
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Detection in Depth
GCIA Practical Assignment

Version 3.3

Author: Tom King

Date: 19th November 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of contents

Assignment 1 - Examining the effectiveness of the 'anti-IDS' modes in Nikto..1
Abstract ..1
The Nikto tool ...1
The anti-IDS modes in Nikto ..1
Determining the effectiveness of the anti-IDS modes in Nikto......................2

Experiment setup..2
Approach ..3
Results..4

Conclusions..15
References...16

Assignment 2 – Network Detects...18
Detect 1 – Syn-Fin scan ...18

Source of Trace ..18
Detect was generated by ..18
Probability that source address was spoofed ...19
Description of attack ...20
Attack mechanism...20
Correlations ..21
Evidence of active targeting..22
Severity...22
Defensive recommendations ..23
Multiple choice test question...23
Top three questions and responses from incidents.org24

Detect 2 – Attempted ftp connection to Microsoft through http proxy25
Source of Trace ..25
Detect was generated by ..26
Probability that source address was spoofed ...27
Description of attack ...28
Attack mechanism...28
Correlations ..29
Evidence of active targeting..30
Severity...30
Defensive recommendations ..31
Multiple choice test question...31

Detect 3 – Probe for nsiislog.dll file ..32
Source of Trace ..32
Detect was generated by ..32
Probability that source address was spoofed ...34
Description of attack ...35
Attack mechanism...35
Correlations ..36
Evidence of active targeting..37
Severity...37
Defensive recommendations ..37
Multiple choice test question...38

Assignment 3 – Analyze this..39
Executive Summary ...39
Files Analyzed..40

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Detects, ordered by frequency ...40
Description of 10 most frequent detects ...41

“Top Talkers” list...54
Top 10 alerts – sources, ordered by number of alerts54
Top 10 alerts – destinations, ordered by number of alerts......................54
Top 10 alerts – IP “pairs”, ordered by number of alerts55
Top 10 scans – sources, ordered by number of alerts............................55
Top 10 scans – destinations, ordered by number of alerts55
Top 10 scans – IP “pairs”, ordered by number of alerts..........................56
Top 10 OOS – sources, ordered by number of alerts56
Top 10 OOS – destinations, ordered by number of alerts.......................56
Top 10 OOS – IP “pairs”, ordered by number of alerts57

Information on five selected external source addresses.............................57
Link graph ..61
Analysis process ..61

Appendix 1 – Perl scripts used to aid analysis...63
Alertcount2.pl ...63
Scancount2.pl – updated version of scancount.pl66
Ppscan.pl – script to mangle scan files into a format accepted by the
scancount script ...68

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 1 of 67

Assignment 1 - Examining the effectiveness of the
'anti-IDS' modes in Nikto

Abstract

Nikto1 is a web security scanner, the successor to whisker2, which is no longer
available. It can be used by administrators to assess the security of the
configuration of a web server. Nikto has a number of interesting "anti-IDS"
modes which purport to allow a network intrusion detection system (NIDS) to
be bypassed, turning Nikto into a more stealthy scanning tool. In this paper, I
describe the anti-IDS modes of Nikto. I demonstrate how effective the anti-
IDS modes are in practice by running Nikto against a web-server on a
Network which is being monitored by a leading open-source NIDS, Snort3.
Commented tcpdump output of each anti-IDS scan, and Snort's responses
are described and explained.

The Nikto tool

Web security scanners are a useful addition to anyone involved with security
assessment or penetration testing. Security scanners help as they accelerate
the process of determining the vulnerabilities affecting a web server, and can
help identify sensible countermeasures (such as the application of patches
and server hardening) which need to be actioned. The downside to such a
security scanner is the use by a “script kiddy” looking for an easy route to
compromise a web server.

Nikto takes over where whisker left off, in providing a comprehensive, open
source web security scanner. Rather than reinvent the wheel, Nikto has been
built on the the libwhisker Perl library, used by the original whisker tool. It is
unsurprising that there are many similarities between whisker and Nikto.
However, Nikto offers a number of new features which were not implemented
in whisker (scanning via a web proxy, for example).

As of August 2003, Nikto v1.30 c1.09 scans for over 2200 different web/ cgi
vulnerabilities.

Searching for vulnerabilities
using a web security scanner is a conspicuous process – a typical scan will
typically result in extensive logs being generated on the web server being
scanned. Further, a scan is very likely to trigger extensive alerts if an IDS has
been deployed, as many of the scans use known exploits to reliably determine
if a vulnerability exists. With this in mind, the Nikto tool offers a number of
anti-IDS modes, which are designed to fool an IDS so that it does not trigger
alerts during a scan.

The anti-IDS modes in Nikto

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 2 of 67

The anti-IDS modes in Nikto are inherited from whisker. The modes are
described in detail in an excellent paper on rain.forest.puppy’s website4. In
total, there are nine anti-IDS modes. However, these modes can be combined
(for instance modes 2 and 9 could be combined), so a large number of anti-
IDS approaches are possible.

The anti-IDS modes are:

Mode Description
1 Random URL encoding
2 Directory self-reference
3 Premature URL ending
4 Prepend long random string to request
5 Fake parameters to files
6 TAB as request spacer instead of spaces
7 Random case sensitivity
8 Use Windows directory separator \ instead of /
9 Session splicing
Table 1

In addition to its anti-IDS modes, it is worth noting that Nikto can be directed
to run its scans via an HTTP proxy, which can make tracing the source of a
scan difficult.

Determining the effectiveness of the anti-IDS modes in Nikto

How well do the anti-IDS modes in Nikto work in practice? Do they enable a
scan to bypass a competent IDS?

To understand this, an experiment was run, using Nikto against a vulnerable
IIS server, with Snort acting as the IDS.

Experiment setup

Two machines on a simple, switched network were used.

Machine A

Machine A was a Windows XP workstation, with IP address 192.168.0.1.
Nikto v1.30 c1.09 was run on this machine. Windump v3.0 was used to collect
and analyze network traffic between machine A and machine B. Snort v2.01
was used to further analyze collected traffic, and determine whether a typical
IDS would be fooled by Nikto’s anti-IDS techniques.

Machine B

Machine B was a Windows 2000 (SP1) workstation, with IP address
192.168.0.2. running IIS 5. No patches had been applied to this machine, so
IIS 5 was vulnerable to a large number of exploits.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 3 of 67

Nikto Configuration

By default, when Nikto runs a scan, a large number of HTTP requests are
made. To accelerate testing, and to facilitate monitoring and analysis, a cut-
down version of Nikto’s underlying database was used. Simply, the database
file used by Nikto (scan_database.db) was stripped down so that it only
scanned for a single vulnerability, the Unicode vulnerability5.

Snort Configuration

The latest version (as of August 2003) was used – Snort v2.01. The
configuration file used was the standard snort.conf file which ships with Snort
v2.01. However, the following rules (which are disabled by default) were
enabled: web-attacks.rules, backdoor.rules, shellcode.rules,
policy.rules, porn.rules, info.rules, icmp-info.rules, virus.rules,
chat.rules, multimedia.rules, p2p.rules

Approach

The following steps were performed.

1. Windump was run on machine A. It was supplied with parameters to
ensure that entire packets were captured, that output was logged to a
binary file, and that traffic other than that to/ from machine B was
ignored:

C:\windump>windump -i 1 -s 0 -w unicode "host 192.168.0.2"

2. With windump running, Nikto was run on machine A, using machine B
as the target web server. Initially, Nikto was run without any IDS-
avoidance, as a control. Then Nikto was run repeatedly using the anti
IDS modes 1-9.

3. Each time Nikto was run:

• its results were carefully monitored to see whether the Unicode
vulnerability had been detected by Nikto itself. It should be detected
each time Nikto runs, whether the anti-IDS modes are used or not.

• I examined the produced tcpdump file using the windump tool, and
looked at the output, paying particular attention to the stimulus and
response packets for the Unicode exploit, produced by Nikto and
IIS 5. Windump was run with the –X parameter to print the hex and
ascii output of each packet, and the –n parameter (to prevent DNS
lookups):

C:\windump>windump -X –r unicode -n

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 4 of 67

• The tcpdump file was fed into Snort, to understand the
effectiveness of the anti-IDS modes. Would Snort be fooled into
missing the attacks? If so, why? If not, was any other unusual or
interesting behaviour observed?

Snort was run with the following parameters:

snort -c ../etc/snort.conf -l log -r [tcpdump file]

Results

The results are detailed below, and summarized in table 2

Nikto with no anti-IDS mode

When Nikto was run without any anti-IDS techniques, it correctly identified the
Unicode vulnerability on the IIS 5 server.

Figure 1 depicts the tcpdump output of the packet carrying the Unicode
payload:

20:08:35.126100 192.168.0.1.3103 > 192.168.0.2.80: P 1:169(168) ack 1 win 64240
(DF)
0x0000 4500 00d0 02da 4000 8006 75fa c0a8 0001 E.....@...u.....
0x0010 c0a8 0002 0c1f 0050 ebdf ce25 5e77 7847 P...%^wxG
0x0020 5018 faf0 5718 0000 4745 5420 2f73 6372 P...W...GET./scr
0x0030 6970 7473 2f2e 2e25 6330 2561 662e 2e2f ipts/..%c0%af../
0x0040 7769 6e6e 742f 7379 7374 656d 3332 2f63 winnt/system32/c
0x0050 6d64 2e65 7865 3f2f 632b 6469 7220 4854 md.exe?/c+dir.HT
0x0060 5450 2f31 2e30 0d0a 486f 7374 3a20 3139 TP/1.0..Host:.19
0x0070 322e 3136 382e 302e 320d 0a43 6f6e 6e65 2.168.0.2..Conne
0x0080 6374 696f 6e3a 204b 6565 702d 416c 6976 ction:.Keep-Aliv
0x0090 650d 0a43 6f6e 7465 6e74 2d4c 656e 6774 e..Content-Lengt
0x00a0 683a 2030 0d0a 5573 6572 2d41 6765 6e74 h:.0..User-Agent
0x00b0 3a20 4d6f 7a69 6c6c 612f 342e 3735 2028 :.Mozilla/4.75.(
0x00c0 4e69 6b74 6f2f 312e 3330 2029 0d0a 0d0a Nikto/1.30.)....

Figure 1

The string highlighted in red is the heart of the Unicode exploit. As Nikto was
not running in and anti-IDS mode, there is no obfuscation of the exploit. Any
reasonable IDS would be expected to produce an alert when this kind of traffic
is observed.

The string highlighted in yellow clearly demonstrates another reason why
Nikto is not a stealthy tool. It announces itself (along with its version number)
with every HTTP GET to the target webserver. Behaviour with respect to the
“tell-tale” Nikto text is different in the anti-IDS modes, as explained below.

Snort correctly alerted on both the stimulus (HTTP GET command from
Nikto), and response (HTTP response, including directory listing from IIS), as
shown in figure 2.

[**] [1:981:6] WEB-IIS unicode directory traversal attempt [**]
[Classification: Web Application Attack] [Priority: 1]
08/25-20:08:35.126100 0:2:E3:A:EE:E4 -> 0:50:22:88:F1:48 type:0x800 len:0xDE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 5 of 67

192.168.0.1:3103 -> 192.168.0.2:80 TCP TTL:128 TOS:0x0 ID:730 IpLen:20 DgmLen:208 DF
AP Seq: 0xEBDFCE25 Ack: 0x5E777847 Win: 0xFAF0 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884]

[**] [1:1292:7] ATTACK-RESPONSES directory listing [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
08/25-20:08:35.150188 0:50:22:88:F1:48 -> 0:2:E3:A:EE:E4 type:0x800 len:0xEE
192.168.0.2:80 -> 192.168.0.1:3103 TCP TTL:128 TOS:0x0 ID:454 IpLen:20 DgmLen:224 DF
AP Seq: 0x5E777847 Ack: 0xEBDFCECD Win: 0x43C8 TcpLen: 20

Figure 2

The stimulus procuded the first alert (classified as priority 1), where the
Unicode attack is picked up by Snort as it travels from machine A to machine
B (Nikto to IIS).

The response produced the second alert. It is classified at less important
(priority 2), and is triggered by the response from machine B to A (the
webserver to Nikto).

Nikto with anti-IDS mode 1

Mode 1 uses URL obfuscation to disguise each HTTP request. In this mode,
each character of a URL is encoded by its escaped equivalent, which is %xx,
where xx is the hex representation of the ASCII value of a character.

In this mode, Nikto did not detect the Unicode vulnerability. The URL
obfuscation caused IIS to return a 404 error. It appears that the level of
obfuscation added by mode 1 breaks the Unicode exploit.

Figure 3 depicts the tcpdump output of the packet carrying the Unicode
payload, with anti-IDS mode 1 in force.

20:14:26.520603 192.168.0.1.3244 > 192.168.0.2.80: P 1:201(200) ack 1 win 64240
(DF)
0x0000 4500 00f0 1040 4000 8006 6874 c0a8 0001 E....@@...ht....
0x0010 c0a8 0002 0cac 0050 f230 4591 6447 bce1 P.0E.dG..
0x0020 5018 faf0 6e44 0000 4745 5420 2532 6673 P...nD..GET.%2fs
0x0030 2536 3325 3732 6925 3730 2537 3425 3733 %63%72i%70%74%73
0x0040 2532 662e 2532 6525 3235 2536 3330 2561 %2f.%2e%25%630%a
0x0050 662e 2e2f 7725 3639 2536 6525 3665 7425 f../w%69%6e%6et%
0x0060 3266 7325 3739 2537 3325 3734 656d 3332 2fs%79%73%74em32
0x0070 2532 6625 3633 6d64 2532 6565 7865 2533 %2f%63md%2eexe%3
0x0080 662f 2536 332b 2536 3469 7220 4854 5450 f/%63+%64ir.HTTP
0x0090 2f31 2e30 0d0a 486f 7374 3a20 3139 322e /1.0..Host:.192.
0x00a0 3136 382e 302e 320d 0a43 6f6e 6e65 6374 168.0.2..Connect
0x00b0 696f 6e3a 204b 6565 702d 416c 6976 650d ion:.Keep-Alive.
0x00c0 0a43 6f6e 7465 6e74 2d4c 656e 6774 683a .Content-Length:
0x00d0 2030 0d0a 5573 6572 2d41 6765 6e74 3a20 .0..User-Agent:.
0x00e0 4d6f 7a69 6c6c 612f 342e 3735 0d0a 0d0a Mozilla/4.75....

Figure 3

Again, the string highlighted in red is the heart of the Unicode exploit.
Interestingly, not every character is represented by its escaped equivalent.
For example, the string “cmd.exe” in the original exploit is encoded to
“%63md%2eexe”.

The explanation of this mode in rain.forest.puppy’s paper4, does not indicate
why some characters should be encoded, and others left in plaintext.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 6 of 67

Inspection of the Perl code comprising the libwhisker library (which provides
the functionality for this mode) indicates that each character stands a 50%
chance of being encoded into its escaped equivalent. Presumably, this
random element is designed to improve the stealth of this particular anti-IDS
mode – it makes it more difficult to develop an IDS signature to reliably detect
this.

Highlighted in yellow in figure 3 is the User-Agent text “Mozilla/ 4.75”. Note,
(compared with the first scan) the absence of the word “Nikto”, and its version
number. This is an undocumented feature of Nikto, confirmed by your author
by inspecting the source code of the application. If Nikto is run in a normal
mode, the text “Nikto” and version number is passed to the web server with
every HTTP GET. In anti-IDS modes, this extra information is not present.
This adds to its stealth somewhat in that the network analyst cannot
immediately figure from a network dump that a scan by Nikto is taking place –
the “tell-tale” signature is not present.

Snort alerted when this test was run. However, a different alert was
generated.

[**] [1:1113:4] WEB-MISC http directory traversal [**]
[Classification: Attempted Information Leak] [Priority: 2]
08/25-20:14:26.520603 0:2:E3:A:EE:E4 -> 0:50:22:88:F1:48 type:0x800 len:0xFE
192.168.0.1:3244 -> 192.168.0.2:80 TCP TTL:128 TOS:0x0 ID:4160 IpLen:20 DgmLen:240 DF
AP Seq: 0xF2304591 Ack: 0x6447BCE1 Win: 0xFAF0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS297]

Figure 4

It is interesting that a different alert triggered. Viewing the order in which the
Snort rules are executed demonstrates that the IIS-specific Unicode rule did
not fire. However, the more generic, lower priority http directory traversal rule
still fired.

Only one alert was produced by Snort. An ATTACK-RESPONSES alert (as
produced when anti-IDS was not used) was not produced, because the
Unicode exploit did not work. Therefore the response did not contain the
“Volume Serial Number” text which causes the ATTACK-RESPONSES alert
to fire.

So although the anti-IDS mode 1 in Nikto caused the Unicode vulnerability not
to be found, Snort still alerted with a reasonably appropriate message, letting
an attentive network analyst know that some sort of nefarious scan was
happening.

Nikto with anti-IDS mode 2

Mode 2 uses a directory “self-reference” mode to obfuscate each HTTP
request. This relies on the fact that “.” references the current directory. This
means that a request such as http://www.server.com/scripts/test.exe can be
rewritten as http://www.server.com/./scripts/./test.exe.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 7 of 67

In this mode, Nikto correctly detected the Unicode vulnerability.

Figure 5 depicts the tcpdump output of the packet carrying the Unicode
payload, with anti-IDS mode 2 in force:

20:19:20.571846 192.168.0.1.3277 > 192.168.0.2.80: P 1:167(166) ack 1 win 64240
(DF)
0x0000 4500 00ce 1207 4000 8006 66cf c0a8 0001 E.....@...f.....
0x0010 c0a8 0002 0ccd 0050 f6b1 27e4 68c4 e97f P..'.h...
0x0020 5018 faf0 2bfb 0000 4745 5420 2f2e 2f73 P...+...GET././s
0x0030 6372 6970 7473 2f2e 2f2e 2e25 6330 2561 cripts/./..%c0%a
0x0040 662e 2e2f 2e2f 7769 6e6e 742f 2e2f 7379 f.././winnt/./sy
0x0050 7374 656d 3332 2f2e 2f63 6d64 2e65 7865 stem32/./cmd.exe
0x0060 3f2f 2e2f 632b 6469 7220 4854 5450 2f31 ?/./c+dir.HTTP/1
0x0070 2e30 0d0a 486f 7374 3a20 3139 322e 3136 .0..Host:.192.16
0x0080 382e 302e 320d 0a43 6f6e 6e65 6374 696f 8.0.2..Connectio
0x0090 6e3a 204b 6565 702d 416c 6976 650d 0a43 n:.Keep-Alive..C
0x00a0 6f6e 7465 6e74 2d4c 656e 6774 683a 2030 ontent-Length:.0
0x00b0 0d0a 5573 6572 2d41 6765 6e74 3a20 4d6f ..User-Agent:.Mo
0x00c0 7a69 6c6c 612f 342e 3735 0d0a 0d0a zilla/4.75....

Figure 5

The Unicode exploit with the “self-referencing” obfuscation is highlighted in
red.

Snort alerted correctly on the stimulus and response for this mode.

