GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© SANS Institute 2004,

I XC

SANS Training & GIAC Certification

GIAC Certified Intrusion Analyst (GCIA)

Practical Assignment
Version 3.3 (revised August 19, 2002)

John E Petkovsek

May 30, 2003

As part of GIAC practical repository.

Author retains full rights.

Table of Content

QIR o) 1= o) 0] 1 1= | USRI 2
SUMIMIBIY ...ttt ettt s e s et e e s e e e e e s s e e e enee e e ane e e eane e e e e e ennn e e nneenrneeas 4
Part 1 - Describe the state of iNtrusion deteCtiON............cevceeeiieeeiee e 5
gL 18 o1 o o RO SPSRRRROTRRN 5
B 0 gl (= 000 o = PP EPPT 5
THE rPCMION PIrEPIOCESSONveeevieeciieeecttee et e e st e e et e e e eseeeasaeessseeessseeeaeeeeabeeeanseeansaeeanneeasees 6
LI 2= 0 o L= SRRSO 8
B 1= (1o OSSPSR 18
s L LI B L [o £ SRR 25
Detect #1 Fragmentation of Code REd..........c.ceoiiiiiiiiiiee e 25
SOUICE OF TTBE ..ttt sttt et sa et s be e s ne e e b e enbeesneeenaeeneenree s 25
DeteCt Was geNErated DYc..eoiiuieiiiie ettt ere e 26
Probability the source address was SPOOFEdocovuieeiiieciie e 27
DESCIiPLION Of GHEACKeoveeveiieieie ettt sr e see e sn e 27
N =0 01 7= T R TR 28
(@0 == 1o LSRR 29
Evidence Of aCtiVE TArgEIINGoooveerieeiie ittt et st sr e n e 30
SEVEIITY .ttt ettt a e h e eh bt et e he e Re e et e e be e a e e enneeneearee s 30
Defensive reCOMMENTALIONc..eeiiir et e e seee e e seee e sree e s nneeesnaeeenseeens 31
Multiple ChoiCe tESE QUESLIONco.uiiiieie ettt 31
Detect #2 RPC portmap request MOUNTooeeieiiieeieeneeeee e 31
01U o o] 1 o TR 32
DeteCt Was generalet DYooeiiieeie e 32
Probability the source address was SPOOFEdocoviiiiiieiiie e 34
DeSCription Of @ACKcccueiiiiie et s e et ee e e nr e e aae e ereee 34
ALACK MECNANTSIM ...ttt srb e et nbeesreeenees 35
(0001 1= =11 0] SRRSO 35
Evidence of aCtivVetargelingccceeiuie ittt 35
S SN YRS SRTSRRORN 36
Defensive reCOMMENUALIONocuiiiiiiie et e e 36
Multiple ChOiCE tESE QUESLIONei et e ee et e e aae e eree e 36
DEteCt #3 XIMAS SCAN.....eeeitiiiiieieeiee ettt sttt e st e ettt essee e b e e sbeesreesneeeneee e 37
SOUICE OF TFBE ettt ettt sttt ettt e et e e s b e s st e et e enbeesneeenteaneesree s 37
DeteCt Was generalet DYooeiee et 37
Probability the source address was SPOOFEdccuvieiiieeniiie e 38
DESCIiPLiON Of GHEACKcoveeieeiieieie ettt e et see e e e 39
N =0 00T 7= R 40
(O0 == 1o LR 42
Evidence Of aCtiVE TargEIINGoooveerieeiie ittt n e 42
SEVEIITY .ttt ettt e h e eh e e e e Rt e Re et e e ne e e e enneeneenree s 42
Defensive reCOMMENTALIONc..eeiiieerieeeiie e see e seee e e st e e sree e s nseeesneeesnseeens 43
Multiple ChoiCe tESE QUESLIONcoviiiieiee ettt 43
Feedback from posting t0 INCIAENIS.ONGeeiuieiiie e 43
Assignment 3 - "ANAlYSE THiSoooiie e e 44
BT 01T Y P PRSPR 44
FHES ANAIYSE. ...t et e s tee e st e e atae e e nsaeeeaaeeenreeea 44

© SANS Institute 2004, As part of GIAC p?—olctical repository. Author retains full rights.

ANAlYSIS Of TOP TEN DELECES.........eiieieiieieese ettt s 45
TOP TAKEIS. ...ttt ettt et e e bt ae e enbe e n e e nbe e eae e nns 58
POMSCAN ANBIYSIS....ceciiie ettt e e e e et e e sar e e ese e e st e e e aseeeanseeesnaeeenseeeas 63
OUL-OF -SPEC ANBIYSIS ...ttt et e s s e s nnae e s ne e e aneeeanneas 65
(11 Q€ =T o o SO SRUPRRN 66
Security RECOMMENUALIONScccivieeiiieiiie et e e e eree e enaeas 67
Description Of ANAlYSISPrOCESScueiiiiiiiiiie ettt see et ete e see s tee e stae e e sre e e sraeeeneeeas 67
REFEIBINCES. ...t sttt et e st s b ee b e e st e e nne e snneenee e e 68

© SANS Institute 2004, As part of GIAC pﬁactical repository. Author retains full rights.

Summary

This report was written after attending the SANS conference in San Diego during
March of 2003 as part of attaining a GIAC Certification as a Certified Intrusion
Analyst. It includes a paper on writing Snort preprocessors which details a potential
preprocessor for monitoring RPC portmapper requests. It also analyses a fragmented
code red attack, an RPC mountd portmap request, and an XMAS scan. It concludes
with the analysis of five consecutives days of logs from a university’s intrusion
detection system.

© SANS Institute 2004, As part of GIAC pflactical repository. Author retains full rights.

Part 1 - Describe the state of intrusion detection

Introduction

While looking at an RPC detect in "http://www.incidents.org/logs/Raw" | concluded a
new Snort preprocessor would be useful. In many cases RPC services listen to a
port that is not a 'well known port'. The clients using the service find the port the
service is listening on by consulting the portmapper. The way this works is when an
RPC service initializes it registers with the portmapper. When registering it tells

the portmapper its program number, version number, and port. The program and
version numbers are 'well known numbers'. Clients can then ask the portmapper
what port a service is listening on by giving the portmapper the program and version
numbers of the service. Some RPC services always listen on the same port but
many let the operating system assign a random port. For the later type of services
one cannot write a Snort rule to capture packets to/from these services because the
port number is not known ahead of time. What's needed is a way to detect port
requests to the portmapper and save the port number from the contents of the
portmapper reply. Then Snort can log the packets for the service. That's exactly what
Snort preprocessors are good at.

Snort Preprocessors

The SANS Track 3 Intrusion Detection In-Depth documentation gives the following
description of Snort preprocessors:

"Preprocessors were introduced in version 1.5 of Snort. They allow the functionality
of Snort to be extended by allowing users and programmers to drop modular
"plugins” into Snort fairly easily. Preprocessor code is run before the detection engine
is called, but after the packet has been decoded. The packet can be modified or
analysed in an 'out of band" manner through this mechanism."

The above documentation also lists the preprocessors that ship with Snort:
http_decode: normalize web traffic for signature analysis
portscan: detect portscans
frag2: perform IP defragmentation
stream4: perform TCP stream reassembly
arp_spoof: detect hostile ARP activity
bo: Back Orifice detection
telnet_decode: telnet negotiation code normalization
rpc_decode: rpc normalization

As can be deduced from the above list most of these preprocessors work by
examining multiple packets (to detect scans, reassemble fragmented packets, ect.).
This is what an RPC monitor would have to do if it is to relate portmapper replies to
future RPC service packets. The RPC decode preprocessor that ships with Snort
performs a useful but different function than the RPC monitor | saw a need for. It
(rpc_decode) combines packets that make up an RPC message to the portmapper

© SANS Institute 2004, As part of GIAC p%ctical repository. Author retains full rights.

request so someone cannot evade Snort’s detection engine by splitting the request
into several packets.

The source code for Snort preprocessors is found in BASE/src/preprocessors. If a
new source file is added then the makefile in BASE/src/preprocessors/Makefile
needs to be modified to build Snort with the new preprocessor. In my case the
rpc_mon code was added to the following lines as shown:

libspp_a SOURCES = spp_arpspoof.c spp_arpspoof.h spp_bo.c spp_bo.h\
spp_frag2.c spp_frag2.h spp_http_decode.c spp_http_decode.h \
spp_portscan.c spp_portscan.h spp_rpc_decode.c spp_rpc_decode.h \
spp_stream4.c spp_stream4.h spp_telnet_negotiation.c \
spp_telnet_negotiation.h spp_asnl.c spp_asnl.h spp_fnord.c spp_fnord.h \
Spp_conversation.c spp_conversation.h spp_portscan2.c spp_portscan2.h \
spp_perfmonitor.c spp_perfmonitor.h \

Spp_rpc_mon.c spp_rpc_mon.h

libspp_a OBJECTS = spp_arpspoof.o spp_bo.o spp_frag2.0\
spp_http_decode.o spp_portscan.o spp_rpc_decode.o spp_stream4.0 \
spp_telnet_negotiation.o spp_asnl.o spp_fnord.o spp_conversation.o \
spp_portscan2.0 spp_perfmonitor.o spp_rpc_mon.o

This will get a preprocessor compiled and linked into the Snort binary when the main
makefile in BASE/src is executed. Before this is done however the hooks must be put
into Snort to get it to call the new preprocessor routines. This is done by modifying
the InitPreprocessors() function in BASE/src/plugbase.c. Each preprocessor needs
to have a Setup function and InitPreprocessors() will call that function. The Setup
function then calls Snorts RegisterPreprocessor function.

Once the preprocessor has been built into the Snort binary the Snort configuration
file must be updated to tell Snort to use the new preprocessor. This is done using
the preprocessor keyword as follows:

preprocessor <name>: <options>

The rpcmon preprocessor

I modelled rpcmon after the other Snort preprocessors for consistency. It has the
following functions:

void SetupRPCmon()

void RPCmonlnit(u_char *args)

void ParseRPCmonArgs(char *args)

void RPCmonPreprocFunction(Packet *p)

void RPCmonCleanExitFunction(int signal)

int AddRPCmonEntry(RPCmonlList *list, char *entry)

void DeleteRPCmonEntry(RPCmonList *list, RPCmonNode *node)
void FreeRPCmonList(RPCmonList *rpcmon_list)

RPCmonNode *FindRPCmonReq(Packet *p)

RPCmonNode *FindRPCmonPort(Packet* p)

© SANS Institute 2004, As part of GIAC pﬁolctical repository. Author retains full rights.

The SetupRPCmon routine is what registers the preprocessor with Snort as
mentioned earlier. When registering it passes Snort its name "rpcmon" and a function
to call during initialization (RPCmonlnit).

The RPCmonlnit routine parses command line arguments, registers the rpcmon exit
function (RPCmonCleanExitFunction) with Snort and creates two linked lists. One list
(the request list) is used to hold requests to the portmapper. Since portmapper
replies do not contain the request information (program number, etc.) it's necessary
to keep this information in order to make sense of the reply. The second linked list
(the port list) is used to hold information related to the RPC service port being
accessed.
An entry in the request list contains the following information:

The source address of the requestor

The source port of the requestor

The address of the server being accessed

The port of the server being accessed

The transaction ID of the request

The time this entry will expire
An entry in the port list contains:

The server address

The server port (port of the RPC service to be monitored)

The number of packets sent to/from this server port since the entry was created

The time this entry will expire

The ParseRPCmonArgs routine looks for options specified in the snort.conf file. The
optional parameters for rpcmon are:

the program number to monitor

the maximum number of packets to log for this service

the maximum time packets will be logged for this service
Each of these parameters is specified using a keyword followed by a value. An
example rpcmon entry in snort.conf would be:

preprocessor rpcmon: program 1005 packets 2 timeout 30

The RPCmonCleanExitFunction routine is called by Snort when exiting. It frees the
memory associated with the linked lists.

The AddRPCmonEntry routine is used to add an entry to one of the linked lists. Its
inputs are a pointer to the list and a pointer to the entry to be added.

The DeleteRPCmonEntry routine deletes an entry from one of the linked lists. Its
inputs are a pointer to the list and a pointer to the node to be deleted.

The FreeRPCmonlList routine is called by RPCmonCleanExitFunction and frees the
memory associated with each entry in a list.

The FindRPCmonReq routine finds an entry in the request list. Its input is a pointer to

the packet being processed. It goes through the list looking for an entry that matches
the packet.

© SANS Institute 2004, As part of GIAC p7actical repository. Author retains full rights.

A match is when the stored requests source address/port, destination address/port,
and RPC transaction ID matches that of the packet. The FindRPCmonReq routine
also deletes expired request list entries.

The FindRPCmonPort routine finds an entry in the port list. Its input is a pointer to the
packet being processed. It goes through the list looking for an entry that matches the
packet. A match is when the server address/port matches the source or destination
address/port of the packet. The FindRPCmonPort routine also deletes expired port
list entries.

The RPCmonPreprocFunction routine is where most of the work is done for rpcmon.
It is called by Snort whenever a packet is received. Snort passes this function a
pointer to the packet information. The structure for this input parameter is named
'Packet’ and can be found in BASE/src/decode.h. It contains pointers to the ethernet
header, IP header, etc. If a packet doesn't contain a particular header then that
pointer will be NULL.

The RPCmonPreprocFunction routine first verifies that a packets IP header and data
pointers are not NULL. It then looks at the source and destination port fields in the
Packet structure. These will be 0 if the packet isn't a TCP or UDP packet. If the
destination port is 111 (the portmapper) and the RPC portion of the packet indicates
it is a portmapper request then selected information from the packet is saved in the
request list. This information includes the source and destination addresses and
ports and the RPC transaction ID. If the source port is 111 then the
RPCmonPreprocFunction calls FindRPCmonReq to see if a matching request had
previously been saved. If so it gets the port for the RPC service from this portmapper
reply and creates an entry in the port list. This entry will contain the services address
and port. The RPCmonPreprocFunction routine also checks to see if the packet
matches an existing entry in the port list. If so then it is a packet to/from the service
we are interested in and the packet is logged to the alert file. To log a packet to the
alert file the Snort routines SetEvent and CallAlertFuncs are called.

The Code

Below is the finished code:

/*

*

* Snort Preprocessor Plugin

*

* Author: John Petkovsek

*

* Purpose:

*

* This preprocessor looks for portmapper responses to RPC Get Port requests
* for a particular program number, saves the port assigned by the

* portmapper, and then logs packets to/from that port.

*

* Arguments:

© SANS Institute 2004, As part of GIAC p%ctical repository. Author retains full rights.

