
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia


©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 

 

GIAC Certified Intrusion Analyst (GCIA) 
Practical Assignment Version 3.4 

 
DATE OF SUBMISSION: 03/02/2004 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BY 
HITENDRA PATEL 

 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2 

 
TABLE OF CONTENTS 

 
 

Table of Contents …………………………………………………………………… 2 
Assignment 1: Describe state of Intrusion Detection 
  ACID (Analysis Console for Intrusion Detection Database) as a  
  Data Mining and Visualization Tool for Snort Intrusion Detection 
  Abstract ……………………………………………………   4 

1.0 Introduction …………………………………………………… 4 
1.1 Data mining and Visualization ………………………… 4 
1.2 How can data mining and visualization help in Intrusion 

Detection? …………………………………………………. 4 
1.3 Open Source Tools Available Today ………………… 5 

2.0 ACID (Analysis Console for Intrusion Detection Database) for  
Visualization of Snort Data ……………………………………… 6 

2.1 ACID Features ………………………………………  6 
2.2 Installation ……………………………………………… 7 
2.3 ACID Features for Intrusion Detection ………………… 7 

2.3.1 Main Summary Page ………………………… 7 
2.3.2 Listing Protocol Data …………………………… 8 
2.3.3 Payload Details ………………………………… 8 
2.3.4 Unique IP Link Page …………………………… 9 
2.3.5 Incident Storage and Reporting ……………… 10 
2.3.6 Searching ……………………………………… 10 

3.0 Practical Considerations to make System Efficient …………. 11 
3.1 Some Limitation Of ACID ………………………………… 11 

4.0 Summary …………………………………………………………… 11 
5.0 Reference …………………………………………………………… 12 

Assignment: 2 Network Detects 
 
  First Detect: FTP SITE EXEC 

1.0 Source of Trace …………………………………………………… 13 
2.0 Detect was Generated By ……………………………………… 14 
3.0 Probability the Source Address was Spoofed ………………… 16 
4.0 Description of Attack ……………………………………………… 17 
5.0 Attack Mechanism ………………………………………………… 17 
6.0 Correlations ………………………………………………………… 20 
7.0 Evidence of Targeting …………………………………………… 20 
8.0 Severity …………………………………………………………… 21 
9.0 Defensive Recommendation ……………………………………… 21 
10.0 Multiple Choice Question …………………………………… 22 
 
Second Detect: Port 0 Traffics 
1.0 Source of Trace …………………………………………………… 22 
2.0 Detect was Generated By …………………………………… 23 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3 

3.0 Probability the Source Address was Spoofed ………………… 24 
4.0 Description of Attack ……………………………………………… 25 
5.0 Attack Mechanism ………………………………………………… 27 
6.0 Correlations ………………………………………………………… 28 
7.0 Evidence of Targeting ………………………………………… 28 
8.0 Severity …………………………………………………………… 28 
9.0 Defensive Recommendation …………………………………… 29 
10.0 Multiple Choice Question ……………………………………… 29 
 
Third Detect: UDP Scan by ISS 
1.0 Source of Trace ……………………………………………… 31 
2.0 Detect was Generated By …………………………………… 33 
3.0 Probability the Source Address was Spoofed ……………… 36 
4.0 Description of Attack …………………………………………… 37 
5.0 Attack Mechanism ……………………………………………… 37 
6.0 Correlations……………………………………………………… 39 
7.0 Evidence of Targeting ………………………………………… 39 
8.0 Severity ………………………………………………………… 39 
9.0 Defensive Recommendation ………………………………… 40 
10.0 Multiple Choice Question ………………………………  40 

 
Assignment: 3 Analyze This! 
  Executive Summary …………………………………………………… 41 
  Logs Analyzed …………………………………………………………… 42 
  Summary of Alerts ……………………………………………………… 42 
  Frequent Alert Details ………………………………………………… 46 
  Scan Analysis …………………………………………………………… 53 
  OOS Log Analysis …………………………………………………… 57 
  Conclusion and Recommendations …………………………………… 60 
  Process Used in Analysis ……………………………………………… 60 
  References …………………………………………………………… 61 
   

APPENDIX: A Link Graph  
  APPENDIX: B IP Info for Top Source Host in Alert Logs 
  APPENDIX: C Scan Analysis 

  
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4 

 
 
ASSIGNMENT: 1: Describe the State Of Intrusion Detection 
ACID (Analysis Console for Intrusion Detection Database) as a Data Mining and 
Visualization Tool for Snort Intrusion Detection 
 
 
 
Abstract 
 
Intrusion detection is an essential component of security administration in modern 
world. In any busy network Intrusion Detection systems will generate a large amount of 
events, which makes impossible for human analyst to review. This paper will discuss 
ACID as a data mining and visualization tool, which can help the analyst to reduce 
some burden by summarizing and classifying events in a logical format. 
 
1.0 Introduction 
 

Today with explosive growth of the Internet and increasing availability of attacking 
tools, intrusion detection becomes a critical part of security administration. The Intrusion 
detection systems collect and analyze network activity data to determine whether there 
is an attack occurring. There are two classification of analysis: misuse detection and 
anomaly detection. Misuse detection uses a known pattern of attack called signatures. 
Misuse detection is not effective against unknown attacks. In anomaly detection, the 
System defines the normal behavior in advance; which is known as a profile. Any 
deviation from normal behavior is then reported as a potential attack. The strength of 
anomaly detection is its ability to detect unknown attacks but prone to falsely identifying 
events as an attack, resulting false alarm. In modern intrusion detection systems it is 
important to combine both of these approaches. 

 
1.1 Data mining and Visualization 

 
According to [11] Steven Noel in “Modern Intrusion Detection, Data mining and Degree of 
attack Guilt”, data mining refers to a process of nontrivial extraction of implicit, 
previously unknown, and potentially useful information from a database. Visualization 
allows the analyst to see and comprehend large amounts of complex data in a short 
period for review. 

Intrusion Detection Data mining is a process where large sets of previously 
collected data is filtered, transformed, and organized into information sets. This 
information can be used by an analyst to find out hidden undetected attacks. 

 
1.2 How can data mining and visualization help in intrusion detection? 

 
Medium to large organizations are still subjects to constant attack by outsiders. 

With the progress of technology and network speeds (i.e. bandwidth) increasing IDS 
sensors can easily generate a large number of events. Any un-tuned Intrusion detection 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5 

sensor can produce thousands of events, so there is a risk of the console overwhelming 
the analyst with the false positive events, giving them no opportunity to focus on 
relatively few events of real interest. There is a chance attack may be directed to a user 
interface which will prevent the analyst from noticing some smaller number of serious 
events. With a signature database known to the attacker, it is no doubt feasible for an 
attacker to implement or design a tool, which triggers each possible signature on a 
monitor network, thus the attacker can fill out a top-level signature based display. 

A few specific things that data mining can contribute are the remove of normal 
activity from alarms data to allow the analyst to focus on a real attack, identify false 
alarms (generated by bad signatures), find anomalous activity and identify ongoing 
patterns. The data mining is not used to replace a human analyst but to help them 
identify significant events and reduce times wasted with false positive events. An 
example of data flow in the MITRE network is shown in figure 1.0 [3]. 

 
 
 

 
 

 
Figure 1.0 Data flow in the MITRE network 

 
Data Mining can be accomplished with Data summarization, visualization, 

aggregation and classification. Data mining can be used to identify recurring sequences 
of alarms, identify most relevant data and provide the analyst with different “views” of 
data to aid in analysis. Without automated support this task is difficult to accomplish due 
to the amount of events. Visualization gives the ability to cue the analyst with the use of 
color, shape or patterns. 
 

1.3 Open Source Tools Available Today 
 

Snort is an open-source network Intrusion detection system that is in wide use 
today. As of this writing, there are 2108 signatures in the standard signature database 
for known attacks. In the past few years Snort has been improved with support for 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6 

defragmentation, TCP re-assembly, and anomaly detection with spade from Silicon 
Defense. On any busy network connected to the Internet, a default install of Snort can 
easily produce thousands of false alarms a day. It is necessary to fine tune Snort for 
your appropriate needs for better performance. Directly examining the logs of all alerts 
is inconvenient and cumbersome. 

There are many open-source tools available today to visualize and mining Snort 
alert data in the database (i.e. MySQL, and MS-SQL) such as ACID (Analysis Console 
for Intrusion Database), Snortsnarf, Snort Report and SnortPHP. All these tools are 
allowing the analyst to analyze and present Snort data in a web interface. For this paper 
we have selected ACID for discussion. 
 
2.0 ACID (Analysis Console for Intrusion Detection Database) for Visualization of 

Snort Data 
 

ACID is a PHP-based engine, allowing the analyst to search and analyze the 
security incident database. ACID was developed by Roman Danyliw at the CERT 
Coordination Center and was initially used as an AIRCERT project. The latest version of 
ACID is available from http://www.cert.org/kb/acid/.  ACID is still open-source under 
GPL licensing. 

In order to support multiple database types ADODB is required. The reason behind 
this is PHP does not have any common database API for accessing multiple databases.  
In order to support multiple types of database some sort of database abstraction is 
required. As of today PHP has support for MySQL, postgreSQL and MS-SQL. 

 
 
2.1 ACID Features 
 

ACID offers many features as described below: 
 

1. Searching can be done on many criteria such as source and destination 
address, time, ports etc. 

2. Graphically display the different header part as well as payload information. 
(Layer-3 and Layer-4 packet information) 

3. Alerts can be logically grouped to create an incident report, exporting and 
deleting and sending to a specified email address. 

4. Graphical and statistical representation of alert data based on time, sensor, 
signature, protocol, IP Address, TCP/UDP ports, or Classification. 

5. Snapshots can be taken of alert data which will let the analyst view alerts for 
the last 24 hours, unique alerts and so on. 

6. Allow the analyst to go to external whois database to search for IP address 
information. (i.e. ARIN, Samspade etc.) 

 
We will explain this in detail in later sections. 

 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7 

2.2 Installation  
 
ACID needs other packages to install such as PHP, GD, PHPLOT and so on. 

Installation is out of scope of our discussion in this paper but you can find many 
documents from the official site http://www.cert.org/kb/acid/ or refer to this book:  
“Intrusion Detection Systems with Snort” by Rafieeq Ur Rehman.  In this book he has 
explained a step-by-step installation of ACID, MySQL and Snort in detail. 

 
 

2.3 ACID Features for Intrusion Detection 
 

2.3.1 Main Summary Page 
 

The very first page an analyst looks at when viewing ACID is the main summary 
page. An example of this is presented in Figure 2.0. 

 

 
 

Figure 2.0 Main summary page 
  

This provides top-level overview of all alert data. It has a different section to 
display different information. The analyst can view traffic profile by protocols. This page 
gives a great deal of information such as a list of sensors, number of unique alerts, total 
number of alerts generated, breakdown alert by source IP or Destination IP or by ports. 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8 

2.3.2 Listing Protocol Data 
 

From the main page, the analyst can click on protocol data to get more 
information about packets logged for that protocol. The analyst can also view unique or 
total alerts generated by Snort signatures. An example of this is presented in figure 3.0.  
The table of signatures contains text of the signature with a link of a website (i.e. Snort, 
CVE) with more information about the signature, classification, total number of alerts, 
the number of distinct source and destination IP address, and the time frame of first and 
last alerts. This information helps an analyst decide which alert to investigate. This data 
also helps tuning the IDS sensor for false alarms generated by bad signatures, which 
assist in isolating, investigating and prioritizing events. The analyst can select some 
specific events, which require further investigation and add them to logical AG group or 
email to another security agency for incident reporting. ACID has functionality to mange 
all events, such as allowing the analyst to delete false alerts from the database or move, 
copy or archive alerts in the database for storage maintenance. The analyst can dig 
further alerts by each signature that lists a distinct source and destination IP address. 
 

 
 

Figure 3.0 Unique Alert Listing 
 

2.3.3 Payload Details 
 
This page shows layer-3 and layer-4 packet information. Figure 4.0 shows details 

about a particular packet that the analyst would see when they click on an alert on a 
query page. The topmost part shows general details, which includes the signature so 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9 

that the analyst can easily determine the circumstances under which the signature alert 
was generated. The payload is displayed both in hexadecimal and ASCII text.  A 
different color header makes it very easy to understand visually. At the bottom of the 
payload data navigation buttons are provided that can be used to move to next and 
previous alerts quickly. 

