
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Subject: SANS – GIAC Certified
Intrusion Analyst (GCIA)

Practical Assignment V3.3

date: June 3rd, 2003

 Final - V1.5 from: Loic Juillard
AT&T Labs
858-795-5554
loic@att.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 INDEX

 INDEX.. 2

REVISIONS .. 3

AUTHOR(S) ... 4

PART 1: STATE OF INTRUSION DETECTION... 5

1 METHOD AND APPARATUS PRESENTATION ... 5
1.1 What is a virtualized architecture? .. 5
1.2 What is the use for a virtual architecture? ... 5
1.3 The Inkra IDS module: IDP (Intrusion Detection and Protection) 5

2 HARDWARE OVERVIEW .. 6
2.1 The Inkra 4000 .. 6

2.1.1 The service processing module (SPM) ..7
2.2 Embedded software architecture... 7
2.3 Center point management suite .. 8

3 PLATFORM TESTING .. 9
3.1 Troughput.. 9
3.2 Test results and analysis... 10
3.3 Feature testing: detection and alarming .. 13

3.3.1 Detection..13
3.3.2 Packet reconstruction ...15

3.4 Reports.. 16
4 CONCLUSION.. 16
5 RESOURCES AND REFERENCES .. 17

PART 2: NETWORK DETECTS .. 18

PART 3: ANALYZE THIS... 44

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 REVISIONS

Authors Release date Comments

Loic Juillard 06/03/03 Initial document

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 AUTHOR(S)

Author Phone Email Role Sections
Loic Juillard 858-795-5554 juillal@attens.com Student

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 PART 1: STATE OF INTRUSION DETECTION
Virtualized IDS technology

1 Method and apparatus presentation

1.1 What is a virtualized architecture?

“In all large corporations, there is a pervasive fear that someone, somewhere is

having fun with a computer on company time. Networks help alleviate that fear.” This
famous quote from John C. Dvorak illustrate today’s telecommunication industry dilemma.
As the scale of our IP business increase, the complexity to manage its resources increases
exponentially. At this early stage of the networking technology: scaling an IP local or wide
area network remains a challenge.

As of today, most of the networking equipment remains dedicated to canonical

functions; distinct equipment are specialized into routing, switching and analyzing the traffic
into a single local area network. Each one of those devices has to operate within their own,
isolated context in a single deployment instance. This architecture translates into overhead
costs for purchasing and operating the overall system and high troubleshooting complexity
offset by more elaborated support platform to give a uniform front end view to
heterogeneous equipment. As the scale of our offers increase automation becomes critical
to sustain a quality of services and preserve the foundations of our business.

1.2 What is the use for a virtual architecture?
Inkra claims to be able to virtualizes and integrate multiple IP services including

firewall, load balancers, SSL accelerators, VPN, and web accelerators in a single system
with the integrity of dedicated appliances and economic and operational benefits of a single
system. The aim of this document is to assess Inkra’s IDP solution in term of features and
performance. Our test will focus on test Inkra’s ability to analyse traffic at high speed and
determine the limiting factor of this type of architecture. We will also perform a basic alarm
detection and stream reassembly testing to prove Inkra’s IDP detection capabilities.

1.3 The Inkra IDS module: IDP (Intrusion Detection and Protection)

The Inkra IDP is a based on the implementation of the famous network based IDS

“snort”. The IDP supports all the snort functionalities as a virtual service module:
• Ships with 1600 predefined attack signatures
• New signatures provided by CERT in Snort format for low maintenance cost
• Includes port-scan anomaly detection to detect network reconnaissance

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Provides a GUI based management through Inkra’s Center Point
management suite

 The IDP VSM works by collecting information at strategic vantage points,

typically behind a firewall, between the front end and the server farm. The IDP analyzes the
information against criteria defined in its security policies, and if an attack is detected may
initiate a number of responses, including:

• Logging the attack
• Alerting by generating a system alarm
• Preventing intrusion by taking an action such as dropping the session

Security policies are applied to interfaces. The security policy of an interface is made

up of a collection of rules. These rules specify the criteria against which incoming traffic is
to be matched, as well as the kind of logging and alerting that is to take place, and the kind
of action that is to be taken. Rules specify the source and destination IP addresses that are
to be matched in packets. In addition, rules are based on attack signatures, which specify
in detail the attributes of the traffic that is to be watched for. Attack signature information
includes service (protocol and port) information, the direction of traffic flow, packet options
(such as TCP flags, payload size, or protocol anomalies) to watch for. The IDP VSM can
also search within the contents of packet payloads, examining them for well-known patterns
of attack. This allows you to spot dangerous payloads before they reach their destination.
For most of the known attacks, the signatures are provided by the CERT in the snort format
and can be imported directly in the IDP VSM. The user can also customize the signatures
for customized signature monitoring.

 As a virtual module, Inkra’s IDS implementation cannot be setup in “tapped” mode,
the IDP module is in-line with the rests of the modules which can be a major issue should
the IDS have a vulnerability.

2 Hardware overview

2.1 The Inkra 4000

The Inkra 4000 chassis contains 14 front-access vertical slots. The center two slots

are reserved for management cards (Switch Management Modules). The remaining twelve
slots are universal slots, and can be used for any combination of I/O and processing cards,
provided that at least one I/O module and one processing module are installed. Switch
Management Module slots are numbered X1 and X2. The universal slots are numbered 1
through 6, and 9 through 14.

Cards are installed from the front of the chassis. Cable management for the cards is

accomplished by means of cable management loops located above the hardware module
slots. A standard 19” rack can hold up to two chassis and power supply units.

Inkra provides three types of blades:
- IOM: network interfaces

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- SMM: Switch management module, managing the IP traffic switching
- SPM: service processing module: providing processing power for the virtual service

modules
All the blade are interconnected by a linear bus capable of 80Gbs of traffic

2.1.1 The service processing module (SPM)

The service processing module provides processing power to the VSM. Each

service processing module contains several service processing elements. In the current
version each SPM contains 2 SPEs. Each SPE contains a VRP, memory, 1 CPU and
cryptographic acceleration. Each SPE are involved in any of the virtual service module
provisioned on the chassis. The processing power capacity of the SPM is allegedly equally
distributed on all the SPEs available in the chassis and is therefore proportional to the
number of SPEs.

The virtual rack processor is the central element in the SPM. The VPP coordinates
the different elements on the SPM and decides on which path the data will follow to perform
the requested operations. Currently, data can follow two distinct paths on the SPE:
- Slow path: the packet are processed by the CPU for further analysis
- Fast path: the packet is directly sent on the next hop interface and does not need any
advanced analysis.

The choice of path is directly conditioned by the type of VSM used within the VR.

As we mentioned earlier, the data can be processed at the SPE level following two
different paths. Once the packet reach the virtual rack processor, if the source IP,
destination IP, source port and destination port are already known and if the VR
provisioned does require any extensive analysis the data will be able to follow the fast path
to lower the latency. On the other hand, if the packet does not meet one of the previous
requirements, the packet will be sent in the slow path and be handled by the CPU. You will
find bellow a diagram with the different steps on each path.

2.1.2 Switch management module (SMM)

The main function of the switch management module is to coordinate all the chassis
function. The SMM also provides a 100BASE-TX management interface for in-band
connection and data exchange with the central point server as well as two Card bus
readers for flashcard removable storage. The SMM are the only modules to have a
dedicated port labeled X1 and X2 on the chassis. The chassis can handle up to two
redundant SMM in a hot-standby mode. A single SMM is enough for the chassis to function
at maximum capacity.

2.2 Embedded software architecture

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Inkra is using a layered architecture divided between the hardware and software. Most
of the basic network functionalities are being handled at the ASIC level. The advanced
processing of the data are being done on the SPE with a 2 tier software architecture with all
the common function implemented in a library and specific functionalities programmed at
the upper level.

Inkra embedded software architecture

Unlike dedicated equipment, the Inkra 4000 OS does not consider a packet as a

canonical entity. Instead, the OS uses the notion of flows to manage the traffic. A flow of
data is characterized by the source IP address, destination IP address, source port and
destination port and is assigned based on a static hashing of the 4 parameters to an
existing SPE.

2.3 Center point management suite

2.3.1 CLI

The Inkra CLI is organized into a number of contexts, so that you can work with individual
devices, organizations, templates, virtual racks, and Ops Link Adaptors. Inkra CLI contexts
provide a structure within which families of commands can be grouped, and where you can
work in the context of certain specified information in isolation from other system
information.

Each Virtual Service Module has its own context, which supports its own command

set. Inkra CLI is comparable to CISCO CLI in its functionalities and structure: each context
has two modes of operation: exec and configuration. The user can also recall past
commands and complete partial commands automatically. The CLI is accessible via SSH
or Telnet on the CPS server or directly to the VSS. All the command performed are logged
and reported in the audit file.

2.3.2 Web administration

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The web administration portal is a central administration platform and behaves as a jump
server for all the virtual rack installs within a domain. Each user is created with access
privileges centrally on the system and authenticated via password or remote authentication
system (radius or LDAP). Each action such as configuration change or passive operations
are nominative recorded in a central database and can be accessed at any time to audit
past or ongoing operations.

The Web interface gives a graphical access to each VSS parameters, context of the CLI
and status as well the provisioned, pending provisioning and deactivated virtual racks. Like
the CLI the access is authorized on a command basis.

It is possible to restrict the access to each component on a user or organization basis down
to the virtual service module
level.

3 Platform testing

Inkra’s IDP version 1.1.1 is the very first public version of their IDS. Our test will be

lead in two different parts. We will first assess the equipment intrinsic performances. We
will next test the system implemented features and in particular the frame reassembly
process.

3.1 Troughput

Multi Stream P erformanc e Analy sis Sys tem
Port

Lay er

Res
e t

F an

Li n
k

Pow
e r

Ne Com
S Y S T E M S

2

10/100 Ether net SmartM odule

1 2 3 4 5 6 7 8

L AN-3 10 0A

TR IG / CO L

TX/ PA US E

R X/E RR OR

D U PLEX/ SP EED

1000Bas e-SX Sm artM odule

1 2

L AN-3 20 0A

TRI G/ PA US E

TX/ IN T

R X/E RR

LN K

S tatu
s

Smar Bi s 600

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

IDP testing physical architecture

Inkra’s VR will be setup as followed:

VR architecture

Note that the VR will be setup with a burst rate of 4 which means that the VR will use all the
resources available on the chassis to process the data. The resource management system
described above will therefore disregard any SLA setup in the Hardwall parameters.

3.2 Test results and analysis

Inkra claims being able to provide IDS services at “multi-gigabit” speed with close to

real time logs. Snort has been known to not be an efficient at high speed mostly because of
the numerous false positive the system alarmed on and the resources (processing power
and memory) required to reassemble and process ISO/OSI layer 7 data at gigabit speed.

We will start with the signature number testing to assess the performance and how

resourceful is the IDS. We will next perform a transactional throughput testing with the full
rule base to determine the behavior on normal and high throughput conditions.

For this test we used Whitehats signature file available here:
http://www.whitehats.com/ids/vision.conf.gz
(Tagged with the following export date: “Export date: 20010821.1453”)

Our choice of signature file was motivated by the signature file structure itself. The

whitehats signature file is composed of 544 signatures structured as followed:
- Signatures 1 -> 175 specific exploits with content check
- Signatures 176 -> 254 specific exploits without content check
- Signatures 255 -> 485 vulnerabilities with content check
- Signatures 486 -> 544 vulnerabilities without content check

($INTERNAL and $EXTERNAL will be setup as any to force each rule to be

executed)

By stripping the signature file by the bottom we will be able to observe how

impacting content checking is on the maximum throughput.
For the maximum throughput test we will setup a 3 way handshake TCP connection

on port 80 on the Smartbits, transfer 1460bytes of data and close the TCP connection with
a standard FIN/ACK. The throughput is the amount of data that have been transferred
trough the Inkra IDP. We will assume that we reached the limit when the data loss is higher
than 5% of the total data sent.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

As we anticipated, the IDP is very resources intensive. On four SPEs and with a

burst rate set to 4 (maximum capacity available) the Inkra chassis was not able to push
more than 45mbs of traffic with 526 signatures. Most of the processing power is used to
perform packet content checking and snort pre-processor reassembly. Surprisingly, the
content checking does not seem to have much effect on the IDP, we were expecting to see
a tremendous throughput improvement when we removed the content based rules. Content
matching and processing power does not seem to be the limiting factor here.

With a burst set to 0, the IDS with 516 rules would not have been able to use more

than 10mbs of traffic. Most of the performance issues we are seeing are due to the fact that
Inkra has not implemented the snort analysis signature ordering optimization. Instead, each
packet is analyzed and compared against each entry in the signature file. We will now
determine what resource is maxed out first. We will determine bellow the limiting factor.

For this test we will analyze the behavior of the IDP when the max throughput is

reached for an HTTP connection with 516 signatures. A client located on the external side
of the IDP will attempt to generate as many connections as it can to an HTTP server in the
internal segment in 1 minute. The HTTP server will reply with an incremental amount of
data. The bandwidth shown on the vertical axis represents the server side bandwidth only.
The client request is not included here.

Note that the Smartbits has been tested for more than 500mbs of bandwidth and is

therefore not the limiting factor here.

0

50

100

150

200

250

67 116 220 284 296 437 516

Number of signatures

T
ro

ug
hp

ut
 (

m
bs

)

Troughput

Poly. (Troughput)

0

100

200

300

400

500

600

700

800

900

67 116 220 284 296 437 516

Number of signatures

L
at

en
cy

 in
 u

se
c

min

avg

max

IDS - Max throughput vs. number of
signatures

IDS - added latency per number of
signature

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0

5

10

15

20

25

0.01 0.0
3

0.06 0.0
8

0.11 0.13 0.1
6

0.18 0.2
1

1.23 2.2
6

3.28 4.3
1

5.3
3

6.3
6

7.3
8

20.2
1

12
1.23

Se rver obje ct size (Mbyte s)

T
o

ta
l T

h
ro

ug
h

pu
t

(m
bp

s)

Total Throughput (bps) (Svr ACL.A)

Poly. (Total Throughput (bps) (Svr ACL.A))

IDS – full HTTP data transfer server throughput with 526 signatures

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0.01
0.03

0.06
0.08

0.11
0.13

0.16
0.18

0.21
1.23

2.26 3.2
8

4.31
5.33

6.36 7.3
8

20.2
1

121
.23

Server object size (Mbytes)

T
ot

al
 T

hr
ou

gh
pu

t
(m

bp
s)

Total Throughput (bps) (Svr ACL.A)

Poly. (Total Throughput (bps) (Svr ACL.A))

IDS – full HTTP data request client throughput with 526 signatures

As we see in the HTTP server graph, the maximum bandwidth for this test is around

20mbs, way lower than what we found in the first test. As we mentioned in the hardware
description, Inkra distributes the traffic based on the hash on the source IP address,
destination IP, source port and destination port. In our test, since we used a single
connection, only 1 SPE at the time was processing traffic, decreasing the overall
performance.

