsc. Src Event
Count

12 May 2003
08:19:26

jankemi Perl Cisco
PIX

134.29.x.x
12 6 80

HTTP Probable
CodeRed/Nimda 1483 34

11 May 2003
18:37:28

Computer SOAP/X
ML

Zone
Alarm

10.0.x.x
2 6 80

HTTP Probable
CodeRed/Nimda 5034 2

10 May 2003
22:12:16

Atlas win32 Zone
Alarm

213.64.x.x 2 6 80 HTTP Probable
CodeRed/Nimda 18296 6

10 May 2003
17:18:52

Unspecifi
ed

win32 Zone
Alarm

24.83.x.x 1 6 80 HTTP Probable
CodeRed/Nimda 53455 3

8 May 2003
21:39:28

aclark win32 Zone
Alarm

192.168.x.x 1 6 80 HTTP Probable
CodeRed/Nimda 10866 2

These two hosts were also involved in the following alerts:
Alert Message Source IP Src port Dst IP Dst port totals

 High port 65535 udp - possible Red
Worm - traffic

MY.NET.235.10 2 0 213.64.169.124 0 1

 TFTP - External UDP connection to
internal tftp server

MY.NET.202.238 69 213.64.169.124 122 2

 High port 65535 udp - possible Red
Worm - traffic

MY.NET.202.238 3369 213.64.169.124 65535 8

There were also some SMB wildcard alerts triggered for the internal host from a
number of other hosts, but I believe that this is just noise.
The first alert for the incomplete fragments is at 05/10-20:30:01 with the last
being at 05/11-23:54:01 a period of 26 and one half hours. So although there
were over 316,000 packets sent they were spaced out over a fairly large period,
not the usual pattern for a DOS attack.
Also in a post on the snort users mailing list Marty Roesch had the following to
say regarding a similar output.

''That means that you're using the defrag preprocessor instead of the
newer frag2 preprocessor and that you should switch to frag2. :) The
defrag preprocessor had some fairly nasty failure modes and has since
been superceded[sic] by frag2, so I'd recommend using that for now.'' 80

MY.NET.202.238 host may also be running a TFTP server, which is accessible
from the outside world, or perhaps more likely based on the MyNetWatchman
data is infected with nimda.81 Interestingly there have been 30 reports listed

78For more information see the External Address Registrations Section.
79MyNetWatchman - http://www.mynetwatchman.com/LID.asp?IID=30378477
80Roesch, Mart y
81Nimda often propagates itself in part via tftp copying the file 'Admin.dl l' from an infected to host to a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

48/82

against this IP at MyNetWatchman. The details are no longer available,
presumably because the host has been cleaned.
Recommendation: This could well be a false positive. The university should
check if it is indeed using the latest preprocessor, if not an upgrade is highly
recommended as the noise this alert is generating is masking other more
interesting traffic. If this is not the case then the MY.NET.202.238 host should
be examined for possible contamination or some form of network problem. I
think this is more likely else we would see the alert trigger for more hosts. Also
incoming TFTP traffic should be blocked at the perimeter, unless it is explicitly
required, in which case it should be restricted as much as possible.
MY.NET.202.238 should be examined as a matter of course for possible nimda
infection.

Alert #2 ''TCP SRC and DST outside network''
Snort Rule: n/a
Snort SID: n/a Alerts: 264,573
Unique Hosts - SRC : 260,024 DST: 168
Over a quarter of a million triggers for this alert!! What is going on?
The first thing one notices is that there are nearly as many different source
addresses as there are host addresses. The great majority are in the 90.0.0.0/8
address range, nearly 260,000 alerts.
My initial thought was this is an automated scan of some sort, sweeping whole
segments. But this does not fit as neither addresses are in our network, so
either we have a serious routing issue, or more likely one of the addresses is
spoofed.
Ignoring the source addresses which are not in the 90.0.0.0/8 block the first
trigger we see was at '05/08-05:22:31.129328' to 216.74.66.94:6667, and the
last packet is at 05/08-05:28:48.219065'. That is a total elapsed time of six
minutes and17 seconds. During this short period this one host received
151,890 packets! That is an average of over 400 packets per second! Could
this be a DOS82 attack, or maybe a DDOS83 ?
A quick look at my /etc/services file reveals the following:

grep 6667 /etc/services
 ircd 6667/tcp # Int ernet Relay Chat
 ircd 6667/udp # Inter net Relay Chat

Now that is interesting. The traffic was directed at an IRC84 server. In fact this is
Luna.Elite-Irc.Net, which can be seen by connecting to port 6667 on this IP:

Welcome to the Elite-Irc IRC Network scouser!~scouser@X.X.X.X (from Luna.Elite-Irc.Net)
Your host is Luna.Elite-Irc.Net, running version Unreal3.2-beta17 (from Luna.Elite-Irc.Net)
This server was created Sat Jun 21 2003 at 22:05:13 EDT (from Luna.Elite-Irc.Net)
Luna.Elite-Irc.Net Unreal3.2-beta17 iowghraAsORVSxNCWqBzvdHtGpD

new victim.. - Schmelzel, Paul

82DOS - Denial of Service Attack.
83DDOS - Distributed Denial of Service Attack.
84IRC - Internet Relay Chat, a real time communication system often used by hackers, for sharing

information, and lau nching DDOS attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

49/82

The target here is a host in the Interserver Inc address space, according to a
quick search using Sam Spade.org.

Virtual Development INC VDI-1-BL (NET-216-74-64-0-1)
 216.74.64.0 - 216.74.127.255
Interserver, Inc INTERSERVER-216-74-66-0-24 (NET-216-74-66-0-1)
 216.74.66.0 - 216.74.66.255

Next we see a similar pattern, only this time it is from addresses in the 94.66.0.0
- 94.93.0.0. range, and the target is now 62.67.226.90:90. That equates to
111,717 packets in two minutes and 37 seconds.
This time I had to consult IANA to find something out about TCP port 90:

PORT 90 also being used unofficially by Pointcast #####
 dnsix 90/tcp DNSIX 85 Securit Attri bute Token Map

Pointcast seems the more likely here. The target is not a US military or
government IP address, but in fact a European address owned by RIPE.86
A traceroute to this address indicates that it is in Germany somewhere near
Dusseldorf.

....
12 ge-9-0-0.core1.dus1.de.inetbone.net (62.67.36.186) 304.651 ms 303.956 ms 305.317 ms
13 ge-0-0.customer1.dus1.de.inetbone.net (213.203.192.230) 302.312 ms 301.956 ms 302.554
ms
14 62.67.226.90 (62.67.226.90) 303.762 ms 302.910 ms 303.127 ms

So what is going on here?
Firstly it seems highly probable that all the 90.0.0.0/8 addresses are spoofed in
order to hide the true source of the packets. This could be easily established if
we had access to some packet captures. One would hope the universities
routers would simply drop these packets, as they have no reason to be on the
network. The majority of the packets come in large bursts to the two targets
identified above. This seems to fit in with some sort of DOS attack. The first
target is possibly an IRC server. IRC is a common tool of the DDOS, used to
martial armies of contaminated hosts. These hosts are infected usually with a
trojan which will log on to a specific IRC channel once activated and wait for
commands. 400pps is a lot of packets especially if they are large packets, but it
is not an unbelievable amount87. Perhaps then this is part of a DDOS attack and
we are only seeing a small fragment of it, other 'zombies' could well be
contributing from other networks.
Recommendation: There is enough evidence here to indicate possible
compromised hosts on the network. Analysis of IDS packet traces could be
used to identify which hosts are generating these packets if they have been
kept, these hosts can then be examined. If not I suggest some form of archiving
of IDS packet dump data, so future problems will be easier to solve, and
continued monitoring of this type of traffic.

85Defense Intelligence Security Information Exchange -http://www.fas.org/news/reference/terms/d.html
86RIPE (Réseaux IP Européens): A consortium of '' Regional Internet Registries that exist in the world

today, providing allocation and registration services that support the operation of the Internet globally.
... primarily for the benefit of the membership in Europe, the Middle East, Central Asia and African
countries located north of the equator.''

87I managed to generate over 800pps from my test PC while transferring very large files over a 100Mb
link.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

50/82

Alert #3 ''SMB Name Wildcard''
Snort Rule:
alert UDP $EXTERNAL any ->; $INTERNAL 137 (msg:
"IDS177/netbios_netbios-name-query"; content:
"CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|00 00|"; classtype: info-
attempt; reference: arachnids,177;)88
Snort SID: arachnids 177 Alerts: 221,089
Unique Hosts - SRC : 28,548 DST: 41,708
According to whitehats.org, ''This event indicates a standard netbios name table
retrieval query.''. So this could well be legitimate traffic. It is used as part of the
file sharing protocol for name resolution, however it could well provide, host
names, domain names, and logged on user details to a would be attacker.
There were over 220,000 separate triggers for this event, which could well be
normal background noise of a busy University campus. However the traffic is
almost entirely incoming to hosts on the University network from the Internet.
This indicates attempts to access file shares from external networks. This is a
serious concern. As of 27 June 2003 the incidents.org website was listing the
netbios-ns port (137) as the most attacked port on the Internet. It goes on to list
eight vulnerabilities for this port from CVE.89
Recommendation: This incoming traffic should be blocked at the border
routers/firewalls.

Alert #4 ''High port 65535 udp - possible Red Worm– traffic'' & Alert #8
''High port 65535 tcp - possible Red Worm – traffic''
Snort Rule: n/a - custom rules
Snort SID: n/a Alerts: #4: 38,044 #8: 16,926
Unique Hosts - SRC: #4: 315 #8: 407 DST: #4: 356 #8: 169
Red worm, or 'Adore' worm is a collection of programs and scripts, which
attempt to gain unauthorized access to systems running LPRng, rpc-statd, and
the Berkeley Internet Name Domain (BIND).
Should 'Adore' find a vulnerable system it will install a trojaned version of 'ps'
and the wait for a control message. This comes in the form of a crafted icmp
packet. Once the control packet arrives 'Adore' opens a back door on the
system listening on TCP port 65535. Once infected it would classically attempt
to 'transmit data identifying the compromised systems to four different e-mail
addresses, two of which are in China and two located in the U.S.'90
The worm will also randomly generate the first 2 octets of an IP address and
then scan that entire subnet range for any other vulnerable systems.

88I could find no alert with the ''SMB Name Wildcard'' signature message, however the net bios-name-

query signature which looks for the infamous 'CKAAA..' payload above sourced from whitehats.org
would would alert on this.

89See Appendices for a listing.
90McDonald, Tim

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

51/82

According to J Anthony Dell91 however the worm uses TCP not UDP for its back
door, so we should be able to ignore the alerts for the port 65535 UDP activity.
Port 65535 is a legitimate port used by hosts as an ephemeral port, so an
important question has to be if these alerts were due to stimulus packets or
responses. If the packets were responses then the behavior is just normal
network traffic, however if they were stimulus packets then we should be
suspicious. This would be easier to tell with the TCP alert as it is a stateful
protocol, so we could assume the signature would only trigger on SYN packets.
This could account for the lower number of triggers.
For these alerts to be of concern we should see connections to port 65535 on a
'MY.NET' host, preferably with some corroborative evidence, either large scans,
or emails emanating form this host. There may also be evidence of prior
reconnaissance although this could well be in earlier logs.
Using this as a guide I get six candidates from the TCP alerts and 15 from the
UDP alerts.
Cross referencing for scanning activity gives me the following shortlist.