 

 
 
 
Figure 4.0 Payload Data 
 

2.3.4 Unique IP Link Page 
This page helps the analyst to view the overall picture of all events about a 

source generating alert and destination with fully qualified domain names, protocol, total 
number of events generated from the same source, unique events, etc. An example of 
this is presented in Figure 5.0 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10 

 
 
Figure 5.0 IP Links 
 
This page is an example of what was really useful during “nachi” and “code red” 

worm attacks. An analyst can easily find the source of the problem and directions where 
traffic is flowing. 

 
2.3.5 Incident Storage and Reporting 

ACID has a feature to store and logically group events for incident reporting with 
certain label data. Alerts of identified interest are stored in this manner. During any 
incident all alerts with label data will help the analyst or incident handler with further 
documentation, which can be used and prepared for producing reports for management. 
Figure 6.0 shows example of logical grouping. 

 

 
 
Figure 6.0 Logical grouping for reporting 
 
As shown in figure 6.0 this is concise way to organize all interested alerts for 

detailed review. This even allows groups to receive alerts via email in summary or full, 
including any outside experts or agency for expert analysis and can also be archived for 
historic documents in the database. 

 
2.3.6 Searching 

One important feature of ACID is that it can be used to search alert data by sensor, 
signature, source IP address, destination or time of alerts.  All this functionality is 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 11 

available from the Main page. As of this writing ACID has the capability of searching by 
Layer-4 TCP/IP options and payload criteria. Searching for alerts is made very easy. All 
criteria that the analyst specifies in the search screen are translated to a SQL statement 
that is passed to a backend database server so query results will display faster. 
 
3.0 Practical Considerations to make System Efficient 
            Due to the high volume of data and frequency of input, regular storage 
maintenance is required for any database. Maintaining a reliable size of the alert 
database is important for performance. One informative performance benchmarking 
paper is available at the ACID official site http://www.cert.org/kb/acid/ for MySQL vs. 
PgSQL. As the size of the alert database increases you will see some poor performance 
loading pages or searching any alerts. There are no rules for database size; it is 
dependent upon many parameters such as hardware platform, memory etc. ACID has 
some features available for maintenance. The analyst can move or copy alerts to a 
different database for archiving according to organization policy for historic documents.  

 
As explained earlier any default install of Snort can generate thousands of alerts. 

An optimization of the IDS sensor is necessary for any bad Snort signatures. The 
analyst should turn off bad signatures, which produce false positive or negative alerts 
and unnecessary preprocessor activity.  

 
3.1 Some Limitation Of ACID 

 In general ACID is a good product for Data mining and visualizing Snort alert data but 
is still missing some functionality that any security profession may like. ACID has a web 
link for alerts for IP lookup such as whois and Samspade, but having functionality for 
Dig and Nmap would be beneficial as well. NTOP integration probably will help for 
anomaly detection. Centralized correlation of all data is also important to find out about 
when the attack is actually happening.  There is also a need for some further 
enhancement in the graph capability. 

 
4.0 Summary 

The main benefit of ACID is the ability to efficiently mange the large number of 
events by efficiently ignoring false alarms that Snort typically produces when it has been 
installed on any busy network. This is especially true when a new sensor has just been 
installed on the network without tuning for any rule set or preprocessor.  In this situation, 
ACID is a very powerful tool for visualizing Snort alerts because it segregates all events 
of a particular kind together; separately from uninterested events. Thus the analyst can 
pay attention to the few very important alerts.  

The central point of this paper is that ACID is a one of the powerful tools for data 
mining and the visualization of Snort alert data. By carefully and adaptively dividing up 
the alerts into a hierarchy of smaller groups, one can guarantee that the analyst only 
has to review the important events of his choice. Data mining products are not used to 
replace the human analyst, but to reduce the burden of their task by allowing the analyst 
to use experience on those alarms, which are likely to create a much bigger problem. 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 12 

 
5.0 REFERENCES 

 
1) Aleksandar Lazarevic, Jaideep Srivastava, and Vipin Kumar, AHPCRC–UM, 

“Data Mining Techniques for Network Intrusion Detection”, 
http://www.ahpcrc.org/publications/archives/v12n2/Story1/ 

2) Daniel Barbara, “ Application of Data Mining to Intrusion Detection”, 
http://www.isse.gmu.edu/~csis/faculty/barbara.pdf 

3) Dr. Eric Bloedorn, the MITRE Corporation, “Data Mining for Improving Intrusion 
Detection”, 
http://www.mitre.org/work/tech_papers/tech_papers_00/bloedorn_datamining/ind
ex.html 

4) Eric Bloedorn, Alan D. Christiansen, William Hill, Clement Skorupka, Lisa M. 
Talbot, Jonathan Tivel, The MITRE Corporation, “Data Mining for Network Intrusion 
Detection: How to Get Started”, 
http://www.mitre.org/work/tech_papers/tech_papers_01/bloedorn_datamining/ind
ex.html 

5) http://acidlab.sourceforge.net/ 
6) Jesus Mena, “Investigative Data Mining for Security and Criminal Detection, First 

Edition”, Butterworth-Heinemann; 1 edition (January 31, 2003) 
7) Klaus Julisch, “ Data Mining For Intrusion Detection, A critical Review”, 

http://www.zurich.ibm.com/~kju/excerpt.pdf 
8) Manh Phung (2000),” Data Mining in Intrusion Detection”, 

http://www.sans.org/resources/idfaq/data_mining.php 
9) Project,” A Data Mining Approach for Building Cost-sensitive and Light Intrusion 

Detection Models, http://www.cc.gatech.edu/~wenke/project/id.html 
10)  Rafeeq ur Rehman, “Intrusion Detection with Snort, Apache, MySql, PHP, 

Prentice Hall PTR; 1st edition (May 8, 2003) 
11)  Steven Noel, Duminda Wijesekera, and Charles Youman, “Modern Intrusion 

Detection, Data Mining, And Degrees of Attack Guilt”, 
http://www.ise.gmu.edu/~snoel/IDS%20Chapter.htm 

12)  Steven Noel, “Modern Intrusion Detection, Data mining, and Degrees of Attack 
guilt”, http://www.isse.gmu.edu/~snoel/IDS%20chapter.pdf 

13)  Steven Noel, “Data Mining for Intrusion Detection”, 
http://www.isse.gmu.edu/~snoel/ID%20data%20mining.htm 

14)  Wenke Lee and Salvatore J. Stolfo,” Data Mining Approaches for Intrusion 
Detection”, http://www1.cs.columbia.edu/~sal/hpapers/USENIX/usenix.html 

15)  William Yurcik, Kiran Lakkaraju, “A Prototype Tool for Visual Data Mining of 
Mining of Network Traffic for Detection”, 
http://www.ncsa.uiuc.edu/People/jbarlow/publications/ICDM-DMSEC03.pdf 

16)  Wenke Lee,” Real Time Data Mining-based Intrusion Detection”, 
http://www1.cs.columbia.edu/ids/concept/ 

 
 

 
  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 13 

 
DETECT: 1 FTP SITE EXEC & ATTACK-RESPONSES ID Check Returned Root 
(Posted on: Thu 1/22/2004) 
 
1) SOURCE OF TRACE: 
 
The Raw tcpdump logs were obtained from http://www.incident.org/logs/raw website.  
The archive file 2003.12.15.tgz contained several days’ worth of log files, but 
2003.12.15.12 is used for this analysis.  The IP addresses shown in log file have been 
changed to hide true identity. 
By using windump, I have learned information at the IP level about the unknown 
network. 
 
windump -r c:\gcia\2003.12.15.12 -e -v host 10.10.10.228 and host 
172.20.201.135 and (tcp port 35886 and tcp port 21) 
14:21:22.084529 0:3:ff:df:95:84 0:50:56:40:0:6d ip 74: IP (tos 0x0, ttl 64, id 17676, len 60) 
10.10.10.228.35886 > 172.20.201.135.21: S [tcp sum ok] 2614831172:2614831172(0) win 5840 <mss 
1460,sackOK,timestamp 355656 0,nop,wscale 0> (DF) 
14:21:22.087897 0:50:56:40:0:6d 0:3:ff:df:95:84 ip 74: IP (tos 0x0, ttl 62, id 43249, len 60) 
172.20.201.135.21 > 10.10.10.228.35886: S [tcp sum ok] 1710593240:1710593240(0) ack 2614831173 
win 32120 <mss 1460,sackOK,timestamp 2547417 355656,nop,wscale 0> (DF) 
14:21:22.088966 0:3:ff:df:95:84 0:50:56:40:0:6d ip 66: IP (tos 0x0, ttl 64, id 17677, len 52) 
10.10.10.228.35886 > 172.20.201.135.21: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 355657 
2547417> (DF)  
14:21:22.160770 0:50:56:40:0:6d 0:3:ff:df:95:84 ip 171: IP (tos 0x10, ttl 62, id 43256, len 157) 
172.20.201.135.21 > 10.10.10.228.35886: P 1:106(105) ack 1 win 32120 <nop,nop,timestamp 2547425 
355657> (DF) 
14:21:22.163708 0:3:ff:df:95:84 0:50:56:40:0:6d ip 66: IP (tos 0x0, ttl 64, id 17678, len 52) 
10.10.10.228.35886 > 172.20.201.135.21: . [tcp sum ok] ack 106 win 5840 <nop,nop,timestamp 355663 
2547425> (DF) 
14:21:22.170999 0:3:ff:df:95:84 0:50:56:40:0:6d ip 75: IP (tos 0x0, ttl 64, id 17679, len 61) 
10.10.10.228.35886 > 172.20.201.135.21: P [tcp sum ok] 1:10(9) ack 106 win 5840 <nop,nop,timestamp 
355664 2547425> (DF) 
 .... 
14:21:30.222374 0:3:ff:df:95:84 0:50:56:40:0:6d ip 75: IP (tos 0x0, ttl 64, id 17788, len 61) 
10.10.10.228.35886 > 172.20.201.135.21: P [tcp sum ok] 16643:16652(9) ack 34802 win 20874 
<nop,nop,timestamp 356444 2548019> (DF) 
14:21:30.237991 0:50:56:40:0:6d 0:3:ff:df:95:84 ip 165: IP (tos 0x10, ttl 62, id 43362, len 151) 
172.20.201.135.21 > 10.10.10.228.35886: P 
34802:34901(99) ack 16652 win 32120 <nop,nop,timestamp 2548231 356444> (DF) 
14:21:30.249665 0:3:ff:df:95:84 0:50:56:40:0:6d ip 66: IP (tos 0x0, ttl 64, id 17789, len 52) 
10.10.10.228.35886 > 172.20.201.135.21: . [tcp sum ok] ack 34901 win 20874 <nop,nop,timestamp 
356447 2548231> (DF) 
 
 (A)        (B) 
Attacker (10.10.10.228) |--------|--------Gateway------------| Target Host (172.20.201.135) 
 IDS     
 
A: Ethernet address [0:3:ff:df:95:84] - Connectix 
 
B: Ethernet address [0:50:56:40:0:6d] - VmWare Inc. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 14 

I have used the following website: http://www.coffer.com/mac_find/ to find out network 
card manufacturer for these hosts. 
The VmWare and Connectix are both the same kind of product used to create virtual 
machines. 
 
NOTE:  
I have used 'A' for Attacker host and 'B' for target host for our discussion. 
 
