
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA) Practical Assignment, v3.4
SANS Madrid, September 2003.
Diego González Gómez, 29th February 2004.

Abstract

This document is divided in three main parts or sections, following the GIAC GCIA
Practical Assignment version 3.4 specifications.

The first part consists of a white paper about the use of Anomaly Detection for
identifying unknown attacks. Advantages and disadvantages are explained, SPADE
Anomaly Detector is examined in detail and several implementation examples are
suggested.

The second part consists of the exhaustive analysis of three network detects
captured in the wild: "WEB-IIS view source via translate header", "NETBIOS
DCERPC ISystemActivator bind attempt" and "WEB-IIS WEBDAV nessus safe
scan attempt".

Finally, the third part is a security audit for a University. It consists of the
comprehensive analysis of five consecutive days worth of data generated by a
Snort sensor. The data analyzed corresponds to the period between the 27th to
31st January 2004.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment , v3.4

(revised September 24, 2003)

SANS Madrid, September 2003

Diego González Gómez

Submitted: February 29, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

2

Table of Contents

1. Assignment 1 - The state of Intrusion Detection 3

1.1. Detecting unknown attacks in the network tra ffic 3

2. Assignment 2 - Network Detects 12

2.1. Detect #1 - WEB-IIS view source via translate header 12
2.2. Detect #2 - NETBIOS DCERPC ISystemActivator bind attempt 27
2.3. Detect #3 - WEB-IIS WEBDAV nessus safe scan attempt 36

3. Assignment 3 - Analyze This 42

3.1. Executive summary 42
3.2. Alert summary 42
3.3. Analysis process 44
3.4. Alerts triggered more than 1000 times (and related) 44
3.5. Alerts triggered more than 500 times (and related) 59
3.6. Alerts with a small number of occurrences (related) 63
3.7. Top 10 talkers 67
3.8. OOS files 70
3.9. SPP_Preprocessor alerts 71
3.10. Final conclusions and general recommendations 71
3.11. Methodology 72
3.12. References 73

Conventions Used in this Paper

Normal text: 12-point Arial.

$ Commands: Indented, 10-point Courier New, with a '$' or '#'

Log entries: Indented, 8-point Arial

Command output or file contents : Indented, 9 -point Courier New

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

3

1. Assignment 1 - The state of Intrusion Detection
1.1. Detecting unknown attacks in the network traffic
1.1.1. Summary

These days the most commonly used network-based intrusion detectors
utilize sets of attack patterns to identify attacks or signs of intrusion. Although this
solution is safe, simple to implement and gives acceptable results, it is not always
enough.

In this article the anomaly detection is emphasized as a possible solution to
improve the intrusion detection capabilities. At the moment, anomaly detection is
the only technology that can detect new attacks. Among the existing solutions
based in anomaly detection, the features of SPADE detector [1] are discussed in
detail.
1.1.2. Introduction
The Intrusion Detection Systems (IDS) have been integrated into an essential part
of IT defense infrastructures, besides other more common elements such as
firewalls or antivirus programs.

The detection methods of ID technologies consist of basically two types:
Misuse Intrusion Detection (also known as pattern-based) and Anomaly Intrusion
Detection (or behavior-based) [2]. In Misuse Intrusion Detection the hostile system
activities are previously defined using signatures or patterns. The Anomaly
Detection identifies each significant deviation from normal activity, as an intrusion,
and it usually utilizes some type of statistical technique.

Most commercial Intrusion Detection Systems, particularly the network-
based (NIDS), are pattern-based. This fact and the lack of good quality anomaly
detection tools, makes the users associate the NIDS as 'some kind of antivirus
program for network attacks'. However, this is a very limited vision of what is
actually Intrusion Detection.

The NIDS that are based in patterns have demonstrated themselves to be
very efficient at detecting signs of intrusion. However the nature of these systems
makes them easy to avoid detection. The constant appearance of new attacks plus
the experience gained from fast-spreading worm attacks such as SQL Slammer
[3], makes the use of techniques that allows the ability to isolate and examine
behaviors that are not identified by misuse detectors more necessary.
1.1.3. Anomaly Detection
Anomaly Detection is one of the most promising areas of Intrusion Detection. In this
type of detection it is assumed that a significant deviation from a normal behavior
profile can be caused by an intrusion. This behavior profile is a set of metrics and is
created using mathematical algorithms from various data sources. [4]

It is possible to find numerous documents that develop a variety of methods
applicable to Anomaly Detection [5]. For example Data Mining techniques, Genetic
algorithms, Neural networks, Fuzzy Logic, Biological Immune System mechanisms,
Protocol Anomaly Detections, etc.

Anomaly Detection can be used both in Host-based Intrusion Detection
Systems (HIDS) as well as in Network-based ones. For example, ImSafe [6] is a
HIDS that utilizes Anomaly Detection techniques at the process level to detect
possible signs of intrusion.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

4

There are several documents and experimental studies from academic
organizations regarding Anomaly Detection in network traffic (mostly TCP/IP). All of
them seem to obtain notable results. However, it is not easy to find tools that put
them into practice.
1.1.4. Advantages and Disadvantages
Following is a summary of the most common features of Anomaly Detection
techniques. Among the advantages of Anomaly Detection we can find:
• Detection of unknown attacks (such as '0-day' attacks). The creation of a

behavior profile provides the ability to identify certain activities as anomalies that
could be attacks. This certainly reduces the possibility of false negatives1.

• Identification of extremely slow scan attempts. An Anomaly Detector can tag
as anomalous, the activity of an intruder that sends one packet per week,
month, or even less frequently.

• Anomaly Detection technologies do not use attack signatures (patterns).
The Anomaly Detectors learn from their monitored system themselves and
adjust their own behavior profiles for detection activities accordingly. This
makes unnecessary to update the attack signatures or a knowledge base
containing descriptions of hostile behavior based on knowledge of past attacks.
Additionally, this allows to detect new attacks.

• Many applicable theories and techniques. As discussed before, almost any
statistical method or learning technique can be exploited in Anomaly Detection.
This feature makes it a very useful Intrusion Detection area.

Naturally, Anomaly Detection has many limitations. If these limitations are taken

into account, they can be used to better understand Anomaly Detection and to gain
maximum advantage of these technologies:
• They do not identify what attack or intrusion is happening. They trigger

alarms that indicate anomalous behavior, but is the administrator who must
complete a further analysis to determine the origin of the event.

• They need a reasonable learning period. Before identifying what is
anomalous, an Anomaly Detector must first learn what is normal. That is why
Anomaly Detectors usually have a learning period before they begin to work.
The more learning time and the more data analyzed, the less probability of
errors in the future.

• Environment dependent. The behavior profiles generated by statistical
detectors are designed for the systems that they monitor. If the target system
monitors changes, or if it presents significant changes, the data learned will not
be useful and it will be necessary to repeat the learning phase.

• They consume many resources. The very first Intrusion Detectors were
pattern-based. This was not only because they were easier to implement, but
because the Anomaly Detectors needed more time and resources to
corroborate their calculations and results. The appearance of faster processors
and systems with more resources made possible the development of the first
Anomaly Detectors that could be used in normal circumstances.

• They can be deceived. The Anomaly Detectors can consider hostile activities
as normal. For example, if a SMTP server is constantly receiving scans, or
buffer overflow attacks, the detector could eventually consider that these

1 In Intrusion Detection, a false negative occurs when an alarm is not triggered when there are
hostile activities.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

5

activities are normal. Additionally, an Anomaly Detector can be gradually trained
by malicious users to make it identify their activities as normal [7].

• Generation of false positives. In environments where the monitored activity
changes frequently (like network traffic), sometimes it is impossible to create a
profile that represents the 'normal' behavior.

1.1.5. SPADE/SPICE
SPADE is an Anomaly Detector for network traffic, licensed under GNU GPL and
developed by James Hoagland and Stuard Staniford from Silicon defense. At
present it can be installed as a Snort plugin. Nevertheless, its authors affirm that it
can be used with almost any IDS.

SPADE is one of the components of SPICE (Stealthy Portscan and Intrusion
Correlation Engine). The other component, still in development, is an event
correlator. I will list the most important features of this Anomaly Detector. For
additional information it is recommended to read the usage file [8].

SPADE utilizes statistical techniques to detect anomalies in the network
traffic. It assigns a raw anomaly score A(X) to each packet X received by Snort
using the formula: A(X) = -log2 (P(X)). This allows it to give high scores to the less
frequent packets. To make reading the results easier, SPADE can generate relative
anomaly scores, which are normalized values in the interval between 0 and 1.

In the first versions, SPADE only had one generic anomaly detector. The
version v030125.1 has five detector types, with more advanced and specific
features. The authors promise the addition of new types in future versions.
Following is a list of the features of the available detectors:
• closed-dport: This is the traditional detector, used to look for packets destined

for closed ports, or ports usually not used. This makes it especially useful for
detection of port scans.

• dead-dest: This detector looks for unused or destination ip addresses that do
not respond. It can be used to detect horizontal scans, where the intruder
searches for a fixed service or services in a range or set of IP addresses.

• odd-dport: This detector looks for activity originated by machines that try to
open connections in non-frequent destination ports. The success of this type of
detector is directly proportional to the time that it previously dedicated to monitor
its objective. This detector can help to identify compromised hosts.

• odd-dport-dest: This detector looks for sources which open connections to
uncommon destinations according to the destination ports used. This detector is
based on the fact that in some environments, most connections to a certain port
or service are made against the same destination IP address. This is common
in local networks that have POP, SMTP, DNS servers, etc. A connection
attempt that doesn’t show this normal type of behavior could be suspicious and
could reveal signs of a compromise. This detector is one of the detectors that
consumes more resources and that is a reason why it is used with caution.

• odd-typecode: This detector has been designed to look for ICMP packets with
strange type and code values. This type of detector can always be useful. In
addition, there is not a lot of ICMP network therefore this type of detector does
not consume too many resources, and it can help to detect, for example,
attempts of remote "fingerprinting" made by tools such as Xprobe [9].

Each type of detector has its own set of options, and there are several options
common to all of them. These options are discussed in detail in the usage file. On

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

6

the other hand, it is possible to run several instances of the same type of detector
with different configurations. Needless to say, the more detectors that are running,
the more resources SPADE will need.

Each detector in SPADE has a predetermined threshold value that is
adjusted regularly, according to the number of generated alarms. This value can
change, but if it is very low, too many false positives are generated. On the
contrary, a too high value can cause alarms to be missed (false negatives). The
threshold value must be assigned considering the degree of activity (number of IP
addresses and ports) of the monitored device. It is not the same as monitoring a
server with P2P (Peer to Peer) traffic as monitoring an SMTP server. In any case, it
is always recommended to leave SPADE working during a long period of time
(several days) before allowing it to generate real alarms. Thus, the gathered data
will be more accurate.

The messages that SPADE generates are of two types: messages
indicating an anomalous activity, and messages indicating an adjustment of the
threshold value used. These messages are sent to the Snort log file.

In addition, SPADE has its own log file (by default, "spade.log") that is
regenerated with each SIGHUP, SIGQUIT, SIGINT and SIGUSR1 or with each
Snort exit A set of statistics are appended to this file that can help to adjust its
configuration.

On the other hand, SPADE also creates a file called by default "spade.rcv",
in which it stores the generated probability tables from the monitored activities.
When the detector starts, it looks for this file to recover the state of the network. If it
is not available, it creates a new one. In order to avoid false positives or other
errors it is necessary to eliminate this file if the network changes or in the case of
running various tests.
1.1.6. SPADE Installation
At the time of installing SPADE it is necessary to consider some aspects that
generally affect network-based Anomaly Detectors:
• The network traffic frequently has a dynamic nature. In some cases it is

practically random. To find useful patterns in such source of data can
sometimes be impossible. In order to minimize the effects produced by the
appearance of non-relevant information, it is preferable to install the detector as
close to the objective as possible. Thus, it will produce fewer errors.

• Most Anomaly Detectors need an initial learning period in which the normal
traffic is observed. The data of the learning phase should be as free as possible
from hostile activities, since the detector could consider them as normal later.
SPADE begins to collect data and to construct the probability tables when it is
executed for the first time.

In order to feed an Anomaly Detector with data free from attacks it usually uses
specially prepared information, which is not always easy to obtain. In the case of
SPADE, there is no need for special data and there is no need for a learning
period. It learns at the same time as it works.

A possible solution is to place a Pattern-based Intrusion Detector (for
example, Snort) in front of SPADE that discards or redirect dangerous packets.
There are several ways to do this, but it requires firewall capabilities to be added to
the misuse detector.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

7

It is not recommended to allow the pattern-based detector to discard or to redirect
all hostile activity, since some may be false alarms. It could block the most
dangerous and well-known attacks. This is the administrator's choice and it
depends on the systems they choose to defend. The figure below illustrates the
proposed alternative. As you can see, the SPADE detector has been put close to
the monitored device. Another way to reduce anomalies consist of applying some
type of packet normalization technique in front of SPADE [10].

Pattern-based IDS,
Firewall,
Router

Network Target with
SPADEInput traffic

Hostile traffic

Normal traffic

Decoy
(dropped or
redirected)

Figure 1 - SPADE instalation example

The more time the Anomaly Detector is in production, the more it will learn about
its environment, and the less errors it will commit. However, this does not make
Anomaly Detectors invulnerable to certain situations, eg. frequent attacks or
frequent scans, that it may eventually consider to be normal. To avoid this, it is
recommended to configure the installation as indicated above to reduce as far as
possible the appearance of well-known hostile activities.

Once the most suitable location for the detector is known, the only thing
required is to follow the instructions indicated in the installation file included in
SPADE. In this case the version used was v030125.1. After compiling Snort with
the SPADE sources, a SPADE configuration file can be found in the Snort.conf.
The next step is to edit the configuration.
1.1.7. Configuration examples
Once installed, the SPADE version v030125.1 includes the following two
configuration files. The comments have been eliminated for the sake of brevity. In
order to make it easier to read, the differences in the second file are in bold.

#spade.conf
var SPADEDIR .

preprocessor spade: dest=alert logfile=$SPADEDIR/spade.log
statefile=$SPADEDIR/spade.rcv

preprocessor spade -homenet: any

preprocessor spade -detect: type=closed -dport tcpflags=synonly wait=3
preprocessor spade -detect: type=closed -dport tc pflags=weird thresh=0.5
preprocessor spade -detect: type=dead -dest tcpflags=weird wait=2
preprocessor spade -detect: type=dead -dest tcpflags=synack wait=2
preprocessor spade -detect: type=dead -dest tcpflags=established wait=5
preprocessor spade -detect: type=dead -dest tcpf lags=teardown wait=2
preprocessor spade -detect: type=dead -dest proto=udp wait=2
preprocessor spade -detect: type=dead -dest proto=icmp icmptype=noterr wait=2
preprocessor spade -detect: type=odd -typecode
preprocessor spade -detect: type=odd -typecode to=nothome

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

8

#spade.more.conf
var SPADEDIR .

preprocessor spade: dest=alert logfile=$SPADEDIR/spade.log
statefile=$SPADEDIR/spade.rcv

preprocessor spade -homenet: any

preprocessor spade -detect: type=closed -dport tcpflags=synonly wait=3
preprocessor spade -detect: type=closed-dport tcpflags=weird thresh=0.5
preprocessor spade -detect: type=closed -dport tc pflags=teardown
preprocessor spade -detect: type=closed -dport to=nothome tcpflags=synonly
wait=5
preprocessor spade -detect: type=closed -dport to=nothome tcpflags=syn ack
preprocessor spade -detect: type=closed -dport to=nothome tcpflags=teardown
preprocessor spade -detect: type=dead -dest tcpflags=weird wait=2
preprocessor spade -detect: type=dead -dest tcpflags=synack wait=2
preprocessor spade -detect: type=dead -dest tcpflags=established wait=5
preprocessor spade -detect: type=dead -dest tcpflags=teardown wait=2
preprocessor spade -detect: type=dead -dest proto=udp wait=2
preprocessor spade -detect: type=dead -dest proto=icmp icmptype=noterr wait=2
preprocessor spade -detect: type=odd-dport proto=tcp wait=2
preprocessor spade -detect: type=odd -typecode
preprocessor spade -detect: type=odd -typecode to=nothome

Below is the contents of file spade.more.conf:

var SPADEDIR .

preprocessor spade: dest=alert logfile=$SPADEDIR/spade.log
statefile=$SPADEDIR/spade.rcv

preprocessor spade -homenet: any

The variable $SPADEDIR indicates the base directory where SPADE will read and
store it’s logs and probability tables. Then, the option "dest=alert" indicates that
the SPADE alarms will only be written in the Snort alert file (in case of the need to
also send them to the Snort log file it is necessary to indicate "dest=both").

In addition the log file ($SPADEDIR/spade.log) and the SPADE state file
($SPADEDIR/spade.rcv) are specified. Lastly, the local network is specified. As
SPADE is executed like a Snort plugin, it is recommended to change this value to
the variable $HOME_NET.

The following block corresponds to the lines that specify the detectors’ uses.
Remember that the more that detectors are used, more resources will be
consumed. Consider also that some types of detectors consume more resources
than others.

preprocessor spade -detect: type=closed -dport tcpflags=synonly wait=3
preprocessor spade -detect: type=closed -dport tcpflags=weird thresh =0.5
preprocessor spade -detect: type=closed -dport tc pflags=teardown
preprocessor spade -detect: type=closed -dport to=nothome tcpflags=synonly
wait=5
preprocessor spade -detect: type=closed -dport to=nothome tcpflags=synack
preprocessor spade -detect: type=cl osed-dport to=nothome tcpflags=teardown

These lines reference the closed-dport detector, so they look for closed or non
responding ports, and monitor the default protocol TCP. The three first lines

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

9

indicate an analysis of the traffic destined to the network indicated in the directive
spade-homenet (by default) with several combinations of TCP values. In the first
line a limit of time delay limit (3 seconds) has been specified, and in the second line
a threshold value has been defined (0.5). The last three lines indicate an analysis
of the traffic destined to any network different from spade-homenet with several
combinations of TCP values. The line which matches only the TCP SYN packets
also specifies a delay of 5 seconds.

preprocessor spade -detect: type= dead-dest tcpflags=weird wait=2
preprocessor spade -detect: type=dead -dest tcpflags=synack wait=2
preprocessor spade -detect: type=dead -dest tcpflags=established wait=5
preprocessor spade -detect: type=dead -dest tcpflags=teardown wait=2
preprocessor spade -detect: type=dead -dest proto=udp wait=2
preprocessor spade -detect: type=dead -dest proto=icmp icmptype=noterr wait=2

The above set of directives uses the dead-dest detector, so they analyze the
network traffic looking for IP destinations that do not exist or do not respond. The
first four lines specify several combinations of TCP values. The last two lines
indicate protocols UDP and ICMP. The line corresponding to the ICMP specifies
values of type ICMP that do not indicate errors.

preprocessor spade -detect: type=odd-dport proto=tcp wait=2

The above directive specifies the odd-dport detector. As explained, this
detector looks for sources that initiate connections against unusual destination
ports. In this case, a search for TCP ports that take approximately more than 2
seconds to respond.

preprocessor spade -detect: type=odd -typecode
preprocessor spade -detect: type=odd -typecode to=nothome

Finally, this set of directives references the odd-typecode detector. The lines
indicate the look for uncommon ICMP values in the traffic destined to spade-
homenet and to any other network. The configuration file spade.more.conf has
not enabled by default any reference to the odd-port-dest detector. This detector
correlates the opened destination ports to the destination addresses, and
generates alarms when it considers that they are anomalous. Probably, this type of
detector is not activated by default because it consumes more resources, since it
has to maintain a 3-dimensional table of data that needs to be periodically
maintained. However, the configuration file includes the following lines.

#preprocessor spade -detect: type=odd -port-dest proto=tcp Xdports=80
#preprocessor spade -detect: type=odd -port-dest proto=udp Xdports=80
#preprocessor spade -detect: type=odd -port-dest from=nothome proto=tcp
Xdports=80
#preprocessor spade -detect: type=odd -port-dest from=nothome proto=udp
Xdports=80

These directives indicate the analysis of TCP and UDP traffic destined to spade-
homenet and to any other network, excluding the traffic destined for port 80 (usually
Web traffic).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

10

After the detectors configuration, SPADE includes the following additional options
not enabled by default. They are related to the threshold values and the generation
of anomaly scores and traffic statistics.

#preprocessor spade-adapt3: id=<label> target=0.01 obsper=60

The spade-adapt (threshold adapting) directive allows three ways of reporting the
threshold value. Above, method number 3 has been used, and it is applied to the
detector previously identified by means of the field 'id'.1

#preprocessor spade -threshadvise: id=<label> target=200 obsper=24

Another way to configure the reporting threshold is by using the spade-
threshadvise (threshold advising) directive. It generates reports in the Snort log
with the threshold value that will be required to generate "target" alarms every
period of "obsper" hours. The detector is referenced through its "id" value.

#preprocessor spade -survey: id=<label> surveyfile=$SPADEDIR/survey.txt
interval=60

The spade-survey directive periodically publishes information with the scores of
anomalies obtained by each detector according to the indicated time interval.
These reports are overwritten when the detector is initiated.

#preprocessor spade -stats: entropy uncondprob condpro b

The spade-stats directive generates statistics about the monitored traffic. This
data is added to the SPADE log. These options must be used with caution. The
entropy option usually consumes a lot of memory. However, writing the results of
uncondprob and condprob can take a long time. The last options spade-survey
and spade-stats are extremely useful to better understand the SPADE operations
and can assist in adjusting their values.

As mentioned before, this version of SPADE supports four different methods
to configure the threshold value, and none are activated by default. In previous
versions, the value of threshold was more difficult to interpret since relative values
were not used (between 0 and 1), but now the relative values are activated by
default. However, the spade-adapt and spade-threshadvise options can always
be used as an alternative solution.
1.1.8. Conclusions
The pattern-based Intrusion Detectors have experienced a rapid expansion and
important improvements in the last few years. They have represented an important
advance in IT security. Nevertheless, these powerful tools have serious limitations
that can be partially addressed by other technologies such as Anomaly Detectors.

The security community and the development companies are conscious of
the deficiencies of the misuse detectors. Gradually it is becoming more common to
find security products that include some type of Anomaly Detection method among

1 Note that in the example configuration fil es included in SPADE version v030125.1, the detector's
lines have not 'id' fields by default.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

11

their features. Note that one of the advantages of Anomaly Detection is the great
number of techniques applicable to this technology, which allows the development
of many different solutions.

In computer security it is crucial to take advantage of all resources that are
available. If Anomaly Detection and Pattern-based Detection methods are
combined, it will result in a more complete solution which could identify hostile
activities that have previously gone unnoticed.
1.1.9. References
[1] Hoagland, Jim and Stuart Staniford. Silicon Defense. URL:

http://www.silicondefense.com/software/spice/ (14 Nov. 2003).

[2] Sundaram, Aurobindo. "An Introduction to Intrusion Detection". 1996. Last updated:
January, 2001.URL:
http://www.acm.org/crossro ads/xrds2-4/intrus.html (18 Nov. 2003).

[3] Moore, David et al. "Inside the Slammer Worm". URL:
http://www.computer.org/security/v1n4/j4we a.htm?SMSESSION=NO (18 Nov. 2003).

[4] Debar, Herbe. "What is behavior-based intrusion detection?". Intrusion Detection
FAQ. URL: http://www.sans.org/resources/idfaq/behavior_based.php (15 Nov. 2003).

[5] Bace, Rebecca. Intrusion Detection. Indianapolis: Macmillan Technical Publishing,
2000. chpt. 4, p. 100-117.

[6] ImSafe. URL: http://imsafe.sourceforge.net/ (20 Nov. 2003).

[7] Kumar, Sandeep and Spaord, Eugene H. "An Application of Pattern Matching in
Intrusion Detection". 17 June 2000. URL:
http://www.csee.umbc.edu/cadip/docs/NetworkIntrusion/pattern.pdf (15 Nov. 2003).

[8] Hoagland, Jim. "Usage file for Spade". URL:
http://www.silicondefense.com/software/spice/spic eusage.shtml (15 Nov. 2003).

[9] Yarochkin, Fyodor and Ofir Arkin. "Xprobe".
URL: http://www.sys-security.com/html/projects/X.html (20 Nov. 2003).

[10] Martin, Ian. GIAC practical. 17 July 2003. URL:
http://www.giac.org/practical/GCIA/Ian_Martin_ GCIA.pdf (24 Nov. 2003).

[11] Farshchi, Jamil. "Statistical-Based Intrusion Detection". Last updated 16 April 2003.
URL: http://www.securityfocus.com/infocus/1686 (21 Nov. 2003).

[12] Farshchi, Jamil. "Statistical based approach to Intrusion Detection". Intrusion
Detection FAQ. URL: http://www.sans.org/resources/idfaq/statistic_ids.php (21 Nov.
2003).

[13] Liston, Kevin. "Can you explain traffic analysis and anomaly detection?". Intrusion
Detection FAQ. URL: http://www.sans.org/resources/idfaq/anomaly_detection.php (19
Nov. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

12

2. Assignment 2 - Network Detects
The analysis of the three detects in this section were performed using a Pentium
Celeron (Mendocino) 450 Mhz with 256 MB running Red Hat Linux 9.0 with kernel
2.6.0 and a Pentium IV 2.0 GHz with 512 MB running Windows XP Professional
SP1a.