[**] [1:981:6] WEB-IIS unicode directory traversal attempt [**]
[Classification: Web Application Attack] [Priority: 1]
08/25-20:19:20.571846 0:2:E3:A:EE:E4 -> 0:50:22:88:F1:48 type:0x800 len:0xDC
192.168.0.1:3277 -> 192.168.0.2:80 TCP TTL:128 TOS:0x0 ID:4615 IpLen:20 DgmLen:206 DF
AP Seq: 0xF6B127E4 Ack: 0x68C4E97F Win: 0xFAF0 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884]

[**] [1:1292:7] ATTACK-RESPONSES directory listing [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
08/25-20:19:20.646991 0:50:22:88:F1:48 -> 0:2:E3:A:EE:E4 type:0x800 len:0xEE
192.168.0.2:80 -> 192.168.0.1:3277 TCP TTL:128 TOS:0x0 ID:2590 IpLen:20 DgmLen:224 DF
AP Seq: 0x68C4E97F Ack: 0xF6B1288A Win: 0x43CA TcpLen: 20

Figure 6

Nikto with anti-IDS mode 3

Mode 3 uses a “premature request ending” technique which relies on the fact
that for performance reasons, an IDS may only scan part of an HTTP request,
and may miss extra data. By submitting a fake HTTP/1.1 string, Nikto aims to
confuse an IDS into only scanning part of the submitted HTTP GET
command.

However, in this mode, Nikto did not detect the Unicode vulnerability. The
URL obfuscation caused IIS to return a 404 error. It appears that the level of
obfuscation added by mode 3 breaks the Unicode exploit.

Figure 7 depicts the tcpdump output of the packet carrying the Unicode
payload, with anti-IDS mode 1 in force

21:11:19.311530 192.168.0.1.3605 > 192.168.0.2.80: P 1:202(201) ack 1 win 64240
(DF)
0x0000 4500 00f1 2765 4000 8006 514e c0a8 0001 E...'e@...QN....

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 8 of 67

0x0010 c0a8 0002 0e15 0050 26bb a1fb 984e 37de P&....N7.
0x0020 5018 faf0 3782 0000 4745 5420 2f25 3230 P...7...GET./%20
0x0030 4854 5450 2f31 2e31 2530 4425 3041 2541 HTTP/1.1%0D%0A%A
0x0040 6363 6570 7425 3341 2532 304a 4751 5654 ccept%3A%20JGQVT
0x0050 6f33 5569 792f 2e2e 2f2e 2e2f 7363 7269 o3Uiy/../../scri
0x0060 7074 732f 2e2e 2563 3025 6166 2e2e 2f77 pts/..%c0%af../w
0x0070 696e 6e74 2f73 7973 7465 6d33 322f 636d innt/system32/cm
0x0080 642e 6578 653f 2f63 2b64 6972 2048 5454 d.exe?/c+dir.HTT
0x0090 502f 312e 300d 0a48 6f73 743a 2031 3932 P/1.0..Host:.192
0x00a0 2e31 3638 2e30 2e32 0d0a 436f 6e6e 6563 .168.0.2..Connec
0x00b0 7469 6f6e 3a20 4b65 6570 2d41 6c69 7665 tion:.Keep-Alive
0x00c0 0d0a 436f 6e74 656e 742d 4c65 6e67 7468 ..Content-Length
0x00d0 3a20 300d 0a55 7365 722d 4167 656e 743a :.0..User-Agent:
0x00e0 204d 6f7a 696c 6c61 2f34 2e37 350d 0a0d .Mozilla/4.75...
0x00f0 0a .

Figure 7

The fake HTTP/1.1 string is highlighted in red. The valid HTTP/1.0 string is
highlighted in yellow.

Although the premature request ending was sufficient to prevent the Unicode
exploit from functioning, Snort still alerted on the stimulus packet:

[**] [1:981:6] WEB-IIS unicode directory traversal attempt [**]
[Classification: Web Application Attack] [Priority: 1]
08/25-21:11:19.311530 0:2:E3:A:EE:E4 -> 0:50:22:88:F1:48 type:0x800 len:0xFF
192.168.0.1:3605 -> 192.168.0.2:80 TCP TTL:128 TOS:0x0 ID:10085 IpLen:20 DgmLen:241 DF
AP Seq: 0x26BBA1FB Ack: 0x984E37DE Win: 0xFAF0 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884]

Figure 8

Because the exploit did not actually work, this could be considered a false
alert. Is it misleading that Snort generates an alert in this instance? One
argument states that this is misleading, because the exploit did not work; the
counter argument is that the alert is useful, because it notifies the network
analyst that something unusual is happening.

Nikto with anti-IDS mode 4

With mode 4, Nikto prepends a long random string to the URL, followed by the
text “../”. This results in a valid URL which can confuse some IDS which are
optimised only to look at the first few characters of each URL.

In this mode, Nikto correctly detected the Unicode vulnerability.

The tcpdump output of the packed carrying the Unicode exploit, with anti-IDS
mode 4 is shown in figure 9:

20:42:14.544114 192.168.0.1.3332 > 192.168.0.2.80: P 1:677(676) ack 1 win 64240
(DF)
0x0000 4500 02cc 1403 4000 8006 62d5 c0a8 0001 E.....@...b.....
0x0010 c0a8 0002 0d04 0050 0b4c e24e 7d62 4d94 P.L.N}bM.
0x0020 5018 faf0 74d4 0000 4745 5420 2f68 6932 P...t...GET./hi2
0x0030 3543 5367 6a65 7a4d 6868 5368 6932 3543 5CSgjezMhhShi25C
0x0040 5367 6a65 7a4d 6868 5368 6932 3543 5367 SgjezMhhShi25CSg
0x0050 6a65 7a4d 6868 5368 6932 3543 5367 6a65 jezMhhShi25CSgje
0x0060 7a4d 6868 5368 6932 3543 5367 6a65 7a4d zMhhShi25CSgjezM
0x0070 6868 5368 6932 3543 5367 6a65 7a4d 6868 hhShi25CSgjezMhh
0x0080 5368 6932 3543 5367 6a65 7a4d 6868 5368 Shi25CSgjezMhhSh
0x0090 6932 3543 5367 6a65 7a4d 6868 5368 6932 i25CSgjezMhhShi2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 9 of 67

0x00a0 3543 5367 6a65 7a4d 6868 5368 6932 3543 5CSgjezMhhShi25C
0x00b0 5367 6a65 7a4d 6868 5368 6932 3543 5367 SgjezMhhShi25CSg
0x00c0 6a65 7a4d 6868 5368 6932 3543 5367 6a65 jezMhhShi25CSgje
0x00d0 7a4d 6868 5368 6932 3543 5367 6a65 7a4d zMhhShi25CSgjezM
0x00e0 6868 5368 6932 3543 5367 6a65 7a4d 6868 hhShi25CSgjezMhh
0x00f0 5368 6932 3543 5367 6a65 7a4d 6868 5368 Shi25CSgjezMhhSh
0x0100 6932 3543 5367 6a65 7a4d 6868 5368 6932 i25CSgjezMhhShi2
0x0110 3543 5367 6a65 7a4d 6868 5368 6932 3543 5CSgjezMhhShi25C
0x0120 5367 6a65 7a4d 6868 5368 6932 3543 5367 SgjezMhhShi25CSg
0x0130 6a65 7a4d 6868 5368 6932 3543 5367 6a65 jezMhhShi25CSgje
0x0140 7a4d 6868 5368 6932 3543 5367 6a65 7a4d zMhhShi25CSgjezM
0x0150 6868 5368 6932 3543 5367 6a65 7a4d 6868 hhShi25CSgjezMhh
0x0160 5368 6932 3543 5367 6a65 7a4d 6868 5368 Shi25CSgjezMhhSh
0x0170 6932 3543 5367 6a65 7a4d 6868 5368 6932 i25CSgjezMhhShi2
0x0180 3543 5367 6a65 7a4d 6868 5368 6932 3543 5CSgjezMhhShi25C
0x0190 5367 6a65 7a4d 6868 5368 6932 3543 5367 SgjezMhhShi25CSg
0x01a0 6a65 7a4d 6868 5368 6932 3543 5367 6a65 jezMhhShi25CSgje
0x01b0 7a4d 6868 5368 6932 3543 5367 6a65 7a4d zMhhShi25CSgjezM
0x01c0 6868 5368 6932 3543 5367 6a65 7a4d 6868 hhShi25CSgjezMhh
0x01d0 5368 6932 3543 5367 6a65 7a4d 6868 5368 Shi25CSgjezMhhSh
0x01e0 6932 3543 5367 6a65 7a4d 6868 5368 6932 i25CSgjezMhhShi2
0x01f0 3543 5367 6a65 7a4d 6868 5368 6932 3543 5CSgjezMhhShi25C
0x0200 5367 6a65 7a4d 6868 5368 6932 3543 5367 SgjezMhhShi25CSg
0x0210 6a65 7a4d 6868 5368 6932 3543 5367 6a65 jezMhhShi25CSgje
0x0220 7a4d 6868 5368 6932 3543 5367 6a65 7a4d zMhhShi25CSgjezM
0x0230 6868 532f 2e2e 2f73 6372 6970 7473 2f2e hhS/../scripts/.
0x0240 2e25 6330 2561 662e 2e2f 7769 6e6e 742f .%c0%af../winnt/
0x0250 7379 7374 656d 3332 2f63 6d64 2e65 7865 system32/cmd.exe
0x0260 3f2f 632b 6469 7220 4854 5450 2f31 2e30 ?/c+dir.HTTP/1.0
0x0270 0d0a 486f 7374 3a20 3139 322e 3136 382e ..Host:.192.168.
0x0280 302e 320d 0a43 6f6e 6e65 6374 696f 6e3a 0.2..Connection:
0x0290 204b 6565 702d 416c 6976 650d 0a43 6f6e .Keep-Alive..Con
0x02a0 7465 6e74 2d4c 656e 6774 683a 2030 0d0a tent-Length:.0..
0x02b0 5573 6572 2d41 6765 6e74 3a20 4d6f 7a69 User-Agent:.Mozi
0x02c0 6c6c 612f 342e 3735 0d0a 0d0a lla/4.75....

Figure 9

The random text is highlighted in red.

Snort alerted correctly on the stimulus and response for this mode.

[**] [1:981:6] WEB-IIS unicode directory traversal attempt [**]
[Classification: Web Application Attack] [Priority: 1]
08/25-20:42:14.544114 0:2:E3:A:EE:E4 -> 0:50:22:88:F1:48 type:0x800 len:0x2DA
192.168.0.1:3332 -> 192.168.0.2:80 TCP TTL:128 TOS:0x0 ID:5123 IpLen:20 DgmLen:716 DF
AP Seq: 0xB4CE24E Ack: 0x7D624D94 Win: 0xFAF0 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884]

[**] [1:1292:7] ATTACK-RESPONSES directory listing [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
08/25-20:42:14.605298 0:50:22:88:F1:48 -> 0:2:E3:A:EE:E4 type:0x800 len:0xEE
192.168.0.2:80 -> 192.168.0.1:3332 TCP TTL:128 TOS:0x0 ID:2925 IpLen:20 DgmLen:224 DF
AP Seq: 0x7D624D94 Ack: 0xB4CE4F2 Win: 0x41CC TcpLen: 20

Figure 10

Nikto with anti-IDS mode 5

Mode 5 relies on the fact that some IDS’s do not attempt to process any
parameters which are supplied with the URL. Parameters which are supplied
to server side programs are delimited by the “?” or “&” characters. Mode 5
supplies a spurious, hex-encoded “?” character in an attempt to fool an IDS
from parsing the entire URL.

In this mode, Nikto correctly detected the Unicode vulnerability.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 10 of 67

The tcpdump output of the packed carrying the Unicode exploit, with anti-IDS
mode 5 is shown in figure 11:

20:42:50.743606 192.168.0.1.3359 > 192.168.0.2.80: P 1:201(200) ack 1 win 64240
(DF)
0x0000 4500 00f0 14a8 4000 8006 640c c0a8 0001 E.....@...d.....
0x0010 c0a8 0002 0d1f 0050 0bea d122 7e01 4f2a P..."~.O*
0x0020 5018 faf0 5e57 0000 4745 5420 2f34 3746 P...^W..GET./47F
0x0030 6839 7564 466c 5138 6354 6d32 6a74 2e68 h9udFlQ8cTm2jt.h
0x0040 746d 6c25 3366 6353 5351 664d 6a43 456b tml%3fcSSQfMjCEk
0x0050 4941 6653 793d 2f2e 2e2f 2f73 6372 6970 IAfSy=/..//scrip
0x0060 7473 2f2e 2e25 6330 2561 662e 2e2f 7769 ts/..%c0%af../wi
0x0070 6e6e 742f 7379 7374 656d 3332 2f63 6d64 nnt/system32/cmd
0x0080 2e65 7865 3f2f 632b 6469 7220 4854 5450 .exe?/c+dir.HTTP
0x0090 2f31 2e30 0d0a 486f 7374 3a20 3139 322e /1.0..Host:.192.
0x00a0 3136 382e 302e 320d 0a43 6f6e 6e65 6374 168.0.2..Connect
0x00b0 696f 6e3a 204b 6565 702d 416c 6976 650d ion:.Keep-Alive.
0x00c0 0a43 6f6e 7465 6e74 2d4c 656e 6774 683a .Content-Length:
0x00d0 2030 0d0a 5573 6572 2d41 6765 6e74 3a20 .0..User-Agent:.
0x00e0 4d6f 7a69 6c6c 612f 342e 3735 0d0a 0d0a Mozilla/4.75....

Figure 11

The hex-encoded “?” character (which may be interpreted by some IDS as
signifying the start of parameters in the URL) is highlighted in red.

Snort alerted correctly on the stimulus and response for this mode.

[**] [1:981:6] WEB-IIS unicode directory traversal attempt [**]
[Classification: Web Application Attack] [Priority: 1]
08/25-20:42:50.743606 0:2:E3:A:EE:E4 -> 0:50:22:88:F1:48 type:0x800 len:0xFE
192.168.0.1:3359 -> 192.168.0.2:80 TCP TTL:128 TOS:0x0 ID:5288 IpLen:20 DgmLen:240 DF
AP Seq: 0xBEAD122 Ack: 0x7E014F2A Win: 0xFAF0 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884]

[**] [1:1292:7] ATTACK-RESPONSES directory listing [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
08/25-20:42:50.770782 0:50:22:88:F1:48 -> 0:2:E3:A:EE:E4 type:0x800 len:0xEE
192.168.0.2:80 -> 192.168.0.1:3359 TCP TTL:128 TOS:0x0 ID:3060 IpLen:20 DgmLen:224 DF
AP Seq: 0x7E014F2A Ack: 0xBEAD1EA Win: 0x43A8 TcpLen: 20

Figure 12

Nikto with anti-IDS mode 6

Mode 6 attempts to bypass an IDS by replacing spaces in the URL with TAB
characters. This breaks the RFC format for HTTP requests6, which states that
the request line should be of the form:

Method SP Request-URI SP HTTP-Version CRLF

(here, SP represents a space character).

However, some webservers will cope with a mangled version of this request –
if the space is replaced by a TAB character, they will still serve the request.

Anti-IDS mode 6 makes use of the fact that some IDS’s will adhere to the
HTTP RFC, and not scan an HTTP request which contains a TAB rather than
a space.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 11 of 67

In this mode, Nikto does not identify the Unicode vulnerability – this is
because IIS5 objects to the HTTP request containing a TAB character. A 400
error is returned.

The tcpdump output of the packed carrying the Unicode exploit, with anti-IDS
mode 6 is shown in figure 13.

0x0000 4500 00c2 153a 4000 8006 63a8 c0a8 0001 E....:@...c.....
0x0010 c0a8 0002 0d3b 0050 0c42 e435 7e58 ed0b ;.P.B.5~X..
0x0020 5018 faf0 58c6 0000 4745 5409 2f73 6372 P...X...GET./scr
0x0030 6970 7473 2f2e 2e25 6330 2561 662e 2e2f ipts/..%c0%af../
0x0040 7769 6e6e 742f 7379 7374 656d 3332 2f63 winnt/system32/c
0x0050 6d64 2e65 7865 3f2f 632b 6469 7220 4854 md.exe?/c+dir.HT
0x0060 5450 2f31 2e30 0d0a 486f 7374 3a20 3139 TP/1.0..Host:.19
0x0070 322e 3136 382e 302e 320d 0a43 6f6e 6e65 2.168.0.2..Conne
0x0080 6374 696f 6e3a 204b 6565 702d 416c 6976 ction:.Keep-Aliv
0x0090 650d 0a43 6f6e 7465 6e74 2d4c 656e 6774 e..Content-Lengt
0x00a0 683a 2030 0d0a 5573 6572 2d41 6765 6e74 h:.0..User-Agent
0x00b0 3a20 4d6f 7a69 6c6c 612f 342e 3735 0d0a :.Mozilla/4.75..
0x00c0 0d0a ..

Figure 13

Highlighted in red is the tab in the HTTP request and its ASCII equivalent
0x09.

Although the TAB in the HTTP request ending was sufficient to prevent the
Unicode exploit from functioning, Snort still alerted on the stimulus packet:

[**] [1:981:6] WEB-IIS unicode directory traversal attempt [**]
[Classification: Web Application Attack] [Priority: 1]
08/25-20:43:08.166532 0:2:E3:A:EE:E4 -> 0:50:22:88:F1:48 type:0x800 len:0xD0
192.168.0.1:3387 -> 192.168.0.2:80 TCP TTL:128 TOS:0x0 ID:5434 IpLen:20 DgmLen:194 DF
AP Seq: 0xC42E435 Ack: 0x7E58ED0B Win: 0xFAF0 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884]

Figure 14

Nikto with anti-IDS mode 7

Mode 7 attempts to bypass an IDS by mixing the case of characters used in
the HTTP request, so a URL such as http://www.server.com/scripts/test.exe
will be mangled to something like
http://WwW.SErVeR.COm/sCRiPtS/tESt.Exe. For web servers running
Windows, URLs containing characters of randomly mixed upper/lower case
will still function fine. This mode preys on the fact that an IDS may strictly
adhere to the pattern matching the case of characters defined in its
signatures.

In this mode, Nikto correctly detected the Unicode vulnerability.

The tcpdump output of the packed carrying the Unicode exploit, with anti-IDS
mode 7 is shown in figure 15:

0x0000 4500 00c2 15e1 4000 8006 6301 c0a8 0001 E.....@...c.....
0x0010 c0a8 0002 0d57 0050 0cf7 8113 7f0d 38a4 W.P......8.
0x0020 5018 faf0 8ff4 0000 4745 5420 2f73 4352 P.......GET./sCR
0x0030 4950 7473 2f2e 2e25 6330 2561 662e 2e2f IPts/..%c0%af../
0x0040 5769 4e6e 742f 7359 5354 454d 3332 2f43 WiNnt/sYSTEM32/C

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 12 of 67

0x0050 4d44 2e45 7845 3f2f 432b 4449 7220 4854 MD.ExE?/C+DIr.HT
0x0060 5450 2f31 2e30 0d0a 486f 7374 3a20 3139 TP/1.0..Host:.19
0x0070 322e 3136 382e 302e 320d 0a43 6f6e 6e65 2.168.0.2..Conne
0x0080 6374 696f 6e3a 204b 6565 702d 416c 6976 ction:.Keep-Aliv
0x0090 650d 0a43 6f6e 7465 6e74 2d4c 656e 6774 e..Content-Lengt
0x00a0 683a 2030 0d0a 5573 6572 2d41 6765 6e74 h:.0..User-Agent
0x00b0 3a20 4d6f 7a69 6c6c 612f 342e 3735 0d0a :.Mozilla/4.75..
0x00c0 0d0a ..