 
2) DETECT WAS GENERATED BY: 
Alerts were generated by Snort (Windows version) 2.1.0 Build 10 with the latest rules 
available on Jan. 6 at snort.org. 
C:\snort\bin>snort -r c:\gcia\2003.12.15.12 -c c:\snort\etc\snort.conf -A full -l c:\snort\log 
-X -y -k none Options Details: 
-r = Read tcpdump file 
-c = rule file specified 
-A = set Alert mode to full 
-X = Dump raw packet data starting at link layer -y = include year in timestamp in the 
alerts and log files -k = no checksum 
 
ALERT 1:  
 
The traffic which has triggered snort alert is as follows: 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
[**] FTP site exec [**] 
11/18/03-14:21:22.209882 10.10.10.228:35886 -> 172.20.201.135:21 TCP 
TTL:64 TOS:0x0 ID:17681 IpLen:20 DgmLen:76 DF 
***AP*** Seq: 0x9BDB285C  Ack: 0x65F595B6  Win: 0x16D0  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 355668 2547428 
0x0000: 00 50 56 40 00 6D 00 03 FF DF 95 84 08 00 45 00 .PV@.m........E. 
0x0010: 00 4C 45 11 40 00 40 06 6B 11 0A 0A 0A E4 AC 14 .LE.@.@.k....... 
0x0020: C9 87 8C 2E 00 15 9B DB 28 5C 65 F5 95 B6 80 18 ........(\e..... 
0x0030: 16 D0 E7 DD 00 00 01 01 08 0A 00 05 6D 54 00 26 ............mT.& 
0x0040: DE E4 53 49 54 45 20 45 58 45 43 20 25 30 32 30  ..SITE EXEC %020 
0x0050: 64 7C 25 2E 66 25 2E 66 7C 0A                    d|%.f%.f|. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
[**] FTP site exec [**] 
11/18/03-14:21:22.276088 10.10.10.228:35886 -> 172.20.201.135:21 TCP 
TTL:64 TOS:0x0 ID:17684 IpLen:20 DgmLen:468 DF 
***AP*** Seq: 0x9BDB2874  Ack: 0x65F595F4  Win: 0x16D0  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 355673 2547436 
0x0000: 00 50 56 40 00 6D 00 03 FF DF 95 84 08 00 45 00 .PV@.m........E. 
0x0010: 01 D4 45 14 40 00 40 06 69 86 0A 0A 0A E4 AC 14 ..E.@.@.i....... 
0x0020: C9 87 8C 2E 00 15 9B DB 28 74 65 F5 95 F4 80 18 ........(te..... 
0x0030: 16 D0 7B C0 00 00 01 01 08 0A 00 05 6D 59 00 26 ..{.........mY.& 
0x0040: DE EC 53 49 54 45 20 45 58 45 43 20 37 20 6D 6D  ..SITE EXEC 7 mm 
0x0050: 6D 6D 6E 6E 6E 6E 25 2E 66 25 2E 66 25 2E 66 25 mmnnnn%.f%.f%.f% 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 15 

 
 
The snort rule which triggered the alert is: 
alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP site exec"; 
flow:to_server,established; content:"SITE "; nocase; \ content:"EXEC "; 
distance:0; nocase; reference:bugtraq,2241; reference:arachnids,317; 
classtype:bad-unknown; sid:361;  rev:7;) 
 
The above rule has generated the following alert. 
 
[**] [1:361:7] FTP site exec [**] 
[Classification: Potentially Bad Traffic] [Priority: 2] 
11/18/03-14:21:22.209882 10.10.10.228:35886 -> 172.20.201.135:21 TCP 
TTL:64 TOS:0x0 ID:17681 IpLen:20 DgmLen:76 DF 
***AP*** Seq: 0x9BDB285C  Ack: 0x65F595B6  Win: 0x16D0  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 355668 2547428 [Xref => http://www.whitehats.com/info/IDS317][Xref => 
http://www.securityfocus.com/bid/2241] 
 
[**] [1:361:7] FTP site exec [**] 
[Classification: Potentially Bad Traffic] [Priority: 2] 
11/18/03-14:21:22.276088 10.10.10.228:35886 -> 172.20.201.135:21 TCP 
TTL:64 TOS:0x0 ID:17684 IpLen:20 DgmLen:468 DF 
***AP*** Seq: 0x9BDB2874  Ack: 0x65F595F4  Win: 0x16D0  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 355673 2547436 [Xref => http://www.whitehats.com/info/IDS317][Xref => 
http://www.securityfocus.com/bid/2241] 
 
As you can see in above sample traffic, the attacker was sending a series of commands 
to the target host on port 21.  (To save space I have not shown all traffic).  At this point 
the attacker was logged in as "anonymous" to target FTP server and trying to exploit 
vulnerability in FTP server.  The rule was triggered because it matches content "SITE" 
and "EXEC".  This traffic may also trigger for "Site" "Exec" due to no case modifier in 
rules.  The carefully constructed character formatting string (%f, %n etc) after SITE 
EXEC raises great suspicion that this is an attack. 
 
ALERT 2: 
 
The traffic which triggered snort alert is as follows: 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
[**] ATTACK-RESPONSES id check returned root [**] 
11/18/03-14:21:28.106376 172.20.201.135:21 -> 10.10.10.228:35886 TCP 
TTL:62 TOS:0x10 ID:43361 IpLen:20 DgmLen:104 DF 
***AP*** Seq: 0x65F61C96  Ack: 0x9BDB6947  Win: 0x7D78  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 2548019 356238 
0x0000: 00 03 FF DF 95 84 00 50 56 40 00 6D 08 00 45 10 .......PV@.m..E. 
0x0010: 00 68 A9 61 40 00 3E 06 08 95 AC 14 C9 87 0A 0A .h.a@.>......... 
0x0020: 0A E4 00 15 8C 2E 65 F6 1C 96 9B DB 69 47 80 18 ......e.....iG.. 
0x0030: 7D 78 64 9C 00 00 01 01 08 0A 00 26 E1 33 00 05 }xd........&.3.. 
0x0040: 6F 8E 75 69 64 3D 30 28 72 6F 6F 74 29 20 67 69  o.uid=0(root) gi 
0x0050: 64 3D 30 28 72 6F 6F 74 29 20 65 67 69 64 3D 35  d=0(root) 
egid=5 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 16 

 
 
The snort rule which has triggered the alert is: 
alert ip any any -> any any (msg:"ATTACK-RESPONSES id check returned root"; 
content: "uid=0(root)"; classtype:bad-unknown; sid:498; rev:4;) 
 
The above rule has generated the following alert. 
 
[**] [1:498:4] ATTACK-RESPONSES id check returned root [**] 
[Classification: Potentially Bad Traffic] [Priority: 2] 
11/18/03-14:21:28.106376 172.20.201.135:21 -> 10.10.10.228:35886 TCP 
TTL:62 TOS:0x10 ID:43361 IpLen:20 DgmLen:104 DF 
***AP*** Seq: 0x65F61C96  Ack: 0x9BDB6947  Win: 0x7D78  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 2548019 356238  
 
As you see above, this alert could be generated by any IP traffic to any host which has 
the content "uid=0(root)" in its payload.  This is looks to be the output of the UNIX 
command "id". 
This signature only looks for content "uid=0(root)". So there is always a chance to be a 
false positive alert.  Any email with "UID=0(root)" in its content could produce the same 
results.  But in this case the attacker has issued the "id" command after a series of SITE 
EXEC commands, which creates more suspicion of attack. 
 
 
3) PROBABILITY THE SOURCE ADDRESS WAS SPOOFED 
 
windump -r c:\gcia\2003.12.15.12 -e -v host 10.10.10.228 and host 
172.20.201.135 and (tcp port 35886 and tcp port 21) 
14:21:22.084529 0:3:ff:df:95:84 0:50:56:40:0:6d ip 74: IP (tos 0x0, ttl 64, id 17676, len 60) 
10.10.10.228.35886 > 172.20.201.135.21: S [tcp sum ok] 2614831172:2614831172(0) win 5840 <mss 
1460,sackOK,timestamp 355656 0,nop,wscale 0> (DF) 
14:21:22.087897 0:50:56:40:0:6d 0:3:ff:df:95:84 ip 74: IP (tos 0x0, ttl 62, id 43249, len 60) 
172.20.201.135.21 > 10.10.10.228.35886: S [tcp sum ok] 1710593240:1710593240(0) ack 2614831173 
win 32120 <mss 1460,sackOK,timestamp 2547417 355656,nop,wscale 0> (DF) 
14:21:22.088966 0:3:ff:df:95:84 0:50:56:40:0:6d ip 66: IP (tos 0x0, ttl 64, id 17677, len 52) 
10.10.10.228.35886 > 172.20.201.135.21: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 355657 
2547417> (DF) 
 
As you can see in above sample traffic, the three-way handshake was completed so a 
complete connection was established with the target host.  The IP address is not 
spoofed in this case. I have run 'pof' passive fingerprinting tool to find out operating 
systems involved.  
 
Pof -s c:\2003.12.15.12 -o c:\gcia.txt 
 
<Fri Jan 16 23:51:56 2004> 172.20.201.135:943 - Linux 2.2 (up: 7 hrs) 
 
<Fri Jan 16 23:54:05 2004> 10.10.10.228:34334 - Linux 2.4/2.6 (up: 0 hrs) 
  -> 172.20.201.135:5680 (distance 0, link: Ethernet/modem) 
 
Both sides appear to involve Linux operating systems. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 17 

 
4) DESCRIPTION OF ATTACK 
 
This attack is targeted to systems running wuFTPD version 2.6.0 or earlier.  WuFTPD is 
an ftp daemon developed by Washington University. 
The Site Exec vulnerability was discovered in 2.6.0 in Oct. 1999 but appears to be 
existent since 1993.  WuFTPD was included with most popular Linux distributions such 
as Red Hat 6.2, SuSe, FreeBSD, etc. 
With "site exec" enabled, a user logged in with anonymous access to an ftp server may 
execute a restricted subset of quoted commands on the server.  Due to insufficient input 
validation, the attacker can send a specially crafted string (f% f% a%) to override data 
on the stack.  Once exploited successfully, the attacker can execute commands with 
root access.  With root access the attacker can view or alter any system files to gain 
more access to the system.  Several exploit scripts were developed to take advantage 
of this vulnerability, such as wuftpd2600.c, or bobek.c, etc. 
CERT Advisory (CA-2000-13) was also issued for this vulnerability. 
 
5) ATTACK MECHANISM 
 
I have used many other tools such as ethereal, tcpdump, and snort to analyze traffic, 
but I have only included specific sample traffic to save space. 
 
C:\Snort\bin>snort -r c:\gcia\2003.12.15.12 -l c:\snort\log -y -d -e -v 
Options: 
-r: Read and process TCPDUMP file 
-l: Log to directory 
-y: Include year in Timestamp 
-d: Dump Application Layer 
-e: Dump Layer 2 information 
-v: Be verbose 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
11/18/03-14:21:22.170999 0:3:FF:DF:95:84 -> 0:50:56:40:0:6D type:0x800 len:0x4B 
10.10.10.228:35886 -> 172.20.201.135:21 TCP TTL:64 TOS:0x0 ID:17679 IpLen:20 DgmLen:61 DF 
***AP*** Seq: 0x9BDB2845  Ack: 0x65F59542  Win: 0x16D0  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 355664 2547425  
55 53 45 52 20 66 74 70 0A                       USER ftp. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
11/18/03-14:21:22.183677 0:50:56:40:0:6D -> 0:3:FF:DF:95:84 type:0x800 
len:0x42 
172.20.201.135:21 -> 10.10.10.228:35886 TCP TTL:62 TOS:0x10 ID:43257 IpLen:20 DgmLen:52 DF 
***A**** Seq: 0x65F59542  Ack: 0x9BDB284E  Win: 0x7D78  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 2547426 355664  
 