2.1. Detect #1 - WEB-IIS view source via translate header
This detect consist of the following Snort sensor alerts.

Snort alerts
[**] [1:1042:6] WEB-IIS view source via translate header [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/17/02-11:40:03.736507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0xEC
68.36.170.9:33617 -> 32.245.166.119:80 TCP TTL:108 TOS:0x0 ID:28865 IpLen:20 DgmLen:222 DF
AP Seq: 0xAB8BDA9A Ack: 0xF9540ED4 Win: 0xF5F6 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/1578][Xref => http://www.whitehats.com/info/IDS305]

[**] [1:1042:6] WEB-IIS view source via translate header [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/17/02-11:40:03.776507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x107
68.36.170.9:33617 -> 32.245.166.119:80 TCP TTL:108 TOS:0x0 ID:28870 IpLen:20 DgmLen:249 DF
AP Seq: 0xAB8BDB50 Ack: 0xF9540FBA Win: 0xFAF0 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/1578][Xref => http://www.whitehats.com/info/IDS305]

[**] [1:1042:6] WEB-IIS view source via translate header [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/17/02-11:40:04.216507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0xEC
68.36.170.9:33639 -> 32.245.166.119:80 TCP TTL:108 TOS:0x0 ID:28914 IpLen:20 DgmLen:222 DF
AP Seq: 0xAB95B678 Ack: 0xF9366D6F Win: 0xF5F6 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/1578][Xref => http://www.whitehats.com/info/IDS305]

[**] [1:1042:6] WEB-IIS view source via translate header [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/17/02-11:40:04.256507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x107
68.36.170.9:33639 -> 32.245.166.119:80 TCP TTL:108 TOS:0x0 ID:28919 IpLen:20 DgmLen:249 DF
AP Seq: 0xAB95B72E Ack: 0xF9366E55 W in: 0xFAF0 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/1578][Xref => http://www.whitehats.com/info/IDS305]

[**] [1:1042:6] WEB-IIS view source via translate header [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/17/02-16:41:11.196507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0xEB
213.58.17.245:1411 -> 32.245.166.119:80 TCP TTL:108 TOS:0xA0 ID:11206 IpLen:20 DgmLen:221 DF
AP Seq: 0xB690062A Ack: 0x69CA4C17 W in: 0x4470 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/1578][Xref => http://www.whitehats.com/info/IDS305]

[**] [1:1042:6] WEB-IIS view source via translate header [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/17/02-16:41:12.806507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0xEC
213.58.17.245:1411 -> 32.245.166.119:80 TCP TTL:108 TOS:0xA0 ID:11208 IpLen:20 DgmLen:222 DF
AP Seq: 0xB69006DF Ack: 0x69CA4E7C Win: 0x420B TcpLen: 20
[Xref => http://www.securityfocus.com/bid/1578][Xref => http://www.whitehats.com/info/IDS305]

[**] [1:1042:6] WEB-IIS view source via translate header [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/17/02-16:41:14.066507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0xEB
213.58.17.245:1412 -> 32.245.166.119:80 TCP TTL:108 TOS:0xA0 ID:11214 IpLen:20 DgmLen:221 DF
AP Seq: 0xB69B3B2C Ack: 0x69E06F9E Win: 0x4470 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/1578][Xref => http://www.whitehats.com/info/IDS305]

[**] [1:1042:6] WEB-IIS view source via translate header [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/17/02-16:41:14.936507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0xEC
213.58.17.245:1412 -> 32.245.166.119:80 TCP TTL:108 TOS:0xA0 ID:11215 IpLen:20 DgmLen:222 DF
AP Seq: 0xB69B3BE1 Ack: 0x69E07203 W in: 0x420B TcpLen: 20
[Xref => http://www.securityfocus.com/bid/1578][Xref => http://www.whitehats.com/info/IDS305]

[**] [1:1042:6] WEB-IIS view source via translate header [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/17/02-16:41:16.236507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0xCA

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

13

213.58.17.245:1413 -> 32.245.166.119:80 TCP TTL:108 TOS:0xA0 ID:11221 IpLen:20 DgmLen:188 DF
AP Seq: 0xB6A4E831 Ack: 0x6AA9EB56 Win: 0x4470 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/1578][Xref => http://www.whitehats.com/info/IDS305]

[**] [1:1042:6] WEB-IIS view source via translate header [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/17/02-16:41:17.326507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0xD9
213.58.17.245:1413 -> 32.245.166.119:80 TCP TTL:108 TOS:0xA0 ID:11222 IpLen:20 DgmLen:203 DF
AP Seq: 0xB6A4E8C5 Ack: 0x6AA9EC3D Win: 0x4389 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/1578][Xref => http://www.whitehats.com/info/IDS305]

[**] [1:1042:6] WEB-IIS view source via translate header [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/17/02-16:41:17.856507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0xDA
213.58.17.245:1413 -> 32.245.166.119:80 TCP TTL:108 TOS:0xA0 ID:11223 IpLen:20 DgmLen:204 DF
AP Seq: 0xB6A4E968 Ack: 0x6AA9EEA1 W in: 0x4125 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/1578][Xref => http://www.whitehats.com/info/IDS305]

2.1.1. Source of Trace
The packet trace used for this detect was found in file 2002.9.17, downloaded from
http://www.incidents.org/logs/raw/ .

All the log files from that directory are provided to be able to complete the GIAC
assignment. As stated in http://www.incidents.org/logs/raw/ README, these log files have
the following characteristics:

• They have been recorded by an unknown version of Snort IDS with an

unspecified set of pre-process filters running in binary logging mode. Therefore,
only the packets that violate the unspecified rule set will appear in the log.

• They have been sanitized:
o All of the local IP addresses have been "munged".
o The checksums have been modified to prevent discovery of the original

addresses.
o It is possible to find certain keywords within packets replaced with "X"s.
o There is no Web traffic.

To determine the network layout it is important to keep in mind that these network
dump files only contain the packets triggered by Snort sensor. The following
methods are similar to the used by Les Gordon [1] or Ian Martin [2].

tcpdump –n –e -r 2002.9.17

A brief description of tcpdump parameters used:
-n don't convert addresses to names.
-e print the link-level header.
-r read from file.

This is an example of the tcpdump output explained below:
00:08:00.546507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 74: IP 210.49.49.118.2555 > 32.245.217.136.1080: S
3972551175:3972551175(0) win 16384 <mss 1460,nop,wscale 0,nop,nop,tim estamp 53992241 0> (DF)

00:08:00.546507 Time hh:mm:ss.
0:3:e3:d9:26:c0 Source hardware address.
0:0:c:4:b2:33 Destination hardware address.
0800 Protocol type (800 = IP).
74: Link Layer frame s ize excluding CRC.
IP Protocol type.
210.49.49.118.2555 Source network address. Source Port.
> Direction.
32.245.217.136.1080: Destination network address. Destination Port.
S TCP flags (SYN flag).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

14

3972551175: Beginning TCP sequence number.
3972551175 Ending TCP seq. number (Beginning+Data bytes).
(0) Data bytes.
win 16384 Window size.
< TCP options:
mss 1460, Maximum Segment Size: 0.
nop, NOP.
wscale 0, Windows Scale: 0.
nop, NOP.
nop, NOP.
timestamp 53992241 0 Timestamp: 5399224 1 0.
>
(DF) IP Flags (Don't fragment).

First, we examine which hardware addresses appear in the network trace.

tcpdump -ner 2002.9.17 | cut -d " " -f 2,3 | sort | uniq -c

 6065 0:0:c:4:b2:33 0:3:e3:d9:26:c0
 508 0:3:e3:d9:26:c0 0:0:c:4:b2:33

There are only two different hardware addresses within the tcpdump binary log file.
Snort sensor could have been installed in one of that devices or attached to a
stealth monitoring device (for example, a network tap).
 The first 24 bits of the hardware address correspond to the Organizationally
Unique Identifier (OUI), assigned by the IEEE. A simple search at IEEE OUI
assignments [3] reveals that the addresses correspond to Cisco devices:

00-00-0C (hex) CISCO SYSTEMS, INC.
00000C (base 16) CISCO SYSTEMS, INC.
 170 WEST TASMAN DRIVE
 SAN JOSE CA 95134 -1706

00-03-E3 (hex) Cisco Systems, Inc.
0003E3 (base 16) Cisco Systems, Inc.
 170 West Tasman Dr.
 San Jose CA 95134
 UNITED STATES

As both devices are manufactured by Cisco (routers, switches, etc.), The Snort
sensor is probably installed on a third stealth monitoring device.

The next step consists of analyzing the network layer and how it is related to
both hardware addresses.

Source network addresses coming from 0:0:c:4:b2:33.

tcpdump -ner 2002.9.17 ether src 0:0:c:4:b2:33 \
 | cut -d " " -f 6 | cut -d . -f 1-4 \
 | sort | uniq -c | sort /r

 6056 32.245.166.236
 9 32.245.166.119

These two IP addresses come from 0:0:c:4:b2:33 address, and they seem to
belong to the same network.

Destination network addresses coming from 0:0:c:4:b2:33.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

15

tcpdump -ner 2002.9.17 ether src 0:0:c:4:b2:33 \

| cut -d " " -f 8 | cut -d . -f 1-4 \
| sort | uniq -c | sort /r

 1484 147.208.133.111
 719 64.12.51.118
 522 205.188.214.121
 513 64.12.42.117
[...]
 1 205.188.135.174
 1 199.108.253.20
 1 194.135.30.190
 1 151.164.144.126

tcpdump -ner 2002.9.17 ether src 0:0:c:4:b2:33 \
 | grep "^32"

There are several IP addresses but none of them begins with 32. The next list
specifies some source network addresses coming from 0:3:e3:d9:26:c0.

tcpdump -ner 2002.9.17 ether src 0:3:e3:d9:26:c0 \

| cut -d " " -f 6 | cut -d . -f 1-4 \
| sort | uniq -c | sort /r

 73 64.125.138.190
 63 210.49.49.118
 57 63.111.48.133
 43 255.255.255.255
[...]
 1 131.107.3.86
 1 12.42.128.70
 1 12.36.134.2
 1 12.111.47.194

tcpdump -ner 2002.9.17 ether src 0:3:e3:d9:26:c0 \
 | grep "^32"

Again, none of the above addresses begins with 32. Below are the destination
addresses coming from 0:3:e3:d9:26:c0.

tcpdump -ner 2002.9.17 ether src 0:3:e3:d9:26:c0 \

| cut -d " " -f 8 | cut -d . -f 1-4 \
| sort | uniq -c | sort /r

 276 32.245.166.236
 38 32.245.166.119
 6 32.245.98.171
 6 32.245.83.200
[...]
 1 32.245.104.48
 1 32.245.102.200
 1 32.245.102.195
 1 32.245.1.229

The network addresses of the last tcpdump command indicates that the network
mask of the IP addresses is probably a class B. The next tcpdump filter confirms

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

16

that there is not any destination addresses from 0:3:e3:d9:26:c0 from a network
different than 32.245.0.0/16.

tcpdump -ner 2002.9.17 'ether src 0:3:e3:d9:26:c0 and \
 not dst net 3 2.245.0.0/16'

In summary:

• Hardware address 0:0:c:4:b2:33 has source traffic only from network
32.245.0.0/16 (just the two IP addresses) and destination traffic to IPs not
belonging to network 32.245.0.0/16.

• Hardware address 0:3:e3:d9:26:c0 has source traffic from networks different
than 32.245.0.0/16 and destination traffic only to network 32.245.0.0/16.

The information above suggests the network scenario shown below:

WAN ------ Cisco device 1 ---+--- Cisco device 2 ------ LAN
 0:3:e3:d9:26:c0 | 0:0:c:4:b2:33
 | 32.245 .0.0/16
 Snort sensor
 (TAP, receive -only cable, in-line mode,...)

Finally, for determining the quality or even the presence of a firewall we examine
the destination ports from Cisco device number 1.

tcpdump -nnr 2002.9.17 ether src 0:3:e3:d9:26:c0 \
| cut -d " " -f 5 | cut -d "." -f 5 | sort | uniq -c | cut -d ":" -f 1

 82 1080
 4 137
 4 139
 43 515
 2 53
 1 61000
 1 61053
 1 61079
[...]
 4 65039
 4 65044
 1 65045
 2 772
 95 80

The logs indicate that Cisco device number 1 allows traffic to network
32.245.0.0/16 to many different ports, most of them above of 61000. This is a
poorly configured firewall, or more probably a border router. The next tcpdump
command shows the source ports coming from Cisco device number 2.

tcpdump -nnr 2002.9.17 ether src 0:0:c:4:b2:33 \
| cut -d " " -f 3 | cut -d "." -f 5 | sort | uniq -c | cut -d ":" -f 1

 1 61009
 1 61010
 2 61011
[...]
 6 65058
 2 65068

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

17

 9 80

Almost all source ports from IP address 32.245.166.236 were above 61000 and the
only source port from IP address 32.245.166.119 was 80 (see analyzing network
layer above). This is not enough to determine if Cisco device number 2 performs
network traffic filtering.
2.1.2. Detect was generated by
For this detect I used Snort version 2.1.0 with default sets of rules. The
configuration file had EXTERNAL_NET and HOME_NET variables set to ‘any’ and
all rule files enabled. As the binary tcpdump file has only partial network traffic,
stream4 and stream4_reassemble pre-processors were disabled [4].

The command used to trigger the alerts was:

Snort -c Snort.conf -e -k none -l log -N -r 2002.9.17-U -y

Command parameters in detail:
-c Snort.conf Use Rules File Snort.conf
-e Display the second layer header info
-k none Checksum mode
-l log Log to directory log
-N Turn off logging (alerts still work)
-r 2002.9.17 Read and process tcpdump file 2002.9.17
-U Use UTC for timestamps
-y Include year in timestamp in the alert and log files

There were 6545 packets in the binary tcpdump file, and the Snort command
generated 1649 alerts. They are summarized in the following list:

grep "\[**\]" alert | sed "s/\[**\]//g" \
| cut -d "]" -f 2 | sort | uniq -c | sort /r

 1045 (http_inspect) BARE BYTE UNICODE ENCODING
 253 (http_inspect) APACHE WHITESPACE (TAB)
 66 SCAN SOCKS Proxy attempt
 41 SCAN nmap TCP
 38 BACKDOOR Q access
 34 (http_inspect) IIS UNICODE CODEPOINT ENCODING
 27 WEB-FRONTPAGE shtml.exe access
 25 (http_inspect) NON -RFC DEFINED CHAR
 24 SHELLCODE x86 NOOP
 21 (http_inspect) NON -RFC HTTP DELIMITER
 20 (http_inspect) DOUBLE DECODING ATTACK
 11 WEB-IIS view source via translate header
 9 ATTACK -RESPONSES 403 Forbidden
 6 WEB-IIS _vti_inf access
 6 WEB-CGI formmail access
 4 (http_inspect) OVERSIZE CHUNK ENCODING
 3 WEB-ATTACKS id command attempt
 3 SHELLCODE x86 inc ebx NOOP
 3 MISC Tiny Fragments
 2 WEB-IIS ISAPI .ida attempt
 2 SHELLCODE x86 setuid 0
 2 CHAT MSN message
 1 WEB-FRONTPAGE /_vti_bin/ access
 1 WEB-CGI search.cgi access

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

18

 1 WEB-CGI redirect access
 1 BAD-TRAFFIC ip reserved bit set

I focused my attention on the 11 "WEB-IIS view source via translate header" alerts.
The logs at the beginning of this detect were extracted using the command:

grep -A5 "WEB-IIS view source via translate header "

Below is one of the Snort alerts.

[**] [1:1042:6] WEB-IIS view source via translate header [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/17/02-11:40:03.736507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0xEC
68.36.170.9:33617 -> 32.245.166.119:80 TCP TTL:108 TOS:0x0 ID:28865 IpLen:20 DgmLen:222 DF
AP Seq: 0xAB8BDA9A Ack: 0xF9540ED4 Win: 0xF5F6 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/1578][Xref => http://www.whitehats.com/info/IDS305]

Alert fields explained.
[**] [1:1042:6] WEB-IIS view source via translate header [**]
 Rule title and brief explanation. Internet Inform ation Server bug.
[Classification: access to a potentially vulnerable web application]
[Priority: 2]
 Type and priority of alert.
10/17/02-11:40:03.736507
 Date and time in UTC (Coordinated Universal Time) format.
0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33
 Source and destination hardware addresses.
type:0x800
 Encapsulated protocol (800 = IP).
len:0xEC
 Packet length without CRC (Cyclic Redundancy Check). Hex. format.
68.36.170.9:33617 -> 32.245.166.119:80
 Source and destination netw ork addresses and ports.
TCP
 TCP packet.
TTL:108
 IP Time to Live.
TOS:0x0
 IP Type of Service.
ID:28865
 IP Identification.
IpLen:20
 Length of IP header in decimal format.
DgmLen:222
 Length of Datagram, with headers and payload. Number of bytes.
DF
 Don't Fragment bit set.
AP
 TCP flags used: A = acknowledge, P = push.
Seq: 0xAB8BDA9A
 TCP sequence number.
Ack: 0xF9540ED4
 TCP acknowledgement number.
Win: 0xF5F6
 Window size, in hexadecimal format.
TcpLen: 20
 TCP header length.
[Xref => http://www.securityfocus.com/bid/1578]
[Xref => http://www.whitehats.com/info/IDS305]
 URL reference of the alert.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

19

The alert was triggered by the next rule within web-iis.rules file:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB -IIS
view source via translate header"; flow:to_server,established; content:
"Translate|3a| F"; nocase; reference:arachnids,305;
reference:bugtraq,1578; classtype:web -application-activity; sid:1042;
rev:6;)

Rule explanation:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

Generate an alert for TCP packets from IP addresses defin ed by $EXTERNAL_NET
variable from any source ports to $HTTP_SERVERS IP addresses to $HTTP_PORTS ports.

msg:"WEB-IIS view source via translate header"
This is the message posted wh en the signature is fired.

Flow:to_server,established
The packets triggered must come from an established session and from client to server
direction.

content: "Translate|3a| F"; nocase
The payload of the packet must have string “Translate: F” without bein g case-sensitive.
Note that ‘:’ is a special character indicated in hexadecimal value between ‘|’.

reference:arachnids,305; reference:bugtraq,1578
These are the references for additional inform ation about the attack. The url addresses are
within reference.config file.

classtype:web-application-activity
The type of attack and priority can be found in classificacion.config file. In this case it
corresponds to: Access to a potentially vulnerable web application,2.

sid:1042
Snort Signature ID is 1042. Consult S nort Database Signature at http://www.Snort.org/snort -
db/sid.html for additional information.

rev:6
 This rule have been revised 6 times.

The following remote IP addresses triggered the alerts.

grep -A5 "WEB-IIS view source via translate header" alert \
| grep TCP | cut -d ":" -f 1 | sort | uniq -c

 7 213.58.17.245
 4 68.36.170.9
2.1.3. Probability the source address was spoofed
Probably spoofed?
The probability of a spoofed IP address is very low. The packets of this capture
come from an established TCP communication. This attack consist of getting data
from the victim, in this case the IIS Web server. Therefore, the attacker needs a
response. On the other hand, as showed below, there is no anomalous value in the
logged packet headers that could lead us to think that they are spoofed.1

tcpdump -vv -nn -r 2002.9.17 'host 213.58.17.245 or host 68.3 6.170.9'

tcpdump parameters used:
-vv be very verbose

1 Note that there are more packets from IP address 68.36 .170.9 than listed in the Snort alerts at the
beginning of this detect analysis. This is because that particular IP address generated further
different alerts. Additional details are available in the 'Evidence of Active Targeting' section.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

20

-nn don't convert addresses or ports to nam es.
-r read from file.

12:40:01.916507 IP (tos 0x0, ttl 108, id 28828, len 305) 68.36.170.9.33636 > 32.245.166.119.8 0: P [bad tcp cksum ca0e (-
>267)!] 2877822063:2877822328(265) ack 4177956934 win 64240 (DF)bad cksum d278 (->e790)!
12:40:03.466507 IP (tos 0x0, ttl 108, id 28854, len 430) 68.36.170.9.33617 > 32.245.166.119.80: P [bad tcp cksum 2601 (-
>7b3c)!] 2878069012:2878069402(390) ack 4183031410 win 64240 (DF)bad cksum d1e1 (->e6f9)!
12:40:03.736507 IP (tos 0x0, ttl 108, id 28865, len 222) 68.36.170.9.33617 > 32.245.166.119.80: P [bad tcp cksum 9901 (-
>ee3c)!] 390:572(182) ack 4195 win 62966 (DF)bad cksum d2a6 (->e7be)!
12:40:03.776507 IP (tos 0x0, ttl 108, id 28870, len 249) 68.36.170.9.33617 > 32.245.166.119.8 0: P [bad tcp cksum 2b3d (-
>6395)!] 572:781(209) ack 4425 win 64240 (DF)bad cksum d286 (->e79e)!
12:40:03.826507 IP (tos 0x0, ttl 108, id 28875, len 305) 68.36.170.9.33617 > 32.245.166.119.8 0: P [bad tcp cksum 82a8 (-
>bb00)!] 781:1046(265) ack 4655 win 64010 (DF)bad cksum d249 (->e761)!
12:40:04.036507 IP (tos 0x0, ttl 108, id 28902, len 430) 68.36.170.9.33639 > 32.245.166.119.80: P [bad tcp cksum e985 (-
>3ec1)!] 2878715122:2878715512(390) ack 4181089549 win 64240 (DF)bad cksum d1b1 (->e6c9)!
12:40:04.216507 IP (tos 0x0, ttl 108, id 28914, len 222) 68.36.170.9.33639 > 32.245.166.119.80: P [bad tcp cksum 5e86 (-
>b3c1)!] 390:572(182) ack 4195 win 62966 (DF)bad cksum d275 (->e78d)!
12:40:04.256507 IP (tos 0x0, ttl 108, id 28919, len 249) 68.36.170.9.33639 > 32.245.166.119.80: P [bad tcp cksum f0c1 (-
>291a)!] 572:781(209) ack 4425 win 64240 (DF)bad cksum d255 (->e76d)!
17:41:11.196507 IP (tos 0xa0, ttl 108, id 11206, len 221) 213.58.17.245.1411 > 32.245.166.119.80: P [bad tcp cksum 7ff0 (-
>b848)!] 3062892074:3062892255(181) ack 1774865431 win 17520 (DF)bad cksum 1e01 (->3319)!
17:41:12.806507 IP (tos 0xa0, ttl 108, id 11208, len 222) 213.58.17.245.1411 > 32.245.166.119.80: P [bad tcp cksum 6f1b (-
>c456)!] 181:363(182) ack 614 win 16907 (DF)bad cksum 1dfe (->3316)!
17:41:14.066507 IP (tos 0xa0, ttl 108, id 11214, len 221) 213.58.17.245.1412 > 32.245.166.119.80: P [bad tcp cksum 2745 (-
>5f9d)!] 3063626540:3063626721(181) ack 1776316318 win 17520 (DF)bad cksum 1df9 (->3311)!
17:41:14.936507 IP (tos 0xa0, ttl 108, id 11215, len 222) 213.58.17.245.1412 > 32.245.166.119.80: P [bad tcp cksum 1670 (-
>6bab)!] 181:363(182) ack 614 win 16907 (DF)bad cksum 1df7 (->330f)!
17:41:16.236507 IP (tos 0xa0, ttl 108, id 11221, len 188) 213.58.17.245.1413 > 32.245.166.119.80: P [bad tcp cksum e92b (-
>3e67)!] 3064260657:3064260805(148) ack 1789520726 win 17520 (DF)bad cksum 1e13 (->332b)!
17:41:17.326507 IP (tos 0xa0, ttl 108, id 11222, len 203) 213.58.17.245.1413 > 32.245.166.119.80: P [bad tcp cksum fdfd (-
>3656)!] 148:311(163) ack 232 win 17289 (DF)bad cksum 1e03 (->331b)!
17:41:17.856507 IP (tos 0xa0, ttl 108, id 11223, len 204) 213.58.17.245.1413 > 32.245.166.119.80: P [bad tcp cksum b86f (-
>dab)!] 311:475(164) ack 844 win 16677 (DF)bad cksum 1e01 (->3319)!

Both remote IP addresses are legal and routable in the Internet. Spoofed
addresses are typical in other attack scenarios such as Denial of Service or similar
attacks, where the attackers want to flood their victims and do not need to complete
the three-way handshake.

Probably not spoofed?
I believe that the remote IP addresses are not spoofed. As mentioned before, this
kind of attack consists of some type of information gathering. And the packets
logged are part of an established TCP communication. There are enough reasons
to knowledge that the attacker wants to receive responses to their requests.

3rd party
This situation is not applicable here. The victim is not used to attack, neither gather
information from a third party system. Alson the victim's IP was not used either to
spoof an attack.
2.1.4. Description of attack
This attack exploits a Microsoft IIS 5.0 scripting engine vulnerability. One malicious
user can obtain the source code of ASP, ASA, HTR files and other scripts by
sending a special HTTP GET command to the Web Server.

The attacker sends an HTTP GET request with 'Translate: f' in the header,
and a trailing backslash '\' at the end of the URL. This command makes the server
directly send the source file to the attacker without processing it.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

21

Unfortunately, 'Translate: f' is included in the header of several WebDAV1
(Web-based Distributed Authoring and Versioning) [5] methods, causing false
positives.

Additional information and references can be found at Correlations section.
2.1.5. Attack mechanism
In this attack the intruder sends special commands (a stimulus) to the vulnerable
server to obtain information. The packets captured by the Snort sensor correspond
to the commands sent by the remote user.

The rule that triggers the alert matches the predefined HTTP service ports.
In this case was TCP number was 80.

To determine if the target had an HTTP server running I used tcpdump. The
victim has IP address 32.245.166.119. If we are lucky perhaps a response from
that server within Snort sensor logs will be found.

tcpdump –s0 -X -nnr 2002.9.17 "src host 32.245.166.119 and src port 80"

tcpdump options:
-s0 set snaplen to any (dump complete packets).
-X dump in hexadecimal and ASCII format .
-nn don't convert IP addresses and ports to names.
-r read from file.

08:52:19.426507 IP 32.245.166.119.80 > 195. 29.131.59.1055: P
2636510832:2636511368(536) ack 632179 win 32696 (DF)
0x0000 4500 0240 2a29 4000 3f06 ecb1 20f5 a677 E..@*)@.?......w
0x0010 c31d 833b 0050 041f 9d25 f670 0009 a573 ...;.P...%.p...s
0x0020 5018 7fb8 8337 0000 4854 5450 2f31 2e31 P....7..HTTP/1.1
0x0030 2034 3033 2046 6f72 6269 6464 656e 0d0a .403.Forbidden..
0x0040 4461 7465 3a20 5468 752c 2031 3720 4f63 Date:.Thu,.17.Oc
0x0050 7420 3230 3032 2031 313a 3432 3a32 3220 t.2002.11:42:22.
0x0060 474d 540d 0a53 6572 7665 723a 2041 7061 GMT..Server:.Apa
0x0070 6368 652f 312e 332e 3132 2028 556e 6978 che/1.3.12.(Unix
0x0080 2920 2028 5265 6420 4861 742f 4c69 6e75)..(Red.Hat/Linu
0x0090 7829 2046 726f 6e74 5061 6765 2f34 2e30 x).FrontPage/4.0
0x00a0 2e34 2e33 0d0a 4b65 6570 2d41 6c69 7665 .4.3..Keep-Alive
[...]

