
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Intrusion Detection In-Depth

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 3.4

Ryan Rathe

December 15th, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1

Table of Contents
Section Topic Header Page
1.0 802.11b Wireless Security and Intrusion Detection 4
1.1.1 Executive Summary 4
1.1.2 Enter The Wireless LAN 4
1.1.3 Built-In Insecurities 4
1.1.4 The Back Door 5
1.1.5 Denial of Service Attacks 5
1.1.6 Basic Ways of Securing an 802.11b Network 6
1.1.7 Advanced Ways of Securing an 802.11b Network 6
1.1.8 Wireless LAN (802.11b) Summary 7
1.2.1 Wireless IDS Introduction 7
1.3.1 Enter WIDZ 8
1.3.2 Why WIDZ 8
1.3.3 WIDZ HOWTO 8
1.3.4 How I Built WIDZ 8
1.3.4.1 WIDZ Hardware Requirements 8
1.3.4.2 Need to Download to /root/ 9
1.3.4.3 Red Hat 9.0 9
1.3.4.4 Install Orinoco Drivers 9
1.3.4.5 Install libpcap 10
1.3.4.6 Install WIDZ v1.8 10
1.3.4.7 Configuring WIDZ with the Correct Interface 11
1.3.4.8 Gmessage vs. Xmessage 11
1.3.4.9 The > Bug 11
1.3.4.10 The Second Argument Bug 11
1.3.4.11 Apmon Configuration 12
1.3.4.12 Probemon Configuration 12
1.3.4.13 Running WIDZ 12
1.3.4.14 Orinoco Firmware Links 13
1.4.1 Enter Snort-Wireless 13
1.4.2 Why Snort-Wireless 13
1.4.3 Building Snort-Wireless 13
1.4.4 How I Built Snort-Wireless 14
1.4.4.1 Snort-Wireless Hardware Requirements 14
1.4.4.2 Snort-Wireless: Need to Download to /root/ 14
1.4.4.3 Red Hat 9.0 14
1.4.4.4 Installing Libpcap 14
1.4.4.5 Install Airjack Drivers 14
1.4.4.6 Installing Snort-Wireless 16
1.4.4.7 Configuring Snort-Wireless 16
1.4.4.8 Running Snort-Wireless 17
1.5 WIDZ vs. Snort-Wireless–Current Feature Comparison 17
1.6 Conclusion and the Future of Wireless Intrusion Detection 18
1.7 References 18
2.0 Three Network Detects 19
2.1 Detect 1, IIS _vti_inf.html and _vti_rpc Access 19
2.1.1 Source of Trace 19
2.1.2 Detect Generated By 19
2.1.3 Probability the Source Address was Spoofed 22
2.1.4 Description of Attack 22
2.1.5 Attack Mechanism 23
2.1.6 Correlations 23
2.1.7 Evidence of Active Targeting 23
2.1.8 Severity 24
2.1.9 Defensive Recommendations 25
2.1.10 Multiple Choice Test Question 25
2.1.11 Intrustions@incidents.org Posting and Feedback 25
2.2 Detect 2, Nmap Xmas Scan 29

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

2.2.1 Source of Trace 29
2.2.2 Detect Generated By 29
2.2.3 Probability the Source Address was Spoofed 30
2.2.4 Description of Attack 30
2.2.5 Attack Mechanism 30
2.2.6 Correlations 31
2.2.7 Evidence of Active Targeting 31
2.2.8 Severity 31
2.2.9 Defensive Recommendations 32
2.2.10 Multiple Choice Test Question 32
2.3 Detect 3, SMB C$ Share 32
2.3.1 Source of Trace 32
2.3.2 Detect Generated By 32
2.3.3 Probability the Source Address was Spoofed 33
2.3.4 Description of Attack 33
2.3.5 Attack Mechanism 33
2.3.5 Correlations 33
2.3.7 Evidence of Active Targeting 34
2.3.8 Severity 34
2.3.9 Defensive Recommendations 34
2.3.10 Multiple Choice Test Question 35
2.4 References 35
3.0 Analyze This 35
3.1 Introduction 35
3.1.2 Executive Summary 36
3.1.3 List of Analyzed Files 37
3.2 Scans Analysis 37
3.2.1 Summary 37
3.2.2 5-day Trend of Scans, Alerts, and OOS 37
3.2.3 Most Frequent Scan Alerts 37
3.2.4 Top Source Ports in Scan Alerts 38
3.2.5 Top Destination Ports in Scan Alerts 38
3.2.6 Scan Alerts: Top Talkers 39
3.2.7 Breakdown of Suspected Scan Activity 39
3.2.7.1 Possible Trojans and Worms 39
3.2.7.2 Gaming 42
3.2.7.3 Peer-to-Peer (P2P) File Sharing 43
3.2.8 Recommendations Based on Scan Analysis 44
3.3 OOS Analysis 44
3.3.1 OOS: Flags 45
3.3.2 OOS: Top Ten Talkers 45
3.4 Alerts 45
3.4.1 Alerts: Top Ten Talkers 46
3.4.2 Alert Frequency Statistics 47
3.4.3 Alert Port Frequency Statistics 49
3.4.4 Most Severe Alerts Criterion 50
3.4.5 Most Severe Alerts 50
3.4.5.1 Most Severe Alert #1: NIMDA–Attempt to Execute CMD From Campus Host 50
3.4.5.1.2 Summary 50
3.4.5.1.3 Tables 51
3.4.5.1.4 Recommendations 51
3.4.5.1.5 Correlations 51
3.4.5.2 Most Severe Alert #2: TFTP - External UDP/TCP Connection to Internal TFTP

Server
52

3.4.5.2.1 Alerts Sample 52
3.4.5.2.2 Summary 52
3.4.5.2.3 Data Link Graph 53
3.4.5.2.4 Tables 53
3.4.5.2.5 Recommendations 53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

3.4.5.2.6 Correlations 53
3.4.5.3 Most Severe Alert #3: TFTP–Internal UDP/TCP Connection to External TFTP

Server
53

3.4.5.3.1 Alerts Sample 54
3.4.5.3.2 Summary 54
3.4.5.3.3 Tables 55
3.4.5.3.4 Recommendations 55
3.4.5.3.5 Correlations 55
3.4.5.4 Most Severe Alert #4: CGI Null Byte Attack Detected 55
3.4.5.4.1 Summary 55
3.4.5.4.2 Tables 56
3.4.5.4.3 Recommendations 56
3.4.5.4.4 Correlations 56
3.4.5.5 Most Severe Alert #5: Possible Trojan Server Activity 56
3.4.5.5.1 Alerts Sample 57
3.4.5.5.2 Summary 57
3.4.5.5.3 Tables 58
3.4.5.5.4 Recommendations 58
3.4.5.5.5 Correlations 58
3.4.5.6 Most Severe Alert #6: Possible Red Worm Traffic 59
3.4.5.6.1 Alerts Sample 59
3.4.5.6.2 Summary 59
3.4.5.6.3 Tables 60
3.4.5.6.4 Recommendations 60
3.4.5.6.5 Correlations 60
3.4.5.7 Most Severe Alert # 7: Unicode Attack Detected 60
3.4.5.7.1 Alerts Sample 60
3.4.5.7.2 Summary 61
3.4.5.7.3 Tables 61
3.4.5.7.4 Recommendations 61
3.4.5.7.5 Correlations 61
3.4.5.8 Most Severe Alert #8: Possible Myserver Activity 62
3.4.5.8.1 Alerts Sample 62
3.4.5.8.2 Summary 62
3.4.5.8.3 Tables 63
3.4.5.8.4 Recommendations 63
3.4.5.8.5 Correlations 63
3.4.5.9 Most Severe Alert # 9: IRC Evil–Running XDCC 63
3.4.5.9.1 Alerts Sample 63
3.4.5.9.2 Summary 63
3.4.5.9.3 Tables 64
3.4.5.9.4 Recommendations 64
3.4.5.9.5 Correlations 64
3.4.5.10 Most Severe Alert #10: SMB Name Wildcard 64
3.4.5.10.1 Snort Signature and Alerts Sample 64
3.4.5.10.2 Summary 65
3.4.5.10.3 Tables 66
3.4.5.10.4 Recommendations 66
3.4.5.10.5 Correlations 66
3.4.5.6 Summary of Recommendations 66
3.4.7 Registration Information of Interesting External Hosts 68
3.4.7.1 Microsoft Corp 69
3.4.7.2 Latin American and Caribbean IP Address Regional Registry 69
3.4.7.3 University of Haifa 70
3.4.7.4 US West Internet Services 71
3.4.7.5 Michigan State University 72
3.4.7.6 Detailed Correlations and References 72

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

1. 802.11b Wireless Security and Intrusion Detection

1.1.1 - Executive Summary
This paper is designed to quickly bring a technical person up to speed on the
IEEE 802.11b Wireless LAN (Local Area Network) by giving you a basic overview
of the technology, its security shortfalls, and common methods used to better
secure it. The goal is to lead you to the conclusion that with all of the current
security shortfalls, we need WLAN Intrusion Detection Capabilities. I'll then get
you started with a couple of open-source WIDS (Wireless Intrusion Detection
System) systems that you can experiment with in a test environment. Please
note that these systems are not ready for enterprise deployment. If you're looking
for such, you should consider a commercial product such as Airdefense. Lastly,
we’ll talk about the future of IDS, where it’s going and what we can expect to see.

1.1.2 - Enter the Wireless LAN
In recent years, the Wireless LAN has emerged, adding many new capabilities to
the once seemingly landlocked network infrastructure. With the wireless industry
standardizing on IEEE 802.11b, users can now roam from their office to the
conference room or to their home patio with little configuration required and
without worry of inter-brand compatibility. Warehouse inventory quantities can
be kept in real-time with the integration of wireless cards into barcode scanners.
For the Network Administrator, all the headaches of running cables, drilling holes,
and installing jacks can be alleviated with just one cable run, a simple web based
AP (Access Point) configuration, and plug-and-play wireless network cards.

1.1.3 - Built-In Insecurities
Like many other computer technologies, convenience and ease of use doesn’t
come without a price. Wireless adds an addition layer of security concern in that
wireless is physically a broadcast medium whereas anyone within range (across
the street, down the block, or miles away) could potentially pick up the signal and
gain access to your network. Moreover, many out-of-the-box APs come
preconfigured without WEP (Wireless Equivalent Protocol) encryption enabled,
with default SSIDs (Service Set Identifier), and with a built in DHCP (Dynamic
Host Configuration Protocol) server, which if used “as-is”, will allow anyone with
an 802.11b card to connect instantly. Realizing this danger, Network
Administrators often configure a unique SSID, turn broadcast SSID off, and
disable the built in DHCP server to secure a wireless network. It's a good start;
however, without encryption the values are being sent in clear text. As a result,
such popular wardriving (actively sniffing for vulnerable wireless networks) tools
as Kismet or NetStumbler can easily sniff out these SSID and channel values in
a matter of seconds. Last but not least, WEP encryption itself is insecure. Using
the RC4 encryption algorithm, WEP was designed to protect an 802.11b network
from eavesdropping. However, using such tools as AirSnort or WEPCrack, an
attacker can discover enough weak keys to crack a 128-bit shared key in a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

matter of days or possibly hours. More information on this topic can be found at
http://www.drizzle.com/~aboba/IEEE/rc4_ksaproc.pdf and
http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html .

1.1.4 - The Back Door
Simple oversights often become the downfall to even the most highly secured
networks. One of the biggest oversights in traditional LANs are dial-up modems
commonly installed on department PCs so that the user can access his or her
work from home. The problem is that this gives an attacker a channel of access
where they could island-hop their way through the entire corporate network. Just
like the LAN, the WLAN also has its share of backdoors. One such wireless
backdoor is an AP that was either covertly installed by an attacker or more likely
one that was purchased by a user for personal or departmental use without the
guidance of the Network Administrator. Without the Network Administrator’s
guidance it’s likely that the user will install the AP with out-of-box default
configurations and henceforth the AP can be wide open to attack. This gaping
security hole can be largely prevented by educating users about these security
concerns; however, this doesn’t prepare for the possibility that a rogue AP may
be installed with malicious intent. Also, if an attacker can physically access a
legitimate AP (i.e. AP under someone’s desk) it’s possible that the attacker could
plug in directly to the AP and discover the configuration or simply reset and
reconfigure it. This attack can be largely thwarted by configuring an administrator
password and ensuring that it is physically hidden and out of reach. Other
backdoors involves wireless clients, generally not recognized as targets. If
permitted, it's possible for clients to connect up directly to other clients (Ad-Hoc)
without the use of an AP. Also, it's possible for the attacker to attempt to connect
to other wireless clients using the AP as a hub. Attacks like these can expose a
wireless client to a large array of IP based attacks. Once the client is
compromised the attacker can use that machine as a springboard to launch other
attacks.

1.1.5 - Denial of Service Attacks
Gaining access to a network may not be the motivation at all. Other wireless
attacks aim at causing network congestion or intercepting traffic in a man-in-the-
middle style of attack. Well known wireless Denial of Service attacks include
Auth Floods, Deauth Floods, General Volume Floods, FakeAP, WLAN-jack and
Fatajack. Some of these attacks simply chew up bandwidth and increase latency
while others, such as Fatajack, disconnect wireless clients by sending 802.11b
Authentication Failed Packets. For example, Fatajack spoofs the source MAC
address to appear as if it came from the legitimate AP. This in effect tears down
the client session and can cause the client driver to crash, requiring a reboot.
Many APs and wireless clients are powerless to this sort of attack and with
virtually no logging/alerting capabilities available on APs, this becomes an even
greater challenge to overcome. The biggest challenge is that many APs and
clients are vulnerable, and current technologies do little to prevent these attacks.
The worst part is that because these attacks occur at layer 1-2 of the 802.11,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

protocol they can’t be detected by a traditional Network IDS. More information on
these DoS attacks can be found at http://packetstormsecurity.nl/wireless/ .

1.1.6 - Basic Ways of Securing an 802.11b Network
Several different approaches can be followed in attempting to secure a wireless
network and depending on the type of environment (i.e. Government vs. Saw
Mill) realistic threat assessments vary. At the very least, organizations should
consider enabling 128-bit WEP and should have a unique SSID. After all, it’s free
and is standard on most APs and wireless cards. It is true that WEP can be
compromised, but it’s not an easy task. Not only does it take time to crack the
key, but AirSnort and WEPCrack are far from plug and play. For the most part
they need to be built on Linux, have a short list of supported wireless cards, and
have many dependencies. For the novice wardriver this can be a daunting task,
resulting in moving onto an easier target that doesn’t use WEP encryption. Even
the high security environment (i.e. Government) that has other wireless security
systems in place should consider enabling 128-bit WEP because it constitutes
another layer of security and will keep the kiddies at bay. Granted it’s not very
secure, yet it’s another hurdle for the attacker to overcome. Different security
technologies can compliment each other just as the moat compliments the castle
wall.

1.1.7 - Advanced Ways of Securing an 802.11b Network
Moving beyond the basics let’s look at some other ways we can better secure a
wireless network. WEP isn't the only advanced security feature built into APs.
Many APs have standardized features such as 802.1x Authentication, Dynamic
Key Exchange (EAP-TLS), and MAC address based access lists. 802.1x
Authentication is a protocol, whereas a client and a Radius authentication server
mutually verify each other’s identity before a connection can be established.
Also, APs can be required to authenticate their identity which helps to prevent
Rogue AP man-in-the-middle and MAC-spoofing based attacks. In addition,
802.1x specifies a method of dynamic per-user/per-session key exchange, thus
making WEP a much more secure encryption protocol to deploy. In this
environment the keys are constantly changing which makes tools like AirSnort
and WEPCrack all but useless as they function by algorithmically finding
similarities in weak IV keys that were all generated by the same base WEP key.
Many APs also have the capability to block access based on MAC address. This
can be useful; however, an attacker can easily subvert this by spoofing the MAC
identity of a legitimate client. MAC addresses can be often times be easily
changed as most wireless cards support this capability. Furthermore, obtaining a
legitimate MAC can be a trivial task by using such tools as a wireless sniffer or
with a simple brute-force script. Independent of the AP, a commonplace security
mechanism includes establishing a VPN across the wireless link. In today's
environment, this is perhaps the best way to secure sensitive data on wireless
network. Using IPSEC with WEP is likely to deter even the most persistent of
attackers as it is very difficult to compromise. More information on this topic can
be found at

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

http://www.cisco.com/warp/public/cc/pd/witc/ao350ap/prodlit/a350w_ov.htm .

1.1.8 - Wireless LAN (802.11b) Summary
In summary there are several ways an attacker can compromise or disrupt an
802.11b wireless network. We've discussed some of the most common
vulnerabilities and what can be done using current technologies. Employing
unique SSIDs, WEP, MAC tables, 801.1x, and VPN tunnels will go along ways in
securing a WLAN. However with all the security mechanisms discussed one
security facet is evidently missing, Intrusion Detection. Most of the wireless
attacks discussed occur at layer 1 and 2 of the 802.11 protocol and can not be
detected by most Network IDS systems and that's what well discuss next.

1.2.1 - Wireless IDS Introduction
Network Intrusion Detection in its raw form (before Session-sniping and Inline
IDS) doesn’t stop attackers but rather just alerts you to their presence. Wireless
IDSs have the same purpose and goal as the traditional NIDS - to generate alerts
for the proactive Security Administrator to interpret and act upon. However, a
Wireless IDS differs from a Network IDS in how and what it analyzes. Traditional
Network IDSs, such as Snort, focus on analyzing mostly layers 3-7 of the OSI
model. Snort simply wasn't designed for 802.11. Many wireless IDSs attempt to
fill the gap by focusing specifically on 802.11 analysis while leaving layer 3-7
analysis to a separate IDS (possibly Snort) still others such as Snort-Wireless,
can potentially perform analysis at all layers.

Wireless IDS capabilities can be built on just about any hardware platform. The
only requirement is that the machine be capable of housing a standard 802.11b
wireless card. It’s even possible to do this on the AP itself. Deploying these
capabilities on the AP has many obvious advantages, such as utilizing what you
already have and avoiding what could potentially be one Wireless IDS machine
per AP due to wireless signal range limitations. There is work being done on an
open source AP WIDS. Following is an excerpt taken from www.snort.org.

Snorting from wireless access points? Brian @ Thu Aug 28 12:55:09 2003 GMT

Jim Buzbee has been working on getting Snort up and running on the Linksys WRT54G
access point. He's got snort and libpcap cross compiled for the MIPS platform and its up
and running in sniffing mode.

This is Jim's first time snorting, so he needs some help building a config for IDS mode.
The WRT54G has a 125 Mhz MIPS processor, 16 meg of ram, and runs a slightly
modified 2.4.5 kernel. Since its a small box, recent features in snort such as lowmem will
really helpful.

Check out Jim's experience and grab his Snort binary if you have one of these access
points.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

Wireless IDSs are still in their early stages and, for the most part, are unrefined
and clumsy. In the past year a number of commercial WIDS systems have been
introduced into the market, many of which would be well suited to the task.
However, in the spirit of open source, I’d like to discuss what is available under a
GNU license. I’ll introduce you to WIDZ and Snort-Wireless, two open source
WIDS systems that can run on an Intel platform machine.

1.3.1 - Enter WIDZ
WIDZ was one of the first open source Wireless IDS systems available to the
public. WIDZ focuses on three major risks: unauthorized APs, SSID probing
(wardriving), and various DoS attacks. The latest release (WIDZv1.8) shores up
a lot of bugs in version 1.5 and adds some new functionality; however, WIDZ is
still “proof of concept” and under continuous development by its creator Mark
Osborne (www.loud-fat-bloke.co.uk). The future release of 2.0 is expected to
bring WIDZ out of the "proof-of-concept" phase and into use. At this humorous
website you’ll find the download, articles, and some basic documentation.

1.3.2 - Why WIDZ
Although WIDZ is far from perfect and may require a lot of customization, WIDZ
does have some features that can enhance an organization’s IDS strategies.
WIDZ is capable of alerting to the presence of rogue/unauthorized APs and
unauthorized clients, and alerting to SSID probing (i.e. Net Stumbler, Kismet).

1.3.3 - WIDZ HOWTO
Like most open source, WIDZ can be built on different platforms; however,
documentation is scarce. This HOWTO will guide you through building WIDZ on
Red Hat 9.0 with an Orinoco Gold Card. The creator of WIDZ built it on
Mandrake Linux. At the moment there is very little documentation for WIDZ. The
first hurdle to overcome is getting a wireless card to operate in monitor mode.
Some cards come with drivers that don’t support promiscuous sniffing.
Fortunately, having experience with AirSnort, Kismet, and the like, I’ve already
become familiar with the related driver issues. The second minor hurdle is to get
his GUI (Graphical User Interface) to run on your GUI (Mandrake vs. Red Hat).
This issue is easily fixed by substituting his gmessage entries with xmessage.
Upon getting through these two issues, I found that WIDZ was fairly easy to use
and configure. Ok, so let’s start.

1.3.4 - How I Built WIDZ
1.3.4.1 - WIDZ: Hardware Requirements

a. Pentium Based PC (I used a Dell Inspiron 1100 laptop)
b. Orinoco Gold (Agere Systems)

-Other cards may work as well. AirSnort and WIDZ have the
same monitor mode requirements so an excellent resource
for getting various cards to work in monitor mode
(promiscuous) mode can be found at
http://airsnort.shmoo.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

1.3.4.2 - WIDZ: Need to Download to /root/
a. David Gibson’s Orinoco Drivers v13e (latest drivers)

http://ozlabs.org/people/dgibson/dldwd/orinoco-0.13e.tar.gz
b. Patch for v13e Drivers (to support monitor mode)

http://airsnort.shmoo.com/orinoco-0.13e-patch.diff
-from your browser do a save as to download it

c. WIDZ v1.8
http://www.loud-fat-bloke.co.uk/tools/widzv1.8.zip

d. libpcap
http://www.tcpdump.org/daily/libpcap-current.tar.gz

1.3.4.3 - Red Hat 9.0
Let’s assume that you already have Red Hat 9.0 Installed. If you don’t,

there is plenty of install documentation that can be found at www.redhat.com .
You can run WIDZ on both server and client installation types. If you’re going
to run WIDZ in a GUI, you’ll need X Windows and Gnome Desktop. In “Add-
Remove-Packages” you might want to have the following installed: X
Windows, Gnome Desktop, Editors, Graphical Internet, and Development
Tools. To add items simply check the checkboxes and click update when
done.

