
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Version 3.4

David C. Love

February 24, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TABLE OF CONTENTS
State of Intrusion Detection... 3
Brief Review of Queso...3
NMap's OS Detection.. 4
The Packets.. 5
Scanning a Target.. 6
Deciphering a Fingerprint.. 6
A Fingerprint Trace..9
Adding a fingerprint...14
References..15

Network Detects.. 16
Detect #1.. 16
Detect #2.. 20
Detect #3.. 25

Analyze This..32
Executive Summary... 32
Analyzed Files... 32
Machine Overview...33
Summary of Detects...34
Alerts 34
Out-Of-Spec Packets..53
Scans 55

Top Talkers.. 57
External Sources.. 58
216.152.64.155...58
68.155.195.92...59
200.51.212.201...60
199.29.143.28...62
216.231.173.71...63

Link Graph and Analysis... 63
Insights...66
Defensive Recommendation.. 68
Analysis Process.. 70

References..73

2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. State of Intrusion Detection
Operating System Detection (OSD) is nothing new: Queso1 has been able to use 7
packets to identify 100 systems since at least 1998. NMap2 followed soon after and
has been updated ever since. It uses 8 packets, and can now identify nearly 1,000
operating systems and devices.

This paper provides an in-depth view into how NMap's OSD works. It looks into the
packets NMap sends, and how the response packetsare used to build an OS
"fingerprint" to identify the system. The fingerprint format is detailed, showing exactly
what kind of information NMap can use in its effort to detemine the OS in question.

NMap is then used to scan an OS currently unknown to it, and the resulting fingerprint
compared with the actual packet trace, showing line-by-line how NMap works. Finally,
the paper shows how to add the fingerprint to NMap's database, allowing the target
system to be automatically recognized in the future.

1.1 Brief Review of Queso
The first OS fingerprinting to I'm aware of was Queso. Its ability to differentiate between
more than 100 operating system was impressive, but only half the story. The amazing
part of Queso is that it was able to do its job by sending only 7 packets to a given host.
Then, by analysing the responses, it could pinpoint the target OS with amazing (for the
time) accuracy.

It worked by playing games with the flags in the TCP header. It would send a group of
six packets, identical except for their sequence numbers (random) and flags, which
were set as follows: SYN, SYN|ACK, FIN, FIN|ACK, SYN|FIN, PUSH and
SYN|XXX|YYY, where XXX and YYY correspond to the unused flag bits (now used for
ECN).

The first packet is a standard part of a TCP handshake. The remainder, however, are
invalid. Queso would send the packets, wait for the responses, then recorded four
pieces of information for each: the sequence number, ack number, window size and
TCP flags. It would then compare the results against a text file containing the known
responses for various operating systems and print any matches it found. If no match
was found, it would print out the configuration information it got back, allowing the
operater to add it to the configuration file if the target OS was known.

3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

That's all there was to it. What's really important however is not so much how it worked,
but why it worked. Queso was designed to take advantage of the fact that while the
correct behavior of an IP stack is strictly codified, the handling of abnormal traffic is not.
For example, when an unexpected TCP packet is received by a host, it's required to
send back a packet with the RESET flag set. No mention is made, however, about what
should be done with the other fields in the packet; the RESET flag itself is sufficient to
signal the sender that there's a problem, and as far as the RFCs are concerned, the
other fields are insignificant.

Therein lies the secret. Different hosts respond differently to unexpected data. Some
hosts will provide an ack number for a RESET, while others won't. Some hosts set the
window size, while others copy it from the original packet. Some ignore the XXX and
YYY flag bits altogether, treating Packet 7 as a standard SYN packet.

By tracking and codifying these responses, Queso was able identify 100 different
operating systems.

1.2 NMap's OS Detection
Where Queso left off, NMap took over, and It's been adding new detection methods
ever since. Here are just a few of the tricks used by NMap.

TCP Options
There's a wealth of information available in the way systems handle TCP options.
Every TCP packet sent by NMap for OSD contains the same set of options set in the
same order. NMap then checks the replies to see what options were returned and what
order they were returned in. The variations here are amazing.

Additionally, NMap analizes the timestamp option3 and the returned values to try and
determine, in broad categories, how frequently the remote system updates its
timestamps.

Closed vs. Open Ports
Sending an invalid packet to an open port often yields different results than when
sending that same packet to a closed port.

Sequence Numbers

In addition to comparing sequence numbers with their resulting acks, NMap analyses
the returned sequence numbers in an effort to determine how those number are

4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

generated. This is useful not only in categorizing systems, but can be a significant aid
to an attacker: sequence numbers that are trivially generated (incremented by 1, for
example) can make it much easier for an attacker to guess the next number in series.

ICMP Errors

Some systems will set the IP TOS (type-of-service) field for these packets, even though
it should be zero, according to the standard.4 Other systems munge the data as they
copy the original UDP packet into the ICMP response. Even the amount of data copied
is revealing. As Fyodor says: "For a port unreachable message, almost all
implementations send only the required IP header + 8 bytes back. However, Solaris
sends back a bit more and Linux sends back even more than that. The beauty with this
is it allows nmap to recognize Linux and Solaris hosts even if they don't have any ports
listening." 5

NMap tracks all of this information and more.

1.3 The Packets
NMap send the following 8 packets during its OSD phase:

Type Port State TCP Flags

1 TCP Open SYN

2 TCP Open NULL

3 TCP Open SYN, FIN, URG, PSH

4 TCP Open ACK

5 TCP Closed SYN

6 TCP Closed ACK

7 TCP Closed FIN, PSH, URG

8 UDP Closed N/A

All 7 TCP packets have the same TPC Options set in the same order: mss 1460, nop,
wscale 0, nop, nop, timestamp 1061109567 0.

5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1.4 Scanning a Target
Here NMap is used to scan a system known to be running OpenBSD 3.4. At this point
in time, NMap doesn't recognize that system, so it instead prints out the fingerprint it
collected.

$ nmap -O 10.0.0.3

Starting nmap 3.48 (http://www.insecure.org/nmap/)

Interesting ports on beigebox (10.0.0.3):

(The 1653 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

53/tcp open domain

80/tcp open http

113/tcp open auth

No exact OS matches for host (If you know what OS is running on it, see
http://www.insecure.org/cgi-bin/nmap-submit.cgi).

TCP/IP fingerprint:

SInfo(V=3.48%P=powerpc-apple-darwin7.2.0%D=1/20%Time=403612B8%O=22%C=1)

TSeq(Class=TR%IPID=RD%TS=2HZ)

T1(Resp=Y%DF=Y%W=403D%ACK=S++%Flags=AS%Ops=MNWNNT)

T2(Resp=N)

T3(Resp=Y%DF=Y%W=403D%ACK=S++%Flags=AS%Ops=MNWNNT)

T4(Resp=Y%DF=Y%W=4000%ACK=O%Flags=R%Ops=)

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(Resp=Y%DF=Y%W=0%ACK=S%Flags=AR%Ops=)

PU(Resp=Y%DF=N%TOS=0%IPLEN=38%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%DAT=E)

Now what the heck does that mean?

1.5 Deciphering a Fingerprint
NMap's fingerprint format is only vaguely documented, but since the source is freely
available, it's possible to decipher the language.
The 10 lines of output generated by NMap are actually straight-forward, once the codes
are understood. Each line is in the format "type(key=value...)", and multiple key/value
pairs can be listed by separating them with a percent sign ('%').

Values are either numbers or strings. Numbers are stored in hex unless otherwise
noted. With the exception of SInfo's P parameter, all the strings are predefined.

6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Multiple values can be specified for a key by separating them with a pipe ('|'):
The entry "gcd=1000|2000|3000" means that gcd can have a value of 1000, 2000 or
3000. Likewise, "DF = Y|N" means DF can by Y or N.

Numeric comparisons can be created using '<' for "less than" and '>' for "greater than".
The entry "gcd=<130" means that gcd is less than 130. Remember that the equal sign
is the key/value separator and not part of the separator. If you want to note that gcd
can be less than or equal to 130, you'd have to say "gcd=<130|130".

Finally, you can create numeric ranges by joining comparisons with '&'. The entry
"SI=<7A8F&>50" means that SI must be less than 7A8F and greater than 50.

The next table shows all the available keys for NMap, which types they can belong to
and the acceptable values for each.

Key Types Purpose Values

V SInfo Version

P SInfo System information String:
powerpc-apple-darwin7.2.0

D SInfo Date DD/MM

T SInfo Time field (unix format) Number (decimal)

O SInfo Open port used for test Number (decimal)

C SInfo Closed port used for test Number (decimal)

Class TSeq Classification predicting for initial
sequence numbers, based on
sampling.

64 - multiple of 64,000
TD - time-dependent (Microsoft)
i800 - multiple of 800
TR - truly random
C - constant
RI - random incremental

7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

IPID TSeq Classification for the way IP IDs
are generated.

C - constant or duplicates
I - simple increment (by 1)
RD - random, up or down
RPI - random, always increasing
Z - every packet has an IPID of 0
BI - simple increment by 1, but
Microsoft forgot network ordering
so it increases by 256 on little-
endian systems

TS TSeq Classification for how the TCP
options timestamps received
were incremented

0 - got back at least one zero
2HZ
100HZ
1000HZ
U - none returned

SI TSeq Sequence number increment
range if Class is TD or RI

Number

Val TSeq Sequence number if Class is C Number

gcd TSeq Greatest common denominator
for sequence numbers if Class is
TD or RI

Number

Resp T#, PU Was a response received Y or N

DF T# Was the Don't Fragment bit set? Y, N, Y|N

W T# Window size Number

ACK T# 0
S - same as sent sequence
S++ - same as sent sequence + 1

Flags T# TCP Flags set in response Any of BUAPRSF

Ops T# TCP Options set in the order
they appear in the response

N - nop
M - mss
E - echoed mss
W - window scale
T - timestamp

TOS PU IP Type of Service Number

8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

IPLEN PU Length from IP header Number

RIPTL PU Length from IP header echoed
back in icmp message

Number

RID PU

RIPCK PU UDP checksum echoed back in
icmp message correct?

E = Yes
F = No (Fouled up)

UCK PU UDP checksum correct? E = Yes
F = No

ULEN PU UDP Length Number

DAT PU Data echoed back correctly? E = Yes (or no data echoed)
F = No

Given that information, we can decode the fingerprint.

SInfo(V=3.48%P=powerpc-apple-darwin7.2.0%D=1/20%Time=403612B8%O=22%C=1)

This entry is really only of interest when submitting a new fingerprint for inclusion with
NMap's default distribution (see Adding a Fingerprint below). It shows the fingerprint
was generated on Jan 20th (UNIX time 403612B8) using NMap V3.48, running on a
platform that identified itself as powerpc-apple-darwin7.2.0 (in this case, Mac OS X
10.3.2). Port 22 was used for the open-port tests and port 1 was used for the closed
port tests.

TSeq(Class=TR%IPID=RD%TS=2HZ)

This shows the information NMap was able to derive about the sequence numbers
generated by the target. In this case, the Class shows the sequence numbers were
truly random (TR), as were the IP ids (RD).

The TS field is based on the average of the ratios of the intervals between the
timestamps recorded in the received packet's TCP Options, and the intervals between
the times when the originating packets were actually sent. This gives NMap a view into
the resolution of the clock used in the target's TCP stack. In this case, the target
system falls in the 2Hz range.

9

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1.6 A Fingerprint Trace
Two points need to be made here. First, every TCP response packet from the target
resulted in a RESET packet from the local host. These RESET packets are not
presented below. Second, a full trace of the NMap OSD is considerably longer than
shown below, as NMap will resend queries if it doesn't receive answers back quickly
enough. On a local 100Mbs network, NMap sent three complete sets of packets before
it was satisified with the answers. This is by no means a silent scan.

The "interesting" portions -- those that relate directly to NMap's fingerprint -- are
highlighted in the response. In the case of the TCP Options, only the option identifies
themselves are highlighted, since the values received aren't directly stored in the
fingerprint.

Packet 1: TCP SYN to Open Port
10.0.0.1.62864 > 10.0.0.3.22: SE 1131834306:1131834306(0) win 4096 <wscale
10,nop,mss 265,timestamp 1061109567 0,eol>

 4500 003c e566 0000 3b06 838b 0a00 0001

 0a00 0003 f590 0016 4376 6bc2 0000 0000
 a042 1000 fd4a 0000 0303 0a01 0204 0109

 080a 3f3f 3f3f 0000 0000 0000

10.0.0.3.22 > 10.0.0.1.62864: S 3104930414:3104930414(0) ack 1131834307 win
16445 <mss 1460,nop,wscale 0,nop,nop,timestamp 1722801641 1061109567> (DF)

 4500 003c 0270 4000 4006 2182 0a00 0003
 0a00 0001 0016 f590 b911 7a6e 4376 6bc3
 a012 403d 5878 0000 0204 05b4 0103 0300
 0101 080a 66af dde9 3f3f 3f3f 8dc8 4947

T1(Resp=Y%DF=Y%W=403D%ACK=S++%Flags=AS%Ops=MNWNNT)

DF=Y: The DF bit is the middle bit of the IP header flags, which are stored in the first
three bits of byte 6 of the IP header. Byte 6 has the value 40, which gives the flags the
binary value '010', so DF = 1.
W=403D: The returned window size (4 bytes starting with byte 34) is 403d.
ACK=S++: The ack number (4 bytes starting at byte 28) is '43766bc3' which is one
greater than the original sequence number of '43766bc2' (4 bytes starting at byte 24).
Flags=AS: The TCP flags (byte 33) are '42', indicating ACK and SYN are set.
Ops=MNWNNT: The returned TCP Options appeared in this order: 02 (mss, bytes 40-43) ,
01 (nop, byte 44), 03 (window scale, bytes 45-47), 01 (nop, byte 48), 01 (nop, byte 49),
08 (timestamp, bytes 50-59).

10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Packet 2: TCP NULL to Open Port
10.0.0.1.62865 > 10.0.0.3.22: . win 1024 <wscale 10,nop,mss 265,timestamp
1061109567 0,eol>

 4500 003c 3258 0000 2c06 459a 0a00 0001

 0a00 0003 f591 0016 870c 674f 0000 0000

 a000 0400 ca68 0000 0303 0a01 0204 0109

 080a 3f3f 3f3f 0000 0000 0000

T2(Resp=N)

There was no response to this packet.

Packet 3: TCP SYN,FIN,URG,PSH to Open Port
10.0.0.1.62866 > 10.0.0.3.22: SFP 1131834306:1131834306(0) win 2048 urg 0
<wscale 10,nop,mss 265,timestamp 1061109567 0,eol>

 4500 003c 85b0 0000 2906 f541 0a00 0001

 0a00 0003 f592 0016 4376 6bc2 0000 0000

 a02b 0800 0560 0000 0303 0a01 0204 0109

 080a 3f3f 3f3f 0000 0000 0000

10.0.0.3.22 > 10.0.0.1.62866: S 2996330388:2996330388(0) ack 1131834307 win
16445 <mss 1460,nop,wscale 0,nop,nop,timestamp 1722801641 1061109567> (DF)

 4500 003c 4324 4000 4006 e0cd 0a00 0003
 0a00 0001 0016 f592 b298 5f94 4376 6bc3
 a012 403d 79c9 0000 0204 05b4 0103 0300
 0101 080a 66af dde9 3f3f 3f3f f58b 7d89

T3(Resp=Y%DF=Y%W=403D%ACK=S++%Flags=AS%Ops=MNWNNT)

Identical to packet 1, which is interesting. OpenBSD is completely ignoring the FIN flag
and treating the packet as a valid SYN, returning a SYN|ACK.

Packet 4: TCP ACK to Open Port
10.0.0.1.62867 > 10.0.0.3.22: . ack 0 win 2048 <wscale 10,nop,mss
265,timestamp 1061109567 0,eol>

 4500 003c 5f7c 0000 3106 1376 0a00 0001

 0a00 0003 f593 0016 4376 6bc2 0000 0000

 a010 0800 057a 0000 0303 0a01 0204 0109

 080a 3f3f 3f3f 0000 0000 0000

12:03:27.013308 10.0.0.3.22 > 10.0.0.1.62867: R 0:0(0) win 16384 (DF)

 4500 0028 4dbe 4000 4006 d647 0a00 0003
 0a00 0001 0016 f593 0000 0000 0000 0000
 5004 4000 636c 0000 0000 0000 0000 0f5c
 8142

T4(Resp=Y%DF=Y%W=4000%ACK=O%Flags=R%Ops=)

11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

OpenBSD responds with a RESET, as expected. The ack number is cleared and no
options are sent. Notice the returned window of 4000 and compare it to the results for
Packet 6.

