
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 1

Intrusion Detection and
Analysis

Sai Prasad Kesavamatham
GIAC GCIA Practical (version 3.3)

Challenge Exam
Submitted: July 7, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

Table of Contents

1. ASSIGNMENT 1: IDS AND IT’S EVOLUTION ... 4

1.1 Intrusion Detection System (IDS) – Basic Picture .. 4
1.2 IDS Categorized .. 5
1.3 IDS Approaches .. 5

1.3.1 Misuse Detection Vs Anomaly Detection ... 5
1.3.2 Sample Misuse or Pattern Matching Detection.. 6
1.3.3 Sample Anomaly Detection.. 8

1.4 Byproducts .. 12
1.5 Need for Standards .. 12
1.6 Where is it going? ... 13
1.7 References: ... 15

2. ASSIGNMENT 2: NETWORK DETECTS .. 15

2.1 Detect1: SNMP AgenX/tcp request.. 15
2.1.1 Source of Trace.. 15
2.1.2 Detect was generated by... 15
2.1.3 Probability the source address was spoofed .. 16
2.1.4 Description of the attack .. 17
2.1.5 Attack Mechanism ... 18
2.1.6 Correlation .. 19
2.1.7 Evidence of Active Targeting... 21
2.1.8 Severity ... 21
2.1.9 Defensive Recommendation... 22
2.1.10 Multiple Choice Test Question... 23
2.1.11 References:.. 23

2.2 Detect2: MS-SQL Worm Propagation Attempt .. 24
2.2.1 Source of Trace.. 24
2.2.2 Detect was generated by... 24
2.2.3 Probability the source address was spoofed .. 25
2.2.4 Description of the attack .. 26
2.2.5 Attack Mechanism ... 27
2.2.6 Correlation .. 28
2.2.7 Evidence of Active Targeting... 29
2.2.8 Severity ... 29
2.2.9 Defensive Recommendation... 30
2.2.10 Multiple Choice Test Question... 30
2.2.11 References:.. 31

2.3 Detect3: BACKDOOR Q access .. 31
2.3.1 Source of Trace.. 31
2.3.2 Detect was generated by... 31
2.3.3 Probability the source address was spoofed .. 32
2.3.4 Description of the attack .. 32
2.3.5 Attack Mechanism ... 33
2.3.6 Correlation .. 34
2.3.7 Evidence of Active Targeting... 35
2.3.8 Severity ... 35
2.3.9 Defensive Recommendation... 36
2.3.10 Multiple Choice Test Question... 36
2.3.11 Excerpts from detect posted to intrusions discussion group:.. 37

2.4 References: ... 38

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

3. ASSIGNMENT 3: ANALYZE THIS!... 38

3.1 Executive Summary .. 39
3.2 Log Files and Formats ... 39

3.2.1 List of Files Analyzed: ... 39
3.2.2 Alert Logs ... 40
3.2.3 Scan Logs .. 40
3.2.4 OOS Logs.. 40

3.3 Analysis Process ... 41
3.3.1 Analysis Method.. 42

3.4 Alerts Analysis .. 42
3.4.2 Top Talkers from Alert Logs.. 49
3.4.3 Alerts of interest .. 50

3.5 Scans Analysis .. 67
3.5.1 Top Talkers in Scans.. 67

3.6 OOS Analysis ... 69
3.6.1 Out of Spec Details: ... 70

3.7 Recommendations: .. 72
3.8 References: ... 72

4. APPENDIX A.. 73

4.1 Tools and Scripts used in “Analyze This!”... 73

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

1. Assignment 1: IDS and it’s Evolution
This section illustrates existing Intrusion Detection terminology and the
differences between misuse detection versus anomaly detection. Issues with
signature optimization and training anomaly detection engines are discussed. In
the end a generic engine is suggested to interconnect various security modules.

1.1 Intrusion Detection System (IDS) – Basic Picture
Computer security is an ever-growing problem and it is here to stay. According to
Computer Emergency Response Team (CERT) 42,586 incidents were reported
in the 1st quarter of 2003 which is half the total number of incidents from the
previous year 2002. As can be seen from the graph below the number of
incidents and vulnerabilities reported has increased. This could be attributed to
the growth of the internet, awareness among users, online business and easily
available pre-built attack tools, as expected of a global village.

Figure 1: CERT Vulnerability Report

There are primarily three types of remotely launched attacks: probes, denial of
service (DOS) and intrusions. The final goal of an intrusion detection system is to
help protect the confidentiality, integrity and availability of critical information
infrastructures.

The concept of ‘confidentiality’ can be defined as an attempt to prevent the
intentional or unintentional unauthorized disclosure of information. Integrity
ensures that modifications are not made by unauthorized entities and
unauthorized modifications are not made by authorized entities. Availability is
defined as reliable and timely access to data. Availability ensures that the
systems are up and running when they are needed. The vulnerability and
openness of computer systems show the necessity for monitoring both incoming

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

and outgoing traffic. More often there is a misconception that IDS is only for
incoming traffic. It is as important to monitor the outgoing traffic. After all, security
is as strong as the weakest link.

Though the primary function of an IDS system has been detection, the current
generation IDS systems are evolving into prevention and blocking technologies.
The automated detection, immediate reporting and containment of attacks are
required to respond to attacks effectively.

In a nutshell, the basic approaches to intrusion detection today may be
summarized as traffic analysis using known pattern templates, state-based
detection, statistical anomaly detection and other intelligent anomaly detection
methods.

1.2 IDS Categorized
An Intrusion Detection System can be categorized in several ways depending on,
where it is deployed in a network, how it is deployed and the approach it takes to
detect intrusions. Some of the common terms used are Host based Intrusion
Detection (HIDS), Network based Intrusion Detection (NIDS), Signature based
IDS, Anomaly based IDS, Standalone IDS (SIDS) and Distributed IDS (DIDS).

HIDS monitors a single host and NIDS collects and analyzes all traffic on a
network segment. IDS with multiple autonomous sensors or agents spread
across an infrastructure can be defined as a DIDS.

1.3 IDS Approaches

1.3.1 Misuse Detection Vs Anomaly Detection
Two general approaches to intrusion detection are currently popular: Misuse
detection (also loosely known as pattern matching detection) and Anomaly
Detection.

Misuse detection method uses known signature pattern comparisons against the
traffic. This can be done at different layers of OSI model to detect unusual traffic
including layer headers and payloads. While misuse detection method can be
effective in recognizing known intrusion types, it may not be satisfactory against
novel attacks. There is a constant need to update and fine tune the signature
database as new attacks and vulnerabilities are found. The probability for false
positives is high if the signature rule sets are too generic. Signature fine tuning
process is complex in a large enterprise wide network.

A false positive is defined as an alert that is raised against non-intrusive traffic.
An example would be an alert raised against the viewing of a simple web page
describing the signature description of a typical http attack. If the IDS signature
just looks for the signature of an attack in the payload then it would raise an alert
every time a user accesses this web page since the payload contained the
signature.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

An anomaly detection system, on the other hand, has no prior knowledge of the
characteristics of possible attacks. Anomaly detection looks for patterns that
deviate from normal traffic and does a statistical analysis of network traffic. But
how is ‘normal traffic’ defined? One way is to train the IDS system to detect
normal traffic. Anomaly detection systems have to be intelligent enough to train
themselves about the normal traffic and adapt accordingly. The probability for
false negatives is more under anomaly detection. However, the signature
database or model can be created, managed and updated by the system
intelligently.

A false negative is defined as a missed alert against a real intrusive traffic. For
example, fragmenting attack data into tiny parts could fool improperly configured
trivial IDS systems.

1.3.2 Sample Misuse or Pattern Matching Detection
Let’s take a look at one of the popular IDS systems, Snort. Snort versions prior to
version2.0 address misuse detection or pattern matching system. Pattern
matching detection is a misleading term when it comes to IDS. For example,
Snort can do stateful detection across TCP streams. And it’s pattern matching
capabilities go all the way into packet headers. There are around 2000
signatures or rules that come with a default installation of snort version 1.9.
These rules are loaded during snort startup and arranged in a multidimensional
inverted tree structure. To avoid comparing traffic against every rule, the rules
are grouped into different sets and arranged.

The following simple Snort rule detects ftp root attacks. This rule tests the
payload of all established TCP traffic, from any external network using any
source port to the home network on destination port 21/ftp. An alert is raised if
the payload content matches with the strings ‘cwd’ and ‘~root’.
RULE: alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP CWD ~root
attempt"; content:"CWD "; content:" ~root"; nocase; flow:to_server ,established;)

The following example will show how a simple SYN attack can overload an IDS
system. Snort 1.9 with default configuration was setup on the target machine and
was assigned an IP address of 10.140.10.1. A single SYN packet was generated
using the tool ‘sendip’. A spoofed IP address 10.140.10.4 was used as the
source address. The attacking machine was assigned an IP address of
10.140.10.2. The SYN packet was captured on the attacking machine using
tcpdump.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

Figure 2: Lab setup for SYN flood attack

SYN packet creation using sendip:
sendip –p ipv4 -is 10.140.10.4 -id 10.140.10.1 -p tcp -ts 1234 -td 110 -tfs 1
10.140.10.1

-p ipv4 - Use IPv4
is - Source IP
id - Destination IP
-p tcp - Use tcp
-ts - TCP Source Port
-td - TCP Destination Port (110-pop; not open on victim’s machine)
-tfs - Set SYN flag (It is set be default, if not used)
The last field is the IP address of victim’s machine.

The following tcpdump command was used to capture the SYN packet.
tcpdump 'host 10.140.10.4' -w synpkt1

The tcpdump log can be checked using the following command.
tcpdump -r synpkt1
00:01:42.306974 10.140.10.4.1234 > 10.140.10.1.pop3: S
2344219980:2344219980(0) win 65535

In step1, ran an ftp exploit in the absence of SYN attack. Established an ftp
session with the victim machine and ran 'cd ~root' exploit.
ftp 10.140.10.1
ftp> cd ~root
550 Unknown user name after ~
And the snort log file generated an alert:[**] [1:336:5] FTP CWD ~root attempt
[**]

In step2, ran the same ftp exploit attack with a simultaneous SYN attack in the
background. Replayed the previously captured SYN packet using tcpreplay with
a loop of 500000 thus creating a SYN flood.

tcpreplay -x P:1 -i eth0 synpkt1 -l 500000
sending on eth0
 500000 packets (30000000 bytes) sent in 34 seconds

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

 877508.1 bytes/sec 6.69 megabits/sec 14625 packets/sec

During the replay, ran the 'cd ~root' exploit. Snort failed to capture the alert.
*********************** I M P O R T A N T N O T E ***********************
Machine configuration: 1.2GHz, 256MB and Red Hat 8.0
The above attack failed when Snort rules were optimized for ftp attack, by
removing other unimportant rule sets. It has to be made clear that this example is
in no way a measure of Snort’s performance. This example is given to illustrate
the importance of rule optimization. The burden on the hardware to maintain
high-speed tcp stream state for each incoming SYN packet and to process the
rules is very high.
Table 1-1: Example showing SYN flood loading

Another aspect of Snort (misuse or pattern matching detection) is the way the
rules are processed. In Snort’s default configuration, once a match is found
against a rule, the comparison process is stopped and an alert is raised. The
problem with this procedure is the probability that, a particular traffic being
categorized under a ‘low threat level category’ thus not getting proper priority in
the incident response process. An attacker may be able to fool the IDS by
crafting a packet to fall in the same IDS rule chain set, triggering the low threat
signatures. This results in a low priority alert, which might get overlooked in the
incident response procedures. The damage could be already done by the time a
second high priority alert is raised. To avoid this Snort’s ‘tagging’ feature can be
used. Snort versions 1.8 and above have a feature known as ‘tagging’ to avoid
situations like this. Tagging allows the sensor to ‘tag and follow’ a host or session
when a rule fires. This feature is not enabled by default.

The above discussion brings out the importance of rule set flow and optimization.
The rule optimization and flow is quite different in Snort version 2.0. One of the
aspects of DARPA’s new 3-layered defense approach is Intrusion Tolerance.
Intrusion Tolerance is the ability to continue critical operations following a partial
compromise. Intrusion tolerance should be one of the key factors while designing
rule optimization methods.

1.3.3 Sample Anomaly Detection
As mentioned earlier, an anomaly detection system has no prior knowledge of
the characteristics of possible attacks. Anomaly detection looks for patterns that
deviate from normal traffic. Anomaly detection could be used to enable machine
learning to model attacks. Attack modeling could be used for creating dynamic
rule sets or for observing and creating normal traffic behavior. This would further
help to find out future anomalies.

Let’s take a look at Spade. Spade (Statistical Packet Anomaly Detection Engine)
from Silicon Defense is a snort preprocessor plug-in and can be used to monitor
network traffic and classify events by assigning each event an anomaly score.
Spade is one of the two components of Spice (Stealthy Portscan and Intrusion
Correlation Engine).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

While Snort rules look for patterns of known bad traffic, Spade raises alert when
a packet crossing the network is unusual. It does this by keeping track of
statistics about the traffic going past it. From this, it assigns an anomaly score to
every new packet it sees. Packets with sufficiently high anomaly scores get
reported. The anomaly scores are calculated using complex probability tables
and binary search trees. Spade isolates all events with an anomaly score higher
than a preset threshold for further correlation. Spade maintains a state file to
maintain history-based probability tables and updates it periodically with current
state.
In version 030125.1 of Spade, five types of detects are defined in the
configuration file: "closed-dport", "dead-dest", "odd-dport", “odd-port-dest’ and
"odd-typecode". According to Spade usage file, these are explained as below.

closed-dport: This is the traditional Spade detector type. This detector
type is looking for packets that are going to closed ports, or at least ports
that are infrequently used. This can be used to find portscans because
legitimate traffic tends to go to open ports.
dead-dest: This detector type looks for packets going to a non-alive IP
address.
odd-dport: This detector type looks for sources that are using unusual
destination ports. This might indicate a compromised host or host misuse.
odd-port-dest: This detector type looks for sources that make a
connection to an unusual destination relative to what is normal for the
destination port.
odd-typecode: The detector type looks for packets with unusual ICMP
type and code values.

Below is a sample alert log from Spade version 030125.1 anomaly detector.

[**] [104:1:1] Spade: Closed dest port used: local dest, syn: 1.0000 [**]
05/18-02:42:18.440766 68.164.67.163:2745 -> MY.HOME.NET.IP1:17300
TCP TTL:111 TOS:0x0 ID:27616 IpLen:20 DgmLen:48 DF
******S* Seq: 0xE7D31E48 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1420 NOP NOP SackOK
[**] [104:1:1] Spade: Closed dest port used: local dest, syn: 0.9045 [**]
05/18-02:42:18.983512 68.164.67.163:2745 -> MY.HOME.NET.IP1:17300
TCP TTL:111 TOS:0x0 ID:27695 IpLen:20 DgmLen:48 DF
******S* Seq: 0xE7D31E48 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1420 NOP NOP SackOK
 [**] [104:1:1] Spade: Closed dest port used: local dest, syn: 1.0000 [**]
05/18-03:50:53.931361 24.200.97.26:4165 -> MY.HOME.NET.IP2:21
TCP TTL:45 TOS:0x0 ID:1803 IpLen:20 DgmLen:52 DF
******S* Seq: 0x527D2691 Ack: 0x0 Win: 0xEBC0 TcpLen: 32
TCP Options (6) => MSS: 1460 NOP WS: 2 NOP NOP SackOK
[**] [104:1:1] Spade: Closed dest port used: local dest, syn: 0.9093 [**]
05/18-03:50:54.503409 24.200.97.26:4165 -> MY.HOME.NET.IP2:21
TCP TTL:45 TOS:0x0 ID:1926 IpLen:20 DgmLen:52 DF

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

******S* Seq: 0x527D2691 Ack: 0x0 Win: 0xEBC0 TcpLen: 32
TCP Options (6) => MSS: 1460 NOP WS: 2 NOP NOP SackOK
[**] [104:1:1] Spade: Closed dest port used: local dest, syn: 0.8562 [**]
05/18-03:50:54.970344 24.200.97.26:4165 -> MY.HOME.NET.IP2:21
TCP TTL:45 TOS:0x0 ID:1986 IpLen:20 DgmLen:52 DF
******S* Seq: 0x527D2691 Ack: 0x0 Win: 0xEBC0 TcpLen: 32
TCP Options (6) => MSS: 1460 NOP WS: 2 NOP NOP SackOK

[**] [104:3:1] Spade: Non-live dest used: local dest, est. flags: 1.0000 [**]
05/13-10:35:14.980352 MY.HOME.NET.IP2:14946 -> 24.60.101.200:1461
TCP TTL:128 TOS:0x0 ID:58845 IpLen:20 DgmLen:52 DF
A* Seq: 0x64B832C1 Ack: 0xE10EA4D4 Win: 0xF88E TcpLen: 32
TCP Options (3) => NOP NOP TS: 4260535 15451851
Table 1-2: Spade Alerts

It is doubtful if Spade can be classified as a pure anomaly detection system.
Spade alerts contain events and corresponding anomaly scores. The anomaly
detector reports all the events with anomaly scores above the threshold level.
Anomaly score is proportional to the logarithm of probability of the occurrence of
the event. In table 1-2 under spade alerts the anomaly scores are highlighted. If
the probability of a new event is taken as 0.1 (very low probability to happen)
then the anomaly score is 1 (calculated as -log(0.1)). The anomaly score for a
specific event starts at 1 and decreases with each occurrence of the event.
Repeated attacks to a port bring down the anomaly score below the threshold
level. It is assumed from observation that a packet to port 80 (HTTP) is more
probable than to port 17300 on the same server.

Even though these detects have additional options for different flags and
threshold levels, the definition and declaration of the five detect types is similar to
misuse or pattern matching detection. The detects described earlier are used to
define normal traffic on a network. Fundamentally, the analysis is again limited to
a set of detect definitions. An ideal anomaly detection system should not have
any defined rule sets. And Spade at this stage does not look to be as flexible as
a signature based detection system since the above-defined rules are fixed from
a user’s point of view. And it is sure that there will be new detector types in future
just like new signature rules.

As described earlier spade uses detector components to look for anomaly over
certain types of packets. At any time more than one detector can be used.
Different detectors using different detection approaches can be applied to the
same set of packets. Spade also generates a probability table (history) of
observed network traffic. Spade trains itself from this probability table. Below is a
sample state log maintained by spade. Alerts are not generated if the history file
is lost and Spade has to recreate the probability table.

573922 total packets were processed by spade in this run

** Closed dest port used: local dest, syn (id=1) **

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

55006 packets were evaluated
 144 (0.26%) packets were considered anomalous
 144 (0.26%) packets were inserted in the wait queue
 129 (0.23%) packets were reported as alerts
 177 (0.32%) packets did not have enough observations
 3240 packets were checked against the wait queue
55006 observations were stored
28861.7486 observations are remembered

** Rare dest port used: local dest, weird flags (id=2) **
0 packets were evaluated
 0 (nan%) packets were considered anomalous
 0 (nan%) packets were reported as alerts
55006 observations were stored
28861.7486 observations are remembered

** Closed dest port used: local dest, teardown flags (id=3) **
5956 packets were evaluated
 3618 (60.75%) packets were considered anomalous
 3618 (60.75%) packets were inserted in the wait queue
 775 (13.01%) packets were reported as alerts
 63 (1.06%) packets did not have enough observations
 57349 packets were checked against the wait queue
55006 observations were stored
28861.7486 observations are remembered

Other entries cut short to save space
** Closed dest port used: nonlocal dest, syn (id=4) **
2429.5499 observations are remembered
** Closed dest port used: nonlocal dest, synack (id=5) **
3090 packets were evaluated
4443 observations were stored
2429.5499 observations are remembered
** Closed dest port used: nonlocal dest, teardown flags (id=6) **
62081 packets were evaluated
4443 observations were stored
2429.5499 observations are remembered

** Non-live dest used: local dest, weird flags (id=7) **
0 packets were evaluated
 0 (nan%) packets were considered anomalous
 0 (nan%) packets were reported as alerts
85408 observations were stored
9577.2715 observations are remembered
Table 1-3: Spade state log

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

Spade can not tell if a packet is malicious much like Snort signature alert not
being able to tell if an alert is a false positive. Currently Spade is good at
detecting port scans and denial of service attacks.