 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 18 

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
 
11/18/03-14:21:22.184793 0:50:56:40:0:6D -> 0:3:FF:DF:95:84 type:0x800 
len:0x86 
172.20.201.135:21 -> 10.10.10.228:35886 TCP TTL:62 TOS:0x10 ID:43258 IpLen:20 DgmLen:120 DF 
***AP*** Seq: 0x65F59542  Ack: 0x9BDB284E  Win: 0x7D78  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 2547426 355664 
33 33 31 20 47 75 65 73 74 20 6C 6F 67 69 6E 20  331 Guest login  
6F 6B 2C 20 73 65 6E 64 20 79 6F 75 72 20        ok, send your  
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
11/18/03-14:21:22.187651 0:3:FF:DF:95:84 -> 0:50:56:40:0:6D type:0x800 len:0x50 
10.10.10.228:35886 -> 172.20.201.135:21 TCP TTL:64 TOS:0x0 ID:17680 IpLen:20 DgmLen:66 DF 
***AP*** Seq: 0x9BDB284E  Ack: 0x65F59586  Win: 0x16D0  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 355665 2547426  
50 41 53 53 20 6D 6F 7A 69 6C 6C 61 40 0A        PASS mozilla@. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
11/18/03-14:21:22.198227 0:50:56:40:0:6D -> 0:3:FF:DF:95:84 type:0x800 
len:0x72 
172.20.201.135:21 -> 10.10.10.228:35886 TCP TTL:62 TOS:0x10 ID:43259 IpLen:20 DgmLen:100 DF 
***AP*** Seq: 0x65F59586  Ack: 0x9BDB285C  Win: 0x7D78  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 2547428 355665 
32 33 30 20 47 75 65 73 74 20 6C 6F 67 69 6E 20  230 Guest login  
6F 6B 2C 20 61 63 63 65 73 73 20 72 65 73        ok, access res 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
The attacker was successfully logged in to the target FTP server with a guest login. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
11/18/03-14:21:22.209882 0:3:FF:DF:95:84 -> 0:50:56:40:0:6D type:0x800 len:0x5A 
10.10.10.228:35886 -> 172.20.201.135:21 TCP TTL:64 TOS:0x0 ID:17681 IpLen:20 DgmLen:76 DF 
***AP*** Seq: 0x9BDB285C  Ack: 0x65F595B6  Win: 0x16D0  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 355668 2547428 
53 49 54 45 20 45 58 45 43 20 25 30 32 30 64 7C  SITE EXEC %020d| 
25 2E 66 25 2E 66 7C 0A                          %.f%.f|. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
11/18/03-14:21:22.215740 0:50:56:40:0:6D -> 0:3:FF:DF:95:84 type:0x800 
len:0x61 
172.20.201.135:21 -> 10.10.10.228:35886 TCP TTL:62 TOS:0x10 ID:43260 IpLen:20 DgmLen:83 DF 
***AP*** Seq: 0x65F595B6  Ack: 0x9BDB2874  Win: 0x7D78  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 2547430 355668 
32 30 30 2D 30 30 30 30 30 30 30 30 30 30 30 30  200-000000000000 
30 30 30 30 30 30 34 39 7C 30 2D 32 7C 0D        00000049|0-2|. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
 
After successfully logging in as "guest,” The attacker was issuing SITE EXEC 
command, trying to exploit a vulnerability in FTP server (wuftp version 2.6.0 or earlier). 
The above traffic has generated snort alerts "FTP site exec" (ALERT 1). 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 19 

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
11/18/03-14:21:28.091131 0:3:FF:DF:95:84 -> 0:50:56:40:0:6D type:0x800 
len:0x46 
10.10.10.228:35886 -> 172.20.201.135:21 TCP TTL:64 TOS:0x0 ID:17786 IpLen:20 DgmLen:56 DF 
***AP*** Seq: 0x9BDB6943  Ack: 0x65F61C96  Win: 0x518A  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 356238 2547819  
69 64 3B 0A                                      id;.  
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
11/18/03-14:21:28.106376 0:50:56:40:0:6D -> 0:3:FF:DF:95:84 type:0x800 
len:0x76 
172.20.201.135:21 -> 10.10.10.228:35886 TCP TTL:62 TOS:0x10 ID:43361 IpLen:20 DgmLen:104 DF 
***AP*** Seq: 0x65F61C96  Ack: 0x9BDB6947  Win: 0x7D78  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 2548019 356238 
75 69 64 3D 30 28 72 6F 6F 74 29 20 67 69 64 3D  uid=0(root) gid= 
30 28 72 6F 6F 74 29 20 65 67 69 64 3D 35        0(root) egid=5 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
11/18/03-14:21:28.107735 0:3:FF:DF:95:84 -> 0:50:56:40:0:6D type:0x800 
len:0x42 
10.10.10.228:35886 -> 172.20.201.135:21 TCP TTL:64 TOS:0x0 ID:17787 IpLen:20 DgmLen:52 DF 
***A**** Seq: 0x9BDB6947  Ack: 0x65F61CCA  Win: 0x518A  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 356239 2548019  
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
11/18/03-14:21:30.222374 0:3:FF:DF:95:84 -> 0:50:56:40:0:6D type:0x800 len:0x4B 
10.10.10.228:35886 -> 172.20.201.135:21 TCP TTL:64 TOS:0x0 ID:17788 IpLen:20 DgmLen:61 DF 
***AP*** Seq: 0x9BDB6947  Ack: 0x65F61CCA  Win: 0x518A  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 356444 2548019  
75 6E 61 6D 65 20 2D 61 0A                       uname -a. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
11/18/03-14:21:30.237991 0:50:56:40:0:6D -> 0:3:FF:DF:95:84 type:0x800 
len:0xA5 
172.20.201.135:21 -> 10.10.10.228:35886 TCP TTL:62 TOS:0x10 ID:43362 IpLen:20 DgmLen:151 DF 
***AP*** Seq: 0x65F61CCA  Ack: 0x9BDB6950  Win: 0x7D78  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 2548231 356444 4C 69 6E 75 78 20 31 37 32 2D 
32 30 2D 32 30 31  Linux 172-20-201 
2D 31 33 35 2E 4D 53 59 2D 50 4F 50 2E 49        -135.MSY-POP.I 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
11/18/03-14:21:30.249665 0:3:FF:DF:95:84 -> 0:50:56:40:0:6D type:0x800 
len:0x42 
10.10.10.228:35886 -> 172.20.201.135:21 TCP TTL:64 TOS:0x0 ID:17789 IpLen:20 DgmLen:52 DF 
***A**** Seq: 0x9BDB6950  Ack: 0x65F61D2D  Win: 0x518A  TcpLen: 32 TCP Options (3) => NOP NOP 
TS: 356447 2548231  
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
Next, the attacker issued the id UNIX command.  The target has replied with a 
uid=0(root). Looking at the data in packets, uid=0(root) has set a snort trigger for 
"ATTACK-RESPONSES id check returned root".  The uid=0 indicates super user rights 
on the UNIX system, which verifies that the attacker has root access on the target 
machine. Then the attacker issued the additional command "uname -a" to find out more 
information about the target host.  At this point, the attacker was able to successfully 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 20 

exploit SITE EXEC vulnerability on target ftp server and able to gain root access to the 
target system. 
 
6) CORRELATIONS 
 
CVE, 
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0573 
 
Security focus, 
http://www.securityfocus.com/bid/1387 and 
http://www.securityfocus.com/bid/2241/exploit/ 
 
ISS, 
http://xforce.iss.net/xforce/xfdb/4773 
 
This kind of attack was referenced in a GCIA practical by Chris Compton. 
 http://cert.uni-stuttgart.de/archive/intrusions/2004/01/msg00020.html 
 
7) EVIDENCE OF ACTIVE TARGETING 
 
C:\>windump -r c:\gcia\2003.12.15.12 -v host 10.10.10.228 and host 
172.20.201.135  
 
14:20:47.664964 IP (tos 0x0, ttl 39, id 59086, len 60) 10.10.10.228.43995 > 172.20.201.135.21: SE [tcp 
sum ok] 2174667858:2174667858(0) win 4096 <wscale 10,nop,mss 265,timestamp 
1061109567 0,eol> 
14:20:47.665323 IP (tos 0x0, ttl 39, id 32587, len 60) 10.10.10.228.43996 > 172.20.201.135.21: . [tcp 
sum ok] win 4096 <wscale 10,nop,mss 265,timestamp 1061109567 0,eol> 
14:20:47.665654 IP (tos 0x0, ttl 39, id 13155, len 60) 10.10.10.228.43997 > 172.20.201.135.21: SFP [tcp 
sum ok] 2174667858:2174667858(0) win 4096 urg 0 <wscale 10,nop,mss 265,timestamp1061109567 
0,eol>  
14:20:47.665850 IP (tos 0x0, ttl 39, id 6315, len 60) 10.10.10.228.43998 > 172.20.201.135.21: . [tcp sum 
ok] ack 0 win 4096 <wscale 10,nop,mss 265,timestamp 1061109567 0,eol> 
14:20:47.666083 IP (tos 0x0, ttl 39, id 27019, len 60) 10.10.10.228.43999 > 172.20.201.135.1: S [tcp sum 
ok] 2174667858:2174667858(0) win 4096 <wscale 10,nop,mss 265,timestamp 
1061109567 0,eol> 
14:20:47.666274 IP (tos 0x0, ttl 39, id 30187, len 60) 10.10.10.228.44000 > 172.20.201.135.1: . [tcp sum 
ok] ack 0 win 4096 <wscale 10,nop,mss 265,timestamp 1061109567 0,eol> 
14:20:47.666726 IP (tos 0x0, ttl 39, id 30287, len 60) 10.10.10.228.44001 > 172.20.201.135.1: FP [tcp 
sum ok] 2174667858:2174667858(0) win 4096 urg 0 <wscale 10,nop,mss 265,timestamp 
1061109567 0,eol> 
14:20:47.667355 IP (tos 0x0, ttl 61, id 10393, len 328) 10.10.10.228.43988 > 172.20.201.135.1: udp 300  
14:20:47.673122 IP (tos 0x0, ttl 62, id 43148, len 60) 172.20.201.135.21 > 10.10.10.228.43995: S [tcp 
sum ok] 1675250557:1675250557(0) ack 2174667859 win 32595 <mss 265,nop,nop,timestamp 2543976 
1061109567,nop,wscale 0> (DF)  
14:20:47.674000 IP (tos 0x0, ttl 64, id 0, len 40) 10.10.10.228.43995 > 172.20.201.135.21: R [tcp sum ok] 
2174667859:2174667859(0) win 0 (DF)  
14:20:47.677190 IP (tos 0x0, ttl 62, id 43149, len 60) 172.20.201.135.21 > 10.10.10.228.43997: S [tcp 
sum ok] 1672795107:1672795107(0) ack 2174667859 win 32595 <mss 265, 
 ......... 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 21 

As you can see in the above traffic, the attacking host was actively targeting many 
hosts.  Also notice that the attacker has done a comprehensive scan on the target 
system. 
 
8) SEVERITY 
 
To calculate the severity of these alerts I have followed the guidelines available at: 
http://www.giac.org/GCIA_assignment.php. 
 
Severity= (criticality+lethality)-(system countermeasures + network 
Countermeasures) 
 
Criticality: measure of how critical the target system is. 
 FTP is involved in file transfer and users may be using for transferring critical files 
with customers.  The guest access to the FTP 
Sever should not be allowed anyway.   This exploit gives attackers 
Root access so attackers may use this system to exploit other systems. 
Criticality=4 
 
Lethality: how severe the damage to targeted system would be if attack occurred. 
 The attacker has root super user access to the system.  At this point attacker can 
change any system files to gain more access or can download a backdoor to the 
system. 
Lethality=5 
 
System Countermeasures: measure of the strength of defensive mechanisms in place 
on host itself. 
 This is a vulnerability that exists in old versions of wuFTP 2.6.0 or earlier which 
comes with older Linux distributions.   
System Countermeasures=1 
 
Network Counter Measures: measure of defensive mechanisms in place on network 
such as firewall. 
       The guest access to ftp server should not be allowed to the ftp server. I do not see 
any evidence of a firewall present. 
Network Counter Measures=1 
Severity= (4+5)-(1+1) = 7 
 
This alert needs immediate attention. Need to block any traffic from this host at the 
firewall until further investigation. 
 
9) DEFENSIVE RECOMMENDATION 
 
Disable FTP service or upgrade ftpd to newer version. 
FTP transfers user credentials in clear text anyway, so move to a different solution such 
as SFTP or SSL/TLS supported ftp servers.  The host hardening and hot fix is really 
important in the event, if you really have to run FTP on server. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 22 

 
10) Multiple choice question 
 
Q: Which internet worm were targets common vulnerabilities in WuFTP on Linux 
systems? 
 
a) Adore Worm 
b) Poison box 
c) Code red 
d) Nachi worm 
 
Ans: a  
 
 
DETECT: 2 PORT 0 TRAFFICS  
(Posted on: 1/13/2004) 
1) SOURCE OF TRACE: 
 
The Raw tcpdump logs were obtained from http://www.incident.org/logs/raw website. 
The archive file 2003.12.15.tgz contained many days worth of logs files, but 
2003.12.15.7 is used for this analysis. The IP address in the log files has been change 
to hide the real identity. 
 I have used windump, to find out information about the unknown network topology. 
 