Figure 15

Above, the mixed-case GET is highlighted in red.

Snort alerted correctly on the stimulus and response for this mode.

[**] [1:981:6] WEB-IIS unicode directory traversal attempt [**]
[Classification: Web Application Attack] [Priority: 1]
08/25-20:43:50.408552 0:2:E3:A:EE:E4 -> 0:50:22:88:F1:48 type:0x800 len:0xD0
192.168.0.1:3415 -> 192.168.0.2:80 TCP TTL:128 TOS:0x0 ID:5601 IpLen:20 DgmLen:194 DF
AP Seq: 0xCF78113 Ack: 0x7F0D38A4 Win: 0xFAF0 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884]

[**] [1:1292:7] ATTACK-RESPONSES directory listing [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
08/25-20:43:50.501101 0:50:22:88:F1:48 -> 0:2:E3:A:EE:E4 type:0x800 len:0xEE
192.168.0.2:80 -> 192.168.0.1:3415 TCP TTL:128 TOS:0x0 ID:3302 IpLen:20 DgmLen:224 DF
AP Seq: 0x7F0D38A4 Ack: 0xCF781AD Win: 0x43D6 TcpLen: 20

Figure 16

Nikto with anti-IDS mode 8

Mode 8 attempts to bypass an IDS by using backslash (‘\’) characters rather
than forward slash (‘/’) in URLs. So http://www.server.com/scripts/test.exe can
be rewritten as http://www.server.com\scripts\test.exe

In this mode, Nikto did not detect the Unicode vulnerability. It is interesting to
understand why this is the case – looking at the syntax of cmd.exe reveals
why Nikto fails.

Part of the exploit used by Nikto is to run cmd.exe with the /c parameter.
Essentially, “/c dir” is passed to cmd.exe as Nikto probes for the Unicode
vulnerability. Passing “/c dir” to cmd.exe should cause a directory listing to be
produced – and it is the production of the directory listing which Nikto scans
for to ascertain whether the Unicode vulnerability is present.

When “\c dir” is passed to cmd.exe instead, although this is a syntactically
incorrect we still get a different result. Instead of a directory listing appearing,
two lines of text are produced – this text produced is the banner displayed
when a fresh command shell is invoked:

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp

From the above, It is worth noting that although Nikto did not detect the
Unicode vulnerability, the vulnerability itself is still present when forward
slashes are replaced by backslashes.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 13 of 67

The tcpdump output of the packet carrying the Unicode exploit, with anti-IDS
mode 8 is shown in figure 17:

20:44:13.545023 IP 192.168.0.1.3442 > 192.168.0.2.80: P 1:155(154) ack 1 win 64240
(DF)
0x0000 4500 00c2 1687 4000 8006 625b c0a8 0001 E.....@...b[....
0x0010 c0a8 0002 0d72 0050 0d64 b305 7f79 e880r.P.d...y..
0x0020 5018 faf0 3169 0000 4745 5420 2f73 6372 P...1i..GET./scr
0x0030 6970 7473 5c2e 2e25 6330 2561 662e 2e5c ipts\..%c0%af..\
0x0040 7769 6e6e 745c 7379 7374 656d 3332 5c63 winnt\system32\c
0x0050 6d64 2e65 7865 3f5c 632b 6469 7220 4854 md.exe?\c+dir.HT
0x0060 5450 2f31 2e30 0d0a 486f 7374 3a20 3139 TP/1.0..Host:.19
0x0070 322e 3136 382e 302e 320d 0a43 6f6e 6e65 2.168.0.2..Conne
0x0080 6374 696f 6e3a 204b 6565 702d 416c 6976 ction:.Keep-Aliv
0x0090 650d 0a43 6f6e 7465 6e74 2d4c 656e 6774 e..Content-Lengt
0x00a0 683a 2030 0d0a 5573 6572 2d41 6765 6e74 h:.0..User-Agent
0x00b0 3a20 4d6f 7a69 6c6c 612f 342e 3735 0d0a :.Mozilla/4.75..
0x00c0 0d0a ..

Figure 17

Above, the places where the forward slash was replaced by backslash is
highlighted in red.

Snort’s response to the stimulus and response was intriguing:

[**] [1:1002:5] WEB-IIS cmd.exe access [**]
[Classification: Web Application Attack] [Priority: 1]
08/25-20:44:13.545023 0:2:E3:A:EE:E4 -> 0:50:22:88:F1:48 type:0x800 len:0xD0
192.168.0.1:3442 -> 192.168.0.2:80 TCP TTL:128 TOS:0x0 ID:5767 IpLen:20 DgmLen:194 DF
AP Seq: 0xD64B305 Ack: 0x7F79E880 Win: 0xFAF0 TcpLen: 20

[**] [1:2123:1] ATTACK-RESPONSES Microsoft cmd.exe banner [**]
[Classification: Successful Administrator Privilege Gain] [Priority: 1]
08/25-20:44:13.581280 0:50:22:88:F1:48 -> 0:2:E3:A:EE:E4 type:0x800 len:0x106
192.168.0.2:80 -> 192.168.0.1:3442 TCP TTL:128 TOS:0x0 ID:3433 IpLen:20 DgmLen:248 DF
AP Seq: 0x7F79E880 Ack: 0xD64B39F Win: 0x43D6 TcpLen: 20
[Xref => http://cgi.nessus.org/plugins/dump.php3?id=11633]

Figure 18

First, Snort did not recognise the Unicode probe on the stimulus packet.
Replacing the forward slashes by back slashes appears to fool Snort. Instead,
however, another priority 1 rule which fires on attempts to execute cmd.exe
was produced. This would alert the astute network analyst of a possible
attack.

Second, Snort’s action to the response packet was interesting – the banner
produced by a fresh shell (as listed above) caused a priority 1 alert to be
produced.

Nikto with anti-IDS mode 9

Mode 9 uses IP fragmentation in an attempt to bypass an IDS. Most modern
IDS’s, including Snort can effectively deal with fragmentation – they
defragment the packets before performing pattern matching.

When running in mode 9, Nitko correctly detected the Unicode vulnerability. A
shortened snapshot of the fragmented stimulus packets is presented in figure
19:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 14 of 67

21:58:23.713507 192.168.0.1.3880 > 192.168.0.2.80: P 1:2(1) ack 1 win 64240 (DF)
0x0000 4500 0029 3131 4000 8006 484a c0a8 0001 E..)11@...HJ....
0x0010 c0a8 0002 0f28 0050 5182 c299 c301 6f15 (.PQ.....o.
0x0020 5018 faf0 96db 0000 47 P.......G
21:58:23.897563 192.168.0.1.3880 > 192.168.0.2.80: P 2:3(1) ack 1 win 64240 (DF)
0x0000 4500 0029 3132 4000 8006 4849 c0a8 0001 E..)12@...HI....
0x0010 c0a8 0002 0f28 0050 5182 c29a c301 6f15 (.PQ.....o.
0x0020 5018 faf0 98da 0000 45 P.......E
21:58:24.098151 192.168.0.1.3880 > 192.168.0.2.80: P 3:5(2) ack 1 win 64240 (DF)
0x0000 4500 002a 3133 4000 8006 4847 c0a8 0001 E..*13@...HG....
0x0010 c0a8 0002 0f28 0050 5182 c29b c301 6f15 (.PQ.....o.
0x0020 5018 faf0 89b8 0000 5420 P.......T.

Figure 19

In the above, the first 3 characters for the HTTP GET are highlighted in red.

Snort alerted correctly on the stimulus
and response for this mode:

[**] [1:1292:7] ATTACK-RESPONSES directory listing [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
08/25-21:58:30.340285 0:50:22:88:F1:48 -> 0:2:E3:A:EE:E4 type:0x800 len:0xEE
192.168.0.2:80 -> 192.168.0.1:3880 TCP TTL:128 TOS:0x0 ID:7483 IpLen:20 DgmLen:224 DF
AP Seq: 0xC3016F15 Ack: 0x5182C333 Win: 0x43D6 TcpLen: 20

[**] [1:981:6] WEB-IIS unicode directory traversal attempt [**]
[Classification: Web Application Attack] [Priority: 1]
08/25-21:58:30.346309 0:2:E3:A:EE:E4 -> 0:50:22:88:F1:48 type:0x800 len:0xD0
192.168.0.1:3880 -> 192.168.0.2:80 TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:194
AP Seq: 0xC30170AA Ack: 0x5182C334 Win: 0x43D6 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884]

Figure 20

It is interesting to note that Snort produced the alert for the response (the
ATTACK-RESPONSES alert) before the alert for the stimulus (the WEB-IIS
alert). It is likely that the time required to re-assemble the fragmented packets
caused the alerts to occur in this order.

Summary of Results

Mode Description Nikto
detected
Unicode
vuln.?

Snort detected
exploit?

Detect
by Snort
rule (SID
no) on

stimulus

Detect by
Snort rule

(SID no) on
response

No
anti-
IDS

Nikto
running in
normal
mode

Y Y (unicode
directory
traversal &
directory listing)

981 1292

1 Random
URL
encoding

N Y (http directory
traversal)

1113 N/A

2 Directory
self-
reference

Y Y (unicode
directory
traversal &
directory listing)

981 1292

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 15 of 67

3 Premature
URL ending

N Y (unicode
directory
traversal)

981 N/A

4 Prepend
long random
string to
request

Y Y (unicode
directory
traversal &
directory listing)

981 1292

5 Fake
parameters
to files

Y Y (unicode
directory
traversal &
directory listing)

981 1292

6 TAB as
request
spacer
instead of
spaces

N Y (unicode
directory
traversal)

981 N/A

7 Random
case
sensitivity

Y Y (unicode
directory
traversal &
directory listing)

981 1292

8 Use
Windows
directory
separator \
instead of /

N Y (cmd.exe
access and
Microsoft
cmd.exe banner)

1002 2123

9 Session
splicing

Y Y (directory
listing & unicode
directory
traversal)

981 1292

Table 2

Conclusions

The above results show that the anti-IDS modes in Nikto do not pose a
problem for a modern IDS such as Snort. With each anti-IDS mode, Snort
alerted with a priority 1 message.

It should be noted that in several cases, the anti-IDS mode prevented Nikto
from detecting the Unicode vulnerability. In many cases this was not a
weakness in the part of Nikto – the URL obfuscation confused IIS to a
sufficient degree that the Unicode exploit did not work. From this we conclude
that when using any of the anti-IDS modes, the accuracy of the vulnerabilities
reported will decrease.

It is worth considering why Snort is so successful in detecting these
obfuscated stimulus packets. It is tempting to believe that the answer lies in
the excellent http_decode pre-processor within Snort (see section 2.4.1 in the
Snort documentation7 or pages 218-221 in “Snort 2.0 Intrusion Detection”8 for

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 16 of 67

more detail on this preprocessor). However, it turns out that rain.forest.puppy,
the author of the libwhisker, (which provides the anti-IDS engine for Nikto)
was one of the key developers of the http_preprocessor9.

So in many ways, we would expect Snort to deal well with the types of
obfuscation used in Nikto. However, a quick test, running Snort on the
tcpdump files gathered in the above experiment, with the http_decode pre-
processor disabled does not confirm this thinking. Even with the http_decode
preprocessor disabled, Snort continues to detect the Unicode exploit. How
come? This is largely due to the fact that one of the telltale Unicode
signatures, “/..%c0%af../” (which is present in the default Snort ruleset)
continues to appear in the stimulus packets (for the above test) in many of the
anti-IDS modes.

This does not mean that the http_decode pre-processor is without value – far
from it. In helps web-signature writers enormously. Imagine writing a Snort
signature to alert on attempts to access a certain file, say cgi-bin/foo on a
webserver. Without the http_decode pre-processor, the signature author
would face several challenges – what if the attempt to access cgi-bin/foo.pl
was encoded in hex as %63%67%69%2d%62%69%6e/%66%6f%6f? The
web server would still serve the request. In a situation like this, http_decode
helps, by “canonicalizing” the request into a form which facilitates a simple
signature match.

Without the anti-IDS modes, Nikto is an exceptionally noisy tool. A vigilant
webmaster who monitors their logs will spot the repeated probes and the
giveaway “Nikto signature” in their logs. The signature makes it trivial for a
Snort rule to be constructed to alert on Nikto probes (where the anti-IDS
modes are not used). A simple Snort rule such as the following will alert on
such Nikto scans:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB Nikto probe";
flow:to_server,established; content:"(Nikto/"; classtype:attempted-recon;)

A repeated alert from Snort during testing was the “directory listing” message,
produced by the response to Nikto’s probe for the Unicode vulnerability. It is
worth emphasizing that whatever future anti-IDS scheme Nikto used for the
stimulus, Snort would still produce this alert for the response.

References

1 Sullo. “Nikto”. URL: http://www.cirt.net/code/nikto.shtml
2 rain.forest.puppy. “rfp.labs whisker” URL: http://www.wiretrip.net/rfp/w.asp
3 Roesch, Marty. “snort.org”. URL: http://www.snort.org/
4 rain.forest.puppy, “A look at whisker's anti-IDS tactics”. URL:
http://www.wiretrip.net/rfp/txt/whiskerids.html
5 “CVE-2000-0884”. URL: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-
0884
6 “RFC 1945 (rfc1945) - Hypertext Transfer Protocol -- HTTP/1.0”. URL:
http://www.faqs.org/rfcs/rfc1945.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 17 of 67

7 Green, Chris. “Snort Users Manual. Snort Release 2.0.0”. URL:
http://www.snort.org/docs/writing_rules/chap2.html#tth_sEc2.4.1
8 Caswell, Brian. Beale, Jay. Foster, James. Posluns, Jeffery. “Snort 2.0 Intrusion Detection”.
Syngress, 2003. Pages 218-221.
9 Caswell, Brian. Beale, Jay. Foster, James. Posluns, Jeffery. “Snort 2.0 Intrusion Detection”.
Syngress, 2003. Page 107

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 18 of 67

Assignment 2 – Network Detects

Detect 1 – Syn-Fin scan

The original draft of this detect was posted to the incidents.org mailing list on
Friday, October 3rd 2003.

Source of Trace

The source of this trace is the 2002.6.9 file, downloaded from
http://www.incidents.org/logs/Raw.

Analysis of the 2002.6.9 tcpdump file shows repeated connections to and
from machines on the protected 46.5.0.0 network (note that the addresses of
the protected network are obfuscated).

All traffic coming from outside (that is traffic which does not have a source
address on the 46.5.0.0 net) has the same MAC address (00:03:e3:d9:26:c0).
This is a Cisco MAC address.

All traffic coming from inside (that is traffic which does have a source address
on the 46.5.0.0 net) has the same MAC address (00:00:0c:04:b2:33). This
checks out as a Cisco MAC address, too.

From this I would infer a topology where the IDS sits between two Cisco
devices - most likely between two Cisco routers. So this is most likely an IDS
in a DMZ.

Detect was generated by

Snort v2.01 with the ruleset as of 10 September 2003.

Snort was run with the following parameters, producing a number of alerts.

Snort –c snort.conf –l log –r 2002.6.9

(The –c flag allows you to specify the Snort configuration file to use, the –l flag
causes alerts to be logged to a specified directory)

Figure 21 depicts the Snort output of the syn-fin scans found in the 2002.6.9
dump file. The anomalous syn-fin flags are highlighted. 10 syn-fin alerts were
found in total. Only the first 3 are shown here, for reasons of brevity:

[**] [111:13:1] (spp_stream4) STEALTH ACTIVITY (SYN FIN scan) detection [**]
07/09-01:37:08.924488 62.153.209.202:21 -> 46.5.163.24:21
TCP TTL:30 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x7E92B685 Ack: 0x3625A8D Win: 0x404 TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 19 of 67

[**] [111:13:1] (spp_stream4) STEALTH ACTIVITY (SYN FIN scan) detection [**]
07/09-01:46:38.784488 62.153.209.202:21 -> 46.5.173.22:21
TCP TTL:30 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x34CAED2F Ack: 0x48DFF915 Win: 0x404 TcpLen: 20

[**] [111:13:1] (spp_stream4) STEALTH ACTIVITY (SYN FIN scan) detection [**]
07/09-01:50:50.934488 62.153.209.202:21 -> 46.5.129.133:21
TCP TTL:30 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x1BF72FB3 Ack: 0x147CE382 Win: 0x404 TcpLen: 20

Figure 21

In fact, a sophisticated IDS is not required to detect syn-fin packets. Running
tcpdump against the dump file with the filter “tcp[13]==3” will highlight this
attack.

Note that it is one of Snort’s preprocessors (stream4) which caused the alert.
Interestingly, if stream4 is disabled, the same packets cause a different alert,
shown in figure 22. Again, only the first 3 alerts are shown, for brevity.

[**] [1:630:1] SCAN synscan portscan [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/09-01:37:08.924488 62.153.209.202:21 -> 46.5.163.24:21
TCP TTL:30 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x7E92B685 Ack: 0x3625A8D Win: 0x404 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS441]

[**] [1:630:1] SCAN synscan portscan [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/09-01:46:38.784488 62.153.209.202:21 -> 46.5.173.22:21
TCP TTL:30 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x34CAED2F Ack: 0x48DFF915 Win: 0x404 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS441]

[**] [1:630:1] SCAN synscan portscan [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/09-01:50:50.934488 62.153.209.202:21 -> 46.5.129.133:21
TCP TTL:30 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x1BF72FB3 Ack: 0x147CE382 Win: 0x404 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS441]

Figure 22

Probability that source address was spoofed

The probability that the source address was spoofed is low, although it is
possible.

A syn-fin scan is usually used to determine whether a port on a target is open
or not – a response from the target is required to determine this. If the packet
with the syn-fin flags set is spoofed, any response will not be returned to the
attacker. So unless the attacker is in a position to sniff the network traffic
travelling to the spoofed address, they are unlikely to forge the source
address.

On the other hand, because the syn-fin packet is not likely to be part of an
existing TCP session, the source address could be spoofed easily.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 20 of 67

An interesting though unlikely possibility is that the source address is indeed
spoofed, and that the attacker is using a sophisticated syn-fin cum idlescan
technique to perform a very stealthy scan. The ideas behind the idlescan
technique can be found at http://www.insecure.org/nmap/idlescan.html.

Lastly, it is worth mentioning that the source IP is not obviously spoofed. It is a
valid, non-RFC 1918 address. A whois of the address shows that it is valid
and is allocated to Deutsche Telecom, a large ISP in Germany.

Description of attack

This is a covert scan (using TCP packets with both syn and fin flags set) of a
number of machines on the 46.5.0.0 network. The purpose of the scan in this
detect is to determine whether any service is listening on port 21 (ftp) on the
targeted machines.

Why is the attacker looking for services on port 21? One possibility is that they
know some new exploits against well known ftp servers, which they intend to
launch following reconnaissance. Further investigation, however, strongly
hints that this is the initial probe by the Ramen worm.