Source IP Initial Alert Scans
 130.85.222.22 UDP 13
 130.85.234.190 UDP 341
 130.85.249.122 TCP 1,156
 130.85.252.78 TCP 1,485
 130.85.201.58 UDP 1,856
The scanning activity of these hosts does not match the expected behavior of
an 'Adore' infected host, as none of the scans are for the services which this
worm targets.
Looks like a false alarm, however it would be interesting to know what programs
these machines are running bound to port 65535, particularly the two TCP
triggering hosts.
Recommendation: The rules that are attempting to catch Adore should be
tightened, to only trigger on attempts to establish a connection to port 65535
TCP on an internal host. Further to this I recommend blocking un-established
incoming traffic to port 65535 TCP.

Alert #5 ''Tiny Fragments - Possible Hostile Activity''
Snort Rule: n/a - minfrag preprocessor
Snort SID: n/a Alerts: 25,549
Unique Hosts - SRC: 19 DST: 1,366
The minfrag preprocessor will generate an alert on any fragment that is smaller
than a set size. It operates on the assumption that modern network hardware
has no reason to fragment a packet smaller than a certain size. So a fragment
that is below this threshold value is a possible indication of an attacker trying to
slip a packet in through your perimeter defenses. The packets can be so small
as to have information such as port numbers in subsequent packets. The
fragment offsets can be such that it overlaps a previous fragment thereby

91Dell, J Anthony

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

52/82

overwriting the port number with the attackers true target port.
The majority of the alerts were triggered by traffic from MY.NET.235.110 to
hosts on the internet. In fact this host generated 25,149 alerts out of a total of
25,549. This host also triggered 2,857 alerts in the scan logs to a variety of
different external hosts.
Is this an attack then or something else, peer-to-peer file sharing applications
such as Gnutella have been known to generate false positive.92 There is some
evidence that this person uses KaZaa and Gnutella from their scanning
activities.
The inbound traffic that triggered this alert is probably of more concern.

Source IP Destination IP total Source IP Destination IP total
 68.212.64.248 MY.NET.250.50 151 141.156.193.216 MY.NET.217.222 1
 68.212.64.248 MY.NET.250.194 91 82.65.127.218 MY.NET.226.178 1
 213.23.14.81 MY.NET.210.82 83 65.71.58.229 MY.NET.209.206 1
 4.47.132.210 MY.NET.250.194 24 64.113.65.83 MY.NET.229.126 1
 209.50.91.146 MY.NET.222.118 16 219.53.0.47 MY.NET.235.78 1
 4.33.2.230 MY.NET.235.86 14 218.54.64 .26 MY.NET.204.26 1
 219.53.0.47 MY.NET.250.78 4 220.85.119.246 MY.NET.235.74 1
 61.102.204.119 MY.NET.217.6 4 218.15.242.31 MY.NET.100.10 1
 61.146.216.98 MY.NET.100.10 1 12.231.152.232 MY.NET.219.242 1
Looking for other alerts generated by these addresses shows a great deal of
interest in a number of hosts on the University network from 68.212.64.248 .

Alert Message Source Target Hits
 Queso fingerprint 68.212.64.24 8 MY.NET.250.50 1
 Tiny Fragments - Possible Hostile Activity 68.212.64.24 8 MY.NET.250.50 151
 Null scan! 68.212.64.24 8 MY.NET.250.50 112
 Tiny Fragments - Possible Hostile Activity 68.212.64.24 8 MY.NET.250. 194 91
 Null scan! 68.212.64.24 8 MY.NET.250.194 72
 Queso fingerprint 68.212.64.24 8 MY.NET.250.194 1
 Probable NMAP fingerprint attempt 68.212.64.24 8 MY.NET.250.194 1
 Tiny Fragments - Possible Hostile Activity 68.212.64.24 8 - 1
There are also similar entries in the scan logs. So who is our curious friend?
$ nslookup 68.212.64.248
 name = adsl-212-64-248.chs.bellsouth.net

So another broadband DSL user. No useful information on Dshield or
MyNetWatchman, but chances are this is a dynamically allocated IP anyway.
There is enough indication that this is information gathering on the part of
68.212.64.248 to warrant further monitoring.93
Recommendation: The hosts MY.NET.235.110, MY.NET.250.194,
MY.NET.250.50 should all be examined for possible compromise. The latter two
are both listed with MyNetWatchman.

Alert #6 ''spp_http_decode: IIS Unicode attack detected''
Snort Rule: n/a -http_decode preprocessor
Snort SID: Alerts: 23,157
Unique Hosts - SRC: 1,166 DST: 1,023
This alert is triggered by the snort preprocessor when it finds Unicode encoded

92Neohapsis, snort mailing list archive - ''Tiny Fragments '', Laurie Zirkle
93Registration details for this host are included in the 'Five External Hosts' section

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

53/82

characters94 in an HTTP data stream. Many evasion techniques make use of
Unicode, by encoding the characters or patterns that an IDS, firewall or
application may block or reject. The characters still have the same meaning but
are subtly disguised. In addition a number of applications have had problems
with the way they un-encode Unicode characters. It is a technique used for
evasion by tools such as whisker95, and for attack purposes by worms such as
Code Red and Nimda.
This signature has been marked as one that generates a large number of false
positives, especially if the traffic is having to deal with unusual character sets
such as Korean or Japanese etc..96
Some however do not appear totally innocent.
First we see our Unicode type attacks to these hosts:

TIME Alert message Src IP Dst IP hits
05/10/03 23:50 IDS552/web -iis_IIS ISAPI Overflow ida nosize 80.17.44.90 MY.NET.97.105 1
05/07/03 22:01 IDS552/web -iis_IIS ISAPI Overflow ida nosize 61.171.133.120 MY.NET.97.97 1

Next some attempts to run cdm.exe or root to other hosts

05/10/03 23:50
NIMDA - Attempt to execute root from campus
host

MY.NET.97.105 130.223.20.60
1

05/11/03 00:17
NIMDA - Attempt to execute cmd from campus
host

 MY.NET.97.105 130.94.230.29
8

05/11/03 21:36
NIMDA - Attempt to execute cmd from campus
host

 MY.NET.97.97 130.158.142.124
1

We also see 1205 scans for network shares from MY.NET.97.97 between
12:47:20 and 13:11:15 on the 8th May. This is nearly 24 hours after the probable
infection. On the 11th at 21:30:03 we then see a scan for web servers start,
which triggers 2,164 alerts.
Checking my two candidates for the source of infection with MyNetWatchman
gave me the following:97
Date/Time

(UTC)
Agent
Alias

Agent
Type

Log
Type

Target
Ip

of
target

Ips

IP
Prot

o

Target
Port

Port/Issue
Description

Src
Port

Exp. Event
Count

1 Jul 2003
13:45:56

jankemi Perl Cisco
PIX

134.29.x.x
17 6

HTTP Probable
CodeRed/Nimda 1166

mNW
Info 51

26 Jun
2003
09:44:50

gibosi win32 Zone
Alarm

128.146.x
.x

1 6

HTTP Probable
CodeRed/Nimda

3315

mNW
Info

1
24 Jun
2003
19:38:18

nullbob Perl Cisco
PIX

209.176.x
.x

1 6

HTTP Probable
CodeRed/Nimda

2416

mNW
Info

3
24 Jun
2003
00:11:02

ajg win32 Zone
Alarm

128.120.x
.x

1 6

HTTP Probable
CodeRed/Nimda

4549

mNW
Info

1
18 Jun
2003
01:03:22

joero9 win32 Zone
Alarm

128.118.x
.x

1 6

HTTP Probable
CodeRed/Nimda

4089

mNW
Info

1
61.171.133.120

15 May
2003

jankemi Perl Cisco
PIX

134.29.x.x
14 6

HTTP Probable
CodeRed/Nimda 3099

mNW
Info 257

94Unicode is a two-byte encoding method which covers all of the world's common writing systems.
95An IDS evasion tool developed by Rain Forest Pupp y.
96Gordon, Les M & Carpenter Carlin.
97The time stamp given is for the latest instance, and it appears theses machines are still infected with

Nimda! (1 July 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

54/82

Date/Time
(UTC)

Agent
Alias

Agent
Type

Log
Type

Target
Ip

of
target

Ips

IP
Prot

o

Target
Port

Port/Issue
Description

Src
Port

Exp. Event
Count

22:29:29

The following Link graph outlines the probable infection vector and subsequent
activity of the two hosts MY.NET.97.105, and MY.NET.97.97.

Recommendation: I recommend the University use the '--unicode' option for
this preprocessor to cut down on noise, or even perhaps use a bpf filter to
ignore outbound traffic to port 80, as it looks like this filter has triggered on at
least two legitimate cases. The two hosts identified above are almost certainly
infected with Nimda and should be examined.

Alert #7 ''CS WEBSERVER - external web traffic''
Snort Rule: n/a custom rule
Snort SID: n/a Alerts: 19,038
Unique Hosts - SRC: 6,675 DST: 2
It seems likely that this is a custom rule that triggers when external hosts
attempt to access the 'CS Web server’, which seems most likely to be
MY.NET.100.165. There are two instances of this rule triggering on destination
IP 233.2.171.1, which are I believe are errors, or corruption. It would follow then
that external hosts are not intended to be able to access this web server. It may
host sensitive research data etc.. It does appear to have been scanned but only

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

55/82

as part of a general sweep rather than a targeted scan.
Recommendation: Test the integrity of the filtering of web requests to this host,
possibly also introduce some host based filtering such as ipfilter, or iptables for
a Unix host, or tcpwrappers98 etc.. Analysis of the logs should tell us if these
requests are actually being serviced or not. Filtering these requests at the
border would reduce the amount of noise in the IDS reports, and provide an
additional layer of security for this server.

Alert #9 ''[UMBC NIDS IRC Alert] IRC user /kill detected possible trojan.''
Snort Rule: alert tcp $EXTERNAL_NET 6660:7000 ->; $HOME_NET any\
(content: "ERROR \:Closing Link\: "; nocase;\ flow: established;\ msg: "IRC user
/kill detected, possible trojan.";\ classtype:misc-activity;)99
Snort SID: n/a
Alerts: 13,097
Unique Hosts - SRC: 92 DST: 76
The /kill command is used to cause a client-server connection to be closed by
the server; it is sometimes available to users with 'operator' status. It breaks the
flow of data and can be used to stop large amounts of 'flooding' from abusive
users. It is often issued automatically by IRC servers when a user attempts to
login with a nickname that is already in use.100
This alert then is triggered whenever an 'ERROR \:Closing Link\:' message is
issued from and external IRC server (specified in this case to be 6660:7000) to
an internal client. Presumably the alert is intended to identify internal hosts
infected with trojans that use IRC channels as a form of communication. There
are not many legitimate reasons for a client to be /kill'd.
Of the internal hosts that triggered this alert, the following triggered ' IRC evil -
running XDCC101 ' also.

Alert Message Source IP total
 IRC evil - running XDCC MY.NE T.112.199 3
 IRC evil - running XDCC MY.NET.227.246 5
 IRC evil - running XDCC MY.NET.207.78 57

And the following also appeared in the scan logs.