There are other developmental/research tools like PHAD (Packet Header
Anomaly Detector) to detect anomalies in Ethernet, IP, TCP, UDP, and ICMP
packet headers and ALAD (Application Layer Anomaly Detector) to detect
anomalies in inbound TCP stream connections to well known ports. Currently the
field of anomaly detection is still very immature and has a long way to go.

1.4 Byproducts
Two other technologies that came out of IDS are Network Intrusion Prevention
System (NIPS) and Honey Pots. NIDS by definition is a defensive and reactive
technology. The strategy is to detect any failures in the defense system and then
react to those failures. NIPS and Honey Pots go one step further.

NIPS is more than a regular NIDS. NIPS is capable of taking proactive measures
instead of just being reactive to the attacks. They can coordinate with the
firewalls and change the firewall rules on the fly while reacting to attacks. The
problem is that they can be fooled into blocking their own systems by using
simple tools like ‘sendip’ described above. An attacker can spoof an
organization’s external DNS server as the source IP address in network scans
creating scan alerts or DoS alerts. Depending on the preventive rules the NIPS
may respond by blocking traffic from it’s own external DNS server thus denying
it’s own services. However this can be overcome by creating exceptions in the
rule sets. But organizations have to weigh all possible scenarios before jumping
on to this.

A honey pot is a system designed to be compromised. The primary purpose of a
honey pot is to gather information about threats by studying new attacks as they
happen. Honey pots are setup with fake data to emulate other systems, known
services and vulnerabilities in a controlled environment. Known vulnerabilities are
left open to attract attackers. Good data control and data capture procedures are
kept in place to study the attacks. Honey net is a network of multiple honey pots
and applications in a controlled environment.

1.5 Need for Standards
The Intrusion Detection field is currently moving from it’s infant stage to
adolescent stage. The organizational and technological instabilities are still a
hurdle. One symptom of this is the lack of standards on interoperability between
tools. A large company base is competing in the present IDS industry. Many well-
known published pattern matching and anomaly detection methods and
algorithms are being put to use to develop new IDS products.

Companies like Fidelis Security Systems provide rule optimization compilers to
compile the rule base into machine code making the rule processing procedures
faster. The disadvantage is recompiling the rule set for any changes in the rule

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

set. SnortTran module works with Snort versions 1.9 to improve the performance.
This is one example of a software solution.

The present leading day approach to IDS is Multi Host Network Based, also
known as Distributed IDS (DIDS). As we saw above, there is a trade off for IDS
speeds and accuracy. Unfortunately both are important when it comes to
security. Distributed systems solve this problem. One of the significant
challenges is to combine data and information from numerous heterogeneous
distributed agents (and managers) into a coherent process. The study of human
brain and nerve system forms a very good model to follow in this matter. Making
inferences out of data from multiple and diverse sensors and sources is akin to
human cognitive process where the brain fuses sensory information from various
sensory organs, evaluates situations, makes decisions and directs actions.

There are, however, some attempts being made to correct this. The Intrusion
Detection Working Group (IDWG), under Internet Engineering Task Force, is
developing a set of functional requirements and protocols for communication
between ID systems, and specifying an ID language that describes data formats.
DARPA is pursuing an effort to develop a Common Intrusion Detection
Framework (CIDF). This effort focuses on establishing a high-level architectural
view of IDS functional components, and the data communication needs between
these components. The major components are called event generators, event
analyzers, event databases, and response units.

The integration of different data formats from multiple vendors, data refinement,
data mining and representation is a challenge. IDWG (Intrusion Detection
Working Committee) is working on the standards. IDWG described it’s mission
statement as below.
“The purpose of the Intrusion Detection Working Group is to define data formats
and exchange procedures for sharing information of interest to intrusion detection
and response systems, and to management systems which may need to interact
with them. The Intrusion Detection Working Group will coordinate its efforts with
other IETF Working Groups.”

There is a lot of potential for a field as immature, rapidly evolving, and highly
competitive as the intrusion detection field.

1.6 Where is it going?
During 1995-1999 DARPA defined homeland security as a two layered approach:
Strong Barriers with local detection. The new road map for 1999-2003 is a 3-
layered defense approach: Intrusion Tolerance, Global Intrusion Detection and
Intrusion Prevention.

Intrusion Tolerance is the ability to continue critical operations following a partial
compromise.
Global Detection is the ability to distinguish events of elevated significance from
those of only local interest.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

A sophisticated IDS infrastructure with well-tested, established and fine tuned
rule sets will still result in a large alert database thus prompting for good
incidence response procedures. Too many false positives will affect the efficiency
of overall escalation procedures.

More-often-than-not these systems fail to provide network engineers tangible and
useful situational information, typically overwhelming operators with system
messages and other low-level data. Network management and intrusion
detection systems must operate in a uniform and cooperative model, fusing data
into information and knowledge, so network operators can make informed
decisions about the health and real-time security.

Below is a diagram showing one possible future scenario. In this, all the security
devices like IDS, firewalls and honey pots are managed using one central
generic engine. The generic engine has plug-ins to manage and control systems
from multiple vendors and supports future IETF/IDWG standards as well for data
and control management. One common management console can be used to
define, create and push policies, rules and configuration changes. The real time
alerts are generated by individual components and are also converted and stored
in a central database. The decision-making unit can create proactive rules on the
fly to change firewall rules. An integrated data mining and modeling unit analyzes
the offline data and creates traffic models, anomalies and possible future
proactive measures.

Figure 3: Future IDS

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

If the intrusion-detection function or the antiviral-detection function raises an
attack alert, and the vulnerability-assessment function confirms that the network
is vulnerable to that attack, the firewall blocks it or shunts the packet off to the
honey pots, thwarting the attack.

In future, we can expect improved correlation of attacks, better proactive
responses, better incident response with improved integration of system
management framework, all managed from one central management console.

1.7 References:
Intrusion Detection Working Group at IETF http://www.ietf.org/html.charters/idwg-
charter.html
Next Generation Cyberspace IDS
http://www.silkroad.com/paper/html/ids/node1.html
Darpa Document http://www.darpa.mil/darpatech99/presentations/itopdf/itoiis.pdf
Network Anomaly Intrusion Detection Research
http://www.cs.fit.edu/~mmahoney/dist/
Rule optimization by compiling into machine code
http://www.fidelissec.com/testdrive.html
SENDIP http://www.earth.li/projectpurple/progs/sendip.html
TCPREPLAY http://tcpreplay.sourceforge.net/
Honeynets http://www.honeynet.org
Snort http://www.snort.org
Spade http://www.silicondefense.com

http://www.sans.org/resources/idfaq/anomaly_detection.php

2. Assignment 2: Network Detects
In this section three network detects from the wild are analyzed according to the
GIAC GCIA guidelines. One of the network detects was taken from
http://www.incidents.org/logs/Raw. Two detects were taken from client’s network.
Detects were analyzed to understand the overall attack and detection
mechanisms. Attack severity and correlation with other events were analyzed to
evaluate risk factors and recommend counter measures for better security.

2.1 Detect1: SNMP AgenX/tcp request

2.1.1 Source of Trace
The snort logs came from a client’s location. The client is running a mixed
Linux/Windows environment.

2.1.2 Detect was generated by
Snort IDS, Version 1.9.0 (Build 209) with the default rule set. RedHat 7.3 with
MySql Server Version 3.23.52 and ACID v0.9.6b23 were used.

The following snort rule from snmp.rules file raised this alert:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

alert tcp $EXTERNAL_NET any -> $HOME_NET 705 (msg:"SNMP
AgentX/tcp request"; reference:cve,CAN-2002-0012; reference:cve,CAN-
2002-0013; sid:1421; rev:2; classtype:attempted-recon;)
http://www.snort.org/snort-db/sid.html?sid=1421.

This rule checks all incoming TCP traffic to destination port 705. It is interesting
to note that this tcp/705 communication, as the later sections are going to reveal,
is not actually between SNMP Manager and SNMP (Master) Agent but between
SNMP Master Agent and other sub-agents using SNMP extension protocol,
AgentX (extensible agent). This attack is basically trying to get information from
Master Agent posing as a subagent. More information on AgentX is available in
the next section and reference material mentioned in the reference section. The
corresponding alert(s) from snorts alert log files are shown below.

 [**] [1:1421:2] SNMP AgentX/tcp request [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/24-09:12:07.209249 203.197.254.207:49032 -> MY.HOME.X.Y:705
TCP TTL:38 TOS:0x0 ID:55396 IpLen:20 DgmLen:40
******S* Seq: 0x69784748 Ack: 0x0 Win: 0x400 TcpLen: 20
[Xref => cve CAN-2002-0013][Xref => cve CAN-2002-0012]

[**] [1:1421:2] SNMP AgentX/tcp request [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/24-09:12:09.433398 203.197.254.207:49033 -> MY.HOME.X.Y:705
TCP TTL:38 TOS:0x0 ID:55435 IpLen:20 DgmLen:40
******S* Seq: 0x40BA2AD1 Ack: 0x0 Win: 0x400 TcpLen: 20

Table 2-1: Snort log entry for SNMP Agentx/tcp alert

2.1.3 Probability the source address was spoofed
This attack uses TCP and is a reconnaissance attempt. It is quite possible to
send spoofed packets of this attack. But to receive any information back a
sophisticated man-in-the-middle like attack needs to be performed. As can be
seen from the analysis of the packets the SYN packet is set to initiate a TCP
connection but there is no more traffic to further prove the completion of a TCP
connection.

A dshield database check on the source address 203.197.254.207 did not ring
any bells.

Http://www.dshield.org/warning_explanation.php?fip=203.197.254.207

Your IP (203.197.254.207) does not appear as an attacker in the DShield
database.

Table 2-2: Dshield database search results

The whois database shows the following data for the ownership of this IP
address.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

Inetnum: 203.197.0.0 – 203.197.255.255
netname: VSNL-IN
descr: Videsh Sanchar Nigam Ltd - India.
Descr: Videsh Sanchar Bhawan, M.G. Road
descr: Fort, Bombay 400001
country: IN
person: VSNL Tech
address: 10th Floor, 2 MG Road
address: Fort Mumbai – 400001
address: India
country: IN

Table 2-3: Who is database search results

The address block in Table 2-3 is assigned to Internet providers in India. Further
check for this IP address in the snort logs shows that there have been similar
SNMP reconnaissance attempts from this source IP. This IP address most likely
belongs to a dynamic IP address range and hence may not help in finding the
attacker unless coordinated with the ISP.
In the end the conclusion is that this IP address is NOT spoofed.

2.1.4 Description of the attack
SNMP (Simple Network Management) is widely used across the Internet for
managing IP networks, including individual network devices. SNMP was
designed in the late 80's to facilitate the exchange of management information
between networked devices, operating at the application layer of the ISO/OSI
model. The SNMP protocol enables network and system administrators to
remotely monitor and configure devices on the network. Most current generation
devices and operating systems support SNMP.

SNMP uses 161/udp for general-purpose (request/response) communications,
and 162/udp for traps. Additionally, the SNMP multiplexing protocol (smux,
defined in RFC1227 http://www.ietf.org/rfc/rfc1227.txt) uses 199/tcp. Another
SNMP extension, the AgentX protocol (RFC2741,
http://www.ietf.org/rfc/rfc2741.txt) uses 705/tcp. Request handling vulnerabilities
in SNMPv1 allow remote attackers to cause a denial of service or gain privileges.
AgentX attack is typically sent to TCP port 705 on victim’s host.

There are plenty of different implementations. Some vendors enable SNMP by
default in their devices with default access passwords and permissions. By
default SNMP waits for incoming messages.

In general Agent/X attack may be preceded and/or followed by some more
SNMP related attacks/reconnaissance techniques to read (‘getrequest’) and write
(‘setrequest’).

Agent/X vulnerability is still considered a high level candidate at CVE (Common
Vulnerabilities and Exposures). As per CVE web site, it is highly likely that this
candidate will be SPLIT into multiple candidates, one or more for each vendor.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0012

Common Vulnerabilities and Exposures (CVE) is a list or dictionary that provides
common names for publicly known information security vulnerabilities and
exposures. More information on this is available at
http://cve.mitre.org/docs/docs2000/naming_process.html.

2.1.5 Attack Mechanism

Figure 4: Simplified SNMP Architecture (From www.ee.oulu.fi Research Papers)

Before going into details of AgentX, let’s look at some SNMP basics. SNMP is
built around the concept of "managers" and "agents." Manager software
(commonly installed on a network management system) makes requests to agent
software running on a network host or device to gather data on the operational
status, configuration, or performance statistics of that system (polling). Agents
are configurable and allow Read access to statistics and Read/Write access to
configuration parameters from management systems. Additionally, agents can
send ad hoc messages as traps to manager systems informing them of unusual
events.

Agents listen on 161/udp port for general-purpose (request/response)
communications. Managers listen on 162/udp for traps. Additionally, one of the
SNMP extensions, the AgentX protocol uses port 705/tcp.

AgentX

The integration and scalability of multiple SNMP agents provided by the
manufacturers and 3rd party vendors leads to a master agent and sub agents
paradigm. The wide deployment of extensible SNMP agents, coupled with the
lack of Internet standards in this area, makes it difficult to field SNMP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

manageable applications. A vendor may have to support several different
subagent environments (APIs) in order to support different target platforms.

One of the protocols used between the master agent and sub agent entities is
AgentX. Master agent and subagents may reside on the same host system or on
a network. AgentX is a platform-independent protocol, which supports intra-agent
communication within a device or local area network.

Independently developed AgentX-capable master agents and sub agents will be
able to inter operate at the protocol level. Vendors can continue to differentiate
their products in all other respects. Simplified, in an overall SNMP framework, a
master agent appears as a single processing entity and uses SNMP protocol
messages to communicate with the Manager system on one side, multiplexing
the SNMP protocol messages amongst the sub agents thus shielding the
subagents on the other side.

AgentX over TCP
The master agent accepts TCP connection requests on port 705. Subagents
connect to the master agent using this port number. This following screen shot
from ACID console shows the attack from source IP 203.197.254.207. The
destination address has been sanitized.

The destination TCP port is set to 705 and the SYN flag is set indicating the
source machine’s TCP connection initiation. An analysis of tcpdump log files did
not reveal any response from the destination machine. This is in accordance with
the site firewall rules. The firewall rules at this site are set NOT to allow any
incoming packets on this port. Thus this connection attempt is a failure.

2.1.6 Correlation
As shown in Table 2-4 below, other SNMP attacks were observed from the same
source address. The following excerpts are from a Snort log file.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

[**] [1:1420:2] SNMP trap tcp [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/24-09:12:27.040139 203.197.254.207:49032 -> MY.NET.X.X:162
TCP TTL:38 TOS:0x0 ID:55835 IpLen:20 DgmLen:40
******S* Seq: 0x69784748 Ack: 0x0 Win: 0x400 TcpLen: 20
[Xref => cve CAN-2002-0013][Xref => cve CAN-2002-0012]
[**] [1:1420:2] SNMP trap tcp [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/24-09:12:29.232976 203.197.254.207:49033 -> MY.NET.X.X:162
TCP TTL:38 TOS:0x0 ID:55870 IpLen:20 DgmLen:40
******S* Seq: 0x40BA2AD1 Ack: 0x0 Win: 0x400 TcpLen: 20
[Xref => cve CAN-2002-0013][Xref => cve CAN-2002-0012]

[**] [1:1418:2] SNMP request tcp [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/24-09:15:27.113976 203.197.254.207:49032 -> MY.NET.X.X:161
TCP TTL:38 TOS:0x0 ID:60619 IpLen:20 DgmLen:40
******S* Seq: 0x69784748 Ack: 0x0 Win: 0x400 TcpLen: 20
[Xref => cve CAN-2002-0013][Xref => cve CAN-2002-0012]

[**] [1:1418:2] SNMP request tcp [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/24-09:15:28.951472 203.197.254.207:49033 -> MY.NET.X.X:161
TCP TTL:38 TOS:0x0 ID:60668 IpLen:20 DgmLen:40
******S* Seq: 0x40BA2AD1 Ack: 0x0 Win: 0x400 TcpLen: 20
[Xref => cve CAN-2002-0013][Xref => cve CAN-2002-0012]

[**] [1:1411:2] SNMP public access udp [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/24-12:41:05.457881 12.88.83.138:1368 -> MY.NET.X.X:161
UDP TTL:115 TOS:0x0 ID:38207 IpLen:20 DgmLen:72
Len: 52 [Xref => cve CAN-2002-0013][Xref => cve CAN-2002-0012]
Table 2-4: Snort Alerts

The above alerts were generated by the snort rules shown below.

alert tcp $EXTERNAL_NET any -> $HOME_NET 161 (msg:"SNMP request tcp";
reference:cve,CAN-2002-0012; reference:cve,CAN-2002-0013; sid:1418; rev:2;
classtype:attempted-recon;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 162 (msg:"SNMP trap tcp";
reference:cve,CAN-2002-0012; reference:cve,CAN-2002-0013; sid:1420; rev:2;
classtype:attempted-recon;)

snmp.rules:alert udp $EXTERNAL_NET any -> $HOME_NET 161 (msg:"SNMP
public access

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

 udp"; content:"public"; reference:cve,CAN-1999-0517; reference:cve,CAN-2002-
001
2; reference:cve,CAN-2002-0013; sid:1411; rev:3; classtype:attempted-recon;)
Table 2-5: Snort rules for alerts in Table 2-5

2.1.7 Evidence of Active Targeting

It is clear from the above logs and discussion that this is active targeting. The
logs actually show many scans from this IP address on that day.
It is in fact a very long list, pages of information. Here is a glimpse.

Alert.0421:03/24-09:11:40.774771 203.197.254.207:49032 -> MY.NET.X.X:3128
alert.0421:[**] [117:1:1] (spp_portscan2) Portscan detected from
203.197.254.207: 1 targets 21 ports in 11 seconds [**]
alert.0421:03/24-09:11:40.777800 203.197.254.207:49032 -> MY.NET.X.X:417
alert.0421:03/24-09:11:42.977169 203.197.254.207:49033 -> MY.NET.X.X:3128
alert.0421:03/24-09:12:11.631191 203.197.254.207:49034 -> MY.NET.X.X:705
alert.0421:03/24-09:12:13.825227 203.197.254.207:49032 -> MY.NET.X.X:890
 [**] [1:1420:2] SNMP trap tcp [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/24-09:12:27.040139 203.197.254.207:49032 -> MY.NET.X.X:162
TCP TTL:38 TOS:0x0 ID:55835 IpLen:20 DgmLen:40
******S* Seq: 0x69784748 Ack: 0x0 Win: 0x400 TcpLen: 20
[**] [1:1418:2] SNMP request tcp [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/24-09:15:28.951472 203.197.254.207:49033 -> MY.NET.X.X:161
TCP TTL:38 TOS:0x0 ID:60668 IpLen:20 DgmLen:40
******S* Seq: 0x40BA2AD1 Ack: 0x0 Win: 0x400 TcpLen: 20
Table 2-6: Correlation – Other related alerts from 203.197.254.207

2.1.8 Severity

Severity = 0

The following formula has been used to calculate severity.
Severity = (Criticality + Lethality) –
 (System Countermeasures + Network Countermeasures)

 (5+4) – (4+5) = 0

Criticality 5 Criticality value is a measure of how critical the targeted
system is to the network. This scan is to the gateway
router, the connecting point to the internet. A compromise
of this host would be disastrous.