*

* The RPC program number, the maximum number of packets to log, and the
maximum

* time (in seconds) to spend monitoring any particular port.

* |.e. preprocessor rpcmon: program 10005 packets 50 timeout 600

*

* Note: this preprocessor has only been tested on Solaris systems.

*

*/

#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpalinet.h>
#include <rpc/rpc.h>
#include <rpc/rpc_msg.h>

#include "generators.h”
#include "log.h"
#include "detect.h”
#include "decode.h"
#include "event.h"
#include "plugbase.h”
#include "parser.h"
#include "mstring.h"
#include "debug.h"
#include "util.h"

#define MODNAME "spp_rpc_monitor"

typedef struct _RPCmonNode
{

char *entry;

struct _RPCmonNode *preyv;

struct RPCmonNode *next;
} RPCmonNode;

typedef struct

{
RPCmonNode *head;

} RPCmonlList;
typedef struct RPCmonReqgEntry
{

u_int srcAddr;

© SANS Institute 2004, As part of GIAC p?actical repository. Author retains full rights.

u_int srcPort;
u_int destAddr;
u_int destPort;
u_int rpcXID;
u_int endTime;

} RPCmonReqEntry;

typedef struct _RPCmonPortEntry
{

u_int svrAddr;

u_int svrPort;

u_int pktCount;

u_int endTime;
} RPCmonPortEntry;

/* list of function prototypes for this preprocessor */
void RPCmonlnit(u_char *);

void ParseRPCmonArgs(char *);

void RPCmonPreprocFunction(Packet *);

void RPCmonCleanExitFunction(int);

void FreeRPCmonList(RPCmonList *rpcmon_list);
void DeleteRPCmonEntry(RPCmonList *list, RPCmonNode *node);
int AddRPCmonEntry(RPCmonlList *list, char *entry);
RPCmonNode *FindRPCmonPort(Packet *p);
RPCmonNode *FindRPCmonReq(Packet *p);

void PrintRPCmonReqList();

void PrintRPCmonPortList();

typedef struct

{
u_int address;
u_int program;
u_int version;
u_int protocol;

} GET_PORT_ARGS;

typedef struct
{
u_int port;
} GET_PORT_RESP;

/* globals */

RPCmonList *rpcmon_portlist;
RPCmonList *rpcmon_reqlist;
u_int rpcmon_progNum;

u_int rpcmon_maxPkts;

u_int rpcmon_timeout;

© SANS Institute 2004, As part of GIAC pijrgctical repository. Author retains full rights.

/* external globals from rules.c */
extern char *file_name;
extern int file_line;

void SetupRPCmon()
{

RegisterPreprocessor(“rpcmon”, RPCmonlnit);

DEBUG_WRAP(DebugMessage(DEBUG_INIT,
"MODNAME is setup...\n"););

}

void RPCmonlnit(u_char *args)
{
DEBUG_WRAP(DebugMessage(DEBUG_INIT,
"MODNAME Initialized\n"););

[* set global parms to their defaults */
rocmon_progNum = 0;
rpcmon_maxPkts = 50;
rpcmon_timeout = 300;

[* parse the argument list from the rules file */
ParseRPCmonArgs(args);
AddFuncToPreprocList(RPCmonPreprocFunction);

[* Set the preprocessor function into the function list
AddFuncToCleanExitList(RPCmonCleanExitFunction);

[* create request list and port list */

rpcmon_reqlist = (RPCmonList *)malloc(sizeof(RPCmonList));
memset(rpcmon_reqlist, 0, sizeof(RPCmonlList));
rpcmon_portlist = (RPCmonList *)malloc(sizeof(RPCmonList));
memset(rpcmon_portlist, 0, sizeof(RPCmonlList));

}

void ParseRPCmonArgs(char *args)

{

char *Tokens=0;
int iTokenNum=0;
int i

if (fargs)
return;

if(args)
{

Tokens = mSplit(args, " ", 10, &TokenNum, "\\');
}

© SANS Institute 2004, As part of GIAC pHctical repository. Author retains full rights.

if (iTokenNum < 2)
{

FatalError(

"RPCmon: Invalid arguments - %s (sample usage: preprocessor rpcmon:
program 10005) \n",
args);

}
LogMessage("rpcmon arguments:\n");
for(ii = 0; ii < iTokenNum; ii++)

/* Check for a '‘program number' parameter */
if(stremp(Tokensii],"program™)==0)

/* make sure we have at least one more argument */
if(ii == (iTokenNum-1))
{
FatalError("%s(%d) => Invalid Program Number. The value must be a "
"positive integer number.\n", file_name, file_line);
}

LogMessage(" Program Number: %s\n", TokensJii+1]);
rpcmon_progNum = atoi(TokensJii+1]);
if(lrpcmon_progNum)
{
FatalError("%s(%d) => Invalid Program Number. The value must be a "
"positive integer number.\n", file_name, file_line);
}

ii++;
}
[* Check for a 'packets' parameter */
else if(strcmp(Tokens]ii],"packets™)==0)

[* make sure we have at least one more argument */
if(ii == (iTokenNum-1))
{
FatalError("%s(%d) => Invalid Max Packets. The value must be a "
"positive integer number.\n", file_name, file_line);
}

LogMessage(" Max Packets: %s\n", Tokens[ii+1]);
rpcmon_maxPkts = atoi(Tokens[ii+1]);
if('rpcmon_maxPkts)
{
FatalError("%s(%d) => Invalid Max Packets. The value must be a "
"positive integer number.\n", file_name, file_line);

ii++;

© SANS Institute 2004, As part of GIAC p]rgtctical repository. Author retains full rights.

/* Check for a 'timeout' parameter */
else if(strcemp(Tokensgii],"timeout")==0)

{
/* make sure we have at least one more argument */
if(ii == (iTokenNum-1))
{
FatalError("%s(%d) => Invalid timeout. The value must be a "
"positive integer number.\n", file_name, file_line);
}
LogMessage(" Timeout: %s\n", Tokens[ii+1]);
rpcmon_timeout = atoi(Tokens[ii+1]);
if('rpcmon_timeout)
{
FatalError("%s(%d) => Invalid timeout. The value must be a "
"positive integer number.\n", file_name, file_line);
}
ii++;
}
else
{

FatalError("%s(%d)=> Invalid parameter '%s' to preprocessor"
" PerfMonitor.\n", file_name, file_line, Tokens]ii]);
}

}

return;

}

void RPCmonPreprocFunction(Packet *p)
{
struct rpc_msg *rpcPtr;
GET_PORT_ARGS *args;
GET_PORT_RESP *resp;
RPCmonNode *node;
RPCmonRegEnNtry *reqEntry;
RPCmonPortEntry *portEntry;
Event event;

if (p != NULL)
if (p->data != NULL && p->iph != NULL)
if (p->dp == 111) /*if portmapper request */
{ rpcPtr = (struct rpc_msg*)p->data;
if (rpcPtr->rm_direction == CALL)

{
regEntry = (RPCmonRegEntry*)malloc(sizeof(RPCmonReqgEnNtry));

© SANS Institute 2004, As part of GIAC p]rgctical repository. Author retains full rights.

regEntry->srcAddr = p->iph->ip_src.s_addr;
regEntry->destAddr = p->iph->ip_dst.s_addr;
regEntry->srcPort = p->sp;

regEntry->destPort = p->dp;

regEntry->rpcXID = rpcPtr->rm_xid;

regEntry->endTime = p->pkth->ts.tv_sec + rpcmon_timeout;
args = (GET_PORT_ARGS*)&rpcPtr->ru.RM_cmb.cb_verf;
if (args->program == rpcmon_progNum)

AddRPCmonEntry(rpcmon_reqlist, (char*)reqEntry);
}
}

}
if (p->sp == 111) /* portmapper reply */

node = FindRPCmonReq(p);
if (node != NULL)
{
DeleteRPCmonEntry(rpcmon_reqlist, node);
rpcPtr = (struct rpc_msg*)p->data;
if (rpcPtr->rm_direction == REPLY && rpcPtr->ru.RM_rmb.rp_stat ==
MSG_ACCEPTED)
{
portEntry = (RPCmonPortEntry*)malloc(sizeof(RPCmonPortEntry));
portEntry->svrAddr = p->iph->ip_src.s_addr;
resp = (GET_PORT_RESP*)&rpcPtr->ru.RM_rmb.ru.RP_ar.ar_stat;
portEntry->svrPort = resp->port;
portEntry->pktCount = O;
portEntry->endTime = p->pkth->ts.tv_sec + rpcmon_timeout;
AddRPCmonEntry(rpcmon_portlist, (char*)portEntry);
}
}

}
node = FindRPCmonPort(p); /* packet to/from RPC service */

if (node !'= NULL)
{
portEntry = (RPCmonPortEntry*)node->entry;
portEntry->pktCount += 1,
SetEvent(&event, GENERATOR_SPP_ARPSPOOF,
RPCMON_SERVICE_PACKET, 1, 0, 0, 0);

CallAlertFuncs(p, RPCMON_SERVICE_PACKET_STR,
NULL, &event);

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN,
"MODNAME: Packet detected for RPC service \n"););

else

© SANS Institute 2004, As part of GIAC pHctical repository. Author retains full rights.

{
/* p, eh or ah was NULL, either way it's a non-happy packet */

return;

}
}

void RPCmonCleanExitFunction(int signal)

{

FreeRPCmonList(rpcmon_reqlist);
free(rpcmon_reqlist);
rpcmon_reqlist = NULL;

FreeRPCmonList(rpcmon_portlist);
free(rpcmon_portlist);
rpcmon_portlist = NULL,;

int AddRPCmonEntry(RPCmonList *list, char *entry)
{

RPCmonNode *node;

node = (RPCmonNode*)malloc(sizeof(RPCmonNode));
node->entry = entry;

if (list == NULL)
return 1,

node->prev = NULL,;

node->next = list->head;

list->head = node;

if (node->next != NULL)
node->next->prev = node;

return O;

}

void DeleteRPCmonEntry(RPCmondList *list, RPCmonNode *node)
{ if (node->prev == NULL && node->next == NULL)
list->head = NULL;
else if (node->prev == NULL)

list->head = node->next;
node->next->prev = NULL;

else if (node->next == NULL)

{

© SANS Institute 2004, As part of GIAC pFctical repository. Author retains full rights.

node->prev->next = NULL;
}

else

{

node->prev->next = node->next;
node->next->prev = node->prev;
}
free(node->entry);
free(node);

}

void FreeRPCmonList(RPCmonList *rpcmon_list)
{

RPCmonNode *prev;

RPCmonNode *current;

if (rpcmon_list == NULL)
return;

current = rpcmon_list->head;
while (current '= NULL)
{
prev = current;
current = current->next;
free(prev->entry);
free(prev);

}

rpcmon_list->head = NULL,;

RPCmonNode *FindRPCmonReq(Packet *p)
{

RPCmonNode *current, *next;

u_int xid;

struct rpc_msg *rpcPtr;

RPCmonReqgEnNtry *entry;

if (rpcmon_reqlist == NULL)
return NULL;

rpcPtr = (struct rpc_msg*)p->data;
xid = rpcPtr->rm_xid;

current = rpcmon_reqlist->head,;
while (current = NULL)

{

entry = (RPCmonReqgEntry*)current->entry;

if (p->pkth->ts.tv_sec >= entry->endTime)

© SANS Institute 2004, As part of GIAC p]rgctical repository. Author retains full rights.

next = current->next;
DeleteRPCmonEntry(rpcmon_reqlist, current);
current = next;

continue;

}

if (entry->srcAddr == p->iph->ip_dst.s_addr &&
entry->srcPort == p->dp &&
entry->destAddr == p->iph->ip_src.s_addr &&
entry->destPort == p->sp &&
entry->rpcXID == xid)

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN,
"MODNAME: FindRPCmonReq() match!"););

return current;

}

current = current->next;

}
return NULL;

}

RPCmonNode *FindRPCmonPort(Packet* p)
{
RPCmonNode *current, *next;
RPCmonPortEntry *entry;

if (rpcmon_portlist == NULL)
return NULL;

current = rpcmon_portlist->head,;
while (current != NULL)
{

entry = (RPCmonPortEntry*)current->entry;

/* see if entry has expired */
if (p->pkth->ts.tv_sec >= entry->endTime || entry->pktCount >=
rpcmon_maxPkts)
{
next = current->next;
DeleteRPCmonEntry(rpcmon_portlist, current);
current = next;
continue;

}

if ((entry->svrAddr == p->iph->ip_src.s_addr && entry->svrPort == p->sp) ||
(entry->svrAddr == p->iph->ip_dst.s_addr && entry->svrPort == p->dp))
{
DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN,
"MODNAME: FindRPCmonPort() match!"););

© SANS Institute 2004, As part of GIAC pHictical repository. Author retains full rights.

return current;

}

current = current->next;

}
return NULL;

}

Testing

Once | wrote the preprocessor | needed to test it. To do so | wrote an RPC client and
server. The code for these is included below.

/*

* RPC client

*

* Author: John Petkovsek

*

* Purpose:

*

* Send data to an RPC service and receive the response.

*

* Input Parameters:

*

* The hostname of the server, the RPC program number of the service, and the
number of calls

* to make to the service.

*

*/

#include "netdb.h"
#include "msg.h"
#include "errno.h"

main(argc,argv)

int argc;

char **argv;

{

int prog_num, sock;
struct sockaddr_in svr_addr;
struct hostent *hp;
u_long dest_ip_addr;
CLIENT *rpc_clt;

MSG msg;

MSG status;

enum cint_stat cInt_stat;
bool_t (*xdr_func)();

© SANS Institute 2004, As part of GIAC p]rgctical repository. Author retains full rights.

struct timeval timeout;
u_int count, ii;

if (argc 1= 4)

{
printf("usage: %s hostname prog_num num_xfers \n", argv[0]);
exit(0);

}

prog_num = atoi(argv[2]);

count = atoi(argv[3]);

/* initialize rpc */

/* Fill in sockaddr_in structure with address of host we're sending to */
bzero((char*)&svr_addr, sizeof(svr_addr));

svr_addr.sin_family = AF_INET;

if ((hp=gethostbyname(argv[1])) == 0)

{

printf("ERROR: gethostbyname failed for %s, errno=%d \n", argv[1], errno);
exit(0);
}
bcopy(hp->h_addr, (char*)&dest_ip_addr, hp->h_length);
svr_addr.sin_addr.s_addr = dest_ip_addr;
svr_addr.sin_port = 0;

sock = RPC_ANYSOCK;
if ((rpc_clt = (CLIENT*)cIntudp_create(&svr_addr, prog_num, 1, timeout, &sock)) ==
NULL)
{
printf (" cInt_create failed, errno = %d \n", errno);
exit(0);
}

/* set the retry timeout */

timeout.tv_sec = 2;

timeout.tv_usec = 0;

if (!cInt_control(rpc_clt, CLSET_RETRY_TIMEOUT, (char*)&timeout))

{
printf(“cInt_control failed, errno = %d \n", errno);
exit(0);

}

xdr_func = xdr_MSG,;

msg.val = 1;

for (ii=0; ii<count; ii++)

{

cint_stat = cInt_call(rpc_clt, 1, xdr_func, (const caddr_t)&msg, xdr_func,
(const caddr_t)&status, timeout);
if (cInt_stat '= RPC_SUCCESS)

{

© SANS Institute 2004, As part of GIAC p]rgctical repository. Author retains full rights.

printf(“cInt_call failed, errno = %d \n", errno);
exit(0);
}
}

printf("status.val = %d \n", status.val);

[* free args */
if (IcInt_freeres(rpc_clt, xdr_func, (caddr_t)&status))
{
printf ("cInt_freeres failed, errno = %d \n", errno);
exit(0);
}

/*

* RPC server

*

* Author: John Petkovsek

*

* Purpose:

*

* Register an RPC service with the portmapper (registering an ephemeral port) and
send a

* response when the service is called.