C:\>windump -r c:\gcia\2003.12.15.7 -e -v (host 10.10.10.141 and (dst port 0)) or (host 
172.20.11.2 and (src port 0)) 
 
14:09:20.939976 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 74: IP (tos 0x0, ttl 64, id 58896, len 60) 
10.10.10.141.34054 > 172.20.11.2.0: S [tcp sum ok] 3321649537:3321649537(0) win 5840 <mss 
1460,sackOK,timestamp 49041 0,nop,wscale 0> (DF) 
14:09:20.984175 0:50:56:40:0:6d 0:d0:59:c6:5e:14 ip 60: IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 
10.10.10.141.34054: R [tcp sum ok] 0:0(0) ack 3321649538 win 0 
14:09:22.810167 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 60: IP (tos 0x0, ttl 255, id 47626, len 40) 
10.10.10.141.17012 > 172.20.11.2.0: S [tcp sum ok] 3868:3868(0) win 512 
14:09:22.820291 0:50:56:40:0:6d 0:d0:59:c6:5e:14 ip 60: IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 
10.10.10.141.17012: R [tcp sum ok] 0:0(0) ack 3869 win 0 (DF) 
14:09:22.823380 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 60: IP (tos 0x0, ttl 255, id 47626, len 40) 
10.10.10.141.11113 > 172.20.11.2.0: S [tcp sum ok] 3868:3868(0) win 512 
14:09:22.829898 0:50:56:40:0:6d 0:d0:59:c6:5e:14 ip 60: IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 
10.10.10.141.11113: R [tcp sum ok] 0:0(0) ack 3869 win 0 (DF) 
14:09:22.830291 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 60: IP (tos 0x0, ttl 255, id 47626, len 40) 
10.10.10.141.25218 > 172.20.11.2.0: S [tcp sum ok] 3868:3868(0) win 512 
14:09:22.840616 0:50:56:40:0:6d 0:d0:59:c6:5e:14 ip 60: IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 
10.10.10.141.25218: R [tcp sum ok] 0:0(0) ack 3869 win 0 (DF) 
14:09:22.844382 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 60: IP (tos 0x0, ttl 255, id 47626, len 40) 
10.10.10.141.45474 > 172.20.11.2.0: S [tcp sum ok] 3868:3868(0) win 512 
14:09:22.888300 0:50:56:40:0:6d 0:d0:59:c6:5e:14 ip 60: IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 
10.10.10.141.45474: R [tcp sum ok] 0:0(0) ack 3869 win 0 (DF) 
14:09:22.888869 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 60: IP (tos 0x0, ttl 255, id 47626, len 40) 
10.10.10.141.63176 > 172.20.11.2.0: S [tcp sum ok] 3868:3868(0) win 512 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 23 

14:09:22.898549 0:50:56:40:0:6d 0:d0:59:c6:5e:14 ip 60: IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 
10.10.10.141.63176: R [tcp sum ok] 0:0(0) ack 3869 win 0 (DF) 
14:09:22.899069 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 60: IP (tos 0x0, ttl 255, id 47626, len 40) 
10.10.10.141.62917 > 172.20.11.2.0: S [tcp sum ok] 3868:3868(0) win 512 
14:09:22.939627 0:50:56:40:0:6d 0:d0:59:c6:5e:14 ip 60: IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 
10.10.10.141.62917: R [tcp sum ok] 0:0(0) ack 3869 win 0 (DF) 
 
 
0:d0:59:c6:5e:14 : Ambit micro system 
0:50:56:40:0:6d  : VmWare inc. 
 
I have used the website http://standards.ieee.org/regauth/oui/index.shtml  to find the 
network card manufacturer for this host. 
 
Speculated Network Topology: 
 
 (A)          (B) 
Attacker (10.10.10.141) |--------|--------Gateway (10.10.10.1)------------| Target Host 
(172.20.11.2)   IDS 
     
NOTE:  
I have used 'A' for Attacker host and 'B' for target host for our discussion. 
 
 
2) DETECT WAS GENERATED BY: 
 
Alerts were generated by snort (windows version) 2.1.0 Build 10 with latest rule 
available on Jan. 6 at snort.org. 
C:\snort\bin>snort -r c:\gcia\2003.12.15.7 -c c:\snort\etc\snort.conf -A full -l c:\snort\log -
X -y -k none 
Options Details: 
-r = Read tcpdump file  
-c = rule file specified 
-A = set Alert mode to full 
-X = Dump raw packet data starting at link layer 
-y = include year in timestamp in the alerts and log files 
-k = no checksum 
 
Here is some example of triggers on traffic: 
---------------------------------------------------------------------------------------------- 
[**] [1:524:7] BAD-TRAFFIC tcp port 0 traffic [**] 
[Classification: Misc activity] [Priority: 3]  
11/18/03-14:09:20.939976 10.10.10.141:34054 -> 172.20.11.2:0 
TCP TTL:64 TOS:0x0 ID:58896 IpLen:20 DgmLen:60 DF 
******S* Seq: 0xC5FC5981  Ack: 0x0  Win: 0x16D0  TcpLen: 40 
TCP Options (5) => MSS: 1460 SackOK TS: 49041 0 NOP WS: 0  
 
[**] [1:524:7] BAD-TRAFFIC tcp port 0 traffic [**] 
[Classification: Misc activity] [Priority: 3]  
11/18/03-14:09:20.984175 172.20.11.2:0 -> 10.10.10.141:34054 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 24 

TCP TTL:62 TOS:0x0 ID:0 IpLen:20 DgmLen:40 DF 
***A*R** Seq: 0x0  Ack: 0xC5FC5982  Win: 0x0  TcpLen: 20 
 
[**] [1:524:7] BAD-TRAFFIC tcp port 0 traffic [**] 
[Classification: Misc activity] [Priority: 3]  
11/18/03-14:09:22.810167 10.10.10.141:17012 -> 172.20.11.2:0 
TCP TTL:255 TOS:0x0 ID:47626 IpLen:20 DgmLen:40 
******S* Seq: 0xF1C  Ack: 0x0  Win: 0x200  TcpLen: 20 
 
[**] [1:524:7] BAD-TRAFFIC tcp port 0 traffic [**] 
[Classification: Misc activity] [Priority: 3]  
11/18/03-14:09:22.820291 172.20.11.2:0 -> 10.10.10.141:17012 
TCP TTL:62 TOS:0x0 ID:0 IpLen:20 DgmLen:40 DF 
***A*R** Seq: 0x0  Ack: 0xF1D  Win: 0x0  TcpLen: 20 
 
----------------------------------------------------------------------------------------------- 
The Snort rules which triggered this alert are as follow: 
 
alert tcp $EXTERNAL_NET any <> $HOME_NET 0 (msg:"BAD-TRAFFIC tcp port 0 
traffic"; stateless; classtype:misc-activity; sid:524; rev:7;) 
 
Alerts were triggered based upon destination port 0. In IP Communication port 0 is 
reserved so it should not be used for any normal flow of traffic. All operation systems 
react differently for traffic received on port 0.  It is dependent upon the operation 
system.  Some operating systems respond with RST packets and some do not respond 
to port 0 traffic.  Attacker can utilize this behavior for fingerprinting the OS. My first 
wimdump data shows that the attacker has made 7 connection attempts to the target 
host within 2 seconds. I can also see response traffic (RST, ACK) from the target host 
which means the target host appears to be live. 
 
 
3) PROBABILITY THE SOURCE WAS SPOOFED 
 
I have used windump to analyze Layer 2 frames. 
 
c:\windump -r c:\gcia\2003.12.15.7 -e -v host 10.10.10.141 
 
14:08:43.858956 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 74: IP (tos 0x0, ttl 64, id 3036, len 60) 
10.10.10.141.32794 > 172.20.11.2.1: S [tcp sum ok] 3291658953:3291658953(0) win 5840 <mss 
1460,sackOK,timestamp 45333 0,nop,wscale 0> (DF) 
14:08:43.859010 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 74: IP (tos 0x0, ttl 64, id 7702, len 60) 
10.10.10.141.32795 > 172.20.11.2.2: S [tcp sum ok] 3287199491:3287199491(0) win 5840 <mss 
1460,sackOK,timestamp 45333 0,nop,wscale 0> (DF) 
14:08:43.859013 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 74: IP (tos 0x0, ttl 64, id 51986, len 60) 
10.10.10.141.32796 > 172.20.11.2.3: S [tcp sum ok] 3281680903:3281680903(0) win 5840 <mss 
1460,sackOK,timestamp 45333 0,nop,wscale 0> (DF) 
14:08:43.859061 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 74: IP (tos 0x0, ttl 64, id 49220, len 60) 
10.10.10.141.32797 > 172.20.11.2.5: S [tcp sum ok] 3287576913:3287576913(0) win 5840 <mss 
1460,sackOK,timestamp 45333 0,nop,wscale 0> (DF) 
14:08:43.859096 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 74: IP (tos 0x0, ttl 64, id 9261, len 60) 
10.10.10.141.32798 > 172.20.11.2.7: S [tcp sum ok] 3284374840:3284374840(0) win 5840 <mss 
1460,sackOK,timestamp 45333 0,nop,wscale 0> (DF) 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 25 

.... 
14:09:20.984175 0:50:56:40:0:6d 0:d0:59:c6:5e:14 ip 60: IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 
10.10.10.141.34054: R [tcp sum ok] 0:0(0) ack 3321649538 win 0 
14:09:22.810167 0:d0:59:c6:5e:14 0:50:56:40:0:6d ip 60: IP (tos 0x0, ttl 255, id 47626, len 40) 
10.10.10.141.17012 > 172.20.11.2.0: S [tcp sum ok] 3868:3868(0) win 512 
 
The attacker has initiated many different connections to other hosts on the network. The 
Ethernet address in all connections was the same IP address.  You can also mark ttl 
values (64), which is the same for all connections.  That means the IP address does not 
look to be spoofed. Also if the attacker wants to fingerprint the target host then he has to 
wait for any response traffic unless the attacker and the target are on the same network.  
If the attacker is on the same network then he can sniff traffic for responses. 
 
4) ATTACK DESCRIPTION 
 The port 0 is reserved for special use as defined in RFC 1700.  Any traffic should 
not flow to port 0.  If you see any traffic from or destined to port 0 then it is not a normal 
activity.  Most operating systems behave differently to port 0 traffic so the system could 
be fingerprinted. 
 Here is an example I have found at 
http://www.securiteam.com/securityreviews/5XP0Q2AAKS.html , Article by Ste Jones. 
Fingerprint OpenBSD 3.2/3.3 
P1(Resp=Y%Flags=AR) 
P2(Resp=Y%Flags=AR) 
P3(Resp=N) 
P4(Resp=Y%Flags=AR) 
P5(Resp=N) 
P6(Resp=N) 
P7(Resp=Y) 
 
Notice that OpenBSD has a feature/bug whereby it does not allow incoming 
connections from source port 0 (test P3) 
 
Fingerprint Linux 
P1(Resp=Y%Flags=AR) 
P2(Resp=Y%Flags=AR) 
P3(Resp=Y%Flags=AS) 
P4(Resp=Y%Flags=AR) 
P5(Resp=Y) 
P6(Resp=Y) 
P7(Resp=Y) 
 
Unfortunately, both MS Windows 2000 and Linux have the same port 0 fingerprint, 
replying to all 7 tests. 
 