Source IP Destination IP Dst port Scans
 130.85.194.131 192.168.19.7 4665 21
 130.85.238.158 213.65.128.83 65199 23
 130.85.235.102 66.151.181.39 7777 29
 130.85.226.178 61.122.21 2.188 6257 1,947
 130.85.196.193 24.0.51.70 17300 1,341,125
Interestingly 130.85.196.193 is an extremely noisy scanner looking for hosts

98 Wietse Venema's network logger, also known as TCPD o r LOG_TCP. Allows monitoring and filtering

of access to network services such as FTP, Telnet etc..
99 Courtesy of Nick Nelson < nick@arpa.com> - http://arpa.com .
100 Kalt, C - RFC 2812.
101 XDCC is 'eXtended Direct Client Communication protocol'. According to the RFC - 'It's primar y.

purpose allows the client to act as a file server, being automatically able to initiate DCC SEND
requests'.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

56/82

listening on port 17300. I investigate this further in my analysis of the 'Top
Talkers'102.
Recommendation: It is very difficult to identify if this is trojan activity. It may be
easier therefore to restrict the hosting of internal IRC servers to either none, or a
known group. Then block IRC traffic to all but these hosts either by filtering the
usual IRC ports or all incoming connection attempts. If the IRC servers list is not
empty then these hosts should be carefully monitored, and kept up to date with
regard to patches etc.. It would be nice if these servers could also be
quarantined from the rest of the University Network, as un-trusted hosts.
Investigate MY.NET.112.199, MY.NET.227.246, MY.NET.207.78,
130.85.196.193, 130.85.226.178, for evidence of compromise. The first three
are possibly being used as 'warez' servers for the distribution of illegal software,
movies, mp3s etc.. This is usually accomplished by compromising 'windows'
PCs due to externally accessible file shares and week Administrator passwords.
Incoming netbios traffic should be blocked at the perimeter, and the University
should ensure all campus hosts have adequate passwords.103

Alert #10 ''TFTP - Internal TCP connection to external tftp server''
Snort Rule: n/a custom rule
Snort SID: n/a Alerts: 12,045
Unique Hosts - SRC: 56 DST: 69
This is a custom rule that is designed to trigger whenever a host in
$HOME_NET connects to port 69 on an external host, ie one not within
$HOME_NET.
This could be a sign of a vulnerable web server transferring the nimda worm in
the form of 'admin.dll' from a previously infected server. There is no
corroborative evidence for this however such as any of these hosts triggering
'Attempt to execute cmd.exe from campus host' or mass scanning for web
servers etc..
There is a great deal of traffic from 66.42.68.210 to MY.NET.201.58 which
seems to be listening on UDP port 65535.

Alert Message Src IP Src port Dst IP Dst port Total
 High port 65535 udp - possible Red Worm -
traffic

MY.NET.201.5
8

65535 66.42.68.210 5122 42

 High port 65535 udp - possible Red Worm -
traffic 66.42.68.210 5121

MY.NET.201.58 65535 10,550

 High port 65535 udp - possible Red Worm -
traffic

MY.NET.201.5
8

65535 66.42.68.210 5121 11,001

Previous scanning activity by MY.NET.201.58 host.
Protocol Source IP Destination IP Target port Total

 UDP MY.NET.201.58 66.42.68.210 5122 18
 UDP MY.NET.201.58 66.42.68.210 5121 58

102Aka 'Mr Nois y' - Top talkers.
103Password auditing programs such as lophtcrack etc.. could be used by the campus administrators.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

57/82

This makes me think that 201.58 is looking for a NeverWinter Nights server104.
Recommendation: If there is a legitimate reason for some hosts to connect to
external TFTP servers then there should be explicit exceptions placed into the
snort config, or custom rules file. Otherwise outgoing TFTP connections should
be blocked at the perimeter.

Alert #11 ''[UMBC NIDS IRC Alert] Possible sdbot floodnet detected
attempting to IRC''
Snort Rule: n/a - custom rule
Snort SID: n/a Alerts: 9,457
Unique Hosts - SRC: 6 DST: 20
This rule would appear to be a custom rule similar to the one used in alert #9. It
is difficult to deduce how accurate it is without being able to look at the rule, as
such I will assume no false positives.
The sdbot and floodnet are trojans that give back door access to the victims
machine via IRC. The trojan contacts an IRC channel via a built in IRC client
and waits for instructions. It would seem likely that it is these commands that
along with the IRC channel on a connection to port 6660:7000 that the snort
signatures look for. 105
There are only five internal hosts that are triggering this signature for outbound
connections:

Source IP Hits
MY.NET.97.122 1
MY.NET.205.146 1
MY.NET.97.37 1
MY.NET.97.43 1
MY.NET.195.99 6741
The majority of the alerts are from 195.99, which has also triggered alerts for '
IRC evil - running XDCC '.106
Recommendation: Investigate the five hosts listed above for evidence of
compromise. Blocking IRC from the University would be nice, but hard to police.
No doubt it would also prove highly unpopular.

Alert #12 ''spp_http_decode: CGI Null Byte attack detected''
Snort Rule: n/a -preprocessor
Snort SID:
Alerts: 38,678
Unique Hosts - SRC: 222 DST: 143
This is an alert triggered by the spp_http_decode preprocessor indicating it has
seen an instance of '%00' (an escaped Null) in the data. This is attempting to
catch malicious input to cgi scripts notably those written in perl.
The exploit is possible because perl unlike a lot of languages (importantly

104A popular multi -player Role playing game.
105Symantic Security Response
106See Alert #9 ''[UMBC NIDS IRC Alert] IRC user /kill detected possible trojan.'' for details.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

58/82

including C as we will see later) allows the null character as part of a variable,
and does not treat it as a string delimiter. In the words of RFP107 as far as perl is
concerned:

"root" != "root \0". But, the underlying system/kernel calls are progr ammed in C, which DOES
recognize NUL as a delimiter.

So in the above example a check for 'root' will fail in perl, but the system call will
only see 'root'! As with many content-based signatures this alert is prone to a
great deal of false positives.
Recommendation: The best defense for this form of attack is good coding
practices for CGI code on the University's web servers, especially any that are
accessible from the Internet. Un-tainting all user input data should be standard
practice, escaping meta characters such as `'\"|*?~<>^()[]{}$\n\r and
removing any NULL characters completely. I would suggest, as with the IIS
Unicode alerts, disabling this feature with the '-cginull' option to the
spp_http_decode preprocessor configuration line.

Alert #13 ''Null scan!''
Snort Rule: alert tcp $EXTERNAL_NET any ->; $HOME_NET any (msg:"SCAN
NULL"; flags:0; seq:0; ack:0; reference:arachnids,4; classtype:attempted-recon;
sid:623; rev:1;)
Snort SID: 623
Alerts: 7,393
Unique Hosts - SRC: 126 DST: 126
A Null scan is a TCP scan where the attacker sends a TCP packet with a
sequence number and acknowledgment number both set to 0, as well as all the
control bits set to 0, that is no flags set. The following packet was generated by
one of my lab hosts running the nmap tool108 and then sniffing the wire using
tcpdump.

#nmap -sN 203.96.152.15
myhost.63295 > 203.96.152.15.26: . [tcp sum ok] win 3072 (ttl 50,
id 14707, len 40)
4500 0028 3973 0000 3206 ac32 xxxx xxxx
cb60 980f f73f 001a 0000 0000 0000 0000
5000 0c00 0960 0000

As you can see from this dump none of the TCP flags are set - 0x5000 indicates
a TCP header length of 5x(32-bit) words, and no reserved bits set or flags. The
ACK and SEQ numbers are also both zero as we would expect.
This kind of packet is crafted to evade some packet filtering firewalls which often
look for inbound SYN packets, but let through other TCP packets without
inspecting them. The technique relies on the IP stacks of the target hosts
following the RFC and sending back a reset on a port they are not listening,
hence by deduction one can find the listening ports. It can also interestingly be
used against hosts that do not follow the RFC as a means of OS identification,
notably windows95/NT machines.

107Rain Forest Puppy - www.wiretrip.org
108Nmap is available from www.insecure.org.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

59/82

The following two source-target pairs accounted for over 4000 of the 7,393 'Null
Scan' alerts.

Alert Message Source IP Dest IP Total
Null scan! 64.123.89.20 5 MY.NET.252.134 1566
Null scan ! 216.78.252.2 20 MY.NET.222.54 2465

Other alerts for 64.123.89.205 are:

Alert Message Src IP Src Port Dst IP Dst Port Totals
 Queso fingerprint 64.123.89.205 54666 MY.NET.252.134 31532 2
 SYN-FIN scan! 64.123.89.205 60988 MY.NET.252.134 24814 3
 Probable NMAP fingerprin t
attempt 64.123.89.205 0 MY.NET.252.134 0 9

 Null scan! 64.123.89.205 0 MY.NET.252.134 0 1566

It certainly looks as if this host is targeting MY.NET.252.134 with some
reconnaissance scans.
64.123.89.205 appears to be a broadband user in the USA. (possibly Texas
looking at some traceroutes)
nslookup 64.123.89.205
 name = adsl-64-123-89-205.dsl.snantx.swbell.net

216.78.252.220 only figures in the Null scan alerts, but is also an broadband
user somewhere in the USA.
nslookup 216.78.252.220
 name = adsl-78-252-220.mia.bellsouth.net

Recommendation: Any traffic between 64.123.89.205 and MY.NET.252.134
should be investigated. If no records of traffic are kept future traffic should be
monitored. Also MY.NET.252.134 should be examined for evidence of
compromise.
Why is this host being targeted? If it holds classified research data etc., then it
would be wise to restrict access to this host more rigorously. Eg block incoming
connections from the Internet.

Alert #14 ''EXPLOIT x86 NOOP''
Snort Rule: alert ip $EXTERNAL_NET any ->; $HOME_NET
$SHELLCODE_PORTS (msg:"SHELLCODE x86 NOOP"; content: "|90 90 90
90 90 90 90 90 90 90 90 90 90 90|"; depth: 128; reference:arachnids,181;
classtype:shellcode-detect; sid:648; rev:5;)
or
alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS
(msg:"SHELLCODE x86 NOOP"; content:"|61 61 61 61 61 61 61 61 61 61 61 61
61 61 61 61 61 61 61 61 61|"; classtype:shellcode-detect; sid:1394; rev:3;)
Snort SID: 648, , 1394, arachnids181
Alerts: 5,387
Unique Hosts - SRC: 190 DST: 161
This alert indicates a packet that includes a NOOP sled, used to pad out a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

60/82

packet before some malicious code, designed to exploit a buffer overflow
vulnerability.
However this signature is notoriously noisy, generating a significant number of
false positives. This is particularly the case when there are large numbers of
binary downloads taking place.
This alert triggered for 113 different destination ports. If we assume binary
downloads from servers109 are false positives this leaves us with the following
alerts that triggered on a port < 1024.110

Alert Message Dst Host Src port Dst Port hits
 EXPLOIT x86 NOOP MY.NET.242.106 1112 413 2
 EXPLOIT x86 NOOP - 56464 0 2
The port zero traffic could well be a fragmentation issue (notice there is no
destination host either). I really wish I could see some packets. The traffic to
port 413 is listed as SMSP or storage management protocol, and I can find no
buffer overflow vulnerabilities relating to this port. It looks like these alerts are all
false positives.
Recommendation: The IDS should be tightened to not trigger on this alert
particularly for ports which are known to generate a large number of false
positives, such as FTP etc... This can be accomplished simply by not including
the shellcode rules at all in the config, or tightening up the
SHELLCODE_PORTS variable.