The HTTP server side graph can be separated in three parts note that the data in

the horizontal axis are not linear):
- 0 to 2 Mbytes of data where the bandwidth used is linear
- 2Mbytes and above: the IDP reached the maximum bandwidth, the CPU (gathered

via the CLI: show cpu) shows a 100% utilization.

The processing power is the limiting factor for this test. The CPUs were maxed out

at 20 Mbs. Since the Inkra 4000 chassis is blade based and that the flow are equally
distributed across each SPE, we can assume that adding more SPM to the chassis would

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

improve the performances. With 12 SPM the chassis would therefore be able to handle
240Mbs of traffic with 516 signatures.

Unfortunately, our equipment limited the test to a single IP. A real life test would

involved more source and destination IP addresses. The memory could be the limiting
factor then.

We will now examine the behavior of the IDP when the limit is reached. We will

setup the Smartbits to generate TCP connection (normal 2 way handshake) on port 80 to
the internal side of our architecture and attempt an HTTP request the server will then send
40bytes of data back to the client to signify as a reply. We will measure the amount of
HTTP reply received vs. the number of HTTP reply sent.

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

1000 3003 5000 6993 9009 10989 12987 14925 16949 18868

Connection per second

%
co

nn
ec

tio
n

su
cc

es
sf

ul
l

Percentage of Connections
Established

Percentage of HTTP
Replies Received

IDS – full HTTP data request client throughput with 526 signatures

 As we can see in this graph, when the IDS resources are maxed out, the

established connections (green on the graph) are affected by the lack of processing
resources. We noticed that at no point the VR did not generate an alarm when the
resources of the SPEs were maxed out. Instead the ISP keeps trying to analyze new flows
even if no resources are available.

3.3 Feature testing: detection and alarming

3.3.1 Detection

Next we will test the IDS detection capabilities. We will generate various types of

attacks from our Linux RedHat 7.0 client running fragroute v1.2 to a linux RedHat 7.0
server running apachev1.3.38. For each attack we will first record if the attack was detected
properly by checking for false positive, false negative and misleading alarms. Next we will
analyze the logs to see if it contains enough data for further analysis. Since Inkra’s IDP is
based on snort we will not perform an extensive IDS detection accuracy. We will perform

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

several basic test: Syn” scan, “Syn Fin” scan, X-mass tree scan to verify the IP/TCP header
and content analysis and an advanced check issuing a common IDS evasion technique
using traffic fragmentation.

We will be using the same signature file used in the performance analysis.

� Syn scan:

We used for this test synscan, a popular tool to scan ip addresses with in its early
version a static IP_ID of 19104 making it easily detectable on an IDS.

Warning
2003/03/24
16:42:56

SPE
11/1

Attack detected. [**] [258][Inkra ID:: 0]IDS521/scan_probe-
Synscan-Portscan-ID-19104 [**] [Classification:][Priority: 1]
03/24-16:42:56.000000 10.1.1.2:51128 -> 10.1.2.2:80 TCP
TTL:9 TOS:0x0 ID:19104 IpLen:20 DgmLen:44 ******S* Seq:
0xD00A04E5 Ack:0x0 Win: 0x2710 TcpLen:24 2F 20 00 / .

The IDS detected the attacks properly. Note that the content of the packet is displayed

in the log. This feature is very interesting for further forensic analysis and accurate
correlation. Based on these logs it is possible to perform additional off line analysis on the
packet (typically by a correlation tool like Intellitactics) to filter any potential false positive,
passive OS fingerprinting, alarm reduction…

� Syn-fin scan:

We scan our server using hping2 2.0.0 RC2 with following command line:

Hping2 –S –F 10.1.2.2 –p 80 –d 90

Warning
2003/03/25
8:49:17

SPE
4/1

Attack detected. [**] [499][Inkra ID:: 0]IDS198/scan_SYN
FIN Scan [**] [Classification:][Priority: 1] 03/25-
08:49:17.000000 10.1.1.2:1025 -> 10.1.2.2:80 TCP TTL:63
TOS:0x0 ID:46566 IpLen:20 DgmLen:110 ******SF Seq:
0x1E240 Ack:0x0 Win: 0x2710 TcpLen:20 00 00 00 00 00
00 FF FF FF FF FF FF 00 00 00 00 00 09 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 03 20 01 00 02 00 00 00 17 DE 41A 44 CA 21
BE BB 35 20 D.!..5

 The IDS detected and logged the attack properly.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.3.2 Packet reconstruction

Attackers usually use a combination of techniques to get around the IDS detection

engine. For this test we choose a basic signature involving the content of a packet (snort
style signatures):

alert ICMP $EXTERNAL any -> $INTERNAL any (msg: "IDS152/icmp_Ping

BSDtype"; itype: 8; content: "|08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17|"; depth:
32;)

We then used a packet crafter (hping2) on the client side and generated 8bytes

segmented ICMP traffic towards our internal server with fragrouter. The IDS detected
successfully the “08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17” pattern in the ICMP
payload event though the payload was fragmented into 2 separate packets. The IDS is able
to reassemble up to 100 IP packets within a single connection.

.

Warning
2003-03-26
11:35:24.614

SPE
4/2

Attack detected.
[**] [84][Inkra ID:: 0]IDS152/icmp_Ping BSDtype [**]
[Classification:][Priority: 1]
03/26-11:35:24.000000 10.1.1.2 -> 10.1.2.2
ICMP TTL:63 TOS:0x0 ID:0 IpLen:20 DgmLen:84 DF
Type:8 Code:0 ID:42357 Seq:512 ECHO
08 00 34 20 A5 75 02 00 64 A1 80 3E 4C 87 00 00
..4 .u..d..>L...
08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
................
18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27
........ !"#$%&'
28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37
()*+,-./01234567
00

We noticed that the packet did not reach the server. The VR dropped the packet

because the fragment was too small:

Warning
2003/03/26
12:04:24

SPE
4/2

IP fragment attack: Interrior Fragment Too Small. Src
10.1.1.2; Dst 10.1.2.2; Protocol 6

 The Inkra SPE rejected the packet because the fragment was too small. The vendor
indicated later on that fragments smaller than 96bytes would be rejected internally and that
the user could not change this behavior.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.4 Reports

In addition to the alarms listed above, the IDP via the central point server provides a
GUI access to the IDP configuration at the VSM level. The interface allows the user to
manage:

• Signatures (addition, removal, enable, etc…)
• attack alert level
• Log configuration
• scanning detection parameters
• monitoring addresses (internal segments, external segments, etc …)

The central point server access also provides graphical access to monitoring data:

• Number of attacks per category
• Number of attacks per interfaces
• Number of attacks per policy
• Amount of traffic dropped

 • Amount of traffic analyzed

4 Conclusion
Due to the performance issues we have seen, the IDS would not be able to operate

as a bastion IDS (IDS installed in front of a firewall on the WAN interface). The Inkra IDP
VSM would perform optimally in conjunction with a firewall and with a signature list
restricted to the traffic allowed through the firewall. The IDS will then perform the signature
matching only on allowed inbound traffic rather than checking all the incoming traffic. This
architecture is used today by our customers and is part of the standard offer.

The IDS needs to be configured in-line with the rest of the services, no tapping is

allowed here. The IDS impact the traffic negatively by adding a significant amount of
latency and jitter on the monitored traffic.

On the other hand the IDS provided an efficient GUI and graphical reports on the

alarms generated.

IDS
Rules in SNORT format for low cost rules
addition
Good logging (snort)
Good alarming (snort)
Good administration interface

Performance
Poor performance as a front end IDS: need
to be behind a firewall
Traffic latency is being affected by the IDS
(latency multiplied by 5 compared to layer 3
switching)

The following comparative analysis displays the throughput results for each platform with
approximately same testing parameters with 250 rules (see references for data source):

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Inkra IDP with 12 SPM Ipenforcer 5000
1500Gbs* 2Gbs

* our test showed 250mbs with 230 rules and 2SPMs. Interpolated for 12SPM assuming a linear growth.

5 Resources and references

[1] Network World Fusion, 05/12/03, “Why IPS products haven't taken off” - Ellen Messmer
http://napps.nwfusion.com/weblogs/security/002755.html

[2] The Tolly group, January 2002, “iPolicy Networks ipEnforcer 5000”
http://www.ipolicynetworks.com/pdf/tolly_report.pdf

[3] The Tolly group, 8/2/2002, “Inkra Networks Corp. Inkra 4000 Virtual Service Switch
HardWall Technology Evaluation”
http://www.tolly.com/DocDetail.aspx?DocNumber=202145

[4] Miercom, December 2002, “SecureNet 7145C benchmark”
http://www.miercom.com/dl.html?fid=20021206&type=report

[5] computer.org, 1996, Nicholas J. Puketza, Kui Zhang, Mandy Chung, Biswanath
Mukherjee, Ronald A. Olsson, “A Methodology for Testing Intrusion Detection Systems”
http://www.computer.org/tse/ts1996/e0719abs.htm

[6] Neohapsis, July 2002, ISS RealSecure 7.0 IDS testing
http://osec.neohapsis.com/results/nids/realsecure-7.0-08.15.2002/index.html

[7] Neohapsis, July 2002, IntruVert Intrushield 0.97.12
http://osec.neohapsis.com/results/nids/intrushield-0.97.12-08.17.2002/index.html

[8] Neohapsis, February 2003, Netscreen IDP-100 2.0p2-2
http://osec.neohapsis.com/results/nids/intrushield-0.97.12-08.17.2002/index.html

[9] Neohapsis, May 31 2003, NFR NID-310 3.2
http://osec.neohapsis.com/results/nids/intrushield-0.97.12-08.17.2002/index.html

[10] Neohapsis, Nov 11 2002, Sourcefire NS3020F 2.6.0
http://osec.neohapsis.com/results/nids/sourcefire-ns3020f-2.6-06.25.2003/index.html

[11] ISECOM, OSSTMM - Open Source Security Testing Methodology Manual
http://www.isecom.org/projects/osstmm.htm

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 PART 2: NETWORK DETECTS
Virtualized IDS technology

Attack number 1:2002.5.29 – A TCP de-synchronization attack

1. Source of trace: incidents.org URL: www.incidents.org/logs/raw/2002.5.29

We will focus on the traffic to and from 46.5.180.250. The rests of the logs will be
used to determine the network topology and equipment roles. First we will try to determine
where the IDS is located on the network. The following command will help us determine the
MAC address on each side of the IDS:

Both OUI (Organizationally Unique Identifier: first three-octets of the MAC address)

are assigned to CISCO. However, we have not been able to determine the exact interface
model associated with the OUI. Based on those MAC we determined that the IDS was
probably tapped between two CISCO routers 00:03:e3 being the uplink. 00:00:0c would
then be the next hop to reach 46.5.180.250. (see diagram bellow).

Let’s now take a look at 46.5.180.250. To make things easy we will name this

equipment ‘C’. In all the traces, P seems to be a client trying to download information from
various servers on the port (destination port) 80/TCP (port commonly used for HTTP). As
we examined the content of the packets we noted that the HTTP “User-agent” tag varied
between the sessions:

- in the frame 220 the client was listed as MSIE5.5; Windows 95
- in the frame 300 the client was listed as MSIE 5.5; windows NT 5.0

> Tcpdump -neqr 2002.5.29 | cut -d ' ' -f2,3 | sort –n | uniq
00:00:0c:04:b2:33 00:03:e3:d9:26:c0
00:03:e3:d9:26:c0 00:00:0c:04:b2:33

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 We also noted that most of the packet logs were targeting 64.154.50.51 with a
different hitbox.com cookie number (CTG=XXXXXX) in a short period of time (less than
5min.). Based on those observations, we guessed that P is actually an HTTP proxy (or
SOCK server) used by an organization to get access to the internet. Note that since the
user-agent tag is easily “spoofable” this last information might not be true. We will call ‘S’
the remote server.

As we tried to determine the type of proxy server using passive fingerprinting
technique, we saw that within a same TCP session packets had very distinct parameters.
The first category of packets (category 1):

- had the identification number set
- Had the DF bit set
- A TTL of 124
- A window size of 17520

Frame 220 (629 bytes on wire, 629 bytes captured)
Ethernet II, Src: 00:00:0c:04:b2:33, Dst: 00:03:e3:d9:26:c0
Internet Protocol, Src Addr: 46.5.180.250 (46.5.180.250), Dst Addr: 209.225.0.6 (209.225.0.6)
Transmission Control Protocol, Src Port: 64132 (64132), Dst Port: http (80), Seq: 494238966, Ack:
1465705210, Len: 575
 Hypertext Transfer Protocol
 GET /site=72385/size=468060/bnum=%n/bins=1/rich=0 HTTP/1.1\r\n
 Request Method: GET
 Accept: */*\r\n
 Referer: http://www.accuweather.com/adcbin/isight_video?nav=video&partner=yahoo&city=nyc\r\n
 Accept-Language: en-us\r\n
 Accept-Encoding: gzip, deflate\r\n
 User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows 95)\r\n
 Host: servedby.advertising.com\r\n
 Connection: Keep-Alive\r\n
 Cookie: 170.129.50.120=-e11e,3d128fa4-; 28709328=-d417,3d128f89-; 84218867=-e0ca,3d128f9c-;
51412440=-e11e,3d128fa1-; %n=-c8ae,3d1d1f08,,-; ACID=ee820010159030120002!;
BASE=kPL/qgbnv+rs+MkUrvcWaVDbZMEnOWlavsB+kwL1h+mPbN2q4WC2nTHBOAv4JIF!\r
 \r

Frame 300 (524 bytes on wire, 524 bytes captured)
Ethernet II, Src: 00:00:0c:04:b2:33, Dst: 00:03:e3:d9:26:c0
Internet Protocol, Src Addr: 46.5.180.250 (46.5.180.250), Dst Addr: 208.184.29.90 (208.184.29.90)
Transmission Control Protocol, Src Port: 61729 (61729), Dst Port: http (80), Seq: 2472303082, Ack:
203814497, Len: 470
Hypertext Transfer Protocol
 GET /adi/N3139.NY_Times/B987199;sz=550x550;ord=%%GMTTIME%%? HTTP/1.1\r\n
 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword, */*\r\n
 Referer: http://www.nytimes.com/ads/beth/CarrotInk.html\r\n
 Accept-Language: en-us\r\n
 Accept-Encoding: gzip, deflate\r\n
 User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)\r\n
 Host: ad.doubleclick.net\r\n
 Connection: Keep-Alive\r\n
 Cookie: id=800000152321a27\r\n
 \r\n

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

According to passive fingerprinting table, this system would be identified as a

Windows 2000 server. However, the second category of packet has (category 2):
- No identification number set
- did not have a DF bit set
- A TTL of 240
- A window size of 32120 or 33580

Frame 248 (278 bytes on wire, 278 bytes captured)
Ethernet II, Src: 00:00:0c:04:b2:33, Dst: 00:03:e3:d9:26:c0
Internet Protocol, Src Addr: 46.5.180.250 (46.5.180.250), Dst Addr: 64.154.80.51 (64.154.80.51)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 Total Length: 264
 Identification: 0x3195 (12693)
 Flags: 0x04
 Fragment offset: 0
 Time to live: 124
 Protocol: TCP (0x06)
 Header checksum: 0x5e94 (incorrect, should be 0x588e)
 Source: 46.5.180.250 (46.5.180.250)
 Destination: 64.154.80.51 (64.154.80.51)
Transmission Control Protocol, Src Port: 61524 (61524), Dst Port: http (80), Seq: 2047509814, Ack:
4230865524, Len: 224
 Source port: 61524 (61524)
 Destination port: http (80)
 Sequence number: 2047509814
 Next sequence number: 2047510038
 Acknowledgement number: 4230865524
 Header length: 20 bytes
 Flags: 0x0018 (PSH, ACK)
 Window size: 17520
 Checksum: 0x5ff6 (incorrect, should be 0x59f0)
Hypertext Transfer Protocol
 Data (224 bytes)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Some systems (like Linux) use an IP_ID of 0 in many cases where the "Don't

Fragment" bit is not set. So this system might also very well be a Linux system.