Above is an extract of one of the 9 packets from 32.245.166.119 port 80, showing
that the server is Apache version 1.3.12 running under Red Hat Linux. This type of
attack only affects Microsoft IIS 5.0, therefore the targeted server is not vulnerable.

Lets examine in detail the contents of the packets that fired the alerts.
Following is one of the packets from remote IP number 68.36.170.9.

1 WebDAV is a set of extensions to the HTTP protocol which allows user groups to edit and manage
files on web servers . Some applications use WebDAV for publishing content on a Web server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

22

12:40:03.736507 IP 68.36.170.9.33617 > 32.245.166.119.80: P 390:572(182) ack 419
5 win 62966 (DF)
0x0000 4500 00de 70c1 4000 6c06 d2a6 4424 aa09 E...p.@.l...D$..
0x0010 20f5 a677 8351 0050 ab8b da9a f954 0ed4 ...w.Q.P.....T..
0x0020 5018 f5f6 9901 0000 4f50 5449 4f4e 5320 P....... OPTIONS.
0x0030 2f20 4854 5450 2f31 2e 31 0d0a 5472 616e /.HTTP/1.1.. Tran
0x0040 736c 6174 653a 2066 0d0a 5573 6572 2d41 slate:.f..User-A
0x0050 6765 6e74 3a20 4d69 6372 6f73 6f66 7420 gent:.Microsoft.
0x0060 4461 7461 2041 6363 6573 7320 496e 7465 Data.Access. Inte
0x0070 726e 6574 2050 7562 6c69 7368 696e 6720 rnet.Publishing.
0x0080 5072 6f76 6964 6572 2050 726f 746f 636f Provider.Protoco
0x0090 6c20 4469 7363 6f76 6572 790d 0a48 6f73 l.Discovery..Hos
0x00a0 743a 2077 7777 2e58 585 8 5858 5858 580d t:.www.XXXXXXXX.
0x00b0 0a43 6f6e 7465 6e74 2d4c 656e 6774 683a .Content -Length:
0x00c0 2030 0d0a 436f 6e6e 6563 7469 6f6e 3a20 .0..Connection:.
0x00d0 4b65 6570 2d41 6c69 7665 0d0a 0d0a Keep -Alive....

We can see that the HTTP header concludes with the string 'Translate: f'. But it is
an OPTIONS request, not a GET. Now, lets look at one of the packets from
213.58.17.245.

17:41:11.196507 IP 213.58.17.245.1411 > 32.245.166.119.80: P 3062892074:3062892 2
55(181) ack 1774865431 win 17520 (DF)
0x0000 45a0 00dd 2bc6 4000 6c06 1e01 d53a 11f5 E...+.@.l....:..
0x0010 20f5 a677 0583 0050 b690 062a 69ca 4c17 ...w...P...*i.L.
0x0020 5018 4470 7ff0 0000 5052 4f50 4649 4e44 P.Dp.... PROPFIND
0x0030 202f 6d61 696e 2048 5454 502f 312e 310d ./main.HTTP/1.1.
0x0040 0a44 6570 7468 3a20 300d 0a 74 7261 6e73 .Depth:.0.. trans
0x0050 6c61 7465 3a20 66 0d 0a55 7365 722d 4167 late:.f..User-Ag
0x0060 656e 743a 204d 6963 726f 736f 6674 2d57 ent:.Microsoft -W
0x0070 6562 4441 562d 4d69 6e69 5265 6469 722f ebDAV-MiniRedir/
0x0080 352e 312e 3236 3030 0d0a 486f 7374 3a20 5.1.2600..Host:.
0x0090 7777 772e 5858 5858 5858 5858 0d0a 436f www.XXXXXXXX..C o
0x00a0 6e74 656e 742d 4c65 6e67 7468 3a20 300d ntent -Length:.0.
0x00b0 0a43 6f6e 6e65 6374 696f 6e3a 204b 6565 .Connection:.Kee
0x00c0 702d 416c 6976 650d 0a50 7261 676d 613a p -Alive..Pragma:
0x00d0 206e 6f2d 6361 6368 650d 0 a0d 0a .no -cache....

Again, the HTTP header terminates with 'translate: f' and it is not a GET request. It
is a PROPFIND request, one of the methods included in WebDAV extensions.

There is a Snort signature with ID 10791 that matches specific PROPFIND
requests that can be used by an attacker to get directory listings configured to
support WebDAV, but this is not the case in this particular packet.

The packets above indicate that the alarms at the beginning of this detect
were false positives. But lets going to get more information about these remote IPs.
A simple search for IP number 68.36.170.9 in the Snort alert file reveals more alerts
associated with it (10 alerts):

grep -B3 68.36.170.9 alert | grep \[**\]

[**] [1:990:5] WEB-IIS _vti_inf access [**]
[**] [1:962:6] WEB-FRONTPAGE shtml.exe access [**]
[**] [119:13:1] (http_inspect) NON -RFC HTTP DELIMITER [**]
[**] [1:1042:6] WEB-IIS view source via translate header [**]
[**] [1:1042:6] WEB-IIS view source via translate header [**]

[**] [1:990:5] WEB-IIS _vti_inf access [**]
[**] [1:962:6] WEB-FRONTPAGE shtml.exe access [**]
[**] [119:13:1] (http_inspect) NON -RFC HTTP DELIMITER [**]

1 Snort SID 1079: http://www.Snort.org/snort-db/sid.html?sid=1079

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

23

[**] [1:1042:6] WEB-IIS view source via translate header [**]
[**] [1:1042:6] WEB-IIS view source via tra nslate header [**]

Note that there is a pattern. The attacker generated two series of 5 alerts. These
alerts are commented by Danny Boulineau [8] in his detect. The first two alerts
appear to check the presence and exploit a vulnerability related with Frontpage
Server Extensions.

Nevertheless, if we repeat the command with IP number 213.58.17.245 the
results are different (7 alerts):

grep -B3 213.58.17.245 alert | grep \[**\]

[**] [1:1042:6] WEB-IIS view source via transla te header [**]
[**] [1:1042:6] WEB-IIS view source via translate header [**]
[**] [1:1042:6] WEB-IIS view source via translate header [**]
[**] [1:1042:6] WEB-IIS view source via translate header [**]
[**] [1:1042:6] WEB-IIS view source via translate heade r [**]
[**] [1:1042:6] WEB-IIS view source via translate header [**]
[**] [1:1042:6] WEB-IIS view source via translate header [**]

In this case all the alerts are of the same type. And none of them are HTTP GET
requests.

On the other hand, if we check the timestamps of the packets listed in the
previous section ‘Probability the source address was spoofed’, the alerts from
68.36.170.9 were generated in a shorter interval of time (3 secs.) than from
213.58.17.245 (6 secs.).

The examined information shows that the user from 68.36.170.9 ran some
kind of vulnerability scan or customized script designed to exploit Microsoft IIS
servers with Frontpage Server Extensions. Moreover, it is very probable that the
second attacker (from 213.58.17.245) was actually a legitimate user causing false
alarms.

To reduce the number of false positives in this kind of attack, I have
submitted the following rule to the Snort-sigs mailing list.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB -IIS
view source via translate header"; flow:to_server,established; content:
"GET "; content: "|5c|"; content: "Translate|3a| F"; nocase;
reference:cve,CVE-2000-0778; reference:arachnids,305;
reference:bugtraq,1578; classtype:web -application-activity; sid:1042;
rev:7;)

The modifications from previous revision number 6 consist of a new vulnerability
reference (CVE-2000-0778) and two content fields that match HTTP GET requests
and a trailing backslash '\' (0x5c).
2.1.6. Correlations
The details of this attack are included in the following documents:

CVE-2000-0778
http://cve.mitre.org/cgi -bin/cvename.cgi?name=CVE -2000-0778

Bugtraq ID 1578: Input Validation Error
http://www.securityfocus.com/bid/1578

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

24

Whitehats IDS305 "HTTP-IIS_TRANSLATE_F"
http://www.whitehats.com/info/IDS305

Although this vulnerability is certainly old (it was made public on June 2000) it is still
possible to find various posts concerning this topic today:

First, there is an comprehensive email from BugTraq mailing list explaining
the details of the 'Translate: f' bug. It was published on 15th August 2000 by Daniel
Docekal.
URL: http://www.securityfocus.com/archive/1/76387

I found one post from the Snort-users mailing list in November 2001 by Mark
Rowlands providing several log alerts of this kind of attack.
URL: http://archives.neohapsis.com/archives/snort/2001 -11/0075.html

There are two more messages at Snort-users mailing list. The one below is
from 5 Jan 2004 by Elena Escolano.
URL: http://sourceforge.net/mailarchive/message.php?msg_ id=6892220

This one from 14 Jan 2004 was published by John Bradberry. URL:
http://sourceforge.net/mailarchive/forum.p hp?thread_id=3750513&foru m_id=3972

In addition, the GCIA practicals from Sanjay Menon [9], Murray Goldschmidt [10],
David Barroso [11], and Marshall Heilman [12] analyze this type of attack.

It is worthwhile mentioning that a Computer Incident Advisory Capability (CIAC)
security bulletin mentions the use of ‘Automated Web Interface Scans IIS for
Multiple Vulnerabilities’ where the 'Translate: f' bug is included. The bulletin can be
read at:
http://www.ciac.org/ciac/bulletins/k -068.shtml

Finally , the next security bulletins includes additional information of this type of
attack.

CVE-2000-0778:
http://cve.mitre.org/cgi -bin/cvename.cgi?name=CVE -2000-0778

Security Focus BID 1578:
http://www.securityfocus.com/bid/1578
2.1.7. Evidence of active targeting
As analyzed in previous sections, the attacker from 68.36.170.9 generated false
alarms regarding the 'Translate: f' vulnerability. Nevertheless, the presence of other
alarms suggests the use of some type of vulnerability scan tool or script designed
for Microsoft IIS against IP address 32.245.166.119. The attacker could have ran
the scan against more IP addresses, but Snort log file 2002.9.17 does not include
any packet from 68.36.170.9 to different target IPs, so they were probably targeting
only that one server. On the other hand, the exploiting of a MS IIS bug against an
Apache Server reveals the lack of interest by the attacker to gather information
from their victims.

Log files 2002.9.15, 2002.9.21, 2002.9.22, 2002.9.23, 2002.9.25, 2002.9.26
and 2002.9.28 present the same kind of packets from 68.36.170.9, and all of them
are destined for 32.245.166.119 port 80. This reinforces the view that it is an active
targeting. On the other hand, the IP address 213.58.17.245 generated false alarms,
therefore active targeting it is not applicable.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

25

2.1.8. Severity
Severity formula1 will be applied to each source IP address separately.

Attack from IP address 68.36.170.9

Criticality = 4
The targeted machine is an Apache Web server. Most companies include in
their web sites not only public information but private zones where they
manage sensitive information. It is considered a critical system.

Lethality = 1
This attack exploits a known vulnerability of MS IIS 5.0 that gives access to
the source of server script files such as ASP, or HTR files. The targeted
machine is an Apache Web Server, therefore it is unaffected by this
particular form of attack.

System Countermeasures = 5
The provided information does not reveal any special system
countermeasures. Regardless, this machine would not be affected by the
attack because it is an Apache server, not an IIS one.

Network Countermeasures = 2
The source logs are taken from a Snort sensor, so there is an IDS installed.
As described in section one, there is no evidence of the use of a firewall.

Severity = 4 + 1 - 5 - 2 = -2

Attack from IP address 213.58.17.245

Lethality = 1
This is a false alarm.

Criticality = 4, System Countermeasures = 3, Network Countermeasures = 3
Identical score and reasons as the previous IP address.

 Severity = 4 + 1 - (5 + 3) = -3
2.1.9. Defensive recommendation
The attack specifically exploits a vulnerability of Microsoft IIS 5.0, therefore the
recommended action is to patch the targeted machine.

The hotfix can be downloaded from:
http://www.microsoft.com/technet/security/bulletin/MS00 -058.asp

However, we recall that in this situation, the affected machine was Apache Web
server, in which case a patch is not required.
2.1.10. Multiple choice test question
The following packet dump is enough to determine that the attacker is exploiting the
'Translate: f' vulnerability? Choose the most complete answer.

1 Severity = (Criticality + Lethality) - (System Countermeasures + Network Countermeasures). Each
value from 1 to 5.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

26

17:41:11.196507 IP 213.58.17.245.1411 > 32.245.166.119.80: P
3062892074:30628922
55(181) ack 1774865431 win 17520 (DF)
0x0000 45a0 00dd 2bc6 4000 6c06 1e01 d53a 11f5 E...+.@.l....:..
0x0010 20f5 a677 0583 0050 b690 062a 69ca 4c17 ...w...P...*i.L.
0x0020 5018 4470 7ff0 0000 5052 4f50 4649 4e44 P.Dp....PROPFIND
0x0030 202f 6d61 696e 2048 5454 502f 312e 310d ./main.HTTP/1.1.
0x0040 0a44 6570 7468 3a20 300d 0a74 7261 6e73 .Depth:.0..trans
0x0050 6c61 7465 3a20 660d 0a55 7365 722d 4167 late:.f..User -Ag
0x0060 656e 743a 204d 6963 726f 736f 6674 2d57 ent:.Microsoft -W
0x0070 6562 4441 562d 4d69 6e69 5265 6469 722f ebDAV -MiniRedir/
0x0080 352e 312e 3236 3030 0d0a 486f 7374 3a20 5.1.2600..Host:.
0x0090 7777 772e 5858 5858 5858 5858 0d0a 436f www.XXXXXXXX..Co
0x00a0 6e74 656e 742d 4c65 6e67 7468 3a20 300d ntent -Length:.0.
0x00b0 0a43 6f6e 6e65 6374 696f 6e3a 204b 6565 .Connection:.Kee
0x00c0 702d 416c 6976 650d 0a50 7261 676d 613a p -Alive..Pragma:
0x00d0 206e 6f2d 6361 6368 650d 0a0d 0a .no -cache....

a) Yes. The packet header includes 'Translate: f'.
b) Yes. PROPFIND method with the 'Translate: f' header causes the server to send
the source script page to the attacker.
c) No. This is a legitimate WebDAV HTTP request that does not exploit the
'Translate: f' vulnerability.
d) No. The request does not include the URL of a script file.

Correct answer: c
This packet does not exploit the 'Translate: f' bug. At the most it could be a
reconnaissance action. This vulnerability is exploited using an HTTP GET, not a
PROPFIND. In some circumstances WebDAV includes a special HTTP header with
'Translate: f' that triggers false alarms. It is always recommended to check as much
information as possible before considering it as an attack.

Incorrect answers:
a) The mere appearance of 'Translate: f' in the header does not necessarily mean
that an attack is taking place. Further information should be collaborated, beginning
with the fact that the dump does not contain a HTTP GET command. Also, the
packet is using WebDAV extensions that can fire false alarms.
b) The WebDAV PROPFIND does not retrieve the source code of a script page. It
retrieves properties for a resource identified by the request Uniform Resource
Identifier (URI). Additional information at:
http://msdn.microsoft.com/l ibrary/default.asp?url=/library/en -us/wss/wss/_webdav_propfind.asp
d) This answer is not complete. Even if the packet includes a URL of the script file it
has to be followed by a trailing backslash '\'. In addition, this vulnerability is not
exploited using the PROPFIND method.
References
[1] Gordon, Les. SANS GIAC practical Assignment, version 3.3. URL:

http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc (17 Dec. 2003).

[2] Martin, Ian. SANS GCIA Practical Assignment, version 3.3. URL:
http://www.giac.org/practical/GCIA/Ian_Martin_GCIA.pdf (17 Dec. 2003).

[3] IEEE. OUI and Company_id Assignments. URL:
http://standards.ieee.org/regauth/oui/index.shtml (17 Dec. 2003).

[4] Wesemann, Daniel. incidents.org mailing list. 5 Jan 2003. URL:
http://cert.uni -stuttgart.de/archive/intrusions/2003/01/msg00018.html (17 Dec. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

27

[5] RCF 2518. Goland, Y. et al. HTTP Extensions for Distributed Authoring -- WEBDAV. URL:
http://www.ietf.org/rfc/rfc2518.txt (17 Dec. 2003).

[6] CVE-2000-0778. URL:
http://cve.mitre.org/cgi -bin/cvename.cgi?name=CVE -2000-0778. (17 Dec. 2003).

[7] SecurityFocus. BID 1578. URL: http://www.securityfocus.com/bid/1578 . (17 Dec. 2003).

[8] Boulineau, Danny. GIAC GCIA Version 3.2 Practical Detect Analysis - Number 1.
http://cert.uni-stuttgart.de/archive/intrusions/2002/09/msg00374.html . (17 Dec. 2003).

[9] Menon, Sanjay. GIAC GCIA version 3.2. URL:
www.giac.org/practical/GCIA/Sanjay_Menon_GCIA.pdf . (17 Dec. 2003).

[10] Goldschmid, Murr ay. GIAC GCIA version 2.8. URL:
www.giac.org/practical/Murray_Goldschmidt_GCIA.doc . (17 Dec. 2003).

[11] Barroso, David. GIAC GCIA version 3.3. September 2003. URL:
www.giac.org/practical/GCIA/David_Barroso_GCIA.pdf . (17 Dec. 2003).

[12] Heilman, Marshall. GIAC GCIA version 3.3. June 2003. URL:
www.giac.org/practical/GCIA/Marshall_Heilman_GCIA.pdf . (17 Dec. 2003).

2.2. Detect #2 - NETBIOS DCERPC ISystemActivator bind attempt
I am analyzing these events of interest this detect.

[**] [1:2192:1] NETBIOS DCERPC ISystemActivator bind attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
01/29/04-22:22:24.189180 213.250.229.6:1611 -> X.X.X.X:135
TCP TTL:114 TOS:0x0 ID:58153 IpLen:20 DgmLen:112 DF
AP Seq: 0xA9901D04 Ack: 0x8118A3BA Win: 0x4410 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352]

[**] [1:2192:1] NETBIOS DCERPC ISystemActivator bind attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
01/29/04-22:24:13.796607 212.49.171.212:1749 -> X.X.X.X:135
TCP TTL:124 TOS:0x0 ID:61753 IpLen:20 DgmLen:112 DF
AP Seq: 0x9714AED8 Ack: 0x82958AF5 Win: 0x4410 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352]

[**] [1:2192:1] NETBIOS DCERPC ISystemActivator bind attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
01/29/04-22:24:15.488317 212.49.171.212:1891 -> X.X.X.X:135
TCP TTL:124 TOS:0x0 ID:61852 IpLen:20 DgmLen:112 DF
AP Seq: 0x979C043F Ack: 0x82B3250F Win: 0x4410 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352]

[**] [1:2192:1] NETBIOS DCERPC ISystemActivator bind attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
01/29/04-22:36:48.503215 172.189.217.185:4806 -> X.X.X.X:135
TCP TTL:115 TOS:0x0 ID:32573 IpLen:20 DgmLen:112 DF
AP Seq: 0xEC2A4AA6 Ack: 0x8CE9373A W in: 0xFAF0 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352]

2.2.1. Source of Trace
Alerts were obtained from a home network between 21:00 and 23:00 (UTC/GMT
+1) from the 29th of January 2004. They were generated by a Snort sensor
version 2.1.0 with default sets of rules. The configuration file had all rule files
enabled and used default pre-processor options.

The targeted machine is a honeypot running Windows XP Professional with
SP1a and assorted patches. The network diagram is illustrated below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

28

Internet ------ Router ------ Switched LAN
 |
 Snort sensor / Firewall
 (bridge mode)
 |
 Honeypot

The sensor captures only honeypot network traffic and the firewall limits the
outbound connections. They are both installed in a Red Hat Linux version 9.0
running in bridge mode.

The router is doing NAPT1 (Network Address Port Translation [1]), and the
honeypot is configured as default workstation, receiving by default every
connection opened from outside (Internet) to a internal port not previously included
by hand in NAPT settings.
2.2.2. Detect was generated by
The logs were generated by Snort IDS (http://www.Snort.org) version 2.1.0 with rules
sets from the 26th of January 2004. All rule sets and default pre-processors were
enabled. The rule that triggered the alert can be found in netbios.rules file version
1.32.

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC
ISystemActivator bind attempt"; flow:to_server,established;
content:"|05|"; distance:0; within:1; conten t:"|0b|"; distance:1;
within:1; byte_test:1,&,1,0,relative; content:"|A0 01 00 00 00 00 00 00
C0 00 00 00 00 00 00 46|"; distance:29; within:16; reference:cve,CAN -
2003-0352; classtype:attempted-admin; sid:2192; rev:1;)

This rule matches very specific packets. It is worthwhile providing a detailed
description.
alert tcp

Generate an alert an log TCP packets.
$EXTERNAL_NET any

Look for addresses defined by $EXTERNAL_NET (usually non local network addresses)
and any source ports.

$HOME_NET 135
Look for $HOME_NET (usually defined by local area network range addresses) and remote
port number 135.

msg:"NETBIOS DCERPC ISystemActivator bind attempt"
This is the message displayed once the rule is fired.

flow:to_server,established
The packets triggered must belong to a established session (TCP three -way handshake
completed) and the direction must be from client to server.

content:"|05|"; distance:0; within:1
Look for value 0x05 at 0 bytes of distance from the previous content (beginning of the
payload). In addition, 0x05 should be 1 byte deep.

content:"|0b|"; distance:1; within:1
Look for 0x0b value. It should be after 1 byte from the previous pattern match (0x05), and it
should be of 1 byte deep.

byte_test:1,&,1,0,relative
At a relative offset of 0 bytes from the last pattern match (0x0b), take 1 byte of the payload
and perform an AND binary operation (&) with value '1'.

content:"|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46|"; distance:29; within:16;

1 NAPT technique translates many network addresses and their TCP/UDP (Transmission Control
Protocol/User Datagram Protocol) por ts into a single network address and its TCP/UDP ports .

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

29

Look for hexadecimal value 'A0 01 00 … ' (the interface UUID 1 of the ISystemActivator
Class) after 29 bytes from the last pattern match (0x0b). The value must be found within 16
bytes.

reference:cve,CAN-2003-0352
This rule includes a reference to CVE number CAN -2003-0352.

classtype:attempted -admin
Type of attack class. The reference can be found in classification.config file. In this case it
corresponds to Attempted Administrator Privilege Gain,1.

sid:2192
Snort signature ID. It can be reviewed at:
http://www.Snort.org/snort-db/sid.html?sid=2192 .

rev:1
This is the first version of the rule.

The Snort sets of rules from the 8th of February 2004 includes the revision number
2 of the previous signature (SID 2192) and more rules associated with this attack
with SIDs 2193, 2350 and 2352. The new version of the rule just adds two flowbits
detection plugin options to help track the state of the application protocol.

On the other hand, there is a very complete set of alternative rules at Snort-
users list and at Counterpane.
http://sourceforge.net/mailarchive/message.php?msg_id=5805765
http://www.counterpane.com/alert -v20030801-001.html

Now, lets see an example of the commented rule above. Following is one of the
packets that fired the alerts.

22:22:24.189180 IP 213.250.229.6.1611 > X.X.X.X.135: P
2844794116:2844794188(72) ack 2165875642 win 17424 (DF)
0x0000 4500 0070 e329 4000 7206 a281 d5fa e506 E..p.)@.r.......
0x0010 XXXX XXXX 064b 0087 a990 1d04 8118 a3ba xxxx.K..........
0x0020 5018 4410 ad74 0000 0500 0b03 1000 0000 P.D..t..........
0x0030 4800 0000 7f00 0000 d016 d016 0000 0000 H...............
0x0040 0100 0000 0100 0100 a001 0000 0000 0000
0x0050 c000 0000 0000 0046 0000 0000 045d 888a F.....]..
0x0060 eb1c c911 9fe8 0800 2b10 4860 0200 0000 +.H`....

As explained before, byte_test option performs operation AND between 0x03 value
(0000011 in binary) and 1, giving a result of 0x01. Therefore, as the result is
different from 0 it means that it is TRUE (in programming language terms).
2.2.3. Probability that the source address was spoofed
Probably spoofed?
I don't think the source was spoofed due to several reasons. This rule was triggered
by a packet from a previously established TCP connection. The complete captured
network trace demonstrates that the packet belongs to a known series of actions
that exploits a Microsoft's DCOM RPC vulnerability (more details in Description of
attack and Attack mechanism section).

Probably not spoofed?
As indicated above, each source address implicated in the attacks seems to be
legitimate. The attacks could have been done by a person but the behavior,
frequency and number of different sources points to the action of a worm.

1 Universal Unique Identifier , an unique 128 bit number assigned to any object within a DCE cell .

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

30

3rd party
The victim is not used as a 3rd party in the attack scenario.
2.2.4. Description of attack
This attack exploits a vulnerability in DCOM for RPC in MS Windows NT 4.0, 2000,
XP, and Server 2003.

This vulnerability has been very prominent in the area of security specialists
due to the fast and effective spread of Blaster worm and later variations such as
MSblast, LovSAN and Nachi/Welchia.

In the attack analyzed here, the worm accesses TCP port 135 of the victim
and performs a buffer exploit to open a privilege shell on TCP port 4444. This
behavior is typical of Blaster worm. More details in the next section.

There are other worm variants that use different shell ports. For instance,
Welchia opens a random TCP port between 666 and 7651. Nevertheless, an
attacker with the exploit code can modify it to use other arbitrary ports.

The compromised systems become unstable and may crash. The details of
this attack are described in CERT references CAN-2003-0352, CA-2003-16, CA-
2003-19, and CA-2003-20. See 'Correlations' section for additional information.
2.2.5. Attack mechanism
Following is an example of the network trace taken by attacker from 213.250.229.6.
The honeypot was patched against this vulnerability, therefore the exploit did not
have effect. The following information was captured by a sensor running tcpdump
(http://www.tcpdump.org) recording every network packet.

The attack begins by connecting to the victim's TCP port 135. The next packets
illustrate the three-way handshake.