Attack mechanism

Typical reconnaissance using a syn-fin scan involves sending a crafted TCP
packet which has both the syn and fin flags set to a target to determine
whether a port is open or not. The syn-fin combination is not legal, according
to RFC 793.

 When a TCP packet with syn-fin set is sent to an open port, many operating
systems (including Linux, Windows NT, Solaris and FreeBSD) return a syn-
ack in an attempt to establish the standard TCP three way handshake. If a
syn-fin packet is sent to a closed port, many operating systems return a rst-
ack.

Portscanning using syn-fin takes advantage of certain packet filters and
firewalls (for example certain versions of Norton Personal firewall 2002) which
do not handle these unusual packets correctly – they pass traffic which should
be dropped. Scanning for the presence of an open port by sending a syn-fin
packet is a well known method that can allow reconnaisance of a network that
a simple syn scan would not. Further, using syn-fin might allow a primitive IDS
to be bypassed.

An unusual feature of this scan is that ephemeral ports are not used on the
attacking machine. Instead, the source port, 21, is used repeatedly. It is highly
unusual to find matching source and destination ports, on port 21. Perhaps,
this was done to increase the likelihood of the scan succeeding – if the
network is only protected by a simple packet filter, incoming packets with a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 21 of 67

source port of 21 might pass (assuming a loose rule for allowing access to ftp
servers on the Internet from the internal network).

The syn-fin scan used in this detect seems “slow and stealthy”. 10 hosts were
targeted over a period of 3.5 hours by the same attacker (62.153.209.202)

The scan is very likely generated by the synscan tool, or code based on the
synscan tool. This portscanning tool has a fairly obvious signature which
matches the above packets very well, in that in the TCP header:

Source and destination ports are the same: 21
The type of service is 0
The IPID is 39426
The TCP window size is 1028
Syn and Fin flags are set

The reflexive nature of this scan (source and destination ports 21) matches
the initial scanning mechanism of the Ramen worm – although this detect
could be generated by an attacker running synscan, probing from the Ramen
worm is more likely.

Correlations

This kind of reconnaissance is rarer than syn scans, but is well known. It can
be found in the Arachnids database, http://www.whitehats.com/info/IDS198.

Details on how different operating systems react to illegal combinations of
TCP flags (including syn-fin) can be found in a bugtraq posting, http://cert.uni-
stuttgart.de/archive/bugtraq/2002/10/msg00275.html.

A posting on the Snort discussion group by Ofir Arkin details the flags in
packets in response to syn-fin:
http://archives.neohapsis.com/archives/snort/2000-03/0101.html.

There is a note on Securityfocus about how syn-fin scanning bypasses
Symantec Norton Personal Firewall 2002:
http://www.securityfocus.com/bid/4521/discussion.

In Karen Kent Fredrick's paper on SecurityFocus
(http://www.securityfocus.com/infocus/1524) she mentions
Ramen as having a signature of source and destination port
21. This is further confirmed by Donald Smith’s posting to the incidents.org
mailing list (article available at http://cert.uni-
stuttgart.de/archive/intrusions/2003/10/msg00036.html).

A useful article on synscan signatures can be found at
http://www.securityfocus.com/printable/infocus/1524. The tool is described in
depth by Donald Smith: http://www.giac.org/practical/donald_smith_gcia.doc.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 22 of 67

The synscan signature on Arachnids is
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids441&view=event

Evidence of active targeting

The scan does not target one specific host on the 46.5.0.0 network. 10
different hosts are targeted over a period of 3.5 hours.

Investigation of the dumps from previous days, 2002.6.8, 2002.6.7, 2002.6.6
files shows that a reasonable number of scans – 169 – were performed over a
four day period. No duplicate scans were found – that is no host was scanned
more than once.

One interpretation leads us to think that the repeated, unduplicated, slow
scans are evidence of active targeting – this is unlikely to be a “wrong
number”. The attacker is using slow, stealthy techniques in an attempt to get
in “under the radar”, and avoid the attention of any IDS.

However, given that the most likely explanation for this network behaviour is
the initial probes of the Ramen worm, we should conclude that this is worm
activity, and therefore this cannot be said to be active targeting.

Severity

Severity = (criticality + lethality) – (system countermeasures + network
countermeasures)

Criticality

How critical are the targeted systems? It is difficult to tell. Let’s assume the
targets are of some importance, but not critical. So we score 2 here.

Lethality

The attack is just a scan. If the scan worked, the attacker could work out
whether or not a port was open. This information could come before a more
severe attack, but on its own, the simple syn-fin scan is unlikely to prove
lethal.

However, syn-fin packets are not a naturally occurring event, and do signal
malicious intent. In this case, they are most likely a precursor to an exploit
being used by the Ramen worm. Let’s score a 2 here.

System countermeasures

It is not possible to know where the targeted systems stand in terms of patch
levels, and hardening. From the frequency of alerts on this network, it may be

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 23 of 67

reasonable to assume minimal system countermeasures. Let’s score this as
2.

Network countermeasures

It appears that the scan is not being blocked by an external router (we know it
has reached the IDS, but cannot ascertain whether it has reached the
targets). In particular we do not know whether the targeted hosts responded
to the syn-fin packets.

The attack is getting at least as far as the internal IDS. So let’s give ‘network
countermeasures’ a low score, say 1.

Severity = (2+2) – (2+1) = 1

Not a major issue, but worthy of attention.

Defensive recommendations

Network administrators should ensure that packets with illegal TCP flag
combinations (such as syn-fin) are correctly blocked by routers and firewalls.
Check the ruleset in such devices, and confirm that bogus packets are
dropped.

syn-fin scanning might have bypassed simple packetfilters and some firewalls
in the past; it might also have escaped the attention of an IDS. This is unlikely
to be the case today, so a strong recommendation would be to check that
systems (including routers) are fully up to date with patches. It is not enough
to ensure that only operating systems are fully patched – applications such as
personal firewalls need to be updated, too.

If an IDS is deployed, verify that it can correctly alert on syn-fin packets. If it
does not, update the software (or complain to the vendor if a commercial IDS
is used).

Given that this network behaviour is most likely caused by the Ramen worm, it
is worth re-iterating that software on all machines should only be installed and
configured if it is required (if a machine is not going to act as an ftp server,
why should it run ftp server software?). This is not enough though. System
administrators should ensure that all software is up to date with security
patches.

Multiple choice test question

When a TCP packet with the syn and fin flags is sent to an open port on
Windows or Unix host, how does the host respond?

a. With an ack packet
b. With a syn-ack packet

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 24 of 67

c. With a rst packet
d. They do not respond to this type of packet

Correct answer is b

Top three questions and responses from incidents.org

When this detect was posted, a good number of questions and advice were
posted. The entire thread including all my responses can be found at
http://cert.uni-stuttgart.de/archive/intrusions/2003/10/threads.html.

Three of the more challenging/ interesting questions and my responses are
shown here:

Questions 1 and 2 (from Paul Bradley):

When scanning with Synscan, is there any other type of information gathered
in addition to identifying a listening service on the targeted system?

Why do you think synscan was used? Could this possibly be worm activity?
If so, which worm do you think it is?

Answer (quoted verbatim from posting to incidents.org)

Thanks for the questions, Paul.

I've dug into the source code for Synscan 1.6, and it appears to do more than
just portscan - it looks for and reports on vulnerabilities on several ports,
including 23 (telnet), 53 (dns), 79 (finger), 80 (http), 111 (rpc), 119 (news),
3128 and 8080 (squid). It also appears to try to send some data to
www.microsoft.com every time it is run, which is a bit weird!

I think this detect is likely to be synscan (or perhaps another tool built on
synscan), because of the accurate match with Arachnids synscan entry (441).
The detected packets match closely with the aspects detailed in the Arachnids
database - the IPID matches (39426), the TOS matches (0), the window size
matches (1028), and the syn and fin flags are set.

Your question about worm activity is very interesting. Several tools and worms
use synscan as their 'engine', including the Ramen worm, canserserver and
the t0rnscan tool in the t0rn rootkit - Donald Smith mentions this his GCIA
paper (http://www.giac.org/practical/donald_smith_gcia.doc).

In Karen Kent Fredrick's paper on SecurityFocus
(http://www.securityfocus.com/infocus/1524) she mentions Ramen as having
a signature of source and destination port 21. But I could find no further
evidence about these reflexive ports and Ramen. On Arachnids, for example,
the entry for the Ramen worm indicates that any ephemeral source port will

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 25 of 67

be used, not port 21. Could it be that the initial probing of Ramen is reflexive,
and that when the payload is delivered a standard, ephemeral port is used?

So to answer your worm questions - yes it could be a worm, (Ramen), if the
above is true - that Ramen does exhibit this reflexive behaviour on port 21.
Can anyone confirm this?

[This was confirmed by Donald Smith, on incidents.org]

Question 3 (from Kevin Timm)

What about the source / dest port combination ? Why was it popular to scan
from well known ports such as HTTP, SMTP, FTP ?

Answer 3 (quoted verbatim from posting to incidents.org)

The source port option is interesting. Scanning with low source ports is quite
popular, because your scan is more likely to succeed. This is because your
packet is less likely to be dropped if a simple packet filter is protecting the
network you are attempting to scan.

Explaining the above further, imagine a simple packet filter configured to
enable people on a protected network to browse. This might allow malicious
traffic (originating outside the protected network) with a source port of 80 to
pass through to internal hosts.

Detect 2 – Attempted ftp connection to Microsoft through http
proxy

Source of Trace

The source of this trace was taken from logs on a simple dialup account to an
ISP in the UK.

The machine connecting to the internet runs Windows XP Professional. The
Microsoft personal firewall (which ships with Windows XP) was enabled. The
firewall is configured to enable incoming ftp, imap3, imap4, smtp, pop3, telnet
and http connections on their usual ports.

The reason the firewall is configured to allow these incoming connections (by
default the Microsoft personal firewall blocks all incoming connections for non-
established tcp sessions) was because some simple honeypot software (NFR
BackOfficer Friendly) was running. This software will simulate simple, well-
known services – for instance, it simulates a telnet service on port 23. When a
connection attempt is made to any of the above services, it records any
information provided by the attacker – in the telnet example, if the user
provides a username and password, they are captured by NFS BackOfficer,
and displayed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 26 of 67

In addition to the personal firewall and honeypot software, it is worth pointing
out that the entire session was captured by windump, to provide full, high
fidelity logs. The following command was used to capture all the network
traffic:

Windump –n –s 0 –i 2 –w oct02

Detect was generated by

The detect was generated by NFR BackOfficer Friendly. This software allows
alerts to be saved to disk in text format. For this detect, the alert looked like:

Thu Oct 02 21:40:29 HTTP bogus request from 80.135.92.4: CONNECT
207.46.133.140:21 HTTP/1.0

Figure 23

NFR BackOfficer Friendly only alerts when the full TCP connection has been
established, and a TCP push is issued from the attacker. So to understand a
fuller picture of what happened, the windump files were analyzed. The
following command was issued to view the detail of the detect.

Windump –n –X –v –r oct02

This showed that more than a simple, single http connect had been occurring:

21:38:53.737654 IP (tos 0x0, ttl 246, id 44189, len 40) 80.135.92.4.1063 >
213.122.52.48.80: S [tcp sum ok] 757147:757147(0) win 4096
0x0000 4500 0028 ac9d 0000 f606 61fc 5087 5c04 E..(......a.P.\.
0x0010 d57a 3430 0427 0050 000b 8d9b 0000 0000 .z40.'.P........
0x0020 5002 1000 578f 0000 P...W...

21:38:53.737860 IP (tos 0x0, ttl 128, id 64603, len 44) 213.122.52.48.80 >
80.135.92.4.1063: S [tcp sum ok] 3708236321:3708236321(0) ack 757148 win 8760 <mss
1460> (DF)
0x0000 4500 002c fc5b 4000 8006 483a d57a 3430 E..,.[@...H:.z40
0x0010 5087 5c04 0050 0427 dd07 3221 000b 8d9c P.\..P.'..2!....
0x0020 6012 2238 1e61 0000 0204 05b4 `."8.a......

21:38:53.741778 IP (tos 0x0, ttl 246, id 44190, len 40) 80.135.92.4.1064 >
213.122.52.48.8080: S [tcp sum ok] 757147:757147(0) win 4096
0x0000 4500 0028 ac9e 0000 f606 61fb 5087 5c04 E..(......a.P.\.
0x0010 d57a 3430 0428 1f90 000b 8d9b 0000 0000 .z40.(..........
0x0020 5002 1000 384e 0000 P...8N..

21:38:53.745506 IP (tos 0x0, ttl 246, id 44191, len 40) 80.135.92.4.1065 >
213.122.52.48.4480: S [tcp sum ok] 757147:757147(0) win 4096
0x0000 4500 0028 ac9f 0000 f606 61fa 5087 5c04 E..(......a.P.\.
0x0010 d57a 3430 0429 1180 000b 8d9b 0000 0000 .z40.)..........
0x0020 5002 1000 465d 0000 P...F]..

21:38:55.005353 IP (tos 0x0, ttl 119, id 44469, len 40) 80.135.92.4.1063 >
213.122.52.48.80: R [tcp sum ok] 757148:757148(0) win 0
0x0000 4500 0028 adb5 0000 7706 dfe4 5087 5c04 E..(....w...P.\.
0x0010 d57a 3430 0427 0050 000b 8d9c 000b 8d9c .z40.'.P........
0x0020 5004 0000 d9e4 0000 P.......

21:40:25.500903 IP (tos 0x0, ttl 119, id 64340, len 48) 80.135.92.4.1654 >
213.122.52.48.80: S [tcp sum ok] 3341001865:3341001865(0) win 16384 <mss
1452,nop,nop,sackOK> (DF)
0x0000 4500 0030 fb54 4000 7706 523d 5087 5c04 E..0.T@.w.R=P.\.
0x0010 d57a 3430 0676 0050 c723 a489 0000 0000 .z40.v.P.#......
0x0020 7002 4000 1a7e 0000 0204 05ac 0101 0402 p.@..~..........

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 27 of 67

21:40:25.501114 IP (tos 0x0, ttl 128, id 64699, len 48) 213.122.52.48.80 >
80.135.92.4.1654: S [tcp sum ok] 3731186207:3731186207(0) ack 3341001866 win 8760 <mss
1460,nop,nop,sackOK> (DF)
0x0000 4500 0030 fcbb 4000 8006 47d6 d57a 3430 E..0..@...G..z40
0x0010 5087 5c04 0050 0676 de65 621f c723 a48a P.\..P.v.eb..#..
0x0020 7012 2238 f7a7 0000 0204 05b4 0101 0402 p."8............

21:40:26.796019 IP (tos 0x0, ttl 119, id 64635, len 40) 80.135.92.4.1654 >
213.122.52.48.80: . [tcp sum ok] ack 1 win 17520 (DF)
0x0000 4500 0028 fc7b 4000 7706 511e 5087 5c04 E..(.{@.w.Q.P.\.
0x0010 d57a 3430 0676 0050 c723 a48a de65 6220 .z40.v.P.#...eb.
0x0020 5010 4470 0234 0000 P.Dp.4..

21:40:29.767915 IP (tos 0x0, ttl 119, id 65279, len 78) 80.135.92.4.1654 >
213.122.52.48.80: P [tcp sum ok] 1:39(38) ack 1 win 17520 (DF)
0x0000 4500 004e feff 4000 7706 4e74 5087 5c04 E..N..@.w.NtP.\.
0x0010 d57a 3430 0676 0050 c723 a48a de65 6220 .z40.v.P.#...eb.
0x0020 5018 4470 f63d 0000 434f 4e4e 4543 5420 P.Dp.=..CONNECT.
0x0030 3230 372e 3436 2e31 3333 2e31 3430 3a32 207.46.133.140:2
0x0040 3120 4854 5450 2f31 2e30 0d0a 0d0a 1.HTTP/1.0....

21:40:29.775301 IP (tos 0x0, ttl 128, id 64700, len 40) 213.122.52.48.80 >
80.135.92.4.1654: R [tcp sum ok] 3731186208:3731186208(0) win 0 (DF)
0x0000 4500 0028 fcbc 4000 8006 47dd d57a 3430 E..(..@...G..z40
0x0010 5087 5c04 0050 0676 de65 6220 c723 a48a P.\..P.v.eb..#..
0x0020 5004 0000 46b0 0000 P...F...

Figure 24

The captured packets were also analysed using Snort v2.01, with the ruleset
as of 10 September 2003.

Snort was run with the following parameters, producing a number of alerts.

Snort –c snort.conf –l log –r oct02

(The –c flag allows you to specify the Snort configuration file to use, the –l flag
causes alerts to be logged to a specified directory).

This caused a single alert to be produced:

[**] [1:620:3] SCAN Proxy (8080) attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/03-21:38:53.741778 80.135.92.4:1064 -> 213.122.52.48:8080
TCP TTL:246 TOS:0x0 ID:44190 IpLen:20 DgmLen:40
******S* Seq: 0xB8D9B Ack: 0x0 Win: 0x1000 TcpLen: 20

Figure 25

Probability that source address was spoofed

The probability is low.

The attacking IP address probed my machine on several different ports. Once
an open port (in this instance port 80) was discovered, the attacking machine
went through the full TCP, three way handshake to establish a full TCP
connection. This is not straightforward to achieve is the source IP address is
spoofed.

The attacked machine runs Windows XP, which uses reasonably non-
predictable initial sequence numbers. This makes establishing a full TCP/IP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 28 of 67

session using a spoofed address very difficult – according to nmap 3.48 TCP
sequence prediction for this machine is a “worthy challenge”.

Lastly, it is worth pointing out that the attacking IP address is not obviously
spoofed. It is a valid, routable, non-RFC 1918 address, originating in
Germany, according to www.ripe.net.

Description of attack

The attack looks for an open http proxy on ports 80, 8080 and 4480. Ports 80
and 8080 are commonly used to run http proxy servers. Port 4480 has been
used in older versions of Proxy+.

If an open proxy is found, an attempt is made to connect through the open
proxy to the ftp port (21) on the IP address 207.46.133.140.

A whois search on www.arin.net indicates that 207.46.133.140 is an IP
address owned by Microsoft.

There is no CVE number for this attempted abuse of open proxies. However,
there is a detailed explanation about this kind of attack on CERT,
http://www.kb.cert.org/vuls/id/150227.

Attack mechanism

The attack starts be a simple probe to determine if ports 80, 8080 or 44880
are open on the targeted machine. To do this, three TCP packets, with the
syn flag set are sent to the targeted machine:

21:38:53.737654 IP (tos 0x0, ttl 246, id 44189, len 40) 80.135.92.4.1063 >
213.122.52.48.80: S [tcp sum ok] 757147:757147(0) win 4096
0x0000 4500 0028 ac9d 0000 f606 61fc 5087 5c04 E..(......a.P.\.
0x0010 d57a 3430 0427 0050 000b 8d9b 0000 0000 .z40.'.P........
0x0020 5002 1000 578f 0000 P...W...
21:38:53.741778 IP (tos 0x0, ttl 246, id 44190, len 40) 80.135.92.4.1064 >
213.122.52.48.8080: S [tcp sum ok] 757147:757147(0) win 4096
0x0000 4500 0028 ac9e 0000 f606 61fb 5087 5c04 E..(......a.P.\.
0x0010 d57a 3430 0428 1f90 000b 8d9b 0000 0000 .z40.(..........
0x0020 5002 1000 384e 0000 P...8N..
21:38:53.745506 IP (tos 0x0, ttl 246, id 44191, len 40) 80.135.92.4.1065 >
213.122.52.48.4480: S [tcp sum ok] 757147:757147(0) win 4096
0x0000 4500 0028 ac9f 0000 f606 61fa 5087 5c04 E..(......a.P.\.
0x0010 d57a 3430 0429 1180 000b 8d9b 0000 0000 .z40.)..........
0x0020 5002 1000 465d 0000 P...F]..