*

* Input Parameters:

*

* The program number of the service

*

*/

#include "msg.h"
#include "errno.h"

main(argc,argv)

int argc;

char **argv;

{
int prog_num;
SVCXPRT *transp;
static void service_1();

if (argc != 2)

printf("usage: rpc_recv prog_num \n");
exit(1);

© SANS Institute 2004, As part of GIAC frdctical repository. Author retains full rights.

}

prog_num = atoi(argv[1]);
[* initialize rpc */
(void)pmap_unset(prog_num, 1);

transp = (SVCXPRT*)svcudp_create(RPC_ANYSOCK);
if (transp == NULL)
{

printf("svcudp_create failed, errno = %d \n", errno);
exit(0);
}

if (Isvc_register(transp, prog_num, 1, service_1, IPPROTO_UDP))

printf("svc_register failed, errno = %d \n", errno);
exit(0);
}

svc_run(); /* should never return */

exit(0);
}

static void
service_1(struct svc_req *rgstp, SVCXPRT *transp)

{
bool_t (*xdr_func)();

MSG msg;
MSG status;

printf("service called \n");
xdr_func = xdr_MSG,;

bzero((char*)&msg, sizeof(msg));
if (Isvc_getargs(transp, xdr_func, (caddr_t)&msg))

printf ("svc_getargs failed, errno = %d \n", errno);
exit(0);
}

printf ("msg.val = %d \n", msg.val);

[* send status */
status.val = 2;
if (Isvc_sendreply(transp, xdr_func, (const caddr_t)&status))

{

printf ("svc_sendreply failed, errno = %d \n", errno);

© SANS Institute 2004, As part of GIAC p%g;lctical repository. Author retains full rights.

exit(0);
}

[* free args */
if (Isvc_freeargs(transp, xdr_func, (caddr_t)&msg))

{

printf ("svc_freeargs failed, errno = %d \n", errno);
exit(0);
}

© SANS Institute 2004, As part of GIAC fractical repository. Author retains full rights.

RPC uses XDR encoding for the data passed to/from a service so | also created an
XDR structure in a file called msg.x and used rpcgen to build msg_xdr.h and
msg_xdr.c.

msg.x:
struct MSG {

int val;

I

© SANS Institute 2004, As part of GIAC ffractical repository. Author retains full rights.

To compile the client and server | used the following commands:
gcc -o rpc_send -Insl msg_xdr.c rpc_send.c
gcc -0 rpc_recv -Insl msg_xdr.c rpc_recv.c

The packets transferred during a test run were as follows:
client -> server PORTMAP C GETPORT prog=1005 (?) vers=1 proto=UDP
server -> client PORTMAP R GETPORT port=700
client -> server RPC C XID=1050952157 PROG=1005 (?) VERS=1 PROC=1
server -> client RPC R (#3) XID=1050952157 Success

And Snort logged the following to the alert file:

[**] [112:1:1] (spp_rpcmon) Packet detected for RPC service [**]
04/26-15:02:29.238648 111.111.111.111:767 -> 222.222.222.222:700
UDP TTL:255 TOS:0x0 ID:54756 IpLen:20 DgmLen:72 DF

Len: 52

[**¥] [112:1:1] (spp_rpcmon) Packet detected for RPC service [**]
04/26-15:02:29.238945 222.222.222.222:700 ->111.111.111.111:767
UDP TTL:255 TOS:0x0 ID:43054 IpLen:20 DgmLen:56 DF

Len: 36

© SANS Institute 2004, As part of GIAC p%éctical repository. Author retains full rights.

Part Il - Detects

Detect #1 Fragmentation of Code Red

19:34:12.036507 0:3:€3:d9:26:¢c0 0:0:¢:4:b2:33 0800 1482: 213.107.222.172.4114 >
115.74.227.206.80: P [bad tcp cksum 7592!] 1296348126:1296349554(1428) ack
1419347518 win 17520 (frag 42741:1448@0+) (ttl 111, len 1468, bad cksum c4a5!)

19:34:17.826507 0:3:€3:d9:26:c0 0:0:¢c:4:b2:33 0800 1482: 213.107.222.172.4114 >
115.74.227.206.80: P [bad tcp cksum 7592!] 0:1428(1428) ack 1 win 17520 (frag
43027:1448@0+) (ttl 111, len 1468, bad cksum c387!)

19:34:29.306507 0:3:€3:d9:26:¢c0 0:0:¢:4:b2:33 0800 1482: 213.107.222.172.4114 >
115.74.227.206.80: P [bad tcp cksum 7592!] 0:1428(1428) ack 1 win 17520 (frag
43550:1448@0+) (ttl 111, len 1468, bad cksum c17c!)

19:34:52.586507 0:3:€3:d9:26:c0 0:0:c:4:b2:33 0800 1482; 213.107.222.172.4114 >
115.74.227.206.80: P [bad tcp cksum 7592!] 0:1428(1428) ack 1 win 17520 (frag
44682:1448@0+) (ttl 111, len 1468, bad cksum bd10!)

19:35:38.946507 0:3:€3:d9:26:c0 0:0:c:4:b2:33 0800 1482: 213.107.222.172.4114 >
115.74.227.206.80: P [bad tcp cksum 7592!] 0:1428(1428) ack 1 win 17520 (frag
46920:1448@0+) (ttl 111, len 1468, bad cksum b452!)

Source of trace

This detect is from the raw logs file http://www.incidents.org/logs/Raw/2002.8.15

| can only speculate on the network layout. If you could believe the logs one would
say that the IDS that captured these logs was on the 115.74.0.0 class b subnet.
Since all the packets have either a source IP address or destination IP address on
that subnet and the addresses cover a wide range of that subnet (from 115.74.9.61 -
> 115.74.249.202). But the addresses have been obfuscated. Which explains the
checksum errors in the tcpdump output. The link level header shows the packets
were received from MAC address 00:03:e3:d9:26:c0 and the destination MAC
address is 00:00:0c:04:b2:33. The first six digits indicate the vendor. Using
http://coffer.com/mac_find/ | found that both of these addresses belong to Cisco. So
we know the IDS is likely between two routers. The packets to port 80 on internal
machines are from established TCP connections and there are packets in the logs
from port 80 on a machine on the 115.74.0.0 network so there are web servers on
the internal network.

internet --- cisco rtr ------- cisco rtr ------ web servers

|
IDS

© SANS Institute 2004, As part of GIAC &gctical repository. Author retains full rights.

Detect was generated by

The detect was generated by the Snort intrusion detection system. | re-ran Snort on
the raw logs using the following command:

snort -d -l ./logs -c /downloads/snort-1.9.1/etc/snort.conf -r 2002.8.15
and got the following output:

[**] [1:1322:4] BAD TRAFFIC bad frag bits [**]

[Classification: Misc activity] [Priority: 3]

09/14-19:34:12.036507 213.107.222.172 -> 115.74.227.206
TCP TTL:111 TOS:0x0 ID:42741 IpLen:20 DgmLen:1468 DF MF
Frag Offset: 0x0000 Frag Size: 0x05A8

[**] [1:1322:4] BAD TRAFFIC bad frag bits [**]

[Classification: Misc activity] [Priority: 3]

09/14-19:34:17.826507 213.107.222.172 -> 115.74.227.206
TCP TTL:111 TOS:0x0 1D:43027 IpLen:20 DgmLen:1468 DF MF
Frag Offset: 0x0000 Frag Size: 0x05A8

[**] [1:1322:4] BAD TRAFFIC bad frag bits [**]

[Classification: Misc activity] [Priority: 3]

09/14-19:34:29.306507 213.107.222.172 -> 115.74.227.206
TCP TTL:111 TOS:0x0 1D:43550 IpLen:20 DgmLen:1468 DF MF
Frag Offset: 0x0000 Frag Size: 0x05A8

[**] [1:1322:4] BAD TRAFFIC bad frag bits [**]

[Classification: Misc activity] [Priority: 3]

09/14-19:34:52.586507 213.107.222.172 -> 115.74.227.206
TCP TTL:111 TOS:0x0 1D:44682 IpLen:20 DgmLen:1468 DF MF
Frag Offset: 0xO000 Frag Size: 0xO5A8

[**] [1:1322:4] BAD TRAFFIC bad frag bits [**]

[Classification: Misc activity] [Priority: 3]

09/14-19:35:38.946507 213.107.222.172 -> 115.74.227.206
TCP TTL:111 TOS:0x0 1D:46920 IpLen:20 DgmLen:1468 DF MF
Frag Offset: 0x0000 Frag Size: 0xO5A8

A description of Snorts Fragbits checking can be found at
http://www.snort.org/docs/writing_rules/chap2.html#tth sEc2.3.7. Snort logged these
packets because both the 'Don't fragment' and the 'More fragments' bits were set.
Packets with the 'don't fragment' bit set should never get fragmented. The ‘more
fragments’ bit indicates that this is a packet fragment and additional fragments will
follow. A router will respond with a 'ICMP_UNREACH_NEEDFRAG' ICMP message
(type 3 code 4) if it receives a packet that has the don't fragment bit set and is larger
than the MTU size of the interface the router would want to send the packet to.

© SANS Institute 2004, As part of GIAC frctical repository. Author retains full rights.

Probability the source address was spoofed

The illegal fragment bits indicates that the packet was probably crafted but the rest of
the fields in the packet seem reasonable. A TTL of 111 likely indicates the

source is 17 (128-111) hops away from the IDS. The total length field in the IP
header of each packet is 0xX5BC or 1468 bytes. This corresponds to the ‘Frag Size’
of 1448 (0x5A8) which is the total length minus the IP header length. For ethernet
the maximum transmission unit (MTU) for an IP datagram is 1500 bytes so this is a
valid ethernet packet.

However as described below the payload of these packets contain the signature of
the code red attack. There are a total of 13 fragmented code red packets in this
particular log file. They all have the same illegal fragment bits and the same packet
size. They also have similar numbers in the TTL field (108-112) but the source IP
addresses are different. A lookup of the source IP addresses using
http://www.dnsstuff.com/ yielded the following:

IP Address Country Description

213.107.222.172 | UNITED KINGDOM | NTL ADAM solution at Winnersh
213.106.223.199 | UNITED KINGDOM | NTL Internet - Brentford site
202.69.163.202 PHILIPPINES ComClark Network & Technology Corp.
80.32.49.162 SPAIN Provider Local Registry

DShield (WWW.dshield.org) didn’t report any attacks attributed to these addresses.

Although code red requires a response from the machine being attacked the different
IP addresses indicates the source address may have been spoofed.

Description of attack

Although Snort logged the packets because of an illegal combination of
fragmentation bits, a look inside the packet shows that it is actually a Code Red
attack. Using tcpdump as follows:

tcpdump -n -X -x -r 2002.8.15 > 2002.8
gives the output below:

0x0000 4500 05bc a6f5 6000 6f06 c4ab d56b deac E.....0..k.

0x0010 734ae3ce 1012 0050 4d44 b3de 5499 863e sJ.....PMD..T..>

0x0020 5018 4470 00fb 0000 2f64 6566 6175 6¢74 P.Dp..../default

0x0030 2e69 6461 3fde 4ede 4ede 4ede 4ede dede .1da?NNNNNNNNNNN
0x0040 4e4de 4dede 4ede dede 4ede 4ede dede 4ede NNNNNNNNNNNNNNNN
0x0050 4e4de 4ede 4ede dede 4ede 4ede 4ede 4ede NNNNNNNNNNNNNNNN
0x0060 A4ede 4ede 4ede 4ede 4dede 4ede 4ede 4ede NNNNNNNNNNNNNNNN
0xX0070 4e4de 4ede 4ede dede 4ede 4ede 4ede 4ede NNNNNNNNNNNNNNNN
0x0080 4ede 4ede 4ede 4ede 4dede 4ede 4ede 4ede NNNNNNNNNNNNNNNN
0x0090 A4ede 4ede 4ede 4dede dede 4ede 4ede 4ede NNNNNNNNNNNNNNNN

© SANS Institute 2004, As part of GIAC F%ZlCtiCa| repository. Author retains full rights.

0x00a0 4e4de 4dede 4ede dede 4ede 4ede dede 4ede NNNNNNNNNNNNNNNN
0x00b0 4ede 4ede 4ede 4ede 4ede 4ede 4ede 4ede NNNNNNNNNNNNNNNN
0x00cO 4ede 4ede 4ede 4ede 4ede dede 4ede 4ede NNNNNNNNNNNNNNNN
0x00d0 4ede 4ede 4ede 4ede 4ede 4ede 4ede dede NNNNNNNNNNNNNNNN
0x00e0 4ede 4dede 4ede dede 4ede 4ede dede 4ede NNNNNNNNNNNNNNNN
0Ox00f0 4ede 4ede 4ede 4ede 4ede 4ede 4ede 4ede NNNNNNNNNNNNNNNN
0x0100 4e4de 4ede 4ede dede 4ede 4ede dede 4ede NNNNNNNNNNNNNNNN
0x0110 4ede 4ede 4e25 7539 3039 3025 7536 3835 NNNNN%u9090%u685
0x0120 3825 7563 6264 3325 7537 3830 3125 7539 8%ucbd3%u7801%u9
0x0130 3039 3025 7536 3835 3825 7563 6264 3325 090%u6858%uchbd3%
0x0140 7537 3830 3125 7539 3039 3025 7536 3835 u7801%u9090%u685
0x0150 3825 7563 6264 3325 7537 3830 3125 7539 8%ucbd3%u7801%u9
0x0160 3039 3025 7539 3039 3025 7538 3139 3025 090%u9090%u8190%

The characters "default.ida?NNNNNN" is a signature of Code Red.