1.3.4.4 - Install Orinoco Drivers
If you haven’t gotten your Orinoco card working with the factory drivers, be

sure to do that first. Kudzu should detect it upon a reboot and install the
factory drivers automatically.

Once this is done, we’ll need to download the drivers and the patch.
Important: Download both of these to the /root/ directory. The patch will show
up in your browser window. To download it, go to “File” and select “Save As”,
then specify the /root directory:
Drivers: http://ozlabs.org/people/dgibson/dldwd/orinoco-0.13e.tar.gz
Patch: http://airsnort.shmoo.com/orinoco-0.13e-patch.diff

Install the Orinoco drivers AS ROOT:
cd /root
tar–zxf orinoco-0.13e.tar.gz
patch–p0 < orinoco-0.13e-patch.diff

This is what you should see:
patching file orinoco-0.13e/hermes.c
patching file orinoco-0.13e/hermes.h
patching file orinoco-0.13e/orinoco.c
patching file orinoco-0.13e/orinoco.h

cd orinoco-0.13e

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

make
make install

Now well need to overwrite the old driver files with the new ones, but before
we do that, let’s back up the old drivers. I backed them up to the /root
directory because backing them up in the /lib/modules could cause the old
drivers to be loaded. Between and not including the brackets is where you’d
insert your kernel version (i.e. mine is 2.4.20-19.9):
cd /lib/modules/[kernel version]/kernel/drivers/net/
mv wireless /root
mkdir wireless
cp–fv /root/orinoco-0.13e/* wireless
reboot

Now once you’ve rebooted, let’s test the drivers:
dmesg | more
In the output, about halfway down, you should see some lines which look
similar to this:
orinoco.c 0.13e (David Gibson hermes@gibson.dropbear.id.au> and others)
orinoco_cs.c (David Gibson hermes@gibson.dropbear.id.au> and others)

Also a few lines down you should be able to see you firmware version. Note-
you firmware version doesn’t have to be 6.16, most versions should work fine:
eth0: Looks like a Lucent/Agere firmware version 6.16

Next, we’ll want to test for the presence of monitor mode in ioctl, In the output
you should see a line for monitor:
iwpriv eth0 (note: substitute eth0 with what your wireless card is)

1.3.4.5 - Install libpcap (if you don’t have it already)
Go to http://www.tcpdump.org/daily/libpcap-current.tar.gz and download it

to /root/ then:
cd /root
tar–zxf libpcap-current.tar.gz
ls (jot down what the tar archive was extracted as)
cd [substitute name of extracted directory]
./configure
make
make install

1.3.4.6 - Install WIDZ v1.8
Go to http://www.loud-fat-bloke.co.uk/tools/widzv1.8.zip and save it to

/root/. Next, uncompress and extract it like this:
cd /root
unzip widzv1.8.zip
mkdir widz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

cd widz
tar–zxf /root/widzv1.8.tgz

1.3.4.7 - Configuring WIDZ with the Correct Interface
Now let’s configure WIDS. To start, the scripts all reference wlan0 as the
interface to sniff on; however, this can vary (i.e. mine is eth0). Use whatever your
wireless interface is (use the ifconfig command to find out). The proper way to fix
this problem would be to use a variable for this; however, I simply did a search
and replace for every occurrence of wlan0 to be replaced with eth0. To do this
you’ll need to edit the startprobemon and startapmon file using vi to give this vi
command:
:g/wlan0/s//eth0/g

1.3.4.8 - Gmessage vs. Xmessage
After installing and configuring WIDZ, I launched WIDZ with ./startprobemon and
was greeted by Mark’s smirky face in the GUI and two buttons: one for probemon
and one for the other module apmon. Upon clicking anywhere on the screen, it
went directly into probemon logging mode. The Probemon GUI doesn’t really
have much purpose anyways, so I didn’t go to a great deal of effort to try to fix
the issue. To disable the GUI, I hashed out the “xwud –in lfb” entry in the
startprobemon file (command prompts rule). However, there is yet another GUI
element that may be useful, xmessage pop-up alerts. In the apmon directory
there are two files, Alert and startapmon where you’ll find a reference to a
program called gmessage. You’ll also find gmessage in the startprobemon file
located in the probemon directory. Unfortunately, my Red Hat 9.0 doesn’t have
gmessage. Perhaps this is something standard on Mandrake. I don’t know. To
solve this, I simply changed all of the gmessage entries to xmessage and Voila. It
works beautifully. To fix it, you’ll need to replace the g with an x in the three files
mentioned above.

1.3.4.9 - The > Bug
Another bug I discovered was the use of > as opposed to < in the output
statements found in the Alert files. The Alert files for both probemon and apmon
need to be fixed to echo output to the tty and /dev/console. The redirects should
point to the left. As shown below:

echo $mess < ‘tty’
echo $mess < /dev/console

1.3.4.10 - The Second Argument Bug
This largely depends on the drivers, but in my case to put the card in monitor
mode (promiscuous) requires not one but two private-parameters following the
monitor private-command. The problem is that in startprobemon and
startprobemon, the wireless card is brought into monitor mode with only one
parameter. The solution is to simply add the second parameter to each of these

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

startup files. It should look something like this whereas the second parameter
equals the wireless channel you’re looking to monitor on:

iwpriv eth0 monitor 2 11

1.3.4.11 - Apmon Configuration
Starting with apmon, you’ll need to edit widz-ap.config (a whitelist of authorized
APs). In this file you’ll want to add all of your authorized APs, one AP per line,
giving the ESSID and MAC address for each AP. With this completed, apmon
will alert you to any AP MAC address it discovers that isn’t in that file. Next we’ll
need to set up alerts. Within the Alert file you’ll find canned entries for echoing
output to the console, syslog, sendmail, or snmp. Simply remove the hash for
whatever method you choose for alerting. For example, I wanted to consolidate
this along with my Swatch alerts so I removed the hash for logger and modified
my /etc/ syslog.conf file by adding this line:

Security.notice @loghost

Then I added this to my /etc/hosts file:
1.1.1.1 syslogmaster.fakedomain.com loghost

1.3.4.12 - Probemon Configuration
To configure probemon, you’ll have to decide what features you want to use.
Probemon.conf has four optional features: usesbadmacs, usebadssids,
usegoodmacs, and usescripts. Each of these can be toggled on and off with a y
or n value. Usebadmacs allows you to specify bad MAC addresses. With this
feature enabled, you will receive alerts if the specified bad MAC addresses are
discovered. For example, this could be useful in monitoring the activities of a
suspicious employee. With userbadssids you could put together a list of SSIDs
that will generate an alert if the SSID value is discovered in a frame. For
example you could put default SSIDs in this list, thereby alerting to unconfigured
clients. However, this may generate a lot of false positives. Then there’s
usescripts which will allow you to deploy your own scripts (placed in the scripts
directory) within WIDZ. Lastly, and perhaps the most useful, is usegoodmacs.
Here we’re creating a whitelist of all authorized wireless card MAC addresses. An
Alert will be generated if WIDZ discovers a MAC address on the wireless medium
that doesn’t match one of the entries in this file.

1.3.4.13 - Running WIDZ
WIDZ has two modules and unfortunately they don’t work well together. I was
forced to run either one or the other. Running both at the same time would cause
them to function abnormally. The creator of WIDZ has reported the same kind of
problem. To get them running normally again, you should first kill apmon and
probemon. Then at the command prompt enter the following command to bring
the wireless card out of monitor mode. (Substitute the interface and channel that
applies):

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

iwpriv eth0 monitor 0 11

1.3.4.14 - Orinoco Firmware Links
Should you have any problem with getting into monitor mode (iwpriv eth0), here
are a couple of links for downgrading and upgrading the Orinoco firmware. Note:
These are windows executables and will need to be installed from a Windows
laptop. Also, one thing I discovered is that in order to downgrade firmware you
may need to go all the way back down to 6.06 and then upgrade to the higher
version.

6.06__ftp://ftp.orinocowireless.com/pub/software/ORiNOCO/PC_Card/Firmware/
WSU_606.exe
6.16__ftp://ftp.orinocowireless.com/pub/software/ORiNOCO/PC_Card/Firmware/
R6.4winter2001/WSU_616.exe
7.28__ftp://ftp.orinocowireless.com/pub/software/ORiNOCO/PC_Card/Firmware/
R7.0spring2001/WSU_728.exe
7.52__ftp://ftp.orinocowireless.com/pub/software/ORiNOCO/PC_Card/Firmware/
R7.1summer2001/WSU_752.exe
8.10__ftp://ftp.orinocowireless.com/pub/software/ORiNOCO/PC_Card/Firmware/
R7.4winter2002/WSU_810.exe

1.4.1 - Enter Snort-Wireless
Introduced publicly just in the past year or so, Snort-Wireless for the most part is
still on the drawing board. Andrew Lockhart has hosted a site at www.snort-
wireless.org that contains full downloads and patches which can be applied to
Snort 2.0.x. There is also some good documentation on creating rules with the
WiFi protocol and information about what is currently under development. The
README.wireless document will give you a good indication of the general status
of the development effort.

1.4.2 - Why Snort-Wireless
Snort-Wireless is still in the alpha stages of development and isn’t ready for
large-scale deployments. However, Snort-Wireless has the advantage of being
started on a proven foundation. Snort-Wireless is really just Snort 2.0 with some
preprocessors for the 802.11 protocol and some added rule making capabilities
that allow you to make your own rules based on 802.11 frame analysis. Snort
has a preprocessor for identifying and alerting to Net Stumbler type scans and a
preprocessor for identifying rogue APs and Adhoc networks. Snort-Wireless is
also capable of performing the traditional layer 3-7 analysis in addition to 802.11b
giving you a comprehensive and scalable IDS solution for a wireless LAN.

1.4.3 - Building Snort-Wireless
To install Snort-Wireless, you need a few things: a Red Hat capable PC, a
wireless card and a cursory knowledge of Snort. In this installation I already had
WIDZ installed and configured (as you may have by now) so throughout this
section I’ll often refer to the WIDZ HOWTO for the sake of brevity.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

1.4.4 - How I built Snort-Wireless
The official test configurations from the Snort-Wireless website reference Red
Hat 7.3 and 9.0 with the AirJack and HostAP drivers. I built it with AirJack
v0.6.6balpha on Red Hat 9.0 with an Orinoco Gold Card (Hermes drivers). Note
everything is downloaded, compiled, installed, and run as root. Here is the
download site http://802.11ninja.net/ .

1.4.4.1 - Snort-Wireless Hardware Requirements
a. Pentium Based PC (I used a Dell Inspiron 1100 laptop)
b. Orinoco Gold (Agere Systems)

-Other cards may work as well. AirSnort and Snort-Wireless
have the same monitor mode requirements so an excellent
resource for getting various cards to work in monitor mode
(promiscuous) mode can be found at:
http://airsnort.shmoo.com .

1.4.4.2 - Snort-Wireless: Need to Download to /root/
a. AirJack drivers

http://prdownloads.sourceforge.net/airjack/airjack-v0.6.6b-
alpha.tar.bz2?download
b. PCMCIA Card Services Package

http://prdownloads.sourceforge.net/pcmcia-cs/pcmcia-cs-
3.2.4.tar.gz?download
c. Snort-Wireless 2.0.1-current

http://snort-wireless.org/files/snort-wireless-2.0.1-
current.tar.gz
d. Bzip2 Compression

http://sources.redhat.com/bzip2/
e. libpcap

http://www.tcpdump.org/daily/libpcap-current.tar.gz

1.4.4.3 - Red Hat 9.0
Once again, let’s assume you have this installed. If you don’t, excellent
documentation can be found at www.redhat.com .

1.4.4.4 - Installing Libpcap
If you did the WIDZ HOWTO, then you can skip this section. Otherwise, please

refer to 1.3.5.5 for this task.

1.4.4.5 - Install AirJack Drivers
First we need to download to /root and install bzip2 (compression):
http://sources.redhat.com/bzip2/

Now extract and install bzip2
tar–zxf bzip2-1.0.2.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

cd bzip2-1.0.2
make
make install

Next, download the 3.2.4 pcmcia-cs package to /root:
http://prdownloads.sourceforge.net/pcmcia-cs/pcmcia-cs-3.2.4.tar.gz?download
tar–zxf pcmcia-cs-3.2.4.tar.gz
cd pcmcia-cs-3.2.4
./Configure
Nowyou’ll be prompted for a few things. The first thing you’ll see is:
Linux kernel source directory [usr/src/linux]
Obviously in Red Hat this default is wrong. In Red Hat, this directory will be the
kernel version # that you’re running. For example, my kernel version was 2.4.20-
19.9, so I responded with:
/usr/src/linux-2.4.20-19.9
Now you’ll be prompted with 3 (y/n) questions. Answer y to all of these.
The last prompt is for the install directory. If the default doesn’t show up as
/lib/modules/2.4.20-19.9, then specify it as such.

Now that we’ve configured the pcmcia-cs source we’re done. Note that we don’t
need to do not need to build it because pcmcia is already built into the kernel.
We’re just configuring it so that AirJack can access and use these files when it’s
being built. Ok, so now let’s build AirJack.

First we need to download to /root and install AirJack:
http://prdownloads.sourceforge.net/airjack/airjack-v0.6.6b-
alpha.tar.bz2?download
Now extract and install AirJack
bzip2–d airjack-v0.6b-alpha.tar.bz2
tar–xf airjack-v0.6b-alpha.tar

cd /root/airjack-v0.6.6b-alpha
vi Makefile
now edit this as such: PCMCIADIR=/root/pcmcia-cs-3.2.4/include
make
make install
cp airjack_cs.o /lib/modules/2.4.20-19.9/kernel/drivers/net/wireless

edit /etc/pcmcia/config
and add a section that looks like this:
device “airjack_cs”
class “network” module “airjack_cs”

Now we want to edit the card to driver bindings which can be found in various
files located in /etc/pcmcia. For me this was hermes.conf and if you’ve followed

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

my HOWTO exactly so will yours. You may want to back up the files before doing
this. It is up to you. Here’s what we want to edit in the/etc/pcmcia/hermes.conf
. It should look like this when done. Note: to restore normal functionality you’ll
simply need to unhash the original “bind orinoco_cs” and hash out the “bind
airjack_cs” entry. If you don’t have a hermes.conf, look in the other conf or opt
files for something like this that represents the wireless card:

card “Lucent Technologies WaveLAN/IEEE Adapter”
version “Lucent Technologies”, “WaveLAN/IEEE”
bind “orinoco_cs”
bind “airjack_cs”

When done editing save what you just did and reboot:
reboot
Now let’s see if it works. Type the following and if you see an aj0 interface you’re
good:
#/sbin/ifconfig–a
Now we need to bring up the aj0 interface (Red Hat doesn’t do that for us)
/sbin/ifconfig aj0 up

1.4.4.6 - Installing Snort-Wireless
Go to http://snort-wireless.org/files/snort-wireless-2.0.1-current.tar.gz and
download the latest full version to /root as root. Then open up a shell and as root
and type the following:
cd /root
tar–zxf snort-wireless-2.0.1-current.tar.gz
cd snort-wireless-2.0.1-current.tar.gz
./configure
make
make install

1.4.4.7 - Configuring Snort-Wireless
For those of you familiar with Snort you’ll find that Installing and configuring
Snort-Wireless is not much different. For those not familiar with Snort, the best
way to get up-to-speed with the how and what is to read up on the Snort User’s
Manual found at http://www.snort.org/docs/writing_rules/ .

Here’s a list of the Snort-Wireless components that we’ve added to the Snort
foundation. All of these are activated in snort.conf:
1. include $RULE_PATH/wifi.rules

-the $SNORT_PATH/rules/wifi.rules is where built in 802.11
frame based rules can activated (unhashed) and custom rules can
be written

2. var ACCESS_POINTS [Authorized AP MAC Address (comma separated)]
-this is where you create the list of Authorized APs; example:
var ACCESS_POINTS 1D:EC:AF:C0:FF:EE, 04:DE:AD:C0:DE:00

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

3. var CHANNELS [Authorized Channels (comma separated)
-this is where you specify the channels that correspond with
the above AP entries; example: var CHANNELS 11, 6

4. RogueAP Preprocessor
-alerts to AP MAC addresses that aren’t stated in “var ACCESS_POINTS”

5. AntiStumbler Preprocessor
-alerts to 802.11 probe requests (possible wardriving) that don’t have the
SSID field set

6. 802.11 Rule Engine (not fully functional)
-allows you to create Snort rules using source and destination MAC
addresses and various 802.11 frame fields and flag keywords

1.4.4.8 - Running Snort-Wireless
Snort-Wireless is a bit buggy and still needs a lot of work. I unhashed all of the
WiFi rules present in the wifi.rules just to see how ready they were and upon
executing snort from the src directory (so as not to load my normal Snort install)
with these commands, I received the following output:
cd /root/snort-wireless-2.0.1-current
#./src/snort–c ./etc/snort.conf–I aj0

Warning: /etc/../rules/wifi.rules(69) => Unknown keyword ‘seq_num’ in rule!
Warning: /etc/../rules/wifi.rules(70) => Unknown keyword ‘seq_num’ in rule!
Warning: /etc/../rules/wifi.rules(71) => Unknown keyword ‘frag_num’ in rule!
Warning: /etc/../rules/wifi.rules(72) => Unknown keyword ‘frag_num’ in rule!

Apparently, all of the WiFi rules in the wifi.rules file are hashed out for a reason
and that’s because they’re just not ready yet.

1.5 - WIDZ vs. Snort-Wireless–Current Features Comparison
Given these are both under development, the yes and no are based on what
currently works without intervention. The “Future Plans” vs. “No” classification is
based on what has been formally documented as a future feature under
development.
Feature WIDZ 1.8 Snort-Wireless 2.0.1
Rogue AP Detection (Unauthorized) Yes Yes
Probing Detection (Null SSID field) Yes Yes
Adhoc Network Detection Yes Yes
Syslog and Console Alerting Yes Yes
Unauthorized Client Detection (MAC) Yes See Customizable

Rules (WiFi Protocol)
DoS Attack Detection (Auth Fail, Assoc,
and Deauth Flood, Fatajack, Wireless
Client Attack)

Future Plans Future Plans

Customizable Rules (WiFi Protocol) No Future Plans
Seq # based MAC Spoof Detection No Future Plans
Channel Scanning (Multiple Channels) No Future Plans
WEP Preprocessor (for layer 3 analysis) No Future Plans
Flexible Response (Session Sniping) No Future Plans
ACID Support No Future Plans

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

1.6 - Conclusion and the Future of Wireless Intrusion Detection
In this paper we discussed current 802.11b technologies, insecurities, and
several methods to better secure a wireless network. We discussed the most
common 802.11b vulnerabilities and some methods to better secure a wireless
network. Moreover, the emphasis was on the need for Wireless Intrusion
Detection and we introduced a couple of different open source WIDS systems
that contribute to the progress of Wireless Intrusion Detection as a whole.
Current technologies such as WIDZ and Snort-Wireless are rough around the
edges, yet can still prove to have some value from learning, testing, and
development perspectives. Deploying Wireless IDS systems such as WIDZ or
Snort-Wireless in their current form can be very complex and costly for an
organization because each AP will likely require its own Wireless IDS. This is
because a WIDS uses the same 802.11b wireless card with the same range
limitations as that of the AP. A possible solution to this would be for the AP
vendors to include flexible WIDS functionality within the AP itself. Adding IDS
functionality may require a little extra memory and processing power; however, it
could give those vendors a competitive advantage to enterprise customers.
Regardless of what AP features come about, I would expect that a stable open-
source standard will emerge in the coming years and Snort-Wireless is likely to
be that standard. After all, it’s really just Snort with a couple of added
preprocessors and a new "WiFi" rules protocol. The foundation of Snort is
proven and with the Snort community behind it, Snort-Wireless will likely have the
development contributions necessary to make it yet another, great IDS.

1.7 - References

WIDZ:
1Mark Osbourne. Author of WIDZ
URL: www.loud-fat-bloke.co.uk (Dec 6, 2003)

Snort Wireless:
2Snort.wireless.org. Author Andrew Lockart, Nov 16 2003
URL: www.snort-wireless.org (Dec 6, 2003)

Snort:
3Snort.org T.M. of Sourcefire, Inc. Authors, Brian Caswell and Marty Roesch 2002, 2003
URL: www.snort.org (Dec 6, 2003)

Airsnort:
4Airsnort.shmoo.org, Page hosted by SOurcefire, Website host, snax@shmoo.com
URL: http://airsnort.shmoo.com (Dec 6, 2003)

Airjack Drivers:
5Aijack Drivers. Developed by Robert Baird (aka xx25) and Michael Lynn (aka Abaddon)
URL: http://802.11ninja.net/ (Dec 6, 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

Advanced AP Security Features:
6Cisco Systems, Inc. Copyright © 1992--2002
URL: http://www.cisco.com/warp/public/cc/pd/witc/ao350ap/prodlit/a350w_ov.htm (Dec 6,
2003)

WEP and WEP Algorithm Weaknesses:
7Cisco Systems, Inc. Authors retain rights, Scott Fluhrer, Itsik Mantin, Adi Shamir
URL: http://www.drizzle.com/~aboba/IEEE/rc4_ksaproc.pdf (Dec 6, 2003)

WEP and Advanced Attacks:
8University of California, Berkley. Authors, Nikita Borisov, Ian Goldberg, and David Wagner
URL: http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html (Dec 6, 2003)

Various Wireless Tools:
9Packet Storm. 2003
URL: http://packetstormsecurity.nl/wireless/ (Dec 6, 2003)

2.0 - Three Network Detects

The three detects that I analyzed for this assignment were 2002.9.9, 2002.8.23,
and 2002.9.15. All three attacks were taken from the incidents.org raw log files
located at http://www/incidents.org/logs/Raw1.