2. Detect was generated by:
Detect was generated by snort stream4 pre-processor. As we examined Stream4 alert
message, we determined that the alert was likely:
“(spp_stream4) Possible RETRANSMISSION detection”

It might also be:

Frame 247 (349 bytes on wire, 349 bytes captured)
Ethernet II, Src: 00:00:0c:04:b2:33, Dst: 00:03:e3:d9:26:c0
Internet Protocol, Src Addr: 46.5.180.250 (46.5.180.250), Dst Addr: 64.154.80.51 (64.154.80.51)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x10 (DSCP 0x04: Unknown DSCP; ECN: 0x00)
 Total Length: 335
 Identification: 0x0000 (0)
 Flags: 0x00
 Fragment offset: 0
 Time to live: 240
 Protocol: TCP (0x06)
 Header checksum: 0x0000 (incorrect, should be 0x55cc)
 Source: 46.5.180.250 (46.5.180.250)
 Destination: 64.154.80.51 (64.154.80.51)
Transmission Control Protocol, Src Port: 61474 (61474), Dst Port: http (80), Seq: 2787956848, Ack:
2013235585, Len: 295
 Source port: 61474 (61474)
 Destination port: http (80)
 Sequence number: 2787956848
 Next sequence number: 2787957143
 Acknowledgement number: 2013235585
 Header length: 20 bytes
 Flags: 0x0018 (PSH, ACK)
 Window size: 33580
 Checksum: 0x0000 (incorrect, should be 0x07b6)
Hypertext Transfer Protocol
 Data (295 bytes)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

"(spp_stream4) WINDOW VIOLATION detection"

Those alarms are turned off by default on the preprocessor.

We used tcpdump and ethereal to perform the analysis.

3. Probability the source address was spoofed:

Considering the first observation we did in the first section, we can assume that P
address has been spoofed. As we mentioned earlier we have within each session two
types of packets, the question is: which ones (if any) are really coming from C? To
determine this we will need to find packets with erroneous parameters or anomalies. Let’s
assume that we are using Ethernet (very common) as a data link mechanism. The frame #3
(a category 2 packet) is telling us that the packet had 4434 bytes on the wire, virtually
impossible considering that the maximum size for an Ethernet Frame is 1500bytes (unless
the network uses Gigabit Ethernet jumbo frames limited to 9000 bytes). We also noticed
that we had several occurrences of duplicated data: a category 1 packet flowed
immediately by a category 2 packet (215 and 216, 217 and 218, 300 and 301…). Our
guess is as this point that the category 2 (Linux server) packets are being sent from a
reactive system after a category 1 (windows server). Our hypothesis is that a
compromised/evil system is sending spoofed packets (category 2 packets) based on the
information/state of the real client C. We will name the system sending the spoofed
category 2 packets ‘A’. Let’s now try to answer to the Why?

4. Description of the attack:
The attack consists in a set of ACK packet sent by and internal system to remote system
with bogus sequence and ACK number.

A analysis of the packet show that within a same session the identification number
the DF bit set, the TTL and window parameters belong to what appears to be two distinct
systems.

5. Attack mechanism:

The first question we will answer is “Stimulus or response”? According to the pattern we
observed above, we are looking at a response from A to a stimuli sent by P.

Bellow is the traces of 4 packets belonging to the same TCP session (same source IP/port
same destination IP/port in less than 30s interval):

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 We will now describe in describe the attack as seen in the logged packets using the
following layout:

Source -> destination: Seq(X), ACK Seq(Y), bytes of data sent [Flags]
Where:

- Source: the source system
- Destination: the destination system
- Seq(X): the initial sequence number for the source
- ACK Seq(Y): the ACK number

Frame 1 (1514 bytes on wire, 1514 bytes captured)
 Arrival Time: Jun 28, 2002 17:00:55.134488000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 1514 bytes
 Capture Length: 1514 bytes
Ethernet II, Src: 00:00:0c:04:b2:33, Dst: 00:03:e3:d9:26:c0
Internet Protocol, Src Addr: 46.5.180.250 (46.5.180.250), Dst Addr: 64.154.80.51 (64.154.80.51)
Transmission Control Protocol, Src Port: 61013 (61013), Dst Port: http (80), Seq: 555149661, Ack:
1599014187, Len: 1460
Hypertext Transfer Protocol
 Data (1460 bytes)

Frame 2 (971 bytes on wire, 971 bytes captured)
 Arrival Time: Jun 28, 2002 17:00:55.244488000
 Time delta from previous packet: 0.110000000 seconds
 Time relative to first packet: 0.110000000 seconds
 Frame Number: 2
 Packet Length: 971 bytes
 Capture Length: 971 bytes
Ethernet II, Src: 00:00:0c:04:b2:33, Dst: 00:03:e3:d9:26:c0
Internet Protocol, Src Addr: 46.5.180.250 (46.5.180.250), Dst Addr: 64.154.80.51 (64.154.80.51)
Transmission Control Protocol, Src Port: 61013 (61013), Dst Port: http (80), Seq: 1599022947, Ack:
555149661, Len: 917
Hypertext Transfer Protocol
 Data (917 bytes)

Frame 3 (4434 bytes on wire, 1514 bytes captured)
 Arrival Time: Jun 28, 2002 17:00:55.344488000
 Time delta from previous packet: 0.100000000 seconds
 Time relative to first packet: 0.210000000 seconds
 Frame Number: 3
 Packet Length: 4434 bytes
 Capture Length: 1514 bytes
Ethernet II, Src: 00:00:0c:04:b2:33, Dst: 00:03:e3:d9:26:c0
Internet Protocol, Src Addr: 46.5.180.250 (46.5.180.250), Dst Addr: 64.154.80.51 (64.154.80.51)
Transmission Control Protocol, Src Port: 61013 (61013), Dst Port: http (80), Seq: 555149661, Ack:
1599021487, Len: 4380
Hypertext Transfer Protocol
 Data (1460 bytes)

Frame 4 (2431 bytes on wire, 1514 bytes captured)
 Arrival Time: Jun 28, 2002 17:00:55.354488000
 Time delta from previous packet: 0.010000000 seconds
 Time relative to first packet: 0.220000000 seconds
 Frame Number: 4
 Packet Length: 2431 bytes
 Capture Length: 1514 bytes
Ethernet II, Src: 00:00:0c:04:b2:33, Dst: 00:03:e3:d9:26:c0
Internet Protocol, Src Addr: 46.5.180.250 (46.5.180.250), Dst Addr: 64.154.80.51 (64.154.80.51)
Transmission Control Protocol, Src Port: 61013 (61013), Dst Port: http (80), Seq: 555149661, Ack:
1599023864, Len: 2377
Hypertext Transfer Protocol
 Data (1460 bytes)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- bytes of data sent: the amount of data sent in bytes
- Flags: the flags used (e.g. [PSH, ACK])

The attack would be represented as followed:
1: A -> S: Seq(S), ACK Seq(C), 1460 bytes of data [PSH, ACK]
2: C -> S: Seq(C)+6*1460, ACK Seq(S), 917 bytes of data [PSH, ACK]
3: A -> S: Seq(S), ACK Seq(C)+6*1460+5*1460, 4380 bytes of data [PSH, ACK]
4: A -> S: Seq(S), ACK Seq(C)+ 6*1460+5*1460+1460+917, 2377 bytes of data

[PSH, ACK]

 We also noticed that the checksum for packet coming from A is set to 0. The
REAME file located in the incident.org/raw/logs directory specified that checksums where
altered by the “anonymazer” process. We can’t tell for sure if the original packets had a
checksum set to 0.

 We believe the traffic seen here is only the tip of the iceberg. A is attempting to
manipulates the ACK and sequence numbers to affect P’s traffic.

 Let’s now go deeper into the analysis. As we mentioned earlier, the traces show only
the packets that violated stream4 reassembly rules. Valid packets have not been logged
here. We will now try to reconstitute the missing parts and determine the attack mechanism
assuming that the logged packets are actually not being dropped.

 Since S is a server (hitbox.com web server) and C is a client, we can assume that S
and C can establish a connection without any problem.

After C and S completed a successful 4 way handshake, let’s try to reconstitute the
complete transaction. We will color in red the entries present in the logs and in blue the
entries we reproduced based on TCP/IP data transfer mechanism.

1: S -> C: Seq(S), 1460 bytes of data
2: A -> S: Seq(S), ACK Seq(C), 1460 bytes of data
3: C -> S: Seq(C), ACK Seq(S)+1460, 1460 bytes of data (Corrective ACK not received yet)
4: S -> C: Seq(S)+1460, ACK Seq(C)+1460 (Corrective ACK because wrong ACK in #1: #3
is discarded)
5: C -> S: Seq(C)+1460, ACK Seq(S)+1460, 1460 bytes of data (Corrective ACK not
received yet)
6: C -> S: Seq(C)+1460, ACK Seq(S)+1460, 1460 bytes of data (retransmit after corrective
ACK received)
7: C -> S: Seq(C)+1460, ACK Seq(S)+1460+1460, 1460 bytes of data (delayed ACK, send
1460bytes of data)
8: A -> S: Seq(S), ACK Seq(C)+1460+1460, 1460 bytes of data
9: S -> C: Seq(S)+1460, ACK Seq(C)+1460+1460+1460 (Corrective ACK because wrong
ACK received)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

‘A’ tries to slow down connections between C and S by injecting bogus packets forcing the
hosts to resync their sequence numbers. The disturbance caused by A in the model above
is 1 data packet dropped for 2 data packet sent by the client or about 33% of traffic
impacted.

This attack can be implemented using simple UNIX scripting tools with for example
SPAK and tcpdump. Since the hacker did not want to generate random sequence number,
he basically swapped the sequence and ACK number sent by C. This technique helped us
to evaluate the real impact on the traffic in a single transmission with the example listed in
section 4:

1: A -> S: Seq(S), ACK Seq(C), 1460 bytes of data [PSH, ACK]
2: C -> S: Seq(C)+6*1460, ACK Seq(S), 917 bytes of data [PSH, ACK]
3: A -> S: Seq(S), ACK Seq(C)+6*1460+5*1460, 4380 bytes of data [PSH, ACK]
4: A -> S: Seq(S), ACK Seq(C)+ 6*1460+5*1460+1460+917, 2377 bytes of data

[PSH, ACK]

We can see that the client sequence number that according to our theory can be
read from A’s ACK number is increasing. Actually in 0.22s, 12597 bytes seems to have
been transferred or 447K/s of bandwidth. The attack doesn’t seem to be efficient at high
speed rate. By targeting the proxy server the attacker is expecting to affect more users than
if the users had a direct connection.

Coupled with DoS (SYN flood) on the proxy the attacker could slow down the proxy
server preventing it to send back the ACK and eventually time-out the connection.
According to the network architecture we explained above, the traffic from A to C is likely to
not be on the IDS path and therefore would not be monitored by the IDS.

6.Correlation
We haven’t been able to find an exact match for the attack; however we found several
similar studies:
http://us1.unix.geek.org.uk/~arny/iphijack.txt

And a study on common TCP attacks by CHRIS CHAMBERS, JUSTIN DOLSKE, and
JAYARAMAN IYER
http://www.linuxsecurity.com/resource_files/documentation/tcpip-security.html

Another lead might be actually a false positive. Mads Rasmussen reported having the
same type of alarm with a proxy server:
http://www.geocrawler.com/archives/3/4890/2001/8/400/6442171/
The site mentioned in that email (snort.sourcefire.com) giving an explanation from Martin
Roesch is unfortunately down.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Martin Roesch mentioned that version prior to snort 1.8.4-beta 1 did not handle stream 4
retransmission properly:
http://archives.neohapsis.com/archives/snort/2002-01/0792.html
snort v1.8.4 final was released in May 2002. The logs are time stamped from June 28th
2002. The administrator might be running an older version of snort.

7. Evidence of active targeting:
There is no evidence of active targeting. The attacker only aim was to attempt to slow down
the access to what we thought was a proxy may be to get better access to the internet
(congested network?). Note that the target here is not the remote server but actually the
clients that try to go through the proxy.

8. Severity
S = (5 + 2) – (1+1) = 5

Critically: the target for this attack is the integrity of the internal network as a whole.

Lethality: If the attack succeeded at 100%, the connection could ultimately slow down
tremendously to the point where is would actually break.

System countermeasures: there is nothing that can be done at the system level to prevent
this since the bogus packets from a remote system.

Network countermeasures: most of the stateful firewall out there to not perform a TCP
stream inspection. Once the 3 way handshake occurs the firewall passes the traffic without
any distinction until the connection is reset or terminated gracefully.

9. Defensive recommendation

The proxy could be moved to a different network segment isolated from the users and filter
spoofed traffic with a proper set of ACL on the users gateway, the attacker would not be
able to spoof the proxy address. The network administrator could also sniff the internal
network to try to gather the system MAC address and locate physically the server.

10. Multiple choice test question
In an established TCP session, what would a system do if it receives a TCP packet with a
wrong ACK numbers?

a. reset the connection
b. discard the packet
c. emit a packet with its current sequence number and ACK number to re-synchronize

the connection
d. compare the received IP_ID number with its internal IP_ID number and drop the

packet if they are not equal

Answer: c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Explanation: if a host receives a packet with a bad ACK number, the host sends a
corrective ‘ACK’ packet back in order to resynchronize each host and retransmit missing
packets.

Questions/Comments:
We received only 2 questions from Don Murdoch regarding our analysis:
Q1: Hmmm... I think you are in danger again. If this is internet
 traffic, then you need to explain why from a non-MAC point
 of view the source is real / spoofed.
 A discussion around MAC addressees would only be applicable
 on a specific network segment, as a router clouds the issue.

Our analysis specified that what we believe being the “Real” host: P the DF bit is set. There
is no evidence that the packets have been fragmented at the source. On the contrary we
can say considering the consistent increment of the ACK counter by 1460 that the
maximum packet size for the host is actually the MTU of a standard Ethernet frame.
Furthermore our analysis is not based solely on packet size: passive fingerprinting and
protocol consideration motivated our conclusions.