Packet 5: TCP SYN to Closed Port
10.0.0.1.62868 > 10.0.0.3.1: S 1131834306:1131834306(0) win 3072 <wscale
10,nop,mss 265,timestamp 1061109567 0,eol>

 4500 003c 0823 0000 3606 65cf 0a00 0001

 0a00 0003 f594 0001 4376 6bc2 0000 0000

 a002 0c00 019c 0000 0303 0a01 0204 0109

 080a 3f3f 3f3f 0000 0000 0000

12:03:27.013315 10.0.0.3.1 > 10.0.0.1.62868: R 0:0(0) ack 1131834307 win 0
(DF)

 4500 0028 48ef 4000 4006 db16 0a00 0003
 0a00 0001 0001 f594 0000 0000 4376 6bc3
 5014 0000 f436 0000 0000 0000 0000 066f
 6374

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

It's almost as though OpenBSD wanted to treat this as an open port, then rejected it at
the last moment. Notice that the ACK is set, and the ack number is one greater than
the original sequence number, just as if this were a normal SYN to an open port. As will
be seen on all RESETs from this machine, the window size is 0 and no TCP options are
included.

Packet 6: TCP ACK to Closed Port
10.0.0.1.62869 > 10.0.0.3.1: . ack 0 win 3072 <wscale 10,nop,mss
265,timestamp 1061109567 0,eol>

 4500 003c 0db5 0000 2a06 6c3d 0a00 0001

 0a00 0003 f595 0001 4376 6bc2 0000 0000

 a010 0c00 018d 0000 0303 0a01 0204 0109

 080a 3f3f 3f3f 0000 0000 0000

10.0.0.3.1 > 10.0.0.1.62869: R 0:0(0) win 0 (DF)

 4500 0028 4eb9 4000 4006 d54c 0a00 0003
 0a00 0001 0001 f595 0000 0000 0000 0000
 5004 0000 a37f 0000 0000 0000 0000 63a4
 250c

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

This is almost identical to Packet 4, which sent an ACK to an open port, except that the

12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

returned windows size is set to 0.

Packet 7: TCP FIN,PSH,URG to Closed Port
10.0.0.1.62870 > 10.0.0.3.1: FP 1131834306:1131834306(0) win 3072 urg 0
<wscale 10,nop,mss 265,timestamp 1061109567 0,eol>

 4500 003c 9195 0000 3a06 d85c 0a00 0001

 0a00 0003 f596 0001 4376 6bc2 0000 0000
 a029 0c00 0173 0000 0303 0a01 0204 0109

 080a 3f3f 3f3f 0000 0000 0000

12:03:27.013379 10.0.0.3.1 > 10.0.0.1.62870: R 0:0(0) ack 1131834306 win 0
(DF)

 4500 0028 140b 4000 4006 0ffb 0a00 0003
 0a00 0001 0001 f596 0000 0000 4376 6bc2
 5014 0000 f435 0000 0000 0000 0000 1e4e
 2666

T7(Resp=Y%DF=Y%W=0%ACK=S%Flags=AR%Ops=)

Similar to packet 5, except this time the ack number is set to the originating sequence
number.

Packet 8: UDP to Closed Port
10.0.0.1.62857 > 10.0.0.3.1: udp 300

 4500 0148 18bf 0000 3811 521c 0a00 0001
 0a00 0003 f589 0001 0134 b4f4 6363 6363
 6363

10.0.0.3 > 10.0.0.1: icmp 36: 10.0.0.3 udp port 1 unreachable

 4500 0038 1b17 0000 ff01 89e3 0a00 0003
 0a00 0001 0303 5149 0000 0000 4500 0148
 18bf 0000 3811 521c 0a00 0001 0a00 0003
 f589 0001 0134 b4f4 e0e6 a5f4

PU(Resp=Y%DF=N%TOS=0%IPLEN=38%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%DAT=E)

This packet tests the targets ICMP handling, checking the contents of the ICMP Port
Unreachable message returned for the UDP packet. In the descriptions below, the word
"echoed" refers to the data in the payload of the ICMP packet. It's a reference to how
well that data echoes the original packet.

DF=N: For the first time, DF is false.
TOS=0: The IP Type-Of Service field (byte 2) is 0.
IPLEN=38: The IP Header Length field is (bytes 2-3) is 0038
RIPTL=148: The echoed IP Header Length field (bytes 30-31) is 0148.

13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

RID=E: The echoed IP ID of 18bf (bytes 32-33) matches the original.
RIPCK=E: The echoed IP checksum (521c) matches the original.
UCK=E: The echoed UDP checksum of b4f4 (bytes 34-35) matches original.
ULEN=134: The echoed UDP length (0134) matches the original.
DAT=E: All the echoed data is consistent with the original.

1.7 Adding a fingerprint
Getting nmap to recognize a new fingerprint is easy. In a temporary working directory,
copy the fingerprint into a file named nmap-os-fingerprints. Edit the file to remote the
SInfo line, replacing it with the appropriate Fingerprint and Class lines. For OpenBSD
3.4, the entry looks like this:

Fingerprint OpenBSD 3.4

Class OpenBSD | OpenBSD | 3.X | general purpose

TSeq(Class=TR%IPID=RD%TS=2HZ)

T1(Resp=Y%DF=Y%W=403D%ACK=S++%Flags=AS%Ops=MNWNNT)

T2(Resp=N)

T3(Resp=Y%DF=Y%W=403D%ACK=S++%Flags=AS%Ops=MNWNNT)

T4(Resp=Y%DF=Y%W=4000%ACK=O%Flags=R%Ops=)

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(Resp=Y%DF=Y%W=0%ACK=S%Flags=AR%Ops=)

PU(Resp=Y%DF=N%TOS=0%IPLEN=38%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%DAT=E)

The Fingerprint line uniquely identifies this fingerprint from all the others NMap knows
about. You'll need to scan NMap's nmap-os-fingerprints file to make certain your name
doesn't conflict with an existing one. Also note that there can be multiple entries for the
same system: different patches and installed applications (especially firewalls) can
affect the fingerprint generated. This line still needs to be unique, however.

The Class line consists of four entries -- vendor, OS family, OS generation and device
type -- separated by pipes ('|'). These are all text entries and some may be blank.
Check NMap's default nmap-os-fingerprints file for examples.

Save the file and test it with nmap by setting the NMAPDIR variable to the current
directory:

$ NMAPDIR=. nmap -O 10.0.1.103

Starting nmap 3.48 (http://www.insecure.org/nmap/)

14

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Interesting ports on beigebox (10.0.0.3):

(The 1652 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

53/tcp open domain

80/tcp open http

113/tcp open auth

6000/tcp open X11

Device type: general purpose

Running: OpenBSD 3.X

OS details: OpenBSD 3.4

New completed fingerprints should be submitted to http://www.insecure.org/cgi-bin/
nmap-submit.cgi for inclusion in future versions of NMap.

1.8 References

Savage. QueSo source code.
http://www.l0t3k.net/tools/FingerPrinting/queso-980922.tar.gz (11 Feb 2003),
September, 1998.

Fyodor. NMap source code.
http://www.insecure.org/nmap (11 Feb 2003).

Stevens, W. Richard, TCP/IP Illustrated, Volume 1 The Protocols,
Reading, MA: Addison-Wesley Pub Co., Jan. 1994.

Fyodor, Remote OS detection via TCP/IP Stack FingerPrinting.
http://www.insecure.org/nmap/nmap-fingerprinting-article.html (11 Feb 2003), June
2002.

V. Jacobosn, et. al. RFC1323: TCP Extensions for High Performance.
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1323.html (11 Feb 2003), May 1992.

15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. Network Detects

2.1 Detect #1
Source

This detect was captured outside the firewall of a local network I'm responsible for. The
firewall sits between the Internet, the local network and a samll service network. The
only external services provided by the service network are smtp and dns. The local
addresses have been sanitize.

Detect Generation

The data was in question collected using tcpdump between 12/15/03 - 12/17/03. In the
process of checking on another issue, I noticed the occasional packet coming from
source port 666. The packets were blocked automatically by the firewall, but they
raised my interest. Over a three day period, I captured the following packets.

14:11:16.121378 64.156.39.12.666 > 10.0.0.1.1026: udp 525

02:24:14.800017 64.156.39.12.666 > 10.0.0.1.1026: udp 543

22:22:58.992665 64.156.39.12.666 > 10.0.0.1.1026: udp 476

04:56:10.757365 64.156.39.12.666 > 10.0.0.1.1026: udp 535

Probability of Spoofing

High. Given the source port and the nature of this attack, I've no reason to trust the
source information. This is a single-packet UDP attack requiring no response, so as far
as the attacker is concerned, the source is irrelavent.

There is a possibility that this was caused by an attack from an infected host. A heads-
up to the owner's of that network block might be appropriate. A who-is on the source
address 64.56.38.12 yields the following information.
Comcast Telecommunications, Inc. CTI-TEL (NET-64-56-32-0-1)

 64.56.32.0 - 64.56.63.255

Asia Star Broadcasting Company CMA1-ASIASTAR-1 (NET-64-56-39-0-1)

 64.56.39.0 - 64.56.39.31

16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Description of Attack

The attack comes from port 666 (frequently referred to as the Doom port, since id's
game used this port) and ephemeral port 1026. A google search of port 666 gave no
real light in the situation, but a search of port 1026 immediately turned up possible
answers.

Port 1026 is frequently mentioned in association with Microsoft's Messenger Service.
This service was originally intended to provide administrators a means of sending
messages to users (similar to wall on Unix), but spammers had found they could use it
just as easily to pop up spam on user's desktops.

A single UDP packet containing the desired message sent to the Messenger Service
port (which is not always 1026) is all it takes to display an ad.

Attack Mechanism

Performing an ASCII-decode on one of the packets using 'tcpdump -X' quickly reveals
the purpose of the packet.

04:56:10.757365 64.156.39.12.666 > 10.0.0.1.1026: udp 535

0x0000 4500 0233 718b 0000 7011 7e9b 409c 270c E..3q...p.~.@.'.

0x0010 0a00 0001 029a 0402 021f 801b 0400 2800 C..G..........(.

0x0020 1000 0000 0000 0000 0000 0000 0000 0000

0x0030 0000 0000 f891 7b5a 00ff d011 a9b2 00c0 {Z........

0x0040 4fb6 e6fc 3031 3030 3030 3131 3030 3031 O...010000110001

0x0050 3130 3031 0000 0000 0100 0000 0000 0000 1001............

0x0060 0000 ffff ffff c701 0000 0000 0600 0000

0x0070 0000 0000 0600 0000 4164 6d69 6e00 0000 Admin...

0x0080 0400 0000 0000 0000 0400 0000 596f 7500 You.

0x0090 9701 0000 0000 0000 9701 0000 0d0d 2a2a **

0x00a0 2a2a 2a2a 2a2a 2a2a 2057 4152 4e49 4e47 ********.WARNING

0x00b0 3a20 5468 6973 206d 6573 7361 6765 2063 :.This.message.c

0x00c0 6f6e 6669 726d 7320 796f 7572 2073 7973 onfirms.your.sys

0x00d0 7465 6d20 6973 2056 554c 4e45 5241 424c tem.is.VULNERABL

0x00e0 4520 746f 2061 7474 6163 6b73 202a 2a2a E.to.attacks.***

0x00f0 2a2a 2a2a 2a2a 2a0d 0d0d 5468 6520 7265 *******...The.re

0x0100 6365 7074 696f 6e20 6f66 2061 6e6e 6f79 ception.of.annoy

0x0110 696e 6720 6d65 7373 656e 6765 7220 706f ing.messenger.po

0x0120 702d 7570 2061 6473 2063 6f6e 6669 726d p-up.ads.confirm

0x0130 730d 7468 6174 2079 6f75 7220 7379 7374 s.that.your.syst

0x0140 656d 2069 7320 7675 6c6e 6572 6162 6c65 em.is.vulnerable

0x0150 2074 6f20 7669 7275 7365 7320 616e 6420 .to.viruses.and.

0x0160 6174 7461 636b 7320 6279 206d 616c 6963 attacks.by.malic

17

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0170 696f 7573 2068 6163 6b65 7273 2e0d 0d45 ious.hackers...E

0x0180 6c69 6d69 6e61 7465 2074 6865 2061 6e6e liminate.the.ann

0x0190 6f79 696e 6720 706f 7020 7570 7320 616e oying.pop.ups.an

0x01a0 6420 7365 6375 7265 2079 6f75 7220 636f d.secure.your.co

0x01b0 6d70 7574 6572 0d77 6974 6820 6f6e 6520 mputer.with.one.

0x01c0 6561 7379 2d74 6f2d 7573 6520 7072 6f67 easy-to-use.prog

0x01d0 7261 6d20 2d20 4d65 7373 6167 6520 4465 ram.-.Message.De

0x01e0 6665 6e64 6572 2e0d 0d0d 2046 7265 6520 fender.....Free.

0x01f0 696e 666f 726d 6174 696f 6e20 6176 6169 information.avai

0x0200 6c61 626c 6520 2d20 0d0d 2047 6f20 746f lable.-....Go.to

0x0210 3a20 7777 772e 4d65 7373 6167 6544 6566 :.www.MessageDef

0x0220 656e 6465 722e 636f 6d20 6e6f 7721 0d0d ender.com.now!..

0x0230 0d0d 00

Decoding the other packets showed them to be identical to this one. An additional
search of the collected data, this time for port 1026, yielded 7 additional messages from
different hosts selling everything from beauty tips to Viagra. This particular add was
had the most chutzpah, pointing to a site that sells software designed to block this type
of ad.

A search of Microsoft web site turned up an explanation of how Messenger Service
worked. In the article "Protecting Window RPC Traffic" 6, it's mentioned that Messenger
Service is actually one of Window's RPC clients. The normal flow of traffic would be an
incoming tcp query to port 135, which is the Window RPC Port Mapper. That query
would as for and get the port number of a particular RPC service on that box. The
calling program would then send queries directly to the desired service.

That raised another question, however, as there was no incoming traffic to port 135.
The answer to that came from LURHQ7. It turns out, that by default, Messenger Service
is almost always on port 1026, making the call to port 135 unnecessary.

Correlations

Johannes B. Ullrich of SANS published an excellent wrapup on this issue to the North
American Network Operator's Group mailing list8. He was researching a similar ad for a
company called PopAdStop.com and found that the software they sold to stop this type
of popup ad was itself responsible for sending out these messages. PopAdStop.com is
surprisingly no longer in business.

Also see the LURHQ article mentioned earlier.

18

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Evidence of Active Targeting

None. This appears to be a very broad scan for any open hosts.

Severity

Criticality: 1. This attack was pointed at a firewall which hides the internal network via
NAT. I take attacks against my firewalls very seriously, but because of the nature of
these packets, I've lowered the criticality accordingly. The firewall is not Windows-
based.
Lethality: 2. This is an annoyance for Windows users, but will not compromise their
system.
System Countermeasures: 5. All machines are up to date in terms of patches and OS
versions. All systems run anti-virus software and personal firewalls are enabled.
Further, the site in question has to Windows machines, making this attack moot.
Network Countermeasures: 5. The firewall is the only means into or out of the local
net, and it only allows traffic it expects. Inbound traffic is not allowed to pass unless it's
part of an active conversation the firewall has been monitoring. The packets in question
were not allowed in. Had the roles been reversed, traffic from port 666 would not have
been allowed out.

Severity = (criticallity + lethality) - countermeasures(system + network)
 = (1+2)-(5+5) = -7
This "attack" is not worth considering.

Security Recommendations

At the network level, block all inbound and outbound traffic from port 666. If possible,
block all inbound network traffic that is not part of a recognized connection.

At the Windows level, make certain all patches are applied. This is especially important
as there are known exploits that access system by the same mechanism.9
Disable "Messenger Service" if possible: Microsoft has instructions on how to do this
for Window NT10, 200011 and XP12. For older versions of Windows, consider upgrading.
If that's not possible, try using personal firewall software on these machines to block
udp traffic to at least port 1026, if not the wider range of 1025-1031. Note that this last
piece of advice carries some risk. There's no guarantee as to which port Messenger
Service resides on, and arbitrarily blocking all those ports might break some other
service.