2.1 - Detect 1, IIS _vti_inf.html and _vti_rpc Access

2.1.1 - Source of Trace:
This trace comes from the raw logs at http://www.incidents.org/logs/Raw/1 .
download file: 2002.9.9

2.1.2 - Detect Generated By: Snort v.1.8.6

The signatures that generated the relevant alerts follow:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS _vti_inf
access";flow:to_server,established; uricontent:"_vti_inf.html"; nocase; classtype:web-application-activity;
sid:990; rev:5;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-FRONTPAGE
_vti_rpc access"; flow:to_server,established; uricontent:"/_vti_rpc"; nocase; reference:bugtraq,2144;
classtype:web-application-activity; sid:937; rev:6;)

The relevant Snort alerts follow:
[**] [1:990:2] WEB-IIS _vti_inf access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-07:07:31.926507 67.96.81.242:1135 -> 32.245.166.119:80
TCP TTL:118 TOS:0x0 ID:45381 IpLen:20 DgmLen:304 DF
AP Seq: 0xD8FB6E79 Ack: 0x721A4106 Win: 0x2238 TcpLen: 20

[**] [1:937:3] WEB-FRONTPAGE _vti_rpc access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-07:07:33.126507 67.96.81.242:1135 -> 32.245.166.119:80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

TCP TTL:118 TOS:0x0 ID:2118 IpLen:20 DgmLen:438 DF
AP Seq: 0xD8FB6F81 Ack: 0x721A5168 Win: 0x1D3E TcpLen: 20
[Xref => http://www.securityfocus.com/bid/2144]

[**] [1:990:2] WEB-IIS _vti_inf access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-07:10:31.976507 67.96.81.242:1558 -> 32.245.166.119:80
TCP TTL:118 TOS:0x0 ID:52321 IpLen:20 DgmLen:304 DF
AP Seq: 0xDD97B728 Ack: 0x7D4775F4 Win: 0x2238 TcpLen: 20

[**] [1:937:3] WEB-FRONTPAGE _vti_rpc access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-07:10:33.306507 67.96.81.242:1558 -> 32.245.166.119:80
TCP TTL:118 TOS:0x0 ID:62817 IpLen:20 DgmLen:438 DF
AP Seq: 0xDD97B830 Ack: 0x7D478656 Win: 0x1D3E TcpLen: 20
[Xref => http://www.securityfocus.com/bid/2144]

[**] [1:990:2] WEB-IIS _vti_inf access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-10:35:28.226507 64.174.39.98:1492 -> 32.245.166.119:80
TCP TTL:110 TOS:0x0 ID:5034 IpLen:20 DgmLen:305 DF
AP Seq: 0x12C25AC8 Ack: 0x83C1600F Win: 0x4470 TcpLen: 20

[**] [1:937:3] WEB-FRONTPAGE _vti_rpc access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-10:35:36.686507 64.174.39.98:1502 -> 32.245.166.119:80
TCP TTL:110 TOS:0x0 ID:5085 IpLen:20 DgmLen:430 DF
AP Seq: 0x12F7527D Ack: 0x84869255 Win: 0x4470 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/2144]

[**] [1:990:2] WEB-IIS _vti_inf access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-10:38:41.806507 64.174.39.98:1824 -> 32.245.166.119:80
TCP TTL:110 TOS:0x0 ID:9018 IpLen:20 DgmLen:69 DF
AP Seq: 0x17230B01 Ack: 0x8FC4BA6E Win: 0x4470 TcpLen: 20

[**] [1:937:3] WEB-FRONTPAGE _vti_rpc access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-10:38:45.706507 64.174.39.98:1826 -> 32.245.166.119:80
TCP TTL:110 TOS:0x0 ID:9046 IpLen:20 DgmLen:84 DF
AP Seq: 0x1732E74E Ack: 0x903D1AA1 Win: 0x4470 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/2144]

[**] [1:990:2] WEB-IIS _vti_inf access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-10:39:51.396507 64.174.39.98:1900 -> 32.245.166.119:80
TCP TTL:110 TOS:0x0 ID:10050 IpLen:20 DgmLen:305 DF
AP Seq: 0x189B0463 Ack: 0x938F193D Win: 0x4470 TcpLen: 20

[**] [1:937:3] WEB-FRONTPAGE _vti_rpc access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-10:39:52.016507 64.174.39.98:1901 -> 32.245.166.119:80
TCP TTL:110 TOS:0x0 ID:10060 IpLen:20 DgmLen:430 DF
AP Seq: 0x189E1A48 Ack: 0x93B010EF Win: 0x4470 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/2144]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

[**] [1:990:2] WEB-IIS _vti_inf access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-15:26:46.656507 202.18.172.35:25755 -> 32.245.166.119:80
TCP TTL:41 TOS:0x0 ID:15871 IpLen:20 DgmLen:332
AP Seq: 0xEC81D53E Ack: 0xCF5F2EE8 Win: 0x2238 TcpLen: 20

[**] [1:937:3] WEB-FRONTPAGE _vti_rpc access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-15:26:47.776507 202.18.172.35:25769 -> 32.245.166.119:80
TCP TTL:41 TOS:0x0 ID:16400 IpLen:20 DgmLen:431
AP Seq: 0xEC95E3D1 Ack: 0xCF722D10 Win: 0x2238 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/2144]

[**] [1:990:2] WEB-IIS _vti_inf access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-16:20:02.546507 218.17.203.54:38225 -> 32.245.166.119:80
TCP TTL:44 TOS:0x0 ID:47906 IpLen:20 DgmLen:298 DF
AP Seq: 0xFA3E5D2D Ack: 0x9830C2F1 Win: 0x4197 TcpLen: 20

[**] [1:937:3] WEB-FRONTPAGE _vti_rpc access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-16:20:03.386507 218.17.203.54:38226 -> 32.245.166.119:80
TCP TTL:44 TOS:0x0 ID:47916 IpLen:20 DgmLen:423 DF
AP Seq: 0xFA45DDC5 Ack: 0x98EEC58C Win: 0x4410 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/2144]

For the purpose of brevity only one set of detailed logs were included. Note that
all of the source hosts that generated these alerts have logs entries similar to
this:
[**] WEB-IIS _vti_inf access [**]
10/09-07:07:31.926507 67.96.81.242:1135 -> 32.245.166.119:80
TCP TTL:118 TOS:0x0 ID:45381 IpLen:20 DgmLen:304 DF
AP Seq: 0xD8FB6E79 Ack: 0x721A4106 Win: 0x2238 TcpLen: 20
47 45 54 20 2F 5F 76 74 69 5F 69 6E 66 2E 68 74 GET /_vti_inf.ht
6D 6C 20 48 54 54 50 2F 31 2E 30 0D 0A 56 69 61 ml HTTP/1.0..Via
3A 20 31 2E 30 20 6D 61 69 6E 0D 0A 43 6F 6E 6E : 1.0 main..Conn
65 63 74 69 6F 6E 3A 20 4B 65 65 70 2D 41 6C 69 ection: Keep-Ali
76 65 0D 0A 43 6F 6E 74 65 6E 74 2D 4C 65 6E 67 ve..Content-Leng
74 68 3A 20 30 0D 0A 55 73 65 72 2D 41 67 65 6E th: 0..User-Agen
74 3A 20 4D 6F 7A 69 6C 6C 61 2F 32 2E 30 20 28 t: Mozilla/2.0 (
63 6F 6D 70 61 74 69 62 6C 65 3B 20 4D 53 20 46 compatible; MS F
72 6F 6E 74 50 61 67 65 20 34 2E 30 29 0D 0A 48 rontPage 4.0)..H
6F 73 74 3A 20 77 77 77 2E 58 58 58 58 58 58 58 ost: www.XXXXXXX
58 0D 0A 41 63 63 65 70 74 3A 20 2A 2F 2A 2C 61 X..Accept: */*,a
75 74 68 2F 73 69 63 69 6C 79 0D 0A 50 72 61 67 uth/sicily..Prag
6D 61 3A 20 6E 6F 2D 63 61 63 68 65 0D 0A 44 61 ma: no-cache..Da
74 65 3A 20 57 65 64 2C 20 30 39 20 4F 63 74 20 te: Wed, 09 Oct
32 30 30 32 20 31 37 3A 30 35 3A 30 39 20 47 4D 2002 17:05:09 GM
54 0D 0A 4D 49 4D 45 2D 56 65 72 73 69 6F 6E 3A T..MIME-Version:
20 31 2E 30 0D 0A 0D 0A 1.0....

=+

[**] WEB-FRONTPAGE _vti_rpc access [**]
10/09-07:07:33.126507 67.96.81.242:1135 -> 32.245.166.119:80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

TCP TTL:118 TOS:0x0 ID:2118 IpLen:20 DgmLen:438 DF
AP Seq: 0xD8FB6F81 Ack: 0x721A5168 Win: 0x1D3E TcpLen: 20
50 4F 53 54 20 2F 5F 76 74 69 5F 62 69 6E 2F 73 POST /_vti_bin/s
68 74 6D 6C 2E 64 6C 6C 2F 5F 76 74 69 5F 72 70 html.dll/_vti_rp
63 20 48 54 54 50 2F 31 2E 30 0D 0A 56 69 61 3A c HTTP/1.0..Via:
20 31 2E 30 20 6D 61 69 6E 0D 0A 43 6F 6E 6E 65 1.0 main..Conne
63 74 69 6F 6E 3A 20 4B 65 65 70 2D 41 6C 69 76 ction: Keep-Aliv
65 0D 0A 43 6F 6E 74 65 6E 74 2D 4C 65 6E 67 74 e..Content-Lengt
68 3A 20 34 31 0D 0A 55 73 65 72 2D 41 67 65 6E h: 41..User-Agen
74 3A 20 4D 53 46 72 6F 6E 74 50 61 67 65 2F 34 t: MSFrontPage/4
2E 30 0D 0A 43 6F 6E 74 65 6E 74 2D 54 79 70 65 .0..Content-Type
3A 20 61 70 70 6C 69 63 61 74 69 6F 6E 2F 78 2D : application/x-
77 77 77 2D 66 6F 72 6D 2D 75 72 6C 65 6E 63 6F www-form-urlenco
64 65 64 0D 0A 48 6F 73 74 3A 20 77 77 77 2E 58 ded..Host: www.X
58 58 58 58 58 58 58 0D 0A 41 63 63 65 70 74 3A XXXXXXX..Accept:
20 61 75 74 68 2F 73 69 63 69 6C 79 0D 0A 50 72 auth/sicily..Pr
61 67 6D 61 3A 20 6E 6F 2D 63 61 63 68 65 0D 0A agma: no-cache..
44 61 74 65 3A 20 57 65 64 2C 20 30 39 20 4F 63 Date: Wed, 09 Oc
74 20 32 30 30 32 20 31 37 3A 30 35 3A 31 31 20 t 2002 17:05:11
47 4D 54 0D 0A 4D 49 4D 45 2D 56 65 72 73 69 6F GMT..MIME-Versio
6E 3A 20 31 2E 30 0D 0A 58 2D 56 65 72 6D 65 65 n: 1.0..X-Vermee
72 2D 43 6F 6E 74 65 6E 74 2D 54 79 70 65 3A 20 r-Content-Type:
61 70 70 6C 69 63 61 74 69 6F 6E 2F 78 2D 77 77 application/x-ww
77 2D 66 6F 72 6D 2D 75 72 6C 65 6E 63 6F 64 65 w-form-urlencode
64 0D 0A 0D 0A 6D 65 74 68 6F 64 3D 73 65 72 76 d....method=serv
65 72 2B 76 65 72 73 69 6F 6E 25 33 61 34 25 32 er+version%3a4%2
65 30 25 32 65 32 25 32 65 32 36 31 31 0A e0%2e2%2e2611.

=+

2.1.3 - Probability the Source Address Was Spoofed
It’s unlikely that the source address was spoofed given that this is an attempt to
gather information from the web server and in order to be successful, the
response has to be routed back to the source host. It is entirely possible that an
attacker could source route the packet; however, in these traces, the IP length is
20 bytes which means that it doesn’t have any IP options. Thus, no source
routing was performed.

2.1.4 - Description of Attack
Microsoft IIS ships with FrontPage Server Extensions (FPSE) which gives the
administrator the capability of remotely uploading web content to the IIS server.
At first glance it appears that someone could be attempting an information
gathering attempt on the IIS server. However, this activity could be quite normal
as it is the default behavior of FPSE client to server communication. In the
process of uploading new content the FrontPage client will try to retrieve the
FPSE version and path information from the server (e.g. GET
http://www.fakedomain.com/_vti_inf.html) and upon receiving the _vti_inf.html file
the FrontPage client will upload the new content to (e.g. POST
http://www.fakedomain.com/_vti_bin/shtml.exe/_vti_rpc) the server.

With a default installation of FrontPage, it’s quite easy for an attacker to retrieve

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

this information just as the FrontPage client does. The attacker would simply
enter the URL into a browser and if no security mechanisms are in place, the
attacker would have attained valuable information including the version of the
FPSE and path information as to where they’re located. Knowing this information
allows an attacker to focus his/her efforts in the next phase of attack, attempting
to exploit specific vulnerabilities (i.e. worms, buffer overflows) in old and
unpatched versions of FrontPage.

2.1.5 - Attack Mechanism
In a browser or within code the attacker crafts a URL that requests the
_vti_inf.html file which is typically located in c:\inetpub\wwwroot\ on the target
host. The URL would look something like this:

GET http://www.fakedomain.com/_vti_inf.html

This file contains the version of the FrontPage extensions and the paths to which
they’re located.

2.1.6 - Correlations
http://www.securityfocus.com/bid/2144/info/2

2.1.7 - Evidence of Active Targeting:
It does appear that this web server is being actively targeted as no other target
hosts were sent these packets (according to the log data). Moreover, four
different source hosts (67.96.81.242, 64.174.39.98, 202.18.172.35, and
218.17.203.54) from different subnets attempted to access _vti_inf.html and the
_vti_rpc binary. It is entirely possible that these were legitimate administrators
trying to publish web content from remote locations. However, if this was
legitimate FrontPage client/server communication you would typically expect to
see a response from the server before the client attempted to publish data. The
following is a chronology of normal FrontPage client server communication:

1. FrontPage client requests (GET) http://www.fakedomain.com/_vti_inf.html
2. FrontPage server responds with the contents of the _vti_inf.html
3. FrontPage client uploads (POST) to

http://www.fakedomain.com/_vti_bin/shtml.exe/_vti_rpc

--
The following 4 lines were amended after incidents.org mailing list posting to
make my point clear that:
I searched the log files for using this command (please see posting discussion
below):
> > > # tcpdump -r 2002.9.9 src host 32.245.166.119
> > > #
As you can see, 32.245.166.119 isn’t the src host in ANY of the logs, thus it’s
likely that the suspected target host doesn’t exist.

The log files seem to be inconsistent as we are missing step 2.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

All we see are the two requests (step 1 and 3).This doesn’t fit the pattern of a
legitimate connection nor does it completely fit the profile of a well known attack.
Bugtraq 2144 (http://www.securityfocus.com/bid/2144/info/2) does note a failure
to handle exceptional conditions (DoS attack vulnerable), however there are no
known exploits (at the time of writing). Searching for _vti_rpc exploits with Google
and the like leads me to the same conclusion. For the record, there are a
plethora of FPSE vulnerabilities but none can be found referencing _vti_rpc
specifically. Perhaps the attacker wrote an exploit; however, you would expect to
see a lot more traffic than this. A more accurate analysis could be made with
information regarding the topology of the network and more complete logs.

2.1.8 - Severity
Severity=2
The formula to derive this number: (Criticality + Lethality)–(System

Countermeasures + Network Countermeasures).

Criticality=2
Based on the logs the targeted host could be a web server and as such would be
fall under the critical server’s category. However, if this were a vital web server
you would expect to see legitimate traffic to port 80 and there isn’t any indication
of that in the logs, maybe the server doesn’t even exist. Given that the logs do
not show a lot of traffic at all to the target host I can’t rank it highly andtherefore
give it a 2.

Lethality=3
If an intended attack succeeded against the _vti_inf.html, the damage would be
moderate as the attacker would have simply gained knowledge of the FrontPage
server extensions. If an intended attack succeeded against the _vti_rpc, it would
mean that a new exploit was introduced and possible consequences could be
root compromise, or a DoS attack although these have not been defined on
Bugtraq or other various security websites. Without knowing more about the
target host, it’s difficult to ascertain the vulnerability of the target host. However, if
in a worst-case-scenario these potential exploits could lead to full-compromise of
a critical web server. I have to give it a 3.

System Countermeasures=3
According to the logs it doesn’t appear as if the target host responded to this
attempt to retrieve the _vti_inf.html file. Therefore, I would venture to guess that
the target host either isn’t running a web-server, isn’t vulnerable, doesn’t exist, or
that the logs aren’t complete.

Network Countermeasures=1
It is possible that a firewall with application intelligence could filter this particular
traffic signature; however, this doesn’t appear to be the case because the
incoming _vti_inf.html GET request to the target host wasn’tfiltered before
reaching what is assumed to be an internal IDS.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

2.1.9 Defensive Recommendations
Unfortunately, a traditional stateful firewall wouldn’t do much good at blocking
this type of traffic because you typically can not block incoming connections to
port 80 on your public web server for obvious reasons. The best defense is to
simply uninstall the FrontPage server extensions. Moving new content to the
server via sneaker net (i.e. a Burned CD) or other means would be the most
secure method of moving new content to the IIS server. A second and more
realistic defense is to keep the server patched with the latest IIS and FPSE
patches located at Microsoft’s website. A third possible defense is to implement
an application intelligent Firewall (i.e. CheckPoint NG with Application
Intelligence) which is capable of signature based content filtering (it has its
limitations) at the application layer. Here are links to the patches.

Microsoft IIS 4.0:
Microsoft Patch Q280322

http://download.microsoft.com/download/winntsrv40/Patch/q280322/NT4/EN-US/Q280322i.EXE
3

Microsoft IIS 5.0:
Microsoft Patch Q280322
http://download.microsoft.com/download/win2000platform/Patch/q280322/NT5/EN-

US/Q280322_W2K_SP2_x86_en.EXE
3

2.1.10 - Multiple Choice Test Question
The _vti_inf.html file contains:

a. The version of the FrontPage extensions
b. The path to the FrontPage extensions
c. The actual web content
d. a and b

2.1.11–Posting and Feedback:
My Detect Analysis was posted to intrusions@incidents.org on Dec. 4th, 2003
Here’s a response to my post:

Hello Brian,
Indeed, it has been very helpful. I realize that I could have
clarified my conclusions a little bit better and will be adding an
addendum to the analysis with some of the points we’ve discussed. I
appreciate your feedback and your time. It’s always good to receive
feedback from your peers. Take care.
Kind Regards,
Ryan Rathe

Thank you for the discussion. I believe that you have clarified your
response
very adequately.
I hope that this has been helpful to you.
Good luck with you submission, I am sure you will do well.
Thank You,
Brian A Kee

On Thursday 04 December 2003 02:12 pm, you wrote:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

> Hello Brian,
> Please see my comments inline.
> Kind Regards,
> Ryan
>
> From: Brian A Kee <bkee@lurhq.com>
>
> >To: "Ryan Rathe" <ryanrathe777@hotmail.com>
> >Subject: Re: LOGS: GIAC GCIA Version 3.4 Practical Detect Ryan Rathe
> >Date: Thu, 4 Dec 2003 12:24:03 -0600
> >
Brian: It does not look like you are mistaken. I am curious about a few
things though.
> >
Brian: 1. The packets have the Ack and Push flags set. This usually
indicates that an 3-way handshake has been completed. In which case we
should see a "normal" response from the server.
>
Ryan: I know this. But the point is that there is no normal response,
no response at all. That's the main point I was trying to make, that
this doesn't fit the pattern of normal nor malicious intent. If
anything this potential FPSE server simply doesn't exist (hence no
traffic from 32.245.166.119). Maybe I should be more persistent about
that point in my analysis.
>
Brian: 2. If they were crafted packets, then we should expect to see a
TCP Reset from the server to the client.
>
Ryan: Once again, I realize this, the point is that there is NO traffic
from 32.245.166.119, no SYN/ACKS, no RESETS. When I said no response
in my analysis I should have been clearer. I will be sure to revise
the wording.
>
Brian: 3. Another option, would really be that the packets were
filtered before they got to the specified host. In this case, we may
not see any return traffic.
>
Ryan: I'm not sure I understand your 3rd point. But I have considered
many of the filtering possibilities. Let me explain my theories on why
this is unprobable. And it does relate to the 3way handshake, this is
a point I could add to my analysis, but then it all gets back to the
point that there is no response from 32.245.166.119. First of all
these are ACK/PUSH packets, the 3rd step in the 3-way handshake. It is
possible that the SYN from the remote host got filtered, but if that
happened no SYN/ACK would be sent from 32.244.166.199 (and it wasn't)
and no ACK/PSH would be sent by the remote host. How would step 3 occur
without 1 and 2? It could be some sort of an ACK scan (wanting a RESET)
but what good would that do the attacker? also only one host was
targeted (mentioned in analysis).
>
Brian: One point I am trying to make, is that there are some things
that you did not address in the analysis. Although, we may never know
really what happened without more information from the environment, I
think that it is prudent to discuss (or at least comment on) the
options in these cases.
> >