OOS Analysis
Top ten source host, destination IP pairs with OOS packets detected by the IDS.
Source IP Destination IP Destination Port Total alerts
130.136.4.208 MY.NET.217.54 6346 4573
66.117.21.91 MY.NET.224.134 1182 616
209.123.49.137 MY.NET.195.155 6885 387
213.197.10.95 MY.NET.223.46 6882 359
148.63.137.221 MY.NET.235.186 1852 358
148.63.151.3 MY.NET.235.202 3516 317
210.253.206.180 MY.NET.211.26 6011 289
209.123.49.137 MY.NET.218.254 6882 282
209.123.49.137 MY.NET.226.178 6881 239

Top Ten OOS generating ports and IPs

Dst Port Count Src IP
6346 5,667 130.136.4.208 4573

25 3,170 209.123.49.137 1194
1214 1,871 66.117.21.91 903

80 1,383 213.197.10.95 370
1182 1,000 148.63.137.221 368
6882 772 66.140.25.156 349
4662 641 148.63.151.3 318
6881 545 210.253.206.180 289
6011 457 213.186.35.9 244

109The alerts removed where for ports associated with: ftp, samba/netbios, http, directconnect, KaZaa,

nntp,
110An exploit of this nature is highly targeted as a buffer overflow exploit against a program running

usually with elevated privileges. It seems likely that the program would therefore be allocated a 'well
known' port in the 1- 1023 range.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

61/82

Dst Port Count Src IP
1852 359 193.230.240.106 235

Total 15,865 8,843
There is very little outbound OOS traffic according to the logs, in fact only 66
instances out of nearly 20,000, almost all coming from MY.NET.12.4 .
Of the inbound OOS traffic the majority of the alerts are generated from traffic
from 130.136.4.208 to MY.NET.217.54, over 4500 separate packets. In fact
MY.NET.217.54 was involved in OOS packet alerts from 18 different external
hosts. The packets from 130.136.4.208 came in two phases. Firstly on 06/05
between 13:09 and 13:39, then on 07/05 between 04:40 and 10:58.

=+=

05/06-13:09:33.325946 130.136.4.208: 3083 -> MY.NET.217.54:6346
TCP TTL:53 TOS:0x0 ID:46208 IpLen:20 DgmLen:60 DF
12****S* Seq: 0xFF5BC5BC Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 54358332 0 NOP WS: 0

=+= +=+=+=+=

05/06-13:09:33.363125 130.136.4.208:3092 -> MY.NET.217.54:6346
TCP TTL:53 TOS:0x0 ID:7530 IpLen:20 DgmLen:60 DF
12****S* Seq: 0xFEDC6C55 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 54358335 0 NOP WS: 0

=+=

05/06-13:10:03.977813 130.136.4.208:3301 -> MY.NET.217.54:6346
TCP TTL:53 TOS:0x0 ID:2164 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x1247541 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 S ackOK TS: 54361397 0 NOP WS: 0

=+=

05/06-13:10:19.238780 130.136.4.208:3391 -> MY.NET.217.54:6346
TCP TTL:53 TOS:0x0 ID:6371 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x1DF9BCF Ack: 0x0 Win: 0x16D 0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 54362924 0 NOP WS: 0

=+=

05/06-13:10:19.239554 130.136.4.208:3392 -> MY.NET.217.54:6346
TCP TTL:53 TOS:0x0 ID:63433 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x1D874E5 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 54362924 0 NOP WS: 0

=+=

05/06-13:10:49.759211 130.136.4.208:3586 -> MY.NET.217.54:6346
TCP TTL:53 TOS:0x0 ID:6267 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x3E29763 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 54365976 0 NOP WS: 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

62/82

Port 6346 is the IANA allocated port for Gnutella-svc, more peer-to-peer file
sharing evidence! In the excerpts above the two high order Reserved bits have
been set in the TCP header. These are the TCP ECN bits, and are set when
ECN is employed to indicate congestion. In this case the '12' preceding the TCP
flags indicates both bits are set which means that the ECN-chow bit is set
notifying the receiver of congestion as well as the CWR bit which indicates that
the sender has cut it's congestion window.111 Was this p2p software simply
congesting the network which contained ECN enabled routers and nodes?
Nearly 15,000 of the 18,500 OOS packets had one of these two bits set, the
majority having both set as in the above examples. There seemed to be no real
pattern to this traffic apart from that one third of it was destined for
MY.NET.217.54, and took place in the two specified time slots.

SCANS
 The scans file was able to help clarify many of the alerts generated in the alert
logs. Looking at them in isolation for other anomalous behavior I decided to split
the scans into 'ingress' and 'egress' groups.

'Egress' scans:
There was a total of 1,998,621 scans from internal hosts during this short 5 day
period, the great majority of these are from one internal host scanning for hosts
listening on UDP port 17300112. Below is a quick summary of the top 15 scans
grouped by destination port (and target protocol) and ordered by frequency.
Proto Port Probable service Hits Proto Port Probable service Hits

UDP 20100 Soldier of Fortune II
(Game) 3,364 SYN 80 WWW / HTTP 13,882

 UDP 27005 HalfLife/CounterStrike
(Game) 3,627 UDP 0 Unix Port allocation 113 14,266

 UDP 6346 Gnutella-svc (file sharing) 3,683 UDP 22321 Backdoor.Dobol (Trojan) 17,057
 UDP 41170 "Blubster" (file sharing) 3,797 UDP 6257 WinMX (file sharing) 28,813
 UDP 14690 “Battlefield 1942” (Game) 4,426 UDP 53 Domain Name Service 35,983
 UDP 4672 Remote file access server 4,595 UDP 137 Netbios Name Server 65,587
 UDP 1214 KAZAA 7,845 SYN 17300 Kuang2 (Virus) 1,340,272
 UDP 7674 iMQ SSL tunnel 9,625
Most of the outgoing scans appear to be for either gaming or file sharing. The
exceptions would be the scans for web servers, Dobol, DNS and Kuang2.
The file sharing scans alone encompass more than 250 different internal
hosts,114 and totals more than 45,000 scans. One quarter of these from one host
130.85.207.230 searching for WinMX115 hosts.
Also of interest is 130.85.202.238 who scanned 213.64.169.124 for 45,530

111Floyd, S
112'The Super scanner ' in my Top Ten Talkers section
113In Unix network progra mming, specifying port 0 is used to ask for a dynamic port, ie the next freely

available port. This does not work on 'MS Windows' and can therefore be used to help identify the OS
of a host.

114This is from the top 15 scans only, and only includes outbound scans. I have not included the UDP 137
scans here as they could be an indicator of worm activity rather than simply file sharing.

115WinMX is a FREE file -sharing program, it utili ses a peer to peer network similar in c oncept to Napster
or KaZaa.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

63/82

different ports in one 18 hour period.
Recommendation: The hosts performing the scans for DNS, Dobol, Kuang2, or
Web Servers should be checked for abuse of University policy or possible
compromise. It would also seem that a great deal of university bandwidth is
being used by peer-to-peer file sharing utilities. This could prove very difficult to
curb without imposing much stronger border filtering, such as only allowing
explicitly permitted traffic in and out, and blocking everything else. Another
option could be to limit the bandwidth available to single hosts to say 64k,
unless there is a specific need. This however would require some form of traffic
shaping at the perimeter.
Hosts actively scanning suspicious ports:116

Src IP Dst port Hits Src IP Dst port Hits
 130.85.168.109 22321 1,353 130.85.97.36 137 3,766
 130.85.153.187 22321 1,419 130.85.97.233 137 4,423
 130.85.137.7 53 2,306 130.85.97.65 137 5,694
 130.85.97.143 80 2,528 130.85.97.34 80 6,955
 130.85.235.110 0 2,622 130.85.168.177 22321 7,619
 130.85.242.250 22321 4,552 130.85.202.238 0 14,236
 130.85.97.172 137 3,323 130.85.97.83 17300 22,664
 130.85.97.97 137 3,335 130.85.1.3 53 33,658
 130.85.196.193 17300 1,340,272

Ingress Scans:
There were a total of 289,099 inbound scans over the period covered by these
logs. I was more concerned with the outbound scanning in general as it is an
indication of suspicious behavior, bandwidth abuse or compromised hosts.
Scanning from the Internet is something that is always going to occur. The
amount of scans showing up though is perhaps a further indication of the
inadequacy of the perimeter filtering. The majority of these scans should never
make it into the University's network. As shown in the table below the scanning
is diverse with the vulnerability de-jour seemingly being the MS LANMAN DOS
attack as outlined in BUG-ID: 2002011117, followed by a list of the usual
suspects, file sharing applications etc..

Port Probable service Hits Port Probable service Hits
6112 dtspcd 1,018 554 Real Time Stream Control Protocol 4,268
21 FTP control 1,502 139 NETBIOS Session Service 5,270
6346 gnutella-svc 1,581 0 Unix Port allocation 6,200
22 telnet 2,558 135 DCE endpoint resolution 11,728
6588 AnalogX Proxy 2,904 17300 Kuang2 17,120
8080 WWW / HTTP 2,934 1080 SOCKS 21,550
3128 Squid Proxy 2,996 1433 Microsoft-SQL-Server 21,990
8000 iRDMI 3,058 80 WWW / HTTP 34,140
25 SMTP 3,477 445 Microsoft-DS 130,712
4000 Skydance 3,923
Recommendation: Many of these machines could simply be infected with a
worm or virus trying to find other vulnerable hosts to infect. Scans such as
these should be blocked at the University's perimeter. If the University runs

116Grouped by srcIP:dstPort and ordered by frequency.
117BUG-ID: 2002011 The default LANMAN registry settings on Windows 2000 could allow a malicious

user, with access to TCP port 445 on your Windows 2000, to cause a Denial of Service.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

64/82

hosts that are vulnerable to any of the attacks these scans are looking for, those
machines should be examined and patched immediately.

Top Talkers

The Squeaky Wheel - MY.NET.202.238
The majority of the traffic for MY.NET.202.238 is destined to 213.64.169.124 on
port 0. This was analysed in greater detail as part of my investigation of the ''
Incomplete Packet Fragments Discarded '' alerts.

Alert message Src port Dst Host Dst Port Hits
 Incomplete Packet Fragments Discarde d 0 213.64.169.124 0 316283
There is also a small amount of UDP 56464 traffic generating alerts. This could
be related to the NLANR/DAST Multicast Beacon118 project. The IP in question
resolves to resnet1-133, presumably a student's dormitory PC.
This traffic all seems to be benign in nature, although extremely noisy.

So small yet so noisy - MY.NET.235.110
The scan logs are full of this address scanning for port 0, often with strange
options. Looks like information gathering except that it is so noisy, definitely a
stealth scan in name only119. The scans start in the early hours of the morning of
the 7th and continue almost completely unabated for 92 hours through till late on
the 11th. The packets often have reflexive ports just to make them even more
peculiar, yet none are strange enough to make it into the OOS logs. They are
getting picked up by snort as 'Tiny Fragments - Possible Hostile Activity' which
explains the lack of TCP information.

The Super Scanner - 130.85.196.193
The host 130.85.196.193 scanned a total of 446,462 hosts in 489 different
scans. There were also a large number of SMB traffic to this host, with 329
wildcard alerts triggered by this IP. All bar one are TCP scans. There are also a
few 'IRC user /kill detected possible trojan' alerts for this IP. In total it is listed
1,341,176 times in the scan logs, 99% of those are for scans for port 17300.