 
 
 
______________________________________________________________________ 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 26 

I have used windump for further analysis: 
 
C:\>windump -r c:\gcia\2003.12.15.7 -v (host 10.10.10.141 and (dst port 0)) or (host 
172.20.11.2 and (src port 0)) 
 
14:09:20.939976 IP (tos 0x0, ttl 64, id 58896, len 60) 10.10.10.141.34054 > 172.20.11.2.0: S [tcp sum ok] 
3321649537:3321649537(0) win 5840 <mss 1460,sackOK,timestamp 49041 0,nop,wscale 0> (DF) 
14:09:20.984175 IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 10.10.10.141.34054: R [tcp sum ok] 
0:0(0) ack 3321649538 win 0 (DF) 
14:09:22.810167 IP (tos 0x0, ttl 255, id 47626, len 40) 10.10.10.141.17012 > 172.20.11.2.0: S [tcp sum 
ok] 3868:3868(0) win 512 
14:09:22.820291 IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 10.10.10.141.17012: R [tcp sum ok] 
0:0(0) ack 3869 win 0 (DF) 
14:09:22.823380 IP (tos 0x0, ttl 255, id 47626, len 40) 10.10.10.141.11113 > 172.20.11.2.0: S [tcp sum 
ok] 3868:3868(0) win 512 
14:09:22.829898 IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 10.10.10.141.11113: R [tcp sum ok] 
0:0(0) ack 3869 win 0 (DF) 
14:09:22.830291 IP (tos 0x0, ttl 255, id 47626, len 40) 10.10.10.141.25218 > 172.20.11.2.0: S [tcp sum 
ok] 3868:3868(0) win 512 
14:09:22.840616 IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 10.10.10.141.25218: R [tcp sum ok] 
0:0(0) ack 3869 win 0 (DF) 
14:09:22.844382 IP (tos 0x0, ttl 255, id 47626, len 40) 10.10.10.141.45474 > 172.20.11.2.0: S [tcp sum 
ok] 3868:3868(0) win 512 
14:09:22.888300 IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 10.10.10.141.45474: R [tcp sum ok] 
0:0(0) ack 3869 win 0 (DF) 
14:09:22.888869 IP (tos 0x0, ttl 255, id 47626, len 40) 10.10.10.141.63176 > 172.20.11.2.0: S [tcp sum 
ok] 3868:3868(0) win 512 
14:09:22.898549 IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 10.10.10.141.63176: R [tcp sum ok] 
0:0(0) ack 3869 win 0 (DF) 
14:09:22.899069 IP (tos 0x0, ttl 255, id 47626, len 40) 10.10.10.141.62917 > 172.20.11.2.0: S [tcp sum 
ok] 3868:3868(0) win 512 
14:09:22.939627 IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 10.10.10.141.62917: R [tcp sum ok] 
0:0(0) ack 3869 win 0 (DF) 
 
 The attacker has sent 7 packets destined to port 0.  Please mark sequence number 
and IP id values in the above traffic excluding the first connection. The same values for 
sequence number and id make me think this traffic is crafted with some tool such as 
Hping or gobbler. First thought might be that this is the same connection attempt 
because it has the same sequence numbers, but it is not.  The Source port is changed 
for all other connections.  I can also see that the target system has responded with 
RST, ACK packets. 
 
Here is detail packet information. 
 
C:\snort\bin>snort -r c:\gcia\2003.12.15.7 -c c:\snort\etc\snort.conf -A full -l c:\snort\log -
X -y -k none 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 27 

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
[**] BAD-TRAFFIC tcp port 0 traffic [**] 
11/18/03-14:09:22.823380 10.10.10.141:11113 -> 172.20.11.2:0 
TCP TTL:255 TOS:0x0 ID:47626 IpLen:20 DgmLen:40 
******S* Seq: 0xF1C  Ack: 0x0  Win: 0x200  TcpLen: 20 
0x0000: 00 50 56 40 00 6D 00 D0 59 C6 5E 14 08 00 45 00  .PV@.m..Y.^...E. 
0x0010: 00 28 BA 0A 00 00 FF 06 36 18 0A 0A 0A 8D AC 14  .(......6....... 
0x0020: 0B 02 2B 69 00 00 00 00 0F 1C 00 00 00 00 50 02  ..+i..........P. 
0x0030: 02 00 A7 B0 00 00 00 00 00 00 00 00              ............ 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
[**] BAD-TRAFFIC tcp port 0 traffic [**] 
11/18/03-14:09:22.829898 172.20.11.2:0 -> 10.10.10.141:11113 
TCP TTL:62 TOS:0x0 ID:0 IpLen:20 DgmLen:40 DF 
***A*R** Seq: 0x0  Ack: 0xF1D  Win: 0x0  TcpLen: 20 
0x0000: 00 D0 59 C6 5E 14 00 50 56 40 00 6D 08 00 45 00  ..Y.^..PV@.m..E. 
0x0010: 00 28 00 00 40 00 3E 06 71 23 AC 14 0B 02 0A 0A  .(..@.>.q#...... 
0x0020: 0A 8D 00 00 2B 69 00 00 00 00 00 00 0F 1D 50 14  ....+i........P. 
0x0030: 00 00 A9 9D 00 00 00 00 00 00 00 00              ............ 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
There is no payload in the data.  
 
5) ATTACK MECHANISM 
After all these details I can conclude that the attacker has definitely crafted these 
packets by tools such as Hping or gobbler. Hping is a very popular tool available to craft 
packets.  By default Hping2 sends packets to target port 0 unless it is explicitly specified 
with -p <proto>option. 
The hping application is available at website http://www.hping.org.  The Hping 2.0 
Release Candidate 2 is available now. I believe the following command will reproduce 
same alert as above. 
 
# Hping 172.20.11.X -S -M 3868 -t 255 -N 47626 -p 0 -w 512 -d 40 -y 
 
Options used: 
-S set SYN flag 
-M set TCP Sequence Number 
-t set ttl values 
-N set ID 
-p set destination port 
-w set Window size 
-d set data 
-y set DF (don't frag. bit) 
For more options please refer to man page at http://www.hping.org. The Hping by 
default set destination port to 0 unless you specified with -p <port> option. 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 28 

6) CORRELATIONS 
 
I have found the same detection at website http://cert.uni-
stuttgart.de/archive/intrusions/2003/09/msg00030.html.  This identifies Hping as a tool 
used for this kind of alert. The author also discusses use of Perl and RawIP module to 
craft packets. I agree with him too.  It is also possible that the attacker might have 
utilized some kind of Perl script with the RawIP module to craft this kind of traffic. 
Patenaude Patrick has also analyzed the same alert at http://cert.uni-
stuttgart.de/archive/intrusions/2003/04/msg00074.html.  In his article he is also leaning 
towards automated tools such as Hping or Nmap. Nmap also has the capability to scan 
port 0 after version 3.2. 
Edwin Fung has also analyzed the same alert at 
http://www.giac.org/practical/GCIA/Ewen_Fung_GCIA.pdf in his assignment.  He also 
concluded Hping2 as a tool used to craft packets. 
I agree with all of them for this alert. The Hping2 is probably being used for these alerts.  
These days many tools are available for crafting packets but Hping is more popular and 
easy to use. I have also found that Checkpoint firewall has vulnerability for UDP port 0 
traffic as discussed in http://www.securiteam.com/exploits/2UUQCRFS0O.html.  
 
7) EVIDENCE OF ACTIVE TARGETING 
 
14:09:22.810167 IP (tos 0x0, ttl 255, id 47626, len 40) 10.10.10.141.17012 > 172.20.11.2.0: S [tcp sum 
ok] 3868:3868(0) win 512 
14:09:22.820291 IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 10.10.10.141.17012: R [tcp sum ok] 
0:0(0) ack 3869 win 0 (DF) 
14:09:22.823380 IP (tos 0x0, ttl 255, id 47626, len 40) 10.10.10.141.11113 > 172.20.11.2.0: S [tcp sum 
ok] 3868:3868(0) win 512 
14:09:22.829898 IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 10.10.10.141.11113: R [tcp sum ok] 
0:0(0) ack 3869 win 0 (DF) 
14:09:22.830291 IP (tos 0x0, ttl 255, id 47626, len 40) 10.10.10.141.25218 > 172.20.11.2.0: S [tcp sum 
ok] 3868:3868(0) win 512 
14:09:22.840616 IP (tos 0x0, ttl 62, id 0, len 40) 172.20.11.2.0 > 10.10.10.141.25218: R [tcp sum ok] 
0:0(0) ack 3869 win 0 (DF) 
 
 
After look at above traffic it is certain that this is an active fingerprinting attempt. In a 
traffic the ttl values and sequence number was staying same and also target host was 
reacting for those connections with RST, ACK response. 
 
8) SEVERITY 
 
To calculate severity of these alerts I have followed the following guidelines which are 
available at http://www.giac.org/GCIA_assignment.php. 
 
Severity= (criticality+lethality)-(system countermeasures + network 
countermeasures) 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 29 

Criticality: measure of how critical the target system is. 
  I do not have any more information on the target host about how important this 
is.  Additionally port 0 traffic should be filtered for any important host anyway. But in this 
case the host is responding with RST packets which means the filtering device did not 
exist or rules were not set up to filter port 0 traffic. 
Criticality = 2 
Lethality: how severe the damage to targeted system would be if attack occurred. 
 This looks to be that the attacker is doing reconnaissance at this point. It is safe 
for me to assume at this point 2, but in reality this type of scan is common so we can 
give it a 1. 
System Countermeasures: measure of the strength of defensive mechanisms in place 
on host itself. 
 The target is replying with RST, ACK packets. This is normal behavior for most 
systems. There is no payload in the data so I can not tell any application was listening 
on port 0.  
System countermeasures= 3 
Network Counter Measures: measure of defensive mechanisms in place on network 
such as firewall. 
       As I stated before, there does not seem to be any filtering device in existence on 
this network. 
Network countermeasures= 2 
 
Severity= (2+1)-(3+2) = -2 
 
This rating does not require any further investigation at this stage. 
9) DEFENSE RECOMMENDATIONS 
 
Most firewalls will drop port 0 traffic with default drop rules. But the access list on the 
router will need to be set up to block any traffic which comes to port 0. 
 
10) MULTIPLE CHOICE QUESTION 
 
 [root@localhost root]# hping -a 172.16.20.1 -S 10.10.8.142 
HPING 10.10.8.142 (eth0 10.10.8.142): S set, 40 headers + 0 data bytes 
 
--- 10.10.8.142 hping statistic --- 
19 packets remitted, 0 packets received, 100% packet loss 
Round-trip min/avg/max = 0.0/0.0/0.0 ms 
 
Why do we not see any reply from target host which is on the same network when no 
firewall exists between them? 
 
A) Command is wrong. 
B) With -a option we told Hping to spoof the source address 
C) Because the host is on the same broadcast domain 
 
Ans: B 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 30 

QUESTIONS & ANSWERS: 
 
From Joe Bowling (joebowling@comcast.net) Ask multiple questions in several 
sections: 
Q1) can you please describe how the differ OS respond to such packets? 
ANS: Most system react with reset except some version of SUN OS (? I am not sure 
which version) that do not respond. 
Q2) I am not sure how the above (spoofing section)statement confirms that the 
Packets are/aren’t spoofed.....you may want to mention the connection type nature of 
TCP. Also with tools such as Hping it could be possible to do partial OS fingerprinting 
off of the silent 3rd party (tangent I know but FYI) 
ANS: You are also right. It is hard to guess IP address was spoofed or not. I can see 
other three-way handshake traffic that’s why I am gassing IP address not spoofed. But it 
also possible that might be a 3rd host involved in this and craft packets with attackers 
MAC and IP Address. 
Q3) Have you downloaded hping and tried to recreate the results? The seq numbers in 
the traffic mentioned the sections prior show changing seq numbers? 
ANS: The packet which has trigger rules had a same sequence number and IP ID 
number except for first packet. After I analyze pattern in detail I realize that these 
packets may not be crafted with Hping. The Hping always increment sequence number 
by one and in this case sequence number was constant. This smell like libnet script. 
The attacker might have used custom libnet script or automate nemesis with script. I 
have download nemesis and I was able to recreate patterns. 
 
nemesis tcp -H 00:d0:59:c6:5e:14 -M 00:50:56:40:00:6d -t 0x0 -T 255 -I 47626 -S 
10.10.10.141 -D 172.20.11.2 -x 17012 -y 0 -s 3868 -w 512 -fS -a 0 
Options are as follow: 
-H : Source MAC Address 
-M : Destination MAC Address 
-t : TOS 
-T : ttl 
-I : IP ID 
-S : Source IP 
-D : Destination IP 
-x : Source Port 
-y : Destination Port 
-s : seq. number 
-w : Window size 
-fs: SYN packet 
-a : ack number 
 
I was able to make batch file to run this command and recreate same traffic. It also easy 
to automate nemesis with vb or Perl script. 
Q4) So you think its ok for this guy to scan (or as you believe fingerprint) hosts in the 
internal network??? I suggest we get a firewall to block such traffic in to begin with and 
would highly consider blocking the offending IP temporarily...Dshield show 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 31 

Anything on offenders IP? 
ANS: In this alerts appears to be a all local network that setup on Vmware because both 
are private IP address 10.10.x and 172.20.X . In this case I assume that this is local 
network and administrator may be scanning for security testing. In reality also I might be 
block that IP address until further analyze. 
From Johnny Wong, Ask Multiple questions in several sections: 
Q5) If you look at the rule, it does not trigger just on destination port alone. 
The "<>" means 2-way, so a source port of 0 might also trigger. 
ANS: The snort rules should be triggered for either source or destination port 0 traffic. 
The port 0 traffic in either direction is not normal. 
 