Lethality 4 Lethality value is a measure of how severe the damage to
the targeted system would be if the attack were
succeeded. The result of this attack is probable revelation
of sensitive information to the attacker. That would be a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

lethality value of 4 for this attack attempt.
System
Countermeasu
re

4 This is a measure of the strength of defensive mechanism
in place on the host itself. There are no logs to see the
response from the system in an attack mode. But the
connection was never established because of the firewall.
The SNMP community passwords on the system were set
using the secure password policies and as such are not
easy to guess. The write access was disabled and access
control list was in place to allow access only from local
network. But the system was not specifically tested for
SNMP attacks. Being paranoia would give this a value of 4

Network
Countermeasu
res

5 This is a measure of the strength of defensive mechanism
in place on the network. The incoming UDP/TCP traffic for
all SNMP related traffic is blocked/dropped at the firewall.

Table 2-7: Severity Calculation Table

* Each value is ranked on a scale of 1-5, 1being the least and 5 the highest.

2.1.9 Defensive Recommendation
As a defensive measure
• Disable SNMP if not absolutely required.
• Update SNMP to latest available version and apply vendor patches
• Use the same policy for community names as used for passwords.
• Reassess SNMP community password string and access control lists.
• Block the traffic to the following ports at network ingress point. Basic router

Access Control Lists (ACL) can help put these simple filters in place.

snmp 161/udp # Simple Network Management Protocol
(SNMP)
snmp 161/tcp # Simple Network Management Protocol
(SNMP)
snmp 162/udp # SNMP system management
messages
snmp 162/tcp # SNMP system management
messages
smux 199/tcp # SNMP Unix Multiplexer
smux 199/udp # SNMP Unix Multiplexer
synoptics-relay 391/tcp # SynOptics SNMP Relay Port
synoptics-relay 391/udp # SynOptics SNMP Relay Port
agentx 705/tcp # AgentX
snmp-tcp-port 1993/tcp # cisco SNMP TCP port
snmp-tcp-port 1993/udp # cisco SNMP TCP port

• Make MIBs (Management Information Base) read only where possible. The
information that SNMP agent forwards to network management console is
contained in a Management Information Base (MIB). A MIB is a configuration

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

that defines what information can be obtained from a network device, and
what functions can be controlled.

More information on MIB is available at
https://www.juniper.net/techpubs/software/junos/junos55/swconfig55-net-
mgmt/html/snmp-overview3.html#1025454
• If possible test the SNMP infrastructure using the PROTOS SNMP test suite.
• AgentX Security Considerations:

Enable Agent/x over UNIX-domain Sockets if possible. An AgentX subagent can
connect to a master agent using either a network transport mechanism (e.g.,
TCP), or a "local" mechanism (e.g., shared memory, named pipes). In the case
where a local transport mechanism is used and both subagent and master agent
are running on the same host, connection authorization can be delegated to the
operating system features. The operating system will allow the connection only if
the subagent has sufficient privileges.

Currently there is no access control mechanism defined in AgentX. Also there is
no inherent security if a network transport is used. Transport Layer Security,
SSL, or IPsec SHOULD be used to control and protect subagent connections in
this mode of operation. RFC 2741 clearly recommends that subagents always
run on the same host as the master agent and that operating system features be
used to ensure that only properly authorized subagents can establish
connections to the master agent.

2.1.10 Multiple Choice Test Question

Q) Which NET-SNMP tool kit command can be used to retrieve lot of information
at once?

A) snmpget
B) snmptrap
C) snmpwalk
D) snmptranslate

Answer) C

Q) Which of the following NET-SNMP toolkit command(s) show(s) all the
packages installed on a Red Hat 8.0 machine (enabled with SNMP)?

A) snmpwalk -v 1 -c <CommunityString> <HostName>
B) snmpwalk -v 1 -c <CommunityString> <HostName> hrSWInstalledName
C) snmpwalk -v 1 -c <CommunityString> <HostName> HOST-RESOURCES-
MIB::hrSWInstalledName
D) snmpget -v 1 -c <CommunityString> <HostName> hrSWInstalledName

Answer) B & C

2.1.11 References:
http://www.cert.org/advisories/CA-2002-03.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/snmp.htm#xtocid21031
5
http://www.ietf.org/rfc/rfc2741.txt?number=2741
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0012
http://www.cert.org/tech_tips/snmp_faq.html
http://www.sans.org/top20/top10.php
https://www.juniper.net/techpubs/software/junos/junos55/swconfig55-net-
mgmt/html/snmp-overview3.html#1025454
http://www.ee.oulu.fi/research/ouspg/protos/testing/c06/snmpv1/
http://www.nwfusion.com/archive/1999/77058_10-04-1999.html
http://www.net-snmp.org/

2.2 Detect2: MS-SQL Worm Propagation Attempt

2.2.1 Source of Trace
The snort logs came from a small business client’s location. The client is running
Linux and Windows based mixed environment.

2.2.2 Detect was generated by
Snort IDS, Version 2.0.0 (Build 72) with the default rule set. Used RedHat 7.3
with MySql Server Ver 11.15 Distrib 3.23.41, for redhat-linux-gnu (i386) and
ACID v0.9.6b21. The snort rule raising this alert is from sql.rules file:

sql.rules:alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"MS-
SQL Worm propagation attempt"; content:"|04|"; depth:1; content:"|81 F1
03 01 04 9B 81 F1 01|"; content:"sock"; content:"send";
reference:bugtraq,5310; classtype:misc-attack; reference:bugtraq,5311;
reference:url,vil.nai.com/vil/content/v_99992.htm; sid:2 003; rev:2;)
http://www.snort.org/snort-db/sid.html?sid=2003

The above rule checks all incoming UDP traffic to destination port 1434. The
keyword ‘content’ allows the user to set rules that search for specific content in
the packet payload and trigger response based on that data. The option data for
the content keyword can contain mixed text and binary data. The binary data is
generally enclosed within the pipe (|) character and represented as bytecode.
Bytecode represents binary data as hexadecimal numbers and is a good
shorthand method for describing complex binary data.
Depth is a content rule option modifier. This sets the maximum search depth for
the content pattern match. In the above rule the first byte of the payload is tested
for ‘04’. Then the payload is also tested for the content ‘sock’, ‘send’ and binary
‘81 F1 03 01 04 9b 81 F1 01’. This last binary content is equal to ‘sendsock’.
More information on Snort rules can be found at
http://www.snort.org/docs/writing_rules/

The corresponding alert(s) from Snort alert logs are shown below.

[**] [1:2003:2] MS-SQL Worm propagation attempt [**]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

[Classification: Misc. Attack] [Priority: 2]
05/06-08:11:58.717043 216.32.144.19:1404 -> xxx.xxx.xxx.19:1434
UDP TTL:107 TOS:0x0 ID:65475 IpLen:20 DgmLen:404 Len: 376
[Xref => http://vil.nai.com/vil/content/v_99992.htm][Xref => http://www.security
focus.com/bid/5311][Xref => http://www.securityfocus.com/bid/5310]
Table 2-8: Snort Alerts

2.2.3 Probability the source address was spoofed
This attack uses UDP and as such it is easy to spoof attacks using UDP since
there is no need for establishing a connection before starting to exchange
information. However as described in later sections, this attack normally comes
from an affected machine and the victim IP addresses are randomly generated.
So there is a very high probability that this IP address is not spoofed. But it is
possible to generate this type of attacks with spoofed addresses using tools like
sendip.

Using the following sendip command, the attack can be simulated very easily
evoking an alert response from Snort.

sendip -p ipv4 -is 24.60.181.163 -id 12.235.69.190 -p udp -us 2001 -ud 1434
12.235.69.190 -d 0x0481F10301049B81F10173656e64736f636b
81 F1 03 01 9B 81 F1 01 is equal to s e n d s o c k

A further analysis of tcpdump logs does not reveal any information not found in
the Snort log. No additional packets were exchanged during this time as seen
from the tcpdump logs. And this conforms to packet filtering configurations setup
on the Internet connection of the network. The filtering rules on the firewall are
set to block tcp connections to this port from outside.

Using tcpdump
/usr/sbin/tcpdump -nn -r dumplog101 host '216.32.144.19'
0x0000 4500 0194 d4f2 0000 7011 b989 d820 9013 E.......p.......
0x0010 0ceb 45be 0803 059a 0180 726b 0401 0101 ..E.......rk....
0x0020 0101 0101 0101 0101 0101 0101 0101 0101
0x0030 0101 0101 0101 0101 0101 0101 0101 0101
0x0040 0101 0101 0101 0101 0101 0101 0101 0101
0x0050 0101 ..
This does not show anything additional except the initial few bytes of the attack.
The attack starts with a 04 followed by a string 01s. More on it later.
Table 2-9: Tcpdump

A quick check of the source address 216.32.144.19 in the dshield database
came with a positive result.
http://www.dshield.org/warning_explanation.php?fip=216.32.144.19
Your IP (216.32.144.19) appears as an attacker 25,246 times in the DShield
database.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

Table 2-10: Dshield Results

The whois database (http://www.whois.sc) showed the following data for the
ownership of this IP address. This is most probably an infected machine.

NetRange: 216.32.0.0 - 216.35.255.255 CIDR: 216.32.0.0/14
OrgName: Cable & Wireless
OrgID: EXCW
Address: 3300 Regency Pkwy City: Cary StateProv: NC PostalCode: 27511
Country: US
NetType: Direct Allocation
Table 2-11: Who is database search

As shown at http://www.boredom.org/~cstone/worm-annotated.txt an ‘objdump’
code analysis of this traffic reveals that the code never generates a different
source IP address

objdump -s -m i386 -b binary -z --disassemble-all --start-addres 0xc0 \
--show-raw-insn onepacket.txt

The tool ‘objdump’ shows the code for the packet at assembly language level.
From the above analysis it is concluded that this is not a spoofed address. More
information on ‘objdump’ is available at http://www.boredom.org/~cstone/worm-
annotated.txt.

2.2.4 Description of the attack
The malicious code exploits vulnerability in Microsoft SQL Server. The code
instructs the server to go into an endless loop, continually sending out data to
other computers.

This worm tries to exploit vulnerability in Microsoft SQL-Server's 'Monitor Port',
making it possible for remote users to execute arbitrary code. The monitor port is
used to discover the connection methods offered by a particular server. The
message sent by the client is usually a single byte (0x02). The response
depends on the server's configuration. David Lichtfield
(http://www.ngssoftware.com/advisories/mssql-udp.txt) discovered two buffer overflow
conditions in this service, which can be used to execute arbitrary code in the
security context of the server.

Remote users could gain access by exploiting the ‘heap’ based overflow in SQL
Server Resolution Service. This virus exists only in memory of unpatched
Microsoft SQL servers. Its purpose is simply to spread from one system to
another and it does not carry a destructive payload.

This worm causes increased traffic on UDP port 1434 and spreads between SQL
servers. A network sniffer can easily monitor this traffic. Heavy network traffic,
associated with this threat, can affect network performance on all systems on the
network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

http://www.securityfocus.com/bid/5310/discussion/
http://vil.nai.com/vil/content/v_99992.htm

2.2.5 Attack Mechanism
Microsoft SQL Server uses SQL Monitor service or resolution service running on
UDP port 1434 to guide incoming client connections to connect to the SQL server
running on TCP port 1433. The clients can typically connect using either named
pipes over NetBIOS session (TCP port 139/445) or sockets with clients
connecting to TCP port 1433 or both. Typically clients send messages to a UDP
port 1434 to dynamically discover how the client should connect to the Server.
Below is a single byte packet.
0x02 is used to discover the connection type.
0x04 is used to request to open a registry entry.
0x0A is used to ping the service and responded by a 0x0A to the source and port
address.

When the first a 0x04 is sent in the payload as the first byte, the SQL Monitor
thread takes the remaining data in the packet and attempts to open a registry key
using this user supplied information. For example, by sending
\x04\x41\x41\x41\x41 (0x04 followed by 4 upper case 'A's) SQL Server attempts
to open
‘HKLM\Software\Microsoft\Microsoft SQL Server\AAAA\MSSQLServer\CurrentVersion’.

In the attack described, the worm body starts with byte 0x04 (followed by a long
series of 01s) which when received by the SQL Monitor generates a long registry
key name (HKLM\Software\Microsoft\Microsoft SQL Server\.....\MSSQLServer\CurrentVersion)
overflowing the buffer (dots in this key denote the Registry key branch SQL
Monitor tries to access - for SQLSlammer.worm these bytes are are a long series
of unprintable 01 symbols following 04 which is a type of request described
earlier). That overwrites the return address on stack and the worm code receives
control with the privileges of the SQL Monitor. The vulnerability that this worm
uses lays in the SSNETLIB.DLL in the routine that handles requests of type 04 to
1434/udp port.

Once the worm gets control on the target computer it loads WS2_32.DLL and
starts to continually send itself to port 1434/udp of randomly selected IP targets
in an infinite loop. The IP of a victim is constructed using 'GetTickCount' API and
is purely random. There is no skew towards the local subnet, for example. This
propagation strategy consumes a lot of network bandwidth because the vast
majority of requests go to the Internet.

The worm does no error checking whatsoever - its operation may cause crashes
of SQL servers it was not designed for. The worm exists only in memory and
does not modify any local files.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

This worm would cause increased traffic on UDP port 1434. This could result in
heavy network traffic and can effect network performance of systems on the
network.

As per Network Associates, Inc., the malformed packet is only 376 bytes long
and carries the following strings: "h.dllhel32hkernQhounthickChGetTf", "hws2",
"Qhsockf" and "toQhsend" in the payload.

The following is a screen shot of payload from ACID console.

As can be seen, the protocol used is UDP and the destination port is 1434,
default port for Microsoft SQL Server. The first byte is 04, followed by a long
series of 01s. The strings “h.dllhel32hkernQhounthickChGetTf", "hws2",
"Qhsockf" and "toQhsend” can also be seen in the payload.

2.2.6 Correlation
Though this exploit hit the Internet very recently (January 25th, 2003), it has it’s
roots in the past associated with other Microsoft SQL server vulnerabilities. More
information is available at http://www.securityfocus.com/bid/5310/credit/. MS-
SQL related attacks are still on the top list at http://isc.incidents.org/.

No correlation was found with other GCIA papers possibly because of this
vulnerability’s recent birth and since the recent papers were not yet posted to the
GIAC web site at the time of writing this paper.

Some related discussion group messages on January 25th, 2003 are available at
http://www.broadbandreports.com/forum/remark,5771929~root=security,1~mode=flat

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

2.2.7 Evidence of Active Targeting
As per attack descriptions observed so far the destination IP addresses are
generated at random. The following IP addresses from the alert logs matched
with dshield (http://www.dshield.org) database for MS SQL Worm. It is concluded
that there is no active targeting involved.

66.50.6.99, 67.39.162.209, 80.110.49.49, 130.94.135.7, 211.93.19.50,
211.147.61.196, 216.32.144.19, 202.108.158.99. These machines are most
probably compromised machines and the attacks are probably random. No scans
were found from these addresses during this time.

‘Who is’ information for some of the address from the above list as found at
http://www.whois.sc is given below.
66.50.6.99
Puerto Rico Telephone Company PRTC-NET (NET-66-50-0-0-1)
66.50.0.0 - 66.50.255.255
PRTC RAS PRTC-66-50-0-0 (NET-66-50-0-0-2)
66.50.0.0 - 66.50.30.255
216.32.144.19
OrgName: Cable & Wireless OrgID: EXCW
Address: 3300 Regency Pkwy City: Cary StateProv: NC PostalCode: 27511
Country: US
CIDR: 216.32.0.0/14
211.93.19.50
inetnum: 211.93.16.0 - 211.93.19.255
netname: XJWL
descr: wl city ,Xin Jiang Uigur autonomous region POP, China.P.R
country: CN
Table 2-12: Who is database search results

2.2.8 Severity
Severity = -3

The following formula has been used to calculate severity.

Severity = (Criticality + Lethality) – (System Countermeasures + Network Countermeasures)
 (0+3) – (5+3)

Criticality 0 Criticality value is a measure of how critical the targeted
system is to the network. This attack is sent to the border
router connecting the internet and did not get forwarded
to the internal network. As such it is not affected by this
attack.

Lethality 3 This warm caused havoc in the first few hours on the
internet but it’s effect went down because of the
immediate collective response from the internet. There
was no UPD storm on client’s network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

System
Countermeasure
s

5 The system was patched with SP3, so there was no
direct threat to the system in this scenario.

Network
Countermeasure
s

3 The incoming UDP traffic is blocked at the firewall. But
the packet filtering did overlook the traffic from DNS
servers. That leaves the system open to an attacker
trying to target this particular system.

Table 2-13: Severity Calculation Table

* Each value is ranked on a scale of 1-5, 1being the least and 5 the highest.

2.2.9 Defensive Recommendation
Exploitation of these security holes goes over UDP, a connection-less
communications protocol. As such it makes the task of bypassing the protection
offered by a firewall considerably easier. The spoofing of an IP address in a UDP
packet is also considerably easier.

It is trivial for an attacker to send an attack through the firewall, setting the source
IP address to that of site’s external DNS Server and the source port to 53. Most
firewalls will pass this packet as this packet appears like a response to a query to
resolve a domain name.

• Setup a firewall rule to drop any incoming packets to port 1433, 1434, 1435

over UDP. No hosts including DNS servers should be allowed to send traffic
to this port.

• Setup a firewall rule to drop spoofed packets with source address set to an
internal address.

• Apply the latest patches for the Operating system and MS SQL Server.
• NGSSoftware recommends running the SQL Server as low privileged local

account and not SYSTEM or a domain account.
• Since this worm lives only in memory, reboot the machine before applying the

patch.
• Use a network traffic analyzer to identify the internal infected hosts.

2.2.10 Multiple Choice Test Question

Q) Choose the best way to prevent SYN attacks against public servers directly
facing the Internet.

A) Increase the size of the connection queue (SYN ACK queue).
B) Decrease the time-out waiting for the three-way handshake.
C) Employ vendor software patches to detect and circumvent the problem (if
available).
D) All of the above

Answer: D

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

2.2.11 References:
http://www.boredom.org/~cstone/worm-annotated.txt
http://www.ngssoftware.com/advisories/mssql-udp.txt
http://www.securityfocus.com/bid/5310/discussion/
http://vil.nai.com/vil/content/v_99992.htm
http://securityresponse.symantec.com/avcenter/Analysis-SQLExp.pdf
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/MS02-039.asp
http://www.cert.org/tech_tips/snmp_faq.html

2.3 Detect3: BACKDOOR Q access

2.3.1 Source of Trace
The data file used was obtained from http://www.incidents.org/logs/Raw/. The file
2002.10.1 was used for this analysis. Network 207.166.0.0 has been determined
as the home network range. The presence of the source MAC address
00:03:e3:d9:26:c0 and destination MAC address 00:00:0c:04:64:33 on all
packets belong to ranges assigned to Cisco Systems. It is assumed that the
sensor is placed between two Cisco routers facing the internet and internal
network.

This detect was posted to intrusions@incidents.org message group as per the
practical guidelines. It is also available at this link
http://cert.uni-stuttgart.de/archive/intrusions/2003/06/msg00166.html
All the messages posted by group members in regards to this detect are shown
at the end of this section. Due credit is given to all those members who took their
time to read and respond to my posting.

2.3.2 Detect was generated by
This detect was generated by Snort IDS, Version 2.0.0 (Build 72) with default rule
sets. Used RedHat 8.0 with MYSQL Server Version 3.23.52 and ACID v0.9.6b23.