Attack mechanism

The Code Red attack has been well documented (see
http://www.ciac.org/ciac/bulletins/I-117.shtml) so I'm not going to described it in detail
here. It is the fragmentation that differentiates this particular attack. There are 34
other packets in the same log file that have illegal fragmentation. Of these all but 3
have the same length and offset. Not all of the packets with illegal fragmentation
have a code red payload but a high percentage do.

Some possible causes of this detect are:
IDS Evasion

Since most IDS's are signature based they look for particular patterns in the packets.
If the particular attack pattern the IDS is looking for is spread over several packets
(via fragmentation) then some IDS's won't detect the attack. An excellent article on
IDS evasion can be found at http://secinf.net/info/ids/idspaper/idspaper.html.

The illegal fragmentation bits in this detect suggest that these are crafted packets
which would lead one to suspect this is an IDS evasion attempt. There are several
fragmentation tools available including one by Dug Song
(http://packetstorm.widexs.nl/UNIX/IDS/nidsbench/fragrouter.html). None that | know
of would set both “don’t fragment” and “more fragments” in the same packet
however. It could be someone was trying to launch a code red attack using a new
fragmentation tool to evade detection. If this is the case though the attacker not only
made the mistake of setting the fragmentation bits improperly but also didn't fragment
the attack into small enough packets to be able to evade vulnerable IDS's. If they are
crafted packets the attacker was smart enough to change the IP identification
number. The IP checksum also changes but of course since other fields in the
packet changed the checksum would have to or the packet would have been
dropped by the first router it went to on its way to the destination.

Another possible explanation for seeing the same packet with different IP ID’s is that
these are TCP retransmissions. The time between the packets in the Snort output
above is 5, 12, 23, and 48 seconds. Typically retransmissions occur at (3, 6, 12, 24,

© SANS Institute 2004, As part of GIAC frctical repository. Author retains full rights.

48, etc.) intervals. Varying delays and the possibility that one packet was lost all
together could account for the difference between the expected and actual times so
it's quite possible that these were retransmissions and not crafted packets being
fragmented to avoid detection.

Denial of Service

The fact that the offset for most of the fragmented packets is zero could lead one to
suspect a denial of service attack. In other words they may be trying to get a server
to queue up these fragments waiting on the rest of the packet until the server runs
out of memory. However there are not enough packets for this to be feasible and
why use a code red payload in this case. Also most servers will discard these
packets after some time period anyway.

Scanning

Perhaps the sender of these packets was hoping to see an “ICMP Fragment
Reassembly Time Exceeded” (Type:11 Code:1 TTL EXCEEDED) from the targeted
machine. But it doesn’t make sense that they would use a code red payload for this
either.

Of course it is also possible that this is not an attack or scan but the result of a flawed
router that set the bits incorrectly. But with so many of the fragmented packets
containing the code red payload this seems unlikely. Although there are problems
with all the possibilities I've mentioned | believe the most likely cause of these
packets is IDS evasion.

Correlations

As mentioned earlier Dshield showed no activity from any of the source IP’s.

Similar fragmentation was attributed to a DOS attack in
http://lists.jammed.com/incidents/2001/07/0085.html

Donald Merchant in his practical attributes this to faulty hardware
http://www.giac.org/practical/Donald_Merchant GCIA.doc

Robert Buckley saw a similar detect that had the DF and MF bits set and the same
fragment size and offset (http://archives.neohapsis.com/archives/incidents/2002-
04/0054.html). This was directed at his DNS server and the server did eventually
return an ICMP Fragment Reassembly Time Exceeded response. The packets he
saw do not contain code red however.

Peter Szczepankiewicz submitted a similar detect (http://cert.uni-
stuttgart.de/archive/intrusions/2002/11/msg00019.html) that he attributed to
reconnaissance.

Roger Thompson mentions that DF MF has been seen with worms before, and it is
common. But there is no final explanation of why an attacker would chose to do this.

© SANS Institute 2004, As part of GIAC fractical repository. Author retains full rights.

http://cert.uni-stuttgart.de/archive/intrusions/2002/08/msg00239.html

Scott Gregory suggests that Code Red packets are fragmented to avoid IDS
detection.
http://cert.uni-stuttgart.de/archive/intrusions/2002/08/msg00106.html

Evidence of active targeting

Several destinations received the fragmented packets including the following:

IP Address Destination

213.107.222.172 | 115.74.227.206
213.106.223.199 | 115.74.71.133
202.69.163.202 115.74.158.86
80.32.49.162 115.74.164.169

In each case port 80 was targeted. If | knew these destinations were web servers |
would suspect active targeting but as it is there is not enough information to be sure.

Severity

Criticality - 3 - Criticality measures how critical the targeted system is. Since many of
the fragmented packets were repeated several times one could conclude that the
targeted machines didn’t respond and may not even exist. None of the addresses
that received fragmented code red packets appear elsewhere in the logs. If these
machines do exist it's not known what information is on the particular web server in
guestion but many web servers carry sensitive information or are an important part of
a companies e-commerce. With of all the unknowns | will give this detect a Criticality
of 3.

Lethality - 3 - Lethality measures how severe the damage would be if the attack
succeeded. This could be looked at in two ways for this particular detect. If the
fragmenting had succeeded in evading the IDS or if the Code Red exploit has
succeeded. The "default.ida?NNNNNN" signature in the fragmented packets
indicates that the web server is being probed for the vulnerability that Code Red
exploits. It does not mean that a code red attack would necessarily be successful.
So if the fragmenting had been done correctly and the probe had worked then the
attacker would know if the web server was vulnerable and the victim would not know
that he had been scanned. If the server was vulnerable then it would allow the web
server to be compromised. Viewing the attack as a IDS evasion attempt | would rate
it's lethality a 3.

System Countermeasures - 3 - Only unpatched IIS servers are vulnerable to Code
Red but as mentioned above the fragmented packets are the only ones to or from
these address and they don’t appear to have responded so we know nothing about
the machines.

© SANS Institute 2004, As part of GIAC pidctical repository. Author retains full rights.

Network Countermeasures - 3 - In this case Snort caught the illegal fragments and
even if the fragmentation had been successful it would have still caught the Code
Red attack as long as the frag2 preprocessor was being used which is the default.
However http://lists.jammed.com/pen-test/2002/04/0058.html discusses a bug in
Snort version 1.8.6 and below that involves fragmentation. Border routers and
firewalls can be used to limit access but since the source addresses were from all
over the globe this university is apparently allowing access to everyone (assuming
the IDS was not outside the router and firewall). Again there is not much information
to go on but at least they have an IDS so | will rate Network Countermeasures a 3.

(3+3)-(3+3)=0

Defensive recommendation

Make sure the latest version of Snort is being used and make sure all web servers
have the latest patches. The university might also consider blocking fragmented
packets depending upon whether they are “normally” received or needed. They could
also block some of the ICMP responses which the attacker might have been trying to
elicit.

Multiple choice test question

What is the most likely reason the following packet was logged by Snort

09/14-19:34:12.036507 213.107.222.172 -> 115.74.227.206
TCP TTL:111 TOS:0x0 ID:42741 IpLen:20 DgmLen:1468 DF MF
Frag Offset: 0x0O000 Frag Size: 0x05A8

a) The Type of Service is 0
b) The fragment offset is 0
c) lllegal combination of IP flags
d) Use of a reserved IP address

Answer - ¢

Detect #2 RPC portmap request mountd

16:46:45.956507 66.1.161.243.600 > 32.245.170.117.111: udp 56
16:46:45.966507 66.1.161.243.600 > 32.245.170.117.111: udp 56
16:46:50.776507 66.1.161.243.600 > 32.245.170.117.111: udp 56
16:46:50.926507 66.1.161.243.600 > 32.245.170.117.111: udp 56
16:46:59.046507 66.1.161.243.600 > 32.245.170.117.111: udp 56
16:46:59.226507 66.1.161.243.600 > 32.245.170.117.111: udp 56
16:47:03.756507 66.1.161.243.600 > 32.245.170.117.111: udp 56
16:47:04.116507 66.1.161.243.600 > 32.245.170.117.111: udp 56

© SANS Institute 2004, As part of GIAC r;)?galctical repository. Author retains full rights.

Source of trace

This detect is from the raw logs file http://www.incidents.org/logs/Raw/2002.9.23

Again | can only speculate on the network layout. The internal network is
32.245.0.0/24 after the addresses were changed. The link level headers again show
the packets were between the same two routers as in detect #1.:

internet --- cisco rtr ------- cisco rtr ------ 32.245.0.0/16

|
IDS

Detect was generated by

The detect was generated by the Snort intrusion detection system. | re-ran Snort on
the raw logs using the following command:

snort -d -l ./logs -c /downloads/snort-1.9.1/etc/snort.conf -r 2002.9.23
and got the following output:

[**] [1:579:2] RPC portmap request mountd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
10/23-17:46:45.956507 66.1.161.243:600 -> 32.245.170.117:111
UDP TTL:109 TOS:0x0 ID:41759 IpLen:20 DgmLen:84

Len: 64

[Xref => arachnids 13]

[**¥] [1:579:2] RPC portmap request mountd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
10/23-17:46:45.966507 66.1.161.243:600 -> 32.245.170.117:111
UDP TTL:109 TOS:0x0 ID:42015 IpLen:20 DgmLen:84

Len: 64

[Xref => arachnids 13]

[**] [1:581:2] RPC portmap request pcnfsd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
10/23-17:46:50.776507 66.1.161.243:600 -> 32.245.170.117:111
UDP TTL:109 TOS:0x0 ID:42527 IpLen:20 DgmLen:84

Len: 64

[Xref => arachnids 22]

[**] [1:581:2] RPC portmap request pcnfsd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
10/23-17:46:50.926507 66.1.161.243:600 -> 32.245.170.117:111
UDP TTL:109 TOS:0x0 ID:42783 IpLen:20 DgmLen:84

© SANS Institute 2004, As part of GIAC péctical repository. Author retains full rights.

Len: 64
[Xref => arachnids 22]

[**¥] [1:579:2] RPC portmap request mountd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
10/23-17:46:59.046507 66.1.161.243:600 -> 32.245.170.117:111
UDP TTL:109 TOS:0x0 ID:44831 IpLen:20 DgmLen:84

Len: 64

[Xref => arachnids 13]

[**] [1:579:2] RPC portmap request mountd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
10/23-17:46:59.226507 66.1.161.243:600 -> 32.245.170.117:111
UDP TTL:109 TOS:0x0 ID:45087 IpLen:20 DgmLen:84

Len: 64

[Xref => arachnids 13]

[**] [1:581:2] RPC portmap request pcnfsd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
10/23-17:47:03.756507 66.1.161.243:600 -> 32.245.170.117:111
UDP TTL:109 TOS:0x0 ID:45343 IpLen:20 DgmLen:84

Len: 64

[Xref => arachnids 22]

[**] [1:581:2] RPC portmap request pcnfsd [**]

[Classification: Decode of an RPC Query] [Priority: 2]
10/23-17:47:04.116507 66.1.161.243:600 -> 32.245.170.117:111
UDP TTL:109 TOS:0x0 ID:45599 IpLen:20 DgmLen:84

Len: 64

[Xref => arachnids 22]

A description of Snort’s RPC checking can be found at
http://www.snort.org/docs/writing_rules/chap2.html#tth sEc2.3.7. The following rules
are what caused these packets to be logged:

alert tcp SEXTERNAL_NET any -> $HOME_NET 111 (msg:"RPC portmap request
mountd"; content:"|01 86 A5 00 00|";offset:40;depth:8; reference:arachnids,13;
classtype:rpc-portmap-decode; flow:to_server,established; sid:1266; rev:4;)

alert tcp SEXTERNAL_NET any -> $HOME_NET 111 (msg:"RPC portmap request
pcnfsd”; content:"|02 49 f1 00 00|";offset:40;depth:8; reference:arachnids,22;
classtype:rpc-portmap-decode; flow:to_server,established; sid:1268; rev:4;)

Mountd uses RPC Program Number 100005 (0x0186a5) hence the rule is checking
for content of "01 86 A5 00 00". And pcnfsd uses RPC Program Number 150001
(0x0249f1) hence the rule is checking for content of "02 49 f1 00 00". The two zero
bytes after the program number are the first two bytes of the four byte version
number. This helps reduce false alarms since the latest version numbers for mountd
and pcnfsd are in the single digits.

© SANS Institute 2004, As part of GIAC piactical repository. Author retains full rights.

Probability the source address was spoofed

Using http://remote.12dt.com/rns/ | found the source address (66.1.161.243) belongs
to Sprint Broadband Direct. Nothing about the packets make them look crafted. The
TTL (109) is reasonable. The IP ID field is incrementing, etc. Based on this and the
fact that most RPC related attacks require the attacker to get responses | don't
believe the address was spoofed.

Description of attack

There are numerous attacks related to RPC and to mountd and pcnfsd in particular.
See "http://www.cert.org/advisories/CA-1996-08.html" and
"http://www.cert.org/advisories/CA-1998-12.html" for examples. Most of these attacks
exploit buffer overflows.

The source port is 600 and according to
http://www.shmoo.com/mail/firewalls/mar00/msg00020.shtml" port 600 is the default
port for pcserver. And according to “http://www.doc.ic.ac.uk/~mac/manuals/hpux-
manual-pages/hpux/usr/man/manim/pcserver.1m.html” pcserver is the hostside
server program for Basic Serial and AdvanceLink, and advanceLink is a terminal
emulation program that also supports file transfers between a PC and host system
over various physical connections.

But according to “http://www.first.org/events/progconf/2000/D1-03.pdf” port 600 is
also a favorite port for script kiddies. Therefore this detect could be the output of a
script searching for machines running mountd or pcnfsd.

There is also a report at http://lists.jammed.com/incidents/2001/05/0100.htm| where
Brad Doctor and Martin Markgraf describes a worm that uses port 600 to do RPC
scans in an attempt to find vulnerabilities in order to spread.

With Snort rules that check the payload for a particular string it's always possible to
get false alarms if the pattern occurs naturally. In this case though the rest of the
packet looks like the RPC request packets | saw while testing the code | wrote for
Part | of this report. For example the ‘02’ in byte 0x27 below is the RPC version
number which is typically 2.