Q2:

(talking about the C, S and P terms)
I think that if you are going to go off into computer science

 land than you need to drag out visio or draw pretty boxes in
 word to actually show who's the C, S, P, and ... Are.

Security and analysis of network activity is a computer science. We used letter to represent
system to abstract the problem from any unreliable values such as source IP addresses
and destinations IP to attempt to give an explanation to the activity explained here.

Attack #2: 2002.10.17 – ACK Scan

1. Source of trace: incidents.org URL: www.incidents.org/logs/Raw/2002.10.17

I will use a small subset of data in the pcap file with reflective ports ACK TCP
packets (destination port = source port) as a starting point for this analysis. Typical TCP
connections are coming from an ephemeral port (>1024) to an assigned port (<1024).
Therefore any connection coming from a port lower than 1024 is suspicious, even more
suspicious if the source port is the same than the destination port (with some exceptions:
IKE, DNS, etc..)

We use the rest of the logs to determine if the attack was coordinated, distributed or

localized to a single device. First we will try to determine where the IDS is located on the
network. The following command will help us determine the MAC address on each side of
the IDS:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The MAC addresses are the same than for the detect #1. Both OUI (Organizationally

Unique Identifier: first three-octets of the MAC address) are assigned to CISCO. Based on
those MAC we determined that the IDS is tapped between two CISCO routers 00:03:e3
being the uplink. 00:00:0c would then be the next hop to the internal segment 170.x.x.x/8.
(see diagram bellow).

 Let’s now focus on the attack itself. Let’s try to determine the number of packets with
the reflective port pattern and the list of internal and external hosts involved in the reflective
port pattern. The following command will give us the number of packets with reflective
ports:

> Tcpdump -neqr 2002.10.17 | cut -d ' ' -f2,3 | sort –n | uniq
00:00:0c:04:b2:33 00:03:e3:d9:26:c0
00:03:e3:d9:26:c0 00:00:0c:04:b2:33

$ tcpdump –nr 2002.10.17 "tcp[0:2] == tcp[2:2]" | wc -l
36

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

We have 36 reflective port packets logged in this file. The following command will help us to
determine quickly the combination of IP addresses used:

 This command shows that a variety of external and internal hosts are involved in the
traffic. The traffic is seen only from the outside hosts to the inside hosts. Since the
202.x.x.x/8 Class A has also involved in some other scanning activities previously in the
logs file, we will need to verify is those IPs are not part of a broader attack in our internal
segment.
 Bellow is a sample of the packets used for the attack:

2. Detect was generated by:
Detect was generated by snort according to the source of data. The packets recorded in
the file are only packets that violated the source signature file. The following signature have
generated some of those alarms:

$ tcpdump -nqr 2002.10.17 "tcp[0:2] == tcp[2:2]" | cut -d ' ' –f 3,5 | sort -n | uniq
61.218.15.118.80 170.129.192.213.80:
61.218.15.126.80 170.129.192.213.80:
61.218.161.202.80 170.129.44.252.80:
61.218.161.210.80 170.129.44.252.80:
61.221.88.198.80 170.129.192.213.80:
61.221.99.242.80 170.129.31.29.80:
61.222.154.109.80 170.129.130.226.80:
61.222.158.229.80 170.129.130.226.80:
61.222.177.125.80 170.129.130.226.80:
61.222.177.133.80 170.129.130.226.80:
61.222.177.141.80 170.129.130.226.80:
163.22.229.253.80 170.129.31.29.80:
163.23.238.9.80 170.129.44.252.80:
192.192.171.251.80 170.129.192.213.80:
192.192.90.201.80 170.129.130.226.80:
202.29.28.1.80 170.129.139.116.80:
202.29.28.1.80 170.129.185.21.80:
202.29.28.1.80 170.129.31.152.80:

$ tcpdump -ttt -nvvv -r 2002.10.17 "tcp[0:2] == tcp[2:2]"
000000 IP (tos 0x0, ttl 44, id 56514, len 40) 202.29.28.1.80 > 170.129.185.21.80: . [tcp sum ok]
178:178(0) ack 0 win 1400
10. 000000 IP (tos 0x0, ttl 44, id 56770, len 40) 202.29.28.1.80 > 170.129.185.21.80: . [tcp sum
ok] 111:111(0) ack 1 win 1400
10. 010000 IP (tos 0x0, ttl 44, id 57025, len 40) 202.29.28.1.80 > 170.129.185.21.80: . [tcp sum
ok] 227:227(0) ack 1 win 1400
10. 000000 IP (tos 0x0, ttl 44, id 57272, len 40) 202.29.28.1.80 > 170.129.185.21.80: . [tcp sum
ok] 333:333(0) ack 1 win 1400
10. 000000 IP (tos 0x0, ttl 44, id 57504, len 40) 202.29.28.1.80 > 170.129.185.21.80: . [tcp sum
ok] 433:433(0) ack 1 win 1400
8008. 970000 IP (tos 0x0, ttl 44, id 36247, len 40) 202.29.28.1.80 > 170.129.31.152.80: . [tcp sum
ok] 510:510(0) ack 0 win 1400
9. 990000 IP (tos 0x0, ttl 44, id 36504, len 40) 202.29.28.1.80 > 170.129.31.152.80: . [tcp sum
ok] 110:110(0) ack 1 win 1400
10. 000000 IP (tos 0x0, ttl 44, id 36802, len 40) 202.29.28.1.80 > 170.129.31.152.80: . [tcp sum
ok] 236:236(0) ack 1 win 1400
10. 040000 IP (tos 0x0, ttl 44, id 37072, len 40) 202.29.28.1.80 > 170.129.31.152.80: . [tcp sum
ok] 353:353(0) ack 1 win 1400

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap TCP"; flags:A,12;
ack:0; reference:arachnids,28; classtype:attempted-recon; sid:628; rev
:2;)

We noticed in the traces than some of the packets have an ACK number equal to 1. The
IDS might have a similar rule for traffic with and ack equal to 1 or any traffic with a
destination port lower than 1024 like:

alert tcp $EXTERNAL_NET any -> $HOME_NET :1024 (msg:"Low port traffic";
classtype:attempted-recon;)

We used tcpdump and ethereal to perform the analysis.

4. Description of the attack:
The attack consists in trying to gather information on the network remote hosts using loose
ACK packets. ACK scan can reveal whether or not a host is behind a firewall or packet
filtering device. A packet filtering device rejecting the packet will drop the packet or send an
“ICMP host unreachable” or passes it to the server. Most of the servers would then reply
with a RST packet since no connection is established.

4. Probability the source address was spoofed:
Even though I do not have a complete trace of the network activity (only the packet that
matched the rules), the packets seen do not seem to be part of an established session
mainly because the ACK numbers are set to either 0 or 1 in most of the cases which
doesn’t make any sense, all the sequence numbers are smaller than 2000 (for a 32bit field)
and all the TTLs are between 43 – 49. The packets have all the signs of being crafted
therefore the packet IP address may very well have been spoofed.

5. Attack mechanism:
The following frame has been extracted from the logs. In green are the common fields
shared by all the frames.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The fields tagged in green are the most remarkable fields in this packet:

- small packet size: 60bytes
- rather small TTL (49 here)
- reflective port numbers (80/TCP)
- low sequence number
- TCP/ACK packet
- Small window size: 1400

The following commands confirm the patterns seen:

The reflective port packet all have a sequence number smaller than 2000.

� Packet size

All the packets in the attack have the same size

� TTL
The first value represents the number of occurrence and the second number the associated
TTL value. (format is “number of hit”, “TTL value,” e.g. first line: 5 occurrences with a ttl
value of 43).

Frame 544 (60 bytes on wire, 60 bytes captured)
 Arrival Time: Nov 17, 2002 10:55:03.666507000
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:03:e3:d9:26:c0, Dst: 00:00:0c:04:b2:33
 Type: IP (0x0800)
 Trailer: 000000000000q
Internet Protocol, Src Addr: 61.218.15.126, Dst Addr: 170.129.192.213
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 Total Length: 40
 Identification: 0x7442 (29762)
 Flags: 0x00
 Fragment offset: 0
 Time to live: 49
 Protocol: TCP (0x06)
 Header checksum: 0x5cdf (correct)
Transmission Control Protocol, Src Port: http (80), Dst Port: http (80), Seq: 1015, Ack: 0, Len: 0
 Flags: 0x0010 (ACK)
 Window size: 1400

Checksum: 0xed16 (correct)

$ tcpdump -nvr 2002.10.17 "tcp[0:2] == tcp[2:2] and tcp[4:4] < 0x7D0" | wc -l
36

$ tcpdump -nvr 2002.10.17 "tcp[0:2] == tcp[2:2] and tcp[4:4] < 0x7D0" | cut –d ' ' -f 10 | uniq -c
 36 40)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 All the packets have a TTL is between 43 and 49.

� Port used
(Each line represents the number of occurrence between two ports: here 36 reflective
port packets went from port 80 to port 80)

All the packets are coming from port 80 going to port 80.

� Flags

All the packets are ACK packets

� Window size

All the packets have a window size of 1400.

To summarize the attack can be identified as a series of:
- reflective port ACK packet
- port and destination set to 80
- TTL set to a value between 43 and 49
- A window size set to 1400

An analysis of the timestamps gives additional clues about the pattern seen. I dumped with
tcpdump the 36 packets from the source file in EPOCH time (option –tt) and used excel to
calculate the time difference between each packets:

Epoch time Source IP Destination IP Delta t in s

1037493547 202.29.28.1.80 170.129.185.21.80:

$ tcpdump -nvr 2002.10.17 "tcp[0:2] == tcp[2:2] and tcp[4:4] < 0x7D0" | cut –d ' ' -f 6 | sort –n |
uniq -c
 5 43,
 16 44,
 4 47,
 7 48,
 4 49,

$ tcpdump -nvr 2002.10.17 "tcp[0:2] == tcp[2:2] and tcp[4:4] < 0x7D0" | cut -d' ' -f11,13 | cut -d.
-f5,9 | wc –l
 36 80 80:

$ tcpdump -nvr 2002.10.17 "tcp[0:2] == tcp[2:2] and tcp[4:4] < 0x7D0" | cut –d ' ' -f 18 | uniq -c
 36 ack

$ tcpdump -nvr 2002.10.17 "tcp[0:2] == tcp[2:2] and tcp[4:4] < 0x7D0" | cut –d ' ' -f 21 | uniq -c
 36 1400

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1037493557 202.29.28.1.80 170.129.185.21.80: 10

1037493567 202.29.28.1.80 170.129.185.21.80: 10

1037493577 202.29.28.1.80 170.129.185.21.80: 10

1037493587 202.29.28.1.80 170.129.185.21.80: 10

1037501596 202.29.28.1.80 170.129.31.152.80: 8009

1037501606 202.29.28.1.80 170.129.31.152.80: 10

1037501616 202.29.28.1.80 170.129.31.152.80: 10

1037501626 202.29.28.1.80 170.129.31.152.80: 10

1037529755 61.221.99.242.80 170.129.31.29.80: 28129

1037529760 61.221.99.242.80 170.129.31.29.80: 5

1037529766 163.22.229.253.80 170.129.31.29.80: 6

1037530237 61.218.161.202.80 170.129.44.252.80: 471

1037530252 61.218.161.210.80 170.129.44.252.80: 15

1037530260 163.23.238.9.80 170.129.44.252.80: 8

1037559299 61.218.15.118.80 170.129.192.213.80: 29039

1037559304 61.218.15.126.80 170.129.192.213.80: 5

1037559314 61.221.88.198.80 170.129.192.213.80: 10

1037559319 61.221.88.198.80 170.129.192.213.80: 5

1037559327 192.192.171.251.80 170.129.192.213.80 8

1037559332 192.192.171.251.80 170.129.192.213.80 5

1037565176 202.29.28.1.80 170.129.139.116.80: 5844

1037565186 202.29.28.1.80 170.129.139.116.80: 10

1037565196 202.29.28.1.80 170.129.139.116.80: 10

1037565216 202.29.28.1.80 170.129.139.116.80: 20

1037565226 202.29.28.1.80 170.129.139.116.80: 10

1037565236 202.29.28.1.80 170.129.139.116.80: 10

1037568708 61.222.154.109.80 170.129.130.226.80: 3473

1037568713 61.222.158.229.80 170.129.130.226.80: 5

1037568718 61.222.158.229.80 170.129.130.226.80: 5

1037568729 61.222.177.125.80 170.129.130.226.80: 11

1037568735 61.222.177.133.80 170.129.130.226.80: 6

1037568740 61.222.177.133.80 170.129.130.226.80: 5

1037568750 61.222.177.141.80 170.129.130.226.80: 10

1037568758 192.192.90.201.80 170.129.130.226.80: 7

1037568763 192.192.90.201.80 170.129.130.226.80: 5

The time between each scan seems to be constant over the time.

I found in the incidents mailing lists logs with similar characteristics and gad between the
requests:
http://www.incidents.org/archives/intrusions/msg08110.html

Those traces that looks like an evil attack are actually generated by a server load balancer
from Radware© called linkprook as a part of an IP proximity algorithm. The load balancer
uses active probing to determine the best path between two systems. The Radware patent
application for their proximity algorithm details the process (patent number 115643):
http://patft.uspto.gov/netacgi/nph-
Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netahtml/search-
bool.html&r=2&f=G&l=50&co1=AND&d=ptxt&s1=radware&OS=radware&RS=radware

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The patent description explains:

“Sending a TCP ACK message to client 26 may be used where pinging
would otherwise fail due to an intervening firewall or NAT device filtering
out a polling message […] A TCP ACK may be sent to the client's source
IP address and port. If the client's request was via a UDP connection, a
TCP ACK to the client's source IP address and port 80 may be used. One
or both TCP ACK messages should bypass any intervening NAT or
firewall and cause client 26 to send a TCP RST message, which may be
used to determine both latency and TTL”

The patent also mentions the use of “other technique” in case the first polling method one
fails. We found 3 other suspicious packets with the same TTL and window size than the
packet analyzed above which might as well have been generated by the load balancer.

Finally, the patent also mentioned using triangulation between 2 or more load balancers to
determine IP proximity, explaining the distributed pattern seen above. The probe targeting
170.129.130.226 (see timestamp table above) demonstrates the apparent distribution of
the scan caused by radware triangulation algorithm. Each probe query the .226 address
several times at a 5s interval and each probes are separated by a 10s interval. We can also
clearly see in the table above that the time between the queries of different destination
address is random between each series of probes. Unfortunately the pattern did not
mention anything about the timing between the requests and the different pollers involved
in the triangulation. However, some logs sent in the incidents.org mailing list show similar
gaps between the TCP ACK packets (5 or 6s):
http://www.incidents.org/archives/intrusions/msg08110.html

Note that the IDS might not see the packets sent to the domain primary DNS (as mentioned
by Chris Brenton) because the servers might be located on a DMZ not monitored by the
IDS.

Note that the IDS might not see the packets sent to the domain primary DNS (as mentioned
by Chris Brenton) because the servers might be located on a DMZ not monitored by the
IDS.