Figure 26

For each probe packet, if a syn-ack is returned to the attacker, it indicates that
the port in question is open. If a rst (or no packet at all) is returned to the
attacker, it indicates that the port is closed. In this case, the attacked machine
responded with a syn-ack packet to the probe on port 80, and did not respond
to the probes on ports 4480 and 8080 (the initial syn packets to these ports
were dropped by the XP firewall):

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 29 of 67

21:38:53.737860 IP (tos 0x0, ttl 128, id 64603, len 44) 213.122.52.48.80 >
80.135.92.4.1063: S [tcp sum ok] 3708236321:3708236321(0) ack 757148 win 8760 <mss
1460> (DF)
0x0000 4500 002c fc5b 4000 8006 483a d57a 3430 E..,.[@...H:.z40
0x0010 5087 5c04 0050 0427 dd07 3221 000b 8d9c P.\..P.'..2!....
0x0020 6012 2238 1e61 0000 0204 05b4 `."8.a......

Figure 27

So at this stage, the attacker has figured that port 80 is open. Rather than
keeping the established TCP session open, the session is closed, and a fresh
TCP connection to port 80 is established. Only then is an attempt made to
“bounce” a connection through the proxy to the ftp port on 207.46.133.140.

When this connection attempt is made, BackOfficer Friendly drops the
session with the attacker, by sending a rst packet.

There is a curious aspect to this attack. It relates to the differences in packets
used in the initial reconnaissance (determining whether ports are open), and
subsequent packets from the attacker. In this instance, the initial packets
performing the reconnaissance all have a TTL of 246, IP ID’s which
incremented by one with each packet, and a window size of 4096. This
information does not help us identify the OS of the attacker. The passive
fingerprinting tool, p0f cannot help us here either:

80.135.92.4:1063 - UNKNOWN [4096:246:0:40:.:.:?:?]
 -> 213.122.52.48:80 (link: unspecified)
80.135.92.4:1064 - UNKNOWN [4096:246:0:40:.:.:?:?]
 -> 213.122.52.48:8080 (link: unspecified)
80.135.92.4:1065 - UNKNOWN [4096:246:0:40:.:.:?:?]
 -> 213.122.52.48:4480 (link: unspecified)

Figure 28

However, once the open port has been discovered, subsequent packets from
the attacker have a very definite signature – that of a Windows 2000 or XP
machine. The TTL of 119 (probably we have an initial ttl of 128, with a host
that is 9 hops away), the TCP window size of 16384, the TCP options
including the selective ACK ok all strongly hint at a Windows machine. This is
confirmed by the p0f tool:

80.135.92.4:1654 - Windows 2000 SP4, XP SP1 (2)
 -> 213.122.52.48:80 (distance 9, link: pppoe (DSL))

Figure 29

What can explain this? I believe the most likely explanation is that the attacker
is using a proxy-scanning tool to identify potential open proxies. This tool is
crafting packets, which results in the initial syn probes being hard to
fingerprint. It’s not possible to know whether this behaviour is by design
(possibly to obfuscate what is going on?) or because the tool is the result of a
port scanner and some proxy exploit code being welded together.

Correlations

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 30 of 67

There is a useful note on cert.org about the issue of attackers tunnelling
arbitrary tcp connections through open proxies:
http://www.kb.cert.org/vuls/id/150227.

Proxy scanning detects have appeared on the incidents.org mailing list.
Johnny Wong’s detect of a probe for a Squid proxy (http://cert.uni-
stuttgart.de/archive/intrusions/2003/06/msg00125.html) and Mike Ellis’ detect
(http://cert.uni-stuttgart.de/archive/intrusions/2003/04/msg00089.html) are
useful references.

I could not find other instances of attempts to connect to an ftp server via an
open proxy, although there are many pages devoted to detects of attempts
(by spammers) to relay mail via an open http proxy, see
http://lists.insecure.org/lists/incidents/2002/Jul/0162.html for example.

The attacking IP address (80.135.92.4) was queried at dshield.org and via
Google. This did not offer any additional information – it’s not a well known
attacking address.

Evidence of active targeting

The attacked machine uses a dialup connection to the Internet, and is
assigned an IP address by the ISP’s DHCP server. This tends to result in a
different IP address being used every time the machine dials up.

So it is very unlikely that anyone could specifically target this machine. What
is more likely is that the attacker is scanning a large number of IP addresses
(perhaps the dhcp range for dialup Internet users from this specific ISP, if that
could be easily determined), looking for open proxies from which they will
connect to 207.46.133.140.

Severity

Severity = (criticality + lethality) – (system countermeasures + network
countermeasures)

Criticality

The targeted systems here are my home PC, and 207.46.133.140 – the latter
is targeted by the attack via my home PC.

The attacked machine is critical to me. It is difficult to estimate the criticality of
207.46.133.140. This is a public facing server, so we would hope it is not
critical. Let’s score a 3 for criticality.

Lethality

The attack is more than just a scan. It is a probe, followed by a connection
attempt to a third party’s machine. We cannot tell what activities would

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 31 of 67

happen if the connection to the third party’s machine had succeeded. But the
fact that the attacker is attempting to “bounce” this attack through my machine
(and hence obfuscate their own IP address – at least from the point of view of
207.46.133.140) cannot be good news.

Let’s score a 2 here.

System countermeasures

The system being attacked is “reasonably” well patched, with up to date
antivirus software, and a simple, personal firewall. Although the Microsoft
personal firewall is often criticized (due to the fact that it permits all outgoing
connections), it does improve security. The fact that a honeypot, rather than a
web server is listening on port 80 improves security, too. Let’s score a 4 here.

Network countermeasures

There is nothing upstream at the ISP to block this attack – it reaches the
target machine. So we score this low, say 0.

Severity = (3+2) – (4+0) = 1

Not a major issue, but worthy of attention.

Defensive recommendations

In this instance, the attack failed because the targeted ports were either
firewalled (ports 8080 and 4480) or the service running on the targeted host
was not vulnerable (the honeypot running on port 80).

In general, though, the recommendations would be:

• Ensure that the machine is firewalled, with access only explicitly
granted to services required. For a typical home use machine, all
incoming TCP ports can usually be firewalled.

• Ensure that unnecessary services are switched off, and unneeded
software is not running – if the machine does not have to act as a
proxy server, do not run proxy software on it.

• Ensure that the machine is fully up to date with critical security
patches. If it is a Windows XP machine (as in this detect), running
Windows Update on a regular basis can streamline this process.

Multiple choice test question

Examine the following packet:

21:40:29.767915 IP (tos 0x0, ttl 119, id 65279, len 78) 80.135.92.4.1654 >
213.122.52.48.80: P [tcp sum ok] 1:39(38) ack 1 win 17520 (DF)
0x0000 4500 004e feff 4000 7706 4e74 5087 5c04 E..N..@.w.NtP.\.
0x0010 d57a 3430 0676 0050 c723 a48a de65 6220 .z40.v.P.#...eb.
0x0020 5018 4470 f63d 0000 434f 4e4e 4543 5420 P.Dp.=..CONNECT.
0x0030 3230 372e 3436 2e31 3333 2e31 3430 3a32 207.46.133.140:2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 32 of 67

0x0040 3120 4854 5450 2f31 2e30 0d0a 0d0a 1.HTTP/1.0....

Here, the machine at 80.135.92.4 is attempting:

a. a buffer overflow against a webserver running on 213.122.52.48
b. to connect via a proxy on 213.122.52.48 to an ftp server on 207.46.133.140
c. to connect via a proxy on 213.122.52.48 to a webserver on 207.46.133.140
d. to connect via a proxy on 213.122.52.48 to a telnet server on
207.46.133.140

Answer is b

Detect 3 – Probe for nsiislog.dll file

Source of Trace

The source of this trace was taken from logs on a simple dialup account to an
ISP in the UK.

The setup of the network for this detect is the same as for detect two. That is,
the packets were collected on a machine running Windows XP Professional,
with the Microsoft personal firewall deployed (configured to enable incoming
ftp, imap3, imap4, smtp, pop3, telnet and http connections on their usual
ports). The honeypot software NFR BackOfficer was deployed as in detect
two.

As for detect two, in addition to the personal firewall and honeypot software, it
is worth pointing out that the entire session was captured by windump, to
provide full, high fidelity logs. The following command was used to capture all
the network traffic:

Windump –n –s 0 –i 2 –w oct12

Detect was generated by

The detect was generated by NFR BackOfficer Friendly. This software allows
alerts to be saved to disk in text format. For this detect, the alert looked like:

Sun Oct 12 17:35:29 HTTP request from 61.206.143.54: GET
/scripts/nsiislog.dll

Figure 30

However, to understand more about what occurred, the captured tcpdump file
was analyzed. The following command was issued to view the detail of the
detect.

Windump –n –X –v –r oct02

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 33 of 67

This showed more detail – the threeway handshake leading to the
establishment of the tcp/ip connection between the attacking ip,
61.206.143.54 and the attacked machine, 213.122.25.86, the probe for the
nsiislog.dll file, the response from the honeypot software, and the tearing
down of the connection:

17:35:29.162134 IP (tos 0x0, ttl 106, id 17261, len 44) 61.206.143.54.4559 >
213.122.25.186.80: S [tcp sum ok] 900337012:900337012(0) win 8192 <mss 1332> (DF)
0x0000 4500 002c 436d 4000 6a06 1126 3dce 8f36 E..,Cm@.j..&=..6
0x0010 d57a 19ba 11cf 0050 35aa 0d74 0000 0000 .z.....P5..t....
0x0020 6002 2000 6730 0000 0204 0534 `...g0.....4

17:35:29.162333 IP (tos 0x0, ttl 128, id 974, len 44) 213.122.25.186.80 >
61.206.143.54.4559: S [tcp sum ok] 3239264909:3239264909(0) ack 900337013 win 8760
<mss 1460> (DF)
0x0000 4500 002c 03ce 4000 8006 3ac5 d57a 19ba E..,..@...:..z..
0x0010 3dce 8f36 0050 11cf c113 428d 35aa 0d75 =..6.P....B.5..u
0x0020 6012 2238 60c6 0000 0204 05b4 `."8`.......

17:35:29.622613 IP (tos 0x0, ttl 106, id 21870, len 40) 61.206.143.54.4559 >
213.122.25.186.80: . [tcp sum ok] ack 1 win 9324 (DF)
0x0000 4500 0028 556e 4000 6a06 ff28 3dce 8f36 E..(Un@.j..(=..6
0x0010 d57a 19ba 11cf 0050 35aa 0d75 c113 428e .z.....P5..u..B.
0x0020 5010 246c 764f 0000 P.$lvO..

17:35:29.628811 IP (tos 0x0, ttl 106, id 22126, len 69) 61.206.143.54.4559 >
213.122.25.186.80: P [tcp sum ok] 1:30(29) ack 1 win 9324 (DF)
0x0000 4500 0045 566e 4000 6a06 fe0b 3dce 8f36 E..EVn@.j...=..6
0x0010 d57a 19ba 11cf 0050 35aa 0d75 c113 428e .z.....P5..u..B.
0x0020 5018 246c a58b 0000 4745 5420 2f73 6372 P.$l....GET./scr
0x0030 6970 7473 2f6e 7369 6973 6c6f 672e 646c ipts/nsiislog.dl
0x0040 6c0d 0a0d 0a l....

17:35:29.639704 IP (tos 0x0, ttl 128, id 975, len 131) 213.122.25.186.80 >
61.206.143.54.4559: P [tcp sum ok] 1:92(91) ack 30 win 8731 (DF)
0x0000 4500 0083 03cf 4000 8006 3a6d d57a 19ba E.....@...:m.z..
0x0010 3dce 8f36 0050 11cf c113 428e 35aa 0d92 =..6.P....B.5...
0x0020 5018 221b 82ff 0000 4854 5450 2f31 2e30 P.".....HTTP/1.0
0x0030 2034 3031 2055 6e61 7574 686f 7269 7a65 .401.Unauthorize
0x0040 640d 0a0d 0a3c 424f 4459 3e3c 4854 4d4c d....<BODY><HTML
0x0050 3e3c 4831 3e34 3031 202d 2041 7574 686f ><H1>401.-.Autho
0x0060 7269 7a61 7469 6f6e 2046 6169 6c65 643c rization.Failed<
0x0070 2f48 313e 3c2f 4854 4d4c 3e3c 2f42 4f44 /H1></HTML></BOD
0x0080 593e 00 Y>.

17:35:29.650707 IP (tos 0x0, ttl 128, id 976, len 40) 213.122.25.186.80 >
61.206.143.54.4559: F [tcp sum ok] 92:92(0) ack 30 win 8731 (DF)
0x0000 4500 0028 03d0 4000 8006 3ac7 d57a 19ba E..(..@...:..z..
0x0010 3dce 8f36 0050 11cf c113 42e9 35aa 0d92 =..6.P....B.5...
0x0020 5011 221b 7827 0000 P.".x'..

17:35:30.085407 IP (tos 0x0, ttl 106, id 18287, len 40) 61.206.143.54.4559 >
213.122.25.186.80: . [tcp sum ok] ack 93 win 9233 (DF)
0x0000 4500 0028 476f 4000 6a06 0d28 3dce 8f36 E..(Go@.j..(=..6
0x0010 d57a 19ba 11cf 0050 35aa 0d92 c113 42ea .z.....P5.....B.
0x0020 5010 2411 7631 0000 P.$.v1..

17:35:30.210181 IP (tos 0x0, ttl 106, id 45423, len 40) 61.206.143.54.4559 >
213.122.25.186.80: F [tcp sum ok] 30:30(0) ack 93 win 9233 (DF)
0x0000 4500 0028 b16f 4000 6a06 a327 3dce 8f36 E..(.o@.j..'=..6
0x0010 d57a 19ba 11cf 0050 35aa 0d92 c113 42ea .z.....P5.....B.
0x0020 5011 2411 7630 0000 P.$.v0..

17:35:30.210320 IP (tos 0x0, ttl 128, id 977, len 40) 213.122.25.186.80 >
61.206.143.54.4559: . [tcp sum ok] ack 31 win 8731 (DF)
0x0000 4500 0028 03d1 4000 8006 3ac6 d57a 19ba E..(..@...:..z..
0x0010 3dce 8f36 0050 11cf c113 42ea 35aa 0d93 =..6.P....B.5...
0x0020 5010 221b 7826 0000 P.".x&..

Figure 31

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 34 of 67

The captured packets were also analysed using Snort v2.01, with the ruleset
as of 10 September 2003.

Snort was run with the following parameters, producing a number of alerts.

Snort –c snort.conf –l log –r oct12

(The –c flag allows you to specify the Snort configuration file to use, the –l flag
causes alerts to be logged to a specified directory).

This caused a single alert to be produced:

[**] [1:2129:2] WEB-IIS nsiislog.dll access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/12-17:35:29.628811 61.206.143.54:4559 -> 213.122.25.186:80
TCP TTL:106 TOS:0x0 ID:22126 IpLen:20 DgmLen:69 DF
AP Seq: 0x35AA0D75 Ack: 0xC113428E Win: 0x246C TcpLen: 20
[Xref => http://www.microsoft.com/technet/security/bulletin/ms03-018.asp][Xref =>
http://cgi.nessus.org/plugins/dump.php3?id=11664]

Figure 32

Note: there is a small error in the Snort alert – the detail in the cross reference
should refer the reader to MS03-019.asp, not 03-018.asp – the latter is a
cumulative IIS patch which does not cover the nsiislog.dll issue.

Probability that source address was spoofed

This is unlikely, because the attacking machine setup a full TCP/IP connection
to the attacked machine.

The attacked machine runs Windows XP, which uses reasonably non-
predictable sequence numbers. This makes establishing a full TCP/IP session
using a spoofed address very difficult.

The packets which originate from 61.206.143.54 look reasonable – there are
no suspicious TTLs, IPIDs etc (possible signs of crafted packets). Indeed the
attacking machine is easy to passively fingerprint. The TTL, and information
such as the window size on the initial syn strongly hint that it is a Windows
machine. Pushing the packets through p0f gives us the following information:

61.206.143.54:4559 - Windows NT 4.0 (older)
 -> 213.122.25.186:80 (distance 22, link: unknown-1372)

Figure 33

Lastly, it is worth pointing out that the attacking IP address is not obviously
spoofed. It is a valid, routable, non-RFC 1918 address. Searching on
www.apnic.net shows that the address originates in Japan:

inetnum: 61.206.143.48 - 61.206.143.63
netname: EPSILON
descr: Nakayama, Naritaka
country: JP

Figure 34

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 35 of 67

Description of attack

The attack is an unsubtle probe for the nsiislog.dll file. This file is used for
logging by Windows Media Services, a feature within Windows 2000, which is
used for multicast streaming.

The nsiislog.dll file is vulnerable to a buffer overflow attack, which allows
attackers to execute arbitrary code. The situation is made worse by the fact
that the nsiislog.dll file is installed by default into the IIS scripts directory; if IIS
is running, the file (and any payload that overflows its buffers) can potentially
be accessed via standard HTTP GET commands.

There are two attacks against the nsiislog.dll file – both are candidates for
inclusion in the CVE list; their reference numbers are CAN-2003-0227 and
CAN-2003-0349.

Attack mechanism

The attack in this case is just a probe for the existence of the nsiislog.dll file.
No attempt to execute a buffer overflow is performed. This is evident from the
tcpdump log:

17:35:29.628811 IP (tos 0x0, ttl 106, id 22126, len 69) 61.206.143.54.4559 >
213.122.25.186.80: P [tcp sum ok] 1:30(29) ack 1 win 9324 (DF)
0x0000 4500 0045 566e 4000 6a06 fe0b 3dce 8f36 E..EVn@.j...=..6
0x0010 d57a 19ba 11cf 0050 35aa 0d75 c113 428e .z.....P5..u..B.
0x0020 5018 246c a58b 0000 4745 5420 2f73 6372 P.$l....GET./scr
0x0030 6970 7473 2f6e 7369 6973 6c6f 672e 646c ipts/nsiislog.dl
0x0040 6c0d 0a0d 0a l....

Figure 35

The above is just a simple probe; a test via an HTTP GET command to
determine whether the (potentially) vulnerable file nsiislog.dll exists on the
targeted machine. The length and content of the packet show that this is not
an attempt to perform a buffer overflow – there is no evidence of the tell tale
“nop sled” and “egg” for the payload.