16:46:45.966507 66.1.161.243.600 > 32.245.170.117.111: udp 56
0x0000 4500 0054 a41f 0000 6d11 €502 4201 alf3 E.T...m...B...
0x0010 20f5 aa75 0258 006f 0040 a599 ff05 862f ..u.X.0.@...../
0x0020 0000 0000 0000 0002 0001 86a0 0000 0002
0x0030 0000 0003 0000 0000 0000 0000 0000 0000 ..eeeeeeee.
0x0040 0000 0000 0001 86a5 0000 0001 0000 0011 ...
0x0050 0000 0000

16:46:50.776507 66.1.161.243.600 > 32.245.170.117.111: udp 56
0x0000 4500 0054 a61f 0000 6d11 e302 4201 alf3 E.T...m...B...
0x0010 20f5 aa75 0258 006f 0040 e24a ff05 8630 ..uX.0.@.J...0
0x0020 0000 0000 0000 0002 0001 86a0 0000 0002
0x0030 0000 0003 0000 0000 0000 0000 0000 0000 ..eeeeeeeeeee.

© SANS Institute 2004, As part of GIAC r;)?éctical repository. Author retains full rights.

0x0040 0000 0000 0002 49f1 0000 0002 0000 0011 l........
0x0050 0000 0000

It's also possible that someone has a misconfigured system and is targeting the
university’s network unintentionally but there was no other RPC traffic in the logs and
with a source port of 600 it sounds suspiciously like the worm described by Brad
Doctor and Martin Markgraf.

Attack mechanism

As mentioned earlier the RPC portmapper, which listens on port 111, is used to find
the RPC services running on a server. The packets in this detect are querying the
mountd and pcnfs services as seen by the 0186a5 and 0249f1 in the payloads.

If the services were found the attacker could then attempt to exploit the buffer
overflow vulnerabilities in mountd and pcnfsd which could then give the attacker root
access to the machine. The logs don't show a response from the portmapper but
since the response doesn't include the program number it would not have been
logged by Snort anyway so we don't know if this machine was running the queried
services or not. There are no other packets in the logs involving 66.1.161.243 but
again we don't know if that's because there were none or if they just didn't match any
of the Snort rules.

Correlations

A search of the source address using Dshield didn’t yield anything, but
mynetwatchman had two incidents that were closed. | assume this means that they
were either false or were appropriately investigated and dealt with.

In http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00209.htm| Mark
Donaldson attributes this attack to RPC reconnaissance.

In http://www.giac.org/practical/GCIA/Doug_Kite GCIA.pdf Doug Kite similarly
attributes this attack to someone looking for a machine running mountd or pcnfsd that
can be exploited.

| posted my analysis to incidents.org on 5-30-03 but didn’t receive any responses.

Evidence of active targeting

There were no other packets in the log from the same source address so it doesn’t
look like anyone at that address was targeting the university for attack.

Also the worm that I've attributed this to uses a random number generator to select
its victims so | don't believe there was active targeting in this case.

© SANS Institute 2004, As part of GIAC r;)?gctical repository. Author retains full rights.

Severity

Criticality - 3 - Criticality measures how critical the targeted system is. Since this
worm targets random machines it's unknown how critical the machine it chooses will
be, so | will give this detect a Criticality of 3.

Lethality - 3 - Lethality measures how severe the damage would be if the attack
succeeded. As mentioned earlier there are attacks against mountd that can lead to
the attacker getting root access to the machine. But in this case it was just a probe
and not an actual attack so | will give this detect a Lethality of 3.

System Countermeasures - 3 - The only other packets to 32.245.170.117 are scans.
There are no packets logged from 32.245.170.117 so we know little about it. At least
we don’t have any evidence that it is horribly configured (i.e. responding to
everything).

Network Countermeasures - 3 - We know there is a border router in this network but
we don't know how well configured it is. The fact that packets to so many different
ports are getting through leads me to believe it probably doesn't have a very robust
access control list. But since they do have an IDS on the network they are security
aware so | will give a 3 for Network Countermeasures.

(3+3) - (3+3) =0

Defensive recommendation

Make sure all RPC daemons have the latest patches. Disable any services that
aren't needed. If RPC related services are only needed by known IP addresses then
block access to the portmapper from other addresses with a border router or firewall.
Also Wietse Venema at http://ftp.porcupine.org/pub/security/ proposes to have a
secure version of the portmapper that should be looked into if RPC is needed.

Multiple choice test question

Which of the following ports is commonly used for RPC portmap requests:
a) 111

b) 800

c) 1010

d) 100

Correct answer is (a).

© SANS Institute 2004, As part of GIAC pictical repository. Author retains full rights.

Detect #3 XMAS scan

Source of trace

This detect is one | captured on a network that looks as follows:

internet ------ cisco rtr ------ firewall ------ web/ftp servers

|
IDS

Detect was generated by

The IDS being used was Snort version 1.9.1.
| used the default Snort rules and the following to capture the alerts:
snort -b -l logs -c /etc/snort.conf

For this detect | decided to analyse a scan. At first | used the default Snort rules and
saw many scans like the following:

[**] [117:1:1] (spp_portscan2) Portscan detected from 216.8.128.71: 21 targets 21
ports in 3 seconds [**]

04/16-18:11:29.448590 216.8.128.71:1064 -> XXX.XXX.XXX.224:137

UDP TTL:115 TOS:0x0 ID:52964 IpLen:20 DgmLen:78

Len: 58

Eventually | saw something a little more interesting. A SYN/FIN scan from Chile:

[**] [111:13:1] (spp_stream4) STEALTH ACTIVITY (SYN FIN scan) detection [**]
04/25-00:56:26.157150 146.83.34.8:21 -> XXX.XXX.XXX.2:21

TCP TTL:19 TOS:0x0 1D:39426 IpLen:20 DgmLen:40

ek SE Seq: OX59E915BA Ack: 0x71F7C84F Win: 0x404 TcpLen: 20

[**¥] [111:13:1] (spp_stream4) STEALTH ACTIVITY (SYN FIN scan) detection [**]
04/25-00:56:26.176939 146.83.34.8:21 -> XXX.XXX.XXX.3:21

TCP TTL:19 TOS:0x0 1D:39426 IpLen:20 DgmLen:40

*eeeekSE Seq: OX59E915BA Ack: 0x71F7C84F Win: 0x404 TcpLen: 20

[**¥] [111:13:1] (spp_stream4) STEALTH ACTIVITY (SYN FIN scan) detection [**]
04/25-00:56:26.237112 146.83.34.8:21 -> XXX.XXX.XXX.6:21

TCP TTL:19 TOS:0x0 1D:39426 IpLen:20 DgmLen:40

*eeeekSE Seq: OX59E915BA Ack: 0x71F7C84F Win: 0x404 TcpLen: 20

© SANS Institute 2004, As part of GIAC r;)?gctical repository. Author retains full rights.

[**¥] [111:13:1] (spp_stream4) STEALTH ACTIVITY (SYN FIN scan) detection [**]
04/25-00:56:31.196417 146.83.34.8:21 -> XXX.XXX.XXX.254:21

TCP TTL:19 TOS:0x0 1D:39426 IpLen:20 DgmLen:40

ek SE Seq: OX3EA43329 Ack: 0x79BDA771 Win: 0x404 TcpLen: 20

[**] [111:13:1] (spp_stream4) STEALTH ACTIVITY (SYN FIN scan) detection [**]
04/25-00:56:31.217067 146.83.34.8:21 -> XXX.XXX.XXX.255:21

TCP TTL:19 TOS:0x0 1D:39426 IpLen:20 DgmLen:40

ek SE Seq: OX3EA43329 Ack: 0x79BDA771 Win: 0x404 TcpLen: 20

Using a reverse DNS lookup 146.83.34.8 resolved to cl.sociales.uchile.cl.

This was obviously someone looking for an ftp server to exploit. The fact that
a few destination addresses were skipped makes me think Snort is probably
dropping packets occasionally.

After a couple more days | saw a scan that wasn't so obvious. It was an XMAS scan
of an odd collection of ports. It is this detect that | chose to analyse.

[**¥] [111:10:1] (spp_stream4) STEALTH ACTIVITY (XMAS scan) detection[**]
05/22-21:27:09.457037 218.18.36.105:63207 -> XXX.XXX.XXX.6:12543

TCP TTL:42 TOS:0x0 1D:4369 IpLen:20 DgmLen:60

»U*PHE Seq: 0x12121212 Ack: 0xO Win: OxO TcpLen: 40 UrgPtr: Ox0
TCP Options (4) =>WS: 10 MSS: 265 TS: 1061109567 0 EOL

Probability the source address was spoofed

Using http://www.dshield.org/ipinfo.php | found that the source address
(218.18.36.105) was registered to a Chinese telecom.

inetnum: 218.13.0.0 - 218.18.255.255
netname: CHINANET-GD
country: CN
descr: CHINANET Guangdong province
network
Data Communication Division
China Telecom
admin_c: CH93-AP
tech_c: WM12-AP
remarks:
mnt_by: MAINT-CHINANET
changed:
hostmaster@ns.chinanet.cn.net 20010528
status: ALLOCATED PORTABLE
source: APNIC

© SANS Institute 2004, As part of GIAC pictical repository. Author retains full rights.

notify:
mnt_lower: MAINT-CHINANET-GD

rev_srv:
start: 3658285056
end: 3658678271

diff: 393215
person: WU MIAN

address:
NO.1,RO.DONGYUANHENG,YUEXIUNAN,GUANGZHOU
country: CN

phone: +086-20-83877223

fax_no: +86-20-83877223

e_mail: ipadm@gddc.com.cn

nic_hdl: WM12-AP

mnt_by: MAINT-CHINANET-GD
changed: ipadm@gddc.com.cn 20010820
source: APNIC

remarks:

notify:

| also checked http://www.mynetwatchman.com/ and this source address had two
events associated with it, the most recent on May 20, 2003. These were port 80
scanning events that were attributed to “probable Nimda/Code Red”.

In the scan | saw the sequence number was always 0x12121212 and the IP ID was
always 4369 so the packets were obviously crafted, but a scan requires the sender to
see the response so | doubt the source address was spoofed.

Description of attack

[**¥] [111:10:1] (spp_stream4) STEALTH ACTIVITY (XMAS scan) detection[**]
05/22-21:27:09.457037 218.18.36.105:63207 -> XXX.XXX.XXX.6:12543

TCP TTL:42 TOS:0x0 1D:4369 IpLen:20 DgmLen:60

»U*PHE Seq: 0x12121212 Ack: 0xO Win: OxO TcpLen: 40 UrgPtr: Ox0
TCP Options (4) =>WS: 10 MSS: 265 TS: 1061109567 0 EOL

[**] [111:10:1] (spp_stream4) STEALTH ACTIVITY (XMAS scan) detection[**]
05/22-21:27:09.458536 218.18.36.105:63207 -> XXX.XXX.XXX.6:12543

TCP TTL:42 TOS:0x0 1D:4369 IpLen:20 DgmLen:60

»U*PHE Seq: 0x12121212 Ack: 0xO Win: OxO TcpLen: 40 UrgPtr: Ox0
TCP Options (4) =>WS: 10 MSS: 265 TS: 1061109567 0 EOL

[**¥] [111:10:1] (spp_stream4) STEALTH ACTIVITY (XMAS scan) detection[**]
05/22-21:27:09.461141 218.18.36.105:63207 -> XXX.XXX.XXX.6:12543

TCP TTL:42 TOS:0x0 1D:4369 IpLen:20 DgmLen:60

U*PF Seq: 0x12121212 Ack: 0xO Win: OxO TcpLen: 40 UrgPtr: Ox0
TCP Options (4) => WS: 10 MSS: 265 TS: 1061109567 0 EOL

[**] [111:10:1] (spp_stream4) STEALTH ACTIVITY (XMAS scan) detection[**]

© SANS Institute 2004, As part of GIAC piactical repository. Author retains full rights.

05/22-21:27:34.685568 218.18.36.105:64993 -> XXX.XXX.XXX.14:12543
TCP TTL:42 TOS:0x0 1D:4369 IpLen:20 DgmLen:60

*U*P**F Seq: 0x12121212 Ack: 0x0O Win: 0xO TcpLen: 40 UrgPtr: 0x0
TCP Options (4) => WS: 10 MSS: 265 TS: 1061109567 0 EOL

[**] [111:10:1] (spp_stream4) STEALTH ACTIVITY (XMAS scan) detection[**]
05/22-21:27:34.689525 218.18.36.105:64993 -> XXX.XXX.XXX.14:12543

TCP TTL:42 TOS:0x0 1D:4369 IpLen:20 DgmLen:60

»*U*PHE Seq: 0x12121212 Ack: 0xO Win: OxO TcpLen: 40 UrgPtr: Ox0
TCP Options (4) =>WS: 10 MSS: 265 TS: 1061109567 0 EOL

It continues on, scanning several more addresses. It mostly scans for

port 12543 but also occasionally scans ports 50, 51, 52, 53, 110, 112,

3389, and 5631. Most of the scans are the XMAS variety but some are NULL
scans.

The above mentioned ports were scanned the following number of times:
Port 50 - 1

Port 51 - 10

Port 52 - 20

Port 53 - 12

Port 110 - 3

Port 112 - 3

Port 3389 - 4

Port 5631 - 37

Port 12543 — 196

The following addresses were scanned
XXX XXX XXX. 6 -> XXX XXX XXX.125

Attack mechanism

There is a very good article on the various scans at
http://www.computercops.biz/modules.php?name=nmap.

An excerpt from this on the XMAS scan is shown below:

"The idea is that closed ports are required to reply to your probe packet with

an RST, while open ports must ignore the packets in question (see RFC 793 pp 64).
The FIN scan uses a bare (surprise) FIN packet as the probe, while the Xmas tree
scan turns on the FIN, URG, and PUSH flags. The Null scan turns off all flags. "

The XMAS scan is basically an attempt by the scanners to stay ahead of the IDS's.
At first IDS's detected scans by looking for complete TCP connections so the
scanners used the half-open scan by just sending the SYN packet. When IDS's
started looking for packets with just the SYN flag set the scanners went to the
SYN/FIN scan. The XMAS scan is just the next attempt at evasion.

© SANS Institute 2004, As part of GIAC ﬁ}gctical repository. Author retains full rights.

Also noted in the article mentioned above is that this attack does not work against
several operating systems including Microsoft Windows, Cisco, BSDI, HP/UX, MVS,
and IRIX because these operating system do not follow RFC 793 correctly.

The thing that makes this scan different from the rest that | saw are the ports it
was scanning. As defined by IANA these ports were meant to be used for the
following:

50/tcp Remote Mail Checking Protocol
51/tcp IMP Logical Address Maintenance
52/tcp XNS Time Protocol

53/tcp Domain Name Server

110/tcp Post Office Protocol - Version 3
112/tcp McIDAS Data Transmission Protocol
3389/tcp MS WBT Server

5631/tcp pcANYWHEREdata

12543/tcp undefined

There are many known attacks against POP, DNS, MS WBT Server, and
pcANYWHEREdata but | couldn't find any on the other ports.