6. Correlation
A report form the global incident analysis center written by Matt Fearnow describes the
issue:

$ tcpdump -nvr 2002.10.17 "host 170.129.50.122"
03:43:17.236507 IP (tos 0x0, ttl 44, id 33637, len 40) 202.28.21.2.80 > 170.129.50.122.53: .
[tcp sum ok] ack 0 win 1400
03:43:17.546507 IP (tos 0x0, ttl 42, id 33656, len 40) 203.146.247.2.80 > 170.129.50.122.53: .
[tcp sum ok] ack 0 win 1400
03:43:17.576507 IP (tos 0x0, ttl 42, id 33657, len 40) 203.155.14.2.81 > 170.129.50.122.53: .
[tcp sum ok] ack 0 win 1400

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://www.sans.org/y2k/040301-1430.htm

The article of Chris Brenton helped us to interpret those results:
http://www.incidents.org/archives/intrusions/msg08129.html

The Radware patent application for their proximity algorithm gives more information on the
algorithm used:
http://patft.uspto.gov/netacgi/nph-
Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netahtml/search-
bool.html&r=2&f=G&l=50&co1=AND&d=ptxt&s1=radware&OS=radware&RS=radware

Some logs sent in the incidents.org mailing list show similar gaps between the TCP ACK
packets (5 or 6s):
http://www.incidents.org/archives/intrusions/msg08110.html

7. Evidence of active targeting:
The packets seen are the result of a request made by a user to a server load balanced by a
Radware linkproof device. The Radware is probing the network only after a request was
received by the load balancer.

8. Severity
S = (5 + 2) – (2+2) = 3

Critically: The packets, even if they are coming from a load balancer, are probing the
internal network, critical for the organization, gathering critical information on the
organization network.

Lethality: The attack by itself is not lethal. The main goal of those reconnaissance packets
is to scan the network. However, this scan can lead to a devastating attack on the network
by revealing the intrinsic security architecture.

System countermeasures: A system firewall configured in stealth mode (drop TCP packets,
do not send any reply like RST) would drop the TCP traffic seen. The administrator could
also use an IP filter and drop any packets with an ACK set to 0 or 1, a window of 1400 and
a sequence number smaller than 2000.

Network countermeasures: a simple stateful Firewall configured to drop non stateful traffic
would certainly prevent any network scanning activity (hostile or friendly).

9. Defensive recommendation
A stateful firewall could be added (If it is not already the case) to protect the internal clients
from this kind of probes. Most of the stateful firewall can be configured in stealth mode to
prevent them to send a RST packet on a loose ACK packet.

10. Multiple choice test question

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Radware Linkproof load balancers are known to determine the round trip time and latency
between a subnet and one of its servers by actively probing with a different combination of
packets the network subnet to get some type of reply (ICMP reply, RST…). Which one of
those packets is more likely to come from a linkproof loadbalancer?

a. 14:31:53.306507 IP 10.10.10.10.80 > 20.20.20.20.80: . ack 0 win 1400
b. 14:31:53.306507 IP 10.10.10.10.80 > 20.20.20.20.61385: . ack 14350 win 24000
c. 14:31:53.306507 IP 10.10.10.10.80 > 20.20.20.20.8080: . ack 3666 win 65535
d. 14:31:53.306507 IP 10.10.10.10.80 > 20.20.20.20.1516: . 55481:56941(1460) ack

855 win 65535 (DF)

Answer: a

Because the packet A is looking for a RST or ICMP host unreachable packet from the local
packet filtering device using a typical ACK scan pattern. The rest of the packets to not have
a suspicious pattern.

Question/Comment:
I did not receive any question on this analysis.

Attack #3: 2002.8.28 – Spam relay scanning

1. Source of trace: incidents.org URL: www.incidents.org/logs/Raw/2002.8.28

This analysis focuses on a number of packets with an HTTP request attempt with
some pretty strange path; the rest of the logs will tell us if the attack was coordinated,
distributed or localized to a single device. First, let’s try to determine where the IDS is
located on the network. The following command will help us determine the MAC address on
each side of the IDS:

The MAC addresses are the same than for the detect #1. Both OUI (Organizationally

Unique Identifier: first three-octets of the MAC address) are assigned to CISCO. Based on
those MAC the IDS is tapped between two CISCO routers 00:03:e3 being the uplink.
00:00:0c would then be the next hop to the internal segment 115.x.x.x/8. (see diagram
bellow).

> Tcpdump -neqr 2002.8.28 | cut -d ' ' -f2,3 | sort –n | uniq
00:00:0c:04:b2:33 00:03:e3:d9:26:c0
00:03:e3:d9:26:c0 00:00:0c:04:b2:33

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 The target of the attack is an internal host: 115.74.249.202. You will find bellow a
sample of the packets with their payload, involving the targeted host IP address dumped
using ethereal for each hosts involved in the web scan:

The frames number 109 and 111 bellow actually contains a HTTP 403 reply from the
internal host (frame bellow) which indicates that 115.74.249.202 has actually a web server
running. According to the HTTP tags, the web server is running RedHat Linux, Apache

Frame 143 (515 bytes on wire, 515 bytes captured)
Ethernet II, Src: 00:03:e3:d9:26:c0, Dst: 00:00:0c:04:b2:33
Internet Protocol, Src Addr: 24.189.224.108 (24.189.224.108), Dst Addr: 115.74.249.202
(115.74.249.202)
Transmission Control Protocol, Src Port: 2952 (2952), Dst Port: http (80), Seq: 538350292, Ack:
2777298622, Len: 461
Hypertext Transfer Protocol
 GET /cgi-
bin/FormMail.pl?recipient=<cgiscripts@ziplip.com>nobody@XXXXXXXX&subject=http://www.XXXXXXXX/cgi-
bin/FormMail.pl/&email=John@doe.com&\240=is anybody out there? HTTP/1.1\r\n
 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n
 Accept-Language: en-us\r\n
 Content-Type: application/x-www-form-urlencoded\r\n
 Accept-Encoding: gzip, deflate\r\n
 User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)\r\n
 Host: www.XXXXXXXX\r\n
 Connection: Keep-Alive\r\n
 \r\n
Frame 144 (517 bytes on wire, 517 bytes captured)
Ethernet II, Src: 00:03:e3:d9:26:c0, Dst: 00:00:0c:04:b2:33
Internet Protocol, Src Addr: 24.189.224.108 (24.189.224.108), Dst Addr: 115.74.249.202
(115.74.249.202)
Transmission Control Protocol, Src Port: 2953 (2953), Dst Port: http (80), Seq: 538411984, Ack:
2773922596, Len: 463
Hypertext Transfer Protocol
 GET /cgi-
bin/FormMail.cgi?recipient=<cgiscripts@ziplip.com>nobody@XXXXXXXX&subject=http://www.XXXXXXXX/cgi-
bin/FormMail.cgi/&email=John@doe.com&\240=is anybody out there? HTTP/1.1\r\n
 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1.3.12 as well as Frontpage 4.0.4.3. A quick analysis of the packet TTL, window, DF and
TOS field confirm the OS type. 115.74.249.202 is therefore a server open to the internet on
port 80/TCP.

2. The detect was generated by:
According to the README file located in the log directory, the logs were generated from a
Snort NIDS.

I tried to run snort with the standard signature file v1.124
“snort –d -r 2002.8.28 –l logs -c rules\snort.conf”

However snort did not return any alarm because the full logs would be require to be able to
reconstruct the TCP data flow to run the Web-IIS signature file.

I “grepped” on the default snort signature file (v1.124) and found a match in the WEB-CGI
signature:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-
CGI formmail access"; flow:to_server,established; uricontent:"/formmail"; nocase;
reference:nessus,10782; reference:nessus,10076; reference:bugtraq,1187;
reference:cve,CVE-1999-0172; reference:arachnids,226; classtype:web-application-
activity; sid:884; rev:8;)

in other words snort will alarms here if the string /formmail is in the URL for an established
session to a server. The signature entry includes references to security and vulnerability
database:
 http://cgi.nessus.org/plugins/dump.php3?id=10782

http://cgi.nessus.org/plugins/dump.php3?id=10076
http://online.securityfocus.com/bid/1187
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0172
http://www.whitehats.com/info/IDS226/

Frame 109 (590 bytes on wire, 590 bytes captured)
Ethernet II, Src: 00:00:0c:04:b2:33, Dst: 00:03:e3:d9:26:c0
Internet Protocol, Src Addr: 115.74.249.202 (115.74.249.202), Dst Addr: 195.29.132.167
(195.29.132.167)
Transmission Control Protocol, Src Port: http (80), Dst Port: 1425 (1425), Seq: 2728099470, Ack:
5685133, Len: 536
Hypertext Transfer Protocol
 HTTP/1.1 403 Forbidden\r\n
 Date: Sat, 28 Sep 2002 14:39:20 GMT\r\n
 Server: Apache/1.3.12 (Unix) (Red Hat/Linux) FrontPage/4.0.4.3\r\n
 Keep-Alive: timeout=15, max=100\r\n
 Connection: Keep-Alive\r\n
 Transfer-Encoding: chunked\r\n
 Content-Type: text/html; charset=iso-8859-1\r\n
 X-Pad: avoid browser bug\r\n
 \r\n

 Data (252 bytes)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Note that even if the server replied with a HTTP 404 error (page not found)
referencing the formmail attempt, the server reply will not show in the logs because the
signature specifies “to_server”.

3. Probability the source address was spoofed
Since 115.74.249.202 is a web server and that HTTP requests can be sent after a TCP 3
way handshake occurred, the connection between the client and the server already
occurred and therefore makes spoofing difficult. The attacker may however have disguised
his identity using an HTTP proxy or a SOCK server.

The source address (24.189.224.108) resolves as ool-18bde06c.dyn.optonline.net and
belong according to ARIN to “Optimum Online (Cablevision Systems)” a cable modem
provider. Bellow is an extract of the ARIN whois entry:

 Cable modem sources IPs are very frequently used in attacks. Most of the cable
users are using poorly protected system with known vulnerabilities making them an easy
target for scripts kiddies.

4. Description of the attack:
The attack is a stimulus: the attacker is actively probing a remote system to determine its
characteristics. The traces seen above are scan directed against an internet web server.
The attacker is probing a remote server with an unprotected script named formmail.pl or
formmail.cgi.

5. Attack mechanism:

There is two well known formmail attack:

- The first one attempts to locate a formmail cgi to execute command on the server.
According to the bugtraq description
(http://www.securityfocus.com/bid/1187/discussion/):

CustName: Optimum Online (Cablevision Systems)
Address: 111 New South Road
City: Hicksville
StateProv: NY
PostalCode: 11801
Country: US
RegDate: 2003-05-30
Updated: 2003-05-30
NetRange: 24.189.224.0 - 24.189.239.255
CIDR: 24.189.224.0/20
NetName: OOL-CBCORMNY1-0821
NetHandle: NET-24-189-224-0-1
Parent: NET-24-188-0-0-1
NetType: Reassigned
Comment:
RegDate: 2003-05-30

Updated: 2003-05-30

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

“This is accomplished by specifying a particular CGI environmental variable such as
PATH, DOCUMENT_ROOT, SERVER_PORT in the specially formed URL which will
email the results to the address given”

 None of the formmail queries seen above actually contains those environmental
variables.

- The second one tries to locate formmail.pl to send unsolicited emails from the server
as described by Michael Palamar in securityteam.com:
http://www.securiteam.com/securitynews/Formmail_pl_Can_Be_Used_As_An_Open
_Mail_Relay.html
As explained in the article, the formmail.pl check the HTTP_REFERER value on the
web server come from a accepted domain. The attacker gets around that problem by
spoofing the HTTP_REFERER in a crafted HTTP request. In our case the URL will
come with an empty HTTP_REFERER value. If the server is not configured properly
with a valid list of referrer, the server will execute formmail and send the email.

The email is sent to “nobody@XXXXXXXX” from ‘John@doe.com’ with the following subject:

http://www.XXXXXXXX/cgi-bin/FormMail.pl/: with www.XXXXXXX the server scanned and
“is anybody out there” in the body. (pattern conformed by the “formmail hall of shame” entry
mentioned in the sub-section 6).

The attack happens in several steps:
1. First the evil users setup a valid mailbox on a free email services (such as

ziplip.com, hushmail.com, yahoo.com etc…)
2. the evil user a large list of web servers (the list can be gathered from a search

engine such as google)
3. The evil user run a script with the list of web servers on formmail typical locations

(/cgi, /cgi-bin…) attempting blindly to run the script with a inexistent reply email
address (parameter email of formmail), the email address created in the first step
as the email destination (parameter recipient of formmail) and the URL to the
formmail script as the subject (parameter title of formmail). Text in the body is
optional.

4. the Evil attacker check the mailbox created in the first step (more than likely
using a public proxy). Having the URL directly in the subject allows him/her to
copy and paste directly from the interface without having to open the email.

As I looked at the traffic to the web server, I saw more attempts to locate a formmail as well
as other scanning activities against the web server. I do not believe that the formmail scans
are related to the attack for the following reasons:
� Formmail is queried several times from different IPs. If the scan was coordinated,

the attacker would no redo the same test

� By looking at the frames bellow we can see that the mandatory "0d 0a" after
“HTTP/1.1” and the request header (in that case “content-type”). The logs I found
from “waldo kitty” in Spamcops (http://news.spamcop.net/pipermail/spamcop-
list/2002-April/000254.html) and the analysis from Carl Gibbons

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(http://www.du.edu/~cgibbons/GCIA-attempt/2002-10-15formmail.html) highlighted
the same anomaly which lead us to think that this pattern would result from a bug in
the client. Since the formmail frame I analyzed above did not have that anomaly we
can definitely say that those scans are not related.