22:22:03.013042 IP 213.250.229.6.1611 > X.X.X.X.135: S 2844794115:2844794115(0) win 16384 <mss
1460,nop,nop,sackOK> (DF)
22:22:03.013160 IP X.X.X.X.135 > 213.250.229.6.1611: S 2165875641:2165875641(0) ack 2844794116 win 65535 <mss
1452,nop,nop,sackOK> (DF)
22:22:03.175982 IP 213.250.229.6.1611 > X.X.X.X.135: . ack 1 win 17424 (DF)

Once the connection is established, the attacker checks if they can access the
ISystem Activator COM object of the victim. To perform this, the attacker sends a
RPC BIND request. That request triggered the Snort rule of this detect (in previous
sections was provided the hexadecimal dump as an example).

22:22:24.189186 IP 213.250.229.6. 1611 > X.X.X.X.135: P 1:73(72) ack 1 win 17424 (DF)
22:22:24.189772 IP X.X.X.X.135 > 213.250.229.6.1611: P 1:61(60) ack 73 win 65463 (DF)

When the attacker is allowed to access the ISystemActivator, they send the buffer
exploit and shellcode, included in the first of the following packets. Note that it has
a data length of 1452 bytes.

22:22:24.260759 IP 213.250.229.6. 1611 > X.X.X.X.135: . 73:1525(1452) ack 1 win 17424 (DF)
22:22:24.275860 IP 213.250.229.6.1611 > X.X.X.X.135: P 1525:1777(252) ack 1 win 17424 (DF)
22:22:24.275930 IP X.X.X.X.135 > 213.250.229.6.1611: . ack 1777 win 65535 (DF)
22:22:24.276825 IP X.X.X.X.135 > 213.250.229.6.1611: P 61:101(40) ack 1777 win 65535 (DF)
22:22:24.278881 IP 213.250.229.6.1611 > X.X.X.X.135: F 1777:1777(0) ack 1 win 17424 (DF)
22:22:24.278965 IP X.X.X.X.135 > 213.250.229.6.1611: . ack 1778 win 65535 (DF)
22:22:24.279161 IP X.X.X.X.135 > 213.250.229.6.1611: F 101:101(0) ack 1778 win 65535 (DF)
22:22:24.350719 IP 213.250.229.6.1611 > X.X.X.X.135: R 2844795893:2844795893(0) win 0 (DF)

1 In the most cases the port is 707, because of the way the worm-threading model interacts with the
implementation of the Windows C runtime .dll . [3]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

31

After sending the exploit code the worm tries to open TCP port 4444 (three times).
As the attack was not successful, the shell was not available on that port and the
target refuses to connect.

22:22:24.587375 IP 213.250.229.6.2111 > X.X.X.X.4444: S 2872969082:2872969082(0) win 16384 <mss
1460,nop,nop,sackOK> (DF)
22:22:24.587447 IP X.X.X.X.4444 > 213.250.229.6.2111: R 0:0(0) ack 2872969083 win 0
22:22:25.213771 IP 213.250.229.6.2111 > X.X.X.X.4444: S 2872969082:2872969082(0) win 16384 <mss
1460,nop,nop,sackOK> (DF)
22:22:25.213851 IP X.X.X.X.4444 > 213.250.229.6.2111: R 0:0(0) ack 1 win 0
22:22:25.882685 IP 213.250.229.6.2111 > X.X.X.X.4444: S 2872969082:2872969082(0) win 16384 <mss
1460,nop,nop,sackOK> (DF)
22:22:25.882765 IP X.X.X.X.4444 > 213.250.229.6.2111: R 0:0(0) ack 1 win 0

This is a stimulus action because the attackers are actively performing an exploit
on the victim. Targeted service is on TCP port 135 (DCE endpoint resolution [2]),
which is present in many Microsoft Operating Systems. As mentioned in the
previous section, the service running on that port presents a well known
vulnerability that can allow the obtaining of administrator privileges.

Curiously, in some circumstances I found that the DCOM RPC alerts occur
at the same time of several ICMP Snort alerts. I think that these ICMP alerts,
repeated three times by each IP, take place as a collateral effect of this attack. To
clarify this, lets have a look at the following alarm:

[**] [1:402:4] ICMP Destination Unreachable (Port Unreachable) [**]
[Classification: Misc activity] [Priority: 3]
01/29/04-22:23:54.524036 212.49.171.212 -> X.X.X.X
ICMP TTL:124 TOS:0x0 ID:60590 IpLen:20 DgmLen:56
Type:3 Code:3 DESTINATION UNREACHABLE: PORT UNREACHABLE
** ORIGINAL DATAGRAM DUMP:
X.X.X.X:137 -> 212.49.171.212:137
UDP TTL:92 TOS:0x0 ID:55770 IpLen:20 DgmLen:78
Len: 50
** END OF DUMP

ICMP Destination Unreachable (Port Unreachable) packets are sent from
destination when a remote port is unreachable. In this case, the original datagram
was sent from the honeypot to IP address 212.49.171.212 and remote UDP port
137. This is the dump of the original UDP packet.

22:23:54.283083 IP 192.168.7.51.137 > 212.49.171.212.137: udp 5 0
0x0000 4500 004e d9da 0000 6011 38e3 c0a8 0733 E..N....`.8....3
0x0010 d431 abd4 0089 0089 003a f802 804a 0000 .1.......:...J..
0x0020 0001 0000 0000 0000 2043 4b41 4141 4141 CKAAAAA
0x0030 4141 4141 4141 4141 4141 4 141 4141 4141 AAAAAAAAAAAAAAAA
0x0040 4141 4141 4141 4141 4100 0021 0001 AAAAAAAAA..!..

UDP port 137 is associated with the NetBIOS Name Service (NBNS). NBNS, also
known as Windows Internet Name Service (WINS) matches IP addresses with
NetBIOS names. The packet above represents a NetBIOS name table retrieval
query, also known as NetBIOS wildcard query.

I realized that only IP addresses without inverse domain name appeared in
the Snort ICMP alerts. Actually, the odd ICMP packets were sent as result of
NetBIOS queries sent from the honeypot to get the names of the attackers' IPs.

The following tcpdump log is an extract of the attack performed from a
remote IP address without inverse domain name. Note the three UDP packets sent
from the honeypot from port 137 to port 137 (NetBIOS queries) and the later ICMP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

32

packets (Snort alerts). NetBIOS wildcard queries were sent just after completing
TCP connection over TCP port 135.

22:23:51.884657 IP 212.49.171.212.1749 > X.X.X.X.135: S 2534715095:2534715095(0) win 16384 <mss
1460,nop,nop,sackOK> (DF)
22:23:51.884768 IP X.X.X.X.135 > 212.49.171.212.1749: S 2190838516:2190838516(0) ack 2534715096 win 65535 <mss
1452,nop,nop,sackOK> (DF)
22:23:52.042719 IP 212.49.171.212.1749 > X.X.X.X.135: . ack 1 win 17424 (DF)
22:23:54.283083 IP X.X.X.X.137 > 212.49.171.212.137: udp 50
22:23:54.524041 IP 212.49.171.212 > X.X.X.X: icmp 36: 212.49.171.212 udp port 137 unreachable
22:23:55.777349 IP X.X.X.X.137 > 212.49.171.212.137: udp 50
22:23:55.935143 IP 212.49.171.212 > X.X.X.X: icmp 36: 212.49.171.212 udp port 137 unreachable
22:23:57.277353 IP X.X.X.X.137 > 212.49.171.212.137: udp 50
22:23:57.434261 IP 212.49.171.212 > X.X.X.X: icmp 36: 212.49.171.212 udp port 137 unreachable
22:24:00.126105 IP 212.49.171.212.1891 > X.X.X.X.135: S 2543584318:2543584318(0) win 16384 <mss
1460,nop,nop,sackOK> (DF)
22:24:00.126220 IP X.X.X.X.135 > 212.49.171.212.1891: S 2192778510:2192778510(0) ack 2543584319 win 65535 <mss
1452,nop,nop,sackOK> (DF)
22:24:00.287535 IP 212.49.171.212.1891 > X.X.X.X.135: . ack 1 win 17424 (DF)
22:24:13.796612 IP 212.49.171.212.1749 > X.X.X.X.135: P 1:73(72) ack 1 win 17424 (DF)
22:24:13.796996 IP X.X.X.X.135 > 212.49.171.212.1749: P 1:61(60) ack 73 win 65463 (DF)
22:24:13.954600 IP 212.49.171.212.1749 > X.X.X.X.135: . 73:1525(1452) ack 1 win 17424 (DF)
[...]

2.2.6. Correlations
The details of this vulnerability are described in detail in the following CERT
advisories:

CAN-2003-0352: http://cve.mitre.org/cgi -bin/cvename.cgi?name=CAN -2003-0352
CA-2003-16: http://www.cert.org/advisories/CA -2003-16.html
CA-2003-19: http://www.cert.org/advisories/CA -2003-19.html
CA-2003-20: http://www.cert.org/advisories/CA -2003-20.html

Information about of the action of Blaster an Welchia worms can be read at
following Symantec web pages:
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.worm.html

The announcement and patch of the first vulnerability of DCOM RPC was published
by Microsoft on July 16th 2003.
URL:
http://www.microsoft.com/technet/security/bulletin/MS03 -026.asp.

There was a period of calm until August 11th, the date when the worm named
'Blaster' or 'LovSan' propagated over Internet at an incredibly fast rate affecting a
great number of unpatched MS Windows systems and causing general panic in the
Internet community. In addition, the worm was programmed to launch a Denial of
Service against windowsupdate.com on August 16th.

Many documents at Internet analyze this vulnerability and the exploit code. One
example of the first official news about this attack was titled 'RPC DCOM Worm
Hits the Net', published by Kevin Poulsen at SecurityFocus on 11th August 2003
URL: http://www.securityfocus.com/news/6689 .

The exploit code was quickly published, and accelerated the appearance of
several worms variations. Frederic Perriot, from Symantec Security, provided
network traces and instructions to distinguish between several worms that exploit
DCOM vulnerability. The document is 'Detecting network traffic that may be due to
RPC worms'. URL:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

33

http://securityresponse.symantec.com/avcenter/venc/data/detecting.traffic.due.to.rpc.worms.html
Many security specialists have been made numerous and excellent analysis

of this attack and the exploit code. Some examples are from GCIHs Aaron
Hackworth [4] and Brian Porter [5]. Moreover, Enric S. Hines [6] and Shannon
Atkinson [7] have analyzed this attack in their practical detects.
2.2.7. Evidence of active targeting
The attacked system was targeted from more than 20 different IP addresses in less
than an hour. Furthermore, although the system had a dynamic IP it received
attacks immediately after it opened TCP port 135.

As discussed before, the victim was not actively targeted by the attackers.
This was worm activity (Blaster or very similar) trying to exploit RPC DCOM
vulnerability.
2.2.8. Severity
Seriousness = 1
The victim was a honeypot. Each service was designed to be attacked.

Lethality = 1
The exploit can give administrator privileges to the attacker. Nevertheless, the
honeypot was patched, therefore it was immune to this kind of attack.

System Countermeasures = 4
The system was patched.

Network Countermeasures = 4
The inbound firewall rules permitted network traffic to every port on the honeypot,
but the output traffic was highly controlled by severe output rules. In addition, a
network IDS was installed to detect known attacks.

Severity = (Criticality + Lethality) - (System Countermeasures + Network Countermea sures)
Severity = 1 + 1 - (4 + 4) = -6
2.2.9. Defensive recommendation
Several tasks can be adopted for protecting against this kind of attack. All of them
are provided in CERT Advisory CA-2003-16, CA-2003-19 or CA-2003-20.
URL: http://www.cert.org/advisories/CA -2003-16.html
URL: http://www.cert.org/advisories/CA -2003-19.html
URL: http://www.cert.org/advisories/CA -2003-20.html

If the system has not yet been compromised:

Filter network traffic on the following ports:
69/UDP Trivial File Transfer (TFTP)
135/TCP DCE endpoint resolution
135/UDP DCE endpoint resolution
139/TCP NETBIOS Session Service
139/UDP NETBIOS Session Service
445/TCP Microsoft-DS
445/UDP Microsoft-DS
4444/TCP Default shellcode port opened by the exploit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

34

Apply the patch provided at Microsoft Security Bulletin MS03-026.
URL: http://microsoft.com/technet/security/bulletin/MS03 -026.asp

Disable DCOM
Generally this recommendation is not needed. If the DCOM service is
disabled it can cause undesirable side effects, but the system is protected
against this vulnerability. The instructions are provided at Microsoft
Knowledge Base Article 825750.
URL: http://support.microsoft.com/default.aspx?scid=kb;en -us;825750

Install an updated antivirus software.

If the system has been compromised:

To determine if the system has been successfully attacked by W32/Blaster
worm, we can check the following the registry key:
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Run\windows auto update" with a value of msblast.exe. If this key is
present, perform the following instructions:
• Remove it using a registry editor.
• Terminate the running copy of msblast.exe using the Task Manager.
• Take one of the previous commented steps to protect against the

compromise before applying the Microsoft Security Bulletin MS03-26
patch.

• Read the document ‘Recovering Windows XP systems from the
W32/Blaster worm’ for additional information at URL:
http://www.cert.org/tech_tips/w32_blaster.html

If the system has been compromised by a modification of Blaster worm, the
following document includes additional information for recovering a system:

Steps for Recovering from a UNIX or NT System Compromise
http://www.cert.org/tech_tips/win -UNIX-system_compromise.html

2.2.10. Multiple choice test question
What indicates the following Snort alert:

[**] [1:2192:1] NETBIOS DCERPC ISystemActivator bind attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
01/29/04-22:36:48.503215 172.189.217.185:4806 -> X.X.X.X:135
TCP TTL:115 TOS:0x0 ID:32573 IpLen:20 DgmLen:112 DF
AP Seq: 0xEC2A4AA6 Ack: 0x8CE9373A Win: 0xFAF0 TcpLen: 20

a) A RCP BIND request has been sent from IP 172.189.217.185. The alert
announces an imminent buffer overflow attack using vulnerability of DCOM
interface for RPC in Microsoft Windows.
b) A successful overflow attack has been performed from IP 172.189.217.185,
exploiting a known vulnerability of DCOM interface for RPC in Microsoft Windows.
c) One crafted packet was sent to check if the victim presents a vulnerability of
DCOM interface for RPC in Microsoft Windows that can be exploited by a buffer
overflow.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

35

Correct answer: a
The rule that fired the alert was designed to trigger the BIND request made by the
intruder to check if they can access the ISystem Activator COM object of the victim.

Incorrect answers:
b) The alerts do not indicate the buffer overflow itself but a RCP BIND request that
precedes the ulterior buffer overflow attempt.
c) A crafted packet does not trigger this alert because the rule only fires packets
from a previously established TCP connection.
References
[1] Traditional IP Network Address Translator (Traditional NAT). January 2001. URL:

http://www.ietf.org/ rfc/rfc3022.txt. (1 Feb. 2004).

[2] IANA Port Numbers. URL:
http://www.iana.org/assignments/port -numbers (1 Feb. 2004).

[3] Symantec. W32.Welchia.Wo rm. August 18, 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.worm.html (1 Feb.
2004).

[4] Hackworth , Aaron. GCIH. DComExpl_UnixWin32 Windows RPC DCOM Buffer Overflow
Exploit. URL:
http://www.giac.org/practical/GCIH/Aaron_Hackworth_GCIH.pdf (1 Feb. 2004).

[5] Porter, Brian. GCIH. RPC -DCOM Vulnerability & Exploit. URL:
http://www.giac.org/practic al/GCIH/Brian_Porter_GCIH.pdf . (1 Feb. 2004).

[6] Hines, Enric S. Part II: Network Detects Analyzing 3 Network Detects. URL:
http://www.appliedwatch.com/ehines_gcia_detect1.pdf (1 Feb. 2004).

[7] Shannon Atkinson. GIAC GCIA Versi on 3.3 Practical Detect. URL:
http://cert.uni -stuttgart.de/archive/intrusions/2003/08/msg00321.html (1 Feb. 2004).

[8] CAN-2003-0352. URL:
http://cve.mitre.org/cgi -bin/cvename.cgi?name=CAN -2003-0352 (1 Feb. 2004).

[9] Advisory CA-2003-16 Buffer Overflow in Microsoft RPC. URL:
http://www.cert.org/advisories/CA-2003-16.html (1 Feb. 2004).

[10] Advisory CA-2003-19 Exploitati on of Vulnerabilities in Microsoft RPC Interface. URL:
http://www.cert.org/advisories/CA -2003-19.html (1 Feb. 2004).

[11] Advisory CA-2003-20 W32/Blaster worm.
URL: http://www.cert.org/advisories/CA -2003-20.html (1 Feb. 2004).

Top three question and response
The first version of this practical detect was posted on the intrusions@incidents.org
mailing list the 2nd and 4th February 2004 at:
http://cert.uni-stuttgart.de/archive/intrusions/2004/02/msg00010.html

I did not receive any public response. However, I received several private emails
with a lot of observations from Don Murdoch. I would like to thank him for replying
to my email. I would also like to thank him for helping me to improve my practical
detect with his suggestions and comments.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

36

2.3. Detect #3 - WEB-IIS WEBDAV nessus safe scan attempt
In this detect I used a Snort log and the corresponding packet dump.

[**] [1:2091:2] WEB-IIS WEBDAV nessus safe scan attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
01/29/04-21:28:52.377586 148.223.83.130:2707 -> X.X.X.X:80
TCP TTL:108 TOS:0x0 ID:14564 IpLen:20 DgmLen:71 DF
***AP**F Seq: 0xA04EB5B6 Ack: 0x5CD514E W in: 0xFAF0 TcpLen: 20
[Xref => http://cgi.nessus.org/plugins/dump.php3?id=11412][Xref => http://www.securityfocus.com/bid/7116][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0109]

21:28:52.377586 IP (tos 0x0, ttl 108, id 14564, len 71) 148.223.83.130.2707 >
X.X.X.X.80: FP [tcp sum ok] 2689512886:2689512917(3 1) ack 97341774 win 64240 (DF)
0x0000 4500 0047 38e4 4000 6c06 2590 94df 5382 E..G8.@.l.%...S.
0x0010 xxxx xxxx 0a93 0050 a04e b5b6 05cd 514e xxxx...P.N....QN
0x0020 5019 faf0 982f 0000 5345 4152 4348 202f P..../..SEARCH./
0x0030 2048 5454 502f 312e 31 0d 0a48 6f73 743a .HTTP/1.1..Host:
0x0040 2025 730d 0a0d 0a .%s....

The victim's IP address was hidden for privacy.
2.3.1. Source of Trace
The logs were extracted from a Linux box machine at my home network running
netcat (http://www.atstake.com/research/tools/network_utilities/) listening on the most
common service ports (such as TCP port 80) form the Internet to dev/null.

All the network traffic of this machine is recorded and analyzed by a Snort
sensor installed in the same machine as netcat.

2.3.2. Detect was generated by
The alert was generated by Snort version 2.1.0 with sets of rules from the 26th of
January 2004. All rules and default pre-processors were enabled. Additionally,
every network packet was recorded by tcpdump.

Following is the rule that fired the alert, from web-iis.rules version 1.65 (20th
November 2003).

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB -IIS
WEBDAV nessus safe scan atte mpt"; flow:to_server,established;
content:"SEARCH / HTTP/1.1|0d0a|Host|3a|"; content:"|0d0a0d0a|";
within:255; reference:cve,CAN -2003-0109; reference:bugtraq,7116;
reference:nessus,11412; classtype:attempted -admin; sid:2091; rev:2;)

Detailed rule description:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

Alert TCP packets fro m $EXTERNAL_NET def ined IPs and any source ports to
$HTTP_SERVERS defined Ips and $HTTP_PORTS destination ports.

msg:"WEB-IIS WEBDAV nessus safe scan attempt"
Message sent when the rule is fired.

flow:to_server,established
To trigger the alert, TCP communication must be previously established and must come
from the client to the server.

content:"SEARCH / HTTP/1.1|0d0a|Host|3a|"
The payload of the packet must contain the str ing above and hexadecimal characters
indicated between '|'.

content:"|0d0a0d0a|"
The payload of the pack et must have hexadecimal string 0x0d0a0d0a.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

37

within:255
The search should not go 255 bytes past the last two contents.

reference:cve,CAN-2003-0109; reference:bugtraq,7116; reference:nessus,11412
Set of references with detailed information about the alarm. The 'Reference:' field can be
found in the reference.config file.

classtype:attempted -admin
Type of attack class. In the classification.config file it c orresponds to Attempted
Administrator Privilege Gain,1.

sid:2091
Snort signature ID. Additional information at:
http://www.Snort.org/snort -db/sid.html?sid=2091 .

rev:2
The rule has been revised twice.

2.3.3. Probability the source address was spoofed
Probably spoofed?
I don't believe that the source address was spoofed. The object of this action is to
determine if the victim supports a specific service. It is a reconnaissance action. If
the attacker spoofs their identity, they will never receive a response, unless they
can sniff the victim's traffic (not in this case). Furthermore, packets triggered by the
Snort rule come from an established TCP session.

The use of spoofed addresses is more common in Denial of Service attacks
or attacks on a similar line, where the attackers only want to flood or crash their
victims' equipment.

Probably not spoofed?
The information above reveals that this probability is very high. It is highly probable
that the attacker did not spoof their identity.

3rd party?
This option is not applicable in this scenario. The alert was not originated by a
crafted packet with victim's IP address. Moreover, the victim's IP was not used
either to spoof an attack.
2.3.4. Description of attack
The attacker sent a special ‘HTTP / SEARCH/1.1’ command to determine if the
victim supports WebDAV (http://www.ietf.org/rfc/rfc2518.txt). This converts the malicious
action into a stimulus.

The port targeted was 80/tcp. As commented before there was not any
HTTP server running on that port, only netcat to dev/null.

The object of this reconnaissance is to exploit a buffer overflow vulnerability in the
Win32 API libraries shipped with all versions of Microsoft Windows 2000 and
Microsoft Windows NT 4.0. This bug allows the remote execution of arbitrary code.

This vulnerability, described in CERT CAN-2003-0109, exists in the ntdll.dll
library, a core operating system component used to interact with the Windows
kernel. This dynamic link library (DLL) is used by different Windows components,
such as WebDAV to process incoming requests.

A special WebDAV request sent to a Microsoft Internet Information Services
(IIS) 5.0 (http://www.microsoft.com/windows2000/technologies/web/default.asp) server could
permit an attacker to execute arbitrary code in the Local System, giving the attacker
complete control of the system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

38

Note that because the vulnerable Win32 API component is utilized by other
applications, it is possible to exploit the vulnerability using other vectors.

Further information and references can be found in the 'Correlations' section.
2.3.5. Attack mechanism
The Snort alert triggered by SID 2091, suggests the use of Nessus vulnerability
scanner (http://www.nessus.org).

We can find details of the included Nessus plugin ID 11412 at
http://cgi.nessus.org/plugins/dump.php3?id=11412 .

Following is an extract of Nessus plugin source code showing that it sends a
extremely long WebDAV request to determine if it presents the vulnerability.

 req = str ing("SEARCH /", crap(65535), " HTTP/1.1 \r\n",
 "Host: ", get_host_name(), " \r\n",
 "Content -Type: text/xml \r\n",
 "Content -Length: ", strlen(body), " \r\n\r\n",
 body);

But as we see, the captured packet from the attacker at the beginning of this
detect, is only 71 bytes long including headers and payload. In addition, it did not
include ‘Content-Type’ and ‘Content-Length’ fields.

Therefore, the attacker was not exploiting the buffer overflow but searching
for a vulnerable victim. Not in vain, the Snort alert tells that this is a ‘safe’ scan.
2.3.6. Correlations
The details of this attack are described at:

CERT® Advisory CA-2003-09 Buffer Overflow in Core Microsoft Windows DLL
http://www.cert.org/advisories/CA -2003-09.html

CAN-2003-0109
http://cve.mitre.org/cgi -bin/cvename.cgi?name=CAN -2003-0109

Microsoft Windows ntdll.dll Buffer Overflow Vulnerability
http://www.securityfocus.com/bid/7116

Additionally, there are several informative documents at giac.org written by GCIHs
Brandon Young [6], David Smithers [7], Bill LaRiviere [8], Trent Healy [9] and Lasse
Overlier [10]. All of them study in some way the ntdll.dll buffer overflow and its
relationship with WebDAV.
2.3.7. Evidence of active targeting
There was not any evidence of the attacker's IP address in the Snort logs and
network traffic. It is possible that they used other machines to make earlier or
subsequent actions.

The targeted machine did not have any HTTP server running at targeted
TCP port 80. A clever attacker would check it first before sending more specific
(and noisier) probes. This certainly discards the possibility of previous
reconnaissance actions using different IP addresses.

On the other hand, as explained in the ‘Attach mechanism’ section, the
attacker was not actually sending the buffer overflow itself but looking for
vulnerable targets.

Therefore, I do not believe that the attacker was actively targeting the victim.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

39

2.3.8. Severity
The following offers a grading mechanism to determine the severity of this
particular attack, 5 being the most dangerous, and 1 being the most innocuous.

Criticality = 2
The targeted machine is used for testing purposes only. It provides fake services
and captures network traffic.

Lethality = 1
The attack is a reconnaissance to a inexistent service.

System Countermeasures = 3
The system is up to date and file integrity tools have been installed.

Network Countermeasures = 3
The system has an NIDS installed and it is isolated from the rest of the network
infrastructure.

Severity = (Criticality + Lethality) - (System Countermeasures + Network Countermeasures)
Severity = 2 + 1 - (3 + 3) = -3
2.3.9. Defensive recommendation
The following instructions can be used to protect a system against this attack.