This probe did not succeed, because the honeypot software returned a 401
error to the attacker:

17:35:29.639704 IP (tos 0x0, ttl 128, id 975, len 131) 213.122.25.186.80 >
61.206.143.54.4559: P [tcp sum ok] 1:92(91) ack 30 win 8731 (DF)
0x0000 4500 0083 03cf 4000 8006 3a6d d57a 19ba E.....@...:m.z..
0x0010 3dce 8f36 0050 11cf c113 428e 35aa 0d92 =..6.P....B.5...
0x0020 5018 221b 82ff 0000 4854 5450 2f31 2e30 P.".....HTTP/1.0
0x0030 2034 3031 2055 6e61 7574 686f 7269 7a65 .401.Unauthorize
0x0040 640d 0a0d 0a3c 424f 4459 3e3c 4854 4d4c d....<BODY><HTML
0x0050 3e3c 4831 3e34 3031 202d 2041 7574 686f ><H1>401.-.Autho
0x0060 7269 7a61 7469 6f6e 2046 6169 6c65 643c rization.Failed<
0x0070 2f48 313e 3c2f 4854 4d4c 3e3c 2f42 4f44 /H1></HTML></BOD
0x0080 593e 00 Y>.

Figure 36

Following this, the attacked machine initiates the usual teardown of the tcp/ip
session, starting with a fin packet.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 36 of 67

Had the probe been successful, it is highly likely that it would be followed up
by a packet with a payload, exploiting the buffer overflow vulnerability.

There do not appear to be any worms which make use of this vulnerability.
Therefore, the attack is almost certainly someone running a variant of one of
the tools which appeared in the summer of 2003.

A quick scan has shown that this particular detect is unlikely to be caused by
some of the more common exploit code available on the Internet

- it’s unlikely to be the exploit code found on the K-Otik site (http://www.k-
otik.com/exploits/07.01.nsiilog-titbit.cpp.php and http://www.k-
otik.com/exploits/07.14.xfocus-nsiislog-exploit.c.php), because this code
performs an HTTP POST, not the HTTP GET seen in this detect.

- it’s also unlikely to be the code on the SecurityFocus site
(http://downloads.securityfocus.com/vulnerabilities/exploits/xfocus-nsiislog-
exploit.c and
http://downloads.securityfocus.com/vulnerabilities/exploits/firew0rker.c),
because again this code performs an HTTP POST.

The most likely explanation is that this detect is likely caused by a tool whose
source is not widely available; the tool scans IP addresses, looking for IIS
servers which have the vulnerable nsiislog.dll file.

Correlations

The nsiislog.dll issues and related patches are documented at Microsoft’s site,
see http://www.microsoft.com/technet/security/bulletin/ms03-019.asp and
http://www.microsoft.com/technet/security/bulletin/ms03-022.asp, not
http://www.microsoft.com/technet/security/bulletin/ms03-018.asp (as
suggested in the Snort alert).

Russel Fulton’s kicked off an interesting thread about distributed scans of
nsiislog.dll on the incidents.org mailing list, see http://cert.uni-
stuttgart.de/archive/incidents/2003/08/msg00098.html. A response to
Russell’s posting by Mike Iglesias indicates that this behaviour (the HTTP
GET of the nsiislog.dll file) has been detected before.

The SecurityFocus website has an entry in its database about the attack,
which includes links to proof of concept exploit code, see
http://www.securityfocus.com/bid/8035/info/ for detail.

There is detail on bugtraq from Brett Moore about the issues with nsiiislog.dll
– see http://www.securityfocus.com/archive/1/323415/2003-05-30/2003-06-
05/0.

The attacking IP address (61.206.143.54) was queried at dshield.org and via
Google. This did not offer any additional information – it’s not a well known
attacking IP address.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 37 of 67

Evidence of active targeting

It is highly unlikely that my XP workstation was targeted specifically, bearing
in mind that it was using a temporary IP address from the ISP, assigned by
DHCP.

Far more likely is that this detect just picked up on a wider scan of a large
number of IP addresses

Severity

Severity = (criticality + lethality) – (system countermeasures + network
countermeasures)

Criticality

The targeted systems here is my home PC which is critical to me. We will
score a 3 here.

Lethality

The attack is a harmless scan to determine whether a vulnerable file exists.
As such, this is harmless, although intent is shown.

Let’s score a 1 here.

System countermeasures

The system being attacked is “reasonably” well patched, with up to date
antivirus software, and a simple, personal firewall. The fact that a honeypot,
rather than a web server is listening on port 80 improves security, too. Let’s
score a 4 here.

Network countermeasures

There is nothing upstream at the ISP to block this attack – it reaches the
target machine. So we score this low, say 0.

Severity = (3+1) – (4+0) = 0

Defensive recommendations

The first recommendation against this attack relates to unnecessary software
and services. In this case, if IIS is not required, it should be disabled wherever
possible.

Other recommendations are:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 38 of 67

• Ensure machines are up to date with security patches. In this instance,
downloading and installing the security patch detailed at
http://www.microsoft.com/technet/security/bulletin/ms03-022.asp will
ensure that the vulnerability which is being probed in this detect cannot
be exploited. Running Windows Update can smooth the process of
determining which patches are required, and patch deployment.

• Ensure that the machine is firewalled, with access only explicitly
granted to services required. For a typical home use machine (as here)
all incoming TCP ports can usually be firewalled.

Multiple choice test question

Examine the following packet:

17:35:29.628811 IP (tos 0x0, ttl 106, id 22126, len 69) 61.206.143.54.4559 >
213.122.25.186.80: P [tcp sum ok] 1:30(29) ack 1 win 9324 (DF)
0x0000 4500 0045 566e 4000 6a06 fe0b 3dce 8f36 E..EVn@.j...=..6
0x0010 d57a 19ba 11cf 0050 35aa 0d75 c113 428e .z.....P5..u..B.
0x0020 5018 246c a58b 0000 4745 5420 2f73 6372 P.$l....GET./scr
0x0030 6970 7473 2f6e 7369 6973 6c6f 672e 646c ipts/nsiislog.dl
0x0040 6c0d 0a0d 0a l....

The above packet is most likely:

a) A simple probe by 61.206.143.54, looking for the presence of a file which
has known vulnerabilities associated with it.
b) An attempted buffer overflow against a dll file with known vulnerabilities.
c) An attempt to establish a connection through a proxy server running on port
80.
d) A denial of service attack against the webserver 213.122.25.186

Answer is a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 39 of 67

Assignment 3 – Analyze this

Executive Summary

There is cause for concern over this network. The large number of alerts, and
enormous number of scans generated by the IDS hint that there are issues
with the current setup. Deeper analysis shows that although a number of the
alerts are reasonably benign, there are areas alerts (particularly the Trojan
activity alerts) which indicate that machines on the network have been
compromised.

University networks have historically been kept as open as possible, so as not
to stifle research and innovation. This is the case here. However, a pragmatic
balance between and open (less secure) and a locked-down (more secure)
network must be found. The current setup is too open for the threats which
exist on the Internet today.

In summary, key recommendations are:

• Challenge the current setup of the perimeter router/ firewall. It appears
that the router/ firewall at the perimeter is configured in a relatively
“permissive” manner. Best practice in this area recommends that all
traffic which is not explicitly required is blocked (e.g is there any reason
why inbound connections to a common Trojan port, 27374 are
permitted? Is there any reason why inbound connections to port 139
(Netbios) are required?). Tighter controls should be applied to both
inbound traffic (ingress filtering) and outbound traffic (egress filtering).

• Improve the tuning of the IDS. The current setup is generating
unreasonable amounts of data, repeatedly highlighting events which
are of little significance, and which pose little threat – for instance the
SMB Wildcard alerts.

• If possible, aim for high fidelity logs, i.e. capture all traffic entering and
leaving the network. Although there is a significant issue with storage,
in depth analysis of the network setup is really only possible with full,
high fidelity logs.

• To help combat the trojan issue (and good practice anyway), ensure
that all hosts on the network are running quality anti-virus software,
with up to date signatures.

Detailed, tactical recommendations to mitigate the most significant problems
which the IDS is alerting can be found in the “Description of the 10 most
frequent detects section”.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 40 of 67

Files Analyzed

The following files, downloaded from http://www.incidents.org/logs, were used
for analysis:

Scans Alerts OOS
scans.031019 alert.031019 OOS_Report_2003_10_19
scans.031020 alert.031020 OOS_Report_2003_10_20
scans.031021 alert.031021 OOS_Report_2003_10_21
scans.031022 alert.031022 OOS_Report_2003_10_22
scans.031023 alert.031023 OOS_Report_2003_10_23

A quick inspection of the files indicated no significant corruption. So, to aid
analysis, all files of a given type were concatenated into single files, i.e. all the
“scans” files were concatenated into a single “scans.all” file; the same
approach was taken for the “alerts” files and the “OOS” files.

The size of these concatenated files was significant – the “scans.all” file was
over 750 Mb, and challenging to manage. It was noted that the portscan
information in the “alerts.all” file was duplicated – it also appeared in
“scans.all”. Therefore it was filtered out.

Detects, ordered by frequency

Frequency Alert Description
199212 SMB Name Wildcard
28546 SMB C access
15606 MY.NET.30.4 activity
11563 EXPLOIT x86 NOOP
7131 Connect to 515 from inside
5726 MY.NET.30.3 activity
4518 TCP SRC and DST outside network
3266 External RPC call
3172 High port 65535 tcp - possible Red Worm – traffic
2009 Possible trojan server activity
1825 ICMP SRC and DST outside network
752 NMAP TCP ping!
494 SUNRPC highport access!
455 Null scan!
438 High port 65535 udp - possible Red Worm - traffic
342 [UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan.
182 [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC
105 FTP passwd attempt
103 [UMBC NIDS] External MiMail alert
84 Back Orifice
83 TFTP - Internal UDP connection to external tftp server
74 Incomplete Packet Fragments Discarded
62 Tiny Fragments - Possible Hostile Activity
55 [UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC
53 EXPLOIT x86 stealth noop
51 NETBIOS NT NULL session
38 DDOS shaft client to handler
37 [UMBC NIDS IRC Alert] Possible drone command detected.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 41 of 67

27 EXPLOIT x86 setuid 0
26 EXPLOIT x86 setgid 0
25 EXPLOIT NTPDX buffer overflow
14 FTP DoS ftpd globbing
14 DDOS mstream client to handler
13 TFTP - Internal TCP connection to external tftp server
12 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected.
11 TFTP - External UDP connection to internal tftp server
10 RFB - Possible WinVNC - 010708-1
10 Attempted Sun RPC high port access
5 HelpDesk MY.NET.70.49 to External FTP
4 [UMBC NIDS IRC Alert] K\:line'd user detected, possible trojan.
4 NIMDA - Attempt to execute cmd from campus host
3 [UMBC NIDS] Internal MSBlast Infection Request
2 Probable NMAP fingerprint attempt
2 connect to 515 from outside
2 External FTP to HelpDesk MY.NET.70.49
2 External FTP to HelpDesk MY.NET.53.29
2 TFTP - External TCP connection to internal tftp server
2 External FTP to HelpDesk MY.NET.70.50
2 Traffic from port 53 to port 123
1 IRC evil - running XDCC
1 Bugbear@MM virus in SMTP
1 [UMBC NIDS IRC Alert] Possible trojaned box detected attempting to IRC

Description of 10 most frequent detects

The 10 most frequent detects were analyzed in more detail, and have been
given a severity rating of “high”, “medium” or “low”.

Detect Name SMB Name Wildcard
Frequency 199212
Severity Low
Description of
detect

This is the common Netbios name table retrieval query,
caused by a UDP request to port 137.

The request can be used to elicit information from the
targeted computer. Information such as the workstation
netbios name, local usernames etc. can be enumerated
by this request.

Although this traffic can be used to elicit information, it is
frequently generated by Windows machines, and is often
considered to be noise – it is frequently dropped (and not
logged) by firewalls due to its prevalence.

It would be of particular concern if this traffic were coming
from external hosts. This is not the case here – all the
SMB Name Wildcard detects emanate from the MY.NET
network. From this we infer that incoming SMB Name
Wildcard requests are being dropped by a firewall or
router at the network perimeter.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 42 of 67

Correlation A concise and useful overview of this detect can be found
on the Arachnids database, see
http://www.whitehats.com/info/IDS177 for detail.

There is an interesting thread on SMB Name Wildcards
on the Snort mailing list, available in several locations, for
instance
http://archives.neohapsis.com/archives/snort/2000-
01/0218.html.

This detect has also been covered by other GCIA
students in their practicals, for example Al Williams
(www.giac.org/practical/GCIA/Al_Williams_GCIA.pdf) and
Chris Grout, (www.giac.org/practical/Chris_Grout.doc).

Defensive
Recommendations

It is encouraging that this alert is not firing for incoming
traffic – we assume that it has been dropped before the
IDS sensor.

The quantity of these alerts is considerable. Because this
is low severity, and it is clear that we have no problem
with incoming SMB name wildcards, consider tuning the
IDS not to alert on this.

SMB name wildcards are viewed as “background noise”.
Ensure that any border firewall or router is configured to
drop this traffic.

A high number of SMB name wildcard alerts (over 50%)
were generated by a single machine, MY.NET.80.51. The
SMB name wildcard traffic from MY.NET.80.51 was
targeted at a huge number of targets (over 65000) on the
Internet. It would be prudent to review this machine for
worm/ virus infection. Check it has up to date antivirus,
and no unauthorized software.

Detect Name SMB C Access
Frequency 28546
Severity Medium
Description of
detect

This attack is an attempt to access the C drive of a
Windows machine via Netbios.

Note: This alert is not part of the standard Snort ruleset
as of October 2003. There is a rule which fires on a
“Netbios SMB C$ Access”, i.e. it fires on an attempt to
connect to the C$ (administrative) share on a Windows
machine. Possibly a modified rule (for instance as
proposed by Daniel Wesemann – see Correlation below)
is being used.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 43 of 67

The attack is more worrying than the higher frequency
SMB Name Wildcard detect, because it comes from
external machines (in fact no machines on the MY.NET
network produce this traffic). The intent behind this
access is likely malicious – what reason would machines
on the Internet have for trying to read the local harddrive
on a large number of machines on the MY.NET network?

Interestingly, these accesses escalate as time passes –
on 19th October there were 12 such detects, on 20th,
there were 16 detects, on the 22nd over 7000 and by 23rd

over 20000. Why should this be? A check on
www.dshield.org did not show that port 139 probes had
increased dramatically during this time. Although a
number of worms (e.g. Win32.NetBIOS.Worm, Opaserv
etc.) spread via Netbios/ port 139 no new worms of this
sort (according to TrendMicro) appeared in the wild
around these dates to explain the sudden increase.

Repeated connections on port 139 are attempted from
many IP addresses on the Internet (a whois check shows
that many of the probes appear to be coming from
Eastern Europe, the far East, RoadRunner ISP –
suspicious sources to connect to a US University
network). Traffic originating from many of these IP
addresses appears to be “stepping through” the IP
address range on the MY.NET network.

Correlation Daniel Wesemann covers the SMB C Access detect in
depth at http://www.wesi.ch/itsecurity/detect2.html.

The Arachnids database has an entry for SMB c$ access
at
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids3
39&view=event

It is possible to view the latest worms and viruses to hit
the Internet at Trend Micros website, see
http://www.trendmicro.com/vinfo/default.asp?advis=more.
This takes you to a page where information on the latest
viruses and worms can be viewed in date order.

Defensive
Recommendations

Block incoming access to port 139 at the border firewall/
router. If hosts on the Internet really need to be able to
access files on the University’s computers, alternatives
such as ssh should be considered.

Ensure that all Windows machines have strong local

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 44 of 67

administrative passwords. This makes connecting to, for
instance, the c$ share more difficult for an attacker.

Consider renaming the local administrator account on
Windows machines. Again, this makes guessing the
administrative username and password (required for
connecting to an administrative share such as c$) more
difficult.

Detect Name MY.NET.30.4 activity
Frequency 15606
Severity Low
Description of
detect

This alert is caused by a custom Snort rule, setup at the
University.

Presumably, this rule was setup because the
MY.NET.30.4 server is important. Analysis (below) hints
that the server is being used to provide remote file
access to the University. Whatever the reason, the
MY.NET.30.4 rule appears to fire whenever an external
host connects to MY.NET.30.4.

Over the 5 days, a large number of attempted
connections were noted. All connections originated
outside the University network. Despite the large number
of attempted connections, only a limited set of ports were
targeted on MY.NET.30.4. The following list gives an idea
of the targeting (ports targeted less than 5 times are
omitted in the following table, for brevity)

Dest Port
Times Targeted
Comment

21
5

Attempted ftp

80
3901

Connection to webserver

135
30

Probably MSBlaster

139
6

Looking for open shares?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 45 of 67

445
17

Looking for open shares?

524
1210

Netware Core Protocol - used by Novell Netware 5

554
8

4000
5

Scan of the ICQ command port.

51443
10378

Port is the default used for “secure iFolder” – part of
Novell Netware 6 web services.

The huge number of connections to port 51443 is
interesting. The 10378 alerts are caused by repeated
connection attempts from 16 hosts:

24.35.57.151
62.136.209.8
64.68.80.52
64.68.88.61
67.21.63.15
68.33.10.149
68.54.91.147
68.55.205.180
68.55.85.180
68.84.131.246
151.196.19.202
151.196.34.226
151.196.42.116
172.142.110.232
172.142.205.21
208.58.224.123

These hosts are IP addresses owned by various ISP’s
(mostly based in the USA).

Googling for ‘University of Maryland ifolder’ gives us
confirmation that the University has been trialling the
Novell ifolder solution (see Correlation), so it is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 46 of 67

reasonable to conclude that the MY.NET.30.4 server is
being used to provide remote file access to the
University; this service is intentionally being offered.
Whether legitimate users are connecting to this service
cannot be determined from these logs.

Correlation A couple of students have noted MY.NET.30.4 activity
when analyzing data from earlier dates, but due to the
low frequency of occurrences at these earlier dates, they
have not taken their analysis further.

Barbara Morgan indicates that the MY.NET.30.4 rule fired
3 times between 1st and 5th August 2002
(http://www.giac.org/practical/GCIA/Barbara_Morgan_GC
IA.doc). Antonia Rana reported that this rule fired 11
times on these same dates
(http://www.giac.org/practical/GCIA/Antonia_Rana_GCIA.
pdf). An interesting inconsistency!

Confirmation that University has been trialling Novell
ifolder software
:http://www.novell.com/news/press/archive/2001/10/pr01
096.html

Defensive
Recommendations

Block all incoming ports which are not explicitly required
at the border firewall/ router. In this case, it appears that
the MY.NET.30.4 machine is being used to enable
remote file access.

It is a sensible idea to keep the existing “MY.NET.30.34”
rule in place, to log accesses to this sensitive server.

Ensure that the software on this server is kept up to date
(in terms of patches) – this is especially critical for a
server offering remote services over the Internet.

Detect Name EXPLOIT x86 NOOP
Frequency 11563
Severity Low
Description of
detect

This is not a current Snort alert, presumably because it
generated too many false positives. Older versions of
Snort (1.7) had two EXPLOIT x86 NOOP rules:

alert tcp $EXTERNAL_NET any -> $HOME_NET any
(msg:"EXPLOIT x86 NOOP"; content: "|90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90|"; flags: A+; reference:arachnids,181;)

alert udp $EXTERNAL_NET any -> $HOME_NET any
(msg:"EXPLOIT x86 NOOP"; content:"|9090 9090 9090

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 47 of 67

9090 9090 9090 9090 9090|";
reference:arachnids,181;)

Given that these rules have been removed from later
versions of Snort, it is likely that most of these 11563
alerts are false positives – it is not difficult to imagine
benign data with the character 0x90 repeated 16 times.