>tcpdump -nX -r 2002.8.28 "host 4.63.173.119"
19:56:58.246507 IP 4.63.173.119.3863 > 115.74.249.202.80: P 3455820667:3455820981(314) ack
2881029548 win 15000 (DF)
0x0000 4500 0162 23cc 4000 6d06 5a8f 043f ad77 E..b#.@.m.Z..?.w
0x0010 734a f9ca 0f17 0050 cdfb a37b abb9 05ac sJ.....P...{....
0x0020 5018 3a98 e2fc 0000 4745 5420 2f63 6769 P.:.....GET./cgi
0x0030 2d62 696e 2f66 6f72 6d6d 6169 6c2e 706c -bin/formmail.pl
0x0040 3f65 6d61 696c 3d66 3240 616f 6c2e 636f ?email=f2@aol.co
0x0050 6d26 7375 626a 6563 743d 7777 772e 5858 m&subject=www.XX
0x0060 5858 5858 5858 2f63 6769 2d62 696e 2f66 XXXXXX/cgi-bin/f
0x0070 6f72 6d6d 6169 6c2e 706c 2672 6563 6970 ormmail.pl&recip
0x0080 6965 6e74 3d70 6869 7368 7461 6e6b 5f30 ient=phishtank_0
0x0090 3030 3240 7961 686f 6f2e 636f 6d26 6d73 002@yahoo.com&ms
0x00a0 673d 7730 3074 2030 7961 686f 6f25 3245 g=w00t.0yahoo%2E
0x00b0 636f 6d26 6d73 673d 7730 3074 2048 5454 com&msg=w00t.HTT
0x00c0 502f 312e 3143 6f6e 7465 6e74 2d54 7970 P/1.1Content-Typ
0x00d0 653a 2061 7070 6c69 6361 7469 6f6e 2f78 e:.application/x
0x00e0 2d77 7777 2d66 6f72 6d2d 7572 6c65 6e63 -www-form-urlenc
0x00f0 6f64 6564 0d0a 5573 6572 2d41 6765 6e74 oded..User-Agent
0x0100 3a20 476f 7a69 6c6c 612f 342e 3020 2863 :.Gozilla/4.0.(c
0x0110 6f6d 7061 7469 626c 653b 204d 5349 4520 ompatible;.MSIE.
0x0120 352e 353b 2077 696e 646f 7773 2032 3030 5.5;.windows.200
0x0130 3029 0d0a 486f 7374 3a20 7777 772e 5858 0)..Host:.www.XX
0x0140 5858 5858 5858 0d0a 436f 6e6e 6563 7469 XXXXXX..Connecti
0x0150 6f6e 3a20 4b65 6570 2d41 6c69 7665 0d0a on:.Keep-Alive..
0x0160 0d0a ..

>tcpdump -nX -r 2002.8.28 -nX -r 2002.8.28 "host 63.16.15.140"
16:22:53.186507 IP 63.16.15.140.2199 > 115.74.249.202.80: P 81017162:81017482(320) ack 3230826048
win 9520 (DF)
0x0000 4500 0168 bec9 4000 7306 1ca6 3f10 0f8c E..h..@.s...?...
0x0010 734a f9ca 0897 0050 04d4 394a c092 7e40 sJ.....P..9J..~@
0x0020 5018 2530 a13b 0000 4745 5420 2f63 6769 P.%0.;..GET./cgi
0x0030 2d62 696e 2f46 6f72 6d4d 6169 6c2e 706c -bin/FormMail.pl
0x0040 3f65 6d61 696c 3d53 6b61 6e6e 6564 4061 ?email=Skanned@a
0x0050 6f6c 2e63 6f6d 2673 7562 6a65 6374 3d77 ol.com&subject=w
0x0060 7777 2e58 5858 5858 5858 582f 6367 692d ww.XXXXXXXX/cgi-
0x0070 6269 6e2f 466f 726d 4d61 696c 2e70 6c26 bin/FormMail.pl&
0x0080 7265 6369 7069 656e 743d 6368 6f6b 6f73 recipient=chokos
0x0090 7973 3431 3340 686f 746d 6169 6c2e 636f ys413@hotmail.co
0x00a0 6d26 6d73 673d 6d69 536c 6564 544d 2025 m&msg=miSledTM.%
0x00b0 3245 636f 6d26 6d73 673d 6d69 536c 6564 2Ecom&msg=miSled
0x00c0 544d 2048 5454 502f 312e 3143 6f6e 7465 TM.HTTP/1.1Conte
0x00d0 6e74 2d54 7970 653a 2061 7070 6c69 6361 nt-Type:.applica
0x00e0 7469 6f6e 2f78 2d77 7777 2d66 6f72 6d2d tion/x-www-form-
0x00f0 7572 6c65 6e63 6f64 6564 0d0a 5573 6572 urlencoded..User
0x0100 2d41 6765 6e74 3a20 476f 7a69 6c6c 612f -Agent:.Gozilla/
0x0110 342e 3020 2863 6f6d 7061 7469 626c 653b 4.0.(compatible;
0x0120 204d 5349 4520 352e 353b 2077 696e 646f .MSIE.5.5;.windo
0x0130 7773 2032 3030 3029 0d0a 486f 7374 3a20 ws.2000)..Host:.
0x0140 7777 772e 5858 5858 5858 5858 0d0a 436f www.XXXXXXXX..Co
0x0150 6e6e 6563 7469 6f6e 3a20 4b65 6570 2d41 nnection:.Keep-A

0x0160 6c69 7665 0d0a 0d0a live....

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 As for the rest attacks targeting the server, I could list to three categories of attacks:
- directory traversal attempts
- repeated FrontPage extension scans (_vti_inf POST attempts) from a unique

host
- IIS propfind attack

Those attacks are all coming from different IPs but all of them contain a ‘via’ or “X-

cache-ID” tag in the request indicating that the client used an HTTP proxy to connect to the
server. The same attacks are reiterated at various points in time throughout the logs (but
from different source IP) which indicates that the attack is not coordinated.

6. Correlation
Les M Gordon analyzed a Formmail scan in his GCIA assignment coming from difference
source than the one I analyzed here:
http://www.sans.org/rr/papers/23/1096.pdf
The methods used in the attack he analyzed where not as advanced as the one described
above since the script was scanning only for the existence of the formmail script.

The host used as well as the email used in the attack have been reported to the “formmail
hall of shame” attempting to scan www.softwolves.pp.se/cgi-bin/formmail.pl from
67.194.4.28 and 24.189.224.108:
http://www.softwolves.pp.se/misc/formmail_hall_of_shame/0208

7. Evidence of active targeting:
The attack is a scan, there is no evidence from the logs I have analyzed that this particular
server was targeted. Actually, this server is probably part of a larger scan since I found
several entries in the “formmail hall of shame” for the exact same pattern seen in our
analysis.

8. Severity
S = (3 + 2) – (2 + 2) = 1

Critically: The system targeted might be critical to the targeted organization.

Lethality: Beyond a simple SPAM attempt, the formmail attack could reveal critical
information on the system.

System countermeasures: Formmail would need to be kept up to date. The administrator
could request to have a static string set on the e-mail title to have sendmail detect and filter
the unsolicited emails.

Network countermeasures: a reverse proxy or application firewall (Sanctum Appshield) can
be used to filter the requests to the web server.

9. Defensive recommendation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Of course I would strongly recommend maintaining the server updated with the latest patch
version and recommend configuring the web server to not display the version of each
module on an error would prevent leaking of crucial information such as the one I have
seen in Frame 109.

I would also recommend, if the server is critical for the organization, to use an Application
firewall (like Sanctum Appshield) to control the fields used to call the CGI.

10. Multiple choice test question
What following HTTP tag is definitely indicating that an HTTP client is definitely using an
HTTP proxy?
a. “User-Agent: Microsoft-WebDAV-MiniRedir/5.1.2600”
b. “Cache-Control: max-age=172800”
c. “Via: 1.1 teradant8:8080 (Squid/2.3.STABLE4)\r\n”
d. “Cookie: noproxy=1”

Answer = c

Via: is added by proxy server to indicates that an HTTP request has been replayed by a
proxy server.

Questions/comments:
No question has been asked on this analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 PART 3: ANALYZE THIS
Security audit report

1. Executive summary of the analysis

Between July 28th and august first 2003 the university intrusion detection system

generated 360,949 alerts, 4,850,111 scans and 271962 out of specification packets. We
focused in this analysis on the university internal systems integrity, dangerous internal
activity and IDS signature file configuration. This analysis will provide a list of internal
systems to be assessed and external systems to keep an eye on, as well as
recommendations to improve the IDS performances. Due to the high volume of data to
assess, the analysis will focus on the most critical alarms and the ones occurring the most
often.

According the activity we have been observing through the logs, we would strongly

recommend the following systems to be audited for trojans:

MY.NET.198.221
MY.NET.74.216
MY.NET.3.56
MY.NET.3.54

We would also recommend checking the following systems for potential virus or
Trojans:

MY.NET.137.7
MY.NET.30.4
MY.NET.30.3

We noticed that even if numerous hosts were involved in the alarms, a great number

of attacks were initiated from a limited number of providers. We would recommend opening
cases with the owner of the following IP addresses:

Finally, the analysis of the logs revealed several weaknesses in the university

architecture. I would recommend the university to tighten the firewall (or any access control
device) to allow external traffic (traffic coming from the internet) only to a limited number of
server and ports. The IDS should be configured with rules closer to standard rules to

216.95.201.0
193.252.203.96
81.48.143.73
66.82.245.45

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

minimize the amount of false positive and optimize the detection process. I would also
recommend to put in place (if it is not already the case) a security policy regarding the use
of internet resources to download copyrighted materials. I would also restrict the access to
internal documents such as equipment list, equipment configuration, and any internal
document that would reveal network topology. We would remove the hardware equipment
list found in http://www.gl.umbc.edu/hardware.shtml as well as any other sensitive material.

2. The files

We choose the logs created between July 28th 20003 and August 1st 2003.

Alert Files Size Scan Files Size Out-Of-Spec Files* Size
 OOS_Report_2003_07_28_29050 952323

alert.030728.gz 19761665 scans.030728.gz 75178701 OOS_Report_2003_07_29_23718 4418563
alert.030729.gz 19049691 scans.030729.gz 66558283 OOS_Report_2003_07_30_29913 1274883
alert.030730.gz 16531539 scans.030730.gz 62857037 OOS_Report_2003_07_31_11092 1469443
alert.030731.gz 15892552 scans.030731.gz 43870208 OOS_Report_2003_08_01_5880. 2585603
alert.030801.gz 21854256 scans.030801.gz 53788058 OOS_Report_2003_08_02_26778 1208323

* note that the date used for the out of spec (OOS) files name were actually offset by

24h. For example the “OOS_Report_2003_07_28_29050” list OOS packets received July
27th.

Those logs where all generated during the working days (Monday to Friday) of the

week or the 27th of July 2003.

3. Relationship between the different hosts

The following table list the internal hosts as well as the services used based on the traffic
seen in the logs. We determined the services available based first on the outbound traffic
source ports (<1024) seen in the alert file for the five days analyzed. Since those systems
sent packets from those services source port, there is a high probability that the system is
actually listening on that port too. We added in parenthesis the name of service commonly
used for the related port number. We also used DNS to determine the main function of the
server.

MY.NET.5.20 80(HTTP)
MY.NET.5.44 80(HTTP)
MY.NET.6.7 80(HTTP)
MY.NET.12.4 10(POP3)
MY.NET.12.4 143(IMAP)
MY.NET.12.4 993(IMAPS)
MY.NET.12.6 25(SMTP)
MY.NET.24.20 69(TFTP)
MY.NET.24.34 69(TFTP)
MY.NET.24.34 80(HTTP)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

MY.NET.24.44 80(HTTP)
MY.NET.24.58 443(HTTPS)
MY.NET.25.72 25(SMTP)
MY.NET.25.73 25(SMTP)
MY.NET.29.11 443(HTTPS), 80(HTTP)
MY.NET.29.66 80(HTTP)
MY.NET.30.3 80(HTTP)09,524(Novell ncp)
MY.NET.30.4 80(HTTP)09,51443,524(ncp),80(HTTP)
MY.NET.32.167 80(HTTP)
MY.NET.60.14 80(HTTP)
MY.NET.69.217 80(HTTP)
MY.NET.70.185 80(HTTP)
MY.NET.84.216 3589(ChiliASP/isomair)
MY.NET.100.165 80(HTTP), 21(FTP)
MY.NET.115.10 80(HTTP)
MY.NET.150.83 80(HTTP)
MY.NET.198.221 69(TFTP)

Next we determined the different subnets functions based on the IP address present

in the logs and a publicly available comprehensive list of hosts we found on one of the
HTTP servers listed above (MY.NET.60.14):

http://www.gl.umbc.edu/hardware.shtml

MY.NET.5.0 Monitoring – system support
MY.NET.6.0 Web Servers – application servers
MY.NET.12.0 Mail servers

MY.NET.24.0
Internal servers and network

management
MY.NET.25.0 ?
MY.NET.29.0 University groups web sites
MY.NET.30.0 Novell NetWare support

MY.NET.32.0
“Peoplesoft” servers (finance

department)
MY.NET.53.0 User network access
MY.NET.60.0 University computing services
MY.NET.69.0 User network access
MY.NET.70.0 UCS
MY.NET.72.0 User network access
MY.NET.73.0 User network access
MY.NET.74.0 User network access
MY.NET.75.0 CHPDM network
MY.NET.80.0 User network access
MY.NET.83.0 User network access
MY.NET.84.0 User network access
MY.NET.97.0 Dial-up access
MY.NET.98.0 Dial-up access
MY.NET.100.0 Computer Science network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

MY.NET.115.0 Biotech network
MY.NET.150.0 Library network(?)
MY.NET.163.0 User network access (physic lab?)
MY.NET.178.0 User network access
MY.NET.189.0 User network access

Some of those results can be correlated with Les Gordon GCIA assignment:
http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc

Since some of the signatures were apparently logging traffic for a specific host and

port, we also used the inbound traffic alerts destination ports when the port was requested
multiple times (to get rid of the scans entries) or if the destination port was 137 (not
necessarily controlled connection attempt).

Some general observations:

� The table above lists only the servers that generated traffic from a port lower than 1024.
It is very likely that that list above is not exhaustive.

� Over 5 days we saw 556 occurrences of the following alarm “TCP SRC and DST
outside network” with IPs belonging to common ISPs (AOL, Comcast, …). This could be
caused by:

o The use of source routing
o A bad dialup or VPN client configuration with a bad static route
o Spoofing
The fact that most of the source hosts for those messages are coming from AOL

(dial-up) and Comcast on a segment registered in Baltimore, MD (local to the university)
would confirm the hypothesis of a bad VPN or dialup configuration.

� We found OOS packets coming from the internal segment going to internal segment

(MY.NET.70.234 to MY.NET.16.174) which lead us to think that the IDS is located on
the different LANs exchange point and therefore behind the university firewall (or router
if there is no firewall).

� A first analysis of the logs reveals that the university is monitoring any traffic with the
following destination addresses:

o MY.NET.30.3
o MY.NET.30.4
o MY.NET.100.165 for port HTTP and FTP

� Most of the /24 x.x.x.1 IP addresses resolves to the same hosts: ernie.umbc.edu
indicating that it is very likely that a unique router is the gateway for those subnets.

� We did not see any ICMP/UDP traffic in neither of the scan, alert or OOS files which
lead us to think that the different subnets are protected by a firewall and/or ACLs on the
gateway router.

The following diagram outlines the network architecture:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Among all the internal IP listed in the logs, we isolated the following three hosts with

custom, dedicated signature. Our guess is that the administrators implemented those rules
to log any traffic targeting those systems either because it was an easy way to gather
usage statistics (number of connections, sources of connections) or because those servers
were sensitive to the university.

MY.NET.30.3: (514/tcp)
MY.NET.30.4: (524/tcp, 8009, 51443, 80; rest minor)

Both of those servers are running a Novel Netware server suite.
MY.NET.100.165

This server is the computer science and electrical engineering web
and FTP server.

4. Detects

The following table lists the number of alarms that occurred during the 5 days. We

will focus on the alarms with more than 5000 occurrence during the 5 days.