Apply the patch included in Microsoft Security Bulletin MS03-007
http://www.microsoft.com/technet/security/bulletin/MS03 -007.asp

Disable IIS or WebDAV
Microsoft instructions to disable IIS are available at:
http://support.microsoft.com/ default.aspx?scid=kb;en-us;321141

If disabling IIS is not possible, you can disable WebDAV using the IIS lockdown
tool. Information about this tool is available at:
www.microsoft.com/technet/security/tools/locktool.asp

Alternatively, you can disable WebDAV by following the instructions located in
Microsoft's Knowledgebase Article 241520, "How to Disable WebDAV for IIS 5.0":
http://support.microsoft.com/ default.aspx?scid=kb;en-us;241520

Restrict buffer size
If you cannot use IIS lockdown tool, it is recommended to limit the size of the buffer
that IIS utilizes to process requests. This can be achieved by using Microsoft's URL
Buffer Size Registry Tool. This tool can be run against a local or remote Windows
2000 system running Windows 2000 Service Pack 2 or Service Pack 3. The tool
and additional information are available at:

URL Buffer Size Registry Tool:
http://go.microsoft. com/fwlink/?LinkId=14875

Microsoft Knowledge Base Article 816930:
http://support.microsoft.com/default.aspx?scid=kb;en -us;816930

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

40

Microsoft Knowledge Base Article 260694:
http://support.microsoft.com/ default.aspx?scid=kb;en-us;260694

Use URLScan
As final recommendation, you can use URLScan to block the following WebDAV
HTTP requests that attempt to exploit this vulnerability: OPTIONS, PROPFIND,
PROPPATCH, MKCOL, DELETE, PUT, COPY, MOVE, LOCK, UNLOCK,
OPTIONS, and SEARCH. URLScan is available at:
http://support.microsoft.c om/default.aspx?scid=kb;[LN];326444

Additional recommendations and information about this attack can be read at:
CERT® Advisory CA-2003-09 Buffer Overflow in Core Microsoft Windows DLL
http://www.cert.org/advisories/CA -2003-09.html

SecurityFocus.com. Microsoft Windows ntdll.dll Buffer Overflow Vulnerability:
http://www.securityfocus.com/bid/7116/info/

2.3.10. Multiple choice test question
Existing buffer overflow vulnerability in Windows NT/2000 ntdll.dll library (a
component used to interact with the kernel) can be exploited through: (chose only
one answer)

a) WebDAV.
b) WebDAV and other vectors.
c) IIS 5.0.

Correct answer: b
As noted in CERT CA-2003-09 (http://www.cert.org/advisories/CA -2003-09.html), there is
buffer overflow vulnerability in Win32 API libraries of Windows NT/2000. And as the
vulnerable Win32 API component is utilized by many other applications, it is
possible that other exploit vectors exist. Not only WebDAV.

Incorrect answers:
a) Although this answer is correct, it is also incomplete.
c) The vulnerability cannot be exploited just through IIS 5.0. It must support an
application that utilizes the affected library (ntdll.dll), such as WevDAV.

References
[1] IIS : WebDAV Overflow (MS03 -007). URL:

http://cgi.nessus.org/plugins/dump.php3?id=11412 (1 Feb. 2004).

[2] Snort database ID 2091. URL:
http://www.Snort.org/snort -db/sid.html?sid=2091 (1 Feb. 2004).

[3] CERT. CAN-2003-0109. URL:
http://cve.mitre.org/cgi -bin/cvename.cgi?name=CAN-2003-0109 (1 Feb. 2004).

[4] CERT Advisory CA-2003-09 Buffer Overflow in Core Microsoft Windows DLL. URL:
http://www.cert.org/advisories/CA -2003-09.html (1 Feb. 2004).

[5] SecurityFocus. Microsoft Windows ntdll.dll Buffer Overflow Vulnerability. URL:
http://www.securityfocus.com/bid/7116 (1 Feb. 2004).

[6] Brandon_Young "WebDAV: The new nemesis of IIS Administrators". URL:
http://www.giac.org/pra ctical/GCIH/Brandon_Young_GCIH.pdf (1 Feb. 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

41

[7] David_Smithers. “Deconstructing the NTDLL.DLL Vulnerability”. URL:
http://www.giac.org/practical/GCIH/David_Smithers_GCIH.pd f (1 Feb. 2004).

[8] Bill_LaRiviere. “A KaHT in the Wild; Exploiting a Buffer O verflow in NTDLL.dll Thru
WebDAV”. URL:
http://www.giac.org/practical/GCIH/Bill_LaRi viere_GCIH.pdf (1 Feb. 2004).

[9] Trent_Healy. “Responding to th e WebDAV exploit”. URL:
http://www.giac.org/practic al/GCIH/Trent_Healy_GCIH.pdf (1 Feb. 2004).

[10] Lasse_Overlier. “Compromising Windows 2000 core: IIS WebDAV ex ploit “. URL:
http://www.giac.org/practical/GCIH/Lasse_Overlier_GCIH.pdf (1 Feb. 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

42

3. Assignment 3 - Analyze This
3.1. Executive summary
Due to its nature, a University has special security policies that make it different
from other organizations. Normally it is intended to provide a certain grade of
freedom. But this can be a difficult task and the source of serious security
problems. The goal is to reach an ideal position between freedom of action and a
restricted and secured environment. The enormous amount of traffic received from
outside added to the febrile and occasionally dangerous activities carried out by the
students does not facilitate the work of the administrators.

This analysis and the security recommendations were made keeping in mind
the principles mentioned above, proposing further analysis or examination of
suspect hosts when possible, always trying to maintain the University objectives
and values. At the end of the analysis there are some several general
recommendations based on the activities examined and my own experiences.

Summary of Activity

0

50

100

150

200

250

300

27 28 29 30 31

Thousands

Days of Month (January 2004)

N
um

be
r o

f A
le

rt
 a

nd
 S

ca
n

ev
en

ts

0

100

200

300

400

500

600

700

800

900

1000

N
um

ber of O
O

S packets

Alerts per hour Scans per hour OOS packets per hour
Figure 1 - Summary of Activity between 27th and 31st January 2004

The graphic above represents the overall activity recorded at the UMBC University
during the period from the 27th to the 31st of January 2004. The campus hosts
addresses were hidden in Alert and OOS files, but I noted that for some reason the
Scans files had the real IP addresses of the University. Therefore, to avoid
confusion I decided to adapt them in the same manner as in the other two types of
log files. The strange OOS graphic is due to a lot of blank lines in the OOS files,
probably due to data corruption. The OOS files from the analysis period include
information only from about 0:00 to 4:00 hours.

3.2. Alert summary
The following table is courtesy of Les Gordon [1] and it provides an overall insight
of the activity registered in alert files.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

43

Alert name # alerts Ext Src Int Dst Int Src Ext Dst In Out I->I E->E
High port 65535 tcp -
possible Red Worm - traffic

986960 80 39 37 122 495256 491703 1

MY.NET.30.4 activity 38035 348 1 38035
MY.NET.30.3 activity 11841 133 1 11841
Incomplete Packet
Fragments Discarded

5692 64 278 3 14 397 5295

High port 65535 udp -
possible Red Worm - traffic

3379 81 22 16 83 1652 1727

EXPLOIT x86 NOOP 3256 425 195 3256
SMB Name Wildcard 2813 69 660 2813
Null scan! 1929 137 128 1929
Possible trojan server
activity

960 33 263 15 30 836 124

NMAP TCP ping! 955 215 58 955
[UMBC NIDS IRC Alert] IRC
user /kill detected- possible
trojan.

820 44 33 820

[UMBC NIDS IRC Alert]
XDCC client detected
attempting to IRC

460 1 1 460

TCP SRC and DST outside
network

306 47 76 306

SUNRPC highport access! 286 21 27 286
External RPC call 154 2 141 154
FTP passwd attempt 139 70 5 139
[UMBC NIDS] External MiMail
alert

138 31 1 138

Tiny Fragments - Possible
Hostile Activity

116 6 7 116

SMB C access 106 41 3 106
Traffic from port 53 to port
123

94 1 1 94

ICMP SRC and DST outside
network

56 32 48 56

EXPLOIT x86 setgid 0 41 31 31 41
EXPLOIT x86 setuid 0 40 32 27 40
TFTP - Internal UDP
connection to external tftp
server

34 5 4 1 1 33 1

RFB - Possible WinVNC -
010708-1

14 5 2 3 6 6 8

EXPLOIT x86 stealth noop 13 8 8 13
FTP DoS ftpd globbing 11 3 1 11
Probable NMAP fingerprint
attempt

10 9 5 10

EXPLOIT NTPDX buffer
overflow

7 5 4 7

SYN-FIN scan! 7 4 4 7
TCP SMTP Source Port
traffic

6 1 1 6

[UMBC NIDS IRC Alert] User
joining XDCC channel
detected. Possible XDCC bot

6 1 2 6

NETBIOS NT NULL session 5 2 3 5
DDOS shaft client to handler 4 4 4 4
IRC evil - running XDCC 4 1 2 4
Attempted Sun RPC high
port access

3 3 3 3

Fragmentation Overflow
Attack

3 2 2 3

TFTP - Internal TCP
connection to external tftp
server

3 1 2 1 1 2 1

External FTP to HelpDesk
MY.NET.53.29

2 2 1 2

External FTP to HelpDesk
MY.NET.70.49

2 2 1 2

NIMDA - Attempt to execute
cmd from campus host

2 2 2 2

TFTP - External UDP
connection to internal tftp
server

2 1 1 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

44

Alert name # alerts Ext Src Int Dst Int Src Ext Dst In Out I->I E->E
[UMBC NIDS IRC Alert]
K\:line'd user detected-
possible trojan.

2 2 2 2

[UMBC NIDS IRC Alert]
Possible drone command
detected.

2 1 1 2

EXPLOIT identd overflow 1 1 1 1
External FTP to HelpDesk
MY.NET.70.50

1 1 1 1

FTP .forward 1 1 1 1
Happy 99 Virus 1 1 1 1
TFTP - External TCP
connection to internal tftp
server

1 1 1 1

[UMBC NIDS IRC Alert]
Possible Incoming XDCC
Send Request Detected.

1 1 1 1

[UMBC NIDS IRC Alert]
Possible sdbot floodnet
detected attempting to IRC

1 1 1 1

Totals: 1058725 1941 1318 150 1047 556223 502139 1 362

alerts: Number of alerts
Ext Src: Number of unique external sources.
Int Dst: Number of unique internal
destinations.
Int Src: Number of unique internal sources.
Ext Dst: Number of unique external
destinations.

In: Number of inbound alerts.
Out: Number of outbound alerts.
I->I: Number of alerts triggered by both
internal sources and destinations.
E->E: Number of alerts triggered by both
external sources and destinations.

Note that the alert "High port 65535 tcp - possible Red Worm - traffic" has more
than 93% occurrences, and the rest of the alerts only 7%. This is unusual and is
analyzed in detail below.

3.3. Analysis process
Among the top ten alerts by frequency we find very similar alerts. These can be
grouped by type and commented on in order of frequency. I also wanted to
comment on all the alerts, so in this case I decided to adopt a similar solution to Ian
Martin. The first set of alerts, analyzed in detail, includes the top ten talkers by
volume. The second set, contains the alerts triggered more than 500 times. The
last set contains the rest of alerts.

3.4. Alerts triggered more than 1000 times (and related)
3.4.1. High port 65535 traffic

Alert name Severity # alerts In Out I->I E->E
High port 65535 tcp - possible Red Worm -
traffic

Medium 986960 49525
6

491703 1

High port 65535 udp - possible Red Worm -
traffic

Medium 3379 1652 1727

01/27-15:15:53.047408 [**] High port 65535 tcp - possible Red Worm - traffic [**] 172.147.190.112:65535 ->
MY.NET.97.189:4976
01/27-17:30:43.608988 [**] High port 65535 udp - possible Red Worm - traffic [**] MY.NET.163.76:6257 ->
24.45.132.55:65535

Snort rule
There are no standard Snort rules for these alerts. The following are examples:

alert tcp any any -> any 65535 (msg:"High port 65535 tcp - possible Red
Worm - traffic"; flow:established; classtype:trojan -activity; rev:1;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

45

alert udp any any -> any 65535 (msg:"High port 65535 udp - possible Red
Worm - traffic"; classtype:trojan -activity; rev:1;)

Summary
The amount of this type of alerts is unusually high compared with the rest. The
presence of port 65535 in network traffic suggests the activity of Red Worm. Red
Worm, also known as Linux.Red.Worm, Linux/Adore, Linux/Red, is a Linux worm
that opens a shell on port 65535. However, as pointed out by Doug Kite [2] this port
can be used for other tools such as UNIX traceroute tool, or the WinMX file-sharing
program. The following table contains the top ten TCP IP addresses and port pairs.
Top ten TCP IP and port pairs
 SRC IP SRC Port DST IP DST Port Alerts
1 24.45.132.55 65535 MY.NET.163.76 3267 493349
2 MY.NET.163.76 3267 24.45.132.55 65535 489720
3 MY.NET.84.164 1304 203.198.250.203 65535 844
4 203.198.250.203 65535 MY.NET.84.164 1304 799
5 172.147.190.112 65535 MY.NET.97.189 4976 694
6 MY.NET.97.189 4976 172.147.190.112 65535 615
7 211.23.199.82 65535 MY.NET.153.153 4662 108
8 MY.NET.153.153 4662 211.23.199.82 65535 58
9 MY.NET.34.5 65535 128.164.127.227 25 34
10 MY.NET.25.66 65535 66.93.100.200 25 28

We have found the IP addresses from which almost all the alerts originated. They
were 24.45.132.55 (ool-182d8437.dyn.optonline.net) and MY.NET.163.76. The
University host used TCP port 3267, associated to IBM dial-out [3]. This amount of
alerts is extremely unusual and the affected host can be analyzed in detail.

The next figure illustrates the activity of the long conversation maintained by
both IPs 27th Jan at 17:30 a.m., 28th Jan at 17:30 a.m. The numbers of incoming
and outgoing alerts are almost identical, so they were produced by a conversation.

High Port 65535 traffic alerts

0

5000

10000

15000

20000

25000

30000

35000

40000

13
:0

0

27
/0

1/
04

 1
4:

00

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

23
:0

0

28
/0

1/
04

 0
:0

0

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0

11
:0

0

28
/0

1/
04

 1
2:

00

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

datetime

nu
m

be
r o

f a
le

rt
s

incoming outgoing

Figure 2 - High Port 65535 traffic

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

46

The next TCP port numbers in the table are 1304 and 4976. These are not used by
known services or tools, but the number of alerts is high. TCP port 4662 is the
default client port for eDonkey and eMule P2P file-sharing applications, and it is
used by a local host. TCP port 25 is mainly used for SMTP and although it is not
common, it is possible for the client to use TCP port 65535.

The table below represents the top ten UDP IP and port pairs.

Top ten UDP IP and port pairs
 SRC IP SRC Port DST IP DST Port Alerts
1 24.45.132.55 65535 MY.NET.163.76 6257 1097
2 MY.NET.163.76 6257 24.45.132.55 65535 1089
3 61.203.171.230 65535 MY.NET.163.76 6257 160
4 MY.NET.163.76 6257 61.203.171.230 65535 147
5 MY.NET.163.76 6257 218.121.232.71 65535 95
6 218.121.232.71 65535 MY.NET.163.76 6257 91
7 MY.NET.163.76 6257 61.25.24.181 65535 54
8 61.202.86.86 65535 MY.NET.152.184 6257 28
9 MY.NET.163.76 6257 81.77.18.252 65535 27
10 MY.NET.163.76 6257 218.123.68.34 65535 26

The only interesting UDP port here is number 6257 used by WinMX application [4].
Doug Kite analyzed this attack in his practical and concluded they are probably
false positives. See correlations. The presence again of IP 24.45.132.55 is very
suspicious and emphasizes my recommendation to investigate host
MY.NET.163.76.

Except for the alerts to remote port number 25, all of the University hosts
listed in the top ten TCP and UDP tables use local ports different from 65535. This
suggests that they are not infected with Red Worm, but had generated false
alarms.

MY.NET.25.66 also appears in a 'NMAP TCP ping!' alert from 194.206.100.2
and four 'SUNRPC highport access!' alerts from 144.126.75.19. MY.NET.34.5 is
not included in any different alert.

Correlations
As mentioned above, Doug Kite [2] comments on this attack in his practical GCIA
attempt, and provides logs to explain the activity of traceroute and WinMX.

Log files
The host MY.NET.84.164 presented more alerts from port 1304 different to address
port 65535. This campus host was also the destination in 2 'NMAP TCP ping!' (to
ports 80 and 1304) alerts, 2 'Incomplete Packet Fragments Discarded' alerts, 1
'EXPLOIT NTPDX buffer overflow' (to port 123) and 1 'EXPLOIT x86 setuid 0' (to
port 1304) alert. These events seem to be isolated from the 'High port 655235'
alerts.

The host MY.NET.24.74 was the objective in 14 'High port 65535' alerts
against port 443 and also the target of the following alerts:

Alerts to MY.NET.24.74 dest ination Alerts
High port 65535 tcp - possible Red Worm - traffic 14
NMAP TCP ping! 12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

47

Alerts to MY.NET.24.74 dest ination Alerts
Possible trojan server activity 9
EXPLOIT x86 setuid 0 1
Tiny Fragments - Possible Hostile Activity 1
Null scan! 1
Incomplete Packet Fragments Discarded 1

Although the response alerts from host MY.NET.24.74 does not denote signs of
compromise, it should be checked as a safety measure.

The address 63.199.242.82 (adsl-63-199-242-82.dsl.sndg02.pacbell.net)
that generated 75 'Incomplete Packet Fragments' to MY.NET.97.215, also triggered
6 'Null scan!' and 2 'Fragmentation Overflow Attack' against the same internal host
on the 29th between 01:06:27 and 02:54:55. The address MY.NET.97.215 does not
seem compromised, but it would be advisable to make contact with the ISP. The
whois information is provided below:
IP address WHOIS information Abuse or Coordinator
63.199.242.82 SNDG02 Rback4 PPPoX Pool SBCIS -

000202-1405 (NET-63-199-240-0-1)
63.199.240.0 - 63.199.247.255

CustName: SNDG02 Rback4 PPPoX Pool
Address: 303 2nd St.
Address: San Francisco, CA
City:
StateProv:
PostalCode:
Country: US
RegDate: 2000 -02-03
Updated: 2000 -02-03

OrgAbuseHandle: APB2 -ARIN
OrgAbuseName: Abuse -
Pacific Bell
OrgAbusePhone: +1 -888-
212-5411
OrgAbuseEmail:
abuse@pacbell.net

Recommendations
If the MY.NET.163.76 host does not use IBM dial out services, it should be
immediately revised to identify the reason for the 24h duration communication
maintained with remote IP 24.45.132.55 from the 27th to the 28th of January.

MY.NET.84.164 and MY.NET.97.189 should be examined to determine the
motives for their unusual number of alerts.

MY.NET.34.5 and MY.NET.25.66 hosts maintained communications from
port 65535 to remote port 25. They should be checked as a safety measure to
verify signs of compromise.

I propose to modify the customized Snort rules used to discern whether port
65535 is used by a local or a remote machine. It could help to quickly determine if
there are possible infected local machines, and to reduce false alarms. Below is an
example.

alert tcp $HOME_NET 65535 -> any any (msg:"High port 65535 tcp - possible
Red Worm internal infected machine"; flow:from_server,established;
classtype:trojan-activity; rev:1;)

Finally, a general recommendation in these situations is to install some type of
antivirus on the hosts. This method not only protects against these kinds of threats
but it can also prevent future attacks.
3.4.2. Host activity

Alert name Severity # alerts In Out I->I E->E
MY.NET.30.4 activity Unknown 38035 38035
MY.NET.30.3 activity Unknown 11841 11841

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

48

01/27-02:31:00.131442 [**] MY.NET.30.4 activity [**] 68.55.116.84:41413 -> MY.NET.30.4:524
01/27-06:29:52.533814 [**] MY.NET.30.3 activity [**] 165.247.98.160:1029 -> MY.NET.30.3:524

Snort rule
Once again this alert has no equivalent in the Snort rule database. However the
signatures used can be similar to the following.

alert tcp any any -> $MY.NET.30.4 any (msg:"MY.NET.30.4 activity";
classtype:misc-activity; rev:1;)

alert udp any any -> $MY.NET.30.4 any (msg:"MY.NET.30.4 activity";
classtype:misc-activity; rev:1;)

Summary
These rules match the traffic where the above host addresses are involved. For any
reason these hosts are interesting enough to design specific rules for them. A
possible explanation for this is that they are critical servers or even honeypots.
Following are the lists with the top IP addresses by volume.

Source IPs to host 30.3 Source IPs to host 30.4

 SRC IP Alerts
1 68.50.114.89 3192
2 151.196.21.153 2246
3 131.92.177.18 2199
4 68.57.90.146 1286
5 68.55.27.157 524
6 68.55.178.168 515
7 68.55.243.80 299
8 151.196.245.167 199
9 68.81.0.87 197

10 12.65.48.159 163

 SRC IP Alerts
1 68.54.168.204 7700
2 64.242.195.86 3274
3 68.55.241.46 2652
4 68.55.241.230 2644
5 68.55.194.168 2013
6 68.55.250.229 1862
7 68.48.213.168 1854
8 24.35.58.199 1787
9 67.20.160.15 1661

10 66.68.62.250 985

Note that both lists contain an uncommon number of IP addresses from 68.55.x.x.
If these IP addresses belong to the same subnet, they could be used by an attacker
with dynamic IP, or it could be some type of co-ordinated action from the same
subnet. The next tables include the top five targeted (TCP or UDP) ports on both
machines.

Top destination ports to host 30.3 Top destination ports to host 30.4

 DST Port Alerts
1 524 11601
2 80 85
3 6129 69
4 3019 37
5 4899 14

 DST Port Alerts
1 51443 32518
2 524 3047
3 80 2364
4 6129 62
5 4899 11

The searches at IANA and DShield showed the following results:
524 (tcp/udp) NCP "Netware Core Protocol" (Novell).
3019 (tcp/udp) Resource Manager (Novell).
4899 (tcp/udp) RAdmin Port [5]
6129 (tcp/udp) Dameware Remote Admin [6]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

49

Port number 80 is mainly for HTTP but can be used by several Trojans. However
the number of alerts and duration of connections doesn't point to the presence of a
Trojan.
Port number 51443 (tcp/udp) is used by iFolder on a NetWare 6 server (Novell)
where other NetWare Web applications are previously installed. In that situation,
iFolder uses ports 51080/52080 and 51433/52433 instead of ports 80 and 443
(SSL). [7]

The exposed information denotes that these hosts are servers running
Novell services. There is activity of remote administration tools like RAdmin from
Famatech. This tool is well-known among attackers due to its small size (1,31 MB).

There are alerts to ports 4899 and 6129 during all the analysis period.
Unless the use of these tools is known and accepted, this suggests that the hosts
have been successfully compromised at some point before the 27th of January and
then remotely controlled by the attackers. However the amount of these alerts is
too small to assure that.

The dedicated rules that triggered these alerts reveal the importance of the
targeted hosts and make it appropriate to investigate the remote IPs. The following
table contains the details of the top five IP addresses by number of appearances.

IP address WHOIS information Abuse or Coordinator
68.48.213.168
68.50.114.89
68.54.168.204
68.55.27.157
68.55.194.168
68.55.178.168
68.55.241.46
68.55.241.230
68.55.243.80
68.55.250.229
68.57.90.146

CustName: Comcast Cable
Communications, Inc
Address: 3 Executive Campus
Address: 5th Floor
City: Cherry Hill
StateProv: NJ
PostalCode: 08002
Country: US
RegDate: 2004 -02-10
Updated: 2004 -02-10

OrgAbuseHandle: NAPO -ARIN
OrgAbuseName: Network Abuse and
Policy Observance
OrgAbusePhone: +1 -856-317-7272
OrgAbuseEmail: abuse@comcast.net

64.242.195.86 OrgName: PM Hospitality
Strategies, Inc. - Enginuiti,
Linth
OrgID: PHSIEL -1
Address: Spring Hill Suites
899 Elkridge Landing Road
City: Linhicum
StateProv: MD
PostalCode: 21090
Country: US

OrgTechHandle: JB3051 -ARIN
OrgTechName: Brodt, Joe
OrgTechPhone: +1 -410-694-0555
OrgTechEmail: jbrodt@pmhs.com

151.196.21.153 CustName: Verizon Internet
Services
Address: 1880 Campus Commons
Drive
City: Reston
StateProv: VA
PostalCode: 20191
Country: US
RegDate: 2002 -03-21
Updated: 2002 -03-21

OrgAbuseHandle: VISAB -ARIN
OrgAbuseName: VIS Abuse
OrgAbusePhone: +1 -703-295-4583
OrgAbuseEmail: abu se@verizon.net

131.92.177.18 OrgName: Army Information
Systems Command - Aberdeen (EA)
OrgID: AISCAE
Address: AMSSB -SCI-N/BLDG
E5234
City: ABERDEEN PROVING
GROUND
StateProv: MD
PostalCode:
Country: US

TechHandle: RW943 -ARIN
TechName: Ward, Ronnie
TechPhone: +1 -410-436-4755
TechEmail:
RONNIE.WARD@sbccom.apgea.army.mil

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

50

IP address WHOIS information Abuse or Coordinator
24.35.58.199 OrgName: Cablespeed -

Maryland
OrgID: CSPE
Address: 406 Headquarters
Dr.
City: Millersville
StateProv: MD
PostalCode: 21108
Country: US

OrgAbuseHandle: CMAA -ARIN
OrgAbuseName: Cablespeed MD
Abuse Account
OrgAbusePhone: +1 -410-987-9300
OrgAbuseEmail:
abuse@cablespeed.com

Correlations
Ian Martin analyzed in his GCIA practical these kinds of alerts. [8]

Recommendations
The alerts indicate that both hosts have been compromised (MY.NET.30.3 and
MY.NET.30.4). I suggest they be isolated from the rest of the network and a
detailed forensics analysis be performed to determine the origin of the attack and
data recovery. In addition, it would be advisable to examine the activity related to
the affected hosts before 27th of January.

Installing a sniffer to capture all the network traffic from these hosts (at least
on ports 524, 6129 and 4899) would in the future make it possible to perform a
more detailed analysis of their activity.
3.4.3. Fragmentation

Alert name Severity # alerts In Out I->I E->E
Incomplete Packet Fragments Discarded Low 5692 397 5295
Tiny Fragments - Possible Hostile Activity Medium 116 116
Fragmentation Overflow Attack High 3 3

01/27-13:00:46.590567 [**] Incomplete Packet Fragments Discarded [**] 172.184.249.48:0 -> MY.NET.69.238:0
01/27-13:43:59.686482 [**] Tiny Fragments - Possible Hostile Activity [**] 141.156.55.191 -> MY.NET.24.74
01/28-21:35:57.251069 [**] Fragmentation Overflow Attack [**] 141.157.19.136:0-> MY.NET.29.3:0

Snort rule
There are not standard Snort rules for these alerts. The closest match, for tiny
fragments, is the next one.