The file was processed using the command line:
snort -c /tmp/detects/snort.conf -k none -r /tmp/detects/2002.10.1

A brief explanation of the options follows:
-c specify location of the Snort configuration file
-k sets checksum checking off altogether since checksums have been altered
in the logs
-r read data from the file specified

The snort rule raising this alert is from ‘backdoor.rules’ file:

alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q
access"; flags:A+; dsize: >1; reference:arachnids,203; sid:184;
classtype:misc-activity; rev:3;)
Snort Rule Ref: http://www.snort.org/snort-db/sid.html?sid=184

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

The Snort signature shown above raises an alert for any TCP traffic from
255.255.255.0/24 originating from any source port to the home network on any
destination port. The TCP flags are tested to see if the TCP-ACK
(acknowledgement) flag is set with optional other flag combinations set. The data
payload size has to be of at least 1 byte.

A sample alert from the log file:

[**] [1:184:3] BACKDOOR Q access [**]
[Classification: Misc activity] [Priority: 3]
11/09-21:59:13.066507 255.255.255.255:31337 -> 207.166.143.84:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20

2.3.3 Probability the source address was spoofed
This source address 255.255.255.255 was spoofed. By default, most of the IP
routers do not forward network broadcast packets. A good TCP/IP stack should
not reply to this address in the first place. And the presence of ACK and RST
flags in the packet indicate a non-graceful abort of the session, either to indicate
non-existence of any listening process or to indicate that the arriving packet does
not belong to an established connection.
When the target (victim) machine replies to this source address it is replying to a
broadcast address thus creating a packet storm, kind of denial of service. Of
course, in this case the storm is limited to the local network. Since the source
address in this alert is a broadcast address it is very easy to spoof the source
address. And there is absolutely no need to use the real IP address while using
or looking for Q.

(*Note: This detect was posted on 6/13/2003, 10:55 PM to the intrusions
discussion forum at intrusions@incidents.org as per the assignment
requirements. Excerpts from the discussion related to the post are attached at
the end of this section.)

As seen in the description of the attack section below, a backdoor Q client does
not necessarily need a reply from the victim machine (Q server). Q is capable of
relaying or bouncing to a different IP address or network and it is very easy to
send a control command from the client and to direct the victim machine to
connect to an entirely different machine.

As per the README file at http://www.incidents.org/logs/Raw/README, ‘the log
files are the result of a Snort instance running in binary logging mode. This
means that only the packets that violate the ruleset appear in the log. The logs
themselves have been sanitized and the checksums have been modified’. That
makes things little tricky.

2.3.4 Description of the attack
The attack appears like commands are being sent to a compromised host on the
Home Network. The analysis of the attack shows ‘Q’ like activity with a possible
Q server running on the Home Network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

As can be seen from the ACID console picture below, the source port is 31337, a
well known port for it’s association with hacker tools, including “BackOrifice”. The
destination port is 515, which is the Line Printer Daemon port. All Q related
attacks have ACK and RST bits set with TCP sequence number,
acknowledgement number and window size set to 0. The payload has ‘cko’.

Observed aspects from the alert packets:

Source IP Address: 255.255.255.255
Source Port: 31337
Destination Port: 515
TCP Flags set: ACK, RST
Sequence Number: 0
Acknowledgement Nu: 0
TTL: 15
Payload: cko
Table 2-14: Packet Details

According to Q distribution README file, Q is ‘a Client/Server suite designed to
provide a maximum of security, especially confidentiality and anonymity’. The
latest version of Q v2.4 uses strong RSA/libiSSL encryption for session
authentication and data exchange. The server part is a program ‘qd’ capable of
running as a standalone server or as a raw IP server. The client program ‘q’ has
many options to connect to the server. The server can be controlled remotely
from the client, but the payload is not encrypted indicating an older version of Q
client in use.

2.3.5 Attack Mechanism
Below are some of the options as mentioned in the Q distribution README file.
Q as a standalone server can listen on any port to serve incoming connections.

qd –p 12345
The above command binds an encrypted shell to port 12345.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 34

Use client ‘q’ to connect : q -l 12345 Server_IP_Address
By default the source IP address is random.

In rawIP mode, simply run the qd on the server. (Not all systems support raw IP
mode). This also needs root or administrator privileges.

qd - Start the Server
Use client ‘q’ to connect: q -S -l 1234 (Or any other port)

In this mode the server is controlled externally by the client to spawn shells. In
the above example the server spawns a shell on port 1234 for the client to
connect to.
The local client source port can be set using the –s (lower case) option. Option –t
allowsTRANSD mode, kind of ssh tunneling using port forwarding, allowing other
local clients to connect to the client and communicating to the server via client
encrypted session.

Bouncer/Relay option: The server can be run as a relay box bouncing all
connections to an entirely different box..

qd -b 12345:6667:someirc.server.com
In this the server binds an encrypted bouncer to port 12345 and all
connections will be relayed to port 6667 on server someirc.server.com.

There are many client options to send control data to the server to spawn shells,
to specify protocols, to execute commands etc. More than one server can be
specified in the target while executing commands.

Raw IP option can actually avoid the IDS sensors. In this mode, rather than
creating a standard listener and using a standard client/server configuration the
“Q“ Trojan looks for raw IP packets that match a specific parameter. The data of
these packets will contain encrypted instructions that the “Q“ daemon will
perform.

All these features make Q a great tool for backdoor operations. And the new
encryption feature makes it very difficult to see the payload.
As seen from the above Q options it is possible to run the server on any port and
send client connections and commands from any port and address. So a
compromised system can be directed to listen on an allowed port like HTTP (80)
and the control and data commands can be sent. Most sites allow incoming
traffic from the site’s public DNS servers. So it is even possible to spoof the sites
public DNS source addresses with source port set to port DNS (53).

There have been advisories for port 515, on which Unix LPR service runs. The
increase in probes may make one wonder if this is all about exploiting
vulnerabilities in LPR services running on port 515. But as seen from other
discussion groups there have been similar attacks on other ports like HTTP (80).

2.3.6 Correlation
Many attacks with the same characteristics were found in the log files from
2002.10.1 to 2002.10.17.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 35

As posted at http://www.securityfocus.com/archive/96/311300/2003-02-08/2003-
02-14/0 by Jon ‘the sensor never sees any other traffic from the source. A
handful of machines (from internet) do some innocent web browsing of machines
on the networks belonging to (HOME_NETWORK), and then terminate the
connection. Seconds later, the 'cko' packet shows up from that host. Other times,
a host on my network browses a remote site, and eventually terminates the
connection. Seconds later, the 'cko' packet shows up on my doorstep from the
remote site’.

As tested by Les Gordon,
http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc Page 15-16, the
signature development for Q is not going to be simple.

Craig Baltes discusses his test results for Q at
http://archives.neohapsis.com/archives/vuln-dev/2002-q4/0070.html

Christ J Clark suggests a broken tool at
http://lists.jammed.com/incidents/2001/07/0023.html

2.3.7 Evidence of Active Targeting
Was this IP address targeted at some point?
There is lot of traffic with same characteristics going to a large number of IP
addresses with in the HOME_NETWORK. It seems like a reconnaissance
attempt to provoke response from already compromised systems. This is not
active targeting. It is also possible that there are similar attacks to other ports and
proper rules are not in place to capture the traffic. Out of the randomness of the
attack, it is possible the source address generated happened to be
255.255.255.255, some times, obviously not random enough!

Was this a Stimulus or Response?
This is certainly a stimulus. But could this be coming from another compromised
machine? That is very highly possible. It is possible that a random class C
network is being scanned for Q servers. At the end it is not very clear if this alert
is because of a broken tool, bad TCP/IP stack or a real attack. There have been
many instances of this attack on different discussion groups. Donald Smith
suggests that this is a false positive as shown in the section ‘Excerpts from
detect posted to intrusions discussion group’ at the end of this assignment.

2.3.8 Severity

Severity = 4

The following formula has been used to calculate severity.

Severity = (Criticality + Lethality) – (System Countermeasures + Network Countermeasures)

(3+5) – (2+2) = 4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 36

Criticality 3 The purpose of this specific system is unknown. A
middle ground is taken.

Lethality 5 A successful compromise of the system will give
remote access to pretty much everything.

System
Countermeasures

2 Unknown. Assuming it to be minimal.

Network
Countermeasures

2 Unknown. Assuming it to be minimal.

Table 2-15: Severity Calculation Table

* Each value is ranked on a scale of 1-5, 1being the least and 5 the highest.

2.3.9 Defensive Recommendation
• Review the router Access Control Lists (ACL) and firewall configurations. In

general, routers should allow inbound packets only for connections
established from inside. If needed, set specific filters for other public servers
like WWW, SMTP to allow incoming traffic. This would ensure that the
connection initiation from outside to non-public servers is stopped.

• Cisco provides a feature called "unicast reverse path forwarding" checking. It
is borrowed from the IP multicast world. When Unicast RPF is enabled on an
interface, the router examines all packets received as input on that interface
to make sure that the source address and source interface appear in the
routing table and match the interface on which the packet was received.
For more information read:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios111/cc111/uni_r
pf.htm

• Set host based detection like tripwire and auditing on systems that directly
accept incoming connections from outside.

• Gather tcpdump statistics for the public servers.
• Setup intrusion detection sensors in the home network to test traffic coming

through the firewall.
• Set specific filters to deny access to unwanted public servers like IRC

servers.

2.3.10 Multiple Choice Test Question
Q) What is the typical cisco router access list command set to defend a network
from being exploited by outside network employing TCP to attack non-public
ports where the only allowed port from outside is 80? ($HOME_WEB_SERVER
is the http server. And all communication from inside to outside is allowed.)

A) access-list 101 permit tcp any $HOME_WEB_SERVER eq http
B) access-list 101 permit tcp any any established
C) access-list 101 deny any any log
D) All of the above in the order A, B, C

Answer: D

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 37

Q) What is the purpose of choice 'B' in the previous question (Choose the best
answer)?

A) Allow all TCP communication from anywhere to anywhere
B) Allow all TCP communication from outside
C) Allow all TCP communication from inside
D) Allow all TCP communication from outside related to the TCP connections
established from inside

Answer: D

2.3.11 Excerpts from detect posted to intrusions discussion group:
Posted on 6/13/2003 10:55 PM at
> From: Sai Prasad Kesavamatham
> To: intrusions@incidents.org
> Sent: 6/13/2003 10:55 PM
> Subject: LOGS: GIAC GCIA Version 3.3 Practical Detect(s)
Detect 3 from assignment II
-----Original Message-----
http://cert.uni-stuttgart.de/archive/intrusions/2003/06/msg00166.html

------Comment-http://cert.uni-stuttgart.de/archive/intrusions/2003/06/msg00167.html
 From: "Smith, Donald" <Donald.Smith@qwest.com>
 To: "'Sai Prasad Kesavamatham '" <saik@presicorp.com>;
 <intrusions@incidents.org>
 Sent: Saturday, June 14, 2003 2:56 AM
 Subject: RE: LOGS: GIAC GCIA Version 3.3 Practical Detect(s)
Why would a hacker using a stealthy back door program like Q use a broadcast address and two
well known "hacker related" ports?
-------------------Author’s Response-----------------------
As I mentioned in ‘evidence of active targeting’:
"It seems like a reconnaissance attempt...Out of the randomness of the attack, it is possible the
source address generated happened to be 255.255.255.255".
I would like to clarify here that:
Q is compiled as a client/server set. Each compiled version of client and server will have a unique
authentication number. To communicate with a different server, the client has to be recompiled
using the authentication number used while compiling the other server. This means a client
compiled with one server set can not be used with another server unless recompiled for the new
server.
Some of the reasons why these particular ports and addresses are being used could be -
It is possible that the source and destination IPs and ports could have been generated in random
using some other simple script to use with Q client. The IDS picked up this traffic since this traffic
matched with these specific signatures. And as mentioned in the correlation, Les Gordon,
described in his practical why it is difficult to create a foolproof signature for this attack.
It is also possible that a compiled Q client/server set with these 'source IP/port - destination
IP/port' characteristics is distributed on the net and some one who got the client piece is trying to
find the Q servers.
It is highly likely that a larger percentage of Q attacks are being overlooked because of lack of
proper IDS signatures for this attack.
–sai
-------------------End of Author’s Response-----------------------
------Comment-http://cert.uni-stuttgart.de/archive/intrusions/2003/06/msg00172.html
From: "rocker atschool" <starplanet1000@yahoo.com.hk>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 38

To: "Sai Prasad Kesavamatham" <saik@presicorp.com>; "Smith, Donald"
<Donald.Smith@qwest.com>; <intrusions@incidents.org>
Sent: Sunday, June 15, 2003 12:33 AM
Subject: Re: LOGS: GIAC GCIA Version 3.3 Practical Detect(s)
Sai,
255.255.255.0/24 is not CLASS C network. pls check RFC1918. Since most of well-configured
router will not route broadcast packet, where this broadcast comes from ?
-------------------Author’s Response-----------------------
http://cert.uni-stuttgart.de/archive/intrusions/2003/06/msg00179.html
Rocker,
I wanted to mention /24 as a class C network. I will change the wording.
Thank you.
As far as your second question regarding 255.255.255.255 being allowed, remember this is
source address we are talking about. By default routers do forward broadcasts, meaning, when
the destination address is set to 255.255.255.255.
And by default, a router (atleast Cisco) does not look at source addresses and hence a packet
with source address set to 255.255.255.255 will be forwarded. ISPs are supposed to implement a
protection mechanism to prevent IP spoofing. Cisco provides a feature called "unicast reverse
path forwarding" checking. It is borrowed from the IP multicast world. Here is a link on this
unicast reverse path forwarding:
http://www.cisco.com/univercd/cc/tc/doc/product/software/ios120/12cgcr/secur_r/srprt6/srrpf.htm
–sai
-------------------End of Author’s Response-----------------------
------Comment-http://cert.uni-stuttgart.de/archive/intrusions/2003/06/msg00176.html
From: "Smith, Donald" <Donald.Smith@qwest.com>
To: "'Sai Prasad Kesavamatham '" <saik@presicorp.com>;
<intrusions@incidents.org>
Sent: Saturday, June 16, 2003 08:32
Subject: RE: LOGS: GIAC GCIA Version 3.3 Practical Detect(s)
I suggest you consider the possibility of this being a false positive. Look at the signature for Q and
the packets. Perhaps get some Q packets and compare them to what you have here. There are
some publicly available Q packets on the net. As for routers not routing 255.255.255.255 that is
true as you stated. That is also a good reason to believe this is a spoofed from address (as you
stated). Most routers are NOT configured to look at the from address. They only route based on
the source address. There are methods that can be used to restrict bogus from addresses on
routers. So please consider them as defensive recommendations.

Table 2-16: Incidents.Org discussion

2.4 References:
Snort ID Database: http://www.snort.org/snort-db/sid.html
http://www.uniras.gov.uk/sql.htm
http://securityresponse.symantec.com/avcenter/Analysis-SQLExp.pdf

3. Assignment 3: Analyze This!
This portion of the practical is a security audit for a University. The aim of the
audit is to analyze the intrusion detection logs from the university and prepare a
report. Information is not available on the intrusion detection used to collect these
alerts. The logs were downloaded from http://www.incidents.org/logs. The log
data from five consecutive days, May 16th to 20th 2003, was analyzed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 39

3.1 Executive Summary
The availability of past logs on the internet makes it easy for the hackers to map
the internal network. There seems to be an improvement in the overall filtering
process as some of the alerts like SMB did not show any corresponding outgoing
traffic as pointed out by past GCIA papers.

The machines involved in IRC, red worm and tftp related activity need special
mention. The link graphs in Fig. 6 and 7 show a part of the affected network. The
analysis in section 3.4.2 clearly indicates that the red worm detection rules are
very generic and could potentially hide the real threats under high noise levels
from false positives complicating the analysis process. This is also true with
some other detection rule sets as shown in later sections.

TFTP alerts mostly involved machines participating in peer-to-peer activity like
games, file sharing etc. This allows for easy infection of internal network.

MY.NET.97.0 network is involved multiple scans and the following alerts. As
seen in some other client locations, there is a possibility that this network belongs
to a VPN subnet or a dial-up subnet. Proper access control lists and other
security measures are needed to contain such a network. One way is not to use
split tunnel in VPN configurations ensuring all the traffic goes only through the
university network. But this would also raise many detect alerts since an already
compromised dialup or vpn client tries to contact the peers through the university
network.

Internal machines listed in table 3-31 are involved in scanning activity and need
to be checked and monitored.

Access-control lists on the network perimeter routers and firewalls need
configuration changes as recommended under section 3-4 to filter ingress and
egress traffic.

Check machines listed in table 3-31 for security compromises.
Refer to host and peer to peer analysis for compromised machines.
Refer to recommendations under sections 3.4.1.1.1, 3.4.1.2 and 3.7 for more
information on network perimeter and other access list configurations.

3.2 Log Files and Formats

3.2.1 List of Files Analyzed:

Alert Files Scan Files Out of Specification Files
Alert.030516 Scans.030516 OOS_Report_2003_05_16_6191
Alert.030517 Scans.030517 OOS_Report_2003_05_17_14869
Alert.030518 Scans.030518 *OOS_Report_2003_05_19_9515
Alert.030519 Scans.030519 OOS_Report_2003_05_19_9542
Alert.030520 Scans.030520 OOS_Report_2003_05_20_14142

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 40

Table 3-1: Log Files used in Analyze This!

*It is assumed that this OOS file was actually for 18th since there was no other file available
for this date and all entries corresponded to that date.

3.2.2 Alert Logs
The alerts are in a single line format. Each line has the following fields in the
order; ‘date-time stamp’, ‘alert message’, ‘source IP address’, ‘source port
number’, ‘destination IP address’, ‘destination port number’.

<date-time stamp> [**] message [**] <SRC IP>:<SRC Port> -> <DST IP>:<DST Port>

05/16-00:30:05.828186 [**] SMB Name Wildcard [**] 81.49.170.82:1030 -> MY.NET.210.196:137

The first two octets of the internal network IP addresses were obfuscated with
“MY.NET” to sanitize sensitive information.

3.2.3 Scan Logs
The scan log format is almost similar to alert log format. The differences are that
the date-time stamp does not contain microseconds and the last entry of the line
contains either “UDP” or “TCP” flags.

<date-time stamp> <SRC IP>:<SRC Port> -> <DST IP>:<DST Port> [<TCP Flags> | UDP]

May 16 00:00:06 MY.NET.196.193:3339 -> 216.154.156.27:17300 SYN ******S*
May 16 00:01:17 MY.NET.239.158:4706 -> 212.195.128.193:8003 UDP

The original scan logs contained real IP addresses from university and were
sanitized during analysis by replacing the first two octets of the IP address with
‘MY.NET’. This sanitation was achieved using one of the Perl scripts
‘parsescans.pl’ shown in Appendix A.

3.2.4 OOS Logs
OOS logs are created by running Snort in sniffer mode (snort –v). These logs are
in multi-line format. The first line of an entry contains the basic packet
information. The remaining fields of the entry contain some packet header
specifics and optionally part of the packet contents.

<date-time stamp> <SRC IP>:<SRC Port> -> <DST IP>:<DST Port>

Log sample:
=+=++=+=+=+=+=+=++=+
05/15-00:05:37.245156 80.55.53.78:33763 -> MY.NET.201.130:6346
TCP TTL:50 TOS:0x0 ID:41585 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x9ADF7626 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 66573698 0 NOP WS: 0
=+=++=+=+=+=+=+=++=+

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 41

3.3 Analysis Process
All the logs were parsed using Perl scripts and stored in MySql database. Basic
SQL commands have been used to analyze the data. Some previous GCIA
practical papers were reviewed for Perl script code ideas.

It is found that some of the lines in the ‘alert.*’ log files are concatenated and a
few lines have only a port or IP & port fields, eg:1542 -> 192.168.10.1:1542 and
others have additional unwanted information. These lines have been neglected
for the analysis.

MySql schema for logs:
A database ‘logs’ was created with three tables one each for alerts, scans and
oos. The fields used for different log tables are shown below.