Alarm message Occurrence
CS WEBSERVER - external web traffic 130536
High port 65535 tcp - possible Red Worm - traffic 67019
SMB Name Wildcard 53273
MY.NET.30.4 activity 37097
spp_http_decode: IIS Unicode attack detected 32170
Queso fingerprint 10568
MY.NET.30.3 activity 7698
spp_http_decode: CGI Null Byte attack detected 5051

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

EXPLOIT x86 NOOP 4061
SYN-FIN scan! 2555
Tiny Fragments - Possible Hostile Activity 1426
connect to 515 from outside 1260
IDS552/web-iis_IIS ISAPI Overflow ida nosize 920
SUNRPC highport access! 896
High port 65535 udp - possible Red Worm - traffic 795
NMAP TCP ping! 740
Null scan! 640
TCP SRC and DST outside network 543
TCP SMTP Source Port traffic 465
Possible trojan server activity 440
IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize 390
Incomplete Packet Fragments Discarded 382
[UMBC NIDS IRC Alert] IRC user /kill detected possible trojan. 294
SNMP public access 288
External RPC call 222
NIMDA - Attempt to execute cmd from campus host 157
SMB C access 156
FTP passwd attempt 136
EXPLOIT x86 stealth noop 74
FTP DoS ftpd globbing 72
TFTP - Internal TCP connection to external tftp server 69
TFTP - Internal UDP connection to external tftp server 68
EXPLOIT x86 setuid 0 65
EXPLOIT x86 setgid 0 48
CS WEBSERVER - external ftp traffic 46
IRC evil - running XDCC 44
EXPLOIT NTPDX buffer overflow 42
Notify Brian B. 3.54 tcp 34
Notify Brian B. 3.56 tcp 33
Attempted Sun RPC high port access 28
RFB - Possible WinVNC - 010708-1 21
TFTP - External TCP connection to internal tftp server 13
ICMP SRC and DST outside network 13
[UMBC NIDS IRC Alert] Possible Incoming XDCC Send
Request Detected. 10
TFTP - External UDP connection to internal tftp server 10
NIMDA - Attempt to execute root from campus host 10
External FTP to HelpDesk MY.NET.70.50 10
Back Orifice 10
[UMBC NIDS IRC Alert] Possible sdbot floodnet detected
attempting to IRC 9
Probable NMAP fingerprint attempt 8
connect to 515 from inside 6
Traffic from port 53 to port 123 6
External FTP to HelpDesk MY.NET.70.49 4
NETBIOS NT NULL session 3
DDOS shaft client to handler 3
[UMBC NIDS IRC Alert] XDCC client detected attempting to
IRC 2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[UMBC NIDS IRC Alert] K\:line'd user detected 2
External FTP to HelpDesk MY.NET.53.29 2
EXPLOIT VQServer admin 2
DDOS mstream client to handler 2
[UMBC NIDS IRC Alert] User joining Warez channel detected.
Possible XDCC bot 1
DDOS mstream handler to client 1

Attack#1: CS WEBSERVER - external web traffic
Traffic flow - Incoming: 130536 Outgoing: 0
Hosts - Ext SRCs: 19995 Int DSTs: 1 Int SRCs: 0 Ext DSTs: 0
Standard Snort SIDs: None - custom alert

This rule has probably been setup to monitor and count the number of hosts trying to

reach the web server. The signature actually alarms on legitimate traffic.

alert tcp $EXTERNAL_NET any -> MY.NET.100.165 80 (msg:"CS WEBSERVER –

external web traffic”; classtype:misc-activity;)

Correlation: The alarm was seen in October 2002 by Edward Peck in his GCIA

assignment:
http://www.giac.org/practical/Edward_Peck_GCIA.doc
Michael Dawson reported the same message was seen in December 2001:
http://www.giac.org/practical/Wade_Walker_GCIA.doc

Recommendation: this rule is fairly noisy; we would not recommend using the IDS to

count the number of packets of connections to a server. The short logs would not allow an
efficient root-cause analysis should the web server be compromised on port 80. The rule
can also be potentially dangerous, and inexperienced administrator might, by reordering
the signatures, shadow a more specific rule and make the IDS blind to lethal attacks.

Attack#2: High port 65535 tcp - possible Red Worm - traffic
Traffic flow - Incoming: 34251 Outgoing: 32768
Hosts - Ext SRCs: 1015 Int DSTs: 51 Int SRCs: 40 Ext DSTs: 80
Standard Snort SIDs: None - custom alert

This alert is also a custom alert, snort alerts on packet coming or going to port

65535. The snort alert would look like this:

alert tcp $EXTERNAL_NET any -> $INTERNAL_NET any (msg:" High port 65535

tcp - possible Red Worm - traffic”; classtype:misc-activity;)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Port 65535/tcp is used by a well know Trojan: Adore also named Red Worm is a
linux trojan with the ability to propagate automatically by scanning randomly remote hosts
for known vulnerability. Port 65535 is also a valid source port for a client. However we
noticed that compared to older GCIA assignments the number of “high port” attacks
increased tremendously. Les Gordon in December 2002 counted only 13 incoming and 13
outgoing flows.

Recommendation: Just like for Attack#1, we would not recommend to create a

generic signature based solely on a single TCP parameter. This configuration generates
lots of false positive and may hide more dangerous activities.

Attack#3: SMB Name Wildcard
Traffic flow - Incoming: 53,273 Outgoing: 0
Hosts - Ext SRCs: 19995 Int DSTs: 1290 Int SRCs: 0 Ext DSTs: 0
Standard Snort SIDs: No match

This alarm signal udp traffic trying on destination port 137. The snort rule would look

like this:

alert udp any any -> $INTERNAL_NET 137 (msg:"SMB Name Wildcard";

content:"CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|0000|"; classtype:misc-activity)

Once more, this signature is very generic. Windows explorer can by default send a

packet on any available interface with any of the IP address configured in the server to
access to hosts. For example, when a remote user deactivates its VPN after connecting to
the university internal network would keep sending SMB requests to the university hosts.
The VPN tunnel being down, the requests would then show up on the front-end router
instead of the VPN server. This traffic is seen very frequently on firewalls and is usually
rarely something to be concerned about.

Correlation: Les Gordon GCIA assignement:
http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc

Recommendation: even if the alert can sometimes be useful for forensic analysis,

the number of alarms generated may affect the IDS performance.

Attack#4: MY.NET.30.4 activity
Traffic flow - Incoming: 37,097 Outgoing: 0
Hosts - Ext SRCs: 431 Int DSTs: 1 Int SRCs: 0 Ext DSTs: 0
Standard Snort SIDs: None - custom alert

This alert can be compared with the alert #1. The alarm is generated if a packet has

MY.NET.30.4 for destination IP and is not coming from the internal network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

alert any !$INTERNAL_NET any -> 130.85.30.4 any (msg:"MY.NET.30.4
activity"; classtype:misc-activity)

Unlike alarm#1, the signature seems to target any ports for that specific IP. As we
mention in the first section this server is running novel NetWare 6.0. The server is
accessed through the following ports:

Occurrence Port Comments
15408 8009 Front page of the Net storage server
14620 51443 Net storage: web access to a document repository
4323 524 Common port used by Novell to provide a shell

access to a server. The intent here is once more to
log all the traffic to a particular server

2715 80 Front page of the Net storage server
(grep "MY.NET.30.4 activity" alert.total.csv | cut -d, -f9 | sort | uniq)

 A user typically access to port 80 or 8009 and is redirected to port 51443 for

web authentication and access to the files.
 The host has been accessed by 431 distinct hosts. An analysis of the source

IP addresses reveals that only the following hosts accessed the document repository:
152.16.118.216
172.155.65.52
24.35.42.249
68.48.217.68
68.48.57.29
68.54.93.211
68.55.232.108
68.55.27.218
68.55.71.120

 Only 68.48.217.68 came through the front page served from port 8009, and

406 different source IP addresses accessed the server on port 80. Among them 398 did not
follow to port 51443. Inktomi web crawler is actively scanning the server from various IP
addresses. As quick search in altavista with the following parameters: "Welcome to
NetWare 6" url:umbc showed that the Novell server is actually referenced in the search
engine.

Recommendation: I would definitely remove the port 80 access on the server to

prevent web crawlers to reference the site. Vulnerabilities have been discovered in
Apache/1.3.27 (used by Novell Netware 6.0) explained in the following CVE vulnerability:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0460
as well as some other bugs mentioned in the apache 1.3 chanlog file:
http://www.apache.org/dist/httpd/CHANGES_1.3

A simple search in a search engine would therefore list MY.NET.30.4 as been

vulnerable to an attack on Novell netware 6.0.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Attack#5: spp_http_decode: IIS Unicode attack detected

Traffic flow - Incoming: 2101 Outgoing: 30069
Hosts - Ext SRCs: 208 Int DSTs: 231 Int SRCs: 372 Ext DSTs: 684
Standard Snort SIDs: None – http_decode preprocessor alert

The IIS Unicode attack is well known since it was used as the propagation mean by

code red. The attack consists in using UNICODE encoded characters to execute
commands or read restricted access documents on an IIS4.0 and ISS5.0 server. The attack
in referenced in CVE:

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884
In bugtraq:
http://www.securityfocus.com/archive/1/140091/2003-04-13/2003-04-19/2

Snort preprocessor alert if a URL contains one more of those Unicode encoded

characters ‘.’,’/’,’\’.

The signature in the logs analyzed have been modified to alarm on “any” destination

IP addresses.
The signature is known to generate false positive for encrypted website. Asian

character sets or automatically generated tracking cookies can also cause the IDS to
alarm. The IP addresses of the top 5 talkers for this alert included a chat portal and several
sites located in China and Korea.

Correlation: This attack has been seen in many GCIA assignments. We noted from

the previous analyses that the amount of alarms on inbound traffic decreased significantly
from most of the previous assignments. Les Gordon in august 2002 reported 48234 alarms
(http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc) and Al Maslowski reported
42440 alerts in December 2002 (http://www.giac.org/practical/GCIA/Al_Maslowski-
Yerges_GCIA.pdf).

Attack#6: Queso fingerprint
Traffic flow - Incoming: 10568 Outgoing: 0
Hosts - Ext SRCs: 323 Int DSTs: 82 Int SRCs: 0 Ext DSTs: 0
Standard Snort SIDs: None - custom alert
Queso is a utility sending crafted IP packets to remote system in order to determine

various characteristics of the remote operating system. The following links give more
information about queso:

http://www.iss.net/security_center/advice/Intrusions/2000321/default.htm
or
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0454

Fingerprinting is used at the early stage of hacking attempt to gather version and

system properties prior to an attack. Therefore, fingerprint should be taken seriously as a
proactive security measure.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The IDS is really reporting here that odd packets have been sent on the network that

might be used for fingerprinting purpose. Queso is just one of the numerous fingerprinting
tools openly available. Queso has the property to send SYN packets with the two reserved
bits set. The snort signature would look like this;

alert tcp any any -> any any (msg:"Queso fingerprint";flags: S12;)

As the above statistics indicates, no Queso fingerprinting activity was initiated

internally. The network has been scanned 10568 times by 323 different hosts. To
determine if the scans were coordinated we sorted the source addresses by /24 (Class C)
subnets:

Occurence Subnet source
4142 216.95.201
1045 193.41.64
985 141.152.40
964 209.47.197
891 217.9.225
339 66.48.78
248 204.92.158
182 213.186.35
102 12.255.198
91 207.228.236

*command used: grep -i "queso" alert.total.csv | cut -d, -f6 | grep -v MY.NET | cut -d. -

f1,2,3 | sort | uniq -c | sort -rn | head -10

41% of the fingerprinting activity is coordinated between 18 hosts in the same
subnet source: 216.95.201. Since the subnet is registered to UUnet Canada (see whois
query bellow) I would recommend to open a case with UUnet to have this investigated. I
would also recommend opening a case with the other subnet owner above.

Finally we would also recommend blocking (if the upstream networking equipment

allows it) and packet with both reserved bit set to prevent any queso fingerprint activity.

Attack#7: MY.NET.30.3 activity
Traffic flow - Incoming: 7698 Outgoing: 0
Hosts - Ext SRCs: 67 Int DSTs: 5 Int SRCs: 0 Ext DSTs: 0
Standard Snort SIDs: None - custom alert

Unlike My.NET.30.4 (attack #4) My.NET.30.3 do not have the same front end

interface and therefore is not susceptible to be listed in a search engine. However, the rule
setup is once too generic and generates lots of false positive.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Attack#8: spp_http_decode: CGI Null Byte attack detected

Traffic flow - Incoming: 166 Outgoing: 4885
Hosts - Ext SRCs: 6 Int DSTs: 1 Int SRCs: 95 Ext DSTs: 119
Standard Snort SIDs: None - custom alert

This alert is generated by the snort http decode pre-processor if a URL contains a

%00 character. The attack is referenced as CVE-2000-0149:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0149

The vulnerability allows a remote attacker to read critical system file using a CGI

script named ‘web_store.cgi’ bug. Roy Naldo analysed this attack in his GIAC assignment:
http://www.giac.org/practical/Roy_Naldo_GCIA.zip

This alarm can generate many false positive, some web site using user tracking

cookies generated randomly can uses %00 is their URL. Snort FAQ mentioned
“Sometimes you may see false positives with sites that use cookies with urlencoded binary
data, or if you're scanning port 443 and picking up SSLencrypted traffic”.

The alerts seen here are very likely to be false positive. Note that by itself, the alarm

does not allow to conclude for sure. However, the IP addresses we are seeing for that
attack can be correlated with other attacks to see if they are part of a broader activity.

5. Top talker list

As we mentioned earlier, the university is logging the traffic for some specific
host and port in the alert file. Those alarms do not carry lots of information in the context
of an audit and will therefore be filtered out. (MY.NET.30.3 activity, MY.NET.30.4
activity and CS WEBSERVER - external web traffic)

We will focus on the rest of the alarms present in the alarm file. We sorted the

alarms by order of occurrences.

$ grep -vi "CS WEBSERVER - external web traffic" alert.total.csv | grep -v "MY.
NET.30.4 activity" | grep -v "MY.NET.30.3 activity" | cut -d, -f6 | grep -v "MY
.NET" | cut -d, -f6 | sort | uniq -c | sort -rn | head -10

Rank

Number

of occurence IP address Alerts
1

33552 81.48.143.73
High port 65535 tcp - possibl
Worm - traffic

2
33323 MY.NET.84.216

High port 65535 tcp - possibl
Worm - traffic

3 5910 169.254.45.176 SMB Name Wildcard

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4 2551 66.82.245.45 SYN-FIN scan!
5

2270 MY.NET.153.153
spp_http_decode: IIS U

attack detected
6 1977 64.228.212.245 SMB Name Wildcard
7 1624 64.228.213.12 SMB Name Wildcard
8 1513 64.228.214.41 SMB Name Wildcard
9

1504 MY.NET.97.183

spp_http_decode: IIS U
attack detected

IRC user /kill detected
10

1362 MY.NET.97.16
spp_http_decode: IIS U

attack detected

6. five external source registration info

Address #1: 216.95.201.15

 This host was the first talker in the attack #6 “queso fingerprinting”.