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC Tiny Fragments";
fragbits:M; dsize: < 25; classtype:bad -unknown; sid:522; rev:1;)

Summary
Packet fragmentation is a very common technique used to avoid NIDS and other
network security devices. It is mandatory to refer to the related work by Thomas H.
Ptacek in "Insertion, Evasion, and Denial of Service: Eluding Network Intrusion
Detection" of indispensable lecture." [9]

Fragmented packets can be used to scan networks using inverse mapping
techniques. The attacker who sends fragmented packets to a network receives
ICMP unreachable packets from the router of non existent hosts.

The 'Incomplete Packet Fragments Discarded' are produced by defrag
preprocessor, superseded by newer frag2 preprocessor [10]. A significant number
of these alerts can be false positives produced by transmission errors and broken
TCP/IP stacks. The next table includes the top five source IP addresses by volume
of this alert.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

51

 SRC IP Alerts
1 MY.NET.21.67 2040
2 MY.NET.21.68 1667
3 MY.NET.21.69 1588
4 193.77.45.105 222
5 63.199.242.82 57

There is an unusual amount of alerts from the three hosts MY.NET.21.67,
MY.NET.21.68, and MY.NET.21.69 to the top following addresses:
 DST IP Reverse DNS name Alerts

1 202.129.15.241 not resolvable, from Milton, Australia (APNIC) 1291
2 213.189.88.208 dana-208.dananet.net (Amsterdam) (RIPE) 841
3 216.176.65.165 client-216-176-65-165.consolidated.net (IL, US) 686
4 83.108.190.56 ti300720a080-7736.bb.online.no 413
5 68.92.157.49 adsl-68-92-157-49.dsl.snantx.swbell.n et (TX, US) 399
6 81.76.206.46 modem-3630.fruitbat.dialup.pol.co.uk 393

The next address by frequency, IP 193.77.45.105, performed an exhaustive scan
against 222 internal hosts.

The 'Tiny Fragments' packets could be used as a covert channel, sending
commands within their small payload. But in this case, the number of conversations
in the next table and the correlations below do not confirm this theory. They are
more probably some sort of reconnaissance action.

 SRC IP DST IP Alerts

1 141.156.55.191 MY.NET.12.6 99
2 203.125.5.116 MY.NET.69.226 7
3 80.222.25.50 MY.NET.163.76 3
4 218.61.25.251 MY.NET.100.132 3
5 68.33.95.20 MY.NET.12.4 2

The 'Fragmentation Overflow Attack' is an alert from discontinued spp_defrag Snort
preprocessor and it can be found in version 1.5.1 from July 2001 [11]. This
spp_defrag was used with Snort 1.8. As commented above it is strongly
recommended to update Snort to the most recent version.

Correlations
Tiny fragments, Doug kite [2], Mark Embrich [12].
Thomas H. Ptacek in "Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection" of indispensable lecture [9].

Log files
The IP 193.77.45.105 is also found as source address in 24 'Null scan!' alerts
against miscellaneous internal hosts on the 27th beginning at 7:35:50.

The IP 141.156.55.191 also triggered 23 'Null scan!' alerts against host
MY.NET.12.6.

The scan logs include activity from IP 141.156.55.191 to MY.NET.12.7 (port
38702), MY.NET.24.74 (ports 0 and 443), and MY.NET.12.6 (ports 0, 25, and
several ports above 3912).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

52

Recommendations
It is recommended to use the frag2 preprocessor to take advantage of the latest
features included and reduce false positives. Moreover, as preventive measure,
hosts MY.NET.21.67, MY.NET.21.68, and MY.NET.21.69 should receive a close
examination to fix a possible configuration error or to find signs of compromise.
3.4.4. Exploit x86

Alert name Severity # alerts In Out I->I E->E
EXPLOIT x86 NOOP Low 3256 3256
EXPLOIT x86 setgid 0 High 41 41
EXPLOIT x86 setuid 0 High 40 40
EXPLOIT x86 stealth noop High 13 13

01/27-19:05:29.006838 [**] EXPLOIT x86 NOOP [**] 64.240.29.227:80 -> MY.NET.98.21:1178
01/27-22:22:38.333770 [**] EXPLOIT x86 setuid 0 [**] 218.5.74.158:80 -> MY.NET.98.44:2045
01/27-22:41:45.518177 [**] EXPLOIT x86 setgid 0 [**] 66.218.95.196:80 -> MY.NET.97.21:1155
01/28-15:22:42.823758 [**] EXPLOIT x86 stealth noop [**] 207.46.249.126:80 -> MY.NET.82.124:3072

Snort rule
Again, there are not any standard Snort signatures with these alert messages. I
assume they were obtained from the Snort signatures SHELLCODE x86 NOOP
(648 and 1394), SHELLCODE x86 setgid 0 (649), SHELLCODE x86 setuid 0 (650),
SHELLCODE x86 stealth noop (651). Following are SID 648 and SID 651.

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (msg:"SHELLCODE
x86 NOOP"; content: "|90 90 90 90 90 90 90 90 90 90 90 90 90 90|"; d epth:
128; reference:arachnids,181; classtype: shellcode-detect; sid:648;
rev:6;)

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (msg:"SHELLCODE
x86 stealth NOOP"; content: "|eb 02 eb 02 eb 02|";
reference:arachnids,291; classtype:shellcode -detect; sid:651; rev:6;)

Summary
These rules are designed to detect patterns in network traffic that can identify the
existence of a shell code. A shell code is a piece of code used by attackers to open
a shell from buffer overflow vulnerability in the compromised system.

It is important to remember that extensive use of these types of rules can
degrade the sensor performance. Additionally, they are not infallible. It is common
to see false positives caused for example by the transmission of binary files (see
the practical detect by Terry MacDonald [13], or the post by Dragos Ruiu at [14]) or
encrypted traffic [15].

'EXPLOIT x86 NOOP' is the most frequent 'EXPLOIT x86' type of alert
found. Below are two tables with the top ten source and destination ports by
volume.

SRC Port Alerts %
80 65 2,00%

4135 40 1,23%
1316 40 1,23%
4137 36 1,11%
3647 33 1,01%

DST Port Packets %
80 2641 81,11%

135 272 8,35%
445 89 2,73%
119 76 2,33%

6881 39 1,20%

Note that the source ports are more diversified than the destination ports. Among
the destination ports we can observe that there is an unusual amount of alerts to
port 80. If the destination hosts are web servers it is my belief that those alerts are

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

53

false alarms fired by the transfer of binary files in web traffic. The most active
source addresses were:
65.93.189.44 (Sherbrooke-HSE-ppp3611661.sympatico.ca) with 509 alerts on the 29th
65.93.186.178 (Sherbrooke-HSE-ppp3611033.sympatico.ca) with 418 alerts on the 28th
81.166.219.254 (dyn-81-166-219-254.ppp.tiscali.fr) with 147 alerts on the 30th
The first two source addresses targeted many different internal hosts in a short
interval of time, suggesting the possibility of an attack. On the other hand, the most
active destination hosts were:
MY.NET.5.44, MY.NET.5.67, MY.NET.111.72, MY.NET.29.8, MY.NET.189.62,
MY.NET.190.95, MY.NET.27.186 and MY.NET.95.102.

The next destination ports in the table are 135, 445 commonly used by Windows
DCOM (Distributed Component Object Model). They do not represent an important
number of alerts, but the University hosts could be exposed to some kind of exploit
on those services. See recommendations below.

The activity corresponding to the other destination ports are summarized in
the following table. It should be possible to verify the targeted hosts to discern the
origin of these alerts.
 DST IP DST Port Alerts %
1 MY.NET.24.8 119 76 29,92%
2 MY.NET.84.230 6881 39 15,35%
3 MY.NET.84.230 3348 8 3,15%
4 MY.NET.75.6 6129 8 3,15%
5 MY.NET.15.219 1601 7 2,76%

The rest of 'EXPLOIT x86' alerts are very distributed. The most important
communications are figured below. Except for host MY.NET.24.8 (that appeared
before too), they do not represent a significant threat:
 Alert message DST IP DST IP DST Port Alerts
1 EXPLOIT x86 setgid 0 131.118.254.130 MY.NET.24.8 119 8
2 EXPLOIT x86 setgid 0 216.168.224.69 MY.NET.53.45 3848 4
3 EXPLOIT x86 setuid 0 208.17.100.9 MY.NET.190.102 5049 4
4 EXPLOIT x86 stealth noop 64.152.2.62 MY.NET.97.23 1048 3
5 EXPLOIT x86 setgid 0 216.27.93.20 MY.NET.98.35 2262 2

Correlations
In addition to the references offered above, there is a must read document about
buffer overflows and shell codes titled 'Smashing the Stack for Fun and Profit' by
Aleph One [16].

Log files
IP 65.93.186.178 (Sherbrooke-HSE-ppp3611033.sympatico.ca) caused 5
'MY.NET.30.x activity' types of alerts to port 80 on the 28th. The other 418 alerts
were destined to an important number of different internal hosts during the same
day, beginning at 21:18:14. The behavior of this attacker suggests that those 5
alerts were actually 'EXPLOIT x86 NOOP' alerts against MY.NET.30.x hosts.

The internal hosts MY.NET.190.95, MY.NET.190.97 and MY.NET.190.102
presented frequent SMB type alerts and 'Possible Trojan server activity' alerts
during the five days of analysis.

The IP address 65.93.186.178 (Sherbrooke-HSE-ppp3611033.sympatico.ca)
that fired more than 400 'EXPLOIT x86 NOOP' alerts to internal hosts at port 80,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

54

was also the source of 5 'MY.NET.30.3 activity' and 'MY.NET.30.4 activity' alerts on
the 28th at 19:37:32. If those MY.NET.30.x hosts are honeypots, the ISP should be
contacted.

IP address WHOIS information Abuse or Coordinator
65.93.186.178 CustName: Bell Nexxia (High Speed)

Address: 400 King Street West
City: Sherbrooke
StateProv: Quebec
PostalCode: J1H 1R4
Country: CA
RegDate: 2002 -01-08
Updated: 2002 -01-08

OrgTechHandle: SYSAD1 -ARIN
OrgTechName: Sys Admin
OrgTechPhone: +1-613-785-
0886
OrgTechEmail:
ip_prov@bellglobal.com

Recommendations
The hosts with destination port number 80 should be revised to be sure that they
generated false alarms. If so, the port number 80 could be removed from the Snort
signatures to prevent further noisy false alarms.

The internal hosts with destination ports 135 and 445 in the alerts should be
checked and updated with the latest hotfixes. Furthermore, these ports should be
blocked from outside if sharing of files is not needed.

Hosts MY.NET.24.8 and MY.NET.84.230 should be analyzed to check if
they were compromised.
 Finally, I personally recommend the use of spp_fnord pre-processor [17] as
this reduces false positives and improves performance.
3.4.5. Server Message Block (SMB)

Alert name Severity # alerts In Out I->I E->E
SMB Name Wildcard Low 2813 2813
SMB C access High 106 106
NETBIOS NT NULL session Medium 5 5

01/27-08:39:13.048326 [**] NETBIOS NT NULL session [**] 61.197.253.6:2482 -> MY.NET.190.102:139
01/27-14:11:01.849459 [**] SMB Name Wildcard [**] MY.NET.80.197:1024 -> 192.168.1.200:137
01/27-22:22:30.387954 [**] SMB C access [**] 218.20.212.3:2202 -> MY.NET.190.95:139

Snort rule
Below are examples of Snort rules for these alerts:

alert udp $HOME_NET any -> $EXTERNAL_NET 137 (msg:"SMB Name Wildcard";
content:"CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|0000|"; classtype:attempted -
recon;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS NT NULL
session"; flow:to_server,established; con tent: "|00 00 00 00 57 00 69 00
6E 00 64 00 6F 00 77 00 73 00 20 00 4E 00 54 00 20 00 31 00 33 00 38 00
31|"; reference:bugtraq,1163; reference:cve,CVE -2000-0347;
reference:arachnids,204; classtype:attempted -recon; sid:530; rev:7;)

The following rule is a modified version from SID 533 to match not only C$
accesses:

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS SMB C access";
flow:to_server,established; content: "|5c|C|00 41 3a
00|";reference:arachnids,339; classtype:attempted -recon;)

Summary

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

55

These alerts are associated to NetBIOS services running over TCP/IP (NBT).
NetBIOS is commonly present in Windows Systems and it use ports 137/udp
(NetBIOS Name Service, or WINS), 138/udp (NetBIOS Datagram Service) and
139/tcp (NetBIOS Session Service).

SMB (Server Message Block) is the protocol utilized by Windows over NBT.
'SMB Name Wildcard' alerts are used to obtain the name of the machine, its

domain name, the network it shares, or the users online. It is common to see false
positives in these alerts (see correlations). This case does not seem to be any
different. They are usually fired by 'nbtstat-a' [18] or even windows explorer [19].
These alerts have source port 137 (normally Windows boxes) or a high number
source port (usually UNIX machines).

The following tables contains the top five source and destination addresses
by volume of 'SMB Name Wildcard' alerts:

 SRC IP Alerts
1 MY.NET.80.197 796
2 MY.NET.150.44 396
3 MY.NET.75.13 386
4 MY.NET.150.198 330
5 MY.NET.11.4 141

 DST IP Alerts
1 169.254.47.44 137
2 63.163.24.78 38
3 12.161.223.46 37
4 209.202.128.240 26
5 61.177.215.228 25

MY.NET.80.197 made a comprehensive UDP port 137 scan against every host in
network 192.168.1.0/24. This network is included in the RFC 1918 [20] as a Private
Address Space. These alerts seem to be false positives caused by windows
explorer. The next hosts, MY.NET.150.44, MY.NET.75.13 and MY.NET.150.198
triggered repeated alerts to various remote IP addresses during all of the analysis
period. Some of these alerts seem to be legitimate requests to determine the host
name, such as the alerts to the not resolvable IPs 210.22.122.202, 65.119.229.51,
219.95.187.65. However, the numbers of alerts are high enough to make detailed
investigations necessary. MY.NET.11.4 triggered 141 alerts to IP 169.254.47.44
constantly from the 27th to the 31st.

The first destination IP number is a curious one since 169.254.0.0/16
network is assigned as "link local block" by IANA in RFC 3330 [21]. In normal
circumstances this IP should not be seen on the Internet. These alerts seem to be
response action caused by crafted packets from that network. See
recommendations below. The remaining addresses do not represent an important
amount of alerts and, as mentioned below, do not have correlations in OOS or
Scans logs files

The 'SMB C access' alert denotes an attempt to access the administrative
share C$, enabled by default. This alert is more serious than the previous one. If
the attack is successful, the intruder would have access to the C: filesystem.

There is no significant number of alerts from a unique source IP, and the top
remote addresses by volume did not have any other associated alerts. All the alerts
were generated to MY.NET.190.95, MY.NET.190.97 and MY.NET.190.102.

The 'NETBIOS NT NULL session' alert represents a login in Windows NT as
Nobody. NULL sessions permit access to list shares and users on a Windows NT
server/client.

There are only five 'NULL session' alerts with only two different source
addresses: 61.197.253.6 and 203.1.68.237 and they did not cause any other alerts.
Both addresses tried to open NULL sessions against MY.NET.190.95,
MY.NET.190.97 and MY.NET.190.102.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

56

Correlations
Max Vision provided recommends to trigger only incoming SMB alerts for reduce
false positives [22].

There is an interesting explanation by Bryce Alexander of the alerts on UDP
port 137 [18].

Daniel Martin affirms that in some circumstances the 'SMB Name Wildcard'
alert is caused by windows explorer [19].

Daniel Wesemann comments the "SMB C access" attack in the second
practical detect of his GCIA practical [23].

Log files
MY.NET.150.44 was the target in several 'EXPLOIT x86 NOOP' alerts: 14 from IP
65.93.186.178 on the 28th, and 6 from 217.229.150.35 on the 31st. On the other
hand, MY.NET.75.13 appeared as the target in several 'EXPLOIT x86 NOOP' alerts
from IP 65.93.186.178 on the 28th, and from 217.229.150.35 on the 31st, and
'Possible Trojan server activity' from 216.74.144.14 on the 30th.

Internal hosts MY.NET.190.95, MY.NET.190.97 and MY.NET.190 presented
various 'EXPLOIT X86 NOOP' and 'Possible Trojan server activity' alerts in addition
to the SMB type alerts during all the analysis period.

There are interesting correlations in alert files about hosts MY.NET.190.95,
MY.NET.190.97 and MY.NET.190. See 'EXPLOIT x86' alerts correlations for more
information.

I found that IP 202.76.92.160 (not resolvable, from Hong Kong), with 22
'SMB Name Wildcard' alerts on the 29th beginning at 00:39:50, was the source
address in several 'External FTP to HelpDesk', 'MY.NET.30.3 activity' and
'MY.NET.30.4 activity' alerts too.

The OOS and Scans files do not contain information about the addresses
included in the top active connections by volume showed before.

Recommendations
The top internal source addresses listed in 'SMB Name Wildcard' alerts table
should be investigated to determine the origin of such an odd number of alerts.
Host MY.NET.11.4 configuration should be fixed to stop the alerts to IP
169.254.47.44. The hosts from subnet MY.NET.190.0/24 should be investigated for
signs of compromise.

I suggest some egress filtering to prevent spoofed attacks such as DoS
(Denial of Service). The source addresses from network 169.254.0.0/16 should be
blocked. For a complete list of recommended network addresses, follow the
instructions provided by SANS in their document "Help Defeat Denial of Service
Attacks: Step-by-Step" [24].

Additionally, it is recommended that similar ingress filtering be applied to
prevent DoS attacks from illegal remote addresses.

As referred above, to reduce false positives in 'SMB Name Wildcard' alerts it
is recommended to trigger incoming alerts. To avoid loosing the external alerts, I
suggest to use an additional rule for them with a specific message.

Lastly, if there it is not necessary to provide NetBIOS services to the
internet; it is highly recommended to immediately block incoming traffic to NetBIOS
ports. Also, block outgoing NetBIOS traffic if it is not necessary, to reduce false
alarms and traffic overload.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

57

3.4.6. Scans and Fingerprinting
Alert name Severity # alerts In Out I->I E->E
Null scan! Low 1929 1929
NMAP TCP ping! Low 955 955
Probable NMAP fingerprint attempt Low 10 10
SYN-FIN scan! Low 7 7

01/27-23:23:36.703947 [**] Null scan! [**] 211.217.235.155:0 -> MY.NET.12.6:0
01/27-09:14:44.496887 [**] SYN-FIN scan! [**] 63.251.52.75:14297 -> MY.NET.81.125:44998
01/29-09:30:07.175341 [**] NMAP TCP ping! [**] 216.5.176.162:80 -> MY.NET.1.5:53
01/29-16:43:46.993170 [**] Probable NMAP fingerprint attempt [**] 66.135.213.40:443 -> MY.NET.97.62:3291

Snort rule
The rules below are some standard Snort rules equivalent to these alerts.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN NULL"; stateless;
flags:0; seq:0; ack:0; reference:arachnids,4; classtype:attempted -recon;
sid:623; rev:2;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN SYN FIN";
stateless; flags:SF,12; reference:arachnids,198; classtype:attempted -
recon; sid:624; rev:3;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap TCP";
stateless; flags:A,12; ack:0; reference:arachnids,28;
classtype:attempted-recon; sid:628; rev:3;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap fingerprint
attempt"; stateless; flags:SFPU; reference:arachnids,05;
classtype:attempted-recon; sid:629; rev:2;)

Summary
These reconnaissance actions use special TCP techniques and values as a
stimulus to force responses from the targets, making possible the existence of a
remote service or for fingerprinting.

Among the five most active remote addresses in 'Null scan!' alerts are the IP
211.217.235.155 (not resolvable, from Korea) and three addresses belonging to
203.210.128.0/18 network (strangely all of them have 'localhost' as inverse name;
the network is associated to 'Vietnam Posts and Telecommunications (VNPT)').
These remote IP addresses generated more than 650 alerts and they targeted only
the host MY.NET.12.6 to a variety of ports including port 0. In addition, address
211.217.235.155 and 203.210.158.251 generated a 'Probable NMAP fingerprint
attempt' alert against MY.NET.12.6. The other remote address, IP 63.251.52.75
(www.shockwave.com) generated 202 'Null scan!' alerts to different hosts and ports
during all the analysis period. Additionally it is involved in a 'SYN-FIN scan!' and a
'Probable NMAP fingerprint attempt' to host MY.NET.81.125. This amount of alerts
is unusual, and it is possible that these alerts were triggered by a spoofed source
address. Further investigation is recommended.

The most targeted hosts in 'Null scan!' alerts were:
MY.NET.12.6 (1084). Mainly to port 0 from top talkers 211.217.235.155 (from
Korea) and three hosts from subnet 203.210.158.0/24 (from Vietnam).
MY.NET.81.125 (202) mostly to port 110 from 68.122.128.111 (adsl-68-122-128-
111.dsl.sndg02.pacbell.net)
And MY.NET.12.4 (155), MY.NET.152.173 (93) and MY.NET.152.177 (47).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

58

The top source addresses by volume that fired 'Nmap TCP Ping!' alerts, with about
408 alerts (42%) were false positives caused by load-balancing systems. The alerts
were fired by 63.211.17.228 (proximitycheck1.allmusic.com) and 64.152.70.68
(proximitycheck2.allmusic.com). The remainder of source IP addresses did not
generate an interesting number of alerts such as the IP 200.199.143.244 with 13
packets to MY.NET.70.164 and port 4662 (eDonkey). The most targeted hosts
were MY.NET.1.3 (502), MY.NET.12.6 (96) and MY.NET.24.44 (65).

The significant information from 'Probable NMAP fingerprint attempt' alerts
was commented above.

Correlations
Ian Martin examined this kind of alerts in his GCIA practical [8].

Log files
The host MY.NET.12.6 is the target of 9 different types of alerts that occurred
during all the analysis period. Below is a summary. See recommendations.
Alerts to MY.NET.12.6 destination Alerts
Null scan! 1084
[UMBC NIDS] External MiMail alert 138
Tiny Fragments - Possible Hostile Activity 99
NMAP TCP ping! 91
High port 65535 tcp - possible Red Worm - traffic 33
Possible trojan server activity 9
TCP SMTP Source Port traffic 6
Probable NMAP fingerprint attempt 5
Happy 99 Virus 1

The campus host MY.NET.12.4 was also the target of the following alerts.
Alerts to MY.NET.12.4 destination Alerts
Null scan! 155
Incomplete Packet Fragments Discarded 13
NMAP TCP ping! 8
High port 65535 tcp - possible Red Worm - traffic 7
Tiny Fragments - Possible Hostile Activity 2

The host MY.NET.1.3 was the target of the following alerts too:
Alerts to MY.NET.1.3 destination Alerts
NMAP TCP ping! 502
Traffic from port 53 to port 123 94
TFTP - Internal UDP connection to external tftp server 14
High port 65535 udp - possible Red Worm - traffic 3
Incomplete Packet Fragments Discarded 1

Additionally, the host MY.NET.24.44 was also actively targeted:
Alerts to MY.NET.24.44 destination Alerts
NMAP TCP ping! 65
Possible trojan server activity 13
Null scan! 5
Incomplete Packet Fragments Discarded 5
High port 65535 tcp - possible Red Worm - traffic 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

59

The internal host MY.NET.70.164 received several types of scan alerts to port
4662, and their alert responses seem to indicate that it is open.

The scans files contain 8 entries from IP 211.217.235.155 to port 113 of IPs
MY.NET.25.67, MY.NET.25.68 and MY.NET.25.73 on the 28th beginning at
02:49.10. Also, there are 10 entries from hosts MY.NET.25.66, MY.NET.25.67,
MY.NET.25.71 to IPs 203.210.158.147 and 203.210.158.251 to port 113 on the
28th beginning at 05:12:35.

The host MY.NET.12.6 has an important presence in the OOS files. This
address appeared as destination in 1173 OOS ECN SYN packets (27.17%) only to
port 25 and as source in 4 ECN RST packets from port 25. Additionally, the host
MY.NET.12.4 was the destinationfor 104 packets and sourcefor 1 packet, mainly to
ports 25 and 110 with ECN SYN packets and TCP packets with no flags set,
probably as scanning or f ingerprinting attempts.

Recommendations
Due to the amount and variety of alerts the hosts mentioned in correlation section
should be verified for signs of compromise. However, the alert responses from
these hosts do not confirm signs of compromise or being used as 3rd party.

The host MY.NET.70.164 should be investigated to verify it accomplished
the policies about P2P sharing programs.

The scan practices are widely extended in the Internet. They generally
announce imminent intrusive actions. The best practice is to use them to determine
attacking trends. They not present themselves as a menace.

3.5. Alerts triggered more than 500 times (and related)
3.5.1. Trojan server activity

Alert name Severity # alerts In Out I->I E->E
Possible trojan server activity 960 836 124

01/30-09:10:57.663044 [**] Possible trojan server activity [**] MY.NET.75.13:25 -> 216.74.144.14:27374

Snort rule
There is no standard Snort rule for this alert and the identity of the Trojan is not
supplied, so it is impossible to offer the signature used. Nevertheless all the alerts
of this type that present the port number 27374, are related to Trojans and worms
such as SubSeven, BadBlood, EGO, FakeSubseven, Lion, Rame, Seeker,
TheSaint, Tftloader ad Webhead. The signature below could be a valid example. I
assume TCP was used. However, I recommend the use of more specific alert
messages to avoid confusion:

alert tcp any any <> any 27374 (msg:"Possible trojan server activity";
flow:established; reference:arachnids,485; classtype:trojan -activity;)

Summary
The most frequent alerts were caused by legitimate communications to services
provided by University hosts at ports 25 (SMTP) 80 (HTTP), 443 (SSL), and 8765
(Ultraseek HTTP). The remote addresses used the port 27374 that triggered the
alerts and they have not triggered different alerts.