Port 17300 is the standard port for ''.. a backdoor trojan called "Kuang2 The Virus." 120
This is an old virus borne trojan, circa 1999. It seems most likely that this host is
scanning for infected machines with the back door at port 17300 using some
form of automated scanning tool.
Other interesting traffic for this host (from scan logs),

Service KaZaa Web IRC
Hits 2 36 814

The port 80 traffic is no doubt web oriented, perhaps the user is looking for a

118NLANR/DAST Multicast Beacon - active measurement software that monitors the performance of a

multicast sessions run by The National Laboratory for Applied Network Research (NLANR).
119Stealth scans is a general name for scans other than syn scans, the idea being you look for closed ports

rather than open ports, then assume the rest are there but filtered.
120Patz, Kevin

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

65/82

web server to compromise or infect, or maybe a proxy server, but there are no
scans for 1080 or 3128 other ports associated with proxy servers such as
SOCKs or squid.
The 1214 traffic is most probably KaZaa file sharing traffic. While 6667 is the
well known port for IRC. So it would seem 130.85.196.193 is a user of both IRC
and KaZaa, or perhaps the machine is infected with a trojan that is seeking an
IRC server to join to await instructions?
We do not see much in the way of traffic from any of the scanned hosts, except
for a few entries in the scan logs.

TCP SRC and DST outside network [**] 0.0.0.0:50023 -> 64.12.185.119:80
TCP SRC and DST outside network [**] 0.0.0.0:49966 -> 64.12.185.119:6667
PORTSCAN DETECTED from 64.12.174.249 (STEALTH) [**]
PORTSCAN DETECTED from 64.12.174.185 (STEALTH) [**]
PORTSCAN DETECTED from 152.163.208.185 (STEALTH) [**]

One good turn deserves another, so perhaps some of the scanned hosts were
curious?
Recommendation: I strongly recommend further investigation of the internal
host 130.85.196.193 . It is being used in a manner that should be contrary to the
University's policy121, or has been compromised.

The File-share King - 130.85.207.230
130.85.207.230 was responsible for nearly 12,000 scans aimed at known peer-
to-peer application ports, notably WinMX. This one host accounts for nearly one
third of all WinMX scans during this five-day period. They also logged alerts for
scans for Napster and a number of common on line games. The IP resolves to
resnet1-442.resnet.umbc.edu, which indicates it is a student’s dormitory PC.
The usage of the five days was fairly bursty with most activity on the morning of
the 7th.

WinMX protégé. 130.85.205.178
Not the champ of WinMX scans but certainly the start of a concerted effort to
back up the entire Internet. This IP is responsible for nearly 5,000 scans for
WinMX. This user is almost as dedicated as the NWN user below racking up 22
hours of solid searching and leeching, covering all five days,. This included an
almost consistent 14-hour stretch on the 9th.

The Gamers
The following are using large quantities of university bandwidth to play on line
games.

MY.NET.201.58 - resnet1-24
NeverWinter Nights is the game of choice for this gamer be it the middle of the

121I do not have access the University's policy pertaini ng to the use of its network and equipment so I

cannot be sure.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

66/82

day or late into the night. This user is using up countless amounts of the
University's bandwidth feeding their role-playing addiction. No less than 58
hours during the five days! Usually logging on at about 9am and continuing on
till one or two the following morning.

130.85.197.66 - does not resolve.
This is our 'Battlefield 1942' player. Another dedicated on line gamer using
University bandwidth to feed their addiction. This time a more moderate 24
hours of on line gaming in a 5-day period. This user is somewhat more
organised, spending four to five hours on average in the evenings playing this
particular online game.

The IRC Bot - 130.85.195.99
This host does not resolve via DNS, but it is not in the ‘resnet’ network, which
makes it suspicious that it is using IRC so much. Added to this the number of
user /kill alerts it generates, this user is either a world champion at offending
IRC admins or more likely an IRC bot of some kind. Either way this IP is
responsible for over 17 thousand alerts in a 5-day period, almost entirely for IRC
bot related activity.

Tftp user - MY.NET.240.10
MY.NET.240.10 is involved in a great deal of TFTP traffic to a number of hosts
in the 64.12/16 network which is registered to AOL. In total over the five days
this host generated over 5000 alerts for external TFTP access. From the early
hours of 7th till the early hours of 12th, spanning the entire five day period. The
IP in question is another 'rasnet' host, so likely a student's dormitory PC. I
cannot tell why they are accessing these external TFTP servers so much but it
should certainly be looked into.

130.85.1.3 - DNS Server?
This host generated nearly 34,000 hits in the scan logs, almost all to port 53. Is
this a malicious user trying to find vulnerable BIND servers or just a busy name
server?
The IP resolves to UMBC3, and it is in a suspicious subnet, suggesting that it
may indeed be a hardworking campus server rather than a narcoleptic student
hacker.
A quick check using dig reveals it is serving DNS to the university and indeed
the internet at large:
$ dig @130.85.1.3 www.umbc.edu

;; QUESTION SECTION:
;www.umbc.edu. IN A

;; ANSWER SECTION:
www.umbc.edu. 86400 IN A 130.85.24.34

;; AUTHORITY SECTION:
umbc.edu. 86400 IN NS UMBC3.umbc.edu.
umbc.edu. 86400 IN NS UMBC4.umbc.edu.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

67/82

umbc.edu. 86400 IN NS UMBC5.umbc.edu.
;; ADDITIONAL SECTION:
UMBC3.umbc.edu. 86400 IN A 130.85.1.3
UMBC4.umbc.edu. 86400 IN A 130.85.1.4
UMBC5.umbc.edu. 86400 IN A 130.85.1.5

Thankfully my attempt to complete a zone transfer was denied, as was my
check for version bind.

$ dig @130.85.1.3 txt chaos version.bind
version.bind. 0 CH TXT "Yeah
Right"

Five External Candidates

Adore Worm infection or Role playing addiction?
This machine was investigated as part of my analysis of the 'High port 65535'
alerts.

Trying whois -h whois.arin.net 66.42.68.210

OrgName: Pac-West Telecomm, INC.
OrgID: PWTI
Address: 1776 W. March Lane
Address: Suite 250
City: Stockton
StateProv: CA
PostalCode: 95207
Country: US
NetRange: 66.42.0.0 - 66.42.127.255
CIDR: 66.42.0.0/17
NetName: MDSG-PACWEST-1BLK
NetHandle: NET-66-42-0-0-1
Parent: NET-66-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.MDSG -PACWEST.COM
NameServer: NS2.MDSG -PACWEST.COM
NameServer: NS3.MDSG -PACWEST.COM
NameServer: NS4.MDSG -PACWEST.COM
NameServer: NS5.MDSG -PACWEST.COM
NameServer: NS6.MDSG -PACWEST.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON -PORTABLE
RegDate: 2000-11-10
Updated: 2003 -05-28
TechHandle: ZP86-ARIN
TechName: Administrator
TechPhone: +1-800-722-9378
TechEmail: admin@mdsg -pacwest.com

OrgTechHandle: ZP86-ARIN
OrgTechName: Admini strator
OrgTechPhone: +1-800-722-9378
OrgTechEmail: admin@mdsg -pacwest.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

68/82

DoS Fragger?122
213.64.169.124 - h124n2fls33o812.telia.com

inetnum: 213.64.0.0 - 213.64.255.255
netname: TELIANET
descr: Telia Network services
descr: ISP
country: SE
admin-c: TR889-RIPE
tech-c: TR889 -RIPE
status: ASSIGNED PA
notify: mntripe@telia.net
notify: backbone@telia.net
mnt-by: TELIANET-LIR
changed: amar@tel ia.net 20010404
changed: aca@telia.net 20020109
source: RIPE
route: 213.64.0.0/14
descr: TELIANET-BLK
origin: AS3301
mnt-by: TELIANET-RR
changed: rr@telia.net 20010405
source: RIPE
role: TeliaNet Regi stry
address: Telia Network Services
address: Carrier & Networks
address: Box 10707
address: SE-121 29 Stockholm
address: Sweden
fax-no: +46 8 4568935
e-mail: ip@telia.net
e-mail: registry@telia.net
e-mail: dns@telia.net
e-mail: backbone@telia.net
admin-c: AA90-RIPE
tech-c: AA90-RIPE
tech-c: LK221-RIPE
tech-c: YL39-RIPE
tech-c: IC106-RIPE
tech-c: ACA-RIPE
tech-c: UL302 -RIPE
tech-c: EC1084-RIPE
tech-c: JS7984-RIPE
tech-c: OE207-RIPE
tech-c: EER2-RIPE
tech-c: RR6890-RIPE
tech-c: PJ2540-RIPE
tech-c: SH10271-RIPE
tech-c: FIA-RIPE
tech-c: IF264-RIPE
tech-c: BM2022-RIPE
tech-c: LS483 -RIPE
tech-c: AF 145-RIPE
nic-hdl: TR889-RIPE
notify: mntripe@telia.net

122Investigated as part of Alert #1 ''Incomplete Packet Fragments Discarded''

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

69/82

mnt-by: TELIANET-LIR
changed: fia@telia.net 20020319
changed: eva@telia.net 20020821
source: RIPE

Mr Nosey
Trying whois -h whois.arin.net 64.123.89.205 123

OrgName: SBC Internet Services - Southwest
OrgID: SBIS
Address: 2701 W 15th St PMB 236
City: Plano
StateProv: TX
PostalCode: 75075
Country: US
NetRange: 64.123.0.0 - 64.123.255.255
CIDR: 64.123.0.0/16
NetName: SBIS -4BL
NetHandle: NET-64-123-0-0-1
Parent: NET-64-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.SWBELL.NET
NameServer: NS2.SWBELL.NET
Comment: AD DRESSES WITHIN THIS BLOCK ARE NON -PORTABLE
Comment: please send all abuse issue e -mails to abuse@swbell.net
RegDate: 2000-07-10
Updated: 2000 -07-10
TechHandle: ZS44-ARIN
TechName: IPAdmin -SBIS
TechPhone: +1-888-212-5411
TechEmail: IPAdmin-SBIS@sbcis.sbc.com
OrgAbuseHandle: ABUSE6 -ARIN
OrgAbuseName: Abuse - Southwestern Bell Internet
OrgAbusePhone: +1 -877-722-3755
OrgAbuseEmail: abuse@swbell.net
OrgNOCHandle: SUPPO -ARIN
OrgNOCName: Support - Southwestern Bell Internet Services
OrgNOCPhone: +1-888-212-5411
OrgNOCEmail: support@swbell.net
OrgTechHandle: IPADM2-ARIN
OrgTechName: IPAdmin -SBIS
OrgTechPhone: +1-888-212-5411
OrgTechEmail: IPAdmin -SBIS@sbis.sbc.com

How nice the SBC Internet Services people have included an abuse mail
address in their whois database entry.

Introducing Mr and Mrs Nimda
The following two hosts are suspected of infecting University hosts with Nimda.
 80.17.44.90:

inetnum: 80.17.44.88 - 80.17.44.95
netname: COMUNEDIFIUGGI

123Investigated as part of Alert #13 ''Null scan!''