The susceptibility of this rule to false positives is
confirmed in the Arachnids database

Correlation David Oborn’s GCIA paper documents a false alert
generated by the EXPLOIT x86 NOOP rule:
http://www.giac.org/practical/David_Oborn_GCIA.html#de
tect4

Documentation of the EXPLOIT x86 NOOP alert on the
Arachnids database, www.whitehats.com/info/IDS181

Defensive
Recommendations

If possible, run a newer version of Snort, with the latest
ruleset. Much work has taken place to improve the quality
of Snort rules, and reduce false positives.

Detect Name connect to 515 from inside
Frequency 7131
Severity Low
Description of
detect

This alert is caused by a custom Snort rule, setup at the
University.

It appears that the alert triggers when a host on the inside
(on the MY.NET network) connects to an external host on
TCP port 515 (used by lpr/ lpd – line printer daemon).

Historically, lpd has suffered from all sorts of security
issues – including buffer overflows allowing root access
to a remote attacker.

In this case, we see that all the alerts were caused by a
single host, MY.NET.162.41, repeatedly attempting
connections to the host 128.183.110.242. A whois search
on arin.net indicates that 128.183.110.242 is assigned to
NASA.

The source ports on the MY.NET.162.41 caught my
interest. The source port remains at 721. It is interesting
that an ephemeral (>1024) port is not being used, as
might be expected. Inspection of RFC 1179, which
relates to lpd indicates that the source port “must be in
the range 721 to 731”.

The requirement for a privileged source port is historic –

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 48 of 67

an outdated form of trust; only users with root privileges
(and hence “trusted”) can connect from these privileged
ports. Of course, with connections over the internet, this
form of authentication is meaningless.

The repetition of connections is most likely caused by the
lpd on 128.183.110.242 not accepting the connection
from MY.NET.162.41 (perhaps 128.183.110.242 is
firewalled, and dropping attempts to connect to it?)

My conclusion is that this alert is benign. It is caused by
repeated attempts to print to 128.183.110.242. Perhaps a
visitor from NASA has connected their laptop to the
University’s network, and sent a print job, forgetting to
reconfigure their system to print to a local printer.

Correlation Explanation of lpd, including how source ports should be
used can be found in RFC 1179,
http://www.faqs.org/rfcs/rfc1179.html.

A useful note on historic problems with lpd are stated on
fyodor’s website:
http://www.insecure.org/sploits/lpd.protocol.problems.htm
l

Some of the more significant issues with lpr/ lpd can be
found in the CVE database: http://cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=lpd

Defensive
Recommendations

If printing to hosts external to the University over the
Internet is not required, enforce appropriate egress
filtering at the border firewall or router.

Detect Name TCP SRC and DST outside network
Frequency 4518
Severity Low
Description of
detect

Again, this alert is caused by a custom Snort rule, setup
at the University.

This alert triggers whenever the IDS captures TCP traffic
which is not on the MY.NET network (does not have
source and destination addresses are on MY.NET).

What might cause this? Examining the most frequent
source address (169.255.244.56 occurs in 95% of the
“TCP SRC and DST outside network” alerts) is probably
caused by a machine which has been setup to use
DHCP, but has not received an IP address from the
DHCP server. Certain operating systems (e.g. Windows

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 49 of 67

XP) use a 169.255.0.0 address in these circumstances.

Some of the other source IP’s hint at badly configured
machines:

• the 68.55.0.64 address attempts connections to a
number of Internet addresses. A whois query
shows that this IP address is assigned to Comcast
Cable Communications Inc. of Baltimore. Perhaps
a user of this service has brought in their home
PC and connected it to the University network
without re-configuring it to use DHCP?

• A number of source IP addresses in the RFC
1918 reserved range 192.168.0.0 are observed.
Is this valid for the University’s network?

Another possibility for a number of these alerts is that
users are connecting to the University network and
dialling up to the Internet simultaneously – and traffic is
“leaking” from the dialup interface to the LAN. This might
occur if IP forwarding is enabled on the machines in
question, or due to a buggy OS.

Correlation Glenn Larrat details this alert in his GCIA practical,
observing that the 169.255.0.0 addresses are the result
of a failed attempt by a client to obtain an IP address
from a DHCP server
(http://is.rice.edu/~glratt/practical/Glenn_Larratt_GCIA.ht
ml)

Defensive
Recommendations

Effort should be made to track down the machines in
question and learn more about their status. Capture
network traffic from them, try a portscan for clues as to
the machines’ function and whereabouts.

Detect Name External RPC call
Frequency 3266
Severity High
Description of
detect

Again, this alert is caused by a custom Snort rule, setup
at the University.

This alert triggers whenever the IDS captures traffic from
the Internet which is connecting to the RPC service (port
111) on an internal machine.

Why might we want to capture this? Historically, a large
number of vulnerabilities have affected RPC. Typically,
these occur by the attacker connecting to the portmapper
service (TCP port 111). If this connection is successful,
the attacker may be able to enumerate the names and
port numbers of all the running RPC services – it is used

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 50 of 67

for reconnaissance.

In this instance, four external machines are responsible
for over 3200 alerts. They are:

64.209.74.229 – 2 alerts
166.102.99.229 – 7 alerts
81.15.45.1 – 420 alerts
193.114.70.169 – 2838 alerts

The alert generated by 62.209.74.229 is interesting. It is
registered to an Global Crossing. Examining all the alerts
files for this IP address is revealing. In addition to the
reconnaissance via the connection to portmapper, we
see that this address is involved in a number of other
alerts – including portscanning, attempted connections to
port 515 from outside. Most telling, however are the
following alerts:

• 10/22-19:03:31.669023 [**] SUNRPC highport
access! [**] 64.209.74.229:1912 ->
MY.NET.24.44:32771, and

• 10/22-19:05:00.332634 [**] Possible trojan server
activity [**] MY.NET.60.14:27374 ->
64.209.74.229:2291

The first of these alerts hints that the reconnaissance
phase (connecting to port 111 on MY.NET.24.44) was
successful. The attacker succeeded in enumerating the
RPC services, then attempted to connect to one.

The second of these alerts hints that another machine,
MY.NET.60.14 has the subseven Trojan, and that
64.109.74.229 has connected to it – although without the
Snort rules, it is not possible to know for sure if this rule
triggers when subseven is not listening on 27374. It is
possible that the rule is firing on an ACK-RST, indicating
that the machine is not trojaned (at least with subseven
on port 27374)!

The majority of the “external RPC call” alerts triggered by
other external machines are comprehensive scans of port
111 on the MY.NET network.

Correlation A useful note about RPC security, which explains why
logging and blocking access to port 111 is not always
sufficient to protect against RPC exploits. This can be
found on the SANS website
www.sans.org/resources/idfaq/blocking.php

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 51 of 67

Detail on security issues with RPC are found in the notes
for the SANS Intrusion Detection In Depth course, in the
“Network Traffic Analysis Using Tcpdump” section.

A similar RPC detect is covered by Al Williams in his
GCIA report:
http://www.whitehats.ca/main/members/Herc_Man/Files/
Al_Williams_GCIAPractical.pdf

Defensive
Recommendations

If it is not required for hosts on the Internet to access
RPC services on the University network, block access at
the border router/ firewall to:

• UDP and TCP ports 111
• UDP and TCP high ports 32770 - 32789

Due to the large number of issues relating to RPC,
ensure that any machines offering RPC services are fully
patched.

Detect Name High port 65535 tcp - possible Red Worm – traffic
Frequency 3172
Severity Medium
Description of
detect

Again, this alert is caused by a custom Snort rule, setup
at the University.

This alert triggers when a host (either external or on the
MY.NET network) sends a packet with a source port of
65535 past the IDS. This activity could happen in benign
situations – port 65535 is a valid ephemeral port, and can
be picked by a client when initiating a TCP connection.
However, port 65535 is also a well known port for trojans
and worms (such as the Adore worm, a worm which
targets Linux hosts).

Looking at the captured alerts, it appears that this alert is
a false positive in many situations. The server
MY.NET.24.34 (which appears to be a webserver),
causes this alert to fire whenever a client browser outside
the University network picks port 65535 as the ephemeral
port.

Some alerts are less easy to explain as being benign.
There is an extensive conversation (over 1000 alerts
triggered) between MY.NET.80.105 on port 3951 and
200.96.13.157 on port 65535. Port 3951 is not a well-
known port, as defined on the IANA well-known port list.
It is also not a well-known trojan port. 200.96.13.157 is
allocated to an ISP in Brazil. It is not possible to take a
concrete view of what is happening here. Possibilities –

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 52 of 67

• 200.96.13.157 has been backdoored by the Adore
worm, and has a shell listening on pot 65535. The
host on the University network initiates a
connection to this host. Hacking from the
university network?

• MY.NET.80.105 is running some daemon on port
3951 which 200.96.13.157 connects to.
200.96.13.157 benignly uses port 65535 as an
ephemeral port

I would treat the alerts between the University network
and 200.96.13.157 as suspicious, and worthy of futher
analysis.

Correlation A comprehensive description of the Adore worm (aka red
worm) can be found at www.sans.org/y2k/adore.htm

Glenn Larratt analyzes the “High port 65535 tcp” alert in
his GCIA practical,
http://www.giac.org/practical/Glenn_Larratt_GCIA.zip

Trend Micro have a concise and useful description of the
Adore worm,
http://www.trendmicro.com/vinfo/virusencyclo/default5.as
p?VName=ELF_ADORE.A

Defensive
Recommendations

Block incoming access to TCP port 65535 at the border
router/ firewall.

Ensure all Linux machines on the network are up to date
with security patches, to thwart attacks such as the Adore
worm (aka red worm).

Detect Name Possible trojan server activity
Frequency 2009
Severity High
Description of
detect

Again, this alert is caused by a custom Snort rule, setup
at the University.

The alert appears to trigger whenever traffic on TCP port
27374 is found. It fires both on traffic to/ from 27374 on
the MY.NET network and on traffic to/ from the Internet.
TCP port 27374 has been associated with all kinds of
Trojans and worms including:

Bad Blood, Lion, Ramen, Seeker, The Saint

and most famously of all the Subseven Trojan. It is likely
this rule attempts to detect Subseven activity.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 53 of 67

It appears that the rule fires on SYN packets, and on
ACKs and PSHs, but not on ACK-RSTs (which would
occur when a host responds that port 27374 is closed).
This leads to it being rather noisy. For instance, the host
66.169.146.100 causes over 300 alerts as it scans
through the MY.NET network.

The rule suffers from false alarms, too. For example,
traffic to MY.NET.24.34 (which, as stated before appears
to be a webserver) causes the occasional alert, without
there being evidence of subseven. Why false alerts?
Traffic to port 80 on MY.NET.24.34 occasionally has a
source port of 27374 – a valid ephemeral port.

That is not to say that all these alerts are benign or false.
Far from it. Looking at the scan from 66.169.146.100
again, we see that each connection attempt to hosts on
the MY.NET network on port 27374 causes an alert.
However, we also note that some of the hosts on the
MY.NET network appear to reply to the initial connection,
presumably with SYN-ACK. The following hosts on the
MY.NET network respond, and may well be trojaned:

MY.NET.190.1
MY.NET.190.101
MY.NET.190.102
MY.NET.190.202
MY.NET.190.203
MY.NET.190.97
MY.NET.6.15

Curiously, in addition to probing the MY.NET.190.0
network, 66.169.146.100 attempts connections to
MY.NET.6.15 and MY.NET.5.5. No other hosts at all on
MY.NET are scanned. Most likely MY.NET.6.15 and
MY.NET.5.5 have been scanned at a previous date, and
found to respond on port 27374 – although in this
timeframe only MY.NET.6.15 responds. This “precision”
is a strong indication that the responses to connections
on port 27374 (which the IDS is alerting on) find their way
back to the attacker.

The behaviour of 66.169.146.100 is illustrated in the link
diagram later in the paper.

There is other traffic highlighted by this alert which is of
concern. This is the traffic between 200.163.61.175 and
MY.NET.163.249. This conversation kicks off with a
connection from 200.163.61.175 (source port 27374) to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 54 of 67

MY.NET.163.249, port 6667. What is happening here? It
could be that MY.NET.163.249 is running as an IRC
server – port 6667 is frequently used for running IRC
servers. However, port 6667 is also associated with
Subseven.

A search on dshield.org shows that this is not a known
attacking IP address. It is registered to an ISP in Brazil.

Correlation An up to date list of Trojan ports can be found at
www.petri.co.il/trojan_ports_list.htm

This alert is covered by a number of GCIA students. I like
Doug Kite’s coverage:
http://www.giac.org/practical/GCIA/Doug_Kite_GCIA.pdf

Defensive
Recommendations

Block incoming access to TCP port 27374 and 6667 at
the border router/ firewall.

Ensure all Windows machines are running up to date
anti-virus software. Anti-virus software will detect most of
the high profile trojans, such as Subseven.

 “Top Talkers” list

Top 10 alerts – sources, ordered by number of alerts
No. IP Address Count Alert

1 MY.NET.80.51 115624 SMB Name Wildcard
2 MY.NET.150.133 72067 SMB Name Wildcard
3 MY.NET.162.41 7126 Connect to 515 from inside
4 169.254.244.56 4279 TCP SRC and DST outside network
5 MY.NET.29.2 3100 SMB Name Wildcard
6 68.55.85.180 2934 MY.NET.30.4 activity
7 193.114.70.169 2837 External RPC call
8 68.54.91.147 2743 MY.NET.30.4 activity
9 MY.NET.84.224 1290 SMB Name Wildcard
10 68.57.90.146 1224 MY.NET.30.3 activity

Top 10 alerts – destinations, ordered by number of alerts
No. IP Address Count Alert

1 MY.NET.30.4 15603 MY.NET.30.4 activity
2 128.183.110.242 7126 Connect to 515 from inside
3 MY.NET.30.3 5726 MY.NET.30.3 activity
4 MY.NET.84.228 5088 SMB C access
5 218.16.124.131 2854 TCP SRC and DST outside network
6 211.91.144.72 1420 TCP SRC and DST outside network
7 198.62.205.6 1265 SMB Name Wildcard
8 151.197.115.143 1251 SMB Name Wildcard
9 193.114.70.169 1208 SMB Name Wildcard

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 55 of 67

10 MY.NET.191.52 1146 SMB C Access

Top 10 alerts – IP “pairs”, ordered by number of alerts
No. Pair Count Alert
1 MY.NET.162.41-

128.183.110.242
7126 Connect to 515 from inside

2 68.55.85.180-
MY.NET.30.4

2934 MY.NET.30.4 activity

3 169.254.244.56-
218.16.124.131

2854 TCP SRC and DST outside network

4 68.54.91.147-
MY.NET.30.4

2743 MY.NET.30.4 activity

5 169.254.244.56-
211.91.144.72

1420 TCP SRC and DST outside network

6 68.57.90.146-
MY.NET.30.3

1224 MY.NET.30.3 activity

7 172.142.110.232-
MY.NET.30.4

1124 MY.NET.30.4 activity

8 MY.NET.80.105-
200.96.13.157

1112 High port 65535 tcp - possible Red
Worm – traffic

9 200.96.13.157-
MY.NET.80.105

1022 High port 65535 tcp - possible Red
Worm – traffic

10 151.196.19.202-
MY.NET.30.4

997 MY.NET.30.4 activity

Note – addresses of the form 130.85.x.y in the scans tables have been
replaced by MY.NET.x.z. Examination of the scans and alerts files highlights
this inconsistency – in the alerts files, addresses internal to the University are
listed as MY.NET, whereas in the scans files, these are listed as 130.85.

Top 10 scans – sources, ordered by number of alerts
No. IP Address Count

1 MY.NET.1.3 2166933
2 MY.NET.70.154 1294187
3 MY.NET.163.107 966595
4 MY.NET.84.194 888185
5 MY.NET.163.249 669973
6 MY.NET.42.1 273705
7 MY.NET.70.129 213577
8 MY.NET.1.5 211571
9 MY.NET.80.149 175961
10 MY.NET.111.72 171526

Top 10 scans – destinations, ordered by number of alerts
No. IP Address Count

1 192.26.92.30 57085

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 56 of 67

2 192.55.83.30 43945
3 130.94.6.10 32276
4 203.20.52.5 32455
5 130.85.15.27 30261
6 204.152.186.189 26947
7 131.118.254.33 26036
8 131.118.254.34 24599
9 131.118.254.35 23570
10 205.231.29.244 19972

Top 10 scans – IP “pairs”, ordered by number of alerts
No. IP Address Count

1 MY.NET.1.3-192.26.92.30 52980
2 MY.NET.1.3-192.55.83.30 40748
3 MY.NET.1.3-203.20.52.5 32437
4 MY.NET.1.3-130.94.6.10 32254
5 213.180.193.68-MY.NET.15.27 30239
6 MY.NET.1.3-204.152.186.189 26931
7 MY.NET.1.3-131.118.254.33 25359
8 MY.NET.1.3-216.109.116.17 24471
9 MY.NET.1.3-131.118.254.34 24017
10 MY.NET.1.3-131.118.254.35 23061

Top 10 OOS – sources, ordered by number of alerts
No. IP Address Count

1 217.174.98.145 1142
2 195.111.1.93 1130
3 212.16.0.33 1038
4 158.196.149.61 973
5 194.67.62.194 792
6 82.82.64.209 685
7 213.23.46.99 682
8 195.208.238.143 472
9 195.14.47.202 454
10 200.77.250.50 437

Top 10 OOS – destinations, ordered by number of alerts
No. IP Address Count

1 MY.NET.111.52 7867
2 MY.NET.12.6 4115
3 MY.NET.100.165 1672
4 MY.NET.69.181 1504
5 MY.NET.24.44 1407
6 MY.NET.75.240 839
7 MY.NET.84.143 734

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 57 of 67

8 MY.NET.24.34 471
9 MY.NET.100.230 327
10 MY.NET.6.7 282

Top 10 OOS – IP “pairs”, ordered by number of alerts
No. IP Address Count

1 217.174.98.145-MY.NET.111.52 1142
2 195.111.1.93-MY.NET.100.165 1079
3 212.16.0.33-MY.NET.111.52 1038
4 158.196.149.61-MY.NET.111.52 973
5 194.67.62.194-MY.NET.111.52 792
6 82.82.64.209-MY.NET.69.181 685
7 213.23.46.99-MY.NET.69.181 682
8 195.208.238.143-MY.NET.111.52 472
9 195.14.47.202-MY.NET.111.52 454
10 62.29.135.2-MY.NET.75.240 427

Information on five selected external source addresses

IP Address 64.209.74.229
Registration
Information

(from arin.net)

Global Crossing GBLX-11A (NET-64-208-0-0-1)
64.208.0.0 - 64.209.127.255
Metlife FGC-REQ000000009381 (NET-64-209-74-224-1)
64.209.74.224 - 64.209.74.255

Reason
why this
host was
chosen

64.209.74.229 connects to host on University network via
RPC, performs some portscanning of the University network,
and attempts to connect to port 515 (lpd) on a number of
University hosts

IP Address 200.96.13.157
Registration
Information

(from arin.net)

inetnum: 200.96/13
status: allocated
owner: Comite Gestor da Internet no Brasil
ownerid: BR-CGIN-LACNIC
responsible: Frederico A C Neves
address: Av. das Nações Unidas, 11541, 7° andar
address: 04578-000 - São Paulo - SP
country: BR
phone: +55 11 9119-0304 []
owner-c: CGB
tech-c: CGB
inetrev: 200.96/13
nserver: NS.DNS.BR
nsstat: 20031113 AA
nslastaa: 20031113

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 58 of 67

nserver: NS1.DNS.BR
nsstat: 20031113 AA
nslastaa: 20031113
nserver: NS2.DNS.BR
nsstat: 20031113 AA
nslastaa: 20031113
remarks: These addresses have been further
assigned to Brazilian users.
remarks: Contact information can be found at the
WHOIS server located
remarks: at whois.registro.br and at
http://whois.nic.br
created: 20010926
changed: 20020902

nic-hdl: CGB
person: Comite Gestor da Internet no Brasil
e-mail: blkadm@NIC.BR
address: Av. das Nações Unidas, 11541, 7° andar
address: 04578-000 - São Paulo - SP
country: BR
phone: +55 19 9119-0304 []
created: 20020902
changed: 20020902

Reason
why this
host was
chosen

An extensive conversation (over 1000 alerts triggered) takes
place between MY.NET.80.105 on port 3951 and
200.96.13.157 on port 65535 (see “High port 65535 tcp -
possible Red Worm – traffic” description above)

IP Address 66.169.146.100
Registration
Information

(From arin.net)

Charter Communications CHARTER-NET-4BLK (NET-66-168-0-
0-1) 66.168.0.0 - 66.169.255.255
Charter Communications FTWTH-TX-66-169-144 (NET-66-
169-144-0-1) 66.169.144.0 - 66.169.159.255

Reason
why this
host was
chosen

Causes a large number of alerts as it scans through the
address range for the University in search of hosts
compromised by the SubSeven Trojan.