On the other hand, there are a lot of alerts caused by incoming scanning
activities against almost every host of network MY.NET.190.0/24 to TCP port
27374. The remote addresses were:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

60

Timestamp (beginning) SRC IP Reverse DNS name Alerts
2004/01/29-04:43:47 217.122.72.254 cp306825-a.gelen1.lb.home.nl 185
2004/01/31-12:57:53 68.112.209.79 cable-68-112-209-79.sli.la.charter.com 148
2004/01/31-09:21:44 24.128.135.233 h0000e88e831e.ne.client2.attbi.com 124
2004/01/31-12:37:41 67.37.224.199 adsl-67-37-224-199.dsl.chcgil.ameritech.net 117
2004/01/31-17:13:12 68.85.119.8 pcp03087321pcs.selrsv01.pa.comcast.net 75
2004/01/31-12:13:31 24.88.14.203 cae88-14-203.sc.rr.com 56

Correlations

Log files
The scan log files include the scanning activities against TCP port 27374
commented above.

Recommendations
The following internal hosts responded to TCP port 27374 scans indicating possible
infection. They should be investigated for signs of compromise:
MY.NET.190.1, MY.NET.190.102, MY.NET.190.202, MY.NET.190.203,
MY.NET.190.95, MY.NET.190.97, and MY.NET.6.15.

In this analysis, the rule used generated a significant number of false alarms.
In addition, the rule contributed to the generation of needless duplicate information
about the scan activities against port 27374. To fix these problems and to be able
to distinguish between simple scan activities and real worm infections, I
recommend updating the signature. For instance, Snort rules with SID 103 and 107
identify subseven trojan activity, and SID 506 and 514 matches ramen worm traffic.
3.5.2. IRC

Alert name Severity # alerts In Out I->I E->E
[UMBC NIDS IRC Alert] IRC user /kill
detected- possible trojan.

Low 820 820

[UMBC NIDS IRC Alert] XDCC client
detected attempting to IRC

High 460 460

[UMBC NIDS IRC Alert] User joining XDCC
channel detected. Possible XDCC bot

High 6 6

[UMBC NIDS IRC Alert] K\:line'd user
detected- possible trojan.

High 2 2

[UMBC NIDS IRC Alert] Possible drone
command detected.

High 2 2

[UMBC NIDS IRC Alert] Possible Incoming
XDCC Send Request Detected.

High 1 1

[UMBC NIDS IRC Alert] Possible sdbot
floodnet detected attempting to IRC

High 1 1

IRC evil - running XDCC High 4 4

01/29-10:23:57.176146 [**] [UMBC NIDS IRC Alert] K\:line'd user detected, possible trojan. [**] 165.123.140.251:6885 ->
MY.NET.150.133:2876
01/29-10:39:44.399870 [**] [UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan. [**] 216.248.61.76:6667 ->
MY.NET.42.2:2235
01/31-21:53:39.393252 [**] [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected. [**]
216.194.70.10:7000 -> MY.NET.82.79:1111
01/31-21:53:40.792169 [**] IRC evil - running XDCC [**] MY.NET.82.79:1111 -> 216.194.70.10:7000

Snort rule
These alerts are customised and there are not any standard Snort rules similar to
them. Fortunately, I found a set of IRC rules that seems to be the type used in this
situation.

The following signature examples were obtained at http://arpa.com/~nick/snort ,
but now the URL seems to be down. The alternative address
http://coders.meta.net.nz/~perry/irc.rules works fine, but has fewer rules:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

61

alert tcp $EXTERNAL_NET 6660:7000 -> $HOME_NET any (content:
"ERROR:Closing Link: "; nocase; msg: "IRC user /kill detected, possible
trojan."; classtype:misc -activity;)

alert tcp $HOME_NET any -> $EXTERNAL_NET 6660:7000 (content: "USER ";
content: "dcc"; nocase; flow: established; msg: "XDCC client detected
attempting to IRC"; classtype :misc-activity;)

alert tcp $EXTERNAL_NET 6660:7000 -> $HOME_NET any (content: " 324 ";
offset:5; content: "xdcc"; flow: established; msg: "User joining XDCC
channel detected. Possible XDCC bot"; classtype:misc -activity;)

Summary
These alerts are related to IRC (Internet Relay Chat) traffic. IRC is actively used by
the hacker community to exchange information and programs and it should be
closely watched. XDCC is used to share files using IRC. XDCC is like an
automated file server. The document "XDCC – An .EDU Admin’s Nightmare" by
TonikGin [25] explains XDCC in detail.

The 'IRC user /kill detected' reveals the presence of active IRC users at
hosts MY.NET.15.198, MY.NET.42.1, MY.NET.42.2, MY.NET.42.3 and
MY.NET.151.72. The most visited IRC servers are:
SRC IP Reverse DNS name SRC Port Alerts
64.157.246.22 not resolvable, from CO, US 6667 456
216.194.70.9 report.abuse.to.abuse.at.cjb.net, from Canada 7000 69
216.194.70.10 report.abuse.to.abuse.at.cjb.net, from Canada 7000 60
216.194.70.11 report.abuse.to.abuse.at.cjb.net, from Canada 6667 57
216.194.70.8 report.abuse.to.abuse.at.cjb.net, from Canada 7000 56

The IRC server at 64.157.246.22 address seemed to be the origin of almost all the
'XDCC clients detected attempting to IRC' alerts from host MY.NET.15.198. They
were generated during all the analysis period.

IP address WHOIS information Abuse or Coordinator
64.157.246.22 OrgName: Tera -byte Dot Com Inc.

OrgID: TRBY
Address: Suite 900, CN Tower,
10004-104 Ave
City: Edmonton
StateProv: AB
PostalCode: T5J0K1
Country: CA

TechHandle: NO58 -ORG-ARIN
TechName: Network
Operations Centre
TechPhone: +1-780-413-
1868
TechEmail: noc@tera -
byte.com

The IRC server at 216.194.70.8:6667 (report.abuse.to.abuse.at.cjb.net) was seen
in all the 'User joining XDCC channel detected' alerts to host MY.NET.42.10 on the
27th at 22:46:55 and to host MY.NET.53.219 on the 31st after 16:45. Additionally
the source host MY.NET.82.79 generated 'IRC evil - running XDCC' alerts to IRC
server 216.194.70.10 on the 27th and to 216.194.70.11 on the 31st.

The internal hosts MY.NET.97.184, MY.NET.21.89, MY.NET.42.10,
MY.NET.150.133, MY.NET.42.13, and MY.NET.53.219 appeared in the rest of IRC
alerts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

62

Correlations
MY.NET.42.3 generated 13 'SMB Name Wildcard' alerts to several destination
addresses on the 28th and 29th, but they do not show any relationship with these
alerts.

As mentioned above, there is an extensive document about XDCC written by
TonikGin titled "XDCC – An .EDU Admin’s Nightmare" [25].

Logs
In addition to the IRC alerts mentioned, the source addresses 216.194.70.8,
216.194.70.9 and 216.194.70.11 using IRC source ports, triggered some 'EXPLOIT
x86 NOOP' to a number of hosts at MY.NET.42.0/24 on the 29th and the 31st. See
recommendations.

Furthermore, the host MY.NET.42.1, with 241 'IRC /kill' alerts, is the
destination for more different alerts beginning on the 28th. The following table
summarizes the alerts of this host.
Alerts to MY.NET.42.1 dest ination Alerts
[UMBC NIDS IRC Alert] IRC user /kill detected - possible trojan. 247
Null scan! 21
EXPLOIT x86 NOOP 6
Incomplete Packet Fragments Discarded 3
High port 65535 tcp - possible Red Worm - traffic 1
SUNRPC highport access! 1
Probable NMAP f ingerprint attempt 1
EXPLOIT x86 setuid 0 1

MT.NET.42.2, MT.NET.42.3, MT.NET.42.4 and MT.NET.42.5 were also seen as
targets of similar alerts to MY.NET.42.1 during the five days of analysis.

Several campus hosts from subnet MY.NET.42.0/24 (specially the first 4
hosts) presented an important number of events in Scan files to remote ports such
as: 6346/tcp, 6347/tcp, 6348/tcp, 6349/tcp (Gnutella [26] / BearShare [27])
6881/tcp to 6889/tcp (Bit Torrent [28])
4662/tcp, 4672/udp, 4665/udp (eDonkey [29] / eMule [30])
14567/udp, 14690/udp, 23000/udp (Battlefield 1942 PC game [31])

The amount of IRC alerts and the presence of P2P traffic makes interesting
to represent the activity of the most active hosts. In this case, the following link
diagram illustrates the behavior of campus hosts at subnet MY.NET.24.0/24.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

63

Battlefield 1942

eDonkey/eMule

Gnutella/BearShare

24
2

I R
C

 /k
ill

a l
e r

t s
,

ho
st

s
1,

2,
3,

4

12 EX
PLO

IT x86 N
O

O
P

alerts , host s 1,2,37 IRC /kill alerts,hosts 1,2,3,5

3
IR

C
/ki

ll a
le

rts
,

ho
st

s 1
,2

,5

2 IRC /kill alerts,

hosts 3,5
2 IRC /kill alerts,

hosts 3,5 5 IRC /kill alerts,
hosts 2,3,5

9625 scans, hosts 2,5,9

3992 scans, hosts 1,4

BitTorrent

79
80

 sc
an

s,
ho

sts

1,2
,3,

4,5
,6,

7,9
,10

,18
24

02
 s

ca
ns

, h
os

ts
 2

,4
,5

,1
1 1594 scans, hosts 2,4,5,11

411 scans, hosts 4,5
63 scans, host 4

716 scans, hosts 1,4

MY.NET.42.0/24

6346/tcp
6347/tcp
6348/tcp
6349/tcp

14690/udp

4662/tcp

688x/tcp

4672/udp

23000/udp

4665/udp

14567/udp

216.194.64.0/19

216.248.61.76

203.167.224.18

64.71.177.228

207.115.47.138

66.207.164.23

216.194.70.8

4 IRC /kill

alerts, hosts 10

216.55.168.253

1 I
RC K:lin

ed a
lert,

ho
sts

 13
12 EXPLOIT x86

alerts, hosts 1,2,3

68.144.230.127,
129.2.220.210,

217.233.237.22, 66.98.162.48,
216.165.45.25, 24.101.57.141,

64.136.26.97, 82.161.68.6

Figure 3 - Link Diagram: MY.NET.42.0/24

Recommendations
All the mentioned University hosts in this set of alerts should be revised to ensure
they achieve the University policies regarding IRC programs and games. Specially
the hosts at subnet MY.NET.42.0/24. IRC is a known source of security threats and
although in this case it was not harmful, their activity should be always closely
examined. If required there are instructions on cleaning XDCC, offered Duke
University [32].

3.6. Alerts with a small number of occurrences (related)
Due to the small amount of alerts below and the maximum length restrictions, I will
provide brief descriptions and recommendations for them.
3.6.1. SRC and DST outside home network and DDoS

Alert name Severity # alerts In Out I->I E->E
TCP SRC and DST outside network High 306 306
ICMP SRC and DST outside network High 56 56
DDOS shaft client to handler Medium 4 4

01/29-23:45:32.459412 [**] TCP SRC and DST outside network [**] 172.146.32.216:2060 -> 152.163.9.18:13784
01/29-23:01:19.818871 [**] ICMP SRC and DST outside network [**] 172.133.17.23 -> 172.136.109.238

Summary and Recommendations
These alerts appear when both source and destination addresses do not belong to
the home network. In TCP alerts, the top source addresses were 192.168.1.100,
192.168.1.100, 192.168.1.103 and 127.0.0.1 (localhost) being almost 52% of the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

64

total. The top destination IP was 206.112.85.71 (wbal.com) with 65 alerts. The
ICMP alerts did not reveal remarkable information. This kind of traffic should not be
seen in normal circumstances and should be properly investigated to determine
their origin. Taking a look at the hardware addresses is a good beginning. Some
reasons for these types of packets are configuration errors and spoofed actions
(such as Denial of Service attacks, or reconnaissance attempts from an internal
listening intruder). Finally, the 'DDOS shaft' was caused by 4 different sources to 4
different internal destinations, and the logs did not show interesting correlations or
any responses to these stimuli from the targeted addresses.
3.6.2. RPC

Alert name Severity # alerts In Out I->I E->E
SUNRPC highport access! Low 286 286
External RPC call Low 154 154
Attempted Sun RPC high port access Low 3 3

01/30-15:06:22.492139 [**] Attempted Sun RPC high port access [**] 63.250.207.110:57258 -> MY.NET.80.44:32771
01/30-16:34:34.376947 [**] SUNRPC highport access! [**] 128.174.80.128:443 -> MY.NET.163.142:32771

Summary and Recommendations
Sun RPC (Remote Procedure Call), described in RFC 1831 [33], is basically a
protocol to allow clients to execute programs on a server. These alerts are related
to UNIX systems. Most of 'SUNRPC highport access!' alerts seem to be false
positives caused by web and SMTP traffic. For example, the connections to web
sites on ports 80 and 443 such as 207.242.93.22 (wwwa.accuweather.com),
206.98.174.20 (raba-020.raba.com) or 66.187.232.101 (xmlrpc.rhn.redhat.com).
Modifying 'SUNRPC highport access!' Snort rule for trigger incoming connections
(instead of any packet) to RPC port 32771 in the home network should help to
reduce the high number of false positives shown. Use "flow:to_server,established"
option.

The results of 'External RPC call' alerts are more interesting, because they
were generated from only two source addresses: Address 61.222.174.36 (61-222-
174-36.HINET-IP.hinet.net) (9 alerts) made a scan against port 111 of hosts in
subnet MY.NET.190.0/24 on the 29th beginning at 18:01:58. Address 129.93.1.102
(nospam.unl.edu) (145 alerts) made a larger scan against port 111 to subnet
MY.NET.190.0/24, and hosts MY.NET.6.15, MY.NET.5.5 and MY.NET.16.106 on
the 29th beginning at 03:19:02. None of the targeted addresses seems to have
been compromised.
3.6.3. FTP and TFTP

Alert name Severity # alerts In Out I->I E->E
FTP passwd attempt Medium 139 139
TFTP - Internal UDP connection to external
tftp server

High 34 33 1

TFTP - Internal TCP connection to external
tftp server

High 3 2 1

TFTP - External UDP connection to internal
tftp server

High 2 2

TFTP - External TCP connection to internal
tftp server

High 1 1

FTP DoS ftpd globbing High 11 11
External FTP to HelpDesk MY.NET.53.29 Low 2 2
External FTP to HelpDesk MY.NET.70.49 Low 2 2
External FTP to HelpDesk MY.NET.70.50 Low 1 1
FTP .forward High 1 1

01/27-14:54:35.444098 [**] External FTP to HelpDesk MY.NET.70.49 [**] 80.13.14.66:3709 -> MY.NET.70.49:21
01/27-06:45:03.930002 [**] FTP DoS ftpd globbing [**] 213.133.108.156:44625 ->MY.NET.24.27:21
01/28-03:14:10.157656 [**] FTP passwd attempt [**] 66.149.10.46:4659 -> MY.NET.24.47:21
01/28-03:36:49.729401 [**] TFTP - Internal UDP connection to external tftp server [**] 63.71.84.104:69 -> MY.NET.1.5:123

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

65

01/31-15:56:46.004960 [**] TFTP - External TCP connection to internal tftp server [**] 81.17.55.2:60467 -> MY.NET.98.75:69

Summary and Recommendations
These customized alerts are related to FTP (File Transfer Protocol) and TFTP
(Trivial FTP) and most of them were designed to trigger on the presence of certain
sources or targets instead of particular exploits.

The 'FTP password attempt' alerts were performed against five internal host
addresses from many different sources. The top source addresses were not found
in scan logs, therefore they can be legitimate users or users that scanned the
network before the analysis period. The most active source was 200.56.149.252
(customer-VER-149-252.megared.net.mx) with 48 alerts against 3 hosts in subnet
MY.NET.9.0/24 and MY.NET.1.4 on the 30th. Curiously the remainder of source
addresses performed FTP password attempts exclusively against MY.NET.24.97
(91 hits).

The 'FTP to HelpDesk' alerts revealed interesting correlations. The source IP
80.13.14.66 (ALyon-205-1-1-66.w80-13.abo.wanadoo.fr) triggered 1 'External FTP
to HelpDesk MY.NET.70.49' and 1 'MY.NET.30.3 activity'. This was as result of a
huge and noisy TCP SYN scan against TCP port 21 to the internal network
beginning on the 27th at 14:47:01. Similar behavior was noted from address
202.76.92.160 (not resolvable, from Prime Spot Co Ltd, Hong Kong), firing both
'MY.NET.30.x activity' alerts, and 'External FTP to HelpDesk' alerts as a result of a
large FTP scan beginning on the 29th at 00:38:13. This address also triggered
several 'SMB Name Wildcard' alerts during the same period, presumably because
of its lack of reverse DNS name.

The 'FTP DoS ftpd globbing' alerts seem to be related to a wu-ftpd
vulnerability described in CERT CA-2001-33 [34]. The only targeted address was
MY.NET.24.27 and it does not seem to have been affected by this exploit.

Due to the nature of TFPT, the hosts included in these types of alerts should
be closely examined. TFTP are more insecure since this protocol does not require
the use of passwords. Additionally as noted by Brian Cahoon and Ian Martin, it
could be used by Nimda worm. More details in CERT CA-2001-26 [35]. The
targeted campus hosts at port 69 udp/tcp did not show signs of compromise.
3.6.4. Miscellaneous

Alert name Severity # alerts In Out I->I E->E
[UMBC NIDS] External MiMail alert Medium 138 138

01/28-23:23:38.797882 [**] [UMBC NIDS] External MiMail alert [**] 131.172.138.188:4495 -> MY.NET.12.6:25

Summary and Recommendations
This customized alert seems to be related to W32/Mimail virus, described in CERT
Incident Note IN-2003-02 [36]. This virus exploits vulnerability in Microsoft Outlook
Express 5.5 and 6.0 and it is delivered by email within a file attachment.

The only targeted campus machine was MY.NET.12.6, during the five days of
analysis. This machine was also the target of more alerts and, as commented
before, it should be investigated as a safety measure. See Scans and
Fingerprinting for a complete list. The most active source addresses were:
68.50.193.149 (pcp690027pcs.rtchrd01.md.comcast.net) (87) on the 31st
beginning at 15:32:59, and 68.55.129.228
(pcp295208pcs.owngsm01.md.comcast.net) (12) on the 29th beginning at
13:46:16.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

66

Alert name Severity # alerts In Out I->I E->E
Traffic from port 53 to port 123 High 94 94

01/28-14:52:34.928921 [**] Traffic from port 53 to port 123 [**] 65.107.99.68:53 -> MY.NET.1.3:123

Summary and Recommendations
Both ports are well-known: Port 123 tcp/udp is assigned to NTP (Network Time
Protocol) defined in RFC 958 [37] and port 53 udp/tcp to DNS (Domain Name
Server). This kind of traffic should not be seen in normal circumstances. Usually for
NTP communications, symmetric mode is used. NTP requests (to UDP port 123)
are sent from UDP port 123. The 94 alerts were generated from the address
65.107.99.68 to MY.NET.1.3 mostly on the 29th beginning at 10:47.53.

Alert name Severity # alerts In Out I->I E->E
RFB - Possible WinVNC - 010708-1 High 14 6 8

01/27-19:51:46.206462 [**] RFB - Possible WinVNC - 010708-1 [**] MY.NET.111.34:5900 -> 151.196.113.239:4481

Summary and Recommendations
This is an information alert that denotes WinVNC activity. VNC stands for Virtual
Network Computing, and WinVNC [38] is a free VNC server that allows remote
desktop administration on Windows systems. VNC server runs at TCP port 5900 by
default. The alerts did not reveal any interesting VNC conversations. The most
frequent internal host was MY.NET.111.34, scanned from different sources.

Alert name Severity # alerts In Out I->I E->E
NIMDA - Attempt to execute cmd from
campus host

High 2 2

Happy 99 Virus High 1 1

01/30-14:42:40.106021 [**] Happy 99 Virus [**] 67.163.149.58:3286 -> MY.NET.12.6:25
01/31-15:27:34.823920 [**] NIMDA - Attempt to execute cmd from campus host [**] MY.NET.84.190:1058 ->
64.70.33.122:80

Summary and Recommendations
The scanning activities performed by NIMDA Worm [35] can be identified and
included in a Snort rule. These worm alerts were fired by source addresses
MY.NET.84.190 and MY.NET.92.12. The source and destination hosts did not have
any other correlations in the log files. As these alerts occurred on the 31st at 15:27
and at 23:28 it should be possible to verify their activity in the subsequent days.

Happy 99 virus is included in CERT Incident Note IN-99-02, and it is also
known as SKA, WSOCK32.SKA, SKA.EXE, I-Worm.Happy, PE_SKA,
Trojan.Happy99, Win32/SKA, and Happy99.Worm. This virus is delivered by email.
This is one of a long list of alerts triggered to host MY.NET.12.6. The infected
machine was 67.163.149.58 (c-67-163-149-58.client.comcast.net).

Alert name Severity # alerts In Out I->I E->E
EXPLOIT NTPDX buffer overflow High 7 7
EXPLOIT identd overflow High 1 1

01/27-07:19:19.181549 [**] EXPLOIT NTPDX buffer overflow [**] 65.19.157.242:28-> MY.NET.97.32:123
01/31-18:45:19.398748 [**] EXPLOIT identd overflow [**] 67.124.40.20:51326 -> MY.NET.162.164:113

Summary and Recommendations
These alerts trigger on two buffer overflow vulnerabilities. One in ntpd, Probably as
described in CVE-2001-0414 [40], and another in identd.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

67

The NTP attacks were received from 5 different sources to 4 different
internal hosts. Although the attacked hosts do not show signs of compromise, they
should be examined to verify they are not vulnerable to this attack. The most
interesting attacks came from the address 220.124.143.13 (not resolvable, from
Korea Telecom) against MY.NET.142.18. This source also triggered RPC and a
'High port 65535 udp' alerts against the same IP on the 27th beginning at 02:31:01.
Two days later, the source IP 199.106.211.172 (nycny112ins-e0a.equip.icdsatt.net,
from CERF, San Diego, CA) fired a NTP and 'High port 65535 udp' alerts against
the same campus host beginning at 06:18:59.

The identd buffer overflow attack was sent to MY.NET.162.164 from
67.124.40.20 (adsl-67-124-40-20.dsl.pltn13.pacbell.net, from Pac Bell Internet
Services, San Ramon, CA) on the 31st at 18:45:19, but the target did not show
signs of compromise. It would be interesting to study further activities related to
these hosts.

Alert name Severity # alerts In Out I->I E->E
TCP SMTP Source Port traffic Medium 6 6

01/28-09:18:44.343378 [**] TCP SMTP Source Port traffic [**] 65.36.154.22:25 -> MY.NET.12.6:25

Summary and Recommendations
These alerts seem to be designed to inform about outgoing traffic from TCP port 25
(SMTP, Simple Mail Transfer Protocol). The logs contain anomalous traffic since
both source and destination ports are the same. Normally, the SMTP traffic (to port
25) is sent from a client port, above 1024. Additionally the 6 alerts were generated
by the same source 65.36.154.22 (billingemails.hostmysite.com, from LNH Inc.,
Newark, DE) and destination MY.NET.12.6 addresses, on the 28th beginning at
09:18:37. The address hostmysite.com is a real web site that offers hosting
solutions. The source IP has no other correlations in the log files. These alerts may
have originated as a spoofed scan attempt (that could explain the odd source port)
from an internal attacker listening for responses, or as a configuration error. It must
be remembered that the host MY.NET.12.6 should be analyzed to determine the
reasons for their unusual number of alerts.

3.7. Top 10 talkers
Top 10 Alert sources

 Internal SRCs Alerts
1 MY.NET.163.76 491360
2 MY.NET.21.67 2040
3 MY.NET.21.68 1667
4 MY.NET.21.69 1588
5 MY.NET.84.164 865
6 MY.NET.80.197 796
7 MY.NET.97.189 615
8 MY.NET.15.198 460
9 MY.NET.150.44 396

10 MY.NET.75.13 390

External SRCs Reverse DNS name Alerts
24.45.132.55 ool-182d8437.dyn.opto nline.net 494449
68.54.168.204 pcp02772508pcs.howard01.md.comcast.net 7700
68.50.114.89 pcp04615078pcs.gambrl01.md.comcast.net 3519
64.242.195.86 PMHospitalityStrategies 3323
151.196.21.153 pool-151-196-21-153.balt.east.verizon.net 2932
68.55.241.46 pcp313440pcs.woodln01.md.comcast.net 2652
68.55.241.230 pcp313624pcs.woodln01.md.comcast.net 2644
131.92.177.18 aeclt-cfdoa4.apgea.army.mil 2199
68.55.194.168 pcp229869pcs.catonv01.md.comcast.net 2013
68.55.250.229 pcp261188pcs.howard01.md.comcast.net 1862

Top 10 Alert destinations

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

68

 Internal DSTs Alerts
1 MY.NET.163.76 494855
2 MY.NET.30.4 38035
3 MY.NET.30.3 11841
4 MY.NET.12.6 1466
5 MY.NET.84.164 816
6 MY.NET.97.189 694
7 MY.NET.1.3 614
8 MY.NET.15.198 456
9 MY.NET.42.1 281

10 MY.NET.190.95 211

External DSTs reverse DNS name Alerts
24.45.132.55 ool-182d8437. dyn.optonline.net 490811
202.129.15.241 Not resolvable 1291
203.198.250.203 awork078203.netvigator.com 844
213.189.88.208 dana-208.dananet.net 841
216.176.65.165 client-216-176-65-165.consolidated.net 686
172.147.190.112 AC93BE70.ipt.aol.com 615
64.157.246.22 Not resolvable 460
83.108.190.56 ti300720a080-7736.bb.online.no 413
68.92.157.49 adsl-68-92-157-49.dsl.snantx.swbell.net 399
81.76.206.46 modem-3630.fruitbat.dialup.pol.co.uk 393

Top 10 alert source ports

 Internal SRCs Alerts
1 3267 489722
2 0 5295
3 6257 1679
4 137 1362
5 1304 865
6 4976 615
7 1026 344
8 65535 332
9 1024 321

10 1081 138

 External SRCs Alerts
1 65535 496750
2 1033 2423
3 0 2040
4 4789 1650
5 1158 1200
6 80 981
7 1047 812
8 3082 652
9 1050 641

10 6667 579

Top 10 alert destination ports

 Ports from internal SRCs Alerts
1 65535 493097
2 0 5295
3 137 2813
4 6667 460
5 25 294
6 27374 75
7 113 38
8 427 4
9 7000 4

10 2758 3

 Ports from external SRCs Alerts
1 3267 493349
2 51443 32518
3 524 14648
4 80 5479
5 0 2036
6 6257 1589
7 1304 812
8 27374 756
9 4976 695

10 53 561

Top source hosts with different alerts
DST IPs Different Alerts Alerts
202.76.92.160 5 External FTP to HelpDesk MY.NET.53.29 , External FTP to

HelpDesk MY.NET.70.49 , External FTP to HelpDesk
MY.NET.70.50 , MY.NET.30.3 activity , MY.NET.30.4 activity

MY.NET.153.159 3 High port 65535 udp - possible Red Worm - traffic, SMB Name
Wildcard, TFTP - Internal UDP connection to external tftp server

65.93.186.178 3 EXPLOIT x86 NOOP , MY.NET.30.3 activity , MY.NET.30.4 activity
63.251.52.75 3 Null scan! , Probable NMAP fingerprint attempt , SYN-FIN scan!
63.199.242.82 3 Fragmentation Overflow Attack , Incomplete Packet Fragments

Discarded, Null scan!