Multiple Choice Question
The most effective way to prevent the display of Messenger spam from the Internet

19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

across all versions of Windows it to:

1. Disable "Messenger Service"
2. Use a properly configured external firewall
3. Make certain all Critical Updates have been applied.
4. All of the above.

Answer 4.

2.2 Detect #2
Source

The data for these detect was downloaded from www.incidents.org/logs/Raw. In all, 9
days worth of raw tcpdump files were considered. The files used were 2002.10.10,
2002.10.11, 2002.10.12, 2002.10.13, 2002.10.14, 2002.10.15, 2002.10.16, 2002.10.17
and 2002.10.18.

Detect Generation

The tcpdump files were processed by Snort on at a time, using the command line:
 $ snort -c -r $file ./snort.conf -l logs -S HOME_NET=207.166.0.0/16 \

 EXTERNAL_NET=!207.166.0.0/16

The options used were:
 -r read from file, where $file was the name of one of the tcpdump files.
 -S use the provided values for HOME_NET and EXTERNAL_NET, overriding the

values in snort.conf.
-c use the configuration file snort.con
-l logs to the logs/ directory

The snort configuration files was set to also load the alerts into a mysql database for
subsequent use with ACID.
The following Snort rules was triggered:
alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q access";
flags:A+; dsize: >1; reference:arachnids,203; sid:184; classtype:misc-acti

vity; rev:3;)

The issued alerts looks like this:
[**] [1:184:3] BACKDOOR Q access [**]

20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[Classification: Misc activity] [Priority: 3]

11/13-15:55:13.576507 255.255.255.255:31337 -> 207.166.225.96:515

TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43

***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20

[Xref => http://www.whitehats.com/info/IDS203]

The packet that caused the attack is here:
15:55:13.576507 255.255.255.255.31337 > 207.166.225.96.515: R 0:3(3) ack 0
win 0

 4500 002b 0000 0000 0f06 4511 ffff ffff

 cfa6 e160 7a69 0203 0000 0000 0000 0000

 5014 0000 fa38 0000 636b 6f00 0000

Probability of Spoofing

There is no question the source address (255.255.255.255) was spoofed. This is the
limited broadcast address and replies to it would never be forwarded by a router.4

Description of Attack

This alert appers to indicate an attack by the Q trojan. Its author, Mixter, calls it a
"Remote shell and admin tool with strong encryption." 13 It consists of two pieces, a
client which gets installed on the remote host, and a server which controls the program.
Once the client's installed, the server can use it to open a remote shell, or execute any
command on the host. Later versions can even direct the client to listen for traffic on a
specific port, then automatically "bounce" (retransmit) it to yet another remote machine.

Attack Mechanism

The Q program is not an attack program, so it relies on some other method to get its
client installed on its target. Once the client is installed, it sniffs all incoming packets to
its host, looking for any messages from a Q server. This technique renders it
transparent to port-scanners, since it has no associated ports. Commands can be
hidden in TCP, UDP or ICMP packets, and can be completely self-contained within a
single packet, rendering communication back to the server unnecessary unless the
server requests it.

The server has options to spoof any source address, making the Snort rule above
ineffective. In fact, as far back as Q 1.0, the default was to use random number for
source ip and port; I've been unable to determine what attack led to this exact Snort
rule. It does appear to be geared at a single instance, or a small subset, of the attacks
this tool is capable of.

21

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Q client/server is written to run on UNIX hosts as command-line tools. The client,
qd, goes to great lengths to hide itself from casual observance by system administrators
and make itself difficult to purge.

Correlations

A quick scan of the Q source code for versions 1, 2 and the current 2.04 show that it
could be the culprit. All three versions are available at PacketStorm Security14.

A review of arachNIDS Intrusion Event Database15 show agreement that the rule is not
generic, but targeted at a particular exploit.' The Snort signature listed is slightly more
targeted than the one in Snort 2.0, looking for source 255.255.255.255/32, instead of
255.255.255.0/24.

Pete Storm, in his GCIA Practical16, agrees with this analysis. He's assigned a slightly
different Severity level (lower Criticality and Countermeasure level) than I have, but our
assumptions about the unknown network are different. Pete also pointed to the next
source, which turned out to be the best page on this trojan I've seen yet.

Les Gordon's SANS article "What is the Q Trojan? 17 is the most in-depth look into the Q
client/server software. He actually installed multiple versions and ran them through their
paces, collecting packet traces throughout. The results were both fascinating and
terrifying. He also ran across this alert while looking at the logs from SANS, and he
agrees the snort rule which generated this detect is likely to be ineffective.

Evidence of Active Targeting

A review of the destination hosts using ACID revealed that none of them were involved
in any other alerts. This appears to be a fairly broadbased scan looking for infected
hosts.

Severity

Criticality: 4.
This attack is is scanning for Unix machines infected with the Q client.
Given that the majority of Unix machines tend to be servers (not necessarily
true, given the advent on Linux on the desktop and Mac OS X), I've
increased the criticality accordingly. The destination port is of no use in
determining the true target, since the Q client ignores it.

Lethality: 5.

22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

If the attacker finds an infected host, things can't get much worse. That host would be
under the complete control of the attacker.

Network Countermeasures: 3.
This is difficult to assess without knowing more information on the network. Using
"tcpdump -e" on the raw files, it's easy to see that only two MAC addresses are listed,
meaning this traffic was sniffed between 0:0:c:4:b2:33 on the local side and
0:3:e3:d9:26:c0 on the Internet side. Looking up the company prefixes (0:0:c and
0:3:e3) at IEEE18 shows that both devices are made by Cisco. Beyond that, nothing is
known of the network in question.

System Countermeasures: 3.
Again, difficult to assess without knowing anything about the network. I'm making the
assumption that the site is middle-of-the-road in terms of its security practices.

Severity = (criticallity + lethality) - countermeasures(system + network)
 = (4+5)-(3+3) = 3

Security Recommendations

Due to the nature and adaptability of the Q server/client software, prevent these attacks
will involve several levels.

At the network level, the firewall needs to be configured
- Block packets to or from invalid or reserved addresses. A list of these is available

from IANA19. This would, in itself, have stopped these alerts from triggering. It
would not have necessarily stopped Q, however.

- Block any packets that aren't part of a valid connection. The packets in question all
had ACK and RESET set, but weren't part of a connection.

- Allow inbound traffic to only selected hosts, if possible. Depending on your network
and needs, hiding internal machines behind a NAT'd firewall, for example, would
render these inbound scans useless.

- Depending on how strictly you can control outbound traffic, only opening ports for a
small set of approved services is a very good idea. It's not a panacea, since a Q
server inside the firewall could always choose an "approved" port, but it can make it
more difficult for the attacker.

At the host level, this attack targets UNIX-based machines, and requires a process to
run with root priveleges in order to operate.
- Install tripwire or some equivalent software, keep it up to date and run it regularly. It

23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

won't prevent the application from getting installed or being run, but it can be an
excellent early-warning indicator that there are problems with the machine in
question.

- It's important to note that on many operating systems, using a software-based
firewall on a box with the Q client wouldn't be effective, since the Q-client will see
the packets at the same time as the firewall software. It could, however, help
prevent the system from being broken into in the first place, before the Q-client is
installed.

Finally, users need to be educated about the dangers involved in installing these types
of applications (where "these types" include GoToMyPC.com, PCAnywhere, etc.) on
their PCs. Many do it so they can access their PCs from home, never realizing the
jeopardy they're putting the internal network in. This obviously won't stop the app from
being installed surreptitiously, but it might help prevent the casual use of remote-control
software. Every little bit helps.

Multiple Choice Question
Which of the following statements is true:
A One function of the Q server is to install the Q clients on compromised machines.
B. NMap is the best tool for finding compromised machines running Q clients
C. A Q client can be used to control other Q clients.
D. Q servers always use the source address 255.255.255.255.

The answer is C. A Q server can put a client in "bounce" mode, then use that client to
forward packets to another machine. The chain can go on indefinitely.

Online Response

This detect was posted the the incidents.org mailing list on February 22nd. There were
no responses.

2.3 Detect #3
Source

The data for these detect was downloaded from www.incidents.org/logs/Raw. In all, 9
days worth of raw tcpdump files were considered. The files used were 2002.10.10,
2002.10.11, 2002.10.12, 2002.10.13, 2002.10.14, 2002.10.15, 2002.10.16, 2002.10.17
and 2002.10.18.

24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Using tcpdump to scan the files, it is apparent that the home network is 207.166.0.0/16.
There are also only two MAC addresses are listed in the logs, meaning this traffic was
sniffed between 0:0:c:4:b2:33 on the local side and 0:3:e3:d9:26:c0 on the Internet side.
Looking up the company prefixes (0:0:c and 0:3:e3) at IEEE shows that both devices
are made by Cisco. Beyond that, nothing is known of the network in question.

Detect Generation

The tcpdump files were processed by Snort on at a time, using the command line:
 $ snort -c -r $file ./snort.conf -l logs -S HOME_NET=207.166.0.0/16 \

 EXTERNAL_NET=!207.166.0.0/16

The options used were:
 -r read from file, where $file was the name of one of the tcpdump files.
 -S use the provided values for HOME_NET and EXTERNAL_NET, overriding the

values in snort.conf.
-c use the configuration file snort.con
-l logs to the logs/ directory

The snort configuration files was set to also load the alerts into a mysql database for
subsequent use with ACID.

The following Snort rules was triggered:
alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD TRAFFIC bad frag bits";
fragbits:MD; sid:1322; classtype:misc-activity; rev:4;)

The issued alerts looks like this:
[**] [1:1322:4] BAD TRAFFIC bad frag bits [**]

[Classification: Misc activity] [Priority: 3]

11/09-17:24:47.786507 81.97.214.13 -> 207.166.84.248

TCP TTL:110 TOS:0x0 ID:36529 IpLen:20 DgmLen:1468 DF MF

Frag Offset: 0x0000 Frag Size: 0x0014

The packet that caused the alert is here:
17:24:47.786507 81.97.214.13.4746 > 207.166.84.248.80: .
691024427:691025855(1428) ack 3604160229 win 17520 (frag 36529:1448@0+) (DF)

 0000: 4500 05bc 8eb1 6000 6e06 56c7 5161 d60d E..?.?`.n.V?Qa?.

 0010: cfa6 54f8 128a 0050 2930 322b d6d3 1ee5 �T?...P)02+??.?

 0020: 5010 4470 dfc7 0000 feff ff69 d28d 66f0 P.Dp??..???i?.f?

25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 0030: 5089 9574 feff ff8b 4508 8b8d 50fe ffff P..t???.E...P???

 0040: 8948 108b f48d 952c feff ff52 6a00 8d85 .H..?..,???Rj...

 0050: 4cfe ffff 508d 4e4e 4e4e 4e4e 4e4e 4e4e L???P.NNNNNNNNNN

 0060: 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN

 0070: 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN

 0080: 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN

 0090: 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN

 00a0: 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN

 00b0: 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN

 00c0: 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN

 00d0: 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN

 00e0: 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN

 00f0: 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN

 0100: 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN

 0110: 4e4e 4e4e 4e4e 4e4e 4e25 7539 3039 3025 NNNNNNNNN%u9090%

 0120: 7536 3835 3825 7563 6264 3325 7537 3830 u6858%ucbd3%u780

 0130: 3125 7539 3039 3025 7536 3835 3825 7563 1%u9090%u6858%uc

 0140: 6264 3325 7537 3830 3125 7539 3039 3025 bd3%u7801%u9090%

 0150: 7536 3835 3825 7563 6264 3325 7537 3830 u6858%ucbd3%u780

 0160: 3125 7539 3039 3025 7539 3039 3025 7538 1%u9090%u9090%u8

 0170: 3139 3025 7530 3063 3325 7530 3030 3325 190%u00c3%u0003%

 0180: 7538 6230 3025 7535 3331 6225 7535 3366 u8b00%u531b%u53f

 0190: 6625 7530 3037 3825 7530 3030 3025 7530 f%u0078%u0000%u0

 01a0: 303d 6120 2048 5454 502f 312e 300d 0a43 0=a HTTP/1.0..C

 01b0: 6f6e 7465 6e74 2d74 7970 653a 2074 6578 ontent-type: tex

 01c0: 742f 786d 6c0a 484f 5354 3a77 7777 2e77 t/xml.HOST:www.w

 01d0: 6f72 6d2e 636f 6d0a 2041 6363 6570 743a orm.com. Accept:

 01e0: 202a 2f2a 0a43 6f6e 7465 6e74 2d6c 656e */*.Content-len

 01f0: 6774 683a 2033 3536 3920 0d0a 0d0a 558b gth: 3569U.

 0200: ec81 ec18 0200 0053 5657 8dbd e8fd ffff ?.?....SVW.?????

 ...

Probability of Spoofing

Possible but unlikely. This is a an ack packet, meaning it would have to be part of a
TCP conversation before the host would do anything with it.

The hosts resolves to spr1-seve2-4-0-cust13.lond.broadband.ntl.com, which speaks for
itself. Most likely a broadbad customer with London's NTL. A whois doesn't shed much
light on the situation, but does give an abuse address:

The whois information for this host points to Great Britian:
inetnum: 81.97.208.0 - 81.97.223.255

26

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

netname: NTL

descr: NTL Infrastructure - Waltham Park

country: GB

...

role: NTLI Network Management Centre

address: NTL Internet

address: Crawley Court

address: Winchester

address: Hampshire

address: SO21 2QA

trouble: --

trouble: For abuse notifications please -

trouble: email : abuse@ntlworld.com

trouble: telephone : +44 2920 305142

trouble: --

...

Description of Attack

This alert was triggered because the packet had both the "Don't Fragment" and "More
Fragments" bits set, something that can happen in valid IP traffic20. Take a close look at
the beginning of the IP header of the packet in question:
691024427:691025855(1428) ack 3604160229 win 17520 (frag 36529:1448@0+) (DF)

 0000: 4500 05bc 8eb1 6000 6e06 56c7 5161 d60d E..?.?`.n.V?Qa?.

The fragment information is stored in bytes 6 and 7 of the IP header and is layed out
like this:

R DF MF 13-bit fragment offset

The R bit is reserved and should always be 0. The DF bit, when set, states the packet
should never be fragmented, under any circumstances. The MF bit indicates if there
are more fragments to follow, where MF=1 means yes. The fragment offset is used to
tell the recieved where in the packet this fragment belongs (the offset is measured in 8-
octets, so the actual offset is 8 times the fragment offset). In the above packet, the
value of the high byte is 6, meaning both MF and DF are set. That is non-sensical and
disallowed by the standard.

Those bits are the reason for the alert, but they're not what piqued my interest in the
packet. Take a look at an ASCII reprentation of the payload, slightly reformatted from
the detect above:

27

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u

6858%ucbd3%u7801%u9090%u6858%ucbd3%u780

1%u9090%u9090%u8190%u00c3%u0003%u8b00%u

531b%u53ff%u0078%u0000%u00=a

Now compare it to this one:
GET /default.ida?NNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u

6858%ucbd3%u7801%u9090%u6858%ucbd3%u780

1%u9090%u9090%u8190%u00c3%u0003%u8b00%u

531b%u53ff%u0078%u0000%u00=a

The second payload comes from CERT's advisory about the Code Red worm21. Our
packet appears to be corrupted Code Red attack.

Attack Mechanism

The "Code Red" virus spreads itself by exploiting a vulnerability in Microsoft's IIS server.
It sends a carefully crafted HTTP request which causes a buffer overflow in unpatched
versions of IIS, allowing the execution of the code embedded in the request. The
compromised IIS server would then begin attacking other servers using the same
mechanism.

There are four distinct differences between our code fragment and a typical Code Red
attack.

First, our packets are fragmented. That proves nothing, however, other than the packet
we're looking at got fragmented somewhere along its journey to us.

Second, our packet has both the Don't Fragment and More Fragments bits set. This is
what triggered the alert.

28

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Third, the "N-sled," or sequence of consecutive Ns, is slightly longer in our packet than
in the standard Code Red attack. That could mean the attacker used a modified version
of Code Red for this attack, of which several are available (as detailed in the SANS
paper "Code and Code Red II: Double Dragons" 22). The Ns are used to force the buffer
overflow and won't interfere with the overall attack.