 
DETECT: 3 UDP Scan by ISS  
 
1) SOURCE OF TRACE 
 
The Raw tcpdump logs were obtained from http://www.incident.org/logs/raw website.  
The archive file 2003.12.15.tgz contained several days’ worth of log files, but 
2003.12.15.8 is used for this analysis.  The IP addresses shown in log file have been 
changed from real to hide identity.  By using windump, I have learned information at the 
IP level about the unknown network. 
 
C:\>windump -r c:\2003.12.15.8 -v -e host 10.10.10.165 and host 172.20.201.198 
 
14:10:14.171828 0:3:47:8c:89:c2 0:50:56:40:0:6d ip 61: IP (tos 0x0, ttl 128, 
id 44697, len 47) 10.10.10.165.2022 > 172.20.201.198.236: [udp sum ok] udp 19 
14:10:14.171898 0:3:47:8c:89:c2 0:50:56:40:0:6d ip 61: IP (tos 0x0, ttl 128, 
id 44698, len 47) 10.10.10.165.2022 > 172.20.201.198.237: [udp sum ok] udp 19 
14:10:14.171942 0:3:47:8c:89:c2 0:50:56:40:0:6d ip 61: IP (tos 0x0, ttl 128, 
id 44699, len 47) 10.10.10.165.2022 > 172.20.201.198.238: [udp sum ok] udp 19 
14:10:14.171982 0:3:47:8c:89:c2 0:50:56:40:0:6d ip 61: IP (tos 0x0, ttl 128, 
id 44700, len 47) 10.10.10.165.2022 > 172.20.201.198.239: [udp sum ok] udp 19 
14:10:14.172024 0:3:47:8c:89:c2 0:50:56:40:0:6d ip 61: IP (tos 0x0, ttl 128, 
id 44701, len 47) 10.10.10.165.2022 > 172.20.201.198.240: [udp sum ok] udp 19  
....... 
14:10:14.196294 0:50:56:40:0:6d 0:3:47:8c:89:c2 ip 89: IP (tos 0xc0, ttl 253, 
id 42550, len 75) 172.20.201.198 > 10.10.10.165: icmp 55: 172.20.201.198 udp 
port 236 unreachable for IP (tos 0x0, ttl 126, id 44697, len 47) 
10.10.10.165.2022 > 172.20.201.198.236: [udp sum ok] udp 19 
14:10:14.198843 0:50:56:40:0:6d 0:3:47:8c:89:c2 ip 89: IP (tos 0xc0, ttl 253, 
id 42551, len 75) 172.20.201.198 > 10.10.10.165: icmp 55: 172.20.201.198 udp 
port 237 unreachable for IP (tos 0x0, ttl 126, id 44698, len 47) 
10.10.10.165.2022 > 172.20.201.198.237: [udp sum ok] udp 19 
14:10:14.200707 0:50:56:40:0:6d 0:3:47:8c:89:c2 ip 89: IP (tos 0xc0, ttl 253, 
id 42552, len 75) 172.20.201.198 > 10.10.10.165: icmp 55: 172.20.201.198 udp 
port 238 unreachable for IP (tos 0x0, ttl 126, id 44699, len 47) 
10.10.10.165.2022 > 172.20.201.198.238: [udp sum ok] udp 19 
14:10:14.202078 0:50:56:40:0:6d 0:3:47:8c:89:c2 ip 89: IP (tos 0xc0, ttl 253, 
id 42553, len 75) 172.20.201.198 > 10.10.10.165: icmp 55: 172.20.201.198 udp 
port 239 unreachable for IP (tos 0x0, ttl 126, id 44700, len 47) 
10.10.10.165.2022 > 172.20.201.198.239: [udp sum ok] udp 19 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 32 

14:10:14.202945 0:50:56:40:0:6d 0:3:47:8c:89:c2 ip 89: IP (tos 0xc0, ttl 253, 
id 42554, len 75) 172.20.201.198 > 10.10.10.165: icmp 55: 172.20.201.198 udp 
port 240 unreachable for IP (tos 0x0, ttl 126, id 44701, len 47) 
10.10.10.165.2022 > 172.20.201.198.240: [udp sum ok] udp 19  
............... 
14:10:19.173617 0:3:47:8c:89:c2 0:50:56:40:0:6d ip 61: IP (tos 0x0, ttl 128, 
id 44814, len 47) 10.10.10.165.2022 > 172.20.201.198.2050: [udp sum ok] udp 
19 14:10:19.173680 0:3:47:8c:89:c2 0:50:56:40:0:6d ip 61: IP (tos 0x0, ttl 
128, id 44815, len 47) 10.10.10.165.2022 > 172.20.201.198.2051: [udp sum ok] 
udp 19 
14:10:19.173738 0:3:47:8c:89:c2 0:50:56:40:0:6d ip 61: IP (tos 0x0, ttl 128, 
id 44816, len 47) 10.10.10.165.2022 > 172.20.201.198.2052: [udp sum ok] udp 
19 
14:10:19.173779 0:3:47:8c:89:c2 0:50:56:40:0:6d ip 61: IP (tos 0x0, ttl 128, 
id 44817, len 47) 10.10.10.165.2022 > 172.20.201.198.2053: [udp sum ok] udp 
19  
...... 
14:10:19.201202 0:50:56:40:0:6d 0:3:47:8c:89:c2 ip 89: IP (tos 0xc0, ttl 253, 
id 42601, len 75) 172.20.201.198 > 10.10.10.165: icmp 55: 172.20.201.198 udp 
port 2050 unreachable for IP (tos 0x0, ttl 126, id 44814, len 47) 
10.10.10.165.2022 > 172.20.201.198.2050: [udp sum ok] udp 19 
14:10:19.205504 0:50:56:40:0:6d 0:3:47:8c:89:c2 ip 89: IP (tos 0xc0, ttl 253, 
id 42602, len 75) 172.20.201.198 > 10.10.10.165: icmp 55: 172.20.201.198 udp 
port 2051 unreachable for IP (tos 0x0, ttl 126, id 44815, len 47) 
10.10.10.165.2022 > 172.20.201.198.2051: [udp sum ok] udp 19 
14:10:19.206489 0:50:56:40:0:6d 0:3:47:8c:89:c2 ip 89: IP (tos 0xc0, ttl 253, 
id 42603, len 75) 172.20.201.198 > 10.10.10.165: icmp 55: 172.20.201.198 udp 
port 2052 unreachable for IP (tos 0x0, ttl 126, id 44816, len 47) 
10.10.10.165.2022 > 172.20.201.198.2052: [udp sum ok] udp 19 
...... 
14:10:59.817571 0:3:47:8c:89:c2 0:50:56:40:0:6d ip 63: IP (tos 0x0, ttl 128, 
id 50028, len 49) 10.10.10.165.2084 > 172.20.201.198.161: [udp sum ok]  
[len19<asnlen68] 
14:10:59.817612 0:3:47:8c:89:c2 0:50:56:40:0:6d ip 63: IP (tos 0x0, ttl 128, 
id 50029, len 49) 10.10.10.165.2084 > 172.20.201.198.162: [udp sum ok]  
[len19<asnlen68] 
....... 
14:11:35.813389 0:3:47:8c:89:c2 0:50:56:40:0:6d ip 63: IP (tos 0x0, ttl 128, 
id 62178, len 49) 10.10.10.165.2084 > 172.20.201.198.161: [udp sum ok]  
[len19<asnlen68]  
Here is my speculation about network topology: 
 

(A)                                        (B)  
Attacker (10.10.10.165) |G (10.10.10.1)-| Target Host (172.20.201.198) 
     IDS     
 
A: Ethernet address [0:3:47:8c:89:c2] - Intel Corp.      
B: Ethernet address [0:50:56:40:0:6d] - VmWare Inc. 
 
I have used the following website: http://standards.ieee.org/regauth/oui/index.shtml to 
find out network card manufacturer for these hosts. 
 
 
NOTE:  
I have used 'A' for Attacker host and 'B' for target host for our discussion. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 33 

 
2) DETECT WAS GENERATED BY: 
 
Alerts were generated by Snort (Windows version) 2.1.0 Build 10 with latest rule 
available on Jan. 6 at snort.org. 
C:\snort\bin>snort -r c:\gcia\2003.12.15.8 -c c:\snort\etc\snort.conf -A full -l c:\snort\log -
X -y -k none Options Details: 
-r = Read tcpdump file 
-c = rule file specified 
-A = set Alert mode to full 
-X = Dump raw packet data starting at link layer 
-y = include year in timestamp in the alerts and log files  
-k = no checksum 
 
Here are some examples of triggers on traffic: 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
[**] SNMP trap udp [**] 
11/18/03-14:10:59.817612 10.10.10.165:2084 -> 172.20.201.198:162 UDP TTL:128 
TOS:0x0 ID:50029 IpLen:20 DgmLen:49 
Len: 21 
0x0000: 00 50 56 40 00 6D 00 03 47 8C 89 C2 08 00 45 00  .PV@.m..G.....E. 
0x0010: 00 31 C3 6D 00 00 80 11 EC C4 0A 0A 0A A5 AC 14  .1.m............ 
0x0020: C9 C6 08 24 00 A2 00 1D 54 D4 55 44 50 20 53 63  ...$....T.UDP Sc 
0x0030: 61 6E 20 62 79 20 49 53 53 20 28 31 36 32 29     an by ISS (162) 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
[**] SNMP request udp [**] 
11/18/03-14:10:59.817571 10.10.10.165:2084 -> 172.20.201.198:161 UDP TTL:128 
TOS:0x0 ID:50028 IpLen:20 DgmLen:49 
Len: 21 
0x0000: 00 50 56 40 00 6D 00 03 47 8C 89 C2 08 00 45 00  .PV@.m..G.....E. 
0x0010: 00 31 C3 6C 00 00 80 11 EC C5 0A 0A 0A A5 AC 14  .1.l............ 
0x0020: C9 C6 08 24 00 A1 00 1D 54 D6 55 44 50 20 53 63  ...$....T.UDP Sc 
0x0030: 61 6E 20 62 79 20 49 53 53 20 28 31 36 31 29     an by ISS (161) 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
[**] TFTP GET passwd [**] 
11/18/03-14:11:35.813389 10.10.10.165:2084 -> 172.20.201.198:161 UDP TTL:128 
TOS:0x0 ID:62178 IpLen:20 DgmLen:49 
Len: 21 
0x0000: 00 50 56 40 00 6D 00 03 47 8C 89 C2 08 00 45 00  .PV@.m..G.....E. 
0x0010: 00 31 F2 E2 00 00 80 11 BD 4F 0A 0A 0A A5 AC 14  .1.......O...... 
0x0020: C9 C6 08 24 00 A1 00 1D 56 D7 55 44 50 20 53 63  ...$....V.UDP Sc 
0x0030: 61 6E 20 62 79 20 49 53 53 20 28 31 34 30 29     an by ISS (140) 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
Which has generated the below alerts: 
[**] [1:1419:2] SNMP trap udp [**] 
[Classification: Attempted Information Leak] [Priority: 2] 
11/18/03-14:10:59.817612 10.10.10.165:2084 -> 172.20.201.198:162 UDP TTL:128 
TOS:0x0 ID:50029 IpLen:20 DgmLen:49 
Len: 21 
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0013][Xref => 
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0012] 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 34 

 
 
[**] [1:1417:2] SNMP request udp [**] 
[Classification: Attempted Information Leak] [Priority: 2] 
11/18/03-14:10:59.817571 10.10.10.165:2084 -> 172.20.201.198:161 UDP TTL:128 
TOS:0x0 ID:50028 IpLen:20 DgmLen:49 
Len: 21 
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0013][Xref => 
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0012] 
 
 
[**] [1:1443:2] TFTP GET passwd [**] 
[Classification: Successful Administrator Privilege Gain] [Priority: 1] 
11/18/03-14:11:35.813389 10.10.10.165:2084 -> 172.20.201.198:161 UDP TTL:128 
TOS:0x0 ID:62178 IpLen:20 DgmLen:49 
Len: 21 
 
 
 
The rules which trigger these alerts are as follow: 
 
alert udp any any -> any 69 (msg:"TFTP GET passwd"; content: "|0001|"; offset:0; 
depth:2; content:"passwd"; offset:2; nocase; classtype:successful-admin; sid:1443; 
rev:2;)  
alert udp $EXTERNAL_NET any -> $HOME_NET 161 (msg:"SNMP request udp"; 
reference:cve,CAN-2002-0012; reference:cve,CAN-2002-0013; sid:1417; rev:2; 
classtype:attempted-recon;)  
alert udp $EXTERNAL_NET any -> $HOME_NET 162 (msg:"SNMP trap udp"; 
reference:cve,CAN-2002-0012; reference:cve,CAN-2002-0013;  sid:1419; rev:2; 
classtype:attempted-recon;) 
 
After I examined link layer information these alerts look to be false positive.    The IP 
header and UDP header looks to OK in HEX format, except some data has been crafted 
in UDP Datagram as you can see in above example 'UDP Scan by ISS (xx)'.  You can 
see in my first windump example this traffic looks to be generated by some UDP 
scanner at 5 minute intervals.  Snort has triggered the above alerts because of 
destination ports: 161 and 162.  So why it has only alert for some traffic and not for all 
other connections?  
 