Top source hosts with different alerts
SRC IPs Different Alerts Alerts
MY.NET.12.6

9 Happy 99 Virus , High port 65535 tcp - possible Red Worm - traff ic,
NMAP TCP ping! , Null scan! , Possible trojan server activity ,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

69

SRC IPs Different Alerts Alerts
Probable NMAP fingerprint attempt , TCP SMTP Source Port traffic ,
Tiny Fragments - Possible Hostile Activity , [UMBC NIDS] E xternal
MiMail alert

MY.NET.42.1

8 EXPLOIT x86 NOOP , EXPLOIT x86 setuid 0 , High port 65535 tcp -
possible Red Worm - traffic, Incomplete Packet Fragments
Discarded, Null scan! , Probable NMAP fingerprint attempt
SUNRPC highport access! , [UMBC NIDS IRC Alert] IRC user /kill
detected- possible trojan.

MY.NET.24.74

7 EXPLOIT x86 setuid 0 , High port 65535 tcp - possible Red Worm -
traffic, Incomplete Packet Fragments Discarded , NMAP TCP ping!
Null scan! , Possible troja n server activity, Tiny Fragments - Possible
Hostile Activity

MY.NET.84.164

6 EXPLOIT NTPDX buffer overflow , EXPLOIT x86 set uid 0, High port
65535 tcp - possible Red Worm - traffic, High port 65535 udp -
possible Red Worm - traffic, Incomplete Packet Fragments
Discarded, NMAP TCP ping!

MY.NET.42.2

6 EXPLOIT x86 NOO P, High port 65535 tcp - possible Red Worm -
traffic, Incomplete Packet Fragments Discarded , Null scan! ,
Probable NMAP fingerprint attempt , [UMBC NIDS IRC Alert] IRC
user /kill detected - possible trojan.

Top Scan Types

 Type Flags Scans Type Flags Scans
1 UDP 7439853 11 UNKNOWN *2*A**** 57
2 SYN ******S* 5742541 12 UNKNOWN 1****R** 53
3 SYN 12****S* 9034 13 NOACK **U*P*S* 49
4 FIN *******F 2219 14 UNKNOWN 12***R** 27
5 INVALIDACK ***A*R*F 936 15 FIN *2*****F 27
6 NULL ******** 826 16 VECNA ****P*** 26
7 NOACK **U**RS* 108 17 NOACK **U*PRSF 16
8 NOACK **U**RSF 103 18 INVALIDACK ***A*RSF 15
9 UNKNOWN *2***R** 76 19 VECNA **U***** 15

10 UNKNOWN *2*A**S* 67 20 FULLXMAS 12UAPRSF 14

Top 10 Scan sources

 Internal SRCs Scans
1 MY.NET.1.3 3647953
2 MY.NET.162.92 1761767
3 MY.NET.81.39 1332464
4 MY.NET.80.243 878754
5 MY.NET.111.34 676795
6 MY.NET.1.4 662930
7 MY.NET.84.164 616856
8 MY.NET.153.37 447503
9 MY.NET.72.155 202545

10 MY.NET.163.76 195932

 External SRCs Scans
1 24.224.248.157 30033
2 61.177.215.228 27481
3 217.215.115.22 26789
4 216.15.9.86 24877
5 62.103.164.195 20713
6 207.219.125.129 19829
7 62.69.96.242 19640
8 211.217.193.170 19628
9 62.101.37.108 19065

10 194.36.1.119 18790

Top 10 Scan destinations

 Internal DSTs Scans
1 MY.NET.42.1 14971
2 MY.NET.153.18 8761
3 MY.NET.12.6 4754
4 MY.NET.6.7 2988
5 MY.NET.153.149 1271
6 MY.NET.153.173 834

 External DSTs Scans
1 192.26.92.30 84057
2 192.5.6.30 52097
3 192.55.83.30 48630
4 203.20.52.5 46815
5 64.136.109.242 44095
6 131.118.254.34 38131

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

70

7 MY.NET.69.253 812
8 MY.NET.42.4 729
9 MY.NET.97.215 686

10 MY.NET.190.95 654

7 192.48.79.30 37527
8 216.109.116.17 37229
9 131.118.254.33 33983

10 165.230.209.227 33117

Top 10 Scan destination ports

Port Protocol, comments Scans
53/udp DNS 4292083
135/tcp DCE endpoint resolution 4119200

6129/tcp Dameware Remote Admin - http://www.dameware.co.uk 677580
41170/udp Piolet (P2P music sharing program) - http://www.piolet.com 467887

25/tcp SMTP 243369
6257/udp WinMX - http://www.winmx.com 194160

80/tcp HTTP 143231
4899/tcp RAdmin - http://www.famatech.com 93607
4000/tcp [trojan] Skydance, [trojan] Connect -Back Backdoor, Terabase 65774

20168/tcp [trojan] Lovgate 61544

Top 10 OOS talkers

 External IPs OOS
1 68.54.84.49 1250
2 80.184.128.207 187
3 203.199.140.162 182
4 66.90.86.10 170
5 80.185.11.3 155
6 66.225.198.20 105
7 67.114.19.186 90
8 35.8.2.252 75
9 216.95.201.26 71

10 216.95.201.11 61

 Internal IPs OOS
1 MY.NET.6.7 1281
2 MY.NET.12.6 1173
3 MY.NET.24.44 361
4 MY.NET.42.4 299
5 MY.NET.42.1 186
6 MY.NET.24.34 179
7 MY.NET.34.11 167
8 MY.NET.12.4 107
9 MY.NET.42.10 95

10 MY.NET.42.2 84

3.8. OOS files
The OOS (Out of Specification) log files contains packets that presents strange
combinations of TCP flags or options or packets that do not meet the standards for
valid packet structures.

The most common OOS entries (4055 alerts, 93.9%) were ECN SYN
packets as follows. ECN (Explicit Congestion Notification) is defined in RFC 3168
[41].

01/27-00:14:00.391602 68.54.84.49:53119 -> MY.NET.6.7:110
TCP TTL:51 TOS:0x0 ID:5031 IpLen:20 DgmLen:60 DF
12****S* Seq: 0xB32E3011 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 258548662 0 NOP WS: 0

ECN was designed to manage congestion in routers using the 8 and 9 bits in the
TCP header. Nevertheless, this kind of packets is commonly used too by scanner
and fingerprinting tools such as Nmap [42], Queso [43] or p0f [44]. Toby Miller [45]
wrote an interesting article about this subject at sans.org.

The next types of packets by volume were TCP packets with no flags set,
with only 128 entries (2.96%). They were triggered during the analysis period.
Taking a closer look at their field values, I believe that most of them were crafted to
scan and make OS fingerprinting against the campus hosts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

71

01/27-01:34:41.875156 68.122.128.111:42766 -> MY.NET.12.4:110
TCP TTL:80 TOS:0x0 ID:4660 IpLen:20 DgmLen:40
******** Seq: 0x1E0C001 Ack: 0xE37A6CAA Win: 0x800 TcpLen: 20

The rest of packets (133, 3.08%) consist of OS fingerprints and scans attempts
mostly to campus hosts MY.NET.42.2, MY.NET.42.1 and MY.NET.42.3, and
corrupted TCP/IP stacks.

3.9. SPP_Preprocesso r alerts
The activity of spp_preprocessor was separated from the rest of alerts. Among the
top 20 talkers by source address, 19 are campus hosts. Number 18 is address
68.54.84.49 and it has no correlations in alert logs. I believe that the trigger limit, at
12 connections, should be raised to reduce the noise and false alarms.

After selecting STEALH alerts, the top talker source host was 68.54.84.49
(pcp01741335pcs.howard01.md.comcast.net) with 2777 alerts, and I found that in
10th position was MY.NET.42.2. It should be closely examined to determine the
origin of those alerts.

The top external and internal talkers in stealth scans are listed below:

External SRCs Type Scans
68.54.84.49 STEALTH 2777
80.184.128.207 STEALTH 372

66.225.198.20 STEALTH 296
217.233.123.35 STEALTH 253
35.8.2.252 STEALTH 229
80.185.38.230 STEALTH 224
66.90.86.10 STEALTH 182
216.95.201.13 STEALTH 177
219.137.87.124 STEALTH 156
216.95.201.24 STEALTH 154

Internal SRCs Type Scans
MY.NET.42.2 STEALTH 155
MY.NET.97.16 STEALTH 70
MY.NET.97.215 STEALTH 57
MY.NET.12.6 STEALTH 48
MY.NET.12.4 STEALTH 27
MY.NET.12.7 STEALTH 10
MY.NET.97.166 STEALTH 8
MY.NET.12.2 STEALTH 3
MY.NET.70.218 STEALTH 2
MY.NET.82.79 STEALTH 1

The following addresses are some examples of important scanning activities that
should be further examined.
2004/01/28-06:35:28.271793,End of portscan,MY.NET.42.5,TOTAL tim e(296s) hosts(16346) TCP(1343) UDP(15162)
2004/01/28-05:56:24.825485,End of portscan,MY.NET.1.3,TOTAL tim e(897s) hosts(10153) TCP(0) UDP(10600)
2004/01/28-07:07:29.481000,End of portscan,24.224.248.157,TOTAL time(96s) hosts(9434) TCP(9482) UDP(0)
2004/01/28-09:09:39.891929,End of portscan,216.15.9.86,TOTAL time(94s) hosts(8212) TCP(8259) UDP(0)
2004/01/27-05:57:00.232782,End of portscan,218.148.170.93,TOTAL time(859s) hosts(7261) TCP(7679) UDP(0)
2004/01/29-05:54:18.068398,End of portscan,MY.NET.1.3,TOTAL tim e(740s) hosts(7036) TCP(0) UDP(7405)
2004/01/29-06:39:43.065789,End of portscan,62.103.164.195,TOTA L time(94s) hosts(6839) TCP(6885) UDP(0)
2004/01/29-01:23:49.279885,End of portscan,207.219.125.129,TOTAL time(95s) hosts(6633) TCP(6680) UDP(0)
2004/01/31-14:58:42.828687,End of portscan,MY.NET.53.225,TOTAL time(589s) hosts(6300) TCP(287) UDP(6313)
2004/01/31-12:47:29.507253,End of portscan,MY.NET.111.34,TOTAL time(809s) hosts(6267) TCP(58) UDP(6609)
2004/01/30-12:50:22.274270,End of portscan,MY.NET.1.3,TOTAL time(738s) hosts(5931) TCP(0) UDP(6299)

3.10. Final conclusions and general recommendations
The logs analyzed did not represent especially dangerous security problems, taking
into account that they come from a very active University with a lot of network
traffic. But there are a couple of things that could be done to increase the security.

One of the most important security problems is usually associated to IRC
traffic. IRC is commonly used by hackers, and their presence usually indicates the
presence of a compromised host. It should definitely be blocked or at least strictly
controlled. On the other hand the use of P2P (Peer-to-Peer) programs is constantly

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

72

growing and they are difficult to stop. I think that the best solution is to adopt one
solution for all and deny the rest. This should make administration tasks Easier.

The installed Snort sensor does seem to be an old version such as 1.8. I
strongly recommend an update of it and the set of rules, to the latest version as
soon as possible. Additionally the rules used to trigger worms and special Trojan
traffic has been shown to be very noisy and generated numerous false positives. I
suggest they be modified to reduce such noises, as this complicates the finding of
real attacks.

Finally, if not done yet, I recommend isolating the campus machines that
provide external services, from the rest. This could prevent against attacks in case
they are compromised.

3.11. Methodology
At the beginning of the analysis I decided to manage the log files with some
common UNIX commands like grep, cut, sort or uniq. After a while I discovered that
I spent more time waiting for the command responses, watching the screen like a
zombie, than analyzing the results. Then I noted that lots of students had excellent
results using script languages such as Perl and some type of database. From that
moment I thought the best solution was to use Perl a MySQL. I designed a
customized Perl script, based on the excellent work by Tod Beardsley [46] and
Andre Cormier [47] and I specially improved the techniques to discern between
correct and corrupted logs. For the database, I combined the tables used by Andre
Cormier and Les Gordon [1].
3.11.1. Files analyzed
The following files were used for the analysis. They were decompressed and
processed by a customized Perl script based on csv.pl by Tod Beardsley and
db_loader.pl by Andre Cormier. The script processed the files separately and
merged them into four groups: alerts, alert_spp_scans, oos, and scans, saving
space and avoiding losses derived from concatenation. The total size after
decompressing and processing the logs was about 1.04 GB.
 size (bytes) size (bytes) size (bytes)
alert.040127.gz 4.498.344 scans.040127.gz 20.018.546 oos_report_040123 270.336
alert.040128.gz 9.035.779 scans.040128.gz 26.275.556 oos_report_040124 1.310.720
alert.040129.gz 2.301.305 scans.040129.gz 16.434.604 oos_report_040125 1.735.680
alert.040130.gz 2.233.954 scans.040130.gz 17.140.053 oos_report_040126 270.336
alert.040131.gz 2.688.552 scans.040131.gz 25.556.327 oos_report_040127 237.568
 20.757.934 105.425.086 3.824.640

The names of the OOS log files did not match with the timestamps of the packets.
The OOS packets were captured from the 27th to the 31st of January. By some
reason, these files are processed with four days of delay.
3.11.2. Examples of log entries
My Perl script put the wrong log entries into separate files. These were the results:

ALERT:
Total: 2208262 Accepted: 2205230 (99.863%) Rejected: 3032 (0.137%)
SCAN:
Total: 13196996 Accepted: 13196962 (100.00%) Rejected: 34 (0.00%)
OOS:
Total: 4321 Accepted: 4316 (99.88 4%) Rejected: 5 (0.116%)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

73

Below are several examples of the logs after being processed with the script:
Accepted logs
Alerts
2004/01/27-02:30:34.901167,MY.NET.30.4 activity,68.55.116.84,41413,MY.NET.30.4,524
2004/01/27-07:10:28.353575,Null scan!,193. 77.45.105,0,MY.NET.15.30,0
2004/01/27-07:10:32.653639,Incomplete Packet Fragments Discarded,193.77.45.105,0,MY.NET.13.2,0
Scans
2004/01/27-03:37:51,211.217.235.107,0, MY.NET.12.6,0,VECNA,12U****F,RESERVEDBITS
2004/01/27-04:01:30,211.217.235.107,38, MY.NET.12.6,4544,NULL,********,
2004/01/27-05:12:55,206.41.205.250,59310, MY.NET.97.18,6346,FIN,*******F,
OOS
2004/01/27-00:34:01.407572,203.199.140.162,3175,MY.NET.24.34,80,TCP,46,0,17980,20,60,X,, \
12****S*,30 01170644,0,5840,40,5,MSS: 1460 SackOK TS: 368540904 0 N OP WS: 0
2004/01/31-04:35:49.843951,68.111.35.228,52962,MY.NET.69.226,6883,TCP,108,0,59545,20,40,X,, \
********,704905609,234193192,0,0,None,None

Rejected logs
Alerts
:65535 -> MY.NET.163.76:3267
01/27-18:19:40.595113 [**] High port 65535 tcp - possible Red Worm - traffic [**] \
24.45.132.5501/27 -18:43:15.147845 [**] spp_portscan: portscan status from MY.NET.1.4: \
8 connections across 8 hosts: TCP(0), UDP(8) [**]
:65535 -> MY.NET.163.76:3267
:65535
:1304 -> 203.198.250.203:65535
Scans
JaJan 27 03:48:38 MY.NET.162.92:3015 -> 177.136.177.177:135 SYN ******S*
n 27 03:39:41 195.136.73.130:50216 -> MY.NET.100.133:1524 SYN ******S*
Jan 27 03:39:42 195.1Jan 27 03:48:38 MY.NET.81.39:1755 -> 84.72.183.225:135 SYN ******S*
36.73.130:50400 -> MY.NET.101.59:1524 SYN ******S*
198.247.172.10:25 SYN ******S*
S*
OOS
01/31-04:52:13.511518
TCP TTL:51 TOS:0x0 ID:

3.11.3. Examples of SQL queries used
Top 10 internal source addresses in alert files
SELECT src_ip, count(*) as num FROM alerts where src_ip like ' MY.NET%' group by src_ip order
by num desc limit 10

Top 10 source ports from external addresses in alert files
SELECT src_port, count(*) as num FROM alerts where src_ip not like 'MY.NET%' group by src_port
order by num desc limit 10

TOP 10 external source addresses in scan files
SELECT src_ip, count(*) as num from scans where src_ip not like ' MY.NET.%' group by src_ip order
by num desc limit 10

Top 10 source addresses in OOS files
SELECT src_ip, count(*) num FROM oos group by src_ip order by num desc limit 10

3.12. References
[1] Gordon, Les. GCIA practical. 22 November 2002 . URL:

http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc (10 Feb. 2004).

[2] Kite, Doug. GCIA practical. URL:
http://www.giac.org/practic al/GCIA/Doug_Kite_GCIA.pdf (12 Feb. 2003).

[3] IANA Port Numbers. Last updated 26 February 2004. URL:
http://www.iana.org/assignm ents/port-numbers (29 Feb. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

74

[4] Freezmizer. Post on WinMXCommunity.com Forum: "Changing TCP and UDP port settings".
12 April 2003. http://forums.winmxcommunity.com/viewtopic.php?t=198 7 (10 Feb. 2004).

[5] Famatech. Radmin. URL: http://www.famatech.com/ (10 Feb. 2004).

[6] Dameware. Remote Admin. URL: http://www.dameware.co.uk/thankyouremote. asp (10 Feb.
2004).

[7] Novell. BorderManager Port Numbers (iFolder). URL:
http://developer.novell.co m/research/sections/netsupport/abend/2002/august/x02080 1.doc
(10 Feb. 2004).

[8] Martin, Ian. GIAC practical. 17 July 2003. URL:
http://www.giac.org/practical/GCIA/Ian_Martin_GCIA.pdf (12 Feb. 2003).

[9] Ptacek, Thomas H. Insertion, "Evasion, and Denial of Service: Eluding Network Intrusion
Detection". 16 Oct. 2002.URL: http://secinf.net/info/ids/idspaper/idspaper.html (10 Feb.
2004).

[10] Roesch, Martin. "Re: [Snort -users] Incomplete Packet Fragments Discarded". Email on
snortusers@lists.sourceforge.net mailing list. 26 Nov 2001. URL:
http://www.mcabee.org/lists/snort-users/Nov-01/msg00820.html (10 Feb. 2004).

[11] Ruiu, Dragos. "[Snort -users] spp_defrag.c v1.5.1". Email on snortusers@lists.sourceforge.net
mailing list. 10 July 2001. URL: http://archives.neohapsis.com/archives/snort/2001 -
07/0202.html (11 Feb. 2004).

[12] Embrich, Mark. GCIA Practical. 12 February 2002. URL:
http://www.giac.org/practical/Mark_Embrich_GCIA.htm (11 Feb. 2004).

[13] MacDonald, Terry. GCIA Practical. Practical 3. 21 June 2003. URL:
www.giac.org/practical/GCIA/Terry_MacDonald_GCIA.pdf (13 Feb. 2003).

[14] Ruiu, Dragos. "Re: [Snort -users] SHELLCODE x86 unicode NOOP". Email on
snortusers@lists.sourceforge.net mailing list. 22 April 2002. URL:
http://www.mcabee.org/lists/snort-users/Apr-02/msg00763.html (22 Feb. 2004).

[15] Thiele, Fred GCIA Practical. 2003. URL:
http://www.giac.org/practic al/GCIA/Fred_Thiele_GCIA.pdf (21 Feb. 2003).

[16] One, Aleph. "Smashing The Stack For Fun And Profit". 8 Nov. 1996. URL:
http://www.phrack.org/phrack/49/P49 -14 (14 Feb. 2004).

[17] Ruiu, Dragos. "mutants! - spp_fnord.c (It can see the FNORDs! : -)". Email on
bugtraq@securityfo cus.com mailing list. 1 March 2002. URL:
http://cert.uni -stuttgart.de/archive/bugtraq/2002/03/msg00088.html (20 Feb. 2004).

[18] Alexander, Bryce. "Port 137 Sca n". 10 May 2000. URL:
http://www.sans.org/resources/idfaq/port_137.php (12 Feb. 2004).

[19] Martin, Daniel. "Re: Spoofed SMB name wildcard probes". Email on
incidents@lists.securityfocus.com mailing list. 4 May 2001 . URL: http://cert.uni -
stuttgart.de/archive/incidents/2001/05/msg00041.html (12 Feb. 2004).

[20] Rekhter, Y. et al. RCF 1918: "Address Allocation for Private Internets". February 1996. URL:
http://www.ietf.org/rf c/rfc1918.txt (17 Feb. 2004).

[21] IANA. RCF 3330: "Special -Use IPv4 Addresses". September 2002. URL:
http://www.ietf.org/ rfc/rfc3330.txt (17 Feb. 2004).

[22] Vision, Max. "Re: [snort] 'SMB Name Wildcard'". Email on Snort IDS mailing list by Snort.org.
17 Jan. 2000. URL:
http://archives.neohapsis.com/archives/snort/2000-01/0220.html (14 Feb. 2004).

[23] Wesemann, Daniel. GCIA Practical. Pra ctical Detect 2. 24 March 2003. URL:
http://www.giac.org/practic al/GCIA/Daniel_Wesemann_GCIA.pdf (12 Feb. 2004).

[24] Misc. authors. SANS Institute: "Help Defeat Denial of Service Atta cks: Step-by-Step" version
1.4. 23 March 2003. URL: http://www.sans.org/dosstep/index.php (14 Feb. 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GCIA Practical Version 3. 4, 29/02/2004 Diego González Gómez

75

[25] TonikGin. "XDCC – An .EDU Admin’s Nightmare". 11 Sep. 2002. URL:
http://www.cs.rochester.edu/~bukys/host/tonikgin/EduHacking.html (14 Feb. 2004).

[26] Gnutella. URL: http://www.gnutella.com/ (17 Feb. 2004).

[27] Bearshare. URL: http://www.bearshare.com/ (17 Feb. 2004).

[28] Bit Torrent. URL: http://bitconjurer.org/BitTorrent/ (17 Feb. 2004).

[29] eDonkey. URL: http://www.edonkey2000.com/ (17 Feb. 2004).

[30] eMule. URL: http://www.emule-project.net/ (17 Feb. 2004).

[31] Battlefield 1942. URL: http://www.battlefield1942.com/ (17 Feb. 2004).

[32] OIT Security. Duke University. "Instructions on Cleaning IRC bot & backdoor: XDCC". Last
updated 25 April 2002. URL: http://security.duke.edu/cleaning/xdcc.html (17 Feb. 2004).

[33] Srinivasan, R. et al. RCF 1831: "RPC: Remote Procedure Call Protocol Specification Version
2". August 1995. URL: http://www.ietf.org/rfc/rfc1831.txt (17 Feb. 2004).

[34] CERT® Advisory. CA -2001-33 "Multiple Vulnerabilities in WU-FTPD". Last updated 15 Feb.
2002. URL: http://www.cert.org/advisories/CA -2001-33.html (14 Feb. 2004).

[35] CERT® Advisory. CA -2001-26 "Nimda Worm". Last updated 25 Sep. 2001. URL:
http://www.cert.org/advisories/CA -2001-26.html (15 Feb. 2004).

[36] CERT® Incident Note IN-2003-02 "W32/Mimail Virus". 2 August 2003. URL:
http://www.cert.org/incident_notes/IN -2003-02.html (14 Feb. 2004).

[37] Mills, D.L. RCF 958: "Network Time Protocol (NTP)". September 1985. URL:
http://www.ietf.org/rfc/rfc958.txt (17 Feb. 2004).

[38] WinVNC. URL: http://www.realvnc.com/winvnc.html (18 Feb. 2004).

[39] CERT® Incident Note IN -99-02. "Happy99.exe Trojan Horse". 29 March 1999. URL:
http://www.cert.org/incident_notes/IN -99-02.html (21 Feb. 2004).

[40] CVE-2001-0414. "Buffer overflow in ntpd ntp daemon". 2 April 2003. URL:
http://cve.mitre.org/cgi -bin/cvename.cgi?name=CVE-2001-0414 (20 Feb. 2004).

[41] Ramakrishnan, K. et al. RFC 3168: "The Addition of Explicit Congestion Notification (ECN) to
IP". Sep. 2001. URL: http://www.ietf.org/rfc/rfc 3168.txt (22 Feb. 2004).

[42] Fyodor. Nmap. URL: http://www.insecure.org/nmap (22 Feb. 2004).

[43] Queso. URL: http://ftp.cerias.purdue.edu/pub/tools/unix/scanners/queso/ (24 Feb. 2004).

[44] Zalewski, Michal. p0f v2.0.3. URL: http://lcamtuf.coredump.cx/p0f.shtml (24 Feb. 2004).

[45] Miller, Toby. "ECN and it’s impact on Intrusion Detection". 1999 -2000. URL:
http://www.sans.org/y2k/ecn.htm (26 Feb. 2004).

[46] Beardsley, Tod. GCIA Practical. 8 May 2002. URL:
http://www.giac.org/practical/Tod_Beardsley_GCIA.doc (26 Feb. 2004).

[47] Cormier, Andre. GCAI Practical. 2 May 2003. URL:
http://www.giac.org/practical/GCIA/Andre_Cormier_GCIA.pdf (26 Feb. 2004).