Finally, the lead-in to the N-sled in our packet contains garbage. Where the standard
Code Red attack contains the phrase "GET /default.ida?", our packet begins with a
random sequence of bytes. Specifically, it doesn't begin with a standard HTTP request,
and so should be rejected out-of-hand by the server, rendering the attack moot. There's
always the possibility this is some new form of attack, but I've been unable to find any
corroborating evidence that such an attack exists.

There were a total of five such packets sent from the same source to the same
destination over a 3 minute period. Neither the source nor destination figured in any
other alerts. All the alerts were of the "bad frag" type, all contained a fragment offset of
zero and only two contained N-sleds at the start.

My guess is that this is a standard Code Red (or variant) attack that was corrupted
somewhere in transit. It's possible that the same device or code that corrupted the
Code Red signature corrupted the fragmentation bits and offsets as well.

Correlations

Todd Williams posted a similar detect on the intrustions.org mailing list in December,
200323. He analyzed different data from different days, but he came to the same
conclusions. His packets actually contained the complete Code Red signature, making
detection slightly easier.

He noted however that Snort triggered the "bad frags" alert and not the "Code Red" alert
because the "bad frags" alert appeared first in the snort rules. That finding is a perfect
example of how the ordering of rules in Snort is critical. Though it didn't happen in our
case, it's possible for a low-level alert to mask higher level one, if the low-level rule is
checked first. This is because Snort will only alert once for any given packet. Also note
the order in which Snort applies rules is not necessarily the order in which they're listed
in the rules files. Anyone interested in as to why should consult section 3.16, "How
does rule ordering work?", in the Snort FAQ24.

Evidence of Active Targeting

This appears to be a random attack. Five fragmented packets over three minutes
constitute the entirety of the attack.

29

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Severity

Criticality: 3. This attack, assuming it's Code-Red related, targets IIS web servers,
which slightly increases its severity. The scale of the attack however keeps me from
assigning it anything higher than a 3.

Lethality: 3. The consequence to an infected machine are severe, but offset by the fact
that Code Red is an extremely old attack, and patches for it have been available from
Microsoft for nearly as long.

Network Countermeasures: 3.
This is difficult to assess without knowing more information on the network. I've
assigned an average value.

System Countermeasures: 3.
Again, difficult to assess without knowing anything about the network. I'm making the
assumption that the site is middle-of-the-road in terms of its security practices.

Severity = (criticallity + lethality) - countermeasures(system + network)
 = (3+3)-(3+3) = 0

Security Recommendations

At the network level, the firewall needs to be configured
- Block packets with invalid flag settings. That would reduce this particular alert to

nothing more than a mild curiosity.
- Implement a proxy for all web-based traffic. Should this turn out to be a corrupted

Code Red attack, the attacks would be caught and nullified before hitting the internal
network.

- If feasible, defragment packets at the firewall, rejecting any with problems (e.g.,
gaps, overlaps, invalid offsets, etc.). Depending on traffic, this might place too much
load on the firewall, as well as open it to denial-of-service attacks.

At the host level, these were ACK packets heading for the http port of the host in
question:
- Verify if the host in question is running an IIS server. If so, it should be checked for

infection (all current anti-virus software can detect Code Red and variants). If the
machine is infected, best practices dictate reloading the machine from a known-
good backup or re-installing it from scratch. That's particularly important if this is a
new variation on the Code Red virus. Also verify that the host actually needs to be

30

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

running IIS. Many times it's installed "because I wanted everything," not for any
specific purpose.

- Make certain all patches have been applied, and that the AV software is up to date.
Microsoft provides several free tools -- HFNetCheck25, MBSA26 and others -- which
can be used to verify exactly which patches have been installed on a given
machine. The Windows Update feature can also be used, though its website is not
available to non-Windows hosts, so I'm unable to verity what's available there.

- Tripwire and/or a similar package, when installed properly, can help identify the
creation of, or changes to, executables. This can be invaluable in determining if a
system has been compromised. It's not alway possible to get users to use such a
system on the desktop, but it should be strongly recommended. It should be
mandatory on servers.

Multiple Choice Question
A value of 2 in byte 6 of the IP header indicates:

A. This is the first part of a fragmented packet.
B. This packet should never be fragmented.
C. There are additional fragments following this one.
D. This is the final fragment of a fragmented packet.

Answer: C
The MF flag is set when there are more fragments following this one. The flag is
cleared if the packet is not fragmented, or if it's the last fragment for a packet.

31

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3. Analyze This
The following report provides an in-depth analysis of five days worth of Snort IDS
logfiles provided by the University. Please note that this analysis assumes that a given
IP has not been shared amongst several machines (e.g., DHCP) during this period.

3.1 Executive Summary
Numerous internal systems have been compromised by remote hosts and are actively
being used to attack other machines. Fixing these machines needs to be your highest
priority.

Several Windows viruses are running rampant throughout the network. It will require a
major effort to isolate and disinfect these machines, but it must be done. The University
needs to take a pro-active role in helping its users protect and secure their system.
Providing such services is not without cost, but it will, in the end, be cheaper than
continually dealing with these same issues.

A list of infected systems requiring immediate attention appears in the Insights section,
along with the hundreds of potentially-infected local systems that need to be checked as
well.

This document includes several defensive recommendations that should be
implemented as soon as possible. Also, note that implementing these procedures is
necessarily an iterative process. Once the major items on the recommendations are
dealt with, it's quite possible that new scans will show other new high-priority items that
will need to be addresses before the lower-priority items listed below. Over time,
however, the number of recurring incidents will lessen as systems are isolated,
disinfected and patched to current levels. It is recommended that administrators begin
with the firewall and network recommendations, as these are "one-shot" items which
won't need to be repeated in the future.

3.2 Analyzed Files
Log files, collected by the Snort IDS, were provided for analysis. These files, covering
the period between July 24th, 2003 and July 28th, 2003, were downloaded from
www.incidents.org/logs.

32

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

alert.0300724 scans.030724 OOS_Report_2003_07_25_2435

alert.0300725 scans.030725 OOS_Report_2003_07_25_2435

alert.0300726 scans.030726 OOS_Report_2003_07_27_18859

alert.0300727 scans.030727 OOS_Report_2003_07_28_29050

alert.0300728 scans.030728 OOS_Report_2003_07_29_23718

Table 1: Files used in analysis

3.3 Machine Overview
The provided logfiles masked the internal network address behind the string "MY.NET",
which is reflected in the remainder of the document. It's worth pointing out that the scan
files were not masked, so we were able to determine that "MY.NET" is really 130.85.

Address Purpose Notes

MY.NET.100.165 External Web Server CS Web Server
possible ftp

MY.NET.53.29 FTP server HelpDesk

MY.NET.24.15 LPD server

MY.NET.24.27 FTP server

MY.NET.24.47 FTP server

MY.NET.113.207 Web Server/IMAP

MY.NET.1.3 DNS Server (?) If not, see Scan section!

MY.NET.25.21 Mail server (pop and imap)

MY.NET.25.22 Mail server (pop and imap)

MY.NET.25.23 Mail server (pop and imap)

MY.NET.25.24 Mail server (pop and imap)

MY.NET.30.3 Web and Novell server

MY.NET.30.3 Web and Novell server

Table 2: Machines Discovered

33

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.4 Summary of Detects
The alert files contained 1,210,386 separate events, recorded one per line using the
following format:

date-time [**] alert type [**] source:port -> destination:port

Any records which didn't meet the above format were considered invalid and were
ignored for this analysis. These records all appear to be the result of two or more valid
alerts becoming intermingled during collection. All together, less that .2% of the records
were invalid.

The remaining records fell into two main categeries. The "Portscan Notification"
records, which all have an alert type starting with "spp_portscan" actually augment the
information in the scan files and are discussed in the Scan section below. The
remaining records, which I've tagged as "IDS Alerts", have been sorted as to severity
and are addressed in the following Alert sections.

The final breakdown of alerts is show in the following table:

IDS Alerts 534,756

Portscan Notifications 673,772

Invalid Records 1,858

Table 3: Alert breakdown

3.4.1 Alerts
The following table lists the alerts in order of quantity received, one alert per row.

The Lv column contains the level I've assigned to the alert in question, based on an
analysis of the systems involved in that alert. High severity alerts (H) demand
immediate attention, noting compromised systems and/or active attacks. Moderate
severity (M) alerts require attention, but the corresponding threat isn't nearly as severe,
or there is a high probability of false-alarms. Low-severity alerts should eventually be
reviewed, but the threat is minimal. Alerts flagged with a question mark are apparantly
information and it was impossible to assign a severity without knowing the reason
behind the alert type. Alerts with a blank level represent what amounts to noise.

34

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Inbound and Outbound columns each contain 3 values in the format Q/S/D, where
Q is the quantity of alerts received, S is the number of unique source addresses for
those alerts, and D is the number of unique destinations. There were no alerts for
packets between local systems (MY.NET.x.x -> MY.NET.x.x), so there is no
corresponding column.

The comment column is used to for any additional information regarding the alerts (time
of day, spikes, etc.).

Each alert type is individually detailed beginning immediately after the chart.

Lv Alert Qty Inbound Outbound Comments

H [UMBC NIDS IRC Alert] IRC user /kill
detected, possible trojan.

174070 174070/57/53 0/0/0 81%: 7/25 bus. hours
18%: 7/25 bus. hours

? CS WEBSERVER - external web traffic 141208 141208/20550/1 0/0/0

SMB Name Wildcard 58207 58207/953/1299 0/0/0 Fairly uniform spread.

H High port 65535 udp - possible Red
Worm - traffic

46797 26402/145/37 20393/15/134 92% on 7/24 between 4
and 5pm

H spp_http_decode: IIS Unicode attack
detected

37093 3528/191/362 33565/345/770 Fairly uniform spread

Queso fingerprint 12849 12849/349/81 0/0/0

H High port 65535 tcp - possible Red
Worm - traffic

10018 4473/57/105 5545/39/77 73% on 7/25 at 2am

? MY.NET.30.4 activity 9916 9916/420/1 0/0/0

? MY.NET.30.3 activity 9512 9511/88/1 0/0/0

H spp_http_decode: CGI Null Byte attack
detected

8428 102/7/14 8326/99/106 58% on 7/27 at 9pm

M EXPLOIT x86 NOOP 8327 8327/62/93 0/0/0 Most on 7/24, 26, 27

H Tiny Fragments - Possible Hostile
Activity

3338 787/11/10 255/1/1

SYN-FIN scan! 2552 2552/2/2552 0/0/0 All but one on 7/28 at 3pm

connect to 515 from outside 1982 1982/2/2 0/0/0 90% of trarric between
8-9am and 10-11pm on
the 24th, 25th and 28th.

H Possible trojan server activity 1660 1274/38/935 386/53/38 Hugh spike 7/24 at 2am

IDS552/web-iis_IIS ISAPI Overflow ida
nosize

1368 1368/761/492 0/0/0 Uniform spread

35

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

L TCP SRC and DST outside network 1186 0/0/0 0/0/0 Evenly distributed
throughout week.

M TFTP - External TCP connection to
internal tftp server

1031 894/2/394 137/60/1 Peak on 7/26

L External RPC call 931 931/2/682 0/0/0 Spikes 7/25 and 7/28

M SUNRPC highport access! 716 716/14/14 0/0/0 Spike 7/25

Null scan! 671 671/43/37 0/0/0 Peak 7/25 4-6am

NMAP TCP ping! 669 669/126/65 0/0/0 Uniform spread

L Incomplete Packet Fragments
Discarded

350 200/39/35 150/1/5 Uniform spread

M EXPLOIT x86 stealth noop 288 288/8/7 0/0/0 Spike 7/25 1-2pm

? CS WEBSERVER - external ftp traffic 201 201/14/1 0/0/0 Spikes 724, 7/26

L SNMP public access 173 173/1/1 0/0/0 7/24, 25, 28: bus hours

L SMB C access 150 150/75/8 0/0/0

H IDS552/web-iis_IIS ISAPI Overflow ida
INTERNAL nosize

131 0/0/0 131/2/107 7/24 bus. hours

H NIMDA - Attempt to execute cmd from
campus host

110 0/0/0 110/9/81 Spikes 7/24 at 8-9am and
2-3pm

? Notify Brian B. 3.54 tcp 95 95/50/1 0/0/0

L TFTP - Internal TCP connection to
external tftp server

80 48/6/4 32/2/4 Spike 7/28 8pm

IRC evil - running XDCC 79 0/0/0 79/2/2 Uniform spread

? Notify Brian B. 3.56 tcp 65 65/38/1 0/0/0

L FTP DoS ftpd globbing 61 61/9/1 0/0/0 Spike 7/27

L FTP passwd attempt 57 57/39/1 0/0/0 Uniform spread

M Attempted Sun RPC high port access 54 54/6/5 0/0/0 Spike 7/25

EXPLOIT x86 setuid 0 53 53/39/38 0/0/0 Uniform spread

M RFB - Possible WinVNC - 010708-1 39 20/8/8 19/7/7

EXPLOIT x86 setgid 0 35 35/29/26 0/0/0 Uniform spread

[UMBC NIDS IRC Alert] Possible
Incoming XDCC Send Request
Detected.

27 27/2/2 0/0/0

H [UMBC NIDS IRC Alert] Possible sdbot
floodnet detected attempting to IRC

18 0/0/0 18/13/2

NETBIOS NT NULL session 18 18/5/7 0/0/0 Spike 7/25 4-6am

H TCP SMTP Source Port traffic 15 15/1/2 0/0/0 7/25 10pm

M TFTP - Internal UDP connection to
external tftp server

15 9/6/7 6/2/2 Spike 7/26 5pm

36

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

H PHF attempt 14 14/2/8 0/0/0 7/25,7/26 after bus. hours

? External FTP to HelpDesk
MY.NET.70.50

13 13/4/1 0/0/0

H EXPLOIT NTPDX buffer overflow 13 13/7/5 0/0/0 Spike 7/28

? External POP to HelpDesk
MY.NET.70.49

11 11/1/1 0/0/0

TFTP - External UDP connection to
internal tftp server

10 10/4/5 0/0/0

? External POP to HelpDesk
MY.NET.70.50

8 8/1/1 0/0/0

? External FTP to HelpDesk
MY.NET.70.49

8 8/2/1 0/0/0

H [UMBC NIDS IRC Alert] K\:line'd user
detected, possible trojan.

5 5/4/5 0/0/0

Probable NMAP fingerprint attempt 5 5/4/4 0/0/0

Traffic from port 53 to port 123 5 5/2/1 0/0/0

? External FTP to HelpDesk
MY.NET.53.29

4 4/2/1 0/0/0

ICMP SRC and DST outside network 3 0/0/0 0/0/0

M Back Orifice 3 3/1/2 0/0/0

H [UMBC NIDS IRC Alert] XDCC client
detected attempting to IRC

2 0/0/0 2/2/1

DDOS shaft client to handler 2 2/2/2 0/0/0 7/24

H DDOS mstream client to handler 2 2/2/2 0/0/0 7/27

H [UMBC NIDS IRC Alert] User joining
XDCC channel detected. Possible
XDCC bot

1 1/1/1 0/0/0

H NIMDA - Attempt to execute root from
campus host

1 0/0/0 1/1/1

Fragmentation Overflow Attack 1 1/1/1 0/0/0

H [UMBC NIDS IRC Alert] User joining
Warez channel detected. Possible
XDCC bot

1 1/1/1 0/0/0

? HelpDesk MY.NET.70.49 to External
FTP

1 0/0/0 1/1/1

Table 4: Summary of Alerts

[UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan.
This alert triggers on the presence of a /kill command in an IRC conversation. This
command was originally meant to be used by the IRC sysop to forcefully terminate a

37

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

user's connection. It's proper usage is therefore innocuous. Unfortunately, many attack
tools use IRC to communicate with their controlling machines and/or victims. In this
case, the presence of a "/kill" command could signal a remote user is terminating a
connection with a compromised host.

It's also worth noting that the /kill command has been removed from many of the latest
IRC clients: as irchelp.org27 states: "With the advent of auto-reconnecting clients KILL
is almost totally worthless as a tool for punishment." It's usage is now relegated to old
IRC clients and viruses.