Table ALERTS:
time datetime, mseconds int, alertsign varchar(50),srcip varchar(25),srcport
int,dstip varchar(25),dstport int with one additional sid field for auto-increment.
Table SCANS:
time datetime, byhour int, scansign varchar(10),srcip varchar(25),srcport int,dstip
varchar(25),dstport int, protocol varchar(8),flag varchar(10) with one additional
sid field for auto-increment.
Table OOS:
Create table oos (sid int not null auto_increment, time datetime, byhour int,
mseconds int, oossign varchar(10),srcip varchar(25),srcport int,dstip
varchar(25),dstport int with one additional sid field for auto-increment.

For easy maintenance during test, a text file ‘createlogsdatabase.txt’ was
created. The database was created using the following command from command
line interface.

mysql < createlogsdatabase.txt

content of createlogsdatabase.txt###
drop database logs;
create database logs;
connect logs;
create table alerts
(sid int not null auto_increment, time datetime, mseconds int, alertsign
varchar(50),srcip varchar(25),srcport int,dstip varchar(25),dstport int, primary
key(sid));

create table oos
(sid int not null auto_increment, time datetime, mseconds int, oossign
varchar(10),srcip varchar(25),srcport int,dstip varchar(25),dstport int, primary
key(sid));

create table scans

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 42

(sid int not null auto_increment, time datetime, scansign varchar(10),srcip
varchar(25),srcport int,dstip varchar(25),dstport int, protocol varchar(8),flag
varchar(10),primary key(sid));
Table 3-2: Schema for logs - MySQL database

Three Perl scripts, ‘parsealerts.pl’, ‘parsescans.pl’ and ‘parseoos.pl’ have been
used to parse the log files and insert the data into MySql database. The scripts
are shown in appendix A. Some of the SQL commands used are also shown in
Appendix A. An additional Perl script ‘common.pl’ (shown in appendix A) has
been used to find all the unique common IP addresses between different tables
in the database. Some of the database operations for finding the common IP
addresses among ‘alerts’ and ‘scans’ logs, particularly for destination IP
addresses, took a very long time resulting in time outs. The Perl script
‘common.pl’ was used in that situation.
The advantage with the backend database procedure is that at any time new
data can be appended or the data can be reset to null. Different queries can be
generated on the database. Some of the SQL commands used in the analysis
are shown in Appendix A.

3.3.1 Analysis Method
Three lists have been created from alert logs showing all alerts (table 3-3),
possible internal hosts and services (table 3-4) and hosts participating in peer-to-
peer networks (table 3-6). For example alerts showing ‘external web traffic’
indicate web servers. Similarly analyzing the ports, involved in alerts showing
‘Notify Brian B. 3.56 tcp’ may give further indication of a special network.

A list of top talkers was created for certain alerts to help the analysis. Common IP
addresses (addresses appearing in more than one type of log) categorized by
source and destination IP addresses from alerts, scans and oos logs have been
analyzed. For example an external IP address appearing in both alerts and scans
log file has a special significance in the sense that it is probably more than just a
coincidence. Similarly an internal address appearing as a source IP address in
scans and in alerts may indicate a compromised system.

The scan and oos logs have been analyzed in an effort to correlate analysis from
alerts. A list of internal IP addresses scanning internal IP addresses has been
created. Port scanning originating from internal network indicates either
compromised hosts or malicious activity from internal network or scanning by
internal security groups.

There is a small error margin involved in the statistics generated because of the
file format errors and parsing process involved.

3.4 Alerts Analysis

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 43

Figure 5: Graphical Representation of All Alerts

Total number of alerts for five days is 193039. Table 3-3 below shows all the
alerts and the number of times they occurred during the five days of analysis.

Alert Message # Total
SMB Name Wildcard 98127
High port 65535 udp – possible Red Worm – traffic 22400
High port 65535 tcp – possible Red Worm – traffic 14981
Tiny Fragments – Possible Hostile Activity 10079
Spp_http_decode: IIS Unicode attack detected 7383
CS WEBSERVER – external web traffic 6512
[UMBC NIDS IRC Alert] XDCC client detected attempting to IRC 5359
External RPC call 5099
Incomplete Packet Fragments Discarded 4479
TFTP – Internal TCP connection to external tftp server 3949
Possible trojan server activity 2943
Null scan! 2501
MY.NET.30.4 activity 2393
SUNRPC highport access! 1445
Spp_http_decode: CGI Null Byte attack detected 1251
Queso fingerprint 877
IDS552/web-iis_IIS ISAPI Overflow ida nosize 488
TCP SRC and DST outside network 378
EXPLOIT x86 NOOP 374
CS WEBSERVER – external ftp traffic 369
MY.NET.30.3 activity 242
[UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan. 228
IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize 208
[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request
Detected. 134
[UMBC NIDS IRC Alert] Possible sdbot floodnet detected 114

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 44

attempting to IRC
SNMP public access 108
IRC evil – running XDCC 99
NIMDA – Attempt to execute cmd from campus host 75
NMAP TCP ping! 73
Connect to 515 from outside 65
TFTP – Internal UDP connection to external tftp server 63
EXPLOIT x86 setuid 0 60
EXPLOIT x86 stealth noop 32
EXPLOIT x86 setgid 0 30
FTP DoS ftpd globbing 15
Probable NMAP fingerprint attempt 14
Notify Brian B. 3.56 tcp 14
Notify Brian B. 3.54 tcp 12
EXPLOIT identd overflow 12
EXPLOIT NTPDX buffer overflow 7
[UMBC NIDS IRC Alert] User joining Warez channel detected.
Possible XDCC bot 5
[UMBC NIDS IRC Alert] K:line"d user detected, possible trojan. 5
SYN-FIN scan! 5
TFTP – External UDP connection to internal tftp server 5
SMB C access 4
DDOS shaft client to handler 4
[UMBC NIDS IRC Alert] User joining XDCC channel detected.
Possible XDCC bot 4
Attempted Sun RPC high port access 3
Back Orifice 3
DDOS mstream client to handler 2
EXPLOIT x86 NOPS 2
NETBIOS NT NULL session 1
DDOS TFN client command BE 1
RFB – Possible WinVNC – 010708-1 1
External FTP to HelpDesk MY.NET.83.197 1
External FTP to HelpDesk MY.NET.53.29 1

Table 3-3: All Alerts

As of 05/31/2003 the top ranked attacks reported at http://isc.incidents.org are
Microsoft-ds (port 445), NetBIOS-ns (port 137), www (port 80), ms-sql-m (port
1434) and NetBIOS-ssn (port 139). It is important not to get carried away by the
amount of alerts from the university logs. Similarly, the top-talkers list from tables
below is to give an overall picture. Some real attacks may get overlooked if the
noisy unwanted alerts are not properly filtered.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 45

3.4.1.1 Host Table Mapping for Internal Network
The idea behind constructing a host table map is to recognize and isolate the
server services from other non-server networked hosts or client hosts in the hope
to categorize the noisy traffic. Table 3-4 below lists some of the hosts and the
possible services that are being served from these hosts.

Hosts Port-Service Remarks
MY.NET.3.54; MY.NET.3.56;
MY.NET.30.3; MY.NET.53.29;
MY.NET.83.197; MY.NET.100.165;
MY.NET.212.90

21 – FTP From alerts to Help Desk
& external traffic. Most of
the services were also
found from alert to Brian

MY.NET.60.11; MY.NET.60.39 22 – SSH
MY.NET.1.4; MY.NET.179.78;
MY.NET.237.22

23 – TELNET

MY.NET.100.230; MY.NET.6.34;
MY.NET.6.40, MY.NET.6.47,
MY.NET.MY.NET.179.78;
MY.NET.25.11; MY.NET.24.21;
MY.NET.24.22; MY.NET.24.23
MY.NET.12.2

25 – SMTP A large percentage of the
alerts on port 25 came
from 12.165.28.10
(tcp/65535) an AT&T
cable network IP
address. And there were
scans from the same IP
address from port 65535
to port 25 in the
university network.

MY.NET.1.3; MY.NET.1.4;
MY.NET.1.5; MY.NET.137.7;

53 – DNS

MY.NET.30.4; MY.NET.100.165;
MY.NET.5.15;

MY.NET.5.0; MY.NET.29.0;
MY.NET.150.0; MY.NET.130.0;
MY.NET.225.58; MY.NET.252.142;
MY.NET.137.18; MY.NET.111.21;
MY.NET.110.224;
MY.NET.112.216; MY.NET.106.222
; MY.NET.233.146; MY.NET.86.19;
MY.NET.235.70;

80 – HTTP External Web Traffic &
Alerts to Brian.
Others are found from
x86 exploit alerts.
MY.NET.5.0 and 29.0
seem to have many web
application servers.

MY.NET.12.4 110 – POP
MY.NET.186.135; MY.NET.247.71;
MY.NET.87.16; MY.NET.99.253;
MY.NET.233.83

111 – RPC Mostly from
140.121.175.75 ministry
of education Taiwan.

MY.NET.24.8 119 – NNTP News Server Traffic from
Exploit x86 alerts

MY.NET.12.2 143/993
(IMAP& IMAP
SSL)

OOS logs

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 46

MY.NET.190.94; MY.NET.190.93;
MY.NET.190.100; MY.NET.190.19

135, 137, 445
– NetBIOS
related

SMB C access is
normally from an
established connection to
windows server port 137.
Alert source 80.37.21.67
appeared in dshield.

MY.NET.24.15 515 – LPD
(Print Server)

Table 3-4: Internal Hosts Map - created from alert logs

* Some of the hosts shown above may be co-hosting other services.

3.4.1.1.1 Some conclusions from host table entries in table 3-4 and related logs
SMTP:
All the alerts to port 25 came from three outside sources and appeared under
65535 (tcp) red worm traffic using source port 65535. 983 attacks out of 991
came from 12.165.28.10. Address 12.165.28.10 belongs to a cable modem
network. And the scans from 12.165.28.10 during this time indicate that
12.165.28.10 is possibly a compromised host and does not seem to be a valid
SMTP server.

Some of the internal hosts in the alert logs using source port 25 were mapped as
SMTP hosts shown in table 3-4 above. Many internal sources communicated
with 12.165.28.10 using source port 25 and destination port 65535. Interestingly
there is only one instance of established connection as seen below from alerts
log file.

05/16-21:58:37.355050 [**] High port 65535 tcp - possible Red Worm - traffic [**]
12.165.28.10:65535 -> MY.NET.98.104:25

05/16-21:58:37.523518 [**] High port 65535 tcp - possible Red Worm - traffic [**]
MY.NET.98.104:25 -> 12.165.28.10:65535

No reason is known why host MY.NET.98.104 is not involved in more alerts
during the five days of analysis if it has already been compromised. Obviously
the long list of internal hosts using source port 25 may not truly represent SMTP
servers. A few of them are infected and probably compromised by red worm. Red
worm link graph is discussed later under IRC alerts.

Recommendations:
• Disable mail relay for every one. Use spam filters. Use anti-virus software to

detect and clean viruses at the mail gateway.

DNS:
DNS servers got lot of NMAP and SNMP public access alerts. These servers
need to be protected well. It is very easy to map internal host information by
querying the name server. Just limiting zone transfers to certain hosts and feeling
secure about it is only false security. Limiting zone transfers may effectively block
domain listing commands like running ‘ls <domain name>’ under dns-nslookup to
list the entries in the zone file. But the internal network host table can be mapped

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 47

by sending reverse lookup queries. Since most sites try to use host names that
are relevant to the application they are serving, it is possible to map internal IP
addresses and services.

Recommendations:
• Set proper access control lists in place to block all DNS queries from external

networks to internal DNS servers.
• If possible use split DNS to isolate external DNS servers from internal DNS

servers. There is absolutely no need for outside world to resolve internal
name space.

• Disable SNMP if not absolutely needed. If not, set proper access control lists
to restrict SNMP traffic.

• Update relevant OS and BIND patches.

HTTP:
Networks MY.NET.5.0 and MY.NET.29.0 showed up in Exploit 86 alerts. Hosts
from these networks used source port 80 indicating that either the hosts from
these networks are heavily populated with web servers (most probably Microsoft
IIS) or compromised to use port 80 as source port. Proper filtering and fine-tuning
of these networks would reduce the number of false positives from exploit x86
rule sets.

POP: Targeted activity was found from 140.121.175.75 and 151.192.238.93.
Internal host MY.NET.12.4 communicated on ports 110 (POP) and 993 (IMAP-
SSL) with cable network clients. It is possible that the outside clients are genuine
clients communicating occasionally using port 65535. This is most probably a
false positive. As source, MY.NET.21.48 was involved in sending external RPC
calls to 140.121.175.75 (belonging to Taiwan – Ministry of Education) and
external port 80 access to 211.95.129.136 ‘IDS552/web-iis_IIS ISAPI overflow’
alerts.

The IP address 140.121.175.75 (Taiwan – Ministry of Education) is also involved
in RPC alerts heavily. Address 140.121.175.75 appeared in dshield database, in
attacks against ports 80 and 111. On first observation it appears as if this could
be regular traffic between two university departments. But on further analysis
under RPC it appears the IP address 140.121.175.75 is involved in other
scanning activity suggesting targeted activity. Host MY.NET.25.11 received large
number of NULL scans from 151.196.238.98 as well as other alerts. Overall there
are no major concerns.

RPC:
Most of the communication is from 140.121.175.75 (Taiwan – Ministry of
education). This address also appeared in SMB alerts. And this address
appeared in scans for port 111. This host is trying to find open RPC ports. This is
targeted activity.

Recommendations:
• Make sure RPC traffic to port 111 is blocked from outside.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 48

• If this is a needed communication, modify the snort alert rule to minimize the
false positives.

Register a complaint with the concerned authorities.

LPD (Print Servers):
Sixty-five attempts were found from one IP address 68.54.94.58 (source port
679) to MY.NET.24.15 (destination port 515, LPD) during May 18 th between
19:41 and 20.57. No other alerts were found in ‘scans’ or ‘oos’ logs from these
addresses. Interestingly port 679 is used by MRM (Multicast Routing Monitor)
protocol. The description is available at http://www.ietf.org/proceedings/99nov/I-
D/draft-ietf-mboned-mrm-use-00.txt. In a nutshell, MRM managers can instruct a
receiver host to monitor multicast traffic on a specified group of addresses. This
needs further analysis since even if the source address involved is one of the
faculty members’, there is no need to monitor from home network VPN. The
source IP 68.54.94.58 is from Comcast cable network, Baltimore.

While checking the alerts from Brian’s network activity, an attempt to port 4000
from IP address 62.253.140.193 was found. A check for 62.253.140.193 in
dshield network showed this IP address as an attacker with 49,698 hits. Port
4000 is an ICQ outgoing port as well as home for skydance Trojan.

The following addresses were found in the dshield database
(http://www.dshield.org) for same port attacks.
140.121.175.75 attacking port 111 (RPC) and 66.196.72.46 attacking port 80.

Whois Source domain lookup
##############################
NetRange: 140.117.0.0 - 140.138.255.255
Ministry of Education Computer Center TANET-BNETA (NET-140-117-0-0-1)
National Taiwan Ocean University TANET-B-NTOU (NET-140-121-0-0-1)
##############################
NetRange: 140.121.0.0 - 140.121.255.255
Ministry of Education Computer Center
National Taiwan Ocean University
##############################
 NetRange: 66.196.64.0 – 66.196.127.255
CIDR: 66.196.64.0/18
NetName: INKTOMI-BLK-3
Table 3-5: Who is database search results

3.4.1.2 Map of Peer-to-Peer Users
Table 3-6 below shows the hosts in the university network participating in peer-
to-peer applications like napster and kazaa.

Gnutella Peers

MY.NET.194.223,
MY.NET.249.122,

Destination Port

6346

Napster

MY.NET.217.134
MY.NET.100.165

Destination Port

6699

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 49

MY.NET.210.142 MY.NET.202.206
Neo-Modus
Peers

MY.NET.236.94
MY.NET.237.62
MY.NET.237.62
MY.NET.237.62
MY.NET.202.18
MY.NET.202.18
MY.NET.221.242

412 Kazaa

MY.NET.209.78;
MY.NET.196.159;
MY.NET.194.13;
MY.NET.240.114;
MY.NET.217.90

1214

WinMX File
sharing

MY.NET.250.162*

6257

(*Top Talker from
scans)

Table 3-6: Peer-to-Peer client map

Analysis of entries from the host table and peer-to-peer network maps also
showed a large number of red worm and SMB alerts. The SMB alerts did not get
response from inside network. This is further strengthened by the SMB alert
analysis in later sections.

Recommendations:
• Special ACL rules have to be set on the networks with peer-to-peer channels,

which seem to have student computers, to monitor and block unwanted
traffic. The networks with peer-to-peer machines are a threat to the network
and system integrity and are vulnerable. These systems are also stealing
bandwidth. Check the systems for any backdoor Trojans.

3.4.2 Top Talkers from Alert Logs
Table 3-7 below shows the top-ten source and destination addresses from the
five day alert logs. The highlighted entries represent the top-talkers from
university’s internal network.

Top Ten Sources Top Ten Destinations
Source IP # Total Destination IP # Total

MY.NET.235.110 9783 MY.NET.100.165 6957
MY.NET.201.58 9544 MY.NET.201.58 6314
140.121.175.75 5099 205.188.149.12 4630
MY.NET.198.221 4635 MY.NET.153.157 4008
140.142.19.69 3943 MY.NET.202.206 3640
12.235.36.52 3313 66.67.29.21 2482
MY.NET.251.10 2736 MY.NET.30.4 2392
MY.NET.202.206 2061 24.157.3.20 2042
208.45.250.203 1883 MY.NET.251.10 1915
172.17.3.17 1873 12.235.36.52 1858

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 50

Table 3-7: Top Talkers from Alerts - Source & Destination Addresses � Home Network

Table 3-8 below shows the top-ten source and destination ports from the five day
alert logs.

Top Ten Source Ports Top Ten Destination Ports
Source Port # Total Destination Port # Total
65535 21835 137 (NetBIOS) 97987
0 16984 0 (Illegal) 17202
137 13548 80 (HTTP) 17178
1025 10869 65535 (High Port) 15511
1026 10484 5121(NWNGame) 12157
1027 9589 6667 (IRC) 5413
5121 8133 111 (RPC) 5090
1028 8013 4116 3296
1029 6309 27374 (Trojans) 2438
1030 2902 69 (TFTP) 2107
Table 3-8: Top Talkers from Alerts - Source & Destination Ports

Here is an example of how numbers can mislead analysis on the first look.
Compare red worm alerts from table 3-3 with the numbers for destination port
5121 in table 3-8. Total number of red worm alerts from table 3-3 is 37381. The
Snort signature for red worm looked for the presence of port 65535 in source or
destination port. Leaving the fact aside that port 65535 is a valid ephemeral port
that can be used by any application, the total number of alerts from table 3-8 for
destination ports 65535 and 5121 comes to 27667 and total number of alerts for
all 5121 ports comes to 20290. Port 5121 is used by a game ‘Neverwinter Nights’
from http://www.bioware.com. But all port 5121 alerts appeared under red worm
alert since the detection rules do not have any signatures for port 5121. As seen
here the false positives for red worm alert are high making it difficult to analyze
the real alerts. The traffic to port 5121 is probably game traffic that just happened
to use port 65535 on the other side.

But as seen under XDCC alert analysis there are some internal machines that
got affected by red worm.
Recommendations:
• The red worm rule is very generic and results in too many false positives. This

rule needs fine-tuning. Similarly add a new rule to monitor port 5121. Allowing
machines to participate in internet games is a potential problem for future
compromises.