However from the following web sites on trojans | found other known uses for some
of these ports.

http://www.simovits.com/sve/nyhetsarkiv/1999/nyheter9902.html
http://www.tigertools.net/trojans.txt

Port 50 DRAT

Port 52 MuSka52, Skun

Port 53 ADM worm, liOn, MscanWorm, MuSka52
Port 110 ProMail trojan, ADM worm

These trojans are described at the following sites:

DRAT - http://www.saintcorporation.com/demo/saint _tutorials/backdoor found.html
MuSka52 - http://www.sophos.com/virusinfo/analyses/trojmuska5213.html

Skun - http://securityresponse.symantec.com/avcenter/venc/data/backdoor.skun.htmi
ADM worm - http://www.redhat.com/archives/linux-security/1999-
March/msg00004.html

liOn - http://ciac.linl.gov/ciac/bulletins/I-064.shtml

MscanWorm - http://www.simovits.com/trojans/tr data/y2169.html

ProMail trojan -
http://www.psc.ru/sergey/bgtraqg/STRANGEVIRUS/TROYAN/promail.htm

Of these DRAT, MuSka52, and Skun are backdoors that someone might be scanning
for. The others are worms that use the indicated ports but would not have the XMAS
scan signature when doing so.

Drat is a backdoor that listens for connections on port 48 and uses port 50 for file
transfers. Since port 48 wasn't scanned | doubt DRAT is what they were looking for.

© SANS Institute 2004, As part of GIAC gHctical repository. Author retains full rights.

MuSka52 and Skun are backdoors that only run on Windows systems and as
mentioned above the XMAS scan doesn't work on Windows systems.

Port 12543 was the port scanned most frequently and | found no information on
backdoors or other vulnerabilities associated with this port. A check of DShield
(http://www.dshield.org/port_report.php?port=12543) for instance showed no
vulnerabilities and no more reports related to it then other random ports.

After the above analysis it doesn’t look like there is any reason to be scanning the
particular ports chosen. | believe they were just chosen at random by someone with a
new hacker tool to play with. Since none of the ports scanned were open on the
targeted network and the machines on the targeted network were Solaris machines
the attacker would have received a RST in response to his scans to active machines
and no response when the machine didn’t exist except that the Cisco router and the
Gauntlet firewall were configured to drop packets to all but a few select ports.
Therefore the attacker did not receive a response to any of the scans.

Correlations

| posted this detect to incidents.org on 5/25/03. The feedback will be included at the
end of this detect.

Evidence of active targeting

About half of the addresses on the subnet being monitored were scanned, possibly
more since as mentioned earlier Snort may have been dropping packets, so | don't
see any evidence of active targeting.

Severity

Criticality - 5 - Criticality measures how critical the targeted system is. The targeted
system contains company private information and is used by important customers so
| will give this detect a Criticality of 5.

Lethality - 1 - Lethality measures how severe the damage would be if the attack
succeeded. Since the scan did not succeed it's unknown what attacks would have
been used if the scan has succeeded. Since the scan itself was not lethal | will give
this attack a Lethality of 1.

System Countermeasures - 5 - The machines in this system have been well patched
and hardened using yassp so | will give a 5 for System Countermeasures.

Network Countermeasures - 5 - This network is protected by a border router and a
firewall. The border router denies all protocols and source networks that are not
required and the firewall does the same. The firewall also uses proxies for the
protocols being used by this system (HTTP, FTP). None of the packets being

© SANS Institute 2004, As part of GIAC p‘}gctical repository. Author retains full rights.

scanned for are permitted past the firewall so | will give a 5 for Network
Countermeasures.

(5+1) - (5+5) = -4

Defensive recommendation

To protect against this type of scan one needs to make sure there is adequate
network filtering in place to drop packets that are not needed by the system such that
responses are not sent. For the system in question | feel strongly that this is the
case.

Multiple choice test question

Which TCP flags does the XMAS scan set?

a) SYN

b) SYN, FIN

¢) SYN, PUSH, FIN
d) URG, PUSH, FIN

Correct answer is (d).

Feedback from posting to incidents.org

Note: The analysis above was updated to incorporate the comments | received from
the posting.

One comment was regarding the source address 218.18.36.105. Originally | had
used a reverse DNS lookup utility that showed the address as unregistered. Both
Andrew Jones and Oliver Viitamaki pointed me to other utilities (e.g. APINIC) that
were able to find the address.

A second comment that both Andrew and Oliver made was that the scan could be
used to locate active machines even if the ports being scanned were not open. That
prompted me to add the information detailing how the router and firewall were
configured such that they would drop the packets in this scan and not return a RST.

A third comment was regarding port 12543. Andrew Jones pointed me to information
on the recent use of port 12543 at
http://www.dshield.org/port_report.php?port=12543

© SANS Institute 2004, As part of GIAC pzl’gctical repository. Author retains full rights.

Assignment 3 - "Analyse This"

Summary

In this report logs from 4/17/03 — 4/21/03 were analysed. In these logs there were a
total of 260908 alerts, 430685 scans, and 9673 out of spec events. The report
details the top ten alerts, the most prevalent source addresses causing the alerts, the
top scanners, as well as most frequent ports scanned. Many of the events appear to
be false positives and therefore the rules should be tightened. Also if the IDS that
generated the data is inside a border router and firewall then these devices should be
more restrictive. If the IDS is outside the perimeter then moving it inside should be
considered to reduce the enormous amount of data being generated. This will not
only make the actual intrusions stand out it will also reduce the load on the IDS and
help prevent dropped packets.

There were also many actual attacks as detailed in this report. MY.NET.201.58 is
very likely infected with the Adore worm. MY.NET.235.110 is possibly infected with
the Adore worm and it was also detected sending tiny fragments. The following
machines were detected attempting to IRC: MY.NET.198.221, MY.NET.88.163,
MY.NET.83.173, MY.NET.253.42, MY.NET.105.48.

Also the out-of-spec detection needs to be updated to take into account the fact that

formerly reserved TCP flags are now being used for Explicit Congestion Notification
(ECN).

Files Analysed

Alerts Scans Out of Spec

alert030417.9z scans.030417.9z 00s_Report 2003 04 17 9696
alert030418.9z scans.030418.9z 00s_Report 2003 04 18 5113
alert030419.9z scans.030419.gz 00s_Report_2003_04_19 8227
alert030420.9z scans.030420.gz 00s_Report_2003_04_20 16512
alert030421.gz scans.030421.gz 00S_Report 2003 04 21 32071

List of Detects

There were a total of 260908 detects in the above alert files. The following table lists
the top 10 alerts. The top 10 alerts accounted for 247043 alerts, 95% of the total.

Alert Count % of Total
SMB Name Wildcard 130777 50
Watchlist 000220 IL-ISDNNET-990517 42056 16

High port 65535 tcp - possible Red Worm - traffic 14917 6

CS WEBSERVER - external web traffic 13626 5

High port 65535 udp - possible Red Worm - traffic 11670 4

© SANS Institute 2004, As part of GIAC fHctical repository. Author retains full rights.

spp_http_decode: IIS Unicode attack detected 10920 4
UMBC NIDS IRC Alert] XDCC client detected attempting to | 7881 3
IRC

TFTP - Internal TCP connection to external tftp server 7832 3
EXPLOIT x86 NOOP 3797 1
spp_http_decode: CGI Null Byte attack detected 3567 1

Analysis of Top Ten Detects

SMB Name Wildcard

130653 detects were found.

Sources associated with this detect

There were a total of 22547 unique source addresses associated with this detect. All

of them were external addresses.

The table below lists the top five sources.

Source Count
194.148.17.27 2713
141.154.195.105 1482
213.135.141.39 1143
129.132.180.77 466
195.157.194.69 381

Destinations associated with this detect

There were a total of 38344 unique destination addresses associated with this detect,

all of them internal addresses.

The table below lists the top five destinations.

Destination Count
MY.NET.24.34 1492
MY.NET.12.2 1010
MY.NET.194.13 973
MY.NET.113.4 509
MY.NET.29.3 481

© SANS Institute 2004,

Description of detect

As part of GIAC p‘]’gctical repository.

Author retains full rights.

This detect is not part of the standard Snort rule set. An excellent article by Bryce
Alexander (http://www.sans.org/resources/idfag/port_137.php) describes the SMB
Name Wildcard rule that is used to detect netbios name table lookups. Name table
lookups are common on a local network where file sharing is being done but they
would not normally originate from an external network. In these logs they all
originate from an external source:

Source Country

194.148.17.27 SWITZERLAND Federation International de Volleyball

141.154.195.105 | US Verizon Internet Services

213.135.141.39 RUSSIAN Dynamic IP pool for access server
FEDERATION

129.132.180.77 | Switzerland Swiss Federal Institute of Technology

Zurich
195.157.194.69 UNITED KINGDOM | Takenaka Belgium N.V

If this traffic is legitimate then the Snort rules should be adjusted. Most likely
NBTSTAT scanning and/or the network.vbs worm was very active during this time.
But if the university is using the Netbios SMB service across its perimeter then it
should adjust the Snort rules to prevent excessive false positives.

Defensive Recommendations

The NetBios ports should be blocked by a firewall or border router since NetBios is
normally only needed across the local network.

Correlation
Les Gordon suggested adjusting the rule to not trigger on internal traffic.

Donald Merchant suggested using a VPN if netbios is needed into or out of the
university network.

Watchlist 000220 IL-ISDNNET-990517

There were 42011 detects of this type.
Sources associated with this detect

There were a total of 125 unique external source addresses associated with this
detect, all of them external.

The table below lists the top five sources.

Source Count
212.179.116.236 14009
212.179.116.153 13401

© SANS Institute 2004, As part of GIAC p4gctical repository. Author retains full rights.

212.179.27.6 1856
212.179.5.161 1607
212.179.105.111 1112

All of the source addresses were from the 212.179.0.0 subnet.
Destinations associated with this detect

There were a total of 187 unique destination addresses associated with this detect,
all of them internal destinations.

The table below lists the top five destinations.

Destination Count
MY.NET.209.158 14003
MY.NET.233.242 13398
MY.NET.196.161 1995
MY.NET.242.250 1191
MY.NET.84.196 1112

Description of detect

An IP lookup using http://www.dnsstuff.com/ found the following:

Country: ISRAEL (high)

ARIN says that this IP belongs to RIPE; I'm looking it up there.

Using cached answer (or, you can get fresh results).

% This is the RIPE Whois server.

% The objects are in RPSL format.

%

% Rights restricted by copyright.

% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inethum: 212.179.0.0 - 212.179.0.255
netname: REDBACK-EQUIPMENT

mnt-by: INET-MGR

descr: BEZEQINT-EQUIPMENT

country: IL

admin-c: MR916-RIPE

tech-c: ZV140-RIPE

status: ASSIGNED PA

remarks: please send ABUSE complains to abuse@bezegint.net
remarks: INFRA-AW

notify: hostmaster@bezeqint.net

changed: hostmaster@bezeqint.net 20021020
source: RIPE

© SANS Institute 2004, As part of GIAC fFactical repository. Author retains full rights.

route: 212.179.0.0/18

descr: ISDN Net Ltd.

origin: AS8551

notify: hostmaster@bezeqint.net

mnt-by: AS8551-MNT

changed: hostmaster@bezeqint.net 20020618
source: RIPE

person: Miri Roaky

address: bezeg-international

address: 40 hashacham

address: petach tikva 49170 Israel

phone: +972 1 800800110

fax-no: +972 3 9203033

e-mail: hostmaster@bezeqint.net

mnt-by: AS8551-MNT

nic-hdl: MR916-RIPE

changed: hostmaster@bezeqint.net 20021027
changed: hostmaster@bezegint.net 20030204
source: RIPE

person: Zehavit Vigder

address: bezeg-international

address: 40 hashacham

address: petach tikva 49170 Israel

phone: +972 1 800800110

fax-no: +972 3 9203033

e-mail: hostmaster@bezegint.net

mnt-by: AS8551-MNT

nic-hdl: ZV140-RIPE

changed: hostmaster@bezeqint.net 20021027
changed: hostmaster@bezeqint.net 20030204
source: RIPE

This rule is apparently watching for the 212.179.0.0 network. An Israel site the
university must deem suspect.

In the logs | examined the ports targeted were a diverse set with no apparent pattern.

Defensive Recommendations

If this site is known for illicit activity then it should be blocked at the firewall or border
router.

Correlation

Donald Gregory saw similar alerts. In his case the watchlist addresses were for file
sharing sites however.

© SANS Institute 2004, As part of GIAC pz}gctical repository. Author retains full rights.

High port 65535 tcp - possible Red Worm - traffic

There were 14904 detects of this type.
Sources associated with this detect

There were 91 unique external source addresses and 64 unique internal source
addresses for a total of 155 source addresses.

The table below lists the top five sources.

Source Count
24.26.201.174 1694
MY.NET.207.230 1267
80.181.195.253 1145
64.218.242.59 1070
MY.NET.234.150 973

Destinations associated with this detect

There were 99 unique external destination addresses and 61 unique internal
destination addresses for a total of 160 destination addresses.

The table below lists the top five destinations.

Destination Count
MY.NET.228.130 1693
80.181.195.253 1267
MY.NET.207.230 1145
MY.NET.225.226 1070
MY.NET.206.130 904

Description of detect

A description of the Red worm / Adore worm can be found at
http://www.f-secure.com/v-descs/adore.shtml. It is not the same as ‘Code Red'’. It
replaces system files with Trojans and when activated listens on port 65535.

7190 times the 65535 port was an external destination port.
7597 times the 65535 port was an external source port.

77 times the 65535 port was an internal destination port.
40 times the 65535 port was an internal source port.

Since clients are usually assigned random ephemeral ports, occasionally port 65535

will be chosen so some of these are likely false alarms. But the high number of
occurrences on some of the external IP’s indicates these machines are probably

© SANS Institute 2004, As part of GIAC p‘}gctical repository. Author retains full rights.

infected by the Adore worm. Since return traffic could cause machines being probed
to appear on the top five sources list not all machines on this list are necessarily
infected.

Defensive Recommendations

I wouldn't recommend blocking all 65535 traffic since that could stop some legitimate
traffic. Instead | would make sure all the university’s machines have all the necessary
patches to protect against the Adore worm.

Correlation

Donald Cunningham in his practical also mentions the Adore worm and references
http://www.nipc.gov/cybernotes/2001/cyberissue2001-07.pdf

CS WEBSERVER - external web traffic

There were 13617 detects of this type.
Sources associated with this detect
There were 4440 unique source addresses, all of them external.