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

Brian: Another point is that the analysis did not cover what we might
expect to
> >see
Brian: if these were "real" attacks/attempts against a vulnerable
system. This information could be useful to you in the future if you
see these attempts again. To state this in a questions:
Brian: How can you expect to understand this as an attack if you do not
know the posible response patterns?
>
Ryan: Oh but the analysis did cover what one might expect to see in a
"real" attack/attempt against a vulnerable system. I clearly stated
that this it is a simple recon where the attacker does a GET on the
_vti_inf file and in step 2. as outlined in the FPSE client/server
communication example the server send the client the content of the
_vti_inf file, hence the version and path information to the front page
extensions. There are a plethora of attacks that can be implemented
with that information. This is not about those attacks, this is about
a simple recon attack. I do understand this attack and the response
patterns and what I stated..."This doesn’t fit the pattern of a
legitimate connection nor does it completely fit the profile
> of a well known attack." says it all.
>
> >or
> >
Brian: If you saw this traffic pattern again, how would you determine
if it was successful?
>
Ryan: If I saw this traffic pattern again I would most likely have more
complete logs and/or topology information. But If I saw this exact
same information I would conclude the same things.
> >--
> >Thank You,
> >
> >Brian A. Kee
> >
> >On Wednesday 03 December 2003 09:39 pm, you wrote:
> > > Brian,
Ryan: Thanks for the feedback. But if I'm not mistaken (and maybe I
am) the potential web server 32.245.166.119 didn't respond as there are
no logs in 2002.9.9 with 32.245.166.119 as a source, none at all
(strange). I used tcpdump to check this. Here following is the output
of both src and dst filters: Thanks again for your response.
> > > Kind Regards,
> > > Ryan
> > >
> > > # tcpdump -r 2002.9.9 src host 32.245.166.119
> > > #
> > > # tcpdump -r 2002.9.9 dst host 32.245.166.119
> > > 05:49:08.606507 203.135.23.100.44240 > 32.245.166.119.http: P
> > > 1233193047:1233194099(1052) ack 3637481141 win 31856 [tos
> > > 0x10]05:51:26.926507 p508639DC.dip.t-dialin.net.63350 >
> > > 32.245.166.119.http: P 34507112:34507950(838) ack 1383143189 win
8472
> > > (DF)07:07:31.926507 67.96.81.242.1135 > 32.245.166.119.http: P
> > > 3640356473:3640356737(264) ack 1914323206 win 8760 (DF)
> > > 07:07:33.126507 67.96.81.242.1135 > 32.245.166.119.http: P
264:662(398)ack

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

> >
> > > 4195 win 7486 (DF)
> > > 07:10:31.976507 67.96.81.242.1558 > 32.245.166.119.http: P
> > > 3717707560:3717707824(264) ack 2101835252 win 8760 (DF)
> > > 07:10:33.306507 67.96.81.242.1558 > 32.245.166.119.http: P
264:662(398)ack
> >
> > > 4195 win 7486 (DF)
> > > 08:17:26.256507 203.252.131.140.1569 > 32.245.166.119.http: P
> > > 2053849798:2053851262(1464) ack 468932805 win 32120 [tos 0x10]
> > > 08:48:45.936507 142.176.39.74.1653 > 32.245.166.119.http: P
> > > 170831026:170831282(256) ack 4038834395 win 64860 (DF)
> > > 10:35:28.226507 64.174.39.98.1492 > 32.245.166.119.http: P
> > > 314727112:314727377(265) ack 2210488335 win 17520 (DF)
> > > 10:35:36.686507 64.174.39.98.1502 > 32.245.166.119.http: P
> > > 318198397:318198787(390) ack 2223411797 win 17520 (DF)
> > > 10:38:41.806507 64.174.39.98.1824 > 32.245.166.119.http: P
> > > 388172545:388172574(29) ack 2412034670 win 17520 (DF)
> > > 10:38:45.706507 64.174.39.98.1826 > 32.245.166.119.http: P
> > > 389211982:389212026(44) ack 2419923617 win 17520 (DF)
> > > 10:39:51.396507 64.174.39.98.1900 > 32.245.166.119.http: P
> > > 412812387:412812652(265) ack 2475628861 win 17520 (DF)
> > > 10:39:52.016507 64.174.39.98.1901 > 32.245.166.119.http: P
> > > 413014600:413014990(390) ack 2477789423 win 17520 (DF)
> > > 11:38:29.926507 200.30.148.202.4355 > 32.245.166.119.http: P
> > > 179152360:179152643(283) ack 1904849999 win 8760 (DF)
> > > 11:38:29.956507 200.30.148.202.4356 > 32.245.166.119.http: P
> > > 179152377:179152660(283) ack 1906844228 win 8760 (DF)
> > > 11:38:29.966507 200.30.148.202.4357 > 32.245.166.119.http: P
> > > 179152394:179152675(281) ack 1910808764 win 8760 (DF)
> > > 11:38:29.976507 200.30.148.202.4358 > 32.245.166.119.http: P
> > > 179152405:179152686(281) ack 1898948717 win 8760 (DF)
> > > 13:07:30.326507 64.158.230.19.3740 > 32.245.166.119.http: P
> > > 2722792405:2722792718(313) ack 3250247911 win 8760 (DF)
> > > 15:26:46.656507 202.18.172.35.25755 > 32.245.166.119.http: P
> > > 3967931710:3967932002(292) ack 3479121640 win 8760
> > > 15:26:47.776507 202.18.172.35.25769 > 32.245.166.119.http: P
> > > 3969246161:3969246552(391) ack 3480366352 win 8760
> > > 16:20:02.546507 218.17.203.54.38225 > 32.245.166.119.http: P
> > > 4198391085:4198391343(258) ack 2553332465 win 16791 (DF)
> > > 16:20:03.386507 218.17.203.54.38226 > 32.245.166.119.http: P
> > > 4198882757:4198883140(383) ack 2565784972 win 17424 (DF)
> > > 17:58:31.156507 24.92.90.200.3324 > 32.245.166.119.http: P
> > > 230457770:230457859(89) ack 214922242 win 8760 (DF)
> > > 18:14:27.706507 4.60.2.72.3246 > 32.245.166.119.http: P
> > > 65641141:65641397(256) ack 1205281352 win 64240 (DF)
--
Thank You,

Brian A. Kee
Regional Secure Operations Manager
LURHQ Corporation
(630) 371-4700

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

2.2 - Detect 2, Nmap Xmas Scan

2.2.1 - Source of Trace:
This trace comes from the raw logs at
http://www.incidents.org/logs/Raw/2002.8.231

2.2.2 - Detect Generated By: Snort v.1.8.6

The relevant Snort alerts follow:
[**] [100:1:1] spp_portscan: PORTSCAN DETECTED to port 601 from 115.74.249.65 (STEALTH) [**]
11/17-22:41:44.599940

[**] [1:1228:1] SCAN NMAP XMAS [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/23-14:38:46.316507 115.74.249.65:61621 -> 198.61.16.19:601
TCP TTL:50 TOS:0x0 ID:55961 IpLen:20 DgmLen:60
U*PF Seq: 0x417A1598 Ack: 0x0 Win: 0x800 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => http://www.whitehats.com/info/IDS30]

[**] [1:1228:1] SCAN NMAP XMAS [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/23-14:38:49.836507 115.74.249.65:61621 -> 198.61.16.19:601
TCP TTL:50 TOS:0x0 ID:31462 IpLen:20 DgmLen:60
U*PF Seq: 0x417A1598 Ack: 0x0 Win: 0x800 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => http://www.whitehats.com/info/IDS30]

[**] [100:2:1] spp_portscan: portscan status from 115.74.249.65: 1 connections across 1 hosts: TCP(1),
UDP(0) STEALTH [**]
11/17-22:41:44.601354

[**] [1:1228:1] SCAN NMAP XMAS [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/23-14:38:54.356507 115.74.249.65:61621 -> 198.61.16.19:601
TCP TTL:50 TOS:0x0 ID:6909 IpLen:20 DgmLen:60
U*PF Seq: 0x4AC38CDD Ack: 0x0 Win: 0x800 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => http://www.whitehats.com/info/IDS30]

[**] [1:1228:1] SCAN NMAP XMAS [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/23-14:38:56.776507 115.74.249.65:61621 -> 198.61.16.19:601
TCP TTL:50 TOS:0x0 ID:65279 IpLen:20 DgmLen:60
U*PF Seq: 0xD53E5D5B Ack: 0x0 Win: 0x800 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => http://www.whitehats.com/info/IDS30]

[**] [100:2:1] spp_portscan: portscan status from 115.74.249.65: 1 connections across 1 hosts: TCP(1),
UDP(0) STEALTH [**]
11/17-22:41:44.602546

[**] [1:1228:1] SCAN NMAP XMAS [**]
[Classification: Attempted Information Leak] [Priority: 2]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

09/23-14:39:00.136507 115.74.249.65:61621 -> 198.61.16.19:601
TCP TTL:50 TOS:0x0 ID:27625 IpLen:20 DgmLen:60
U*PF Seq: 0xD53E5D5B Ack: 0x0 Win: 0x800 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => http://www.whitehats.com/info/IDS30]

For the purpose of brevity only one detailed log was included. Note- all of the
source hosts that generated these alerts have logs entries similar to this:
[**] SCAN NMAP XMAS [**]
09/23-14:38:46.316507 115.74.249.65:61621 -> 198.61.16.19:601
TCP TTL:50 TOS:0x0 ID:55961 IpLen:20 DgmLen:60
U*PF Seq: 0x417A1598 Ack: 0x0 Win: 0x800 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

=+

tcpdump -r 2002.8.23 src 198.61.16.19 and dst 115.74.249.65
Note- This was done to verify whether or not any reset packets were sent from
the target host (198.61.16.19) back to the attacker (115.74.249.65).

2.2.3 - Probability the Source Address Was Spoofed
It’s unlikely that the source address was spoofed given that these packets aim at
soliciting a response from the target host for the purposes of OS (Operation
System) fingerprinting and inversely identifying closed ports. Unless the packets
were source routed, the responses would not be routed back to the attacker.
Thus, the attacker would achieve nothing by spoofing the source. Lastly, the
source address was not spoofed as there are no IP options (IpLen=20bytes).

2.2.4 - Description of Attack
The Xmas scan falls into the information gathering phase of an organized attack
plan and functions by sending irregular packets to a target host in the hopes of
receiving unique responses that can help to identify the target host’s listening
ports and OS platform. According to RFC specifications, a closed port should
respond with a RESET while a listening port should not respond at all. Receiving
RESETS in response to Xmas packets allows an attacker to inversely map
listening ports. Here they’re assuming that if it doesn’t respond, it must be
listening. In the case of OS fingerprinting the Xmas packet, typically is
accompanied by other packets (i.e. NULL to open port, ACK to open Port) in an
attempt to gather OS specific information about the target host(s) for the purpose
of narrowing down the scope of vulnerabilities that he/she will scan for in the next
phase. Knowing the OS of the target host allows the attacker to focus his/her
efforts in scanning for vulnerabilities based on OS (i.e. IIS Directory Traversal
Exploit on a Microsoft Server). This saves the attacker time, effort, and reduces
the overall traffic sent to target host(s), thereby reducing the risk of being
discovered.

2.2.5 - Attack Mechanism
The Xmas scan gets its name from the code bits resemblance to that of lights on
a Christmas tree (13th TCP byte offset = |0010|1001|). Looking at the code bits in

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

the 13th byte offset of the TCP header you’ll see that the URG, PSH, and FIN bits
are set. An Xmas packet violates TCP specifications by sending packets with
code bits that aren’t expected at the beginning of a connection (TCP 3-way
handshake) in an attempt to elicit a RESET response from the target host. Xmas
packets are usually generated by a scanning tool such as Nmap and used in
conjunction with other scanning techniques. Various OS TCP stacks will respond
differently to these out-of-spec packets and it’s those inconsistencies that help to
identify the OS of the target host. It’s worth noting that Microsoft 9x, NT, 2K, XP
based systems are not vulnerable to this scan as their TCP stack doesn’t follow
RFC specifications regarding when to send RESETs.

2.2.6 - Correlations
This attack has been well published and my own knowledge and experience
were used in this analysis.

2.2.7 - Evidence of Active Targeting
It appears as if the attacker is actively targeting this particular host given that all
of the Xmas alerts generated reflect a destination IP of 198.61.16.19. If the
attacker were performing an across the board reconnaissance effort, you would
likely see Alerts being generated for the entire subnet (198.61.16.0/24) and not
just 198.61.16.19.

2.2.8 - Severity
Severity=1
The formula to derive this number: (Criticality + Lethality)–(System

Countermeasures + Network Countermeasures)

Criticality=2
Based on the logs the host targeted by this attack doesn’t appear to provide any
critical services.

Lethality=1
If the intended attack succeeded, the damage would be minimal as the attacker
simply gained knowledge that port 601 was closed and possibly some insight into
the target hosts operating system.

System Countermeasures=3
Either the target host was a Microsoft based OS which doesn’t respond to Xmas
scans or port 601 was in fact listening. Given that the target didn’t respond, I
give it a 3 here.

Network Countermeasures=1
A stateful firewall would have prevented these Xmas packets from reaching the
target host. However, it can’t be determined if a firewall was in place.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

2.2.9 - Defensive Recommendations
A stateful firewall such as Cisco PIX or CheckPoint FW1 would provide an
excellent defense against such an attack. A firewall would block this unsolicited
traffic as it would not show an established connection in its state table and
henceforth these scans would be dropped without reaching the intended target
host.

2.2.10 - Multiple Choice Test Question
According to RFC specification what is the expected behavior of a target host
receiving an Xmas packet on a closed port with the URG, PSH, and FIN code
bits set?

a. To not respond and send nothing back to the source host.
b. To send a SYN, ACK packet
c. To send a FIN packet
d. To send a RESET packet

2.3 - Detect 3, SMB C$ Share

2.3.1 - Source of Trace:
This trace comes from the raw logs at
http://www.incidents.org/logs/Raw/2002.9.151

2.3.2 - Detect Generated By: Snort v.1.8.6

Rule that Generated the Alerts:
alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS SMB C$ access";
flow:to_server,established; content: "|5c|C$|00 41 3a 00|";reference:arachnids,339; classtype:attempted-
recon; sid:533; rev:5;)

The relevant Snort alerts follow:
[**] [1:533:1] NETBIOS SMB C access [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/14-20:18:50.406507 211.245.119.235:2095 -> 32.245.166.132:139
TCP TTL:109 TOS:0x0 ID:556 IpLen:20 DgmLen:99 DF
AP Seq: 0x4492E798 Ack: 0xD2082290 Win: 0x446C TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS339]

[**] [1:533:1] NETBIOS SMB C access [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/14-20:37:27.756507 211.99.60.135:2111 -> 32.245.166.132:139
TCP TTL:107 TOS:0x0 ID:316 IpLen:20 DgmLen:99 DF
AP Seq: 0xFFC917 Ack: 0xE293CAE7 Win: 0x221C TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS339]

[**] [1:533:1] NETBIOS SMB C access [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/14-20:49:39.696507 218.155.89.152:1041 -> 32.245.166.132:139
TCP TTL:109 TOS:0x0 ID:678 IpLen:20 DgmLen:99 DF

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

AP Seq: 0x9F934CCD Ack: 0xED6EEE34 Win: 0x431E TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS339]

[**] [1:533:1] NETBIOS SMB C access [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/15-04:38:03.826507 200.155.66.172:1143 -> 32.245.166.132:139
TCP TTL:109 TOS:0x0 ID:25531 IpLen:20 DgmLen:99 DF
AP Seq: 0x7E1C10 Ack: 0x8DC8C162 Win: 0x217C TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS339]

For the purpose of brevity only one detailed log was included. Note- all of the
source hosts that generated these alerts have logs entries similar to this:
[**] NETBIOS SMB C access [**]

10/15-04:38:03.826507 200.155.66.172:1143 -> 32.245.166.132:139
TCP TTL:109 TOS:0x0 ID:25531 IpLen:20 DgmLen:99 DF
AP Seq: 0x7E1C10 Ack: 0x8DC8C162 Win: 0x217C TcpLen: 20
00 00 00 37 FF 53 4D 42 75 00 00 00 00 00 00 00 ...7.SMBu.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 04 FF 00 00 00 00 00 01 00 0C 00 21!
5C 5C 42 32 42 5C 43 00 41 3A 00 \\B2B\C.A:.

=+

2.3.3 - Probability the Source Address Was Spoofed
It is unlikely that an attacker would spoof the source address due to the nature of
this attack. The attacker is attempting to gain SMB access to the default C$
administrative share on a Windows based system. If the source address were
spoofed, the packet would have to be source routed in order for them to receive
the return traffic. Also, the IP Length is 20bytes which doesn’t indicate any IP
options such as source routing.

2.3.4 - Description of Attack
By default Windows systems have default administrative shares using the format
%DRIVE_LETTER% + $. The $ allows the share to be hidden from network
browsing, albeit this doesn’t do much good as the default C$ is commonly
known. For example, an attacker simply has to open up a browser and in the
address bar type \\1.2.3.4\C$ where 1.2.3.4 represents the IP address. From
there the attacker will be prompted for a password and in many cases the
password is either extremely easy to guess or there is no password. With
administrative access to the entire C drive an attacker for the most part “owns”
the machine as they could copy over trojans, root kits or do whatever they like.

2.3.5 - Attack Mechanism
The attacker simply needs a system with a samba (SMB) client and a network
connection. This attack can be performed from the internal network as well as
from the outside depending on the presence of a firewall or filtering router and its
ruleset (block external traffic to internal port 239).

2.3.6 - Correlations
This attack has been well published and my own knowledge and experience

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

were used in this analysis.

2.3.7 - Evidence of Active Targeting
If indeed this isn’t a false positive it does appear that the target host has been
actively targeted by four different source hosts (211.245.119.235, 211.99.60.135,
218.155.89.152, and 200.155.66.172). No other target hosts received external
traffic destined for port 139.

2.3.8 - Severity
Severity=2
The formula to derive this number: (Criticality + Lethality)–(System
Countermeasures + Network Countermeasures)

Criticality:=2
Based on the logs the host targeted by this attack doesn’t appear to provide an
critical services Sorting through the logs it appears that these four traces were
the only communication to or from this target host.

Lethality=4
If the attack were successful it would give the attacker administrative access to
the entire C drive of the target host. This is extremely dangerous as the attacker
could then take additional steps to control the system (i.e. trojan, back doors, and
sniffers). With complete control of this machine the attacker could sniff the
network segment and launch further attacks against other systems thereby
expanding his/her influence into the network.

System Countermeasures=3
Given that the target host (32.245.166.132) didn’t respond in any fashion, I would
venture to say that this was either an ill led attack or a false positive.

Network Countermeasures=1
A firewall or Filtering Router that blocks external hosts from attempting to
communicate with internal hosts at port 139 would prevent this type of
attack/communication from taking place. Being that traffic showed up on what is
assumed to be an internal IDS It would appear that a Firewall or Filtering Router
wasn’t in place.

2.3.9 - Defensive Recommendations
Two things can be done to easily prevent this type of attack. C$ administrative
shares can be disabled. However, this will require a registry edit as Windows
machines will automatically recreate the C$ share upon reboot. For NT.40,W2K,
and W2K3 Server the you would invoke regedit and change this value as shown:

Hive: HKEY_LOCAL_MACHINE
Key: SYSTEM\CurrentControlSet\Services|LanManServer\Paramters
Name: AutoShareServer (Note: for workstations- Name: AutoShareWks)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

Data Type: REG_DWORD
Value: 0

Secondly, the best way to prevent C$ access is to have a Firewall or Filtering
Router that blocks all external network traffic destined for internal systems at port
139. It can be extremely dangerous to have Samba shares open to the outside
world. If samba share access is needed by remote offices, then something such
as a VPN or dedicated connection should be considered.

2.3.10 - Multiple Choice Test Question
Which of the default administrative shares listed could potentially give instant
Samba (SMB) access to an entire drive on Windows systems?

a. FAX$
b. IPC$
c. D$
d. PRINT$

2.4 References

Incidents.org Raw Log Files Analysis:

1Incidents.org
URL: http://www/incidents.org/logs/Raw (Dec 6, 2003)

Detect 1, IIS _vti_inf.html and _vti_rpc Access:

2SecurityFocus. Bugtraq Vulnerability Database
URL: www.securityfocus.com (Dec 6, 2003)

3Microsoft Corp. (2003)
URLs:http://download.microsoft.com/download/winntsrv40/Patch/q280322/NT4
/EN-US/Q280322i.EXE (Dec 6, 2003)
http://download.microsoft.com/download/win2000platform/Patch/q280322/NT
5/EN-US/Q280322_W2K_SP2_x86_en.EXE (Dec 6, 2003)

3.0 - Analyze This

3.1.1 - Introduction
This section is an analysis of five days of Snort generated alert files from “The
University network”. The Snort system in place was running in IDS mode and
collected alerts in fast mode. Scan and OOS (Out-of-Spec) alerts were also
collected and used in the analysis process. Unfortunately, no logging of any kind
was in place and subsequently many of the conclusions made in this document
are based on certain assumptions about the network topology. In this document
assumptions are made as to normal vs. malicious activity based on knowledge of
TCP/UDP ports commonly used by Trojans (and the like) and what is largely
considered to be ‘normal’ activity. Many of these alerts could very well be false

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

positives. An inventory and assessment of the University’s applications and
processes (i.e. custom database application that uses out of the ordinary port
numbers) and their associated port numbers would help in checking the validity
of the Alerts.