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

70/82

descr: COMUNEDIFIUGGI
country: IT
admin-c: MT1677-RIPE
tech-c: MT1677-RIPE
status: ASSIGNED PA
mnt-by: INTERB-MNT
notify: network@cgi.interbusiness.it
changed: network@cgi.interbusiness.it 20030402
source: RIPE
route: 80.16.0.0/15
descr: INTERBUSINESS
origin: AS3269
remarks: Send report of network abuse/spam
remarks: only to: abuse@interbusiness.it .
remarks: If you report abuse to any other address
remarks: you will get no response.
notify: network@cgi.interbusiness.it
mnt-by: INTERB-MNT
changed: mattu@cgi.interbusiness.it 20011009
source: RIPE
person: MARCO TURRIZIANI
address: COMUNE DI FIUGGI
address: PIAZZA TRENTO E TRIESTE 1
address: MARCO TURRIZIANI
address: Italy
phone: +39 077554611
fax-no: +39 077554611
nic-hdl: MT1677-RIPE
changed: domain@cgi.interbusiness.it 20030402
source: RIPE

Another Registration with an abuse email address listed.
 61.171.133.120

inetnum: 61.169.0.0 - 61.171.255.255
netname: CHINANET-SH
descr: CHINANET Shanghai province network
descr: Data Communication Division
descr: China Telecom
country: CN
admin-c: CH93-AP
tech-c: XI5-AP
mnt-by: MAINT-CHINANET
mnt-lower: MAINT-CHINANET-SH
changed: hostmaster@ns.chinanet.cn.net 20001201
status: ALLOCATED PORTABLE
source: APNIC
person: Chinanet Hostmaster
address: No.31 ,jingrong street,beijing
address: 100032
country: CN
phone: +86-10-66027112
fax-no: +86-10-66027334
e-mail: hostmaster@ns.chinanet.cn.net
e-mail: anti -spam@ns.chinanet.cn.net
nic-hdl: CH93-AP
mnt-by: MAINT-CHINANET
changed: hostmaster@ns.chinanet.cn.net 20021016

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

71/82

source: APNIC
person: Wu Xiao Li
address: Room 805,61 North Si Chuan Road,Shanghai,200085,P RC
country: CN
phone: +86-21-63630562
fax-no: +86-21-63630566
e-mail: ip -admin@mail.online.sh.cn
nic-hdl: XI5-AP
mnt-by: MAINT-CHINANET-SH
changed: ip-admin@mail.online.sh.cn 20010510
source: APNIC

Analysis process
I used two different approaches for the analysis of the data files provided by the
University.

1.For the alert, and scan files I used a number of Perl scripts124 along with
standard Unix commands such as awk, sed, uniq, grep and sort etc... to
isolate and identify data of interest.
2.For the OOS files I decided to import the data into a database125 and use
SQL queries to extract the information. This technique was chosen in order to
compare this technique with the earlier methods employed with the alert files.

Later on I also imported the alert files into the database as this allowed for quick
generation of 'top 10' like tables for patterns of interest.
With both techniques I first concatenated the data files into a single file for each
type. I then parsed the files to create CSV files with a standard layout for each
source file type using some custom Perl scripts. Getting the OOS files into a
standard one line CSV format proved to be less than trivial with it's pseudo
random format126 in the log files.
The differing techniques both had their advantages and drawbacks. The Perl
scripts I found to be more flexible, in that I could extract exactly what I wanted.
This is a reflection of the fact that I prefer Perl to SQL, and also that the scripts
were custom to my needs. The database solution however had serious
performance advantages. Where as the scripts could take up to 2 or 3 minutes
to run, a query could be run in few tens of a second. If one is dealing with large
amounts of data, that is weeks or months rather than a few days then the
database approach would be invaluable.

Alert Files:
These were probably the most interesting, so I tackled these first. Once I had
my CSV file I had to decide what information I wanted to extract. I decided that
grouping information on attack signature would be useful, as would grouping
alerts based on source IP. The information would need to include:

124See the Appendixes for examples of some of the scripts used.
125MySQL - http://www.mysql.com
126Entries are on more than one line, some have a TCP, some are fragments, some have a data segment

others do not etc... Makes for a pretty regexp.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

72/82

�Totals for each type of attack.
�Source hosts per attack.
�Target hosts per attack.
�Target ports per attack.
�Totals for attacks from a particular host.
�Destinations for 'Attack:SrcHost' tuples.

The files contained a number of entries, which appeared to be corrupted such
as the following:

:33259 -> 233.2.171.105/07-16:22:01.118894 [**] SMB Name Wildcard
[**] 64.170.51.119:56464

Where possible these alerts were tidied up by pre-parsing, however some were
beyond repair and were ignored in the analysis, as it was not possible to tell for
certain how the data was corrupted. Out of 1,242,686 lines of data 248, 757
were corrupted beyond repair.

OOS Files:
The OOS files were analysed by first parsing into CSV format then importing
into a MySQL database. They were mainly used to corroborate the deductions
of the alert files.

Scans Files:
These were also imported into the database as with the OOS data. This data
was used to identify p2p users and other network hogs, as well as corroborate
some of the conclusions of the alerts files such as nimda/code red infections. It
also gave an insight into indication of prior reconnaissance however often this is
done well in advance of the attack so older scan logs would have been required
to make better use of this type of evidence. Given the size of 5 days of logs this
could become a logistical issue.

Corroboration:
Looking at the files in isolation gave up a wealth of information, however piecing
together a clear pattern of behavior often required relating data from different
sources.
One of the first things I was keen to identify was the host network. In all the alert
files there was a great deal of traffic to and from hosts within MY.NET.0.0/16,
which seemed to be the obfuscated protected network address. To be sure I
looked at a number of custom alerts such as:

Notify Brian B. 3.56 tcp, External RPC call, TFTP - Internal UDP connection to external tftp
server, MY.NET.30.3 activity, connect to 515 from outside, TCP SRC and DST outside
network, TFTP - Internal TCP connection to external tftp server, [UMBC NIDS IRC Alert]
etc...

These all pointed to MY.NET.0.0/16 as being the home network. To confirm this
I looked at the OOS packets, as these are the only whole packets I had. There
are a number of requests to web servers containing the string
http://www.umbc.edu. Now this resolves to 130.85.24.34, so is MY.NET.0.0/16
really 130.85.0.0/16? To discover this I needed to check the scan logs. I had

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

73/82

noticed a high occurrence of 'Null scan' alerts from 64.123.89.205 to
MY.NET.252.134, there should be evidence of this in the scan logs which I had
noticed did not contain any reference to MY.NET. A quick grep of the scans file
for alerts from 64.123.89.205 generated the following:

grep "64.123.89.205:0 ->" ../scans-combined | grep NULL | awk '{print $6}' | awk -F:
'{print $1}' | sort -n | uniq
130.85.252.134

Bingo! The only 'Null scan' alerts from 64.123.89.205 in the scan logs are to
130.85.252.134, which must correlate to MY.NET.252.134 so we can confirm
the private network MY.NET is indeed 130.85.0.0.

Trying whois -h whois.arin.net 130.85.0.0

OrgName: University of Maryland Baltimore County
OrgID: UMBC
Address: UMBC University Computing
City: Baltimore
StateProv: MD
PostalCode: 21250
Country: US
NetRange: 130.85.0.0 - 130.85.255.255
CIDR: 130.85.0.0/16
NetName: UMBCNET
NetHandle: NET-130-85-0-0-1
Parent: NET-130-0-0-0-0
NetType: Direct Assignment
NameServer: UMBC5.UMBC.EDU
NameServer: UMBC4.UMBC.EDU
NameServer: UMBC3.UMBC.EDU
Comment:
RegDate: 1988-07-05
Updated: 2000 -03-17
TechHandle: JJS41-ARIN
TechName: Suess, John J.
TechPhone: +1-410-455-2582
TechEmail: j ack@umbc.edu

Referencesi
1.Bontrager , William - JavaScript Tutorial Part II URL: http://www.web-

source.net/javascript_tutorial2.htm (July 05 2003)

2.Carpenter, Carlin - “GCIA Practical.” Mar 24 2002
URL:http://www.giac.org/practical/Carlin_Carpenter_GCIA.doc (June 28 2003)

3.CERT® Advisory CA-2002-18 OpenSSH Vulnerabilities in Challenge Response Handling -
December 6, 2002. URL: http://www.cert.org/advisories/CA-2002-18.html (May 05 2003)

4. Computer Networking, Port 0 – TCP UDP Port Number Glossary
URL:http://compnetworking.about.com/library/ports/blports_0.htm (July 1 2003)

5.Dell, J Anthony. “Adore Worm – Another Mutation” Apr, 6 1001.
URL:http://www.giac.org/practical/gsec/Anthony_Del l_GSEC.pdf (June 26 2003)

6. EA Games, 'BattleField1942' -
URL:http://www.eagames.com/official/battlefield1942/editorial/community_message_26.jsp

iCombined references including references for section 1.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

74/82

(July 1 2003)

7.'Ed3f' - Firewall spotting and networks anal ysis with a broken CRC', Phrack Volume60 URL:
http://www.phrack.org/show.php?p=60&a= 12 (5 April 2003)

8. Floyd, Sally - TCP and Explicit Congestion Notification
URL:http://www.icir.org/floyd/papers/tcp_ecn.4.pdf (July 08 2003)

9.Fyodor - “Idle Scanning and related IPID games” – Insecure.org. URL: http://www.insecure.org/
(May 05 2003)

10.GameRanger, Help – 'Ports for Hosting' URL: http://www.gameranger.com/help/ports/ (July 1
2003)

11.Goldsmith, David and Schiffman, Michael - Firewalking A Traceroute-Like Analysis of IP Packet
Responses to Determine Gatewa y Access Control Lists. URL:
http:www.packetfactory.net/firewalk/firewalk -final.pdf (9 April 2003)

12.Gordon, Les M - “GCIA Practical.” Nov 22 2002
URL:http://www.giac.org/practical/GCIA/ Les_Gordon_GCIA.doc (June 28 2003)

13.Granier, Thomas B - LOGS: GIAC GCIA Version 3.3 Practical Detect - Reserved bit set, but
why? URL:http://cert.uni-stuttgart.de/archive/intrusions/2002/11/ msg00256.html (July 11 2003)

14. Hickey, Shane - [Snort-users] WEB-CLIENT javascript UR L host spoofing attempt
URL:http://msgs.securepoint.com/cgi-bin/get/snort-0211/427.html (July 7 2003)

15. Hobbit – Netcat 'Hobbit Documentation'
URL:http://www.zoran.net/wm_resources/netcat_hobbit.asp (July 05 2003)

16.IANA well known ports listing. UR L: http://www.iana.oeg/assignments/port-numbers (May 05
2003)

17.Incident Report - Mynetwatcman. UR L:
http://www.mynetwatchman.com/mynetwatchman/ListIncidentsbyIP.asp (May 07 2003)

18. Internet Storm Centre – URL: http://isc.incidents.org/port_details.html?port=137 (26 June 2003)

19. Kalt, C – RFC2812 'Internet Relay Chat: Client Protocol' April 2000
URL:http://www.kvirc.de/docu/doc_rfc2812.html (July 1 2003)

20.''MAC address'' - Webopedia. URL: http://www.webopedia.com/TERM/M/MAC_address.html
(May 09 2003)

21. McDonald, Tim - Adore'-able Worm Targets Linux
URL:http://www.newsfactor.com/perl/story/8738.html (June 26 2003)

22. MyNetWatchman –Incident Report.
URL:http://www.mynetwatchman.com/LID.asp?IID=30378477 (June 27 2003)

23. Nazario, Jose - Security Incidents: Re: ICMP Source Q uench - Can it be some flood attack?
URL:http://lists.insecure.org/incidents/2000/Sep/0060.html (July 10 2003)

24. Nelson, Nick - URL: http://arpa.com/~nick/snort (June 22 2003)

25. NetAPP - NetCache Hardware Product Family
URL:http://www.netapp.com/products/netcache/netcache_famil y.html (July 09 2003)

26.Northcutt, Stephen & Novak, Judy - Network Intrusion Detection, an Anal yst's Handbook -
Second Edition - ??? - 19??