Recommendation: The 53 internal system targeted by these alerts need to be checked
immediately. Many are already compromised.

Correlations:

I could find no direct correlations for this event, since it's specific to the University.
However, by combining irchelp.org's explanation of /kill, along with viruses which
communicate via IRC (see sdbot below), the above explanation seems correct.

SMB Name Wildcard
This alert indicate a NETBIOS name query28 against a given host. The query could be
used by an attacker to gain such information as the workstation's name, domain, and
the ids of logged-in users. In an of itself, this alert is not very serious. However, the
information gained could be of great use to an attacker, helping to target future attacks
against known users and systems.

These is part of Microsoft's SMB and NetBIOS services which operation on UDP ports
137, 138 and 139, as well as TCP ports 139 and 445. These parts a critical to Windows
networking, but should not be allowed to cross the firewall into or out of the local
network. Additionally, once blocked, it might be advisable to disable the inbound alerts
on these ports. As can be seen, they generate a tremendous amount of alert data than
can hide other, more significant, attacks.

Correlations:
Terry MacDonald's GCIA Practical Assignment29, p.48 agrees with the overall
assessment of this being an extremely low severity item.

Microsoft has a wealth of information on these ports, including an excellent article on
their security site for "Hardening Systems and Servers." 30

38

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

High port 65535 udp - possible Red Worm - traffic
High port 65535 tcp - possible Red Worm - traffic
Red Worm (also called "Adore") is a particularly invasive unix-based virus. It infects
systems via holes in any of several services -- BIND, LPRng, rpc-statd -- and
automatically installs itself on the system by modifying or replacing numerous system
files. Once installed, the virus signals the owner that it's installed and waits for a crafted
ICMP packet. When that packet arrives, the virus opens port 65535 and allows
incoming telnet session to connect to that port directly as root. In particular, hosts
MY.NET.70.207 (18,492 packets) and MY.NET.114.89 (4,322 packets) should be
checked immediately.

This worm will replace several system executables, including ps, 0anacron and klogd.
The latter is used to collect information on local users and process, which it
subsequently emails to a remote address (long since closed). The worm will also begin
outbound attacks, looking for other victims to infect.

Once infected, hosts will need to be reloaded from known-good versions, or completely
reinstalled, since all files and executables left on the system are suspect.

Correlations:
Though they covered different dates, this assessment matches with those provided in
Terry MacDonald's GCIA Practical V3.329 and Les Gordon's GCIA Practical V3.331.

J. Anthone Dell provides an excellent analysis of the Adore Worm virus32, from which
much of worm's attack characteristics were drawn.

spp_http_decode: IIS Unicode attack detected
These alerts point to a variety of attacks against Microsoft's IIS server. These exploits
take advantage of an IIS flaw in handling Unicode-encoded queries, allowing the
attacker to bypass IIS security mechanisms and execute commands that would
normally be rejected. For example, the ASCII string "\" can be represented in unicode
as "%c1%9c". Whereas an unpatched IIS server would reject this query:

http://www.example.com/scripts/..\../winnt/system32/cmd.exe?/c+dir

it would accept the the same query with the "\" in unicode:

http://www.example.com/scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir

Using such a carefully constructed query allows attackers (sadmind, Nimda, Code Red

39

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and others) to execute arbitrary commands on the web server.

This allows the attacker to take complete control of the system in question. There are a
variety of widely-available attacks -- sadmind, Nimda, Code Red and others -- which
can trigger this alert.

Two actual issues are indicated here. The first is that there are incoming attacks
looking for IIS servers. The second is more frightening, in that attacks are going out of
the local network to remote sites. This implies that numerous local hosts have already
been infected. Disinfecting these hosts, and disabling unnecessary IIS installations, is
highly recommended.

Correlations:
SANS Intrustion Detection FAQ: What are the vulnerabilities on Internet Information
Server (IIS)33

Donald Gregory's GCIA Practical V3.2, p. 26-2734

Queso fingerprint
SYN-FIN scan!
Null scan!
NMAP TCP ping!
Probable NMAP fingerprint attempt
These are all remote scans of machines on the internal network. Queso1 is an old OS
fingerprinting tool that is used for reconnaisance. It works by sending six packets -- one
normal and 5 malformed -- to a remote system, then anaylizing the packets it gets back.
This works because while the handling of proper packets is carefully standardized, the
responses to invalid packets it no. Different operating systems will leave different flags
and/or options set when they reject the packet.

The other scans also involve sending invalid packets: the SYN-FIN scan has those two
flags set, hoping firewalls will see the FIN and let the packet through; the Null scan has
no flags set; and the NMAP TCP ping as the ACK flag set but isn't part of an existing
conversation. The NMAP fingerprint technique is discussed indepth and will not be
covered again here.

Blocking invalid packets at the border router will stop the first three remote scans cold.
A stateful firewall should eliminate the TCP ping.

40

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

spp_http_decode: CGI Null Byte attack detected
This alert is triggered then the scanner sees a Unicode-encoded NULL (%00) in a URL
begin sent in an http query to a web server.

The attack works by exploiting the difference between how a web server sees a
request, and how the web server's operating system sees it. When a web server sees a
request for page.html, it eventually hands the request off to the operating system to
open the file (a separate CGI language might be involved here, but eventually the
request gets to the OS). The OS opens the file and returns the contents, which the
web server can process and return to the client. If the request lacks the appropriate
extension, the web-server will append it before passing the request along to the OS, so
a request for "page" will converted to "page.html" by the web server before it gets
passed to the OS. The server will also convert any Unicode-embedded sequences to
their ASCII counterparts before handing off the request, since most OS's don't deal with
Unicode.

Therein lies the issue. Someone figured out that by appending a Unicode-encoded nul
("%00"), they could get the web server and operating system to disagree on which file
was being asked for. An attacker would request /etc/passwd%00, the web server would
change that to /etc/passwd\0.html, where "\0" is an actual zero byte. The OS would
treat that zero as the end of the string, because that's how strings are represented in the
C programming language. The .html ending would be ignored completely, and the OS
would return the contents of the password file /etc/passwd. The OS is happy, the
server is happy, and the attacker is very happy.

This attack is now checked for by all modern web servers, but older systems will need
to be updated. Additionally, any CGI programs being used by the web server will need
to be inspected to verify that they also treat such names correctly.

The local systems that triggered this attack need to be examined and disinfected, if
necessary. The local systems that were attacked using this technique also need to be
checked to ensure any software they're running is either patched or not vulnerable.

Correlations:
This mal-feature is discussed in depth in the Phrack #5535 article "Poison Null Byte".

Donald Gregory's GCIA Practical also covers this item, agreeing with the above
analysis.

41

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

EXPLOIT x86 NOOP
EXPLOIT x86 stealth noop
EXPLOIT x86 setuid 0
EXPLOIT x86 setgid 0
Each of these alerts works by scanning packets for a particular series of bytes,
triggering when those series are found. The first alert looks for a string of 10 bytes of
0x90 (the x86 no-op instruction), the second looks for NOOP looks for the sequence "eb
02 eb 02 eb 02", the third looks for "b0 17 cd 80", while the fourth looks for "b0 b5 cd
80". These strings are common in overflow attacks against x86-based hosts.

The problem here is that these strings also appear frequently in a wide variety of non-
hostile data (jpegs, gifs, mpegs, etc.), all of which will trigger an alert. By way of
example, I can trigger these regularly on an closed all-Macintosh network, where the
probability of this being a threatening x86-based overflow attack is nil. Further, there is
no way to diagnose which alerts are valid without access to the actual raw packet data,
where the analysis is both time-consuming and, usually, unrewarding.

The best that can be said is that these packets might represent a threat, and the actual
packet data will need to be checked. If that data is not available, then the targeted
systems should be manually checked. In the absence of any hard data, I'm assigning
this a moderate threat.

Correlations:
Terry MacDonald29 disagrees with this analysis and rates this item as 'Noise'. I agree
with Terry that there are an incredible amount of false-positives for this alert, but I
disagree they can all simply be dismissed without any corroborating data (e.g., packet
traces).

The SmashGuard Group at Purdue University has a "Buffer Overflow Page" which is an
excellent source of information on these types of attacks.36

Tiny Fragments - Possible Hostile Activity
Tiny fragments are frequently used to subvert firewall rules, since many of those rules
require the entire packet to work correctly. If the firewall doesn't re-assemble the
incoming packets before applying the rules, there usually isn't enough information in a
given fragment to do anything other than accept or reject it outright.

The outbound scan from MY.NET.97.91 is worrisome and should be checked
immediately, since there's no reason for internal hosts to fragment outbound traffic.

42

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Inbound fragments need to either be reassembled by the firewall before being passed,
or at the vary least, scrubbed to ensure no overlaps and/or dupicates pass (the latter
options can significantly decrease the overhead on the firewall). Outbound fragmented
packets should be logged and dropped, unless there is some known reason as to why
they need to exist.

Correlations:
Terry MacDonald (p.45) agrees with this assessment, but also recommends setting an
upper limit to fragment-alert sizes to 512 bytes29. He bases that on an interesting note
in the Snort documention: "Generally speaking, there is no piece of commercial
networking equipment that fragments in sizes smaller than 512 bytes."

connect to 515 from outside
Port 515 is normally reserved for the lpd printer service. Further, all but one packet
came from a single host (131.118.229.7) to a single host (MY.NET.24.15). Neither host
is the subject of any other alerts. MY.NET.24.15 was the subject of multiple scans, but
none on port 515. I believe this to be the result of someone running an lpd server on
MY.NET.24.15 and printing to it remotely, usually in the mornings and late in the
evenings. While there are known lpd exploits37, this traffic appears to be innocuous.

Possible trojan server activity
These alerts are for connections to and from port 27374. Numerous attack tools for
Windows -- Bad Blood, Ramen, SubSeven, etc. -- are known to use this port. Many of
these alerts appear to be the result of innocent traffic: connections to imap, pop, smtp
and web servers from the ephemeral port 27374.

Ramen is a worm that atacks several UNIX servers, including w-ftpd, rpc.statd and
LPRng (the "next-generation" print server). Once it breached a remote machine, it
would download it's own source code, compile it and then begin outbound attacks from
that machine. It modified the ftp configuration to allow anonymous connections, and
spawned a web-server on port 27374, from which other machines could get copies of its
source.

Sub-Seven is a trojan for Windows systems. It works by getting the server installed on
a victim's machine, which can be accomplished through a wide variety of methods
(buffer overflow attacks, social engineering, etc.). Once executed, the server makes
certain it's run at startup by adding itself to the system's win.ini and system.ini, as well
as the registry under the key HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
(subkeys Current\Version\Run and CurrentVersion\RunServices). It also places
copies of itself in a half-dozen locations under a variety of filenames. The compromised

43

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

system then contacts the attacker's client whenever the victim connects to the Internet.
The attacker then has complete control over the victim's machine using whatever port
the server opened, including 27374.

There was, however, one large scan from 68.68.110.48 which got responses from 37
local machines. These machines need to be examined and disinfected as soon as
possible.

Blocking inbound SYNs to port 27374 at the firewall would stop these inbound scans
and/or attacks at the firewall.

Correlations:
William Sterns ha a script available from SANS38 which can help find systems infected
with Ramen. The same source contains quite a bit of information on what the worm is
and how it can be removed.

SubSeven is discussed in detail in the SAN's FAQ39. The article also lists directions for
removing the trojan, though all current anti-virus software can remove it as well.
However, it's best to reload the infected systems, or restore them from a known-good
backup, since removing the server doesn't guarantee the attacker hasn't planted other
viruses or trojans on the machine in question.

Simovits Consulting has a handy page40 of trojan port number complete with short
summaries on all the trojans that use port 27374. The complete list is considerably
longer than the few listed above.
IDS552/web-iis_IIS ISAPI Overflow ida nosize
These are attempts to exploit yet another vulnerability in Microsoft's IIS. In unpatched
systems, a buffer-overflow could be used to take control of the targeted machine41. This
was the principle attack vector of the Code Red virus.

Any internal hosts running IIS need to be patched to the current level at all times.

Correlations:

This attack is discussed in-depth in Detect #3 in Section 2. That analysis would be
included here for the University.

44

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TCP SRC and DST outside network
This alert was caused by 93 hosts, the vast majority of which are either reserved
addresses (10.x.x.x, 192.168.x.x) or dialup carriers like AOL. These are most likely
caused by users plugging in laptops that were configured for their home networks.
There is no apparent danger in these packets.

These types of packets should be dropped at the firewall.

TFTP - External TCP connection to internal tftp server
TFTP - External UDP connection to internal tftp server
These alerts were triggered when a remote system (68.55.195.92) scanned the
MY.NET.70 and MY.NET.71 subnets for tftp servers. These servers are generally used
to provide boot images for diskless clients, and can provide a treasure trove in data to
attackers. Port 69/tcp is also used by an Windows attack tool called BackGate42. Once
installed, it allows the attacker to open new accounts, enable multiple proxy servers --
ftp, telnet, www, SOCKS, and others -- and also use the compromised box to launch
other attacks.

Of concern among these queries are the 60 internal hosts that responded to TCP
queries. These hosts need to be checked to insure they aren't infected, and that they
really do need to provide tftp services.

The firewall should be configured to block all access, inbound or outbound, to port 69.

External RPC call
These alerts were caused by two remote systems scanning internal hosts for machines
running portmapper (a unix utility that handles remote procedure calls). There are
several well-known buffer-overflow bugs in various versions of portmapper which a well-
crafted RPC (remote procedure call) can compromise. The result is usually root access
for the attacker.

The scanned system need to be checked to see if they are running portmapper and to
see if they've been compromised. The RPC port 111 needs to be blocked at the
firewall.

SUNRPC highport access!
Attempted Sun RPC high port access
These alerts are both caused by connections to internal hosts on port 32771. This port
is normally used by Sun for RPC calls, and can therefore can represent an attack vector

45

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

if the host is running Sun's portmapper.

These alerts are no longer provided with Snort, and without the snort rule, it's difficult to
assess the severity of these alerts. They may represent attempted RPC attacks and/or
scans, or they may be part of a valid, normal conversation (all but 64 originate from http,
domain, imap and pop ports).

Without knowing the exact rules that triggered these events, I'm assigning a moderate
priority and recommending the internal hosts be examined for possible compromise.
Updating snort and installing the latest rules will generate much more targetted RPC
alerts, eliminating much of the confusion here.

Incomplete Packet Fragments Discarded
This alert is caused by Snort's old defrag filter. This filter was regarded as unstable,
generating many false positives, and was replaced by the frag2 filter in Snort 1.8.

The only system that appears to be of concern here is MY.NET.83.98 which appears to
be sending fragmented packets. Unless there is some overriding reason for those
packets to be fragmented, it is recommended the system be checked.

It is also strongly recommended that the version of Snort being using be upgraded as
soon as possible!

SNMP public access
These alerts were triggered when an external host (134.192.79.87) tried to access the
'public' SNMP community on MY.NET.190.13. There's no indication as to whether the
connection was successful or not.

Unless there's a reason for allowing remote monitoring of SNMP clients, SNMP should
be blocked at the border. Also, the SNMP server should be checked to verify the
default 'public' and 'private' communities are not being used.

SMB C access
These alerts show attempted access to target machines C: drive. If successful, the
attacker will be able to read , and possible write(!), files on that drive. These packets
can represent potential reconnaissance by an attacker and, if access is successful,
represent a high-severity threat.

The quantity and duration of alerts from individual hosts is very low, amounting to at
most an access attempt and a retry from any host to any other host, so I'm rating the

46

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

threat here as low. There doesn't appear to be any sustained effort to compromise a
host here. It is highly recommended that all SMB-related traffic be blocked at the
border.

IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
This signature captures outbound attacks by hosts infected with the Code Red virus (or
one of its variants). Two internal host , MY.NET.97.51 and MY.NET.97.225, are
presently infected and actively attacking remote hosts. This machine needs to be
isolated and disinfected immediately. It also needs to be patched with the latest
patches, or have IIS removed, if it isn't needed.

NIMDA - Attempt to execute cmd from campus host
I'm unable to determine the rule which triggers this alert, but it's apparent that the
source machines are likely infected with the NIMDA43 virus and are actively seeking IIS
servers to exploit.

These nine internal hosts need to be examined and disinfected immediately.