First, we'll discuss the scan files, activities that typically indicate that an external
user may be attempting to perform some reconnaissance (information gathering)
work on the University’s internal systems. I'll explain what is actually happening,
cite examples, break down the majority of activity and give possible explanations
based on what we see going on in the scan files. Secondly, well discuss the out-
of-spec (OOS) files. Out-of-spec files are malformed packets that are in violation
of RFC specifications. These packets are typically sent in an information-
gathering attempt to discover live hosts and ports, and to identify the OS platform
that is target host is running. I'll give a brief description of each type of OOS
packet that we received in the five-day period. Lastly, we’ll discuss the alerts,
which are the most useful of the three alert types as they generally are more
specific to the actual event that is taking place and provide the most insight. We’ll
start with a high level overview with a lot of charts and graphs. Then we'll discuss
the most frequent alerts, the most active hosts, and the most dangerous ports
seen within the alerts. Next, we'll go over the most severe internally generated
alerts. This isn't meant to shadow the severity of the externally generated alerts,
which are also important; however, alerts generated by an internal machine
typically are more serious as it commonly means that the internal machine has
already been compromised and can spread the infection internally at a much
greater rate than machines on the outside. Finally, we'll finish up with some
general defensive recommendations and details about the interesting hosts that
were party to some of the more severe alerts.

3.1.2 - Executive Summary
The University has security issues of epidemic proportions. The University
network is in dire need of an in-depth vulnerability assessment, systems audit,
security policies, and security systems deployment. One of the biggest problems
is that of users running P2P and gaming applications. This consumes network
bandwidth and is a liability for the University. Also, it's evident that several
viruses, worms, and Trojan horses have manifested themselves upon the internal
network and are trying to propagate further. Much work needs to be done to
clean up the infections, shore up the vulnerabilities, and prevent misuse of
network resources. All systems will require a full audit and vulnerability
assessment. Virus Scanners will need to be installed on all systems, configured
appropriately and maintained to receive daily updates. Stateful Firewalls will
need to be deployed with policies that block all but what is necessary. IDS
systems will also need some re-evaluation as they should be upgraded to the
most current stable release with current rules. Also, more in depth logging will be
required and a sensor on each network segment will also be required. A
computer usage policy will need to be enforced limiting users use of P2P
software and games. Lastly, network baselining, integrity checkers, Snort binary

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

logging, and other security tools should be utilized so that the University is better
prepared to handle future security incidents.

3.1.3 - List of Analyzed Files from HTTP://www.incidents.org/logs/
Log Date Alerts Out-Of-Spec Scans
01/06/02 alert.030106 OOS_Report_2003_01_07_31845 scans.030106
01/07/02 alert.030107 OOS_Report_2003_01_08_8856 scans.030107
01/08/02 alert.030108 OOS_Report_2003_01_09_12713 scans.030108
01/09/02 alert.030109 OOS_Report_2003_01_10_4480 scans.030109
01/10/02 alert.030110 OOS_Report_2003_01_11_4183 scans.030110

To make it easier for me to analyze these files, I consolidated all of the alerts,
oos, and scans into one file of type (e.g. cat alert.030106 >> alerts.csv). I then
converted the files to a comma-separated format (.csv) so they could be loaded
into a mysql database. Many thanks to Todd Beardsley, GCIA for his published
csv.pl script1. After creating the csv files, I proceeded to load them into a mysql
database using the following command:

mysql> LOAD DATA LOCAL INFILE '/root/practical/alerts.csv' INTO TABLE analysis FIELDS
TERMINATED BY ',' LINES TERMINATED BY '/n';

3.2 - Scans Analysis

3.2.1 - Summary
There were a total of 2,837,600 scan alerts. Of the 2,638,970 alerts, roughly
93% were triggered by the UDP scan signature and 6.9% were classified as SYN
scans. Most of these scan alerts were triggered by P2P and gaming activities
such as WinMX, Kazaa, Morpheus, and Blubster. Some scanning did take place.
This was not a major event, but certainly warrants concern. The following is a
breakdown of the activity.

3.2.2 - 5-day Trend of Scans, Alerts, and OOS

0

200000

400000

600000

800000

1000000

1200000

1/6/2002 1/7/2002 1/8/2002 1/9/2002 1/10/2002

Alerts

Scans

OOS

3.2.3 Most Frequent Scan Alerts
Scan Message Code Bits Total

UDP scan (Externally based) NA 2638978
SYN scan (Externally based) Syn Flag Set 197604

NULL scan (Externally based) No Flags Set 391

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

INVALIDACK scan (Externally based) Abnormal Ack, not SPAU or
FULLXMAS

230

UNKNOWN scan (Externally based) Abnormal Combination of Flags 182
NOACK scan (Externally based) Ack Flag is Missing 131
VECNA scan (Externally based) One of These: P, U, PU, FP, or FU 48

FIN scan (Externally based) Fin Flag Set 14
FULLXMAS scan (Externally based) SFRPAU: All Flags Set 7

XMAS scan (Externally based) FPU Flags Set 4
NMAPID scan (Externally based) SFPU Flags Set 4

SPAU scan (Externally based) SPAU Flags Set 4
SYNFIN scan (Externally based) Syn and Fin Flags Set 3

TOTAL SCANS 2,837,600

3.2.4 -Top Source Ports in Scan Alerts
Source

TCP/UDP
port

Possible Port Activity Number of Associated
Scan Alerts

6257 WinMX P2P 1714067
1637 CableNet Admin Protocol 157104
2502 possible W32.Blaster Worm 141206
1237 tdos390 112157
4848 Playlink Gaming 92122
2095 Webmail 59367
1974 Data-Link Switching Remote Access Protocol 55475
999 Deep Throat, Foreplay, WinSatan 35534

2320 ICQ or IMAP 30633
3466 workflow 29846
2045 cdfunc 28414
137 NetBIOS 24444

2228 netml 19632
12203 Medal of Honor Gaming 18870
12300 Medal of Honor Gaming 14016

3339 Omf-data 1 12928
1846 tunstall pnc 12356
1141 fnone 12158
1066 fpo-fns 9055
2416 rmt-server 8188
888 accesbuilder, cd database protocol 7287

1037 5034
7001 Freak88 Trojan 2895
2600 Digital Root Beer Trojan 2805
1214 Kazaa/Morpheus P2P 2454

3.2.5 -Top Destination Ports in Scan Alerts
Destination
TCP/UDP

port

Possible Port Activity Number of Associated
Scan Alerts

6257 WinMX P2P 1663087
41170 Blubster P2P 66384

80 HTTP 48613
445 microsoft-ds 42634
137 NetBIOS-ns 38413

27005 Flex-lm 26764

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

1214 KAZAA/Morpheus or Grokster 22036
443 HTTPS 20817
135 Epmap, Blaster 12013
21 FTP 10639

6346 Gnutella 8865
1433 Microsoft SQL server, SQL Snake 7438

16257 6529
139 Netbios-ssn 6122

1186 4468
8888 Napster or ddi-tcp1 4097
6970 QuickTime streaming video 3843
1851 ctcd 3733
1367 dcs 3634
1320 Panja-axbnet 3062
1465 pipes-platform 2577
1024 IRC or H.323 (NetMeeting), Jade or possible

NetSpy Trojan
2514

1327 ultrex 2477
3159 Eclipse 2000, Sanctuary Trojan 2470
1498 Sybase SQL AnyWhere 2455

3.2.6 - Scan Alerts: Top Talkers
Scans: Top Source IP Addresses

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

13
0.8

5.8
3.1

46

13
0.8

5.7
0.1

76

13
0.8

5.1
62

.90

13
0.8

5.1
50

.21
3

13
0.8

5.9
1.2

52

13
0.8

5.1
32

.20

13
0.8

5.1
00

.22
0

13
0.8

5.8
8.2

38

13
0.8

5.8
7.5

0

13
0.8

5.8
4.1

78

Scans: Top Destination IP Addresses

0

1000

2000

3000

4000

5000

6000

7000

8000

13
0.8

5.7
0.1

98

17
2.1

71
.15

5.2
3

21
7.3

6.2
4.2

13

24
.58

.24
6.2

10

66
.91

.16
.20

6

64
.23

1.8
8.1

9

64
.23

1.9
0.1

79

14
0.1

17
.18

1.2
22

4.6
2.5

9.3
4

65
.94

.24
7.3

4

3.2.7 - Breakdown of Suspected Scan Activity
3.2.7.1 - Possible Trojans and Worms
Several port numbers found in the scans are commonly associated with Trojan
horses and worms. It is entirely possible that many of these alerts are false
positives and are subject to the possibility that the random ephemeral port just
happened to be that of the Trojan. However some ports listed below don't fall
under the ephemeral range and could show compromise. The keyword I want to
emphasize here is “possible”. Detailed logs would be required to bring about
definitive conclusions. Here is a breakdown of the top 10 hosts per port number
found in the top scan alerts. All hosts found in these charts should be given a
thorough inspection.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

Port Possible Activity Occurrences

999 Deep Throat, Foreplay or WinSatan Trojan 35534

Por t 999: T op Sour ce IP Addr esses

0

50

100

150

200

250

300

350

400

13
0.8

5.8
3.1

46

13
0.8

5.7
0.1

76

13
0.8

5.1
62

.90

13
0.8

5.9
1.2

52

13
0.8

5.1
40

.13
6

13
0.8

5.1
00

.22
0

13
0.8

5.8
8.2

38

13
0.8

5.8
8.2

26

13
0.8

5.1
50

.21
3

21
6.1

61
.21

0.1
26

Port 999: Top Destination IP Addresses

0

10

20

30

40

50

60

70

80

90

100

14
0.1

13
.17

.11
0

21
7.8

1.1
9.6

6

13
0.1

60
.14

9.1
98

12
.21

1.7
6.8

7

68
.10

2.2
02

.51

66
.8.

24
0.4

8

67
.8.

15
4.2

40

24
.58

.22
1.8

9

18
.96

.0.
14

2

21
1.1

27
.62

.21
1

Port Possible Activity Occurrences

7001 Freak88 Trojan 2895

Port 7001: Top Source IP Addresses

0

5

10

15

20

25

30

35

40

13
0.8

5.7
0.1

76

13
0.8

5.8
3.1

46

13
0.8

5.1
50

.21
3

21
6.1

61
.21

0.1
26

13
0.8

5.9
1.7

2

13
0.8

5.8
2.1

14

13
0.8

5.8
7.4

4

13
0.8

5.8
8.2

23

Port 7001: Top Destination IP Addresses

0

2

4

6

8

10

12

14

16

18

20

24
.19

3.1
03

.10
5

61
.24

.12
.23

8

21
9.1

06
.46

.11

80
.13

.20
4.1

44

61
.21

5.2
32

.16

80
.14

.23
0.1

99

13
0.8

5.7
0.1

98

80
.14

.23
0.1

9

12
.22

8.4
2.2

37

21
3.1

06
.23

2.6
1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

Port Possible Activity Occurrences

2600 Digital Root Beer Trojan 2805

Port 2600: Top Source IP Addresses

0

10

20

30

40

50

60

13
0.8

5.8
3.1

46

13
0.8

5.9
1.2

52

13
0.8

5.1
50

.21
3

13
0.8

5.1
62

.90

13
0.8

5.1
00

.22
0

13
0.8

5.8
2.1

14

13
0.8

5.8
8.2

38

13
0.8

5.1
53

.11
7

13
0.8

5.8
7.5

0

21
6.1

61
.21

0.1
26

Port 2600: Top Destination IP Addresses

0

10

20

30

40

50

60

61
.19

8.1
83

.24
3

21
6.1

89
.16

8.5
9

24
.14

5.1
47

.14
2

12
.15

8.1
11

.13
5

14
8.8

5.2
41

.28

12
.24

8.2
41

.99

21
6.1

27
.73

.16
8

12
8.1

25
.24

4.1
14

68
.50

.23
6.9

8

12
.23

0.2
5.1

21

Port Possible Activity Occurrences

3159 Eclipse 2000 or Sanctuary Trojan 2470

Port 3159: Top Source IP Addresses

0

500

1000

1500

2000

2500

13
0.8

5.1
32

.20

13
0.8

5.8
3.1

46

13
0.8

5.1
62

.90

13
0.8

5.9
1.2

52

13
0.8

5.8
8.2

38

13
0.8

5.1
53

.11
7

13
0.8

5.1
00

.22
0

13
0.8

5.8
8.2

26

13
0.8

5.8
7.5

0

13
0.8

5.7
0.1

76

Port 3159: Top Destination IP Addresses

0

500

1000

1500

2000

2500

24
.20

5.2
01

.17
2

21
7.1

21
.92

.21
3

65
.31

.24
6.1

84

35
.11

.20
2.1

90

66
.75

.13
7.1

82

66
.10

8.1
49

.10

68
.14

.44
.95

21
0.3

.59
.81

66
.10

8.1
50

.22
4

21
0.1

48
.18

5.3
8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

3.2.7.2 - Gaming
Gaming may not be malicious by nature but can still do plenty of damage to a
network by simple right of bandwidth usage. Gaming is the 2nd most popular
activity behind P2P on the University network and can likely account for just as
much bandwidth utilization. Common gaming ports should be blocked at a
firewall and it should be considered that PCs have a system policy that prevents
users from installing applications without an administrative password.

Ports Possible Activity Occurrences

12203, 12204,
12300

Medal of Honor Gaming 32886

Por t 12203, 12204, 12300: T op Sour ce IP Addr esses

0

5000

10000

15000

20000

25000

13
0.8

5.7
0.2

07

13
0.8

5.8
2.2

21
6.1

48
.21

5.1
02

20
8.1

85
.54

.35

63
.25

1.5
2.7

5

Por t 12203, 12204, 12300: T op Dest i nat i on IP Addr esses

0

50

100

150

200

250

300

350

64
.4.

22
6.2

10

66
.16

1.1
74

.23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

3.2.7.3 - Peer-to-Peer (P2P) File Sharing
Most of the scan detects have to do with the abundance of Peer-to-Peer (P2P)
file, music, and movie file sharing that is taking place on the network. This
activity should be blocked at the firewall and a computer usage policy needs to
be brought into force.

Port Possible Activity Occurrences

6257 WinMX P2P 1663083

Port 6257: Top Source IP Addresses

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

13
0.8

5.8
3.1

46

13
0.8

5.7
0.1

76

13
0.8

5.1
50

.21
3

13
0.8

5.8
4.1

78

13
0.8

5.9
1.7

2

13
0.8

5.1
68

.57

13
0.8

5.9
1.6

8

21
6.1

48
.21

5.1
02

20
8.1

85
.54

.35

19
4.1

09
.24

7.1
3

Port 6257: Top Destination IP Addresses

0

500

1000

1500

2000

2500

3000

3500

4000

66
.91

.16
.20

6

14
0.1

17
.18

1.2
22

81
.48

.17
1.2

41

80
.38

.13
2.1

46

14
0.2

47
.18

5.1
26

80
.16

1.3
7.2

48

61
.19

9.1
14

.32

24
.66

.14
8.4

4

12
.21

8.1
76

.12
3

81
.97

.59
.42

Port Possible Activity Occurrences

41170 Blubster P2P 66384

Port 41170: Top Source IP Addresses

0

5000

10000

15000

20000

25000

30000

35000

40000

13
0.8

5.1
17

.10

13
0.8

5.9
9.4

8

13
0.8

5.7
0.1

80

13
0.8

5.7
0.2

00

13
0.8

5.1
50

.21
3

Port 41170: Top Destination IP Addresses

0

50

100

150

200

250

300

350

400

20
7.1

92
.22

2.1
83

67
.85

.30
.50

80
.37

.15
1.2

45

15
2.3

0.1
01

.75

12
.21

3.2
.12

9

24
.24

7.1
32

.18
4

13
4.8

2.9
3.3

2

15
7.8

8.1
5.5

9

24
.81

.26
.22

0

21
6.1

64
.20

2.1
43

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

Port Possible Activity Occurrences

1214 Kazaa or Morpheus 22036

Port 1214: Top Source IP Addresses

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

13
0.8

5.8
3.1

46

13
0.8

5.1
62

.90

13
0.8

5.9
1.2

52

13
0.8

5.8
8.2

38

13
0.8

5.1
00

.22
0

13
0.8

5.8
8.2

26

13
0.8

5.8
4.2

44

13
0.8

5.1
53

.11
7

13
0.8

5.8
3.1

78

13
0.8

5.1
50

.22
0

Port 1214: Top Destination IP Addresses

0

100

200

300

400

500

600

700

800

900

67
.84

.19
7.2

46

24
.18

4.4
3.5

9

63
.21

7.1
54

.13
9

12
8.1

46
.14

9.2
0

12
.20

8.1
64

.71

24
.11

7.1
42

.25
1

80
.19

2.1
20

.19
7

62
.19

5.8
2.1

51

12
8.4

2.8
1.2

35

90
.0.

0.2

3.2.8 - Recommendations Based on Scan Analysis
All of the University hosts involved in source or destination alerts relating to the
list of alerts shown above should be brought offline and inspected thoroughly.
They should be scanned for viruses, Trojans, and worms, and cleaned of all
unnecessary gaming and P2P applications. The lists above are brief and in
actuality, every host machine within the University network will require a thorough
investigation. Beyond the infections, the University should create a computer
usage policy for all students and employees. Moreover, stateful firewalls should
be put into place with a rule base that allows only the necessary services with an
implicit “deny all to all“ at the bottom of the list. Critical system computers
associated with the Trojan based ports should be brought offline immediately and
inspected and cleaned thoroughly by an experienced security incident handler.
For many Trojan associated systems, it may make more sense to simply reinstall
as the time to reinstall may outweigh the time in cleaning such systems. After all,
even with the most thorough virus and Trojan cleanup, you're still not 100% sure
that something didn't linger as an attacker can leave untraceable backdoors at a
kernel level that can be activated with magic packets.

3.3 - OOS Analysis
There were a total of 4,182 Out-of-Spec alerts within this 5-day period. Many of
the OOS triggered alerts have to do with the ECN (Explicit Congestion
Notification) bits and are valid as per RFC3168. These are probably false alerts,
yet another reason to upgrade the Snort sensors on the University network.
Many of these other packets are simply ‘crud’; however, some do indicate that
real scanning is taking place both to and from the University network, largely the
byproduct of P2P and some of the worm activity that is taking place.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

3.3.1 - OOS: Flags
OOS flags Description
12****S* Syn Scan with reserved bits
******** No TCP header flags set

12UAPRSF All bits set, common OS fingerprinting technique, also faulty router's can cause
this

URSF Urg, Reset, Syn, and Fin flags set
12****SF Syn-Fin flags set
12U*PR** Urg, Push, and Rest flags set
1**A*RSF Ack, Reset, Syn and Fin flags set
12***R** Reset with Reserved Bits
****P*** Push Flag Set

3.3.2 - OOS: Top Ten Talkers
OOS: Top Source IP Addresses

0

2

4

6

8

10

12

14

16

21
7.2

38
.43

.13
0:7

15
9

MY.N
ET.12

.3:
66

02

68
.11

4.9
7.2

8:1
03

9

MY.N
ET.12

.4:
99

3

14
8.6

3.1
29

.89
:25

74

MY.N
ET.70

.18
3:5

16
81

MY.N
ET.70

.18
3:5

61
50

MY.N
ET.70

.18
3:6

35
76

OOS: Top Destination IP Addresses

0

200

400

600

800

1000

1200

1400

1600

MY.N
ET.6.

40

MY.N
ET.1.

4

MY.N
ET.70

.23
1

MY.N
ET.13

4.1
1

MY.N
ET.17

9.7
8

MY.N
ET.10

5.4
2

MY.N
ET.11

3.4

MY.N
ET.18

5.4
8

MY.N
ET.17

9.7
7

MY.N
ET.82

.22

3.4–Alerts

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

3.4.1 - Alerts: Top Ten Talkers
Alerts: Top Source IP Addresses

0

5000

10000

15000

20000

25000

MY.N
ET.84

.15
1

MY.N
ET.88

.19
3

21
2.1

79
.10

7.2
29

MY.N
ET.11

2.2
04

21
2.1

79
.10

7.2
28

17
2.1

86
.22

6.1
48

MY.N
ET.85

.74

MY.N
ET.11

1.2
35

MY.N
ET.11

1.2
32

MY.N
ET.11

1.2
30

Alerts: Top Destination IP Addresses

0

5000

10000

15000

20000

25000

30000

35000

MY.N
ET.84

.15
1

MY.N
ET.88

.19
3

19
2.1

68
.0.