27. Patz, Kevin. ''Re: Port 17300 probes?'' - Incidents mailing list <securityfocus.com> - URL:
http://cert.uni-stuttgart.de/archive/incidents/2003/04/msg00069.html (June 27 2003)

28.Postel, Jon (editor) - RFC791 - Internet protocol, DARPA internet program protocol
specification0. UR L: http://www.faqs.org/rfcs/rfc791.html (May 05 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

75/82

29.Ptacek, Thomas H. and Newsham, Timothy, "Insertion, Evasion, and Denial of Service: El uding
Network Intrusion Detection", Secure Networks, Januar y 1998 URL:
http://www.insecure.org/stf/secnet_ids/secnet_ids.html (20 March 2003)

30. Rain Forrest Puppy. Phrack Magazine Issue 55 – 'Perl CGI Problems'
URL:http://www.phrack.org/show.php?p=55&a=7 (June 29 2003)

31. Roesch, Martin & Green, Chris - Writing Snort Rules Chapter 2 (Snort 2.0.0)
URL:http://www.snort.org/docs/writing_rules/chap2. html#tth_chAp2 (July 06 2003)

32. Roesch, Marty – Snort Users Mailing list. URL: http://www.mcabee.org/lists/snort-users/Nov-
01/msg00820.html (26 June 2003)

33. Sam Spade.org – Online Network tools. UR L: http://www.samspade.org/ (June 08 2003)

34.Sandblad, Andreas - 'Mozilla cookie stealin g' - Sandblad advisory #9
URL:http://www.securityfocus.com/archive/1/284012 (July 05 2003)

35. SANS Institute -Adore Worm Version 0.8 - April 12, 2001
URL:http://www.sans.org/y2k/adore.htm (June 26 2003)

36.SANS Top Vulnerabilities. URL: http://www.sans.org/top20/#U6 (May 05 2003)

37. Schmelzel, Paul – ''Nimda Surviving the Hydra.''
URL:http://www.giac.org/practical/GCIH/Paul_Schmelzel_GCIH.pdf (June 27 2003)

38. SecurityFocus, 'Mozilla JavaScript URL Host Spoofing Arbitrary Cookie Access Vulnerability',
URL: http://www.securityfocus.com/bid/5293 (July 05 2003)

39. Snort Signature Database – “SCAN NULL”. URL: http://www.snort.org/snort-
db/sid.html?sid=623 (June 21 2003)

40. Snort Signature Database – “SHELLCODE-X86-NOOP”. URL: http://www.snort.org/snort-
db/sid.html?sid=648 (June 21 2003)

41.Stevens, W. Richard. TCP/IP Illustrated, Volume 1 . Reading: Addison Wesley Longman, Inc,
1994.

42. Symantic, Security Response - W32.Nimda.A@mm
URL:http://www.symantec.com/avcenter/venc/data/w32.nimda.a@mm.html (June 29 2003)

43.Upatising, Viriya – GCIA Practical URL: http://www.giac.org/practical/Viriya_Upatising.doc
(July 10 2003)

44.Venema , Wietse - TCPWrappers blurb URL: ftp://ftp.porcupine.org/pub/security/index.html
(June 26 2003)

45. Vision, Max - IDS181 "SHELLCODE -X86-NOOP”. URL:
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids181&view=event (June 21 2003)

46. Vision, Max - IDS4 "PROBE-NULL_SCAN”. URL: http://www.snort.org/info/ids4 (June 21
2003)

47. Zirkle, Laurie - Tiny Fragments- URL:http://archives.neohapsis.com/archives/snort/2000 -
05/0009.html (June 26 2003)

Appendix A
Incidents.org Raw logs README

''The logs within this directory are provided for your use while completing the GCIA practical.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

76/82

The log files are th e result of a Snort instance running in binary logging mode. This means
that only the packets that violate the rule set will appear in the log. The logs themselves have
been sanitized. All of the IP addresses of the protected network space have been 'm unged'.
Additionally, the c hecksums have been modifi ed to prevent clever people from discovering
the original IP addresses. You will find that certain keywords within the packets have been
replaced with 'X's. All ICMP, DNS, SMTP and Web traffic has also been remove d. A common
question is, "Are the addresses changed in the same way across all of the files?" The answer
is both yes and no. If you look at the time stamp associated with the files on the website, you
will see that groups of fil es have been posted on the same day. File s posted on the same
day will have the IP addresses of the protected network modified consistently. IP addresses
belonging to non-local hosts are the actual IP addresses and will be consistent across all log
files regardless of date.''

Appendix B
CVE ID Proto Sourc

e Port
Target
port

Description

CVE-2001-1162 udp any 137
Directory traversal vulnerability in the %m macro in the smb.conf configuration
file in Samba before 2.2.0a allows remote attackers to overwrite certain files
via a .. in a NETBIOS name, which is used as the name for a .log file.

CVE-2000-0673 tcp any 137
The NetBIOS Name Server (NBNS) protocol does not perform authentication,
which allows remote attackers to cause a denial of service by sending a
spoofed Name Conflict or Name Release datagram, aka the "NetBIOS Name
Server Protocol Spoofing" vulnerability.

CVE-2000-0347 udp any 137 Windows 95 and Windows 98 allow a remote attacker to cause a denial of
service via a NetBIOS session request packet with a NULL source name.

CVE-1999-0810 tcp any 137 Denial of service in Samba NETBIOS name service daemon (nmbd).

CVE-2000-0673 udp any 137
The NetBIOS Name Server (NBNS) protocol does not perform authentication,
which allows remote attackers to cause a denial of service by sending a
spoofed Name Conflict or Name Release datagram, aka the "NetBIOS Name
Server Protocol Spoofing" vulnerability.

CVE-1999-0810 udp any 137 Denial of service in Samba NETBIOS name service daemon (nmbd).

CVE-1999-0288 tcp any 137 Denial of service in WINS with malformed data to port 137 (NETBIOS Name
Service).

CVE-1999-0288 udp any 137 Denial of service in WINS with malformed data to port 137 (NETBIOS Name
Service).

Appendix C
Some of my Scripts:

#!/usr/bin/perl -w

Name: parse-alerts-simple.p

Synopsis: parse-alerts-simple.pl [-d] [-p] -f <alert-file>

Descrition:
Simple script to generate a csv file from
a snort alert file which I may later import
into a DB. Also having one line of data
makes mining it in correlation with
the other files easier
Very similar to parse-alerts.pl, however this script only does the csv stuff and
Analysis is left to alert-reports.pl.

Author: James Maher <scouser@paradise.net.nz>

use Getopt::Long;
get the options
my $result = GetOptions ("file=s" => \$alert_file, # string
 "ports" => \$ports, # include portscan data in csv
 "d" => \$debug); # debug flag

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

77/82

die "usage: $0 [-d] <alert-file>\n" if (! defined($alert_file));

use a temp output csv file if we are in debug mode
$csv_file = $debug ? 'output.csv' : defined($ports) ? "$alert_file+scans.csv" : "$alert_file.csv";

open DATA, "$alert_file" or die "Failed to open $alert_file: $?\n";
open CSV, ">$csv_file" or die "Failed to open CSV file: $?\n";

Data structure for storing results
my %alert_list;
while (<DATA>)
{
 if ((! /^\d/) | (/.*\[*{2}\].*\[*{2}\].*\[*{2}\]/)) {
 push (@matchless, $_) if (! /^\d/) ;
 next;
 }
 chomp $_;
 $count ++;
 # better make sure there are no commas in the data
 $_ =~ s/,//g;

 my ($date_s,$desc,$src,$src_prt,$dst,$dst_prt) ;

 # some patterns to make the regexps easier to follow
 my $IP_CHRS = '(?:[a-zA-Z0-9\.]+)';
 my $DLM = '\[*{2}\]';
 my $EOS = 'End of portscan from';
 my $TM = 'TOTAL time\S';

 if ($_ =~ /^(\S+)\s+\[*{2}\]\s+(.*)\s+\[*{2}\]\s+($IP_CHRS)(:(\d+))?(?:\s+->\s+($IP_CHRS)(:(\d+))?)?$/) {
 ($date_s,$desc,$src) = ($1,$2,$3);
 if (defined($8)) {
 ($src_prt,$dst,$dst_prt) = ($5,$6,$8);
 print CSV "$date_s,$desc,$src,$src_prt,$dst,$dst_ prt\n";
 }
 elsif (defined($6))
 {
 ($src_prt,$dst,$dst_prt) = (' -', $6, '-');
 print CSV "$date_s,$desc,$src,$src_prt,$dst,$dst_prt\n";
 }elsif (defined($5))
 {
 ($src_prt,$dst,$dst_prt) = ($5, '-', '-');
 print CSV "$date_s,$desc,$src,$src_prt,$dst,$dst_prt \n";
 }
 }
 elsif ($_ =~ /^(\S+)\s+$DLM\s+(\S+): $EOS\s+($IP_CHRS\.\d+):\s+$TM(\d+s)\S\s+hosts\S(\d+)\S TCP\S(\d+)\SUDP\S(\d+)\S\s+$DLM/) {
 ($date_s,$desc,$src,$host_cnt) = ($1,$2,$3,$5);
 $port_cnt = $6 + $7;
 print CSV "$date_s,$desc,$src,$host_cnt,$port_cnt\n" if $ports;
 }
 elsif ($_ !~ /^(\S+)\s+$DLM\s+spp_port/){
 push (@matchless, $_);
 print STDERR "\nNo Match:\t$_\n" ;
 next;
 }
}
close DATA or die "Failed to close data file!\n";
print "\n\t processed $count records\n\n";

#!/usr/bin/perl -w

Name: alert-reports.p

Synopsis: alert-reports.pl [-d] [-s] [-n] [-c <max>] [-l <min>] -f <alert-file>

Descrition:
Read in the pre parsed alert.csv file
and generate a number of reports

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

78/82

Author: James Maher <scouser@paradise.net.nz>
$Id: alert-reporter.pl,v 1.4 2003/06/22 11:49:09 scouser Exp scouser $

use Getopt::Long;

get the options
my $result = GetOptions ("file=s" => \$alert_file, # Name of the alert CSV file we are reading in
 "portscans" => \$scans, # should we include portscans ?
 "ip-order" => \$ip_order, # print IP summary ordered by IP not frequency
 "summary" => \$summary, # Sumary mode only prints out totals of hits per IP,
 # not a line for each attack type per host.
 "verbose" => \$verbose, # always print out full lists rather than totals
 "lowest=i" => \$floor, # what is the cut off for printing out data
 "ceiling=i" => \$ceiling, # How many entires should I print out per report (ie top ten)
 "no_attack" => \$no_attack, # Do not generate an attack report
 "target" => \$dst_grp, # Group by target address rather than source address
 "help" => \$help, # print out comand line options and die.
 "debug" => \$debug); # debug flag

die "\t--ceiling <max> How many entires should I print out per report (ie top ten)\n",
 "\t--debug debug flag\n",
 "\t--file <name> Name of the alert CSV file we are reading in\n",
 "\t--help print out comand line options and die.\n",
 "\t--ip-order print IP summary ordered by IP not frequency\n",
 "\t--lowest <min> what is the cut off for printing out data\n",
 "\t--no_attack Do not generate an attack report\n",
 "\t--portscans Include portscans -- Un-implmented \n",
 "\t--summary Sumary mode only prints out totals of hits per IP, \n",
 "\t not a line for each attack type per host.\n",
 "\t--target Group by target address rather than source address\n",
 "\t--verbose always print out full lists rather than totals\n",
 "\t--help print out comand line options and die. \n",
 if $help;

die "usage: $0 [-d] [-s] [-n] [-c <max>] [-l <min>] -f <alert-file>\n" if (! defined($alert_file));
die "Alert file not a .csv file, aborting...\n" if $alert_file !~ /csv$/;