3.4.3 Alerts of interest
Some of the interesting alerts from table 3-3 are analyzed here.

3.4.3.1 SMB Name Wildcard
Traffic Flow: Incoming - 97982 Outgoing – 0 Classification: Noise
Unique hosts from outside to inside: 97982

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 51

Unique hosts from outside to outside: 135

NetBIOS name lookups going to port 137 raised this alert. This is a standard
NetBIOS traffic ‘nbstat’ to elicit a node status response from NetBIOS and
Samba clients. A simple command like ‘nbtstat –A’ can be used to gather
information. This is expected traffic on a Microsoft Windows Network. But it is not
necessary to implement this signature rule to monitor internal to internal traffic.
(Ref. http://www.sans.org/resources/idfaq/port_137.php)

Out of the 98127 of these alerts 13545 alerts had both the source port and
destination port as 137. And all source IP addresses were from outside. The
reasons for this could be either the alert signature is just looking for incoming
traffic or no traffic is found going out. There could be new filtering in place, for
traffic on port 137, after some of the past GCIA practical papers reported security
compromise for this port. This traffic is classified as noise since there is no
evidence to show any related packets leaving the internal network.

Similarly 4 alerts were found for ‘SMB C access’ to destination port 139. Port 139
is used for NetBIOS file and print sharing on windows machines. All the 4
destination IP addresses match to the Windows Servers shown in the host map
table. MY.NET.190.94, MY.NET.190.93, MY.NET.190.100 and MY.NET.190.19.

Out of the four source IP addresses 80.37.21.67 appeared as an attacker in the
dshield database attacking port 137.

The ‘who is’ lookup for address 80.37.21.67 on http://www.arin.net

OrgName: RIPE Network Coordination Centre; OrgID:
Address: Singel 258;Address: 1016 AB;City: Amsterdam;Country: NL
The only SMB Null session alert did not ring any bells with other log files. There
were no entries for any these IP addresses in the scans and OOS logs.
Table 3-9: Arin database search results

Table 3-10 below shows the top-ten source and destination addresses for SMB
name wild card alerts from the five-day logs.

Sources # Total Destinations # Total
208.45.250.203 1883 MY.NET.12.2 734
172.17.3.17 1873 MY.NET.24.34 643
61.132.74.72 1823 MY.NET.194.13 471
213.175.62.253 1441 MY.NET.211.110 434
69.20.128.92 1374 MY.NET.29.11 282
66.57.217.8 637 MY.NET.24.44 253
209.103.204.76 214 MY.NET.206.102 228
80.202.37.208 173 MY.NET.29.3 218
213.10.104.41 119 MY.NET.12.4 203
151.196.110.47 108 MY.NET.24.58 154
Table 3-10: Top SMB Talkers

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 52

Recommendations:
• Enable firewall filtering to block SMB related traffic. This signature can be

disabled from external to internal once proper firewall rules are in place to
help reduce the noise levels and false positives.

• The Windows servers shown in the host map table have to be monitored for
any attacks. Because of the availability of past logs on the Internet it is
possible to gather information on the internal network. Overall there have
been no alerts for outgoing traffic. It is a good sign.

3.4.3.2 Tiny Fragments – Possible Hostile Activity
Traffic Flow: Incoming – 93 Outgoing – 9786 Classification: Noise
Unique hosts: Incoming – 14 Outgoing - MY.NET.235.110
The breaking up of a single IP datagram into two or more IP datagrams of
smaller size is called IP fragmentation. Transmission mediums have a limit on
the maximum size of a frame (MTU – Maximum Transfer Unit) that can be
transmitted. The design of IP accommodates MTU differences by allowing
routers to fragment IP datagrams as necessary. The receiving station is
responsible for reassembling the fragments back into the original full size IP
datagram. IP fragmentation can also be used for malicious purposes to avoid
being recognized by firewalls and intrusion detection systems.
All the tiny fragment traffic is directed at one internal IP address
MY.NET.235.110. This IP address is not found in any other alerts or oos/scan
logs. Two destination ports 0 and 56464 have been used. Port 56464 is
associated with beacon (client-to-client) multicast traffic. Multicast is a way of
distributing IP packets to a set of machines configured to receive the traffic. For
example Multicast Beacon server from http://dast.nlanr.net/Projects/Beacon/
uses port 56464 for client-to-client multicast traffic for measuring multicast
performance. Multicast traffic is also used in other applications like video
conferencing. Most of the outside IP addresses involved in tiny fragment traffic
showed up as registered to universities or research centers with some
exceptions of cable network clients. It is possible that the university has
something in place to use multicasting. But the traffic from and to port 0 is not
according to the RFC standards. The tiny fragments seem to result from a
misconfiguration of the routers.
This also brings up the address 233.2.171.1 for verification. Twenty-four alerts
were found going to 233.2.171.1 which is a reserved address space for IANA
(Internet Assigned Numbers Authority http://www.iana.org), out of which only 7
alerts were from internal network. The following internal addresses
communicated with 233.2.171.1.

Source IP Source Port
MY.NET.198.221 1026
MY.NET.201.58 1035
MY.NET.97.215 32885
MY.NET.201.58 1044

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 53

MY.NET.202.206 32857
MY.NET.235.110 32771
MY.NET.233.226 1026

Table 3-11: Internal sources talking with 233.2.171.1

Address 233.2.171.1 is associated with ‘beacon-mcast.accessgrid.org’. A visit to
http://www.accessgrid.org reveals that The Access Grid project supports group-
to-group communication via high-speed networking providing high quality audio
and real-time video. As expected this site is involved in some kind of
multicasting.

MY.NET.235.110 was also communicating with other outside machines
particularly using ports -32771, 33798 etc. There are some known attacks on port
32771 on older Solaris operating systems. Older sun operating systems use
rcpbind sometimes on port 32771 instead of 111. Red Hat clients are also known
to use this port for outside communication.
Correlation: Similar attack to ports 32772 were mentioned at
http://www.health.ufl.edu/mail-archives/unix-sec/1999/09/msg00006.html.
MY.NET.235.110 is also involved as destination IP in the following alerts.

Alert - Tiny Fragments – Possible Hostile Activity with
148.137.237.121
Alert - SMB Name Wildcard with 81.220.224.160.
Alert - eb-iis_IIS ISAPI Overflow ida nosize with
219.130.8.186
Alert – Null Scan! With 148.137.237.121

Table 3-12: Other alerts to MY.NET.235.110

Further check on the above alerts did not reveal any additional information other
than some scans.

Recommendations:
• Alerts showing outside IP addresses talking with 233.2.171.1 add noise to the

detection logs. Fine-tune the detection rules to drop these alerts.
• If the internal machine MY.NET.235.110 is running any software related to

multicasting then set proper access control lists on the firewall to allow access
to this machine.

• Make sure proper authentication scheme is in place. If possible limit the
access from outside network to the required IP address ranges. Fine-tune the
software and router configurations to avoid fragmentation.

• If this machine is not running any software related to the above discussion,
then monitor the traffic to this server and act accordingly.

3.4.3.3 High port 65535 udp/tcp – possible Red Worm – traffic
This alert is for traffic going to UDP and TCP port 65535. The numbers indicate a
high volume of possible red worm traffic. The network is infected by red worm
tough there are high number of false positives because of other peer-to-peer

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 54

traffic. Refer to the analysis under top destination ports and link graph in Figure 7
under section 3.4.3.1.1.
Correlation: Michael Wisener’s whitep paper shows peer-to-peer noise as well as
infected machines.
http://www.giac.org/practical/GCIA/Michael_Wisener_GCIA.pdf

Recommendations:

• Stay current with OS and web server patches.
• Disable email preview pan in outlook email client.
• If the machine is infected, follow the instructions at

http://www.cert.org/tech_tips/win-UNIX-system_compromise.html.

3.4.3.4 External RPC call
Remote Procedure Call (RPC) is a client/server infrastructure that allows an
application to be distributed over multiple heterogeneous platforms. RPC allows
a client component to access remote server component without knowledge of the
network address or any other lower-level information.

The portmapper or rcpbind service runs typically on port 111. For example a
server service (X) that wants to take advantage of portmapper does not directly
choose a service port, but rather asks the "portmapper" or "rpcbind" to assign it a
port. The service X then binds to the port assigned. When a client wants to find
the service X it queries the portmapper and asks for the location of the RPC
service it wants. The client then connects to the relevant port if the portmapper
returns the relevant information. One of the security threats is that the
portmapper can be persuaded to "forward" requests to services, which may then
be fooled, into thinking that they come from the local machine. The standard
portmapper provides very little in the way of access control or logging. Most of
the external traffic is from 140.121.175.75 to internal port 111.
Table 3-13 below shows the top-ten source and destination addresses involved
in external RPC calls.

Source IP # Total Destination IP
140.121.175.75 5099 MY.NET.200.71, MY.NET.187.127

MY.NET.161.123, MY.NET.209.53
MY.NET.18.143, MY.NET.32.115
MY.NET.87.156, MY.NET.240.193
MY.NET.147.147

Table 3-13: External RPC - Top Talkers

As discussed under host map section 3.4.1.1, this is targeted activity.

Normally, the rpcbind service only listens on port 111. Under Solaris, the rpcbind
service also listens under port 32771, which sometimes allows attackers to
bypass packet filtering. http://www.iss.net/security_center/static/330.php
Table 3-14 below shows the top-ten source and destination addresses for sunrpc
high port access alerts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 55

Source IP # Total Destination IP # Total
24.125.66.19 1363 MY.NET.252.78 1365
64.12.26.97 11 MY.NET.226.26 24
64.106.159.160 10 MY.NET.88.208 7
207.46.106.82 7 MY.NET.203.98 6
64.12.30.61 6 MY.NET.149.36 6
216.239.57.99 5 MY.NET.97.212 5
129.2.56.185 5 MY.NET.149.13 5
131.118.254.39 5 MY.NET.99.11 5
172.172.210.82 4 MY.NET.149.45 3
64.12.30.117 3
Table 3-14: Sun RPC High Port Top Talkers

Recommendations:
• Stop RPC services if not needed by any applications.
• There is no need for external machines to access internal RCP port 111.

Block all port 111 traffic from entering the network. Update any RCP related
and system related patches.

3.4.3.5 TFTP – External to internal tftp and other tftp alerts
Total alerts: 4012 Classification: Risk
TFTP (Trivial File Transfer Protocol) is a simple form of FTP (File Transfer
Protocol). TFTP uses TCP and UDP protocols and does not provide security
features. It is often used by servers to boot diskless workstations and routers and
to load system configurations. Table 3-15 below shows internal TFTP servers.

Outside clients #Registered To Internal TFTP Servers
4.62.30.53 Verizon DSL MY.NET.196.29
218.159.24.157 Under Korean

Network
MY.NET.196.29

211.49.82.138 Under Korean
Network

MY.NET.196.29

172.187.79.122 AOL MY.NET.205.130
63.250.205.60 Yahoo broadcast MY.NET.233.122
Table 3-15: Internal TFTP Servers

Host MY.NET.196.29 appeared in ‘BOT’ alerts particularly in the Back Orifice
alerts. This host is also targeted in many scans. On initial analysis this machine
appears to be compromised. However there are no scans or other qualified alerts
showing this machine as a source. The other two hosts MY.NET.205.130 and
MY.NET.233.122 appear to be participating in yahoo/aol peer to peer networks
uploading files. It is not clear if these uploads are user initiated or not. These
machines probably belong to the student network. Read further analysis on
MY.NET.196.29 under bot alerts. Address 12.211.182.115 is one of the external
tftp servers involved in malicious activity. Refer to link graph in Fig. 7 for the
analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 56

On the other hand network MY.NET.205.0 is involved in a large number of alerts
including internal to external tftp server, possible Red Worm using TCP and UDP
and IIS Unicode alerts. A quick check on one of the top IP addresses
MY.NET.205.234 revealed bi-directional TFTP connections with many external
hosts shown here. 62.118.251.33, 64.12.27.84, 64.12.27.87, 64.12.28.189,
64.12.28.97, 203.165.153.100, 205.188.153.12, 205.188.9.187, 210.202.65.126,
213.180.194.129, 219.179.224.134. Again most of the addresses belong to AOL.
This shows these machines are participating in chat services and file uploads.

NetRange: 64.12.0.0 - 64.12.255.255
CIDR: 64.12.0.0/16
OrgName: America Online, Inc.
OrgID: AMERIC-158
Country: US

NetRange: 205.188.0.0 - 205.188.255.255
CIDR: 205.188.0.0/16
NetName: AOL-DTC

inetnum: 210.202.64.0 - 210.202.87.255
netname: CCTV-HT-AP
country: TW
descr: Chun-Chien Cable Television Co., Ltd.
descr: No. 159, Sec. 3, Wen-Hsing Rd., Xi-
Tun Dist.,Taichung City, Taiwan, R.O.C.

Table 3-16: Who is database search results

Recommendations:
• The following machines need a thorough check for backdoors and other

vulnerabilities. MY.NET.91.109, MY.NET.196.73, MY.NET.203.42,
MY.NET.206.210, MY.NET.217.62, MY.NET.224.242, MY.NET.236.166

• Block TCP/UDP port 69 (TFTP) traffic at ingress and egress points.

3.4.3.6 EXPLOIT x86
Classification: Noise

These exploits try remote buffer overflow attacks by sending binary shell code to
take advantage of insecure coding practices. The attack may some times result
in executing attacker’s code of choice. The attacks may contain code to change
the identity of the current group to that of the root group or current user to that of
root user.

Alerts to ports below 1024 were analyzed first. The ports came up as 20(ftp),
80(http), 119(nntp), 412 and 443(ssl). Port 412 (TCP and UDP) is used by Neo
Modus a peer-to-peer file sharing application. Most of the alerts were results of
http connections. Some of the alerts to port 119 came from sources belonging to
University of Maryland.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 57

setgid0: The top source port is 80 (HTTP). The source addresses are genuine
web sites hosting web services. It is possible that these web servers are
returning content that includes strings of NOOP characters. Destination port 412
was involved in setgid0 alerts. Internal host MY.NET.202.18 was involved as
source IP for CGI Null Byte alerts to 12.31.2.46. Scans were found from outside
network to this IP (MY.NET.202.18) on port 412.
Setuid0: MY.NET.84.146 (4691) communicated with 61.130.174.138 (20). This is
a Chinese source. Investigate further.

All x86 Exploits #
EXPLOIT x86 NOOP 374
EXPLOIT x86 setuid 0 60
EXPLOIT x86 stealth noop 32
EXPLOIT x86 setgid 0 30
EXPLOIT x86 NOPS 2

Top Ten Destination
IPs

Total

MY.NET.24.8 67
MY.NET.190.93 47
MY.NET.202.26 20
MY.NET.150.101 18
MY.NET.203.130 15
MY.NET.130.64 12
MY.NET.197.6 9
MY.NET.5.15 8
MY.NET.5.55 7
MY.NET.29.8 7
Table 3-17: x86 Top Talkers

MY.NET.24.8 seems to be the NEWS server. The servers 131.118.254.130,
128.8.5.30, 140.121.175.75 and 128.8.10.18 communicated with MY.NET.24.8
on destination port 119 (NNTP). All the source addresses mentioned belong to
University of Maryland.

Hosts from network 131.118.254.0 and 128.8.5.30 showed up in NOOP alerts.
These networks belong to University of Maryland. The alerts showed
communication with MY.NET.24.8 (University internal NNTP server as shown in
hosts Table earlier).

OrgName: University of Maryland
NetRange: 131.118.0.0 - 131.118.255.255
CIDR: 131.118.0.0/16
NetName: MINCNET NetHandle: NET-131-118-0-0-1
NetType: Direct Assignment

OrgName: University of Maryland
Address: Network Operations Center Bldg 224, Room 1301
City: College Park StateProv: MD PostalCode: 20742 Country: US
 NetRange: 128.8.0.0 - 128.8.255.255
CIDR: 128.8.0.0/16
NetName: UMDNET NetHandle: NET-128-8-0-0-1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 58

Table 3-18: Who is database search results

Overall, there is good amount of noise in these alerts. The destination ports are
associated with web servers, file sharing and other binary transfer operations. As
mentioned in the Snort rule explanation at http://www.snort.org/snort-
db/sid.html?sid=649 the chance for false positives is very high.

‘Large binary transfers, certain web traffic, and even mail traffic can trigger
this rule’.

Recommendations:
• It is important to reduce the number of alerts since there is a chance for real

attacks getting overlooked because of the high volume of Exploit x86 alerts.
Modify the Snort rule set to recognize known host networks.

• Set access control lists to block HTTP traffic to networks MY.NET.5.0 and
MY.NET.29.8, if there is no need for these servers to serve outside networks.

• Apply web server patches on all the hosts serving HTTP from these networks.

3.4.3.7 Queso fingerprint
Classification: Noise (False Positive)

Queso fingerprint is used to guess the operating system type. Older queso
signatures check the TCP headers to see if the two reserved bits in the TCP
header are set in the initial SYN packet during TCP handshake. However, the
proposed standard for Explicit Congestion Notification (ECN) may clash with
Queso fingerprint detection as described by Toby Miller in his article
http://www.securityfocus.com/infocus/1205.

ECN is a standard proposed by the IETF that will cut down on network
congestion and routers dropping packets. Currently, RFC 2481 states that
in order to accomplish this task ECN will use four previously unused bits in
both the IP header and the TCP Header. Queso sets the same reserved
TCP bits that are being used by ECN.

There is also a newer version of snort signature to check for other features of
Queso like high TTL value.

Source IP # Total Destination IP # Total
66.117.30.14 63 MY.NET.24.23 80
210.253.206.180 32 MY.NET.24.21 78
213.186.35.9 27 MY.NET.24.22 58
216.95.201.34 23 MY.NET.6.40 57
81.57.90.18 22 MY.NET.6.47 51
212.202.170.228 22 MY.NET.211.26 43
209.47.197.17 21 MY.NET.224.134 32
209.47.197.18 21 MY.NET.217.54 25
66.140.25.157 19 MY.NET.24.44 24
216.95.201.37 17 MY.NET.237.118 23
Table 3-19: Queso Finger Print - Top Talkers

It is not clear if the rule used here is a new or older version.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 59

Correlation: As can be seen from this discussion at
http://archives.neohapsis.com/archives/postfix/2001-03/0583.html there seems to
be some false positives for this alert.

Some of the internal hosts involved are the SMTP servers from the hosts table.
There are also many related scans to these hosts during this time as can be
seen from the scan logs.
It is easy to find SMTP banner information once an open TCP port like SMTP is
found by establishing a telnet session to that particular host on the open TCP
port. It is not very clear if these scans are regular scans or Queso scans. This
alert creates more noise than any useful information.

Recommendations:
• Use modified signatures for specific fingerprints like Queso. Follow the

ingress and egress filtering as described in section 3.7.

3.4.3.8 EXPLOIT NTPDX buffer overflow
Classification: False Positive

This alert indicates buffer overflow attempts against the NTP daemon. Network
Time Protocol Daemon (ntpd) shipped with many systems is vulnerable to
remote buffer overflow attack. Most of the times, ntpd is run with super user
privileges, allowing remote users to gain REMOTE ROOT ACCESS to
timeserver.

This attack appears to be a false positive. But on further analysis it is seen the
host MY.NET.196.193 is also involved in other alerts including port 69 (TFTP)
and port 31337 (Back Orifice).

As seen from the scan analysis the network MY.NET.196.0 seems to have some
compromised hosts (MY.NET.196.193) scanning outside world for port 17300, a
port associated with parasitic meta Trojan as described under scan log analysis
in section 3.5.1.

NTP is stateless UDP based protocol, so all malicious queries can be spoofed.
Some recent GCIA papers suggested limiting NTP to known NTP public servers.
Though it helps to a large extent, since NTP uses UDP, it is easy to spoof a
public time server address to exploit any NTP related vulnerabilities.

Recommendations:
• Patch the NTP servers with the latest updates.
• Move servers communicating directly with public timeservers into DMZ

(Demilitarized Zone).
• Setup separate local timeservers for local area network to synchronize with

DMZ timeservers.