TFTP - Internal TCP connection to external tftp server
The vast majority of these were caused by internal host MY.NET.97.217 which had
conversation with port 69/tcp on three remote machines. It's recommended that this
machine, as well as the other four machines that used this port, be checked
immediately to see if it's infected, or if it's controlling a BackGate virus on the remote
machines.

Port 69 should be block, both inbound and outbound, at the firewall.

IRC evil - running XDCC
[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected.
These alerts were caused by two internal hosts (MY.NET.74.216 and
MY.NET.198.221) contacting two remote hosts on port 6667 from port 1026. This port
is used for IRC, which fits because X-DCC44 is an IRC-based file server, frequently used
for "warez". The "evil" alerts were probably fired by the string ``:Total Offered:'' in the
payload, while the second appears to indicate the local users are downloading files.

Without knowing the University's policies on XDCC and IRC, it's not possible to assign a
severity to these alerts.

47

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

FTP DoS ftpd globbing
This rule is no longer included in Snort, but it appears to have checked for an attack
against the Washington University FTP server (WU-FTPD) which could give the
attacker complete access to the attacked server, with whatever privileges the wu-ftpd
server was running at (usually root). The attack took advantage of wu-ftpd's handling of
wildcard characters, "globbing" being the term used for expanding and matching
wildcard strings. The server failed to handle the strings "~{" and "~[" and could crash if
the appropriate string was sent45.

The server MY.NET.24.27 should be checked to make certain it isn't running wuftpd, or
that it's running a properly patched version. Given the age of this vulnerability, I've
rating this a low priority.

FTP passwd attempt
These alerts are triggered when a user attempts to download the a file with the string
``passwd'' in its name from our ftp server46. If there's no such file under the publicly-
available ftp directories on the server in question, these are likely attempts to pull down
the system's password file. Once retrieved, any number of tools can be used to crack
passwords in the file (assuming passwords are stored in the file).

Most modern ftp servers, at least on UNIX-based platforms, can be run in a chroot'ed
envorinment, and may not even require a password file in the chrooted directory
structure.

Correlations:

The proftpd documentation47 shows an example of setting up an ftp server in a chrooted
environment. OpenBSD can chroot ftp connections for users by listing them in the /etc/
ftpchroot file. A /etc/passwd file must present for anonymous ftp, but it is used only for
user id in the 'ls' command, not for resolving passwords.

RFB - Possible WinVNC - 010708-1
These alerts are all for connections to or from port 5900. That is normally associated
with VNC, or Virtual Network Computing, an AT&T research project that allows remote
control over a machine48. Older versions had no support for security and so posed a
considerable security risk.

The local machines should be checked for a VNC server running on port 5900 and
reconfigured if necessary, asVNC can now run securely over ssh and/or IPSec. Access
to VNC-server related ports (5800-5809,5900-5909) can be blocked at the firewall to

48

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

eliminate remote access to these servers.

[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC
This alert appears to check for hosts trying to access machines infected by the sdbot
trojan49. This trojan, once installed, operates over IRC, and allows the attacker compete
control of the infected machine. Multiple internal machines are infected with this trojan
and are being actively exploited to attack remote systems. All the local machines listed
in these alerts need to be immediately checked, isolated and disinfected.

NETBIOS NT NULL session
This is a simple reconnaisance. By initiating a Netbios session using a blank (NULL)
name and password, it's possible to get a list of the available shared drives and user
names50. This is the way Windows browses the "Network Neighborhood".

This can be disabled in NT, 2000 and XP by setting the registry key /System/
CurrentControlSet/Control/LSA/RestrictAnonymous to 1. Better still is to block port 139 at
the firewall and not allow this traffic into or out of the network.

TCP SMTP Source Port traffic
This is really an informational message flagging inbound traffic to point 25 (presumably
on non-smtp hosts, since there are only 15 alerts).

I've rated this a High priority not for this alert, but for the two local systems --
MY.NET.12.6 and MY.NET.25.68 -- that triggered it. Both have been the subject of
multiple Queso scans and Red Worm alerts and should be check immediately.

TFTP - Internal UDP connection to external tftp server
At first glance, these are internal hosts that are trying to access a remote tftp server, as
the alert implies. Also included, however, is external tftp servers connecting to local
hosts. Additionally, one of the remote servers, 12.129.72.202, figures prominently in
several other alerts -- Attempted Sun RPC high port access, possible Red Worm, and
External tftp accesses -- leading me to conclude more is going on here.

Port 69, both inbound and outbound, should be blocked at the firewall. Additionally, the
internal hosts targeted by this alert (MY.NET.84.145 in particular) should be
immediately examined for possible infection.

PHF attempt
This item is no longer flagged by Snort, which now contains two different PHF alerts.

49

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Presumably this matches on of them. The first of these exploited a buffer overflow in a
CGI command to gain control of the remote server51, while the second allows for remote
command execution through the use of meta-characters52. Either attack will give the
attacker control of the system in question.

One remote system is responsible for all but two of these alerts, and five of the six
machines it contacted had subsequently contacted that same remote machine from port
69/tcp. There is an excellent chance these machines have been compromised. They
should be examined immediately.

EXPLOIT NTPDX buffer overflow
These alerts indicate attempts to trigger a buffer overflow in the network time daemon
ntpd53. If successful, the attacker gains root access to the machine question. The alerts
were caused by four external systems targeting four internal machines.

At least one host, MY.NET.97.175, appears to be infected and has been used to launch
numerous IIS and Code Red attacks. This system need to be investigated immediately.

Traffic from port 53 to port 123
These alerts were cause by two remote systems sending 5 packets to MY.NET.1.3, two
from port 123 to port 53 and three from port 53 to port 123. Port 53 is used for DNS
while port 123 is used for NTP. I do not understand the significance of these alerts.

[UMBC NIDS IRC Alert] K\:line'd user detected, possible trojan
I believe this is similar to this rule I found on the web54:

alert tcp $EXTERNAL_NET 6660:7000 -> $HOME_NET any\

(content: " 465 "; \

msg: "K\:line'd user detected, possible trojan.";\

classtype:misc-activity;)

This seems to imply that the recipient of the packet had been intentionally rejected by
the IRC server. The name come from the IRC server configuration file where it's
possible to ban a user/host by listing them on a line beginning with K:.

In this case, all five of the local systems -- MY.NET.97.53, 153.76, 76.116, 97.222 and
97.162) appear to be infected, as all have launched IIS Unicode attacks against remote
machines. All of these hosts need to be isolated and disinfected immediately.

50

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Back Orifice
These alerts were cause by a single remote system contacting port 31337 on two local
system. That port is used to control the Back Orifice software, essentially giving the
remote user control over the local PC. The same remote host also tried a "Red Worm"
connection to one of the hosts, in addition to a SYN-FIN scan, so it's definltely hostile.

The two local systems -- MY.NET.152.167 and MY.NET.69.169 -- should be checked
for infections. Port 31337 may be blocked at the border for some additional protection,
though it might occasionally interfere with valid traffic.

ICMP SRC and DST outside network
Two hosts sent a total of three packets to three different systems. None of the source
or destination addresses appeared in any other alerts or scans. This may have been
due to a user plugging a laptop into the local network while it was configured for a
remote network.

These packets should be automatically blocked at the border router (both inbound and
outbound).

[UMBC NIDS IRC Alert] XDCC client detected attempting to IRC
These alerts were caused by two internal hosts -- MY.NET.97.119 and MY.NET.97.231
-- sending IRC requests to 215.152.66.71. The alert itself is difficult to classify since it's
particular to the University and the IRC policy is unknown. However, both internal hosts
are the source of several IIS Unicode and CGI Null Byte alerts, so I'm rating this as
High. These hosts should be checked immediately.

DDOS mstream client to handler
These alerts indicate the hosts in question have been compromised and are infected
with the mstream DDoS handler55. These handlers are used by remote clients to launch
attacks against remote targets. Two internal systems -- MY.NET.97.82 and
MY.NET.60.11 -- appear to be infected and are actively attacking remote machines.
These hosts need to be isolated and disinfected immediately.

DDOS shaft client to handler
The DDOS shaft client56 communicates to its handler via port 20432, so any traffic to
that port will trigger this event. Since this is a valid port for normal use, this alert can
lead to a lot of false-positives, as in this case. These were triggered by conversations
with a web-server and an smtp server and do not appear to be hostile.

Fragmentation Overflow Attack
51

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This alert is presumably created by the Snort defrag filter, presumably because a
reassembled packet was too large to be valid. It's difficult to tell, since this filter is no
longer included with Snort. However, since the source host in question send two NULL
scan packets and two other scan packets (SYN-PUSH-URG) to the same destination
(MY.NET.150.41), subsequent to this packet, it's likely the intent was hostile. All
packets arrived in a 19-minute period.

The firewall should be configure to reassemble fragments before allowing them to pass.
That would stop this in its tracks.

NIMDA - Attempt to execute root from campus host
Host MY.NET.97.225 attempted to use one of NIMDA's attacks against a remote host.
This particular host is definitely infected (it's responsible for 127 other alerts, including
NIMDA, CGI NULL Byte attacks, ISAPI Overflows and others). This host should be
isolated and disinfected immediately.

[UMBC NIDS IRC Alert] User joining XDCC channel detected. Possible XDCC bot
[UMBC NIDS IRC Alert] User joining Warez channel detected. Possible XDCC bot
Both of these alerts are due to a an incoming packet (one each) from port 6667 to a
single host (MY.NET.53.208). That host is involved in numerous other alerts, including
"IRC usr /kill detected" and "Red Worm" and should be assumed compromised and
examined immediately.

MY.NET.30.4 activity
MY.NET.30.3 activity

There purpose of these in unknown. The majority of the traffic headed to these
addresses is destined for ports 80 (http) and 524 (Novell directory server?).

CS WEBSERVER - external web traffic
CS WEBSERVER - external ftp traffic
Notify Brian B. 3.56 tcp
Notify Brian B. 3.54 tcp
External FTP to HelpDesk MY.NET.70.50
External POP to HelpDesk MY.NET.70.49
External FTP to HelpDesk MY.NET.70.49
External POP to HelpDesk MY.NET.70.50
External FTP to HelpDesk MY.NET.53.29

52

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

These are all apparantly informational in nature. More information regarding their
purpose is required before they can be correctly classified.

3.4.2 Out-Of-Spec Packets
There were 31,180 packets in the out-of-spec files. These main differentiating
characteristic for the majority of these packets appears to be the flag fields, as shown in
the table below.

******** 607 NULL scans - Matches logs

******SF 7645 SYN-FIN scan - Matches scan logs

****P*** 218 (Kazaa: 212)(Gnutella: 6)

12****S* 22612

12***R** 52

12UAPRSF 3

Table 5: Out-Of-Spec Packet Breakdown

In addition to the above, packets with the following flag settings appeared only once or
twice during the period in question, for a cumulative total of 44 packets :
A*RSF, **U**, **UA**SF, **UAPRSF, *2****SF, *2**P*SF, *2U*P*SF,
1*****SF, 1****RSF, 1**A*RSF, 1*U**RSF, 12****S*, 12***R**, 12***RS*,
12**P*SF, 12**PR*F, 12**PRS*, 12*A*R*F, 12*AP*S*, 12*APRS*, 12U**R*F,
12U**RS*, 12U**RSF, 12U*P**F, 12U*P*S*, 12U*P*SF, 12U*PR**, 12U*PR*F,
12U*PRSF, 12UA****, 12UA**SF, 12UA*RS*, 12UAP***, 12UAP*S*

These all came from random source to random destination, so no overriding purpose
can be attributed to them. About 25% were involved in apparant Kazaa, EDonkey and/
or Napster usage.

Many of the remaining records are the result of scans against the internal systems and
are also recorded in the alert and scan logs. For example, host 66.82.245.45 launch a
broad SYN-FIN scan of the local network, yielding entries in all three types of logs:
From Alerts:
07/28-15:56:03.012314 [**] SYN-FIN scan! [**] 66.82.245.45:21 -> MY.NET.199.170:21

07/28-15:56:03.063396 [**] SYN-FIN scan! [**] 66.82.245.45:21 -> MY.NET.199.171:21

07/28-15:56:03.063406 [**] SYN-FIN scan! [**] 66.82.245.45:21 -> MY.NET.199.172:21

From Scans:
07/28-15:56:03 [**] SCAN SYNFIN ******SF [**] 66.82.245.45:21 -> 130.85.199.170:21

07/28-15:56:03 [**] SCAN SYNFIN ******SF [**] 66.82.245.45:21 -> 130.85.199.171:21

53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

07/28-15:56:03 [**] SCAN SYNFIN ******SF [**] 66.82.245.45:21 -> 130.85.199.172:21

From OOS:
07/28-15:56:03.012311 66.82.245.45:21 -> MY.NET.199.170:21

TCP TTL:31 TOS:0x0 ID:39426 IpLen:20 DgmLen:40

******SF Seq: 0x5E65D991 Ack: 0xA5D7970 Win: 0x404 TcpLen: 20

The advantage of recording this information three separate times in three separate
locations escapes me.

Only five of these types of packets rise above the level of noise: ********, ******SF,
****P***, and 12****S*. The other 44 packets can be attributed to garbled
communications. Given the quantity of data during the period, I'm not overly worried
about a 3-packet scan.

The first two types of packets of interest -- ******** and ******SF -- are due to remote
scans (NULL and SYN-FIN, respectively) of the internal hosts. This is born out by
confirmations in the scan and alert logs.

The ****P*** packets are a characteristic of the Kazaa and Gnutella file-sharing
networks, and if fact, the payloads of those packets confirm this.

The last type of interest -- 12****S* -- represent the bulk of the OOS packets. An
analysis of these packets show them to or from normal service ports (smtp, pop, http)
as well as some lesser-known ports (edonkey). None appear to be part of a systematic
scan. The alert logs flag many, but not all, of the 12****S* packets as a "QUESO scan".
I believe that to be incorrect.

The first two flags (cleverly labeled 1 and 2) used to be reserved for future use and were
always supposed to be set to zero. That changed several years ago with the advent of
ECN. ECN uses those two bits for Explicit Congestion Control, allowing hosts to use
those two bits, now labeld ECE (ECN-Echo) and CWR (Congestion Window Reduced),
to signal the other when one host is unable to keep up.

Correlations:
RFC3168: The Addition of Explicit Congestion Notification (ECN) to IP57

Pete Storm's GCIA Practical Assignment V3.316

Donald Gregory's GCIA Practical Assignment V3.234 (p. 44)

I was able to confirm my ECN suppositions using both Donald's [p. 44] and Pete's [p.

54

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

61] works, as well as RFC3168.

3.4.3 Scans
The Scan table lists the top 11 scans found in the scan logs. There were a further 160
different scan types recorded, but the averaged less than 4 packets per type, and so
have been ignored for this analysis.

Type Quantity Sources Comment

UDP 6,055,805 505

SYN ******S* 2,497,910 700

SYN 12****S* RESERVEDBITS 11,708 350 ECN (see OOS section)

SYNFIN ******SF 2,558 2 from 66.82.245.45 port 21 to port 21

NULL ******** 679 46

INVALIDACK ***A*R*F 217 54

VECNA ****P*** 153 8

UNKNOWN 1****R** RESERVEDBITS 115 36 All but five from known services (http,
imap, etc.) . ECN

INVALIDACK ***AP*S* 105 5

UNKNOWN *2*A**** RESERVEDBITS 66 3 All from a web server. ECN

UNKNOWN *2***R** RESERVEDBITS 64 5 All from or to known services. ECN

Table 6: Scan Breakdown

These logs, when combined with the OOS logs, raise significant questions about the
accuracy of one or both sets of logs. Several scans using invalid flag settings --
1****R**, ***A*R*F, *2*A**** and *2***R** -- don't appear in the OOS logs at all.

All but one of the SYNFIN scans came from a single host, 66.82.245.45, all to port 21.
That host also performed a small (18-packet) SYN scan also to port 21, but to different
targets. These scans all occured on the afternoon of the last day of logs, so it's
probably worth adding new rules to track activity from this host for the near future.

The "***AP*S*" are all from web or imap servers to low ephemeral ports (1025-1036) on
4 machines (3 remote). The targeted system don't appear in any other alerts, and no
known services normally run on those ports. It's possible these are actual responses to
invalid SYN packets sent out "*****P*S*", but no such packets were logged. The local

55

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

webserver sending many of these packets, MY.NET.113.207, was previously the target
of several IIS ISAPI attacks, so it would be worthwhile to examine that system and
check for a compromise.