25
3

61
.23

6.3
9.3

MY.N
ET.90

.24
2

MY.N
ET.18

0.3
9

17
2.1

86
.22

6.1
48

20
7.2

00
.86

.66

20
7.2

00
.86

.97

MY.N
ET.17

7.5
8

Rank Source IP Address Possible Activity Occurrences

1 MY.NET.84.151 High port 65535 tcp - possible Red
Worm - traffic

21336

2 MY.NET.88.193 High port 65535 tcp - possible Red
Worm - traffic

17407

3 212.179.107.229 Watchlist 000220 IL-ISDNNET-
990517

8427

4 MY.NET.112.204 spp_HTTP_decode: IIS Unicode
attack detected

6785

5 212.179.107.228 Watchlist 000220 IL-ISDNNET-
990517

5426

6 172.186.226.148 High port 65535 tcp - possible Red
Worm - traffic

5102

7 MY.NET.85.74 spp_HTTP_decode: IIS Unicode
attack detected

4135

8 MY.NET.111.235 TFTP - External UDP connection to
internal TFTP server

3470

9 MY.NET.111.232 TFTP - External UDP connection to
internal TFTP server

3465

10 MY.NET.111.230 TFTP - External UDP connection to
internal TFTP server

3452

Rank Destination IP
Address

Possible Activity Occurrences

1 MY.NET.84.151 High port 65535 tcp - possible Red
Worm - traffic

28959

2 MY.NET.88.193 High port 65535 tcp - possible Red
Worm - traffic

27635

3 192.168.0.253 TFTP - External UDP connection to
internal TFTP server

17216

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

4 61.236.39.3 spp_HTTP_decode: IIS Unicode
attack detected

6785

5 MY.NET.90.242 Watchlist 000220 IL-ISDNNET-
990517

5968

6 MY.NET.180.39 Watchlist 000220 IL-ISDNNET-
990517

EXPLOIT x86 NOOP

3286

1
7 172.186.226.148 High port 65535 tcp - possible Red

Worm - traffic
3078

8 207.200.86.66 spp_HTTP_decode: IIS Unicode
attack detected

2227

9 207.200.86.97 spp_HTTP_decode: IIS Unicode
attack detected

2154

10 MY.NET.177.58 Watchlist 000220 IL-ISDNNET-
990517

2134

3.4.2 - Alert Frequency Statistics

Most Frequent Alerts Alert Rank Occurrences
High port 65535 tcp - possible Red Worm - traffic 6 95469
SMB Name Wildcard 10 39730
spp_HTTP_decode: IIS Unicode attack detected 7 31958
Watchlist 000220 IL-ISDNNET-990517 26086
TFTP - External UDP connection to internal TFTP
server

3 17287

High port 65535 udp - possible Red Worm - traffic 6 4391

spp_HTTP_decode: CGI Null Byte attack detected 4 2198
Watchlist 000222 NET-NCFC 1817
Possible Trojan server activity 5 1560
Port 55850 tcp - Possible myserver activity - ref. 01 8 1335

Queso fingerprint 1253
IDS552/web-iis_IIS ISAPI Overflow ida nosize 1185

Null scan! 601
EXPLOIT x86 NOOP 558
Incomplete Packet Fragments Discarded 431
TFTP - Internal TCP connection to external TFTP
server

3 424

SUNRPC highport access! 368
IRC evil - running XDCC 9 197
SMB C access 152
TCP SRC and DST outside network 143

NMAP TCP ping! 132
scan (Externally-based) 113
EXPLOIT x86 setuid 0 84
ICMP SRC and DST outside network 74

TFTP - Internal UDP connection to external TFTP
server

2 56

EXPLOIT x86 setgid 0 42
TFTP - External TCP connection to internal TFTP
server

2 7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

EXPLOIT NTPDX buffer overflow 6
DDOS shaft client to handler 5
HelpDesk MY.NET.83.197 to External FTP 5

External FTP to HelpDesk MY.NET.70.49 4
NIMDA - Attempt to execute cmd from campus host 1 4

External FTP to HelpDesk MY.NET.70.50 4

MY.NET.30.4 activity 1
connect to 515 from inside 1
SITE EXEC - Possible wu-ftpd exploit–GIAC000623 1

MY.NET.30.3 activity 1
Probable NMAP fingerprint attempt 1
Bugbear@MM virus in SMTP 1

Most Frequent Alerts Generated by an
Internal Source IP Address

Count Most Frequent Alerts Generated by an External
Source IP Address

Coun
t

High port 65535 tcp - possible Red Worm -
traffic

38794 High port 65535 tcp - possible Red Worm - traffic 5667
5

spp_HTTP_decode: IIS Unicode attack
detected

27842 SMB Name Wildcard 3973
0

TFTP - External UDP connection to internal
TFTP server

17220 Watchlist 000220 IL-ISDNNET-990517 2608
6

High port 65535 udp - possible Red Worm -
traffic

2262 spp_HTTP_decode: IIS Unicode attack detected 4116

spp_HTTP_decode: CGI Null Byte attack
detected

2067 High port 65535 udp - possible Red Worm - traffic 2129

Possible Trojan server activity 987 Watchlist 000222 NET-NCFC 1817
Port 55850 tcp - Possible myserver activity -
ref. 01

778 Queso fingerprint 1253

TFTP - Internal TCP connection to external
TFTP server

206 IDS552/web-iis_IIS ISAPI Overflow ida nosize 1185

IRC evil - running XDCC 197 Null scan! 601
TFTP - Internal UDP connection to external
TFTP server

49 Possible Trojan server activity 573

Port 55850 udp - Possible myserver activity -
ref. 01

12 EXPLOIT x86 NOOP 558

RFB - Possible WinVNC - 010708-1 11 Port 55850 tcp - Possible myserver activity - ref. 01 557
HelpDesk MY.NET.83.197 to External FTP 5 Incomplete Packet Fragments Discarded 431
NIMDA - Attempt to execute cmd from
campus host

4 SUNRPC highport access! 368

connect to 515 from inside 1 TFTP - Internal TCP connection to external TFTP
server

218

SMB C access 152
TCP SRC and DST outside network 143
NMAP TCP ping! 132
spp_HTTP_decode: CGI Null Byte attack detected 131
scan (Externally-based) 113
EXPLOIT x86 setuid 0 84
ICMP SRC and DST outside network 74
TFTP - External UDP connection to internal TFTP
server

67

EXPLOIT x86 setgid 0 42
Attempted Sun RPC high port access 14
EXPLOIT x86 stealth noop 11
Tiny Fragments - Possible Hostile Activity 11
TFTP - Internal UDP connection to external TFTP
server

7

TFTP - External TCP connection to internal TFTP
server

7

EXPLOIT NTPDX buffer overflow 6
DDOS shaft client to handler 5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

External FTP to HelpDesk MY.NET.70.50 4
External FTP to HelpDesk MY.NET.70.49 4
Port 55850 udp - Possible myserver activity - ref.
01

3

RFB - Possible WinVNC - 010708-1 2
MY.NET.30.3 activity 1
SITE EXEC - Possible wu-ftpd exploit -
GIAC000623

1

Bugbear@MM virus in SMTP 1
Probable NMAP fingerprint attempt 1
MY.NET.30.4 activity 1

3.4.3 - Alert Port Frequency Statistics
Top 25
Source
Ports

Possible Activity Count Top 25
Source
Ports

Possible Activity Count

65535 RCI Trojan or Adore
Worm

40951 65535 RCI Trojan 58890

80 HTTP 20450 137 NetBIOS-ns 39725
69 TFTP 17441 80 HTTP 36302

1025 Maverick's Matrix 1.2
–2.0 Trojan

6246 2130 2946

2130 4904 4168 2034
1026 Popadstop Trojan,

Nterm or PalTalk V.5
4795 6257 1954

1027 PopadStop Trojan,ICQ
or PalTalk V.5

4534 1214 Kazaa, Morpheus or Grokster 1805

1028 Popadstop Trojan, or
PalTalk V.5

3650 1100 1739

1029 Popadstop Trojan, or
PalTalk V.5

2878 6699 1418

4168 2510 4083 Abacast P2P 1368
6257 2059 1254 1353
1030 iad1 1895 2095 1327
4083 1516 1237 1242
3115 1312 None 1216
1214 Kazaa, Morpheus or

Grokster
1267 4089 1150

4089 possible Abacast P2P 1252 3115 1007
35168 1174 27374 Bad Blood, SubSeven , SubSeven

2.1 Gold, SubSeven 2.1.4, or DefCon
8 Trojans

984

None 1172 4180 925
26499 possible Quake

Gaming
1160 3037 882

3169 1142 35168 877
4180 1134 2887 864
3037 1118 26499 858
3545 1019 25 SMTP; Ajan, Antigen, Email

Password Sender - EPS, EPS II, Gip,
Gris, Happy99, Hpteam mail, I love
you, Kuang2, Magic Horse, MBT
(Mail Bombing Trojan), Moscow
Email Trojan, Naebi, NewApt worm,
ProMail Trojan, Shtirlitz, Stealth,
Tapiras, Terminator, WinPC, or
WinSpy Trojans

802

1086 NetSpy Trojan 1005 3169 782
1033 RCI Trojan or Adore

Worm
967 55850 MyServer Trojan 778

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

3.4.4 - Most Severe Alerts Criterion
The criterion is based on these factors:
a. Internal Source. Alerts with an internal source are far more dangerous than

those with external sources. If the internal host(s) is the source of bad traffic
this can mean that the host has already been compromised which can lead to
an attacker or infection spreading itself further into the network. Bad traffic
from an external host can be dangerous as well, but doesn't necessarily mean
that an internal host has been compromised.

b. Lethality. This ties in with Severity and Criticality; however, Lethality is a far
better indicator of severity because it is based on the impact to the host and
the network. Assuming that the target host(s) in question are alive and have
critical importance, the relevant consideration is how damaging the attack
would be on the target host(s) if it succeeded.

c. Number of Alerts. This is a secondary consideration to lethality, as an alert
with a high total count doesn't necessarily mean it's the most dangerous. For
example, which would be more dangerous? 10,000 successful OS
fingerprinting scans or 1 successful root exploit. My answer to that would
definitely be the root exploit.

3.4.5 - Most Server Alerts
3.4.5.1 - Most Severe Alert #1

NIMDA - Attempt to execute cmd from campus host High 4

3.4.5.1.1 - Alerts Sample:
01/06-15:30:27.350895 [**] NIMDA - Attempt to execute cmd from campus host [**]
MY.NET.130.187:2546 -> 207.68.132.9:80
01/07-14:21:09.133358 [**] NIMDA - Attempt to execute cmd from campus host [**]
MY.NET.153.158:1106 -> 207.68.132.9:80
01/08-19:49:20.827443 [**] NIMDA - Attempt to execute cmd from campus host [**]
MY.NET.83.183:1062 -> 65.54.250.120:80
01/09-18:52:28.211248 [**] NIMDA - Attempt to execute cmd from campus host [**]
MY.NET.109.59:1077 -> 65.54.250.120:80

3.4.5.1.2 - Summary
Nimda is a worm that can propagate itself in many ways such as through email,
web browsers, NetBIOS shares, and web servers. An excellent attack
description can be found in the SANS Reading Room at
HTTP://www.sans.org/rr/papers/index.php?id=95. These Nimda alerts are very
concerning given that they're coming from Internal Hosts. These internal hosts
are most likely infected with Nimda and what we see here is Nimda attacking a
couple of Microsoft servers at port 80. As you can see in the message, Nimda is
attempting to remotely execute Microsoft's cmd.exe (Microsoft's shell) on the
target host. Nimda takes advantage of certain “superfluous decoding” and
Directory Traversal vulnerabilities found in unpatched version of Microsoft’s IIS
server. Nimda will attempt to execute cmd.exe in several server directory
structures. Nimda can attempt execution directly
(e.g. GET /c/winnt/system32/cmd.exe?/c+dir) or by obfuscating characters
utilizing Unicode (e.g. GET

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

HTTP://127.0.0.1/scripts/..%c1%1c..?winnt/system32/cmd.exe?/c+dir+c:\). If
executing cmd.exe on the IIS server is successful, it will then command the
victim IIS server to download a copy of itself from the attacking Nimda's own
TFTP service. According to the alerts, there weren't any TFTP connections that
were made from these two Microsoft servers to these Nimda infected hosts, thus
it appears that Nimda failed in propagating itself from the University network to
the Microsoft servers.

I've included Registration Information regarding the two target hosts. It can be
found in the Registration Section near the end of this document.

3.4.5.1.3 - Tables
Source IP Occurrences
MY.NET.153.158 1
MY.NET.83.183 1
MY.NET.109.59 1
MY.NET.130.187 1

3.4.5.1.4 - Recommendations
User Systems: These four internal hosts will need to be cleaned up with a virus
scanner using the latest definitions (DAT files). Virus definitions should be downloaded
daily and all email and JavaScript scanning should be enabled. In addition, a proxy
and/or web content filter such as squid or Surf Control should be considered to limit and
protect from web surfing activities.

Mail Servers: As an additional layer of virus scanning, the University should consider
deploying virus scanning on the email server itself, whereas every incoming and
outgoing email is scanned before it can leave the mail server. For example, Mimedefang
on a Sendmail server is capable of scanning email attachments using multiple virus
scanners simultaneously. At a commercial level, products like Surf Control can also help
filter malicious emails and web content.

Web Servers: All Microsoft IIS web servers should be updated with the latest service
packs and patches. Also, it's important that all Microsoft servers are scheduled to
receive automatic updates and to install them automatically, especially for critical
updates. Lastly, a thorough virus scan and clean up will be in order for all servers
running IIS.

File Servers: Running and maintaining (getting virus definitions daily) a virus scanner
on a file server can help to prevent viruses from propagating and can help to protect the
important files being stored.

Network: Various ingress and egress technologies can be used to filter content entering
and leaving the network. Technologies such as Cisco's Network-Based Application
Recognition (NBAR) or CheckPoint Firewall with Application Intelligence (FP4) should be
considered.

3.4.5.1.5 - Correlations
www.cisco.com/warp/public/63/nimda.shtml 2

Destination IP Ocurrences
65.54.250.120 2
207.68.132.9 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

HTTP://www.sans.org/rr/papers/index.php?id=95 3

HTTP://www.cert.org/advisories/CA-2001-26.html 4

3.4.5.2 - Most Severe Alert #2
TFTP - External TCP connection to internal TFTP server High 7
TFTP - External UDP connection to internal TFTP server High 17220

3.4.5.2.1 - Alerts Sample
01/06-12:41:58.491443 [**] TFTP - External UDP connection to internal TFTP server [**]
192.168.0.253:1539 -> MY.NET.5.74:69
01/06-12:52:44.586196 [**] TFTP - External UDP connection to internal TFTP server [**]
MY.NET.111.231:69 -> 192.168.0.253:5524

3.4.5.2.2 - Summary
TFTP (Trivial File Transfer Protocol) is commonly used by diskless workstations
allowing then to boot up to the network, connect up to a BOOTP server, retrieve
it's boot files, and operate without a hard drive. TFTP is also used by routers
(such as Cisco) in a process of upgrading the IOS (Operating System) of the
router. TFTP has many legitimate uses, too many to list here, but very few of
these need to cross the network boundary (internal to external hosts).

Here is a basic chronology of how a TFP connection is initiated:
1. The host requesting the TFTP connection will send a connection request (WRQ) to

the target host's port 69.
2. The target host selects an ephemeral port for communication and respond with an

ACK to the target host at port 69.

Looking closer at the alerts, I found a lot of abnormal activity. All 64 packets from
192.168.0.253 were destined for MY.NET.5.74:69. Obviously, this is non-
routable and we don't see any response from MY.NET.5.74:69 (which should
show up in the alerts given it’s an internal host at port 69). What is even more
peculiar is that the rest of the alerts appear to be from various MY.NET.0.0:69
hosts destined to 192.168.0.253:ephemeral with no response here either.
Nowhere do we see a full-connection taking place. This doesn’t indicate
scanning activity as you'd typically see a routable host probing an entire subnet
at port 69 to find out if the port is open or closed, source routing is possible but
then with all of the MY.NET.0.0:69 traffic to 192.168.0.253:ephemeral, we do not
see an initial packet to MY.NET.0.0:69 with the exception of MY.NET.5.74.
Spoofing is probable and the most likely explanation. Just looking at the pattern
of things (without logs mind you), it looks like some sort of Distributed DoS
attack, but then we should see a lot more traffic than this. Simply put, we can’t
come to any conclusion without log files and an accurate analysis can’t be made
without further investigation; however, regardless of what is happening, we need
to take a serious look at each internal host to assess possible worms and/or
Trojans. It's better to be safe than sorry, and for the sake of security, we must
assume the worst with these hosts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

3.4.5.2.3 - Data Link Graph: TFTP - External UDP Connection to Internal TFTP
Server

3.4.5.2.4 - Tables
Source Occurences
MY.NET.111.235 3470
MY.NET.111.232 3465
MY.NET.111.230 3452
MY.NET.111.231 3417
MY.NET.111.219 3412
192.168.0.253 64
216.161.210.126 7
63.250.205.28 1
63.250.205.57 1
64.7.192.173 1

3.4.5.2.5 - Recommendations
Internal Machines have no business running a TFTP server. An internal
vulnerability assessment (i.e.Nessus) should be performed to ascertain which
machines are running TFTP servers. An action plan should be deployed, closing
unused ports, upgrading and patching vulnerable applications and installing a
stateful firewall that blocks port 69 from entering and leaving the network.

3.4.5.2.6 - Correlations
HTTP://www.faqs.org/rfcs/rfc1350.html 5

3.4.5.3 - Most Severe Alert #3
TFTP - Internal UDP connection to external TFTP server High 49
TFTP - Internal TCP connection to external TFTP server High 206

Destination IP Address Occurrences
192.168.0.253 17216
MY.NET.5.74 64
MY.NET.70.198 7
MY.NET.153.201 1
MY.NET.177.61 1
MY.NET.88.164 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54

3.4.5.3.1 - Alerts Sample
01/06-04:07:30.110151 [**] TFTP - Internal UDP connection to external TFTP server [**]
MY.NET.130.187:2195 -> 192.168.1.1:69
01/06-07:12:21.862963 [**] TFTP - Internal UDP connection to external TFTP server [**]
MY.NET.130.187:2276 -> 62.217.98.2:69

3.4.5.3.2 - Summary
TFTP activity most likely indicates that there are numerous worm and Trojan
infections and what we see here is our internal hosts being compromised as
they're opening up a TFTP connection to an external TFTP server where it will
then download the worm. Port 69 is used by TFTP and is what triggered these
alerts. Here’s a chronology of the activity between 192.168.1.1,
MY.NET.130.187 and 62.217.98.2:

1. MY.NET.130.187:(several 2,1XX, 2,2XX ports) to 192.168.1.1:69 triggering
several “TFTP-Internal UDP connection toexternal TFTP server” alerts. It doesn’t
appear that 192.168.1.1:69 ever responded.

2. MY.NET.130.187 at several ports between 2276-2291 then triggers several
“TFTP-Internal UDP connection to external TFTP server” alerts to 62.217.98.2:69 (an
external server).

Given that the next set of relevant alerts are IIS Unicode related (possible directory traversal)
I thought these comments found on incidents.org were interesting, but they don’t lead us to
any definitive conclusions. Excerpt taken from Incidents.org website. Search on port 69:
HTTP://isc.incidents.org/port_details.html?port=69&repax=1&tarax=2&srcax=2&percent=N&d
ays=40 6

CVE ID Protocol Source
Port Targetport

Description

CVE-
1999-
0183

udp any 69

Linux implementations of TFTP would allow access to files outside the restricted
directory.

CAN-
2002-
1209

udp any 69

Directory traversal vulnerability in SolarWinds TFTP Server 5.0.55, and possibly earlier,
allows remote attackers to read arbitrary files via ".."" (dot-dot backslash) sequences in a
GET request

3. Four Seconds after the last alert in step 2 we see an “spp_HTTP_decode: IIS
Unicode attack detected” alert from 62.217.98.2:69 to MY.NET.130.187:80.

It's quite obvious that 192.168.1.1:69 is not normal traffic as it is not globally
routable. Many Viruses/Worms attack the 192.168.0.0 subnet as it is the most
commonly used private network address in use per CIDR. Given the traffic
pattern, I would classify this as malicious activity, which requires immediate

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
55

investigation. These other Internal Hosts will need to be investigated as well as it
is doubtful that any TFTP activity is legitimate.

3.4.5.3.3 - Tables

3.4.5.3.4 - Recommendations
Once again, there shouldn't be a legitimate reason for TFTP traffic leaving or
entering the network. TFTP is a very insecure protocol that shouldn't be used by
to a large extent. A firewall should be put in place that blocks both ingress and
egress port 69.

3.4.5.3.5 - Correlations
Excerpt taken from Incidents.org website. Search on port 69:
HTTP://isc.incidents.org/port_details.html?port=69&repax=1&tarax=2&srcax=2&p
ercent=N&days=406

3.4.5.4 - Most Severe Alert #4
Spp_HTTP_decode: CGI Null Byte attack detected Noise 2067

3.4.5.4.1 - Summary
This alert is generated whenever %00 (a null byte) is detected within a CGI form.
This alert is generated by the HTTP decode preprocessor. According to the
Official Snort.org FAQ, this signature can generate many false alerts “with sites
that use cookies with url-encoded binary data, or if you're scanning port 443 and
picking up SSL-encrypted traffic”. For example, a commonly known false positive
is triggered by Netscape cookies. It’s also possible that the CGI form itself
contains null bytes, a bad programming practice. Looking at the alerts, we see
MY.NET.90.242 communicating with many sequential ephemeral ports to
209.185.162.149:80, www.ivillage.co.uk. Also, in another example, the alerts
containing MY.NET.99.36:80 (possibly an internal web server) indicate CGI Null
Byte activity closely associated with IIS Unicode alerts which is also subject to
false positives with the usage of %00 in cookies and SSL encrypted traffic.

Destination IP Address Occurrences
192.168.1.1 16
62.217.98.2 11
62.210.116.150 11
130.10.2.134 5
62.210.116.11 4
130.13.105.43 2
MY.NET.88.164 2
MY.NET.183.59 2
MY.NET.90.243 1
MY.NET.151.115 1
MY.NET.87.55 1

Source IP Address Occurences
MY.NET.130.187 27
MY.NET.114.45 7
MY.NET.83.171 6
MY.NET.88.238 4
63.250.214.139 2
64.7.192.173 2
MY.NET.178.42 1
208.153.50.192 1
195.92.252.254 1
MY.NET.177.62 1
64.152.216.85 1
MY.NET.84.22 1
MY.NET.198.34 1
| MY.NET.150.216 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
56

3.4.5.4.2 - Tables
Source IP Address Occurrences Dest IP Address Occurrences
MY.NET.90.242 228 192.151.53.10 303
MY.NET.90.115 220 209.185.162.149 228
MY.NET.83.53 206 66.37.219.2 182
MY.NET.86.124 182 MY.NET.99.36 131
MY.NET.87.52 141 66.129.106.116 120
MY.NET.99.148 120 66.135.192.220 102
MY.NET.81.58 120 66.135.192.226 93
MY.NET.90.148 83 64.14.122.229 91
MY.NET.99.46 72 66.135.209.133 82
MY.NET.82.22 71 66.135.192.227 79
35.10.87.70 69 131.118.254.40 47
MY.NET.104.143 69 66.135.208.201 41
MY.NET.152.251 64 64.40.225.205 39
193.10.173.142 62 209.10.239.135 33

3.4.5.4.3 - Recommendations
If through further research these alerts are deemed to be false alerts and it's
found that CGI forms aren't in use or aren't vulnerable, then it may be best to
simply disable this in Snort (preprocessor HTTP_decode: 80 8080 -unicode–
cginull), in the interest of reducing false alarms and avoiding the “boy who cried
wolf” effect with the Security Administrator. Signatures such as 1002,1256 will
do a much better job at identifying worms than a blanket Unicode based alert.
However, if CGI is heavily used on University web severs, I would recommend
that full logging be performed to better ascertain this activity and that null byte
usage in CGI forms be discouraged. An excellent article on securing CGI forms
can be found at:
HTTP://www.sans.org/top20/oct02.php7

3.4.5.4.4 - Correlations
John Ellis mentions this in his practical located at
HTTP://www.giac.org/practical/Joe_Ellis_GCIA.doc 8

Also, an excellent description of the CGI Null Byte detect can also be found at
HTTP://www.snort.org/docs/FAQ.txt9 section 4.12.