IP Address 200.163.61.175
Registration
Information

(From lacnic.net)

inetnum: 200.128/9
status: allocated
owner: Comite Gestor da Internet no Brasil
ownerid: BR-CGIN-LACNIC
responsible: Frederico A C Neves
address: Av. das Nações Unidas, 11541, 7° andar
address: 04578-000 - São Paulo - SP
country: BR
phone: +55 11 9119-0304 []
owner-c: CGB
tech-c: CGB
inetrev: 200.128/9
nserver: NS.DNS.BR
nsstat: 20031113 AA

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 59 of 67

nslastaa: 20031113
nserver: NS1.DNS.BR
nsstat: 20031113 AA
nslastaa: 20031113
nserver: NS2.DNS.BR
nsstat: 20031113 AA
nslastaa: 20031113
remarks: These addresses have been further
assigned to Brazilian users.
remarks: Contact information can be found at the
WHOIS server located
remarks: at whois.registro.br and at
http://whois.nic.br
created: 19950104
changed: 20020902

nic-hdl: CGB
person: Comite Gestor da Internet no Brasil
e-mail: blkadm@NIC.BR
address: Av. das Nações Unidas, 11541, 7° andar
address: 04578-000 - São Paulo - SP
country: BR
phone: +55 19 9119-0304 []
created: 20020902
changed: 20020902

Reason
why this
host was
chosen

Communication from 200.163.61.175 to the University
network is suspicious – communication from port 27734 to
port 6667 on a host on the University network. See “Possible
trojan server activity” description above.

IP Address 128.183.110.242
Registration
Information

(From lacnic.net)

OrgName: National Aeronautics and Space Administrat
ion
OrgID: NASA
Address: AD33/Office of the Chief Information Offic
er
City: MSFC
StateProv: AL
PostalCode: 35812
Country: US

NetRange: 128.183.0.0 - 128.183.255.255
CIDR: 128.183.0.0/16
NetName: GSFC
NetHandle: NET-128-183-0-0-1
Parent: NET-128-0-0-0-0
NetType: Direct Allocation
NameServer: NS.GSFC.NASA.GOV
NameServer: NS2.GSFC.NASA.GOV
Comment:
RegDate: 1993-04-01
Updated: 2003-02-05

TechHandle: ZN7-ARIN
TechName: National Aeronautics and Space Administrat
ion
TechPhone: +1-256-544-5623

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 60 of 67

TechEmail: dns.support@nasa.gov

OrgAbuseHandle: NASAA-ARIN
OrgAbuseName: NASA Abuse
OrgAbusePhone: +1-800-762-7472
OrgAbuseEmail: abuse@nasa.gov

OrgNOCHandle: NISN-ARIN
OrgNOCName: NASA Information Services Network
OrgNOCPhone: +1-256-961-4000
OrgNOCEmail: noc@nisn.nasa.gov

OrgTechHandle: WEBBN-ARIN
OrgTechName: Webb, Nancy
OrgTechPhone: +1-256-544-3245
OrgTechEmail: dns.support@nasa.gov

Reason
why this
host was
chosen

128.183.110.242, registered to NASA, causes all the
“connect to 515 from inside” alerts – a host on MY.NET
repeatedly attempts to contact 128.183.110.242. See
“connect to 515 from inside” description above.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 61 of 67

Link graph

66.169.146.100
- scanning IP

MY.NET.190.0
network

Inc
re

men
ti n

g h
igh

sr
c p

or
t, d

es
t

po
rt

27
37

4

MY.NET.190.1

Sr
c

po
rt

36
60

, d
es

t
po

rt
27

37
4

S
rc

 p
o r

t 2
73

74
, d

e s
t

p o
r t

36
60

MY.NET.190.97

Sr
c p

or
t 4

93
7,

 de
st

po
r t

27
37

4

Src
port

 27
37

4, d
est

po
rt 4

937

MY.NET.190.101

Src port 27374, dest

port 4941
Src p

ort 4941, dest

port 27374

MY.NET.190.102
Src port 4942, dest

port 27374
Src port 27374, dest

port 4941

MY.NET.190.202

MY.NET.190.203MY.NET.6.15

Src port 1564, dest
port 27374Src port 27374, dest

port 1564

Src port 1565 dest

port 2 7374

Sr c port 27374 , dest

port 1 565

Sr
c

po
rt

15
95

, d
es

t
po

rt
27

37
4

S
rc

 p
o r

t 2
73

7 4
, d

e s
t

p o
r t

15
95

MY.NET.5.5
Src port 4454, dest

port 27374

MY.NET.6.15 Src port 1595, destport 27374

Machines on MY.NET
which responded to

connection to port 27374

Likely infected with
Subseven trojan

Machines probed by
66.169.146.100 on port

27374

Figure 37 – behaviour of 66.169.146.100; searching (and finding) Subseven
compromised hosts

Analysis process

The first step in the analysis process was to concatenate all files of a given
type – for example, all scans files were concatenated into a single scans.all
file.

Early attempts to analyze the alerts, scans, and OOS files via tools such as
MS Excel and the Perl script snort_stat.pl (which ships with Snort) proved
futile. The size of the files (in particular the scans files which total nearly 1GB
of disk space!) is the root of the problem.

Examining other GCIA student’s approaches indicated that a number of
people had success with bespoke Perl scripts. I experimented with a number
of these scripts, before determining that the alercount, scancount and
scanalyze scripts from Chris Kuethe showed promise.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 62 of 67

I enhanced the scancount and alertcount perl scripts. They are listed in
Appendix 1. The key changes made:

• First, to correct a small oversight in the original alertcount script – the
functionality for the –l parameter (threshold before printing) was
omitted.

• Second, to change the order output was sorted (in Chris’ original script,
output was sorted by IP address, in the modified scripts output is
ordered by descending frequency.)

• Lastly, and most importantly, I applied a number of techniques to
scancount.pl to save memory, and improve performance. These can be
summarized as:

o Offer a new command-line option (-n) which causes output not
to be sorted – sorting huge amounts of data requires a large
amount of memory, and takes time.

o Better use of memory during execution – we only store data into
various hashes if they are relevant to the command-line options
specified.

The memory saving techniques turned analyzing the huge scans files into a
viable prospect on a 512MB machine. With the original scripts, analyzing the
scans files was not possible; several hours of machine time was devoted in an
attempt to use the original scancount.pl script, but it proved fruitless.

In addition to the Perl scripts, various Unix command-line tools were used for
the analysis, including grep, sed and wc. Microsoft Excel was used for
manipulating the summary files produced by the scripts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 63 of 67

Appendix 1 – Perl scripts used to aid analysis

Alertcount2.pl

#!/usr/bin/perl -s
#
Original code by Chris Kuethe
Updated by Tom King:
-l flag functionality (threshold) fixed (ommitted from
original)
sorting on all flags is now by descending frequency
#

unless (defined($d) ||defined($s) ||defined($q) ||defined($p)
||defined($t) ||defined($v)){

print "you need to specify at least one action flag\n";
print "\t-d \tprint the destination hosts\n";
print "\t-s \tprint the source hosts\n";
print "\t-p \tprint the attacker/target pair\n";
print "\t-t \tprint the attack types\n";
print "\t-q \tbe quiet and print the total number of

detects\n";
print "\t-v \tbe verbose and print everything\n";
print "\t-a \tprocess all (don't ignore portscans)\n";
print "\t-i=file\tread a list of patterns to skip from \n";
print "\t-l=n\tthreshold before printing\n";
exit 1;
}

$l = 0 unless defined($l);

if (defined($v) && defined($q)){
print "the '-q' and '-v' flags are mutually exclusive.\n";
exit 1;
}

#the skip list contains case-sensitive patterns, one per line
#of strings, which, if found in the alert, cause processing of
#that alert to be skipped.
if (defined($i)) {

open(SKIPLIST,$i) || die "can't open skip list \"$s\" !
($!)\n";

while (){
chomp;
push(@skiplist,$_)

}
close SKIPLIST;

}

while (<>){
chomp;

#make sure we have a log line
unless (/\Q [**] \E/){ next };

#assuming that there are any alerts we're not interested in, we skip
them
#here. portscans shouldn't be that interesting, since we have all the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 64 of 67

#output from the portscan logger.
$skipthis=0;
if ((/spp_portscan/i) && (!defined($a))){ next; }
foreach $s (@skiplist){

if ($_ =~ /$s/){ $skipthis=1; }
}; if ($skipthis) { next; }

($timestamp,$desc,$ip)=split(/\Q [**] \E/, $_);
($src, $arrow, $dst) = split(/ /, $ip);
($s_h,$s_p)=split(/:/,$src);
($d_h,$d_p)=split(/:/,$dst);
$pkey = "${s_h}-${d_h}XXX$desc";
$skey = "${s_h}XXX$desc";
$dkey = "${d_h}XXX$desc";

$atype{$desc} += 1 ;
$pair{$pkey} += 1 ;
$asrc{$skey} += 1 ;
$adst{$dkey} += 1 ;

$at2{$desc} += 1 ;
$pr2{"${s_h}-${d_h}"} += 1 ;
$as2{"${s_h}"} += 1 ;
$ad2{"${d_h}"} += 1 ;

}

if (((!$q)&&($t))||($v)){
#foreach $key (sort keys (%atype)){
foreach $key(sort {$atype{$b} <=> $atype{$a}} keys (%atype)){

if ($atype{$key}>=$l)
{
print "$atype{$key}\t$key\n";
}

}
}

if (((!$q)&&($d))||($v)){
$state = "0xc0ffee";
foreach $key (sort {$adst{$b}<=>$adst{$a}}keys(%adst)){

if ($adst{$key} >= $l)
{
($connection,$crime) = split(/XXX/, $key);
unless ($connection =~ /$state/){

print "\n$connection\n";
print (("=" x 31) . "\n");
$state="$connection";

}
print "$adst{$key}\t$crime\n";
}

}
}

if (((!$q)&&($s))||($v)){
$state = "0xc0ffee";
foreach $key (sort {$asrc{$b} <=> $asrc{$a}} keys(%asrc)){

if ($asrc{$key} >= $l)
{
($connection,$crime) = split(/XXX/, $key);
unless ($connection =~ /$state/){

print "\n$connection\n";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 65 of 67

print (("=" x 31) . "\n");
$state="$connection";

}
print "$asrc{$key}\t$crime\n";
}

}
}

if (((!$q)&&($p))||($v)){
$state = "0xc0ffee";
foreach $key (sort {$pair{$b}<=>$pair{$a}} keys(%pair)){

if ($pair{$key}>=$l)
{
($connection,$crime) = split(/XXX/, $key);
unless ($connection =~ /$state/){

print "\n$connection\n";
print (("=" x 31) . "\n");
$state="$connection";

}
print "$pair{$key}\t$crime\n";
}

}
}

if (($t)&&($q)){
foreach $key (sort {$at2{$b} <=> $at2{$a}} keys(%at2)){

if ($at2{$key}>=$l)
{
print "$at2{$key}\t$key\n";
}

}
}

if (($d)&&($q)){
foreach $key (sort {$ad2{$b}<=>$ad2{$a}} keys(%ad2)){

if ($ad2{$key}>=$l)
{
print "$ad2{$key}\t$key\n";
}

}
}

if (($s)&&($q)){
foreach $key (sort {$as2{$b} <=> $as2{$a}} keys(%as2)){

if ($as2{$key}>=$l)
{
print "$as2{$key}\t$key\n";
}

}
}
if (($p)&&($q)){

foreach $key (sort {$pr2{$b}<=>$pr2{$a}} keys(%pr2)){
if ($pr2{$key}>=$l)
{
print "$pr2{$key}\t$key\n";
}

}
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 66 of 67

Scancount2.pl – updated version of scancount.pl

#!/usr/bin/perl -s
#
Original code by Chris Kuethe
Updated by Tom King:
sorting is now by descending frequency
-n option (don't sort) added - saves memory, improves
performance
other memory saving techniques - don't copy data into hashes if
not required according
to command-line flags
#
$|=1;

unless (defined($d) ||defined($s) ||defined($p) ||defined($t)
||defined($v)){

print "you need to specify at least one action flag\n";
print "\t-d \tprint the target hosts\n";
print "\t-s \tprint the attacking hosts\n";
print "\t-p \tprint the attacker/target pair\n";
print "\t-t \tprint the attack type\n";
print "\t-f \twatch for fingerprinting attempts\n";
print "\t-v \tbe verbose and print everything\n";
print "\t-l=n\tconnection threshold before printing\n";
print "\t-n \tdon't sort results\n";
exit 1;
}

$l = 0 unless defined($l);

$linesread=0;
while (<>){

chomp;
($date, $time, $src, $dst, $scantype, @scanopts) = split;

$pkey = "$src-$dst";

unless (($scantype =~ /SYN/)||($scantype =~ /UDP/)||($scantype
=~ /FIN/)){

if ($s||$v) {++$fsrc{$src};}
if ($d||$v) {++$fdst{$dst};}
if ($p||$v) {++$fpr{$pkey};}
if ($t||$v) {++$ftyp{$scantype};}
}

if ($s||$v) {++$asrc{$src};}
if ($d||$v) {++$adst{$dst};}
if ($t||$v) {++$type{$scantype};}
if ($p||$v) {++$pair{$pkey};}
#$linesread++;

 #if ($linesread % 100000==0)
#{print"$linesread\n";}

}

if ($n)
{
if (($t)||($v)){

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 67 of 67

 print "\n\nUnique Scan Types\n=================\n\n" if ($v)
;
 foreach $key (keys(%type)){
 if(($f)&&($ftyp{$key}>0)){ $fp="\t(fp)"; }else{
$fp=""; }
 print "$type{$key} \t$key $fp\n" unless ($type{$key}
< $l);
 }
}

if (($d)||($v)){
 print "\n\nUnique Targets\n==============\n\n" if ($v) ;
 foreach $key (keys(%adst)){
 if(($f)&&($fdst{$key})){$fp="\t(fp)";}else{$fp="";}
 print "$adst{$key} \t$key $fp\n" unless ($adst{$key}
< $l);
 }
}

if (($s)||($v)){
 print "\n\nUnique Attackers\n================\n\n" if ($v) ;
 foreach $key (keys(%asrc)){
 if(($f)&&($fsrc{$key})){$fp="\t(fp)";}else{$fp="";}
 print "$asrc{$key} \t$key $fp\n" unless ($asrc{$key}
< $l);
 }
}

if (($p)||($v)){
 print "\n\nUnique
Attacks/Targets\n======================\n\n" if ($v) ; foreach
$key (keys(%pair)){
 if(($f)&&($fpr{$key})){$fp="\t(fp)";}else{$fp="";}
 print "$pair{$key} \t$key $fp\n" unless ($pair{$key}
< $l);
 }
}
}

else
{
if (($t)||($v)){

print "\n\nUnique Scan Types\n=================\n\n" if ($v) ;
foreach $key (sort {$type{$b}<=>$type{$a}} keys(%type)){

if(($f)&&($ftyp{$key}>0)){ $fp="\t(fp)"; }else{ $fp=""; }
print "$type{$key} \t$key $fp\n" unless ($type{$key} <

$l);
}

}

if (($d)||($v)){
print "\n\nUnique Targets\n==============\n\n" if ($v) ;
foreach $key (sort {$adst{$b}<=>$adst{$a}} keys(%adst)){

if(($f)&&($fdst{$key})){$fp="\t(fp)";}else{$fp="";}
print "$adst{$key} \t$key $fp\n" unless ($adst{$key} <

$l);
}

}

if (($s)||($v)){
print "\n\nUnique Attackers\n================\n\n" if ($v) ;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 68 of 67

foreach $key (sort {$asrc{$b}<=>$asrc{$a}} keys(%asrc)){
if(($f)&&($fsrc{$key})){$fp="\t(fp)";}else{$fp="";}
print "$asrc{$key} \t$key $fp\n" unless ($asrc{$key} <

$l);
}

}

if (($p)||($v)){
print "\n\nUnique Attacks/Targets\n======================\n\n"

if ($v) ;
foreach $key (sort {$pair{$b}<=>$pair{$a}} keys(%pair)){

if(($f)&&($fpr{$key})){$fp="\t(fp)";}else{$fp="";}
print "$pair{$key} \t$key $fp\n" unless ($pair{$key} <

$l);
}

}
}

Ppscan.pl – script to mangle scan files into a format accepted
by the scancount script

#!/usr/bin/perl -s

Original code by Chris Kuethe
Updated by Tom King:
ppscan just mangles scan files into a format which can be
#analyzed by the scancount script.
#

%convert=("Jan", "01", "Feb", "02", "Mar", "03", "Apr", "04",
 "May", "05", "Jun", "06", "Jul", "07", "Aug", "08",
 "Sep", "09", "Oct", "10", "Nov", "11", "Dec", "12");

while (<>){
chomp;
#check to make sure this is a real log entry
unless (/^...:..:../) { next; }

#snarf in and split, and prepare a log line
($mon, $day, $time, $src, $arrow, $dst, @scantype) = split;
$mon=$convert{$mon};
($s_h,$s_p)=split(/:/,$src);
($d_h,$d_p)=split(/:/,$dst);
$newline=join(" ", ("$mon.$day",$time,$s_h,$d_h,@scantype));

#append the new line onto the new logfile
 # push(@newlog,$newline);
print "$newline\n";
}