The "***A*R*F" packets are an unknown, but appear harmless. Many come from ident
servers, and all are destined for ephemeral ports. There doesn't appear to be any
pattern.

The majority of the NULL scans ("********") were targeted against the pop3 port of
MY.NET.12.4, MY.NET.25.21, MY.NET.25.22, MY.NET.25.23 and MY.NET.25.24. This
matches the data from the OOS and alert logs. All of these systems were also
mentioned in Red Worm alerts and should be checked.

The SYN scans (******S*) were all over the map. Three internal systems topped the list
(MY.NET.97.51, MY.NET.97.225 and MY.NET.100.230) with more that 1/2 million
combined alerts. That points out a major problem with these alerts in general. Short of
saying someone needs to look at these systems, the sheer quantity of alerts becomes
quickly overwhelming. The first two systems here are already high on the "must be
checked" list with NIMDA, so no real knowledge is here.

Nearly 1/2 of the UDP scans were originated my MY.NET.1.3, and 80% of those where
targeted at apparent DNS servers (port 53).

3.5 Top Talkers
My initial take on this was to simply run counts of alerts and scans from various systems
and record the totals here. While easy to obtain (a simple perl script can generate the
appropriate source and target breakdowns for alerts, scans and OOS packets), the
results were neither illuminating nor particularly interesting.

In the end, I took a different tack: My definition for "top talkers" are those internal
systems involved in the most high-priority attacks against remote machines. It's
important to note that this definition doesn't simply rely on alert/OOS/scan counts, but
rather looks at both the frequency and types of attacks being launched by the systems
in question. This admittedly weights the scale towards high-priority alerts over OOS
and/or scan records, but my belief here is that a system actively launching 100 IIS
attacks is far more important than a system sending 1,000 NMap scan packets. The
scans are important, but the attacks are critical and demand immediate attention.

That said, MY.NET.1.3 made the list due solely to the sheer number of scan packets it
56

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sent out (nearly 2.5 million). If this is your DNS server, do you really want to wade
through 2.5 million alerts?

MY.NET.97.51

189,967
123,270

56
54

SYN scan
UDP scan
NIMDA - Attempt to execute cmd from campus host
IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize

MY.NET.97.225

192,138
77
46

4
1

SYN scan
IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
NIMDA - Attempt to execute cmd from campus host
spp_http_decode: CGI Null Byte attack detected
UDP scan

MY.NET.97.49

176,065
1,173

213
124

UDP scan
SYN scan
spp_http_decode: IIS Unicode attack detected
spp_http_decode: CGI Null Byte attack detected

MY.NET.70.207

 76,719
18,492

2
1

UDP scan
High port 65535 udp - possible Red Worm - traffic
TFTP - External TCP connection to internal tftp server
NIMDA - Attempt to execute cmd from campus host

MY.NET.97.88

58,365
412
345

7

UDP scan
SYN scan
spp_http_decode: IIS Unicode attack detected
spp_http_decode: CGI Null Byte attack detected

MY.NET.97.79

45,281
917
193

26

UDP scan
SYN scan
spp_http_decode: IIS Unicode attack detected
spp_http_decode: CGI Null Byte attack detected

MY.NET.97.83

128,324
716

24
1

UDP scan
SYN scan
spp_http_decode: IIS Unicode attack detected
spp_http_decode: CGI Null Byte attack detected

MY.NET.97.77

95,410
584
169

4

UDP scan
SYN scan
spp_http_decode: IIS Unicode attack detected
spp_http_decode: CGI Null Byte attack detected

MY.NET.97.21
76.473

528
123

UDP scan
SYN scan
spp_http_decode: IIS Unicode attack detected

57

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MY.NET.1.3
2,469,977

98
UDP Scans
SYN Scans

Table 7: Top Talkers

3.6 External Sources
The five external sources examined here all did something to stand out in the provided
logs.

3.6.1 216.152.64.155
This host has compromised and is actively controlling several internal machines, as
detailed in the linkgraph section below. This host is only directly involved in two alerts,
"IRC user /kill detected" as source, and "Possible sdbot floodnet" as destination, but it's
indirectly responsible for numerous others, including "Red Worm", "IIS Unicode" and
NIMDA alerts, through hosts it's controlling.

whois 216.152.64.155

OrgName: WebMaster, Incorporated

OrgID: WBMR

Address: 1601 Civic Center Drive, Suite 101

City: Santa Clara

StateProv: CA

PostalCode: 95050

Country: US

NetRange: 216.152.64.0 - 216.152.79.255

CIDR: 216.152.64.0/20

NetName: WEBMASTER-BLK-1

NetHandle: NET-216-152-64-0-1

Parent: NET-216-0-0-0-0

NetType: Direct Allocation

NameServer: NS1.WEBMASTER.COM

NameServer: NS1.WEBCHAT.ORG

Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE

RegDate: 2000-07-18

Updated: 2003-09-05

TechHandle: MO21-ARIN

TechName: Owen, Mark

TechPhone: +1-408-345-1800

TechEmail: mark@webmaster.com

58

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ARIN WHOIS database, last updated 2004-02-17 19:15

Enter ? for additional hints on searching ARIN's WHOIS database.

3.6.2 68.155.195.92
This is the remote host that generated the most scan records (116,889) over the period

in question. This is apparently a BellSouth user.

whois 68.155.195.92

OrgName: BellSouth.net Inc.

OrgID: BELL

Address: 575 Morosgo Drive

City: Atlanta

StateProv: GA

PostalCode: 30324

Country: US

ReferralServer: rwhois://rwhois.eng.bellsouth.net:4321

NetRange: 68.152.0.0 - 68.159.255.255

CIDR: 68.152.0.0/13

NetName: BELLSNET-BLK14

NetHandle: NET-68-152-0-0-1

Parent: NET-68-0-0-0-0

NetType: Direct Allocation

NameServer: NS.BELLSOUTH.NET

NameServer: NS.ATL.BELLSOUTH.NET

Comment:

Comment: For Abuse Issues, email abuse@bellsouth.net. NO ATTACHMENTS. Include IP

Comment: address, time/date, message header, and attack logs.

Comment: For Subpoena Request, email ipoperations@bellsouth.net with "SUBPOENA" in

Comment: the subject line. Law Enforcement Agencies ONLY, please.

RegDate: 2002-07-22

Updated: 2003-05-05

AbuseHandle: ABUSE81-ARIN

AbuseName: Abuse Group

AbusePhone: +1-404-499-5224

AbuseEmail: abuse@bellsouth.net

TechHandle: JG726-ARIN

TechName: Geurin, Joe

TechPhone: +1-404-499-5240

TechEmail: ipoperations@bellsouth.net

59

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

OrgAbuseHandle: ABUSE81-ARIN

OrgAbuseName: Abuse Group

OrgAbusePhone: +1-404-499-5224

OrgAbuseEmail: abuse@bellsouth.net

OrgTechHandle: JG726-ARIN

OrgTechName: Geurin, Joe

OrgTechPhone: +1-404-499-5240

OrgTechEmail: ipoperations@bellsouth.net

ARIN WHOIS database, last updated 2004-02-17 19:15

Enter ? for additional hints on searching ARIN's WHOIS database.

3.6.3 200.51.212.201
This is the remote host that generated the most Out-Of-Spec records (342) over the
period in question. This user appears to be a dial-up user in Buenos Aires, Argentina.
This was all traffice to eDonkey file-sharing servers, so not necessarily harmful, but
prevalent none-the-less.

whois 200.51.212.201

OrgName: Latin American and Caribbean IP address Regional Registry

OrgID: LACNIC

Address: Potosi 1517

City: Montevideo

StateProv:

PostalCode: 11500

Country: UY

ReferralServer: whois://whois.lacnic.net

NetRange: 200.0.0.0 - 200.255.255.255

CIDR: 200.0.0.0/8

NetName: LACNIC-200

NetHandle: NET-200-0-0-0-1

Parent:

NetType: Allocated to LACNIC

NameServer: TINNIE.ARIN.NET

NameServer: NS.LACNIC.ORG

NameServer: NS.DNS.BR

NameServer: NS2.DNS.BR

60

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Comment: This IP address range is under LACNIC responsibility for further

Comment: allocations to users in LACNIC region.

Comment: Please see http://www.lacnic.net/ for further details, or check the

Comment: WHOIS server located at whois.lacnic.net

RegDate: 2002-07-27

Updated: 2003-06-12

TechHandle: LACNIC-ARIN

TechName: LACNIC Hostmaster

TechPhone: (+55) 11 5509-3522

TechEmail: abuse@lacnic.net

OrgTechHandle: LACNIC-ARIN

OrgTechName: LACNIC Hostmaster

OrgTechPhone: (+55) 11 5509-3522

OrgTechEmail: abuse@lacnic.net

ARIN WHOIS database, last updated 2004-02-17 19:15

Enter ? for additional hints on searching ARIN's WHOIS database.

% Copyright LACNIC lacnic.net

% The data below is provided for information purposes

% and to assist persons in obtaining information about or

% related to AS and IP numbers registrations

% By submitting a whois query, you agree to use this data

% only for lawful purposes.

% 2004-02-18 19:38:30 (BRT -03:00)

inetnum: 200.51.212/22

status: reallocated

owner: Telefonica de Argentina

ownerid: AR-TEAR7-LACNIC

responsible: Marcelo A. MuÒoz

address: Defensa, 390, Piso 5

address: 1065 - Buenos Aires - CF

country: AR

phone: +54 11 4-3335509 []

owner-c: TEA

tech-c: TEA

created: 20030916

changed: 20030916

inetnum-up: 200.51.208/21

inetnum-up: 200.51/16

nic-hdl: TEA

person: TELEFONICA DE ARGENTINA

e-mail: tasamail@TELEFONICA.COM.AR

address: H. Yrigoyen 1556 - 8th floor, 1556,

61

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

address: 1089 - Capital Federal - BA

country: AR

phone: +54 11 4332-2364 []

created: 20030618

changed: 20030915

% whois.lacnic.net accepts only direct match queries.

% Types of queries are: POCs, ownerid, CIDR blocks, IP

% and AS numbers.

ARIN WHOIS database, last updated 2004-02-17 19:15

Enter ? for additional hints on searching ARIN's WHOIS database.

3.6.4 199.29.143.28
This is the remote host that generated the most alert records (173,208) over the period
in question, all of type "IRC user /kill detected".

whois 199.29.143.28

Performance Systems International Inc. NETBLK-PSINET-CBLK4 (NET-199-29-0-0-1)

 199.29.0.0 - 199.29.255.255

L.H. Rosenberg & Associates NET-LHRASSO (NET-199-29-143-0-1)

 199.29.143.0 - 199.29.143.255

This isn't overly helpful. A web search identifies L.H Rosenberg as a Leonard
Rosenberg of www.lhrasso.com. That address is no longer valid, so this will take a call
to PSI to get further information.

3.6.5 216.231.173.71
In light of the lack of success in finding information on the prior address, this is the
remote host that generated the second most alert records (24,476) over the period in
question, all of type "possible Red Worm".

whois 216.231.173.71

OrgName: Gulf Telephone Company

OrgID: GTCO

Address: 316 South McKenzie St

City: Foley

StateProv: AL

PostalCode: 36535

Country: US

62

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

NetRange: 216.231.160.0 - 216.231.191.255

CIDR: 216.231.160.0/19

NetName: GTCO

NetHandle: NET-216-231-160-0-1

Parent: NET-216-0-0-0-0

NetType: Direct Allocation

NameServer: NS.GULFTEL.COM

NameServer: NS2.GULFTEL.COM

Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE

RegDate: 1999-06-22

Updated: 2002-10-30

TechHandle: ZM158-ARIN

TechName: Madison River Communications

TechPhone: +1-919-563-1500

TechEmail: hostmaster@madisonriver.net

ARIN WHOIS database, last updated 2004-02-17 19:15

Enter ? for additional hints on searching ARIN's WHOIS database.

3.7 Link Graph and Analysis
The following link graph clearly demonstrates the havoc a remote hacker can cause.
Seven systems on the MY.NET.97 subnet -- 35, 55, 59, 73, 107, 160, and 161 -- have
been compromised and are all being remotely controlled by the machine at
216.152.64.155.

The infected hosts all appear to be running the sdbot trojan, and are communicating
with the master using IRC, as show in the following alerts:
07/26-13:32:38.020867 [**] [UMBC NIDS IRC Alert] Possible sdbot floodnet detected
attempting to IRC [**] MY.NET.97.161:1332 -> 216.152.64.155:6660

07/26-14:20:28.068166 [**] [UMBC NIDS IRC Alert] IRC user /kill detected, possible
trojan. [**] 216.152.64.155:6660 -> MY.NET.97.161:1332

The master has complete control over the infected machines, including the ability to
download and run executables. As shown in the diagram, the infected machines have
been used to launch NIMDA and IIS Unicode attacks, as well as performing hundreds of
scans on remote machines. In total, these machines sent out 4,991 SYN scan packets
and 13,416 scan packets in the 5-day period in question (the scans aren't represented
on the linkgraph for clarity).

The WinVNC does not appear to be the result of actions by the controlling host, but is
included for completeness.

63

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 8: Linkgraph of Compromised Systems

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.8 Insights
The following systems are known to be infected and need to be dealt with immediately.

Disinfect

The following hosts are either known to be, or have strongly indicated that they are,
infected by one or more viruses. Many are actively under control of remote systems.
These should be your top priority.

MY.NET.53.208 IRC /kill, XDCC, Warez, Red Worm

MY.NET.60.11 DDOS mstream client to handler

MY.NET.70.41 PHF Attempt, TFTP - External TCP connection

MY.NET.70.118 PHF Attempt, TFTP - External TCP connection

MY.NET.70.172 PHF Attempt, TFTP - External TCP connection

MY.NET.70.191 PHF Attempt, TFTP - External TCP connection

MY.NET.70.203 PHF Attempt, TFTP - External TCP connection

MY.NET.70.207 NIMDA, Red Worm

MY.NET.82.2 NIMDA

MY.NET.82.26 NIMDA

MY.NET.82.53 NIMDA

MY.NET.97.11 sdbot

MY.NET.97.29 NIMDA

MY.NET.97.35 sdbot

MY.NET.97.51 IIS ISAPI Overflow ida (Code Red), NIMDA

MY.NET.97.53 K:\line'd user, IIS Unicode

MY.NET.97.55 sdbot

MY.NET.97.59 sdbot, IIS Unicode, Red Worm

MY.NET.97.64 sdbot

MY.NET.97.73 sdbot, IIS Unicode, NIMDA

MY.NET.97.82 DDOS mstream client to handler

MY.NET.97.107 sdbot

MY.NET.97.116 K:\line'd user, IIS Unicode

MY.NET.97.160 sdbot

MY.NET.97.161 sdbot

65

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MY.NET.97.162 sdbot

MY.NET.97.162 K:\line'd user, IIS Unicode

MY.NET.97.175 EXPLOIT NTPDX buffer overflow, Code Red

MY.NET.97.183 sdbot

MY.NET.97.188 sdbot

MY.NET.97.219 sdbot

MY.NET.97.222 K:\line'd user, IIS Unicode

MY.NET.97.225 IIS ISAPI Overflow ida (Code Red), NIMDA

MY.NET.97.227 sdbot

MY.NET.114.89 Red Worm

MY.NET.132.42 NIMDA

MY.NET.153.76 K:\line'd user, IIS Unicode

Table 9: Systems to be Disinfected

Check for infection

The next table is a short summary of hosts that need to be checked for infection. The
table is followed by a much larger list of hosts that need to be checked. Rather than
listing those hundreds of hosts individually, I've tried to note how to identify them in the
logs.

MY.NET.5.92 TFTP - Internal UDP connection

MY.NET.12.4 target of NULL scan and Red Worm alerts

MY.NET.12.6 Queso, Red Worm, TCP SMTP Source Port traffic

MY.NET.24.27 FTP DoS ftpd globbing

MY.NET.25.21 target of NULL scan and Red Worm alerts

MY.NET.25.22 target of NULL scan and Red Worm alerts

MY.NET.25.23 target of NULL scan and Red Worm alerts

MY.NET.25.24 target of NULL scan and Red Worm alerts

MY.NET.25.68 Queso, Red Worm, TCP SMTP Source Port traffic

MY.NET.69.169 Back Orifice

MY.NET.70.125 TFTP - Internal UDP connection

MY.NET.83.98 Sending fragmented packets

MY.NET.84.145 TFTP - Internal UDP connection

MY.NET.97.20 TFTP - Internal TCP connection

66

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MY.NET.97.91 Sending NULL scans, sending fragments

MY.NET.97.217 TFTP - Internal TCP connection

MY.NET.113.207 subjected to "IIS ISAPI" attacks and is now sending packets with invalid flags ("***AP*S*").