3.4.5.5 - Most Severe Alert #5
Possible Trojan server activity High 987

3.4.5.5.1 - Alerts Sample
01/09-11:11:25.549091 [**] Possible Trojan server activity [**] 204.48.169.252:27374 ->
MY.NET.179.77:80
01/09-11:11:25.549736 [**] Possible Trojan server activity [**] 204.48.169.252:27374 ->
MY.NET.179.77:80
01/09-11:11:25.553715 [**] Possible Trojan server activity [**] MY.NET.179.77:80 ->
204.48.169.252:27374
01/09-11:11:25.554841 [**] Possible Trojan server activity [**] MY.NET.179.77:80 ->
204.48.169.252:27374
01/09-11:11:25.554859 [**] Possible Trojan server activity [**] MY.NET.179.77:80 ->
204.48.169.252:27374

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
57

01/09-14:47:39.523218 [**] Possible Trojan server activity [**] 63.79.101.3:27374 ->
MY.NET.25.21:110
01/09-14:47:39.523321 [**] Possible Trojan server activity [**] MY.NET.25.21:110 ->
63.79.101.3:27374
01/09-14:47:39.523333 [**] Possible Trojan server activity [**] MY.NET.12.4:110 ->
63.79.101.3:27374
01/09-14:47:39.523477 [**] Possible Trojan server activity [**] MY.NET.25.21:110 ->
63.79.101.3:27374
01/09-14:47:39.523495 [**] Possible Trojan server activity [**] MY.NET.12.4:110 ->
63.79.101.3:27374
01/09-14:47:40.755333 [**] Possible Trojan server activity [**] MY.NET.25.21:110 ->
63.79.101.3:27374
01/09-14:47:40.755368 [**] Possible Trojan server activity [**] MY.NET.12.4:110 ->
63.79.101.3:27374
01/10-02:13:44.865343 [**] Possible Trojan server activity [**] 81.72.113.117:27374 ->
MY.NET.137.18:6346
01/10-02:16:31.373522 [**] Possible Trojan server activity [**] MY.NET.91.104:1214 ->
68.18.228.205:27374
01/10-10:40:32.224172 [**] Possible Trojan server activity [**] 194.206.161.161:27374 ->
MY.NET.163.107:1214

3.4.5.5.2 - Summary
Several well-known Trojans all use port 27374 to communicate with, most
notably SubSeven. These alerts were triggered based on discovering either a src
or dst port 27374 in the IP Header. This is the port that SubSeven typically listens
on and can indicate that an attacker is either trying to discover hosts that are
already compromised or to handle one that is (backdoor). If this were SubSeven
activity, you would typically see scans on port 1243 or an entire subnet; however,
there are other Trojans that use port 27374 as well. It is entirely possible that
27374 could be a randomly chosen ephemeral port in a legitimate (non-Trojan)
connection. In these alerts a two way communication takes place between
several internal to external hosts with sources ports 80, 110, 1214, and 6346 all
communicating to port 27374. There are also external hosts communicating to
internal hosts with a destination port of 27374. Allow me to break it out by port.

Port 1214 to 27374:
It is important to note that most of the activity occurred between these two ports.
Port 1214 is associated with Kazaa and Morpheus file sharing programs. The
Kazaa client will open local port 1214 for outbound requests to remote port 80 to
find the distributed network. When the client finds an item of interest to
download, it will select for itself an ephemeral port (>1023 and <=65535) and
send a request to the remote host (which has the file) with a dest port of 1214.
The client will also service requests made by remote hosts using port 1214. In
these incidents it is likely that an external host was attempting to pull a file
(possible a music file) from an internal host. In this case, the external host
selected an ephemeral port of 27374 (which triggered these alerts). What we're
seeing is an alert being triggered for each and every packet being sent between
the local and external Kazaa hosts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
58

Ports 80, 110:
It's important to note that Kazaa Lite 2.0 allows the user to change the default
port of 1214 to whatever they want. Perusing various discussion boards on this
topic I found that it's quite common for Kazaa users to select port 80, 110 along
with other ports that are typically not blocked by a firewall.

Port 6346:
This port is associated with another P2P program called Gnutella, which
connects to peers on ports 6346 and 6347.

Here's an interesting OOS entry related to these port 6346:
01/06-23:18:12.868392 148.64165.75:1445 -> MY.NET.184.37:6346
TCP TTL:111 TOS:0x0 ID:4503 IpLen:20 DgmLen:365 DF
****P*** Seq: 0x6EE6920A Ack: 0x0 Win: 0x2000 TcpLen: 20
47 4E 55 54 45 4C 4C 41 20 43 4F 4E 4E 45 43 54 GNUTELLA CONNECT
2F 30 2E 36 0D 0A 55 73 65 72 2D 41 67 65 6E 74 /0.6..User-Agent
3A 20 4D 6F 72 70 68 65 75 73 20 32 2E 30 2E 31 : Morpheus 2.0.1
2E 38 0D 0A 58 2D 55 6C 74 72 61 70 65 65 72 3A .8..X-Ultrapeer:
20 46 61 6C 73 65 0D 0A 50 4F 4E 47 2D 43 41 43 False..PONG-CAC
48 49 4E 47 3A 20 30 2E 31 0D 0A 58 2D 4D 59 2D HING: 0.1..X-MY-
41 44 44 52 45 53 53 3A 20 31 34 38 2E 36 34 2E ADDRESS: 148.64.
31 36 35 2E 37 35 3A 37 36 38 39 0D 0A 58 2D 54 165.75:7689..X-T
72 79 3A 20 32 34 2E 32 32 39 2E 36 34 2E 32 33 ry: 24.229.64.23
31 3A 36 33 34 36 2C 31 36 39 2E 32 35 34 2E 32 1:6346,169.254.2

3.4.5.5.3 - Tables
Source IP Address Occurrences Destination IP

Address
Occurrences

MY.NET.91.104 966 217.235.45.31 965
217.235.45.31 552 MY.NET.91.104 553
MY.NET.113.4 7 MY.NET.113.4 8
24.56.223.18 5 63.79.101.3 6
MY.NET.179.77 3 24.56.223.18 4
194.206.161.161 3 204.48.169.252 3
MY.NET.25.21 3 MY.NET.163.252 3
MY.NET.12.4 3 MY.NET.163.107 3
MY.NET.91.104 3 MY.NET.137.18 3
204.48.169.252 2 MY.NET.179.77 2

3.4.5.5.4 - Recommendations
I believe that the majority of these alerts triggered by port 27374 are the result of
a randomly selected ephemeral port of 27374 by the external host. Special
concern should be warranted if external hosts are initiating communication to an
internal host with a destination port of 27374 for this likely indicates a
compromised host. It may be in the University’s interest to block port 1214 as
Kazaa and Morpheus are associated with illegal copyright infringement and it's
been documented that 5% of all Kazaa downloads contain viruses.

3.4.5.5.5 - Correlations
HTTP://www.sans.org/rr/papers/36/953.pdf10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
59

HTTP://www.securityfocus.com/archive/75/19432811

3.4.5.6 - Most Severe Alert #6
High port 65535 tcp - possible Red Worm - traffic High 38794
High port 65535 udp - possible Red Worm - traffic High 2262

3.4.5.6.1 - Alerts Sample
01/06-00:33:41.761236 [**] High port 65535 tcp - possible Red Worm - traffic [**]
212.95.85.172:1540 -> MY.NET.84.151:65535
01/06-00:33:41.761994 [**] High port 65535 tcp - possible Red Worm - traffic [**]
MY.NET.84.151:65535 -> 212.95.85.172:1540
01/06-00:33:45.780939 [**] High port 65535 tcp - possible Red Worm - traffic [**]
80.15.129.69:3844 -> MY.NET.84.151:65535
01/06-00:33:45.781127 [**] High port 65535 tcp - possible Red Worm - traffic [**]
MY.NET.84.151:65535 -> 80.15.129.69:3844
01/06-00:27:21.251936 [**] High port 65535 tcp - possible Red Worm - traffic [**]
172.180.111.226:4037 -> MY.NET.84.151:65535

3.4.5.6.2 - Summary
With a count of 95,469 alerts generated, this signature tops out the alert charts
as the most frequent alert. There are 2777 different source ports within these
alerts. Given that all of the source port 65535 activity is from MY.NET.0.0 hosts,
it appears that many University systems have been compromised, possibly by
Adore. However, this could very well be a number of worms and/or Trojans that
all use this port. The external source host, source port of 1540 (rds), shows up in
numerous alerts all coming from 212.95.85.172. This is very suspicious activity
given that 1540 isn’t a commonly used port and there doesn’t appear to be any
reason our internal hosts should be communication with an external host at 1540.
I suspect that we see here is external hosts communicating with our
compromised systems.

The Adore worm scans for vulnerabilities in four common Linux daemons,
LPRng, rpc-statd, wu-ftpd and BIND. More details about Red Worm (Adore
Worm) can be found at www.sans.org/y2k/adore.htm. Once a machine has been
compromised by this worm, it will then set up a backdoor listening on port 65535.
This backdoor is activated by sending the host an ICMP echo request with 77
bytes of data (Magic Packet). Receiving this Magic Packet the target host will
fork a command shell to local port 65535. I would think that a “large ICMP
packet” alert would be triggered if such activity were taking place. The key
problem with Adore is that it this backdoor listening port lingers even after Adore
has done its thing. Full logs would be helpful in determining whether or not Magic
Packets were sent before these two-way connections were made.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
60

3.4.5.6.3 - Tables
Source IP Addresses Occurrences
MY.NET.84.151 21366
MY.NET.88.193 17407
172.186.226.148 5102
67.69.224.186 2529
80.200.137.128 2461
193.252.60.115 2010
80.14.209.119 1722
80.14.126.37 1507
80.13.193.40 1498
80.14.113.219 1347
194.206.50.2 1166
MY.NET.83.146 1104
81.48.81.146 1091

3.4.5.6.4 - Recommendations
A firewall needs to be in place to block port 65535. Also, using and maintaining
Virus Scanners on all machines will help to prevent the spread of infections.

3.4.5.6.5 - Correlations
HTTP://www.sans.org/y2k/adore.htm12

3.4.5.7 - Most Severe Alert #7
spp_HTTP_decode: IIS Unicode attack detected Moderate 27842

3.4.5.7.1 - Alerts Sample
01/06-07:12:21.862963 [**] TFTP - Internal UDP connection to external TFTP server [**]
MY.NET.130.187:2276 -> 62.217.98.2:69
01/06-07:12:21.896883 [**] TFTP - Internal UDP connection to external TFTP server [**]
MY.NET.130.187:2276 -> 62.217.98.2:69
01/06-07:12:27.862782 [**] TFTP - Internal UDP connection to external TFTP server [**]
MY.NET.130.187:2277 -> 62.217.98.2:69
01/06-07:12:27.881741 [**] TFTP - Internal UDP connection to external TFTP server [**]
MY.NET.130.187:2277 -> 62.217.98.2:69
01/06-07:12:31.816195 [**] TFTP - Internal UDP connection to external TFTP server [**]
MY.NET.130.187:2279 -> 62.217.98.2:69
01/06-07:12:31.849926 [**] TFTP - Internal UDP connection to external TFTP server [**]
MY.NET.130.187:2279 -> 62.217.98.2:69
01/06-07:12:35.850529 [**] spp_HTTP_decode: IIS Unicode attack detected [**]
62.217.98.2:4684 -> MY.NET.130.187:80
01/06-07:12:35.850529 [**] spp_HTTP_decode: IIS Unicode attack detected [**]
62.217.98.2:4684 -> MY.NET.130.187:80
01/06-07:12:35.850529 [**] spp_HTTP_decode: IIS Unicode attack detected [**]
62.217.98.2:4684 -> MY.NET.130.187:80
01/06-07:12:37.168514 [**] spp_HTTP_decode: IIS Unicode attack detected [**]
62.217.98.2:4704 -> MY.NET.130.187:80
01/06-07:12:38.486137 [**] spp_HTTP_decode: IIS Unicode attack detected [**]
62.217.98.2:4716 -> MY.NET.130.187:80

Destination IP Address Occurrences
MY.NET.84.151 28958
MY.NET.88.193 27632
172.186.226.148 3078
67.69.224.186 2047
80.200.137.128 1877
193.252.60.115 1534
80.14.126.37 1354
81.48.81.146 1117
80.13.193.40 1096
80.14.209.119 1048
80.14.113.219 1042

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
61

3.4.5.7.2 - Summary
Nimda, Code Red and others worms all exploit a well-known vulnerability in
Microsoft's IIS that has to do with the substituting Unicode representations (e.g.
%255c) in place of actual characters. The Unicode representations and the
actual ASCII characters they represent are essentially the same, however can be
interpreted differently in IIS URL decoding. Without writing an entire paper on this
subject, suffice to say that it's this inconsistency that can allow give an attacker
access to directories that would otherwise be secured from external access.

It's important to note that this alert is well known to generate a lot of false
positives as Unicode can also be found in legitimate traffic. It would be useful to
look at the full log to see exactly what the content was within these packets. It
appears that what we're seeing is a variety of internal compromises and alerts
being triggered by both internal and external sources.

In the Alert sample I included an interesting correlation between two hosts that
triggered two alerts in the same time frame. The first alert was for an internal
UDP connection to an external TFTP server.

3.4.5.7.3 - Tables
Source IP Address Occurrences Destination IP

Addresses
Occurrences

MY.NET.112.204 6785 61.236.39.3 6785
MY.NET.85.74 4135 207.200.86.86 2227
MY.NET.84.133 1264 207.200.86.97 2157
MY.NET.85.87 1251 MY.NET.70.207 1147
MY.NET.183.59 926 207.200.89.193 1015
MY.NET.122.118 820 MY.NET.99.36 966
195.25.191.82 731 64.95.120.131 760
MY.NET.145.197 530 211.233.32.56 636
MY.NET.116.84 529 64.12.42.117 494
MY.NET.151.120 524 199.244.218.42 480

3.4.5.7.4 - Recommendations
Regardless of whether these are false positives or the byproduct of compromised
machines, it's obvious that the University has a lot of work to do in cleaning up
and preventing compromises. With a firewall in place, a web proxy, full snort logs
and virus protection, the University can focus on using a better Snort rule base to
get a better reading of the malicious activity. Specifically, I would recommend
using the -Unicode option on the HTTP_decode line in your snort.conf file.
Signatures such as 1002, 1256 will do a much better job at identifying worms
than a blanket Unicode based alert.

3.4.5.7.5 - Correlations
HTTP://www.kb.cert.org/vuls/id/11167713

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
62

3.4.5.8 - Most Severe Alert: #8
Port 55850 tcp - Possible myserver activity - ref. 01 Moderate 778
Port 55850 udp - Possible myserver activity - ref. 01 Moderate 12

3.4.5.8.1 - Alerts Sample
01/06-00:23:36.617407 [**] Port 55850 udp - Possible myserver activity - ref. 010313-1 [**]
MY.NET.188.24:55850 -> 10.0.1.1:192
01/06-11:04:52.894697 [**] Port 55850 tcp - Possible myserver activity - ref. 010313-1 [**]
207.200.89.193:80 -> MY.NET.139.52:55850
01/06-11:04:53.794553 [**] Port 55850 tcp - Possible myserver activity - ref. 010313-1 [**]
207.200.89.193:80 -> MY.NET.139.52:55850
01/06-11:04:53.794675 [**] Port 55850 tcp - Possible myserver activity - ref. 010313-1 [**]
207.200.89.193:80 -> MY.NET.139.52:55850
01/06-18:23:11.968143 [**] Port 55850 tcp - Possible myserver activity - ref. 010313-1 [**]
24.210.218.39:55850 -> MY.NET.83.146:2502
01/06-19:55:52.876557 [**] Port 55850 tcp - Possible myserver activity - ref. 010313-1 [**]
MY.NET.6.40:25 -> 205.158.62.146:55850

3.4.5.8.2 - Summary
These alerts are triggered when the source or destination port is 55850, a port
typically associated with a DDoS tool known as Myserver. Once myserver
connects up to UDP 55850, it installs a rootkitted versions of Unix ls and ps in
order to hide itself from administrators; however, you will see the port with the
netstat -ap | egrep -i 'LISTEN|upd' command. Both the rootkit and DDoS code are
stored in /lib on the victims machine. Although some of these alerts could be
indication of this Trojan, it is entirely possible that 55850 was chosen as an
ephemeral port and that many of these alerts could be false positives. This is
especially convincing given that port 55850 was communicating with a variety of
commonly used ports such as 20 (ftp-data), 80(HTTP), 1214 (Kazaa), 25
(SMTP), uncharacteristic of the Myserver Trojan. Detailed information including
the TCP state would help in determining what this is. It's important to note that
MY.NET hosts rarely initiated communication with dest port 55850. I would
venture to say that most of these alerts are false positives; however, there are
some oddities. For example, the first alert sample (above) shows a source of
MY.NET.188.24:55850 and a destination of 10.0.1.1:192. It's obvious that
10.0.1.1:192 isn't a local network and it isn't globally routable, this would indicate
that MY.NET.188.24 is likely infected with a Trojan or Worm. This host should
investigated for signs of a Trojan or worm compromise.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
63

3.4.5.8.3 - Tables

|

3.4.5.8.4 - Recommendations
Once again, I believe the majority of this activity to be the ephemeral port
byproduct of all the P2P activity. However some further investigation is
warranted given the lethality of this potential activity. Logs and a vulnerability
assessment are in order.

3.4.5.8.5 - Correlations
HTTP://seclists.org/incidents/2000/Oct/0141.html14

3.4.5.9 - Most Sever Alert # 9
IRC evil - running XDCC Moderate 197

3.4.5.9.1 - Alerts Sample:
01/10-21:47:23.913216 [**] IRC evil - running XDCC [**] MY.NET.88.168:4415 ->
216.55.223.121:6667
01/10-22:17:23.874899 [**] IRC evil - running XDCC [**] MY.NET.88.168:4415 ->
216.55.223.121:6667
01/10-22:37:23.906224 [**] IRC evil - running XDCC [**] MY.NET.88.168:4415 ->
216.55.223.121:6667

3.4.5.9.2 - Summary
XDCC is the mechanism by which IRC (Internet Relay Chat) performs Peer to
Peer (P2P) file transfers. Information on what triggers this Snort is hard to find
and it appears that port 6667 is what triggered these alerts as this is the port
typically associated with an XDCC server. XDCC functions in a client/server
relationship whereas an XDCC server allows remote IRC users to download
music, applications, and movies through the Internet. Most of the music and
movie files shared are illegal and break copyright law. The groups involved in
hosting such XDCC file sharing often prey on unsuspecting corporate networks in
order to avoid the personal liability that would be associated with hosting a
legitimate XDCC server on the Internet. Attackers typically compromise systems
that have high bandwidth to the Internet, systems that would do well as an XDCC
server. Having compromised the server, attackers will typical “root kit” it in order

Source IP Address Occurrences
MY.NET.162.67 664
150.163.200.98 448
MY.NET.70.231 34
62.31.64.2 19
MY.NET.6.40 18
MY.NET.29.3 15
MY.NET.140.136 13
68.55.22.122 12
MY.NET.113.4 7
205.158.62.146 7

Destination IP
Address

Occurrences

150.163.200.98 664
MY.NET.162.67 448
62.31.64.2 33
MY.NET.70.231 21
MY.NET.6.40 19
68.55.22.122 15
MY.NET.29.3 12
MY.NET.113.4 10
10.0.1.1 6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
64

to cover their tracks and hide the presence of the XDCC server that is now
chewing up bandwidth, memory, disk I/O and processor speed.

Fortunately, it doesn't appear that any XDCC servers are running on the
University network. All of the relevant alerts give reference to an external server
at port 6667. The traffic we're seeing here is likely triggered by users and/or
employees using a IRC client to download movies and music.

3.4.5.9.3 - Tables

3.4.5.9.4 - Recommendations
Music and movie industries are starting to crack down on illegal file sharing and
liability is starting to be placed on the users who take part in such activity. Just a
few users heavily involved in downloading music and movies can chew up a T1
line (1.54Mbps) and bring a network to a crawl. To remedy these liabilities, the
University should enact a computer usage policy and educate students and users
about the policy. An audit of all systems should be collected (especially those
involved in the charts above) and all such P2P file sharing applications should be
removed. Lastly, a stateful firewall should be put in place, allowing only the basic
services required (port 80, 443, 25, 110, etc.).