3.4.3.9 IRC evil - running XDCC
Classification: Risk

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 60

The main purpose of XDCC is IRC (Internet Relay Chat) file sharing though it can
be used to create bot (slave machines). The main function of XDCC is to
automate listing of shared files on IRC channels for people to download.
A very good article written by Tonik Gin is available at
http://www.russonline.net/tonikgin/EduHacking.html.

There are many straight hits in this case.
Table 3-20 below shows the top-ten internal and external IP addresses involved
in the XDCC evil alerts.

Internal Address External Address
MY.NET.150.205 216.152.65.144
MY.NET.207.78 217.17.33.10
MY.NET.241.246 193.163.220.3
MY.NET.86.33 157.156.254.222
MY.NET.80.209 160.94.151.137
MY.NET.249.250 63.98.19.244
MY.NET.132.24 38.192.23.234
MY.NET.112.199 193.216.236.142
MY.NET.198.221 216.32.207.207
Table 3-20: IRC evil running - Top Talkers

A link graph has been created to show the hosts involved in this attack and the
direction of flow. But as found the link-graph leads to other alerts including red
worm in link graph in Fig. 8.

Link Graph Figure 6:
As seen from the link graph it is very clear the hosts involved in this alert are
compromised or on the verge of getting compromised. The linking arrows show
the traffic flow direction. An internal host with no outgoing traffic may not
necessarily mean an uncompromised host. It could be because there was no
communication during this particular period or it is just a matter of time. The link
graph is created for the purpose of understanding the attack and does not show
all the addresses involved.

The analysis was started with address MY.NET.150.205. Though the IP
addresses shown in the link graph are not directly involved in red worm alerts,
the second link graph in Figure 8 shows the link between XDCC channel and red
worm alerts. IP addresses MY.NET.105.204, 198.163.214.2 and 66.118.159.153
are common to two link graphs in Figure 7 and Figure 8 and are shown in a
different color to represent their association to both link graphs.

Recommendations:
• All the hosts involved must be checked and cleaned for any backdoor

vulnerability. Install any system-related patches.
• Enable ingress and egress filtering.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 61

Figure 6: Link Graph originating from IRC evil running XDCC

3.4.3.10 [UMBC NIDS IRC Alert] User joining Warez channel detected.
Possible XDCC bot
Traffic Flow: Incoming – 0 Outgoing - 258
Unique hosts: Incoming – 0 Unique Outgoing - 5
All source ports are 6667.

Warez is a term used to describe a cracked version of commercial software or
applications. Warez channels are used to distribute copyrighted files like cracks,
software, movies etc. Table 3-21 below shows the top source and destination
hosts from warez channel detect.

Source IP # Total Destination IP # Total
209.126.191.127 6667 MY.NET.82.241 1090
66.118.185.29 6667 MY.NET.240.42 4533
66.163.242.103 6667 MY.NET.201.6 2870

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 62

66.93.61.143 6667 MY.NET.201.26 2018
207.54.31.254 6667 MY.NET.224.14 4404
Table 3-21: IRC User joining Warez - Top Talkers

Also alerts with source port=6667 are 258 and destination port=6667 are 5413.
MY.NET.201.26 is also involved in twenty-six IIS Unicode attacks with 5
destinations - 211.233.29.57, 211.233.29.54, 211.233.29.3, 211.233.78.77 and
211.233.79.230. All addresses belong to Korean network. IIS Unicode alerts can
result from regular web surfing if the web content contains characters matching
the signature rule contents. There is a high chance for false positives with
Unicode alerts. But repeated alerts to the same destination should not be
ignored. MY.NET.224.14 is involved in TCP scans.

Recommendations:
Check the machines MY.NET.201.26 and MY.NET.224.14 for backdoor
programs.

3.4.3.11 [UMBC NIDS IRC Alert] User joining XDCC channel detected.
Possible XDCC bot
XDCC can be used to make bot out of compromised systems to serve Warez
software to the users of IRC channels.
These alerts have 6666, 6667 and 6668 in destination ports. It is easy to see the
relationship between the sources and destinations from the table. But as
happened with IRC – evil XDCC a simple check revealed a link to another alert.
Table 3-22 below shows the top source and destination hosts from XDCC
channel.

Source IP # Total Destination IP # Total
209.6.189.30 6667 MY.NET.226.102 4992
208.178.231.190 6667 MY.NET.224.14 1838
217.67.227.5 6667 MY.NET.194.201 3894
198.163.214.2 6661 MY.NET.220.158 1514
Table 3-22: User joining XDCC channel - Top Talkers

MY.NET.226.102, 209.6.189.30 and 198.163.227.5 are involved in other alerts.
Since there are good number of alerts associated with 198.163.214.2 a quick
check was done against 198.163.214.5 and it revealed an interesting situation.
The IP addresses shown in the link graph in Figure 7 represent IRC and red
worm related traffic. IP addresses MY.NET.105.204, 198.163.214.2 and
66.118.159.153 are common to both link graphs in Figure 6 and Figure 7 and are
shown in a different color to represent their association to both link graphs. For
example there is two-way red worm traffic between IP addresses
MY.NET.233.286 and 66.118.159.153.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 63

Figure 7: Link Graph - IRC XDCC and Red Worm

Recommendations:
• Generic detection rules generated a large number of false positives showing

traffic from peer-to-peer network as red worm traffic. The Snort rules need
fine-tuning.

• The networks involved need thorough check. Refer to the recommended audit
methods mentioned under section 3-4.

3.4.3.12 Possible Trojan server activity
Since this alert appears to be very generic, a list of top source and destination
ports involved has been created. The top port involved is 27374, a port
associated with a long list of Trojans and worms. All ports appeared excluding
port 0, 80 and 999 are ephemeral ports and as such can be used by any
application. A quick search against alert and scan logs has shown
communication between two IP addresses 216.170.7.20 and MY.NET.201.182.
Table 3-23 below shows the top source and destination hosts with corresponding
ports from possible Trojan server activity.

Source Ports Destination Ports Source Hosts Destination Hosts
27374 27374 MY.NET.202.54 213.8.239.155
 1826 1826 MY.NET.235.42 66.32.72.20
 1263 1263 MY.NET.202.226 24.125.13.198

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 64

 2495 1214 MY.NET.194.35 62.195.161.26
 1214 2495 MY.NET.218.46 193.251.75.254
 80 80 MY.NET.24.34 66.56.197.97
 6884 0 MY.NET.24.44 4.35.71.83
 3141 6884 MY.NET.5.20 65.41.74.246
 3833 999 MY.NET.211.110 68.61.209.109
 1258 6346 MY.NET.194.13 67.2.145.186
Table 3-23: Possible Trojan - Top Talkers

Host MY.NET.201.182 is involved in multiple alerts to hosts 80.7.81.92 and
81.53.178.107 and scans from 219.195.12.10 and 61.242.166.150. All the scans
to outside world used source port 6042. MY.NET.201.182 is also involved in
extern UDP alerts for TFTP.

Obviously there are some hits from this rule but this very generic rule set makes
it difficult to sort through this huge alert list. There is a good chance for having
many false positives.

Recommendations:
• It would make things difficult if a rule set is based on just port numbers while

dealing with ports like 27374. Content specific rule sets should be considered
to replace this more generic rule.

• Keeping the current rule along with other more specific rules sets would
certainly help create a traffic pattern.

3.4.3.13 All bot alerts
A bot is a script or program that is designed to perform automated actions on
behalf of the owner (the attacker), usually without owner’s direct intervention.
Bot can be programmed as part of a normal chat client such as IRC. Bot serve
different purposes. Bot can be used to monitor and transfer end user’s actions
like capturing keystrokes, participating in denial of service attacks, looking for
other vulnerable systems etc.
A generic search for the word ‘bot’ in alerts showed the following source and
destination addresses in table 3-24.

Source IP # Total Destination IP # Total
MY.NET.97.79 44 216.152.64.155 114
MY.NET.97.85 34 MY.NET.224.14 2
MY.NET.97.93 24 MY.NET.194.201 1
MY.NET.97.97 5 MY.NET.82.241 1
MY.NET.97.242 4 MY.NET.220.158 1
MY.NET.97.72 3 MY.NET.240.42 1
198.163.214.2 1 MY.NET.226.102 1
209.126.191.127 1 MY.NET.201.6 1
208.178.231.190 1 MY.NET.201.26 1
Table 3-24: Consolidated bot alerts - Top Talkers

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 65

The destination is 216.152.64.155. All the ports used by this address are used
extensively by IRC related activity. All IP addresses are related to sdbot floodnet
and IRC user/kill detects. MY.NET.97.0 network is vulnerable and has some
compromised machines.

Source IP addresses communicating with
216.152.64.155

Total

Ports used by
216.152.64.155

MY.NET.97.79 44 6666
MY.NET.97.85 34 6663
MY.NET.97.93 24 6664
MY.NET.97.97 5 6660
MY.NET.97.242 4 6661
MY.NET.97.72 3 6665
Table 3-25: Internal Sources to 216.152.64.155

216.152.64.155 (No scans or OOS)

NetRange: 216.152.64.0 - 216.152.79.255
CIDR: 216.152.64.0/20
NetName: WEBMASTER-BLK-1 NetHandle: NET-216-152-64-0-1
NetType: Direct Allocation
OrgName: WebMaster, Incorporated OrgID: WBMR
Address: City: Santa Clara StateProv: CA PostalCode: 95050 Country: US
Table 3-26: Who is database search results

Recommendations:
• Check the machines in table 3.25 for any vulnerabilities and compromises.

3.4.3.14 NIMDA – Attempt to execute cmd from campus host
Traffic Flow: Incoming – 0 Outgoing – 75
Unique hosts: Incoming – 0 Destination Port - 80

The name of the worm Nimda came from the reversed spelling of ‘admin’. This
worm attempts to infect unpatched Microsoft IIS web servers by using directory
traversal vulnerability. The worm also attempts to use IIS server that had
previously been compromised by Code Red II.
Network MY.NET.97.0 and MY.NET.98.0 are involved. MY.NET.97.0 appears
one more time. Table 3-27 below shows the top internal sources from nimda
alerts.

Internal Sources # Total
MY.NET.97.67 25
MY.NET.97.19 22
MY.NET.97.44 11
MY.NET.97.18 7
MY.NET.98.146 7

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 66

MY.NET.97.122 2
MY.NET.97.165 1
Table 3-27: Nimda - Top Talkers

The alert and scan logs correlate with the sources shown in the above table
participating in ‘execute cmd’ attacks as well as random scans of outside
networks from internal hosts. Some of the addresses also appear in the top-
talkers list shown in scans analysis in later sections.
There should not be any scans from internal sources. These machines are
compromised.

Recommendations:
• Update all patches.
• Move IIS root from default C drive to some other drive.
• Use tools to find back doors and Trojans.
http://www.cert.org/advisories/CA-2001-26.html

3.4.3.15 Back Orifice
Classification: False Positive

Back Orifice is a remote access Trojan. The alert signature was set to capture
traffic going to port 31337. Three outside IP addresses were found talking to 3
internal IP addresses. The scan files showed two IP addresses scanning the
hosts during this time.
Table 3-28 below shows the top source and destination hosts and corresponding
ports from Back Orifice alerts.

Source IP Source Port Destination IP Destination Port
211.177.191.184 2352 MY.NET.196.29 31337
211.221.85.195 2949 MY.NET.196.29 31337
207.207.20.129 3862 MY.NET.196.29 31337
Table 3-28: Back Orifice - Top Talkers

MY.NET.196.29 has other connections from 4.62.30.53, 211.49.82.138 and
218.159.24.157 (external udp to internal tftp), (EXPLOIT NTPDX buffer overflow)
to 218.144.69.214, 211.117.118.53, 63.97.39.185, 211.47.87.252,
217.37.119.133. There are no scans or alerts with MY.NET.196.29 as the source
address. If this machine is compromised more alerts would have shown up with
this address as the source. The scan logs show UDP scans from
211.177.191.184 and 207.207.20.129 to MY.NET.196.29. The other alert from
211.221.85.195 is not associated with any corresponding alerts from scan and
oos logs. That could be because of a regular connection that happened to have
31337 as the destination port. This alert is classified as false positive.

Correlation: Tod Beardsley gave similar analysis in his white paper.
http://www.giac.org/practical/Tod_Beardsley_GCIA.doc

Recommendations:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 67

• Update to latest Snort signatures. The new signatures allow for Back Orifice
related content checking in the payload helping reduce the false positives.

3.5 Scans Analysis
Total Scans: 737583
Total Unique Internal Hosts as source: 403
Total Unique External Hosts as source: 38999

3.5.1 Top Talkers in Scans
Table 3-29 below lists internal and external IP addresses participating in scans.
The addresses shown in red color appeared in dsheild database as offenders.
Ideally there should not be any scans originating from internal network. Some
scanning could result from internal scanning by security groups.

Top Ten Internal Sources Top Ten External Sources
Internal IPs # Total External Ips # Total
MY.NET.196.193 238876 162.39.73.134 3810
MY.NET.87.50 38649 80.11.48.186 3561
MY.NET.197.30 22363 69.10.15.110 3352
MY.NET.225.154 9958 80.13.0.75 3242
MY.NET.97.19 8003 209.120.166.71 2503
MY.NET.250.162 7951 207.194.62.117 2471
MY.NET.97.18 7898 195.199.70.26 2363
MY.NET.217.62 7637 213.84.138.106 2313
MY.NET.97.67 5891 61.242.166.150 2290
MY.NET.220.62 5828 149.68.10.6 2144
Table 3-29: Top 10 Internal and External IPs - From Scan Logs

Table 3-30 below shows all the different scans that occurred during the five-day
analysis period.

Scan Type # Total
SYN 369547
NULL 362625
FIN 2668
NOACK 1761
INVALIDACK 939
SYNFIN 39
Table 3-30: All Scans from Scan Logs

Table 3-31 below lists all the internal IP addresses associated with scanning
activity. A thorough check has to be done on these machines for backdoor
Trojans and any other activity related to security compromise.

Top Source IPs Top Destination IPs
MY.NET.196.193
MY.NET.203.198
MY.NET.97.18

MY.NET.97.98
MY.NET.211.210
MY.NET.227.6

 MY.NET.130.85
 MY.NET.85.62
 MY.NET.85.107

MY.NET.85.163
MY.NET.85.235
MY.NET.85.75

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 68

MY.NET.234.190
MY.NET.233.2
MY.NET.97.52
MY.NET.240.190
MY.NET.84.151
MY.NET.242.66

MY.NET.97.44
MY.NET.222.26
MY.NET.250.226
MY.NET.205.50
MY.NET.221.202

 MY.NET.85.146
 MY.NET.85.150
 MY.NET.85.130
 MY.NET.85.64
 MY.NET.85.27
 MY.NET.85.74

MY.NET.85.58
MY.NET.85.15
MY.NET.85.17
MY.NET.85.77
MY.NET.85.2

Table 3-31: Top Talkers from Internal Network

The top three scanned ports are shown below. The earlier sections showed the
analysis for these ports. The top ranked internal source host from scan logs
MY.NET.196.193 is found running SYN scans looking for open port TCP/17300.

Source Ports Protocol # Total Destination Ports Protocol # Total
27022 UDP 38650 17300 TCP 248588
 7674 UDP 13529 80 TCP 52971
22321 UDP 11496 137 UDP 38314
Table 3-32: Top 3 TCP/UDP Port Scans for both Source & Destination Ports from Scan Logs

This port is associated with a parasitic meta Trojan named Milkit by Lurhq. More
information on milkit is at http://www.lurhq.com/sig-milkit.html. MY.NET.196.193
appears as a compromised host, acting as a slave to remote host commands.

There were many SMB alerts from network 216.176.0.0 to MY.NET.196.193
along with other IP addresses.

05/16-07:08:24.376086 [**] SMB Name Wildcard [**] 216.176.80.86:137 -> MY.NET.196.193:137

There were scan alerts from host MY.NET.196.197 scanning network 216.176.0.0

May 16 07:08:22 MY.NET.196.193:4070 -> 216.176.80.123:17300 SYN ******S*

Though it appears that the scan from MY.NET started before the SMB alert came
in from MY.NET.196.193, overall scanning from MY.NET.196.193 has been
going on for a long time before and after the traffic to port 137 came in. It is not
clear if the SMB alerts from outside network are a way to obfuscate the
command but the SMB alerts came from the same networks as the scans from
the compromised hosts are going to.

Similarly host MY.NET.202.202 is using source port 1470/UDP to scan open
UDP ports. Host MY.NET.222.166 is involved in many alerts and scans for port
80 including CGI null byte attacks.

Recommendations:
• Check the machines MY.NET196.197 and MY.NET.202.202 for backdoor

Trojans.
• Implement other recommendations related to ingress and egress filtering as

described in the executive summary.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 69

3.6 OOS Analysis
Total OOS events during the five day analysis are 4847.

OOS packets are out of specification packets. These logs represent packets not
conforming to RFC standards. The major offenders appeared in all log files. The
top-talkers specifically appeared under queso finger print alerts, and scans with
reserved TCP bits set and OOS logs.

These are some of the TCP flag combinations that do not conform to TCP RFC
standards.

SYN and FIN set, SYN and RST set, SYN/FIN/PSH set, SYN/FIN/RST set,
SYN/FIN/RST/PSH set, etc. Since a SYN packet is used to initiate a TCP
connection, it should never have the FIN or RST flags set in conjunction. It is
always a malicious attempt at getting past the firewall or router access control
lists.

FIN (without ACK)
An ACK bit should always accompany a FIN packet, since the only reason to
send an ACK/FIN packet is to tear down an existing connection.

"NULL" packet
A "NULL" packet is a packet with no TCP flags set.

Reserved flags set. As discussed in queso finger print analysis this is a recent
RFC for explicit congestion notification and may cause issues if used against
non-ECN compatible hosts.

The reason for an illegal TCP flag combination could be the following reasons.
1) The packet got corrupted during creation (TCP stack problem) or during

network transmission.
2) The packet is following RFC2481 ECN standards.
3) The packet is crafted for malicious attacks.

Table 3-33 below shows TCP flag combinations along with the top-talkers from
OOS logs.

TCP Flags #

Total
Source IP #

Total
Destination IP #

Total
12****S* 4409 66.117.30.14 492 MY.NET.224.134 295
****P*** 314 81.57.90.18 174 MY.NET.6.47 241
******** 40 210.253.206.180 159 MY.NET.6.40 236
12***R** 21 209.123.49.137 136 MY.NET.211.26 231
*2U*PRSF 9 212.202.170.228 118 MY.NET.24.22 230
**UAPRSF 3 213.186.35.9 89 MY.NET.24.21 227
12*APR** 3 212.186.78.246 88 MY.NET.24.23 215
*2U**RSF 3 209.47.197.17 84 MY.NET.237.118 154
*2****SF 2 196.26.86.133 73 MY.NET.233.78 141

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 70

12*****F 2 213.197.11.147 72 MY.NET.24.44 128
Table 3-33: All Flags, Source & Destination IPs from OOS Logs

3.6.1 Out of Spec Details:
The following is an analysis of source 81.57.90.18, which appeared in all log files
at the same time. As described under queso finger print analysis, the reserved
bits are set here. And this could be a genuine implementation according to
RFC2481 (Explicit Congestion Notification), or a crafted packet or packet
corruption on the wire.