The table below lists the top five sources.

Source Count
66.77.73.236 776
218.19.126.17 205
64.68.84.147 84
66.77.73.237 82
64.68.84.49 81

Destinations associated with this detect

There was only 1 unique internal destination address and no unique external
destination addresses. The internal destination being targeted was MY.NET.100.165
and in each case it was port 80 that was being targeted.

Description of detect

Apparently the university is logging all external connections to a particular internal
web server.

Defensive Recommendations

© SANS Institute 2004, As part of GIAC rﬁgctical repository. Author retains full rights.

Without knowing more about the universities policies it's impossible to make a
definitive recommendation. If the university doesn't want external use of this machine
they should block the traffic at the firewall or border router.

Correlation

| was unable to find any other practicals that analysed this detect.

High port 65535 udp - possible Red Worm - traffic

There were 11663 detects of this type.
Sources associated with this detect

There were 206 unique external source addresses and 66 unique internal source
addresses for a total of 272 source addresses.

The table below lists the top five sources.

Source Count
MY.NET.201.58 4289
66.42.68.210 2787
66.139.79.202 453
4.46.32.83 418
MY.NET.207.230 228

Destinations associated with this detect

There were 202 unique external destination addresses and 103 unique internal

destination addresses for a total of 305 destination addresses.

The table below lists the top five destinations.

Destination Count
MY.NET.201.58 4704
66.42.68.210 2474
66.139.79.202 444
4.46.32.83 387
MY.NET.207.230 232

Description of detect

As mentioned above a description of the Red worm / Adore worm can be found at
http://www.f-secure.com/v-descs/adore.shtml.

1234 times the 65535 port was an external destination port.

© SANS Institute 2004,

As part of GIAC rﬁgﬂctical repository.

Author retains full rights.

1418 times the 65535 port was an external source port.
4813 times the 65535 port was an internal destination port.
4300 times the 65535 port was an internal source port.

These detects are more disturbing then the "High port 65535 udp - possible Red
Worm - traffic” alerts because in this case it looks like internal machines are infected
given the large number of cases where an internal machine is using port 65535.

Defensive Recommendations

8996 of the detects are associated with MY.NET.201.58:65535. This machine is
clearly infected and should be taken offline and disinfected as soon as possible.
Once this is done the university should make sure all their machines have the latest
patches.

Correlation

Donald Cunningham in his practical also mentions the Adore worm and references
http://www.nipc.gov/cybernotes/2001/cyberissue2001-07.pdf

spp_http_decode: IIS Unicode attack detected

There were 10913 detects of this type.
Sources associated with this detect

There were 269 unique external source addresses and 515 unique internal source
addresses for a total of 784 source addresses.

The table below lists the top five sources.

Source Count
MY.NET.197.42 421
MY.NET.84.218 371
MY.NET.88.239 327
MY.NET.106.96 324
MY.NET.97.71 191

Destinations associated with this detect

There were 654 unique external destination addresses and 194 unique internal
destination addresses for a total of 848 destination addresses.

The table below lists the top five destinations.

Destination Count
61.129.67.77 371

© SANS Institute 2004, As part of GIAC rﬁgctical repository. Author retains full rights.

210.219.197.11 369
207.200.86.66 341
211.115.215.50 340
64.12.54.24 252

Description of detect

A web server unicode attack relies on substituting Unicode characters for the acsii
characters that make up a URL. Frequently it's used in a directory transversal attack
where it substitutes Unicode characters for the / symbol to circumvent the web
servers attempt at preventing access to private directories.

Defensive Recommendations

This problem has been fixed in the latest version of all the popular web servers so
insuring all the universities web servers have the latest patches will protect against
this attack. What'’s disturbing though is that internal machines appear to be
launching the attack. Closer examination of the logs shows that the internal machines
are not web servers and the external machines are (based on port numbers
involved). Either these are false alarms, the internal machines are infected with a
virus, or someone at the university is attempting to attack external web servers.

Correlation
Donald Gregory in his practical suggests turning off the ISAPI service if it's not

needed as well as installing the latest patches.

[UMBC NIDS IRC Alert] XDCC client detected attempting to IRC

There were 7872 detects of this type.
Sources associated with this detect
There were 8 unique source addresses, all of them internal.

The table below lists the top five sources.

Source Count
MY.NET.198.221 7729
MY.NET.88.163 67
MY.NET.83.173 62
MY.NET.253.42 5
MY.NET.105.48 4

Destinations associated with this detect

© SANS Institute 2004, As part of GIAC rﬁgctical repository. Author retains full rights.

There were 12 unique destination addresses, all of them external.

The table below lists the top five destinations.

Destination Count
205.188.149.12 7729
66.202.41.240 67
157.156.254.111 62
206.62.14.7 3
66.252.2.60 2

The destination port was always 6667.

Description of detect

This alert is associated with Internet Relay Chat (IRC) traffic. IRC typically uses ports
6666, 6667, or 7000. It is often used to share music and graphics that can use up
considerable network bandwidth.

Defensive Recommendations

This depends on the universities policy. Some use of IRC may be acceptable. If not
the chat sites being accessed can be blocked at the firewall or border router. If only
limited use is permitted then the user at MY.NET.198.221 needs to be reminded of
the policy.

Correlation

Sebastien Pratte in his practical also suggested blocking IRC at the firewall.

TFTP - Internal TCP connection to external tftp server

There were 7822 detects of this type.
Sources associated with this detect

There were 31 unique external source addresses and 10 unique internal source
addresses for a total of 41 source addresses.

The table below lists the top five sources.

Source Count
MY.NET.239.214 1071
MY.NET.251.70 1024
MY.NET.201.42 1017
64.12.30.224 1014
MY.NET.223.114 611

© SANS Institute 2004, As part of GIAC pictical repository. Author retains full rights.

Destinations associated with this detect

There were 33 unique external destination addresses and 10 unique internal
destination addresses for a total of 43 destination addresses.

The table below lists the top five destinations.

Destination Count
MY.NET.239.214 1096
MY.NET.201.42 1080
81.5.166.85 1024
64.12.30.224 1000
MY.NET.223.114 759

Description of detect

As the alert describes this is detecting internal TCP connections to external tftp
servers. Trivial file transfer protocol (tftp) uses UDP to transfer files. Again this could
be harmless or it could be abused. Also some viruses/worms such as Nimda use tftp
to spread.

Defensive Recommendations

This again depends on the universities policy. If tftp is prohibited then it should be
blocked at the firewall or border router. If not then this rule should probably be
replaced by a more specific rule for detecting Nimda to avoid so many false positives.
Correlation

Aaron Hackworth in his practical also suggested blocking tftp traffic unless there is a
strong need for it.

EXPLOIT x86 NOOP

There were 3794 detects of this type.
Sources associated with this detect
There were 123 unique source addresses, all of them external.

The table below lists the top five sources.

Source Count
217.224.228.225 949
217.224.228.7 910
68.70.85.172 592

© SANS Institute 2004, As part of GIAC pfactical repository. Author retains full rights.

194.204.114.25 425
217.235.25.131 182

Destinations associated with this detect
There were 160 unique destination addresses, all of them internal.

The table below lists the top five destinations.

Destination Count
MY.NET.86.19 1444
MY.NET.198.227 428
MY.NET.5.44 269
MY.NET.5.45 227
MY.NET.5.67 182

Description of detect

This detect looks for X86 NOOP instructions in the packet payload. This can indicate
a buffer overflow attempt (see http://www.cccure.org/amazon/idssignature.pdf).

Defensive Recommendations

Make sure all machines have the latest patches to protect against buffer overflow
vulnerabilities. Also ensure perimeter devices filter unnecessary packets and internal
machines only run needed services.

Correlation

Aaron Hackworth suggested ensuring the Snort rule is up to date — Snort ID 684

spp_http_decode: CGI Null Byte attack detected

There were 3563 detects of this type.
Sources associated with this detect

There were 27 unigue external source addresses and 103 unique internal source
addresses for a total of 130 source addresses.

The table below lists the top five sources.

Source Count
MY.NET.195.155 343
MY.NET.236.254 342
MY.NET.238.2 288

© SANS Institute 2004, As part of GIAC rﬁ'gctical repository. Author retains full rights.

MY.NET.194.125 278
MY.NET.235.34 229

Destinations associated with this detect

There were 104 unique external destination addresses and 2 unique internal
destination addresses for a total of 106 destination addresses.

The table below lists the top five destinations.

Destination Count
209.123.49.141 1353
66.135.208.201 294
212.112.162.203 256
192.151.53.10 185
66.135.192.227 150

Description of detect
The Snort documentation describes this detect as follows:

"It's a part of the http preprocessor. Basically, if the http decoding

routine finds a %00 in an http request, it will alert with this message.
Sometimes you may see false positives with sites that use cookies with
urlencoded binary data, or if you're scanning port 443 and picking up
SSLencrypted traffic . If you're logging alerted packets you can check

the actual string that caused the alert. Also, the unicode alert is

subject to the same false positives with cookies and SSL. Having the packet
dumps is the only way to tell for sure if you have a real attack on your
hands, but this is true for any content-based alert."

In the universities logs all of the top 5 destinations are external web servers and the
top 5 sources are internal machines. Someone internal may be attempting a web
attack but without the packet data it's unknown if these are real or false positives.
There are a few alerts that are from external sources to internal web servers but
again without the packet data it's unknown if these are real or false positives.
Defensive Recommendations

Investigate the packet data for the alerts and as always be sure all web servers have
the latest patches.

Correlation

Donald Gregory in his practical suggests adding code to CGI scripts to check inputs
for \0” before passing them to calls such as ‘open’.

© SANS Institute 2004, As part of GIAC prhctical repository. Author retains full rights.

Top Talkers

The table below lists the top ten talkers by number of alerts generated.

Source Count Alert(s)
212.179.116.236 14001 Watchlist
212.179.116.153 13398 Watchlist
MY.NET.198.221 7729 IRC
MY.NET.201.58 4289 Red worm
66.42.68.210 2787 Red worm
194.148.17.27 2713 SMB
MY.NET.235.110 2103 Tiny fragments,
Red worm
212.179.27.6 1856 Watchlist
24.26.201.174 1694 Red worm
212.179.5.161 1608 Watchlist

212.179.116.236

inethum: 212.179.100.0 - 212.179.124.255
netname: CABLES-CONNECTION

descr: CABLES-CUSTOMERS-CONNECTION
country: IL

admin-c: YK76-RIPE

tech-c: BHT2-RIPE

status: ASSIGNED PA

remarks: please send ABUSE complains to abuse@bezegint.net
mnt-by: AS8551-MNT

mnt-lower: AS8551-MNT

notify: hostmaster@bezeqint.net

changed: hostmaster@bezeqgint.net 20021029
source: RIPE

route: 212.179.96.0/19

descr: ISDN Net Ltd

origin: AS8551

notify: hostmaster@bezeqint.net

mnt-by: AS8551-MNT

changed: hostmaster@bezeqint.net 20030505
source: RIPE

role: BEZEQINT HOSTMASTERS TEAM
address: bezeg-international

address: 40 hashacham

address: petach tikva 49170 Israel

phone: +972 1 800800110

fax-no: +972 3 9203033

© SANS Institute 2004, As part of GIAC &Qctical repository. Author retains full rights.

e-mail: hostmaster@bezeqint.net

admin-c: YK76-RIPE

tech-c: MR916-RIPE

nic-hdl: BHT2-RIPE

remarks: Please Send Spam and Abuse ONLY to abuse @bezeqint.net
mnt-by: AS8551-MNT

changed: hostmaster@bezeqint.net 20021029

changed: hostmaster@bezeqint.net 20030204

source: RIPE

person: Yuval Keinan

address: bezeg-international

address: 40 hashacham

address: petach tikva 49170 Israel

phone: +972 1 800800110

fax-no: +972 3 9203033

e-mail: hostmaster@bezeqint.net

mnt-by: AS8551-MNT

nic-hdl: YK76-RIPE

changed: hostmaster@bezeqgint.net 20021215
changed: hostmaster@bezegint.net 20030204
source: RIPE

66.42.68.210

OrgName: Pac-West Telecomm, INC.
OrglD: PWTI

Address: 1776 W. March Lane
Address: Suite 250

City: Stockton

StateProv: CA

PostalCode: 95207

Country: US

NetRange: 66.42.0.0 - 66.42.127.255
CIDR: 66.42.0.0/17

NetName: MDSG-PACWEST-1BLK
NetHandle: NET-66-42-0-0-1

Parent:. NET-66-0-0-0-0

NetType: Direct Allocation

NameServer: NS1.MDSG-PACWEST.COM
NameServer: NS2.MDSG-PACWEST.COM
NameServer: NS3.MDSG-PACWEST.COM
NameServer: NS4.MDSG-PACWEST.COM
NameServer: NS5.MDSG-PACWEST.COM
NameServer: NS6.MDSG-PACWEST.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2000-11-10

Updated: 2002-11-15

© SANS Institute 2004, As part of GIAC &gctical repository. Author retains full rights.

TechHandle: ZP86-ARIN

TechName: Administrator
TechPhone: +1-800-722-9378
TechEmail: admin@mdsg-pacwest.com

OrgTechHandle: ZP86-ARIN
OrgTechName: Administrator
OrgTechPhone: +1-800-722-9378
OrgTechEmail: admin@mdsg-pacwest.com

194.148.17.27

inetnum: 194.148.17.0 - 194.148.17.63
netname: FIVB-NET

descr: Federation International de Volleyball
descr: Avenue de la Gare 12

descr: 1001 Lausanne

country: CH

admin-c: MC1375-RIPE

tech-c: MC1375-RIPE

status: ASSIGNED PA

mnt-by: AS3334-MNT

changed: maintenance@pingnet.ch 20000824
source: RIPE

route: 194.148.0.0/16

descr: PINGNET-C1-C256

origin: AS6756

mnt-by: AS6756-MNT

changed: mario.cantieni@tiscali.ch 20010713
source: RIPE

person: Mario Cantieni
address: Tiscali DataComm AG
address: Herostrasse 9
address: CH-8048 Zurich
address: Switzerland

phone: +41 14347021
fax-no: +41 143470 20
e-mail: cantieni@pingnet.ch
nic-hdl: MC1375-RIPE

mnt-by: AS3334-MNT
changed: cantieni@pingnet.ch 20020506
source: RIPE

212.179.27.6

© SANS Institute 2004, As part of GIAC §#9ctical repository. Author retains full rights.

inethnum: 212.179.27.4 - 212.179.27.7
netname: ADI-ASSOCIATION

descr: ADI-ASSOCIATION-SERIAL
country: IL

admin-c: NP469-RIPE

tech-c: NP469-RIPE

status: ASSIGNED PA

notify: hostmaster@isdn.net.il
mnt-by: RIPE-NCC-NONE-MNT
changed: hostmaster@isdn.net.il 20000106
source: RIPE

route: 212.179.0.0/18

descr: ISDN Net Ltd.

origin: AS8551

notify: hostmaster@bezeqint.net

mnt-by: AS8551-MNT

changed: hostmaster@bezeqgint.net 20020618
source: RIPE

person: Nati Pinko

address: Bezeq International
address: 40 Hashacham St.
address: Petach Tikvah Israel
phone: +972 39257761

e-mail: hostmaster@isdn.net.il
nic-hdl: NP469-RIPE

changed: registrar@ns.il 19990902
source: RIPE

24.26.201.174

OrgName: Road Runner

OrglD: RRMA

Address: 13241 Woodland Park Road
City: Herndon

StateProv: VA

PostalCode: 20171

Country: US

NetRange: 24.24.0.0 - 24.29.255.255
CIDR: 24.24.0.0/14, 24.28.0.0/15
NetName: ROAD-RUNNER-1
NetHandle: NET-24-24-0-0-1

Parent:. NET-24-0-0-0-0

NetType: Direct Allocation
NameServer: DNS1.RR.COM
NameServer: DNS2.RR.COM
NameServer: DNS3.RR.COM

© SANS Institute 2004, As part of GIAC rﬁgﬂctical repository. Author retains full rights.