3.4.5.9.5 - Correlations
HTTP://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00120.html15

3.4.5.10 - Most Severe Alert #10
SMB Name Wildcard Moderate 39730

3.4.5.10.1 - Snort Signature and Alerts Sample
misc-lib:alert udp any any -> $HOME_NET 137 (msg:"SMB Name Wildcard";

Destination IP Address Occurrences
132.74.40.10 35
24.215.6.241 33
65.116.90.178 25
198.163.214.2 15
193.163.220.3 12
63.151.165.236 12
138.121.129.12 11
206.167.75.78 9
63.151.165.172 8
128.242.65.30 7
216.55.223.121 6
209.126.200.130 5
66.250.50.3 4
209.133.9.47 4
217.8.149.200 4
138.121.51.51 2
194.154.163.23 1
66.216.84.224 1
146.20.20.20 1
65.116.89.130 1
140.186.123.133 1

Source IP Address Occurrences
MY.NET.88.168 119
MY.NET.105.48 29
MY.NET.150.101 15
MY.NET.150.5 11
MY.NET.114.14 11
MY.NET.112.199 9
MY.NET.88.163 2
MY.NET.84.160 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
65

content:"CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|0000|";)

01/08-05:37:30.575117 [**] SMB Name Wildcard [**] 210.214.110.73:1065 ->
MY.NET.132.62:137
01/08-05:37:30.719827 [**] SMB Name Wildcard [**] 210.214.110.73:1065 ->
MY.NET.132.63:137
01/08-05:37:30.814096 [**] SMB Name Wildcard [**] 210.214.110.73:1065 ->
MY.NET.132.64:137

3.4.5.10.2 - Summary
Microsoft systems utilize a suite of protocols collectively referred to as NetBIOS
/SMB that allow users to view and access resources (i.e. files, shared printers)
being shared by other users. The SMB Wildcard alert is triggered when a
machine is actively attempting to query all NetBIOS/SMB resource information
(its NetBIOS table) from another NetBIOS/SMB enabled host through the use of
this command: netstat–A IP Address. This command can be manually entered
via a command prompt or can be included in code, such as the network.vbs
worm does. This query is sent to port 137 (NetBIOS) on the target host. The
signature that triggers this alert contains CKAAA…etc. (sum of 32 ASCII
characters) followed by a binary 0000. Allow me to break down how CKAAA is
equivalent to a wildcard (*).A NetBIOS name has 16 ASCII characters and in the
stream assembly, each character in the NetBIOS name is represented by 2 hex
characters (ASCII to Hex translation) giving us 32 hex characters. However,
there is an additional step performed before it’s put on the wire. Each hex
character nibble is split and added to a 0x41 byte, thus resulting in a total of 64
hex or 32 ASCII characters (twice as long as before). A wildcard ASCII character
of * translates to 2A in hex and any unused space is blank padded. We then
need to add an ASCII A or hex 0x41 to each hex character. Thus 2 + 41 = 43, A
+ 41 = 4B, and 0 (the blank padding) + 41 = 41. So in hex we have 43 4B 41 41
41 41…etc. and translating that back to ASCII (per Snort translating back for our
viewing) it represents CKAAAAA…(sum of 32 ASCII characters).

Most of these alerts involve an external host sending an SMB wildcard to port
137 on an internal host. This activity likely indicates that a worm such as
network.vbs is attempting to propogate itself to internal hosts. This is an item of
serious concern, because once the network.vbs has collected share information
about the target hosts it will then attempt to copy itself to unprotected (lack of
password) shares in order to propogate itself onto the network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
66

3.4.5.10.3 - Tables

Source IP Address Occurrences
200.84.76.226 298
61.234.196.148 283
137.45.69.167 267
212.59.27.204 248
62.89.67.162 243
165.228.7.72 243
203.162.15.76 236
200.164.23.30 234
81.195.171.10 230
61.0.151.239 228

3.4.5.10.4 - Recommendations
The top 10 sources are External, and the top 10 destinations are internal,
indicating that we have outsiders or worms attempting to access internal
resources. All SMB/NetBIOS services (tcp/udp 137, 138, 139) should be blocked
(both ingress and egress) at the firewall. A solution such as VPN with NATing
(Network Address Translation) should be deployed if legitimate remote users (i.e.
professors) need to access internal SMB shares through the Internet.

3.4.5.10.5 - Correlations
HTTP://seclists.org/lists/ids/2000/Mar/0065.html16

3.4.6 - Summary of Recommendations
Each detect in this document includes recommendations that are specific to the
detect and activity being discussed. These recommendations are broad in scope
and present a strategy for the University to follow in resolving the issues at hand
as well as preventing future occurrences.

1. Complete Audit and Documentation
Detailed systems documentation should be created and maintained for all
systems, and a detailed network topology diagram should be constructed.
The documentation should include information on a computer’s OS platform,
installed patches, installed applications, IP addresses, its routing table,
listening ports, and SMB, NFS shares. It would also be helpful to know the
main function of each computer/server and the groups that it is used by. This
information is vital to a Security Team in correctly analyzing and handling
security incidents in a timely manner. The logical network diagram should
include all of the segments, and IP addresses of all hosts, grouped by
function and location (Student Lab, vs Server Room). Also a physical
network diagram of how key systems are connected to switches/hubs and
switches to hubs would also be helpful. Lastly, The network diagram should
include addendums of IDS, router and firewall ACL/Rules printouts and
configurations.

Destination IP Address Occurrences
MY.NET.132.50 317
MY.NET.137.18 191
MY.NET.190.17 155
MY.NET.6.16 122
MY.NET.137.46 112
MY.NET.133.225 97
MY.NET.133.251 94
MY.NET.134.251 94
MY.NET.133.247 93
MY.NET.134.242 92

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
67

2. In-Depth Investigation of All Suspected Compromises
In this document, many theories have been presented as to what has taken
place, but without detailed information on the network topology and the
systems in place, nothing can be said with certainty. Utilizing an updated
Snort with full alerts and binary logging would greatly assist in producing a
more accurate analysis. Beyond IDS logs, each system and the network in
general should be fully scanned for vulnerabilities using a tool such as
Nessus. The output of a Nessus (or the like) as well as host and network
documentation (per audit above) should be used along side this analysis to
investigate possible compromised hosts and to confirm false positives. Once
these security issues have been resolved it would be wise to perform an
ongoing vulnerability assessment periodically. I would recommend every
month for the first 6 months, and if there aren’t any major security incidents in
that time frame, then a frequency of every quarter should be sufficient.

3. Deploy a Stateful Firewall with a DMZ (3-Tiered)
All Public Servers (i.e. University web server, name severs, mail server)
should be placed in a firewall segregated DMZ network with a rule base
allowing the required external access to the DMZ and severely limiting the
DMZ from connecting to internal systems.
The firewall policy should limit the activity of students and employees and
helps to protect them from the outside. Student groups should be limited to
just HTTP, HTTPS, SMTP, and POP3. TFTP, NetBIOS, FTP, and other such
unnecessary egress services should be explicitly denied in the firewall rule
base; however, it is more efficient to specify the allowed services in the rule
base and to set an implicit “deny all “at the bottom of the rule base to take
care of the unwanted traffic.

4. Upgrade Snort and Snort Rules Set
Run the latest stable version of Snort with the up-to-date rules.
Disable Snort HTTP Pre-Processor in the interest of reducing false alarms
and avoiding the “boy who cried wolf” effect with the Security Administrator.
Set“preprocessor HTTP_decode: 80 8080 -unicode–cginull”in the snort.conf
file. Signatures such as 1002, 1256 will do a much better job at identifying
worms than a blanket Unicode based alert.

5. Deploy File Integrity Checkers Critical Systems
File Integrity checkers (i.e. Tripwire, LSOF) can alert the administrator to a
possibly compromised system and give the Security Administrator a baseline
of processes, files, and ports open, all of which can prove to be extremely
useful in such situations where a host has been compromised and is
suspected that backdoors and rootkits may be installed. Also, on some UNIX
based systems it is possible to turn off the capability of executing code within
the stack/buffer. Buffer overflow attacks function by writing a new return
pointer over the original one to execute code that has been pushed into the
stack. Disabling this in the initial kernel build can prevent buffer overflow and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
68

DoS attacks all together. Lastly, certain Linux kernels are modular which can
allow an attacker to build a kernel level rootkit module onto an existing kernel.
The modular function can be disabled and depending on the OS platform
such capabilities should be investigated.

6. Deploy IDS Sensors on Internal, External, and DMZ Networks
One Snort sensor should be present per network segment. The University
should have one sensor on the external subnet off the firewall, one on the
DMZ and one on the internal network. Log should be maintained internally
and an effort should be made to slim down the false positives and customize
Snort to the Universities environment. The sensors themselves should have
two interfaces (one for management and one for sniffing). The sniffing
interface shouldn’t be assigned an IP address, and the management
interfaces should be segregated onto a protected network subnet. The
University may also want to consider the implementation of Host-Based IDS
and Personal Firewall systems for all systems. There are several open
source and commercial Unix and Windows based systems that would help in
adding this additional layer of security. An excellent article on this can be
found at http://www.sans.org/resources/idfaq/host_based.php17

7. Antivirus Software Installation, Configuration, and Daily Updates
Virus scanning software should be installed and configured on all systems.
The virus scanner should be configured to check for updates on a daily basis.
All incoming email should be scanned, All JavaScript and VBscript content
should be scanned, and an entire system scan should occur at least on a
weekly basis. Virus scanning should also occur on the mail server and/or
firewall (Checkpoint AI has these features) before reaching the client as an
added layer of protection.

8. Enforce Computer Usage Policies (P2P, Gaming, etc.)
Based on the analysis, it's clear that Gaming and Peer-to-Peer file sharing
have become epidemic problems for the University. Firewall rules should
take P2P and gaming ports into account and such gaming and P2P
applications will need to be removed. More importantly, users need to be
educated about the University’s policy of “no gaming and no P2P”. These
activities not only are unproductive use of the student’s time, but a waste of
bandwidth, and a possible source of liability.

9. Network Baselining and Utilization Tests
As a last step, once the “new” network is in place with all of the
recommendations implemented, network baselining and utilization tests need
to be performed to record what normal/stable network traffic looks like.

3.4.7 - Registration Information of Interesting External Hosts

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
69

3.4.7.1 - Microsoft Corp
The following Registration relates to the Alerts section on:
Most Severe Alert #1

NIMDA - Attempt to execute cmd from campus host High 4

Search results for: 65.54.250.120

OrgName: Microsoft Corp
OrgID: MSFT
Address: One Microsoft Way
City: Redmond
StateProv: WA
PostalCode: 98052
Country: US

NetRange: 65.52.0.0 - 65.55.255.255
CIDR: 65.52.0.0/14
NetName: MICROSOFT-1BLK
NetHandle: NET-65-52-0-0-1
Parent: NET-65-0-0-0-0
NetType: Direct Assignment
NameServer: DNS1.CP.MSFT.NET
NameServer: DNS2.CP.MSFT.NET
NameServer: DNS1.TK.MSFT.NET
NameServer: DNS1.DC.MSFT.NET
NameServer: DNS1.SJ.MSFT.NET
Comment:
RegDate: 2001-02-14
Updated: 2002-12-05

TechHandle: ZM23-ARIN
TechName: Microsoft Corporation
TechPhone: +1-425-882-8080
TechEmail: noc@microsoft.com

OrgAbuseHandle: ABUSE231-ARIN
OrgAbuseName: Abuse
OrgAbusePhone: +1-425-882-8080
OrgAbuseEmail: abuse@microsoft.com

OrgNOCHandle: ZM23-ARIN
OrgNOCName: Microsoft Corporation
OrgNOCPhone: +1-425-882-8080
OrgNOCEmail: noc@microsoft.com

OrgTechHandle: MSFTP-ARIN
OrgTechName: MSFT-POC
OrgTechPhone: +1-425-882-8080
OrgTechEmail: iprrms@microsoft.com

3.4.7.2 - Latin American and Caribbean IP Address Regional Registry
The following Registration relates to the Alerts section on:
Most Severe Alert #10

SMB Name Wildcard Moderate 39730

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
70

Search results for: 200.84.76.226

OrgName: Latin American and Caribbean IP address Regional Registry
OrgID: LACNIC
Address: Potosi 1517
City: Montevideo
StateProv:
PostalCode: 11500
Country: UY

ReferralServer: whois://whois.lacnic.net

NetRange: 200.0.0.0 - 200.255.255.255
CIDR: 200.0.0.0/8
NetName: LACNIC-200
NetHandle: NET-200-0-0-0-1
Parent:
NetType: Allocated to LACNIC
NameServer: TINNIE.ARIN.NET
NameServer: NS.LACNIC.ORG
NameServer: NS.DNS.BR
NameServer: NS2.DNS.BR
Comment: This IP address range is under LACNIC responsibility for further
Comment: allocations to users in LACNIC region.
Comment: Please see HTTP://www.lacnic.net/ for further details, or check the
Comment: WHOIS server located at whois.lacnic.net
RegDate: 2002-07-27
Updated: 2003-06-12

TechHandle: LACNIC-ARIN
TechName: LACNIC Hostmaster
TechPhone: (+55) 11 5509-3522
TechEmail: abuse@lacnic.net

OrgTechHandle: LACNIC-ARIN
OrgTechName: LACNIC Hostmaster
OrgTechPhone: (+55) 11 5509-3522
OrgTechEmail: abuse@lacnic.net

3.4.7.3 - University of Haifa
The following Registration relates to the Alerts section on:
Most Sever Alert #9

IRC evil - running XDCC Moderate 197

Search results for: 132.74.40.10

OrgName: RIPE Network Coordination Centre
OrgID: RIPE
Address: Singel 258
Address: 1016 AB
City: Amsterdam
StateProv:
PostalCode:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
71

Country: NL

ReferralServer: whois://whois.ripe.net

NetRange: 132.74.0.0 - 132.74.255.255
CIDR: 132.74.0.0/16
NetName: ILAN-HAIFA-1
NetHandle: NET-132-74-0-0-1
Parent: NET-132-0-0-0-0
NetType: Allocated to RIPE NCC
NameServer: NS.HAIFA.AC.IL
NameServer: SUNNY.HAIFA.AC.IL
Comment:
RegDate:
Updated: 2003-06-17

AbuseHandle: ZU77-ARIN
AbuseName: University of Haifa
AbusePhone: +972-4-8249249
AbuseEmail: herakel@univ.haifa.ac.il

TechHandle: SS342-ARIN
TechName: Shickman, Simon
TechPhone: +972 2 6584138
TechEmail: simon@cc.huji.ac.il

OrgTechHandle: RIPE-NCC-ARIN
OrgTechName: RIPE NCC Hostmaster
OrgTechPhone: +31 20 535 4444
OrgTechEmail: search-ripe-ncc-not-arin@ripe.net

3.4.7.4 - US WEST Internet Services
The following Registration relates to the Alerts section on:
Most Severe Alert #2
TFTP - External TCP connection to internal TFTP server High 7
TFTP - External UDP connection to internal TFTP server High 17220

Search results for: 216.161.210.126

OrgName: U S WEST Internet Services
OrgID: USW
Address: 950 17th Street
Address: Suite 1900
City: Denver
StateProv: CO
PostalCode: 80202
Country: US

NetRange: 216.160.0.0 - 216.161.255.255
CIDR: 216.160.0.0/15
NetName: USW-INTERACT98
NetHandle: NET-216-160-0-0-1
Parent: NET-216-0-0-0-0
NetType: Direct Allocation

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
72

NameServer: NS1.USWEST.NET
NameServer: NS2.DNVR.USWEST.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 1998-12-16
Updated: 2000-07-18

TechHandle: ZU24-ARIN
TechName: U S WEST ISOps
TechPhone: +1-612-664-4689
TechEmail: abuse@uswest.net

OrgAbuseHandle: QIA2-ARIN
OrgAbuseName: Qwest IP Abuse
OrgAbusePhone: +1-877-886-6515
OrgAbuseEmail: abuse@qwest.net

OrgNOCHandle: QIN-ARIN
OrgNOCName: Qwest IP NOC
OrgNOCPhone: +1-877-886-6515
OrgNOCEmail: support@qwestip.net

OrgTechHandle: QIA-ARIN
OrgTechName: Qwest IP Admin
OrgTechPhone: +1-877-886-6515
OrgTechEmail: ipadmin@qwest.com

3.4.7.5 - Michigan State University
The following Registration relates to the Alerts section on:
Most Severe Alert #4

Spp_HTTP_decode: CGI Null Byte attack detected Noise 2067

Search results for: 35.10.87.70
Merit Network Inc. MICH-1 (NET-35-0-0-0-1)

35.0.0.0 - 35.255.255.255
Michigan State University MICH-618 (NET-35-8-0-0-1)

35.8.0.0 - 35.10.255.255

3.4.8 - Detailed Correlations and References

General Resources:
Sans Institute. Reading Room
URL: HTTP://www.sans.org/rr (Dec 6, 2003)

7SANS Institute. Top 20 Internet Security Vulnerabilities
URL: HTTP://www.sans.org/top20.htm (Dec 6, 2003)

17SANS Institute. Intrusion Detection FAQ
URL: http://www.sans.org/resources/idfaq/host_based.php (Dec 6, 2003)

SANS GIAC. Mailing List Archives
URL: HTTP://www.incidents.org/archives/ (Dec 6, 2003)

Insecure.org. News, Vulnerability Info, and NMAP Scanning
URL: HTTP://insecure.org (Dec 6, 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
73

CERT Coordination Center. Vulnerability Info, Incidents, and Fixes
URL: www.cert.org (Dec 6, 2003)

SecurityFocus. Bugtraq Vulnerability Database
URL: www.securityfocus.com

Snort.org T.M. of Sourcefire, Inc. Authors, Brian Caswell and Marty Roesch 2002, 2003
URL: www.snort.org/dl (Dec 6, 2003)

Tcpdump.org. tcpdump and libpcap downloads
URL: www.tcpdump.org (Dec 6, 2003)

Snort.org. Users Manual:
URL: HTTP://www.snort.org/docs/writing_rules/ (Dec 6, 2003)

Snort.org. Signature Database:
URL: HTTP://www/snort.org/snort-db (Dec 6, 2003)

IANA. RFC Port Number Assignments, No Author Cited (Dec 3, 2003)
URL: HTTP://www.iana.org/assignments/port-numbers (Dec 6, 2003)

American Registry for Internet Numbers
URL: HTTP://www.arin.net (Dec 6, 2003)

Trojan Ports: Various Public Information Pages:
URL: HTTP://www.martijnjongen.com/eng/html/portnumbers.htm (Dec 6, 2003)
URL: HTTP://www.austin.rr.com/rrsec/computer_ports.html (Dec 6, 2003)
URL: HTTP://www.ldc.lu.se/security/P2P-list.shtml (Dec 6, 2003)

General Format Ideas:
SansGIAC. Author: Les Gordon, GIAC GCIA Practical (v3.2) Submitted (May 20, 2002)
URL: HTTP://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc (Dec 6, 2003)

1General Format Ideas and usage of Todd’s published csv.pl script:
SansGIAC. Author: Todd Beardsley, GIAC GCIA Practical (v3.1) Submitted (May 8, 2002)
URL: HTTP://www.giac.org/practical/Tod_Beardsley_GCIA.doc (Dec 6, 2003)

Nimda Worm Analysis:
2Cisco Systems. How to Protect Your Network Against the Nimda Virus (Apr 23, 2003)
URL: www.cisco.com/warp/public/63/nimda.shtml (Dec 6, 2003)

3SANS Institute. Reading Room. An Overview, Eugene J Aronne, (Oct 8, 2001)
URL: HTTP://www.sans.org/rr/papers/index.php?id=95 (Dec 6, 2003)

4CERT Coordination Center. Original release date: (Sep 18, 2001)
Revised: (September 25, 2001) Source: CERT/CC
URL: HTTP://www.cert.org/advisories/CA-2001-26.html (Dec 6, 2003)

TFTP: External connection to Internal TFTP Server Analysis:
5FAQS.org. Network Working Group, Author: K. Sollins, MIT, STD: 33 (Jul 1992)
Request For Comments: 1350
URL: HTTP://www.faqs.org/rfcs/rfc1350.html (Dec 6, 2003)

6Incidents.org. InternetStormCenter: Result from a search on “port 69”, from Neophasis
URL:HTTP://isc.incidents.org/port_details.html?port=69&repax=1&tarax=2&srcax=2&perce

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
74

nt=N&days=40 (Dec 6, 2003)

8CGI Null Byte Analysis:
SansGIAC. Author: Joe Ellis, GIAC GCIA Practical (v3.0) Submitted (May 14, 2002)
URL: HTTP://www.giac.org/practical/Joe_Ellis_GCIA.doc (Dec 6, 2003)

9Snort.org. Author: The Snort Core Team, Erek Adams (Apr 9, 2003)
URL: HTTP://www.snort.org/docs/FAQ.txt section 4.12. (Dec 6, 2003)

Possible Trojan server activity Analysis:
10SANS Institute. Deconstruction SubSeven, the Trojan Horse of Choice, Author: Jamie
Crapanzano (2003)
URL: HTTP://www.sans.org/rr/papers/36/953.pdf (Dec 6, 2003)

11SecurityFocus. Bugtraq Message Board, Author: Matt Scarborough (Jun 30, 2001)
URL: HTTP://www.securityfocus.com/archive/75/194328 (Dec 6, 2003)

12High port 65535 tcp - Possible Red Worm traffic Analysis:
SANS Institute. Adore Worm, Version 0.8, No Author Cited (Apr 12, 2001)
URL: HTTP://www.sans.org/y2k/adore.htm (Dec 6, 2003)

13spp_HTTP_decode: IIS Unicode attack detected Analysis:
CERT Coordination Center. Vulnerability Note VU#111677, Author: Shawn Hernan (Oct 10,
2000)
URL: HTTP://www.kb.cert.org/vuls/id/111677 (Dec 6, 2003)

14Port 55850 tcp - Possible myserver activity - ref. 01:
Insecure.org. Security Incidents Message Board, Author Mike Worman (Oct 23,2000)
URL: HTTP://seclists.org/incidents/2000/Oct/0141.html (Dec 6, 2003)

15IRC evil - running XDCC Analysis:
Incidents.org. intrusions@incidents.org Mailing list posting LOGS: GIAC GCIA Version 3.3
Practical (Marcus Wu)
URL: HTTP://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00120.html (Dec 6, 2003)

16SMB Name Wildcard Analysis:
Insecure.org. Message Board, Thread: Intrusion Detection Systems: Re: Source port of Samba
Scans? (Mar 11, 2000)
URL: HTTP://seclists.org/lists/ids/2000/Mar/0065.html (Dec 6, 2003)