OrgName: UUNET Technologies, Inc.
OrgID: UU
Address: 22001 Loudoun County Parkway
City: Ashburn
StateProv: VA
PostalCode: 20147
Country: US

NetRange: 216.94.0.0 - 216.95.255.255
CIDR: 216.94.0.0/15
NetName: UUNETCA6-A
NetHandle: NET-216-94-0-0-1
Parent: NET-216-0-0-0-0
NetType: Direct Allocation
NameServer: NS.UUNET.CA
NameServer: NS2.UUNET.CA
NameServer: AUTH01.NS.UU.NET
Comment:
RegDate:
Updated: 2002-05-21

TechHandle: UC24-ORG-ARIN
TechName: UUNET Canada Registrar
TechPhone: +1-888-886-3865
TechEmail: registrar@uunet.ca

OrgAbuseHandle: ABUSE3-ARIN
OrgAbuseName: abuse
OrgAbusePhone: +1-800-900-0241
OrgAbuseEmail: abuse-mail@mci.com

OrgNOCHandle: OA12-ARIN
OrgNOCName: UUnet Technologies, Inc., Technologies
OrgNOCPhone: +1-800-900-0241
OrgNOCEmail: help4u@mci.com

OrgTechHandle: SWIPP-ARIN
OrgTechName: swipper
OrgTechPhone: +1-800-900-0241
OrgTechEmail: swipper@uu.net

ARIN WHOIS database, last updated 2003-08-22 19:15
Enter ? for additional hints on searching ARIN's WHOIS database

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Address #2: 66.82.245.45

This IP has performed during those 5 days a syn-fin scan on port 21/TCP of more

than 2554 internal IP addresses. We actually found that that IP was already reported in
DSHIELD for the same 21/tcp scan:

http://www.dshield.org/ipinfo.php?PHPSESSID=85ad5f154ea89d1804f2c1b12227cf
99&ip=66.82.245.45&Submit=Submit

OrgName: Hughes Network Systems
OrgID: HNS
Address: 11717 Exploration Lane
Address: DirecWAY Network Management Center
Address: attn: Network Security Manager
City: Germantown
StateProv: MD
PostalCode: 20876
Country: US
NetRange: 66.82.0.0 - 66.82.255.255
CIDR: 66.82.0.0/16
NetName: DIRECPC-1BLK
NetHandle: NET-66-82-0-0-1
Parent: NET-66-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.DIRECPC.COM
NameServer: NS2.DIRECPC.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2001-02-28
Updated: 2003-01-21
TechHandle: ZD63-ARIN
TechName: DirecPC
TechPhone: +1-301-601-7205
TechEmail: abuse@direcpc.com
OrgTechHandle: NSM5-ARIN
OrgTechName: Network Security Manager
OrgTechPhone: +1-301-601-7205
OrgTechEmail: abuse@direcpc.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Address #3: 81.48.143.73

First talker for our “High port 65535 tcp - possible Red Worm – traffic” (top talker list)

inetnum: 81.48.143.0 - 81.48.143.255
netname: IP2000-ADSL-BAS
descr: BSPUT108 Puteaux Bloc2
country: FR
admin-c: WITR1-RIPE
tech-c: WITR1-RIPE
status: ASSIGNED PA
remarks: for hacking, spamming or security problems send mail to
remarks: postmaster@wanadoo.fr AND abuse@wanadoo.fr
mnt-by: FT-BRX
changed: gestionip.ft@francetelecom.com 20020710
changed: gestionip.ft@francetelecom.com 20030318
source: RIPE

route: 81.48.0.0/16
descr: France Telecom
descr: Wanadoo Interactive
origin: AS3215
remarks: ---
remarks: For Hacking, Spamming or Security problems
remarks: send mail to abuse@francetelecom.net
remarks: ---
notify: addr-reg@rain.fr
mnt-by: RAIN-TRANSPAC
changed: tfischer@rain.fr 20020702
source: RIPE

role: Wanadoo Interactive Technical Role
address: WANADOO INTERACTIVE
address: 48 rue Camille Desmoulins
address: 92791 ISSY LES MOULINEAUX CEDEX 9
address: FR
phone: +33 1 58 88 50 00
e-mail: abuse@wanadoo.fr
e-mail: technical.contact@wanadoo.com
admin-c: WITR1-RIPE
tech-c: WITR1-RIPE
nic-hdl: WITR1-RIPE
mnt-by: FT-BRX
changed: gestionip.ft@francetelecom.com 20010504
changed: gestionip.ft@francetelecom.com 20010912
changed: gestionip.ft@francetelecom.com 20011204
changed: gestionip.ft@francetelecom.com 20030428

source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Address #4: 218.145.25.112
This IP address is the only source IP address that alarmed on the “Notify Briaan B.”

alert.

The IP has been reported for attack port 80 and is listed as an anonymous proxy

server:
http://theone.ru/proxy/proxys15.html

This URL describes the attack:
http://archives.neohapsis.com/archives/incidents/2003-08/0097.html
Try to find the match in our logs:

scans.030728:Jul 28 05:29:53 218.145.25.107:53028 -> 130.85.100.165:80 SYN
******S*

inetnum: 218.144.0.0 - 218.159.255.255
netname: KORNET
descr: KOREA TELECOM
descr: Network Management Center
country: KR
admin-c: DL248-AP
tech-c: GK40-AP
remarks: **
remarks: Allocated to KRNIC Member.
remarks: If you would like to find assignment
remarks: information in detail please refer to
remarks: the KRNIC Whois Database at:
remarks: http://whois.nic.or.kr/english/index.html
remarks: **
mnt-by: MNT-KRNIC-AP
mnt-lower: MNT-KRNIC-AP
changed: hostmaster@apnic.net 20010924
status: ALLOCATED PORTABLE
source: APNIC

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Address #5: 193.252.203.96

inetnum: 193.252.203.0 - 193.252.203.255
netname: IP2000-ADSL-BAS
descr: France Telecom IP2000 ADSL BAS
descr: BSNAN102 Nantes Bloc1
country: FR
admin-c: FDTR1-RIPE
tech-c: FDTR1-RIPE
status: ASSIGNED PA
remarks: for hacking, spamming or security problems send mail to
remarks: postmaster@wanadoo.fr AND abuse@wanadoo.fr
mnt-by: FT-BRX
changed: gestionip.ft@francetelecom.com 20010213
changed: gestionip.ft@francetelecom.com 20010517
changed: gestionip.ft@francetelecom.com 20030318
source: RIPE

route: 193.252.128.0/17
descr: France Telecom
origin: AS3215
mnt-by: FT-BRX
changed: gestionip.ft@francetelecom.com 20010613
source: RIPE

role: FTLD-IAN Domain Technical Role
address: France Telecom Long Distance
address: IP & ATM Network
address: 3 avenue Francois Chateau
address: 35000 RENNES
address: FR
e-mail: noc@francetelecom.net
admin-c: HC253-RIPE
tech-c: HC253-RIPE
nic-hdl: FDTR1-RIPE
mnt-by: FT-BRX
changed: gestionip.ft@francetelecom.com 20010213
changed: gestionip.ft@francetelecom.com 20030219
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

7. Internal activity: P2P and files transfer

Destination
Port

Service Occurrences Internal
hosts
involved

External
hosts
involved

4665 EDonkey 2000 0 0 0
6346 GNUTella 5 1 0
4662 EDonkey 2000 30 8 8
1214 KaZaA 23 9 19 (4 ext SRC IP)
6665-6666-
6667

IRC 52 8 4

5500-5001 Hotline 0 0 0
8311 Scour 0 0 0
8888 AudioGalaxy 18 5 1
6257 – 6699 WinMX 255 4 31

Source: http://honor.trusecure.com/pipermail/firewall-wizards/2001-September/011235.html

Those numbers represent bandwidth used by file sharing activity using P2P client

but does not include HTTP and FTP non-work related downloads. In addition to the high
bandwidth consumption, a significant amount of programs accessible from various P2P
hosts are infected by viruses and Trojans threatening the university network.

We will focus here on internal equipment activities, particularly from a file sharing

prospective. The administrator is apparently aware of the issue because he configured a
set of signatures to isolate file sharing activities. The table bellow lists all the IRC related
alerts with the associated number of occurrence:

nb Alert message
294 294 [UMBC NIDS IRC Alert] IRC user /kill detected , possible trojan
 44 44 IRC evil - running XDCC
 10 10 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected.
 9 9 [UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC
 2 2 [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC
 2 2 [UMBC NIDS IRC Alert] K\:line'd user detected
 1 1 [UMBC NIDS IRC Alert] User joining Warez channel detected. Possible XDCC

According to the alert description, the alarm is generated if an IRC /kill command is

received by an internal host. This alert, if indicating that and internal user is using IRC,
does not necessarily indicate that a Trojan is installed.

The second most frequent alert on the other hand, is looking for the keyword

“XDCC” in the packet. XDCC is commonly used for file sharing over IRC.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

MY.NET.198.221 alerts analysis reveals that it received 5 XDCC send request from

the 205.188.149.12 server which confirms that this system is running an XDCC bot or has
been compromised. We also noted that the host requested for a flie offered via XDCC
indicating that a user is actually connected to this server.

Beyond the XDCC activities, 193.252.203.96 attempted to access to

MY.NET.198.221 65535 TCP port as indicated bellow:

193.252.203.96 tried to access to MY.NET.198.221 on various port. MY.NET.198.221
replied on port 69/tcp (port usually used by tftp with UDP traffic only) and 65535/tcp.

$ grep MY.NET.198.221 alert.total.csv | cut -d, -f5,6,8 | sort | uniq -c | sort
 -rn
 13 IRC evil - running XDCC,MY.NET.198.221,205.188.149.12
 5 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request
Detected.,205.188.149.12,MY.NET.198.221
 3 TFTP - External TCP connection to internal tftp server,MY.NET.198.221,193.252.203.96
 2 TFTP - External TCP connection to internal tftp server,193.252.203.96,MY.NET.198.221
 2 High port 65535 tcp - possible Red Worm - traffic,MY.NET.198.221,193.252.203.96
 2 High port 65535 tcp - possible Red Worm - traffic,193.252.203.96,MY.NET.198.221
 2 DDOS mstream client to handler,193.252.203.96,MY.NET.198.221
 1 [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC,MY.NET.198.221,205.188.149.12

1 SUNRPC highport access!,193.252.203.96,MY.NET.198.221

grep "running XDCC" alert.total.csv | cut -d, -f6,8 | sort | uniq

listed two hosts:
MY.NET.198.221,205.188.149.12 (undernet.irc.aol.com)
MY.NET.74.216,212.161.35.251

$ grep "Possible Incoming XDCC Send Request Detected" ../alert.030* | grep MY.N
ET.198.221 | more
../alert.030728:07/28-02:35:23.323290 [**] [UMBC NIDS IRC Alert] Possible Incom
ing XDCC Send Request Detected. [**] 205.188.149.12:6667 -> MY.NET.198.221:1026
../alert.030728:07/28-06:52:11.479179 [**] [UMBC NIDS IRC Alert] Possible Incom
ing XDCC Send Request Detected. [**] 205.188.149.12:6667 -> MY.NET.198.221:1026
../alert.030728:07/28-12:26:26.649615 [**] [UMBC NIDS IRC Alert] Possible Incom
ing XDCC Send Request Detected. [**] 205.188.149.12:6667 -> MY.NET.198.221:1026
../alert.030728:07/28-16:10:50.175683 [**] [UMBC NIDS IRC Alert] Possible Incom
ing XDCC Send Request Detected. [**] 205.188.149.12:6667 -> MY.NET.198.221:1026
../alert.030728:07/28-18:49:21.491465 [**] [UMBC NIDS IRC Alert] Possible Incom
ing XDCC Send Request Detected. [**] 205.188.149.12:6667 -> MY.NET.198.221:1026

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In the packets above, we can see that an external system accessed the server on
port 65535 and 69 and got a reply from MY.NET.198.221.Because the first packet seen is
actually coming from an external IP the packets seen above are even more suspicious.

We have not find any traces of scan or OOS packet from that IP or to the internal

system in the scans or OOS packets.

The second internal IP involved in the traffic: MY.NET.74.216 received also 5 XDCC

requests, we have not seen any XDCC file being requested from the internal server.

$ grep 193.252.203.96 ../alert.030* | grep -v portscan
../alert.030730:07/30-01:18:13.795168 [**] TFTP - External TCP connection to internal
tftp server [**] 193.252.203.96:2087 -> MY.NET.198.221:69
../alert.030730:07/30-01:18:13.795390 [**] TFTP - External TCP connection to internal
tftp server [**] MY.NET.198.221:69 -> 193.252.203.96:2087
../alert.030730:07/30-01:19:50.706996 [**] TFTP - External TCP connection to internal
tftp server [**] 193.252.203.96:3273 -> MY.NET.198.221:69
../alert.030730:07/30-01:19:50.707357 [**] TFTP - External TCP connection to internal
tftp server [**] MY.NET.198.221:69 -> 193.252.203.96:3273
../alert.030730:07/30-01:19:51.729293 [**] TFTP - External TCP connection to internal
tftp server [**] MY.NET.198.221:69 -> 193.252.203.96:3273
../alert.030730:07/30-02:04:58.813276 [**] SUNRPC highport access! [**]
193.252.203.96:3854 -> MY.NET.198.221:32771
../alert.030730:07/30-01:41:05.087700 [**] DDOS mstream client to handler [**]
193.252.203.96:2676 -> MY.NET.198.221:15104
../alert.030730:07/30-01:41:06.272636 [**] DDOS mstream client to handler [**]
193.252.203.96:2676 -> MY.NET.198.221:15104
../alert.030730:07/30-02:47:56.948508 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 193.252.203.96:2896 -> MY.NET.198.221:65535
../alert.030730:07/30-02:47:56.948799 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.198.221:65535 -> 193.252.203.96:2896
../alert.030730:07/30-02:47:57.543485 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 193.252.203.96:2896 -> MY.NET.198.221:65535
../alert.030730:07/30-02:47:57.543993 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.198.221:65535 -> 193.252.203.96:2896

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

D
st port 69

Suspicious IRC/TFP activity to MY.NET.198.221 link graph

8. Insight on compromised/ dangerous activity

8.1 The Notify Brian signature

We would recommend to remove the “Notify Brian B” rules. Because of rule ordering

this rule might shadow another, more important rule in the system depending on hoe the
rules are organized in the system.

E.g.:
07/29-01:36:49.064710 [**] Notify Brian B. 3.54 tcp [**] 172.138.51.190:3007 ->

255.255.3.54:17300
1730 is actually a Trojan port: 17300/TCP kuang2

same thing with “activity MY.NET.X.X”. Should actually be filtered = generate too

much alarms and hide the real problem.

9. description of my analysis process

We first converted the scan file into a csv formatted file using the excellent alert to

csv perl converter from Les Gordon:
http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

All our analysis has been based on the csv file and unix commands that you have
seen in the analysis.