From Alert Logs:
05/16-03:40:33.402906 [**] Queso fingerprint [**] 81.57.90.18:34741 ->
MY.NET.218.154:6346
05/16-05:12:19.852123 81.57.90.18:34348 -> MY.NET.224.122:6346

From Scan Logs:
May 16 03:40:33 81.57.90.18:34741 -> MY.NET.218.154:6346 SYN 12****S*
RESERVEDBITS
May 16 05:17:02 81.57.90.18:38644 -> MY.NET.85.218.154:6346 SYN 12****S*
RESERVEDBITS
From OOS Logs:

05/16-03:40:33.402910 81.57.90.18:34741 -> MY.NET.218.154:6346
TCP TTL:47 TOS:0x0 ID:50463 IpLen:20 DgmLen:60 DF
12****S* Seq: 0xD6ACF9A1 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 13778110 0 NOP WS: 0
=+
Table 3-34: Log details for 81.57.90.18

As noted in queso finger print analysis earlier, the top destination port is 25
(SMTP). The top destination ports also included file-sharing ports like 4662 used
by file sharing applications like edonkey. In the above logs the destination port
6346, associated with Gnutella, indicates a possible Gnutella peer on the other
side trying to contact Gnutella peer inside. Tod Beardsley in his GCIA paper
shows something similar. http://www.giac.org/practical/Tod_Beardsley_GCIA.doc

In this case, there are no log entries to indicate packet retransmission. In case of
a corrupted packet the host resends the packet until the packet is acknowledged
or there is a time out. However in case of a valid packet the logs would not
capture a re-sent packet. But as seen from the other entries it is clear that there
has been a stealth scan from source 81.57.90.18 to other hosts on port 6346.
That indicates that in fact this is a reconnaissance attempt to gather information
on open file sharing ports for the kinds of Gnutella, edonkey etc. Most probably
these peer hosts are sitting behind a RFC2481 enabled router. This rules out
packet corruption on the wire.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 71

On the other hand the following analysis indicates crafted packets. Table 3-40
below shows a probable packet-crafting scenario from OOS logs. Source
address 213.186.35.9 is trying gather information on MY.NET.97.48. The
closeness of the header values, marked in bold letters, across the scan is an
indication of a basic packet crafting tool in action.

=+
05/16-20:04:37.177029 213.186.35.9:58833 -> MY.NET.97.48:81
TCP TTL:49 TOS:0x0 ID:3401 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x88A5450A Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 5392451 0 NOP WS: 0
=+ =+=+=+=+
05/16-20:04:37.177070 213.186.35.9:58836 -> MY.NET.97.48:1080
TCP TTL:49 TOS:0x0 ID:28871 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x88F03884 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 5392451 0 NOP WS: 0
+=+
05/16-20:04:37.177228 213.186.35.9:58838 -> MY.NET.97.48:23
TCP TTL:49 TOS:0x0 ID:50965 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x88418F56 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 5392451 0 NOP WS: 0

Table 3-35: Packet crafting example from OOS logs

Table 3-36 below shows excerpts from oos logs for source address MY.NET.12.4
and MY.NET.12.2. Address MY.NET.12.4 is serving mail clients over IMAP (143)
and IMAP over SSL (993). Address MY.NET.12.4 is serving SMTP. The reserved
flags are set.

 Time Src IP:Src Port Dst IP:Dst Port TCP Flags
2003-05-15 08:37:53 MY.NET.12.4:993 68.55.193.137:28926 12***R**
2003-05-16 10:34:50 MY.NET.12.4:993 172.156.181.171:49235 12***R**
2003-05-16 17:20:09 MY.NET.12.4:143 205.244.232.133:80 12***R**
2003-05-16 22:20:41 MY.NET.12.4:143 216.5.176.162 :80 12***R**
2003-05-18 01:49:50 MY.NET.12.4:143 68.32.61.11:1042 12***R**
2003-05-18 11:36:56 MY.NET.12.4:143 138.88.147.50:51544 12***R**
2003-05-17 09:38:24 MY.NET.12.4:993 68.55.193.137:29202 12***R**
2003-05-17 22:05:47 MY.NET.12.4:143 68.55.205.180:4717 12***R**
2003-05-19 09:09:43 MY.NET.12.4:993 10.0.1.8:49315 12***R**
2003-05-19 12:52:27 MY.NET.12.4:993 68.32.128.55:49153 12***R**

2003-05-15 00:19:12 MY.NET.12.2:25 192.168.1.100:1024 12***R**
2003-05-18 14:08:53 MY.NET.12.2:25 81.78.117.33:3641 12***R**
2003-05-17 18:55:31 MY.NET.12.2:25 172.166.234.65:1661 12***R**
Table 3-36: RST flag set witn Reserved bits

As mentioned at http://www.zvon.org/tmRFC/RFC3360/Output/chapter3.html
When a TCP host negotiating ECN sends an ECN-setup SYN packet, an
old TCP implementation is expected to ignore those flags in the Reserved
field, and to send a plain SYN-ACK packet in response. However, there

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 72

are some broken firewalls and load-balancers on the Internet that instead
respond to an ECN-setup SYN packet with a reset.

The destination IP addresses belong to dialup and cable modem users. These
machines might be sitting behind ECN enabled routers. A few NULL scan alerts
were found from MY.NET.12.4 and MY.NET.12.2 but it is probably a bad packet
from TCP stack. Since there are not many entries in the logs no action is needed.

3.7 Recommendations:
Network Perimeter:

• There is no need to allow incoming traffic for ports other than 25, 53, 80,
119 and 443 and any other specific public servers. Block incoming traffic
for other ports. Setup incoming traffic only for TCP established
connections, connections initiated from inside.

• Allow incoming UDP only if absolutely needed.
• Setup access-control lists for incoming 53 (DNS) traffic to allow traffic from

site specific DNS servers only.
Audit:
• Perform thorough check of suspected machines for Trojans and backdoors.

Audit open ports in the internal network using a tool like nmap to scan and
find open ports and other unauthorized services. Use tools like nessus to find
service vulnerabilities before moving servers into production.

Others:
• Setup anti-virus at SMTP gateways and on client machines. Sanitize banner

information on public servers.
Move the public servers to DMZ and setup access-control lists to allow traffic
from DMZ to outside world and intranet.
• Fine-tune Snort rules. Some of the rules are very generic resulting in high

volume of false positives.

3.8 References:
The following resources were referenced directly in this section, or were referred
to for information and not otherwise noted:

MySql http://www.mysql.com
Search Engine http://www.google.com
Who is database http://www.whois.sc http://www.arin.net
http://isc.incidents.org
http://www.ietf.org
http://www.dshield.org
http://www.sans.org/resources
http://dast.nlanr.net/Projects/Beacon
Unix Mail Archives
 http://www.health.ufl.edu/mail-archives/unix-sec
 http://archives.neohapsis.com/archives/postfix/2001-03/
http://www.securityfocus.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 73

http://xforce.iss.net/
http://archives.neohapsis.com/archives/postfix/2001-03/0583.html
http://www.securiteam.com/unixfocus/NTPD_vulnerable_to_a_remotely_exploita
ble_buffer_overflow__readvar_.html
http://www.linuxsecurity.com/advisories/netbsd_advisory-1255.html
http://www.whitehats.com/info/IDS492
http://www.cert.org/advisories
http://www.lurhq.com/sig-milkit.html
http://www.seifried.org/security/ports/
XDCC http://www.russonline.net/tonikgin/EduHacking.html
Tiny Fragments
http://www.cisco.com/en/US/tech/tk827/tk369/technologies_white_paper09186a0
0800d6979.shtml
http://www.giac.org/practical/Mark_Embrich_GCIA.htm
Stealth noop http://www.snort.org/snort-db/sid.html?sid=651
X86 NOOP http://www.snort.org/snort-db/sid.html?sid=648
Setgid http://www.snort.org/snort-db/sid.html?sid=649
Setuid http://www.snort.org/snort-db/sid.html?sid=650

Nmap scanning http://www.insecure.org/nmap/nmap_doc.html
RPC
http://probing.csx.cam.ac.uk/about/sunrpc.html
IRC and XDCC
http://www.russonline.net/tonikgin/EduHacking.html
Specific example of ECN
http://www.zvon.org/tmRFC/RFC3360/Output/chapter3.html
http://www.giac.org/practical/GCIA/Michael_Cloppert_GCIA.pdf
http://nwn.bioware.com/support/techfaq.html#03

4. Appendix A
4.1 Tools and Scripts used in “Analyze This!”
#!/usr/bin/perl

Program: parsealerts.pl
Author: Sai Prasad Kesavamatham
To parse and import alerts logs

Change variables here ######
$Year = 2003;
$WorkingDirectory = "/gcia/analyze/alerts";
$MySqlDirectory = "/mysql/bin";
End of Variables ###########

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 74

use File::Copy;
opendir (ALERTDIR, "$WorkingDirectory");
chomp(@Files = readdir(ALERTDIR));
close (ALERTDIR);

shift(@Files);
shift(@Files);

 foreach $File(@Files){
 open (ALERTS, "$WorkingDirectory/$File");
 chomp(@AlertsArray = <ALERTS>);
 close (ALERTS);
 $LogFile = "$File.parsed.txt";

 open (LOG, ">$WorkingDirectory/$LogFile");

 while (@AlertsArray){
 $AlertLine = shift(@AlertsArray);
 ($TimeStamp, $Alert, $Address) = split (/\[**\]/, $AlertLine);
 if ($Alert =~ /spp_portscan/){
 goto NextLine;
 }
 ($Month, $Day, $Time) = split (/\/|\-/, $TimeStamp);
 ($Hour, $Minute, $Second, $MilliSecond) = split (/\:|\./, $Time);
 $Alert =~ s/^\s+//; #cut leading space off alert
 $Alert =~ s/\s+$//; #cut trailing space off alert
 $Alert =~ s/\s+$//; #cut trailing space off alert
 $MilliSecond =~ s/\s+$//;
 ($SourceAddress, $DestinationAddress) = split (/\->/, $Address);
 ($SourceIP, $SourcePort) = split (/\:/, $SourceAddress);
 $SourcePort =~ s/\s+$//;
 $SourceIP =~ s/^\s+//;
 ($DestinationIP, $DestinationPort) = split (/\:/, $DestinationAddress);
 $DestinationIP =~ s/^\s+//;
if ($Alert ne ""){
print LOG <<EOM;
'null','$Year$MonthDayHour$Minute$Second','$MilliSecond','$Alert','$SourceIP
','$SourcePort','$DestinationIP','$DestinationPort'
EOM
}
NextLine:
 }
 close (LOG);
copy "$WorkingDirectory/$LogFile" => "$WorkingDirectory/alerts.txt";
system ("d:/mysql/bin/mysqlimport -L logs -u gcia --fields-terminated-by=, --fields-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 75

enclosed-by=' $WorkingDirectory/alerts.txt");
unlink ("$WorkingDirectory/alerts.txt");
 }
Table 4-1: parsealerts.pl

#!/usr/bin/perl

Program: parsescans.pl
Author: Sai Prasad Kesavamatham
To parse and import scan logs

Change variables here ######
$Year = 2003;
$WorkingDirectory = "/gcia/analyze/scans";
$MySqlDirectory = "/mysql/bin";
$Alert = "Scan";
$MYHOME = '130.85';
my %Months = ('Jan'=>'01','Feb'=>'02', 'Mar'=>'03','Apr'=>'04','May'=>'05',
 'Jun'=>'06','Jul'=>'07','Aug'=>'08','Sep'=>'09','Oct'=>10,'Nov'=>11,'Dec'=>12);
End of Vairables ########
use File::Copy;
opendir (SCANDIR, "$WorkingDirectory");
chomp(@Files = readdir(SCANDIR));
close (SCANDIR);
shift(@Files);
shift(@Files);

 foreach $File(@Files){
 open (ALERTS, "$WorkingDirectory/$File");
 chomp(@AlertsArray = <ALERTS>);
 close (ALERTS);
 $LogFile = "$File.parsed.txt";

 open (LOG, ">$WorkingDirectory/$LogFile");

 while (@AlertsArray){
 $AlertLine = shift(@AlertsArray);
 @Fields = split(/\s+/,$AlertLine);
 $Month = @Months{@Fields[0]};
 $Day = @Fields[1];
 ($Hour,$Minute,$Second) = split(/\:/,@Fields[2]);
 ($SourceIP,$SourcePort) = split(/\:/,@Fields[3]);
 ($DestinationIP,$DestinationPort) = split(/\:/,@Fields[5]);
 if (@Fields[6] eq "UDP"){
 $Protocol = "UDP";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 76

 $Flag= "NULL";
 }
 elsif (@Fields[6] =~ /SYN/ || @Fields[6] =~ /FIN/ || @Fields[6] =~ /ACK/){
 $Protocol = "TCP";
 $Flag = "@Fields[6]";
 }
 elsif (@Fields[6] eq "NULL"){ }

 if ($SourceIP =~ /$MYHOME/){
 ($Oct1,$Oct2,$Oct3,$Oct4) = split(/\./,$SourceIP);
 $SourceIP = "MY.NET.$Oct3.$Oct4";
 }
 if ($DestinationIP =~ /$MYHOME/){
 ($Oct1,$Oct2,$Oct3,$Oct4) = split(/\./,$DestinationIP);
 $DestinationIP = "MY.NET.$Oct3.$Oct4";
 }

############

print LOG<<EOM;
'NULL','$Year$MonthDayHour$Minute$Second','$Alert','$SourceIP','$SourceP
ort','$DestinationIP','$DestinationPort','$Protocol','$Flag'
EOM
NextLine:
 }
 close (LOG);
copy "$WorkingDirectory/$LogFile" => "$WorkingDirectory/scans.txt";
system ("d:/mysql/bin/mysqlimport -L logs -u gcia --fields-terminated-by=','
d:/mysql/bin/alerts.txt");
system ("d:/mysql/bin/mysqlimport -L logs -u gcia --fields-terminated-by=, --fields-
enclosed-by=' $WorkingDirectory/scans.txt");
unlink ("$WorkingDirectory/scans.txt");

 }
Table 4-2: parsescans.pl

#!/usr/bin/perl

Program: parseoos.pl
Author: Sai Prasad Kesavamatham
To parse and import oos logs

Change variables here ######
$Year = 2003;
$WorkingDirectory = "/gcia/analyze/oos";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 77

$MySqlDirectory = "/mysql/bin";
End of Variables ###########
use File::Copy;
Read oos directory for files
opendir (OOSDIR, "$WorkingDirectory");
chomp(@Files = readdir(OOSDIR));
close (OOSDIR);
Take out the dots
shift(@Files);
shift(@Files);

Read each oos file and eliminate the lines with Hex etc and get the first line in
the entry
foreach $File(@Files){
 open (OOS, "$WorkingDirectory/$File");
 chomp(@OosArray = <OOS>);
 close (OOS);
 $LogFile = "$File.parsed.txt";
 open (LOG, ">$WorkingDirectory/$LogFile");
 foreach $OosLine(@OosArray){
 if ($OosLine =~ /\=\+/ || $OosLine eq "" || $OosLine =~ /\w\w\s\w\w\s/){
 # goto NextLine;
 }
 elsif ($OosLine =~ /->/) {
 @Fields = split(/\s+/, $OosLine);
 ($Month, $Day, $Time) = split (/\/|\-/, @Fields[0]);
 ($Hour, $Minute, $Second, $MilliSecond) = split (/\:|\./, $Time);
 ($SourceIP, $SourcePort) = split (/\:/, @Fields[1]);
 ($DestinationIP, $DestinationPort) = split (/\:/, @Fields[3]);
 }
 elsif ($OosLine =~ /Seq:/){
 @Options = split(/\s+/, $OosLine);
 $Flags = @Options[0];
 $SeqNo = @Options[2];
 $AckNo = @Options[4];
 $Win = @Options[6];

Get the same format as a parsed Alert file for database import
print LOG <<EOM;
'null','$Year$MonthDayHour$Minute$Second','$MilliSecond','OOS','$SourceIP',
'$SourcePort','$DestinationIP','$DestinationPort','$Flags','$SeqNo','$AckNo','$Win
'
EOM
 }

 NextLine:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 78

 }
 close (LOG);
copy "$WorkingDirectory/$LogFile" => "$WorkingDirectory/oos.txt";
system ("d:/mysql/bin/mysqlimport -L logs -u gcia --fields-terminated-by=, --fields-
enclosed-by=' $WorkingDirectory/oos.txt");
unlink ("$WorkingDirectory/oos.txt");
}
Table 4-3: parseoos.pl

#!/usr/bin/perl

Program: common.pl
Author: Sai Prasad Kesavamatham
Use this script, if the database does not support intersect and
join/union sql combination is a problem
To find common IPs between two similar fileds across two tables
However the same can be easily achieved using a combination of
temporary tables as shown in the next table describing sql.
Syntax: perl common.pl <table1> <table2> <field1> <field1.
Ex. Perl common.pl alerts scans srcip srcip
No error catching done.

#!/usr/bin/perl
use DBI;
Change variables here ######
$user = 'userid';
$passwd = 'passwd';
$host = 'sqlserver1';
$Database = 'logs';
End of variables
$Table1 = $ARGV[0];
$Table2 = $ARGV[1];
$Field1 = $ARGV[2];
$Field2 = $ARGV[3];
Connect to database
my $dbh = DBI->connect("DBI:mysql:$Database:$host","$user","$passwd",
 { RaiseError => 1, AutoCommit => 1})
 or die "Error: $DBI::errstr\n";

$SqlRef = &Sql("select $Field1,count(*) as val from $Table1 group by $Field1
order by val desc");

 foreach $href(@{$SqlRef}){
 # print "$href->{'$Field1'}\n";
 $Value = $href->{$Field1};
 push (@IPArray1,$Value);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 79

 }
$SqlRef = &Sql("select $Field2,count(*) as val from $Table2 group by $Field2
order by val desc");

 foreach $href(@{$SqlRef}){
print "$href->{'srcip'}\n";
 push (@IPArray2,$href->{$Field2});
 }
$Counter = 0;
 foreach $T1(@IPArray1){
 foreach $T2(@IPArray2){
 if ($T1 eq $T2){
 print "$T1\n";
$Counter++;
 goto NextElement;
 }
 }
 NextElement:
 }

sub Sql {
 my @sql = @_;
 my @rows;
 my $sth = $dbh->prepare(@sql);
 my $rv = $sth->execute();
 if ($sql[0] =~ /^INSERT.*/){
 return $dbh->{mysql_insertid};
 }
 if ($rv && $sql[0] =~ /^select.*/){
 while (my $href = $sth->fetchrow_hashref()) {
 push @rows, $href;
 }
 return \@rows ;
 }
}
Table 4-4: common.pl

connect logs;

Top 10 Alerts from alerts table (Field - alertsign)
select alertsign,count(*) as val from alerts group by alertsign order by val desc
limit 10;

Top 10 Destination IPs from scans
select dstip,count(*) as val from scans group by dstip order by val desc limit 10;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 80

Union of Top 5 from alerts and scans
(select srcip,count(*) as val from alerts group by srcip order by val desc limit 5)
union (select srcip,count(*) as val from scans group by srcip order by val desc
limit 5);

Create a temporary table using the results of select command
Temporary tables are dropped when the connection is closed.
create temporary table t1 select srcip,count(*) as val from alerts group by srcip
order by val desc limit 5;

To compare common srcips between alerts and logs use the next 3-sql
commands
Create temporary tables privilege is needed; Temp tables are available only
for that connection.
Same temp table names can be used from two different connections
1. Create a temporary table t1 with unique source ips from alerts
create temporary table t1 as select srcip,count(*) as val from alerts group by srcip
order by val desc;
2. 1. Create a temporary table t2 with unique source ips from scans
create temporary table t2 as select srcip,count(*) as val from alerts group by srcip
order by val desc;
3. Select all the common IPs between the two tables; Careful with large
databases
select t1.srcip from t1,t2 where t1.srcip=t2.srcip; OR
create table commonsrcip as select t1.srcip from t1,t2 where t1.srcip=t2.srcip;

All the commands can be run in batch mode.
Syntax: # mysql < ‘commands.txt’ > ‘outputfile.txt’
Table 4-5: Some SQL commands used during analysis