Set things up before we start.
Data structure for storing results
my %alert_list;
my $rpt_dir='/home/scouser/work/SANS/Practical/Part3/data/parsed/reports';
&initialise();

&read_in_data();

&gen_ip_report();

&gen_attack_report() if ! $no_attack;

print "\nFinished analysis, reports written to:\n$address_report\n";
print "$atck_rpt\n" if ! $no_attack;
print "\n";

Subs

sub gen_ip_report() {
Lets see what we have got ;-)
and print out to a file
 print "\nGenerating IP report... - ";
 open TARGET, ">$address_report" or die "Could not open IP address report file\n";
 print TARGET $rpt_heading;
 $cnt =0;
 foreach $target (sort ip_sort keys (%{$ale rt_list{'hosts'}}))
 {
 $cnt ++
 &progress(200);
 local *STDOUT = *TARGET;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

79/82

 next if $target =~ /^-/;
 last if (($floor) && ($alert_list{'hosts'}->{$target}->{'count'} < $floor));
 last if (($ceiling) && ($cnt >= $ceiling));
 if ($summary){
 print "$target \t ".$alert_list{'hosts'}->{$target}->{'count'}."\t\t" ;

 my @alerts = keys(%{$ale rt_list{'hosts'}->{$target}});
 my $num_alrts = $#alerts;
 print " $num_alrts\t\t" ;
 my @hosts = (keys (%{$al ert_list{'hosts'}->{$target}->{'hosts'}}));
 my $count = ($#hosts + 1);
 print " $count\t" ;
 my @ports = (keys (%{$alert_list{'hosts'}->{$target}->{'dprts'}}));
 $count = ($#ports + 1);
 print " $count\n" ;

 }
 else
 {
 foreach $alert_desc (sort keys(%{$alert_list{'hosts'}->{$target}}))
 {
 #save count till after -)
 next if $alert_desc =~ /^(count)|(hosts)|(sprts)|(dprts)/;

 my $alrt = $alert_list{'hosts'}->{$target}->{$alert_desc};
 print "$target, $alert_desc, ";
 print $alrt->{"count"}.", ";

 my @hosts = (keys (%{$alrt->{'hosts'}}));
 my $num_hosts = $#hosts+1;
 if (($num_hosts < 3) || ($verbose)) {
 print "H: ";
 my $last = pop @hosts;
 print "$_, " foreach (@hosts);
 print "$last ";
 } else {
 print $num_hosts;
 }
 print "\t";

 my @ports = (keys (%{$alrt->{"ports"}}));
 my $num_ports = $#ports+1;
 if ($num_ports == 0) {
 print "\n";
 } elsif (($num_ports < 2) || ($verbose)) {
 print "P: ";
 my $last = pop @ports;
 print "$_, " foreach @ports;
 print "$last\n";
 }
 else {
 print "$num_ports\n";
 }
 }
 print "\t".$alert_list{'hosts'}->{$target}->{'count'}." total hits ($target) \n";
 }
 }
 close TARGET || die "Could not close target tally output file\n";
}

#---
sub gen_attack_report(){
now for the report by attack type
pretty similar to above
 print "\nGenerating attack report... - ";
 open ATTACK, ">$atck_rpt" or die "Could not open target tally output file\n";
 print ATTACK $atck_heading;
 $cnt =0;
 foreach $attack (sort atck_sort keys (%{$alert_list{'Attacks'}}))
 {
 $cnt ++;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

80/82

 last if (($ceiling) && ($cnt >= $ceiling));
 &progress(5);
 local *STDOUT = *ATTACK ;
 last if (($floor) && ($alert_list{'Attacks'}->{$attack}->{'count'} < $floor));
 my $alrt = $a lert_list{'Attacks'}->{$attack};
 print "$attack\t".$alrt->{'count'}."\t";

 foreach $hst ('src','dst') {
 my @hosts = (keys (%{$al rt->{$hst}}));
 my $num_hosts = $#hosts +1;

 if (($num_hosts < 3) || ($verbose)) {
 print "H: ";
 my $last = pop @hosts;
 print "$_, " foreach (@hosts);
 print "$last ";
 } else {
 print "$num_hosts hosts";
 }
 print "\t";
 }

 my @ports = (keys (%{$alrt->{"ports"}}));
 my $num_ports = $#ports+1;
 if ($num_ports == 0) {
 print "\n";
 } elsif (($num_ports < 3) || ($verbose)) {
 print "P: ";
 my $last = pop @ports;
 print "$_, " foreach @ports;
 print "$last\n";
 } else {
 print "$num_ports ports\n";
 }
 }
 close ATTACK || die "\nCould not close target tally output file\n";
}

#---
sort attacks by frequency
sub atck_sort() {
 return ($alert_list{'Attacks'}->{$b}->{'count'} <=> $alert_li st{'Attacks'}->{$a}->{'count'});
}

#---
sort IP addresses
sub ip_sort {
 if (! $ip_order){
 return -1 if (! defined($alert_list{'hosts'}->{$b}->{'count'})) || (! defined($alert_list{'hosts'}->{$a}->{'count'}));
 return ($alert_list{'hosts'}->{$b}->{'count'} <=> $alert_list{'hosts'}->{$a}->{'count'});
 }

 # else we have to do sort by IP address ;-(
 my ($a1, $a2, $a3, $a4) = split (/\./, $a);
 my ($b1, $b2, $b3, $b4) = split (/\./, $b);

 if (($a1 =~ /^MY/) || ($b1 =~ /^MY/)){
 if (($a1 =~ /^MY/) && ($b1 =~ /^MY/)) {
 if ($a3 ne $b3) { return ($a3 <=> $b3); }
 if ($a4 ne $b4) { return ($a4 <=> $b4); }
 }
 return -1 if ($a1 =~ /^MY/);
 return 1;
 }

 if ($a1 ne $b1) { return ($a1 <=> $b1); }
 if ($a2 ne $b2) { return ($a2 <=> $b2); }
 if ($a3 ne $b3) { return ($a3 <=> $b3); }
 if ($a4 ne $b4) { return ($a4 <=> $b4); }

 return ($a <=> $b);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

81/82

}

#---
Initialise variables based on command line args etc..
sub initialise() {
 die "WARNING: Incompatable options \'--scans\' and \'--target\' - \tCan't group portscan alert s by destination port, exiting.\n" if
(($dst_grp) && ($scans));

 print "--portscans flag not implemented, ignoring...\n" if $scans;
 undef $scans;

 $line_cnt = 0;
 print "\ninitialising report variables... \n";
 $ad_sfx = defined($summary) ? 'summary' : defined($verbose) ? 'verbose' : 'normal';
 $ad_sfx .= "-$floor" if defined($floor);
 $ad_sfx .= "-$ceiling" if $ceiling;
 $address_report = defined($dst_grp) ? "$rpt_dir/dst_IP_report.$ad_sfx" : "$rpt_dir/src_IP_report.$ad_sfx";

 $at_sfx = defined($verbose) ? 'verbose' : 'normal';
 $at_sfx .= "-$floor" if defined($floor);
 $at_sfx .= "-$ceiling" if $ceiling;
 $atck_rpt= "$rpt_dir/attack_report.$at_sfx";;

 $rpt_heading = "Hits per Destination Address\n=======================\n" if $dst_grp;
 $rpt_heading = "Hits per Source Address\n=======================\n" if ! $dst_grp;
 $rpt_heading .= "(including portscans)\n" if $scans;
 $rpt_heading .= "Verbose Mode\n" if $verbose;
 $rpt_heading .= "\n Address \tTot-Hits \tDistinct \tHosts \t Ports\n" if $summary;

 $atck_heading = "Attack/Scan Types\n=================\n";
 $atck_heading .= "(including portscans)\n\n" if $scans;
 $atck_heading .= "Verbose Mode\n" if $verbose;
 $atck_heading .= "\nDescription\t\t\tHits\tSrc IPs\t\tDst IPs\t\tDst Ports\n";

 print "Ceiling set to $ceiling\n" if $ceiling;
 # just for fun, and to stop you going crazy while the reports run ;-)
 @display =('-','\\','|','/');
}

#---

sub read_in_data() {
 print STDERR "reading in csv file ... - ";
 open DATA, "$alert_file" or die "Failed to open $alert_file: $?\n";
 while (<DATA>) {
 &progress(1000);
 chomp;

 # no need to analyse if it is an spp portscan line unless forced to by command li ne flag
 my @data = split /,/;
 if ($data[1] !~ /^spp_portscan/){
 &process_alert (@data);
 }
 elsif ($scans){
 #&process_scan(@data); # Not implemented - Handling portscans seperately now.
 }
 else { print "DBG: $_\n" if $debug; }
 }
 close DATA or die "Failed to close data file!\n";
}

sub process_alert() {
 my ($date_s,$desc,$src,$src_prt,$dst,$dst_prt) = @_;
 # decide who to log this under Will use the source address for now.
 if (! defined($dst) && ($dst_grp)){
 print STDERR "Target grouping specified but no dst IP!! Ignoring this alert.\n" if $debug;
 next;
 }
 my $alert_host = $dst_grp ? $dst : $src ;
 my $scnd_host = $dst_grp ? $src : defined($dst) ? $dst : '-';

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA 3.3 Practical
 James Maher

82/82

 $alert_list{'hosts'}->{$alert_host}->{$desc}={} if !$alert_list{'hosts'}->{$alert_host}->{$desc};
 my $alert = $alert_list{'hosts'}->{$alert_host}->{$desc};

 $alert->{'ports'}->{$dst_prt} ++ if (defined($dst_prt) && ($dst_prt !~ /-/));
 $alert->{'hosts'}->{$scnd_host} ++ if $scnd_host !~ /^-/ ;
 #print $alert->{'hosts'}->{$scnd_host}."\t" if $scnd_host !~ /^-/ ;
 $alert->{'count'} ++;

 # lets also count total alerts against a host
 $alert_list{'hosts'}->{$alert_host}->{'count'} ++;
 # and the total number of ports
 $alert_list{'hosts'}->{$alert_host}->{'sprts'}->{$src_prt} ++ if (defined($src_prt) && ($src_prt !~ /-/));
 $alert_list{'hosts'}->{$alert_host}->{'dprts'}->{$dst_prt} ++ if (defined($dst_prt) && ($dst_prt !~ /-/));
 $alert_list{'hosts'}->{$alert_host}->{'hosts'}->{$scnd_host} ++ if (defined($scnd_host) && ($scnd_host !~ /-/));

 # lets also collate totals for different attacks
 $alert_list{'Attacks'}->{$desc}={} if !$alert_list{'Attacks'}->{$desc};
 local *signature = $alert_list{'Attacks'}->{$desc};
 $signature{'count'} ++;
 $signature{'src'}->{$alert_host} ++;
 $signature{'dst'}->{$scnd_host} ++ if $scnd_host !~ /^ -/ ;
 $signature{'ports'}->{$dst_prt} ++ if (defined($dst_prt) && ($dst_prt !~ /-/));
}

sub progress(){
 $mod = shift;
 if ($line_cnt % $mod == 0) {
 $char = shift @display;
 system("echo -n");
 print "\b\b$char ";
 push @display,$char;
 }
 $line_cnt ++;
}