NameServer: DNS4.RR.COM
Comment:

RegDate: 2000-06-09
Updated: 2002-08-22

TechHandle: ZS30-ARIN
TechName: ServiceCo LLC
TechPhone: +1-703-345-3416
TechEmail: abuse@rr.com

OrgTechHandle: IPTEC-ARIN
OrgTechName: IP Tech
OrgTechPhone: +1-703-345-3416
OrgTechEmail: abuse@rr.com

OrgAbuseHandle: ABUSE10-ARIN
OrgAbuseName: Abuse
OrgAbusePhone: +1-703-345-3416
OrgAbuseEmail: abuse@rr.com

212.179.5.161

inethum: 212.179.5.160 - 212.179.5.191
netname: KIBBUTZ-GVAT-PLASTRO
mnt-by: INET-MGR

descr: KIBBUTZ-GVAT-PLASTRO-LAN
country: IL

admin-c: ZV140-RIPE

tech-c: MZ4647-RIPE

status: ASSIGNED PA

notify: hostmaster@isdn.net.il

changed: hostmaster@isdn.net.il 20020415
source: RIPE

route: 212.179.0.0/18

descr: ISDN Net Ltd.

origin: AS8551

notify: hostmaster@bezeqint.net

mnt-by: AS8551-MNT

changed: hostmaster@bezeqint.net 20020618
source: RIPE

person: Zehavit Vigder

address: bezeg-international
address: 40 hashacham

address: petach tikva 49170 Israel
phone: +972 1 800800110
fax-no: +972 3 9203033

e-mail: hostmaster@bezeqint.net

© SANS Institute 2004, As part of GIAC §#4ctical repository. Author retains full rights.

mnt-by:
nic-hdl:

changed:
changed:

source:

person:

address:
address:
address:
address:

phone:
e-mail:
nic-hdl:

changed:

source:

AS8551-MNT

ZV140-RIPE

hostmaster@bezeqint.net 20021027
hostmaster@bezeqint.net 20030204
RIPE

Meron Ziv
Bezeq International
hashacham 40
petach tiqua
Israel
+972-3-9257710
hostmaster@bezegint.net

MZ4647-RIPE

hostmaster@bezeqint.net 20010107
RIPE

Dshield didn’t show any incidents attributed to the above IP addresses.

Portscan Analysis

There were 283624 UDP scans and 147062 TCP scans.

MY.NET did not appear in these logs like it did in the others. It looks as though
130.85.0.0 is the internal network.

The top ten sources performing UDP scans were all internal addresses.

Source Count Most Frequent Port Scanned
130.85.87.50 37494 27022
130.85.87.44 18548 27021
130.85.207.230 15484 6257
130.85.97.95 12787 7674
130.85.97.39 10469 22321
130.85.168.90 9834 22321
130.85.97.174 7561 1038
130.85.225.150 7450 1210
130.85.98.96 6943 22321
130.85.1.3 5017 57312

The top ten UDP ports scanned are shown in the following table.

Port Protocol Count
22321 dobol backdoor 52988
137 netbios 36843
27005 Gnutella 22731

© SANS Institute 2004,

As part of GIAC pﬁgctical repository.

Author retains full rights.

7674 Imq SSL tunnel 21350
6257 WinMX 20006
43620 Unknown 10234
53 DNS 8125
43622 Unknown 4054
27020 HLTV 2105
14690 gamespy 1950

The top ten sources performing TCP scans were all external addresses.

Source Count
146.164.34.42 12962
193.11.250.21 11322
213.84.229.115 10926
217.40.73.165 10374
217.70.4.246 9302
216.137.3.107 8837
152.1.193.6 6750
80.14.15.28 3009
62.177.176.163 2762
192.215.160.106 2655

The following table lists the top ten TCP ports scanned.

Port Protocol Count
443 SSL 25225
80 HTTP 20151
445 Microsoft-DS 18776
1433 Microsoft SQL server 16665
139 netbios 13373
0 Unknown 9434
21 FTP 7063
135 RPC Service DOS 3544
6346 Gnutella 2726
4000 ICQ 2603

The large number of dobol backdoor scans from internal addresses is one significant
finding. These were being reported from many internal machines however so it could

be the scan rule needs to be adjusted and these are false positives. If not the

university needs to check the machines in question. Among these are 130.85.98.96,
130.85.97.212, 130.85.240.78, and 130.85.97.86. Also there appears to be a lot of
internal use of file sharing and game playing sites.

The university may also want to consider adding some of the top external scanners

to their watchlist.

© SANS Institute 2004,

As part of GIAC pﬁéctical repository.

Author retains full rights.

Out-Of-Spec Analysis
There were 9673 OOS detects during the five day period.
Of these 6992 were logged because reserved bits in the TCP header were set.
However with RFC3168 these bits are now used for Explicit Congestion Notification
(ECN) and therefore are not out of spec.
Of the remaining 2585 detects the most prevalent were:

2048 packets with both the SYN and FIN flags were set.

128 packets where the TCP ack field was 0 and the SYN bit was not set.

84 packets with no TCP flags set.

22 packets with both the don't fragment flag and the more fragments flag set.
Most of these are probably scans that are attempting to evade detection. The
packets with both the don't fragment flag and the more fragments flag set are

probably some type of attack that is trying to evade detection. It will have also
generated an alert if the appropriate Snort rule is in place.

© SANS Institute 2004, As part of GIAC rﬁgctical repository. Author retains full rights.

Link Graph

The following graph shows the machines most frequently accessed by IP addresses
on the universities watchlist.

16000
14000
12000
10000
8000
6000
4000

2000

© SANS Institute 2004, As part of GIAC Fﬁgctical repository. Author retains full rights.

Security Recommendations

It is unknown where in the network the IDS is located. Whether to position it outside
the border router and firewall or inside has long been debated. The advocates of
placing it outside want to know what attacks are being attempted and those
advocating inside are only concerned with what has made it through the perimeter
defences. If in this case it is inside then the router and firewall need to be more
restrictive. As mentioned earlier several of the top ten alerts could be blocked by
router ACL'’s or a firewall. There is probably no need to allow netbios traffic to enter
from the outside for example. Also machines should be scanned for the Red worm /
Adore worm. And of course all machines should have the latest patches applied.

Description of Analysis Process

To analyse the alert data | first combined all five days worth of alerts into a single file.
Also as several others mentioned in their practical | then removed the scan data from
the alert files since there were separate scan files. | then used the Perl script
included in Les Gordon’s practical. This script extracted the following components
from the alerts logs:

Alert name

Number of alerts

Number of external sources

Number of external destinations
Number of internal sources

Number of internal destinations
Number of inbound alerts

Number of outbound alerts

Number of internal to internal alerts
Number of external to external alerts

The script also generated a list of the source addresses, destination address, source
ports, etc ordered by the number of occurrences. This allowed me to easily find the
top ten attacks.

After getting the above information across all the alerts | then used grep to extract
each of the top ten alerts into a separate file and ran the script on that file. This
provided information such as the top source and destination addresses for each
attack type.

| then modified the script slightly to use it to generate similar information for the scan
and OOS logs.

These tools allowed me to generate the tables required for the analysis. | then used

google searches to determine the nature of the attacks. In some cases to gain
additional information on an attack | also used grep, wc, and sort.

© SANS Institute 2004, As part of GIAC r@gctical repository. Author retains full rights.

References

Anonymous. "Port Numbers." Assigned Numbers. Nov. 13 2002
URL: http://www.iana.org/assignments/port-numbers (Nov. 15 2002).

Anonymous. “Firewall Forensics”
URL: http://www.first.org/events/progconf/2000/D1-03.pdf

Anonymous. “Buffer Overflows With Content”
URL: http://www.cccure.org/amazon/idssignature.pdf

Anonymous. "Ethernet Vendor Address Assignments."”
URL: http://www.lex-con.com/protocols/en-addr.txt
URL: http://coffer.com/mac _find/

Anonymous. "Snort fragmentation rules”
URL: http://www.snort.org/docs/writing_rules/chap2.html#tth sEc2.3.7

Anonymous. "Snort RPC rules”
URL: http://www.snort.org/docs/writing rules/chap2.html#tth sEc2.3.21

Anonymous. “The Code Red Worm”
URL: http://www.ciac.org/ciac/bulletins/I-117.shtml

Anonymous. “Reverse DNS Lookup”
URL: http://remote.12dt.com/rns/
URL: http://www.dnsstuff.com/

Anonymous. “Babel Fish Translation”
URL: http://world.altavista.com/

Anonymous. “Vulnerabilities in PCNFSD”
URL: http://www.cert.org/advisories/CA-1996-08.html

Anonymous. “Buffer Overflow Vulnerability in mountd”
URL: _http://www.cert.org/advisories/CA-1998-12.html

Anonymous. “pcserver”
URL: http://www.doc.ic.ac.uk/~mac/manuals/hpux-manual-
pages/hpux/usr/man/manlm/pcserver.im.html

Anonymous. “Bugs, Holes, Patches”
URL: http://www.nipc.gov/cybernotes/2001/cyberissue2001-07.pdf

Anonymous. "Cybercops”
URL: http://www.computercops.biz/modules.php?name=nmap

Anonymous. " Trojanlistan”
URL: http://www.simovits.com/sve/nyhetsarkiv/1999/nyheter9902.html

© SANS Institute 2004, As part of GIAC f#8ctical repository. Author retains full rights.

Anonymous. "trojans”
URL: http://www.tigertools.net/trojans.txt

Anonymous. "Backdoor Found”
URL: http://www.saintcorporation.com/demo/saint tutorials/backdoor found.html

Anonymous. " Troj/Muska52-13”
URL: http://www.sophos.com/virusinfo/analyses/troimuska5213.html

Anonymous. " Backdoor.Skun”
URL: http://securityresponse.symantec.com/avcenter/venc/data/backdoor.skun.html

Anonymous. "ADM Worm”
URL: http://www.redhat.com/archives/linux-security/1999- March/msg00004.html

Anonymous. "The Lion Internet Worm DDOS Risk”
URL: http://ciac.linl.gov/ciac/bulletins/I-064.shtml

Anonymous. "MscanWorm”
URL: http://www.simovits.com/trojans/tr data/y2169.html

Anonymous. " ProMail trojan”
URL: http://www.psc.ru/sergey/bgtrag/STRANGEVIRUS/TROYAN/promail.htm

Anonymous. " DShield”
URL: http://www.dshield.org/

Anonymous. " NetWatchman”
URL:_http://www.mynetwatchman.com/

Anonymous. " fragrouter”
URL: http://packetstorm.widexs.nl/UNIX/IDS/nidsbench/fragrouter.html

Aaron Hackworth. "GCIA Practical”
URL: http://www.giac.org/practical/GCIA/Aaron Hackworth GCIA.pdf

Brad Doctor and Martin Markgraf. “httpd and sunrpc probes”
URL.: http://lists.jammed.com/incidents/2001/05/0100.html

Bryce Alexander. “Port 137 Scan”
URL: http://www.sans.org/resources/idfag/port 137.php

Donald Cunningham. "GCIA Practical.”
URL: http://www.giac.org/practical/GCIA/Donald Cunningham GCIA.pdf

Donald Gregory. "GCIA Practical”
URL: http://www.giac.org/practical/GCIA/Donald Gregory GCIA.pdf

Donald Merchant. " GCIA Practical’

© SANS Institute 2004, As part of GIAC f#2ctical repository. Author retains full rights.

URL: http://www.giac.org/practical/Donald Merchant GCIA.doc

Doug Kite. "GCIA Practical”
URL: http://www.giac.org/practical/GCIA/Doug Kite GCIA.pdf

Juergen P. Meier, Chris Brenton. “pcserver attack”
URL: http://www.shmoo.com/mail/firewalls/mar00/msg00020.shtml

K. Ramakrishnan. “RFC3168”
URL: http://www.rfc-editor.org/rfc/rfc3168.txt

Les Gordon. "GCIA Practical”
URL: http://www.giac.org/practical/GCIA/Les Gordon GCIA.doc

Mark Donaldson. " RPC Detect”
URL: http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00209.html

Peter Szczepankiewicz. “lllegal Fragmentation”
URL: http://cert.uni-stuttgart.de/archive/intrusions/2002/11/msg00019.html

Robert Buckley. “lllegal fragmentation”
URL: http://archives.neohapsis.com/archives/incidents/2002-04/0054.html

Roger Thompson. “lllegal Fragmentation”
URL: http://cert.uni-stuttgart.de/archive/intrusions/2002/08/msg00239.html

Sami Rautiainen. “Adore Worm”
URL: http://www.f-secure.com/v-descs/adore.shtml

Scott Gregory. “lllegal Fragmentation”
URL: http://cert.uni-stuttgart.de/archive/intrusions/2002/08/msg00106.html

Sebastien Pratte. "GCIA Practical”
URL: http://www.giac.org/practical/GCIA/Sebastien Pratte GCIA.pdf

Thomas H Ptacek. " Eluding Network Intrusion Detection”
URL: http://secinf.net/info/ids/idspaper/idspaper.htmi

Wietse Venema. " Secure Portmapper”
URL.: http://ftp.porcupine.org/pub/security/

© SANS Institute 2004, As part of GIAC r?rgctical repository. Author retains full rights.