MY.NET.152.167 Back Orifice

MY.NET.190.13 SNMP public access

Table 10: Systems to be checked

69 hosts on the MY.NET.70 and MY.NET.71 networks answered a scan that came in on
port 69. These hosts need to be checked to verify they're not infected and are running a
valid, required tftp server.

37 hosts responded to a scan on port 27274 from 66.68.110.48. These need to be
checked for SubSeven, Ramen and/or other infection.

53 hosts recieved "IRC user /kill" commands and need to be checked.

98 hosts launched CGI Null Byte attacks and need to be checked.

344 systems were detected sending IIS Unicode attacks and need to be checked.

Systems to Watch

66.82.245.45 performed extensive scan for ftp servers

3.9 Defensive Recommendation
I've several recommendations for reducing risk and lowering the cost of doing normal
business for the University and its administrators. I've divided those recommendations
below, based on their intended audience. There is, however, considerable overlap
between them.

Recommendations for the University

- Consider a policy allowing the administrators to immediately quarantine infected
machines, removing them from the network until such time as they are deemed safe.
This is the fastest way to halt the spread of a new virus.

- Look into providing reduced-cost subscriptions to current anti-virus software, and

67

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

require such software on all internal machines.

Recommendations for Local Users:

- Use current anti-virus software on all machines. The University might be able to
acquire such software at a much reduced cost by negotiating with vendors on behalf of
the students.

- Use personal firewalls, if available (they should be for most systems). This won't
replace the need for a border firewall, but it will help reduce the damage done when/if a
user's machine is infected.

Recommendations for the border firewall:

 - Drop all mis-configured packets. Dropping a SYN-FIN scan at the firewall, for
example, will not only help eliminate these types of scans, but will also significantly
reduce the logged traffic. As it stands, these scans generate an incredible amount of
noise that the administrators need to weed through.

- Block truly unneeded services. TFTP, for example, can be safely blocked at the
firewall without affecting any legitimate traffic.

- Provide local sources for standard types of traffic, where possible, then block those
ports for any other sources. For example, providing a local ntp server for your users
allows you to block the ntp ports for any other hosts.

- Block SMB traffic at the firewall. This might be an inconvenience to the local users,
but allowing external access to these ports is simply asking for trouble. Users should be
encourage to use alternate methods to share files (personal space on University-
supplied web server, ssh, etc.).

- Investigate the use of transparent proxies for services that support them. An http
proxy could easily stop known IIS attacks cold.

- Require the use of current anti-virus software on all machines, where possible. Many
of the incoming attacks are ancient (in Internet time), and would be readil

68

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Recommendation for administrators:

- See if there is another way to gather the data provided by the "informational" alerts.
For example, the second most frequent alert was for external traffic to the CS web
server. Not only is that an incredible amount of chaff, it almost certainly duplicates data
already collected in the web server logs.

- Update your version of Snort and its associated rules to the latest versions. Many of
the alerts in the provided logs are no longer current.

- If MY.NET.1.3 is your DNS server, remove it from the logs by adding the following line
to your snort.conf file:

preprocessor portscan-ignorehosts: MY.NET.1.3

This alone would prevent 2.5 million alerts.

3.10 Analysis Process
I began my analysis by first using a script to find and remove invalid records from the
source files: these were mostly either incomplete or inter-mixed alerts that couldn't be
correctly deciphered. This allowed me to concentrate future scripts on parsing the valid
data without worrying about formatting errors.

I then normalized the alert, scan and OOS records into a common format (actually, the
standard Alert format). Each OOS record spanned multiple lines, so for each record I
output a single line that summarize the records basic information (date, time, flags, and
source and destination hosts and ports). I also slightly reformatted the Scan records so
that the date formats matched the Alert records, and alter the addresses so that 130.85
showed MY.NET. The resulting data could then be quickly sorted (using a standard
ASCII sort) into a time-ordered view of the available data. This made it trivial to note the
correlation between certain OOS records and a Queso scan, for instance.

I then wrote another script to summarize the standardized records by alert-type. This
script yeilded counts by type, further sub-divided between inbound and outbound alerts.
The script also kept track of the number of unique hosts for each alert.

Additionaly scripts were used to create and operate on subsets of the alert data, since
processing the entire large collection was fairly time-consuming. Files and summaries
were created for each alert type, greatly decreasing the time involved in further study.

69

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

At this point, I need to give special thanks to Glenn Larratt, whose GCIA Practical58
reminded me of the necessity for generating attack timelines. I created a perl script that
summarized alerts by type, day and time, then plotted histograms for each. That was
invaluable in spotting trends that deserved special attention. The "Red Worm" alert, for
example, yielded the following histogram. The three sets of numbers per day show the
total number of alerts for the day, the number during business hours (presumed to be
8-5), and out-of-hours, along with their respective percentages of the total.

Alert: High port 65535 tcp - possible Red Worm - traffic: 10018
07/24 : 373 (03.72) 124 (01.24%) 249 (02.49%) **
07/25 : 7416 (74.03) 79 (00.79%) 7337 (73.24%) **************************************
07/26 : 892 (08.90) 120 (01.20%) 772 (07.71%) *****
07/27 : 726 (07.25) 444 (04.43%) 282 (02.81%) ****
07/28 : 611 (06.10) 318 (03.17%) 293 (02.92%) ****

By Hour
07/24 00: 60 (00.60%)% *
07/24 01: 96 (00.96%)% *
07/24 02: 3 (00.03%)% *
07/24 03: 27 (00.27%)% *

...
07/25 02: 7228 (72.15%)% *************************************

...

This helped to highlight blocks of time requiring special attention during analysis.

I also based the layout of my Alert Summary table on Gary's, which I found to be among
the clearest available. I did not, however, include port number in my table, as they
didn't add significantly to the overall understanding of the alerts. I instead noted port
numbers in the individual alert breakdowns, where appropriate.

One particularly interesting script I wrote looked for chains of events between the
combined alerts. It began by looking for alert sources that had themselves been the
destination of previous alerts. It recorded those alerts and began looking for
subsequent alerts from those destinations as well. It was this script that allowed the
creation of the linkgraph, as it cleared showed connections not easily seen in the mass
of provided data.

Once I had defined my "top talkers" criteria, I generated another script which looked for
alerts, OOS records and scans from internal hosts, and sorted the results by quantity. I
then manually reviewed the results, choosing the first 10 I found to be "interesting."

70

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Scan data were the most painful to deal with, of only for the sheer quantity of data to go
through. Several perl scripts were used to generate overall summaries of the data
(unique sources, frequency of destinations IPs, ports, etc.). That helped pinpoint that
MY.NET.1.3 was probably a DNS server and Snort was merely misconfigured.

71

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4. References

1. Savage. "Queso Source Code." http://www.l0t3k.net/tools/FingerPrinting/queso-
980922.tar.gz
2. Fyodor. "NMap v3.48." (2002). URL: http://www.insecure.org/nmap
3. Jacobson, V., R. Braden, and D. Borman. "RFC1323: TCP Extensions for High
Performance." (1992). http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1323.html 4. Richard,
W. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison Wesley Longman,
Inc, 1994.
5. Fyodor. "Remote OS detection via TCP/IP Stack
FingerPrinting." (2002).
http://www.insecure.org/nmap/nmap-fingerprinting-article.html
 6. Sakellariadis, Spyros. "Protecting Windows RPC traffic." (2002).
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/isa/
maintain/rpcwisa.asp (Feb 11, 2004)
7. LURHQ. "Windows Messenger Popup Spam on UDP Port 1026."
http://www.lurhq.com/popup_spam.html (2/11/03)
8. Ullrich, Johannes B. "popupad spam wrapup." (2003).
http://www.merit.edu/mail.archives/nanog/2003-12/msg00181.html
9. Microsoft. "Buffer Overrun in Messenger Service Could Allow Code Execution
(828035)." (2003). http://www.microsoft.com/technet/treeview/default.asp?url=/technet/
security/bulletin/MS03-043.asp (Feb 13, 2004)
10. Microsoft. "Managing System Services."
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/
winntas/maintain/monitor/03wntpcb.asp (Feb 11, 2004)
11. Microsoft. "Stopping Advertisements with Messenger Service Titles." (2003).
http://www.microsoft.com/windows2000/techinfo/administration/communications/
msgrspam.asp (Feb 13 2004)
12. Microsoft. "Disabling Messenger Service in Windows XP." (2004).
http://www.microsoft.com/windowsxp/pro/using/howto/communicate/stopspam.asp
13. Mixter. ".mixter security home page." http://mixter.void.ru/code.html (Feb 13 2004)
14. PacketStormSecurity. "groups / mixter /."
http://packetstormsecurity.org/groups/mixter/ (Feb 13, 2004)
15. whitehats.com. "IDS203 TROJAN-ACTIVE-Q-TCP."
http://www.whitehats.com/info/IDS203 (Feb 13, 2004)
16. Storm, Pete. "GCIA Practical Assignment V3.3." (2003).
http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf (Feb 11, 2004)
17. Gordon, Les. "What is the Q Trojan?"
http://www.sans.org/resources/idfaq/qtrojan.php

72

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18. IEEE. "IEEE OUI & Company ID Assignments." (2/1/04).
http://standards.ieee.org/regauth/oui/index.shtml
19. IANA. "Internet Protocol V4 Address Space." (2002). http://www.aian.org/
assignments/ipv4-address-space (IANA:IPV4)
20. IETF. "INTERNET PROTOCOL." (1981). http://www.ietf.org/rfc/rfc0791.txt
21. CERT. "CERT® Advisory CA-2001-19 "Code Red" Worm Exploiting Buffer Overflow
In IIS Indexing Service DLL." (2002).
http://www.cert.org/advisories/CA-2001-19.html (Feb 4, 2004)
22. Teeraruangchaisri, Kittipong. "Code and Code Red II: Double Dragons." (2001).
http://www.sans.org/rr/papers/36/88.pdf (Feb 4, 2002)
23. Williams, Todd. "LOGS: GIAC GCIA Version 3.3 Practical - Todd Williams." (2003).
http://cert.uni-stuttgart.de/archive/intrusions/2003/12/msg00176.html (Feb 8, 2004)
24. Snort.org. "The Snort FAQ." (2/15/04). http://www.snort.org/docs/FAQ.txt (Feb 11,
2002)
25. Microsoft. "Q303215: Microsoft Network Security Hotfix Checker (Hfnetchk.exe)
Tool Is Available." (2003).
http://support.microsoft.com/default.aspx?kbid=303215 (Feb 11 2004)
26. Microsoft. "Q206460: Microsoft Baseline Security Analyzer (MBSA)."
http://support.microsoft.com/default.aspx?scid=kb;en-us;306460 (Feb 11, 2004)
27. Anonymous. "IRC KILL command." (2004),
http://www.irchelp.org/irchelp/ircii/commands/KILL
28. www.whitehats.com. "IDS177 NETBIOS-NAME-QUERY." (2003).
http://www.whitehats.com/info/IDS177 (Feb 11, 2004)
29. MacDonald, Terry. "GCIA Practical Assignment V3.3." (2003).
http://www.giac.org/practical/GCIA/Terry_MacDonald_GCIA.pdf
30. Microsoft. "Chapter 11 - Additional Member Server Hardening Procedures."
(2/7/04). http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/
topics/hardsys/TCG/TCGCH11.asp
31. Gordon, Les. "GCIA Practical Assignment V3.3." http://www.giac.org/practical/
GCIA/Les_Gordon_GCIA.doc (Feb 4, 2004)
32. J., Anthony Dell. "Adore Worm -- Another Mutation." (2001).
http://www.giac.org/practical/gsec/Anthony_Dell_GSEC.pdf (Mar 2, 2002)
33. Rodriguez, Tom. "What are unicode vulnerabilities on Internet Information Server."
(2001). http://www.sans.org/resources/idfaq/iis_unicode.php
34. Gregory, Donald. "GCIA Practical Assignment V3.2." (2003). http://www.giac.org/
practical/GCIA/Donald_Gregory_GCIA.pdf (Feb 7, 2004)
35. rain.forest.puppy. "Perl CGI problems.", http://www.phrack.org/how.php?p=55\&a=7
(Feb 1, 2004)
36. Brodley, Carla, T.N. Vijaykumar, Hilmi Ozdoganoglu, and Ankit Jalote. "The Buffer
Overflow Page." (2004). http://min.ecn.purdue.edu/~cyprian/BoF_Page.html#x86
37. CERT. "CA-2001-30 Multiple Vulnerabilities in lpd."
http://www.cert.org/advisories/CA-2001-30.html (Feb 7, 2004)

73

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

38. Stearns, William. "Ramen Worm." (2/1/04). http://www.sans.org/y2k/ramen.htm
39. SANS. "Intrusion Detection FAQ: SubSeven Trojan." (2/1/04).
http://www.sans.org/resources/idfaq/subseven.php
40. Consulting, Simovits. "Trojan list sorted on trojan port." (2/1/04).
http://www.simovits.com/trojans/trojans.html (Feb 1, 2004)
41. www.whitehats.com. "IDS552 IIS ISAPI OVERFLOW IDA."
http://www.whitehats.com/info/IDS552 (Feb 4 2002)
42. Associates, Computer. "BackGate Kit." (2002):
http://www3.ca.com/virusinfo/virus.aspx?ID=9739 (Jan 12, 2004)
43. CERT. "CERT Advisory CA-2001-26: Nimda."
http://www.cert.org/advisories/CA-2001-26.html (Oct 11, 2002)
44. Dittrich, Dave. "World-wide distributed DoS and ``warez'' bot networks." (2002).
http://staff.washington.edu/dittrich/talks/core02/xdcc-analysis.txt (Feb 11, 2004)
45. CVE. "CVE-2001-0550." (2003).
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0550 (Feb. 4, 2004)
46. www.whitehats.com. "IDS213 FTP-PASSWS-RETRIEVAL-RETR."
http://www.whitehats.com/info/IDS213 (Feb 11, 2004)
47. Proftpd.org. "ProFTPD Logins and Authentication." (2/17/04)
http://www.castaglia.org/proftpd/doc/contrib/ProFTPD-mini-HOWTO-Authentication.html
48. Seifried, Kurt. "Port 5900 TCP, UDP."
http://www.seifried.org/security/ports/5000/5900.html (Feb. 11, 2004)
49. Anonymous. "sdbot 0.5b source code."
http://www.manshadow.org/tools/windows/sdbot05b.zip (Feb 17, 2004)
50. Snort.org. "NETBIOS NT NULL session." (2/11/04).
http://www.snort.org/snort-db/sid.html?sid=530 (Feb 11, 2004)
51. CVE. "CAN-2000-1186." (2/11/04).
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-1186 (Feb 12, 2004)
52. CVE. "CVE-1999-0067." (2004).
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0067 (Feb 4, 2004)
53. www.whitehats.com. "IDS492 NTPDX-BUFFER-OVERFLOW."
http://www.whitehats.com/info/IDS492 (11 Feb 2003)
54. Lorier, Perry. "Snort rules for IRC." http://coders.meta.net.nz/~perry/irc.rules (Feb 4
2002)
55. CVE. "CAN-2000-0138." (2/11/04).
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0138 (Feb 4, 2004)
56. www.whitehats.com. "IDS254 DDOS-SHAFT-CLIENT-TO-HANDLER." (2003).
http://www.whitehats.com/info/IDS254 (Feb 11, 2004)
57. Ramakrishnan, K., S. Floyd, and D. Black. "RFC3168: The Addition of Explicit
Congestion Notification (ECN) to IP." (2001). http://www.ietf.org/rfc/rfc3168.txt (Feb 3,
2004)
58. Larratt, Gary. "GCIA Practical Assignment V3.0."
http://is.rice.edu/~glratt/practical/Glenn_Larratt_GCIA.html (Feb 4, 2004)

74