Here is a some example of traffic that has not generated false alerts. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
11/18/03-14:10:14.171828 10.10.10.165:2022 -> 172.20.201.198:236 UDP TTL:128 
TOS:0x0 ID:44697 IpLen:20 DgmLen:47 
Len: 19 
0x0000: 00 50 56 40 00 6D 00 03 47 8C 89 C2 08 00 45 00  .PV@.m..G.....E. 
0x0010: 00 2F AE 99 00 00 80 11 01 9B 0A 0A 0A A5 AC 14  ./.............. 
0x0020: C9 C6 07 E6 00 EC 00 1B 8A FE 55 44 50 20 53 63  ..........UDP Sc 
0x0030: 61 6E 20 62 79 20 49 53 53 20 28 31 29           an by ISS (1) 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 35 

11/18/03-14:10:14.172024 10.10.10.165:2022 -> 172.20.201.198:240 UDP TTL:128 
TOS:0x0 ID:44701 IpLen:20 DgmLen:47 
Len: 19 
0x0000: 00 50 56 40 00 6D 00 03 47 8C 89 C2 08 00 45 00  .PV@.m..G.....E. 
0x0010: 00 2F AE 9D 00 00 80 11 01 97 0A 0A 0A A5 AC 14  ./.............. 
0x0020: C9 C6 07 E6 00 F0 00 1B 8A F6 55 44 50 20 53 63  ..........UDP Sc 
0x0030: 61 6E 20 62 79 20 49 53 53 20 28 35 29           an by ISS (5) 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
 
If you compare this with the above example you can see all packets have the same 
source port and ttl values.  All fields are almost the same as the packets which 
generated alerts.  Except two more bytes in the data field.  After I examined all these 
aspects I can definitely say that the attacker has launch an automated UDP port scan 
for OS fingerprinting by using the product Internet Vulnerability Scanner from ISS.  
Snort does not have the default signature for this specific scan attempt.  My intension 
behind this is to explain default install of Snort could lead to many false alerts as we see 
in above example which will hide real attacks.  Rule tuning is more important in real 
world.  For this analysis, I have written a basic signature to capture the ISS UDP scan. 
 
alert udp $EXTERNAL_NET any -> $HOME_NET any (msg:"UDP Scan By ISS"; 
content:"|5544 5020 5363 616E 2062 7920 4953 5320|"; 
reference:iss,3105;classtype:attempted-recon; sid:9001;rev:1;) 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
[**] UDP Scan By ISS [**] 
11/18/03-14:10:14.171828 10.10.10.165:2022 -> 172.20.201.198:236 UDP TTL:128 
TOS:0x0 ID:44697 IpLen:20 DgmLen:47 Len: 19 
0x0000: 00 50 56 40 00 6D 00 03 47 8C 89 C2 08 00 45 00                     
.PV@.m..G.....E. 
0x0010: 00 2F AE 99 00 00 80 11 01 9B 0A 0A 0A A5 AC 14  ./.............. 
0x0020: C9 C6 07 E6 00 EC 00 1B 8A FE 55 44 50 20 53 63  ..........UDP Sc 
0x0030: 61 6E 20 62 79 20 49 53 53 20 28 31 29           an by ISS (1) 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
 
alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Destination 
Unreachable (Port Unreachable)"; itype: 3; icode: 3; sid:402;  classtype:misc-
activity; rev:4;)  
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
 
[**] ICMP Destination Unreachable (Port Unreachable) [**] 
11/18/03-14:10:14.196294 172.20.201.198 -> 10.10.10.165 ICMP TTL:253 TOS:0xC0 
ID:42550 IpLen:20 DgmLen:75 Type:3  Code:3   
DESTINATION UNREACHABLE: PORT UNREACHABLE 
** ORIGINAL DATAGRAM DUMP: 
10.10.10.165:2022 -> 172.20.201.198:236 UDP TTL:126 TOS:0x0 ID:44697 IpLen:20 
DgmLen:47 Len: 19 
** END OF DUMP 
0x0000: 00 03 47 8C 89 C2 00 50 56 40 00 6D 08 00 45 C0  ..G....PV@.m..E. 
0x0010: 00 4B A6 36 00 00 FD 01 8C 31 AC 14 C9 C6 0A 0A  .K.6.....1...... 
0x0020: 0A A5 03 03 87 B3 00 00 00 00 45 00 00 2F AE 99  ..........E../.. 
0x0030: 00 00 7E 11 03 9B 0A 0A 0A A5 AC 14 C9 C6 07 E6  ..~............. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 36 

0x0040: 00 EC 00 1B 8A FE 55 44 50 20 53 63 61 6E 20 62  ......UDP Scan b 
0x0050: 79 20 49 53 53 20 28 31 29                       y ISS (1) 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
 
So now in this above example attacker A is scanning for UDP port(s), if the port is 
closed on the target machine than it will generate an ICMP destination Unreachable 
(port unreachable) message.  This is an example of passively fingerprinting target 
system. 
 
 
 
3) PROBABILITY THE SOURCE ADDRESS WAS SPOOFED 
 
UDP is known to be very easy to spoof because of connection-less protocol.  Sender 
will not receive any acknowledgement from receiver so there is a possibility for IP 
address spoofing.  In this case the attacker is in reconnaissance stage and trying to 
determine which port is listening on remote system.  So attacker has been waiting for a 
response such as, port unreachable icmp message for passively figuring out the remote 
host's Operating System. 
 The windump or tcpdump also run to find out if IP address is really spoofed. 
C:\>windump -r c:\2003.12.15.8 -e -n -v host 10.10.10.165 >> c:\spoof-test.txt 
 
-r = file to read 
-e = print Ethernet header 
-n = not convert address to name 
 
14:10:14.171828 0:3:47:8c:89:c2 0:50:56:40:0:6d 0800 61: IP (tos 0x0, ttl 
128, id 44697, len 47) 10.10.10.165.2022 > 172.20.201.198.236:  udp 19 
14:10:14.171898 0:3:47:8c:89:c2 0:50:56:40:0:6d 0800 61: IP (tos 0x0, ttl 
128, id 44698, len 47) 10.10.10.165.2022 > 172.20.201.198.237:  udp 19 
14:10:14.171942 0:3:47:8c:89:c2 0:50:56:40:0:6d 0800 61: IP (tos 0x0, ttl 
128, id 44699, len 47) 10.10.10.165.2022 > 172.20.201.198.238:  udp 19 
14:10:14.171982 0:3:47:8c:89:c2 0:50:56:40:0:6d 0800 61: IP (tos 0x0, ttl 
128, id 44700, len 47) 10.10.10.165.2022 > 172.20.201.198.239:  udp 19 
 
Looks to be same Ethernet address is associated with same IP address. 
 
I have run 'pof' passive fingerprinting tool to find out operating systems involved.  I was 
able to see attacker may be using a Windows machine.  The program pof does not find 
much information about target host. 
 
Pof -s c:\2003.12.15.8 -o c:\gcia.txt 
 
Wed Jan 07 16:55:41 2004> 10.10.10.165:2034 - Windows 2000 SP2+, XP SP1 
........... 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 37 

4) DESCRIPTION OF ATTACK 
 
UDP is a connectionless protocol defined in RFC 792.  Since this protocol is 
connectionless it is hard to make secure.  Many firewalls do not block UDP traffic to 
perimeter host.  There is CERT advisory issue CA-1996-001 for UDP port denial-of-
service Attack.  Scanner may create a "UDP Packet storm" which cause host to perform 
slow.  The attacker might be looking for any Trojan/backdoor which listen on High UDP 
ports.  For Example Deep Throat (2140), Back orifice 2000(54321) or Hack’a’Tack 
(31789).  Now Most network administrator block ICMP to their network so UDP 
Scanning is getting more popular for fingerprinting.  There are tools available today 
such as NMAP when running -sU option or Hping.  But in this case the attacker has 
used a Commercial product "ISS Internet Scanner".  
 
5) ATTACK MECHANISM 
 
I have used windump and ethereal v. 0.9.15 to investigate in detail. 
 
C:\>windump -r c:\2003.12.15.8 -v host 10.10.10.165 and host 172.20.201.198 
 
14:10:14.171828 IP (tos 0x0, ttl 128, id 44697, len 47) 10.10.10.165.2022 > 
172.20.201.198.236: [udp sum ok] udp 19 
14:10:14.171898 IP (tos 0x0, ttl 128, id 44698, len 47) 10.10.10.165.2022 > 
172.20.201.198.237: [udp sum ok] udp 19 
14:10:14.171942 IP (tos 0x0, ttl 128, id 44699, len 47) 10.10.10.165.2022 > 
172.20.201.198.238: [udp sum ok] udp 19  
.... 
14:10:14.196294 IP (tos 0xc0, ttl 253, id 42550, len 75) 172.20.201.198 > 
10.10.10.165: icmp 55: 172.20.201.198 udp port 236 unreachable 
14:10:14.198843 IP (tos 0xc0, ttl 253, id 42551, len 75) 172.20.201.198 > 
10.10.10.165: icmp 55: 172.20.201.198 udp port 237 unreachable 
14:10:14.200707 IP (tos 0xc0, ttl 253, id 42552, len 75) 172.20.201.198 > 
10.10.10.165: icmp 55: 172.20.201.198 udp port 238 unreachable  
.... 
14:10:19.173617 IP (tos 0x0, ttl 128, id 44814, len 47) 10.10.10.165.2022 > 
172.20.201.198.2050: [udp sum ok] udp 19 14:10:19.173680 IP (tos 0x0, ttl 
128, id 44815, len 47) 10.10.10.165.2022 > 172.20.201.198.2051: [udp sum ok] 
udp 19 
14:10:19.173738 IP (tos 0x0, ttl 128, id 44816, len 47) 10.10.10.165.2022 > 
172.20.201.198.2052: [udp sum ok] udp 19  
.... 
14:10:19.201202 IP (tos 0xc0, ttl 253, id 42601, len 75) 172.20.201.198 > 
10.10.10.165: icmp 55: 172.20.201.198 udp port 2050 unreachable 
14:10:19.205504 IP (tos 0xc0, ttl 253, id 42602, len 75) 172.20.201.198 > 
10.10.10.165: icmp 55: 172.20.201.198 udp port 2051 unreachable  
.... 
14:10:24.175391 IP (tos 0x0, ttl 128, id 44939, len 47) 10.10.10.165.2022 > 
172.20.201.198.2055: [udp sum ok] udp 19 
14:10:24.175453 IP (tos 0x0, ttl 128, id 44940, len 47) 10.10.10.165.2022 > 
172.20.201.198.2056: [udp sum ok] udp 19 
14:10:24.175496 IP (tos 0x0, ttl 128, id 44941, len 47) 10.10.10.165.2022 > 
172.20.201.198.2057: [udp sum ok] udp 19  
... 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 38 

14:10:24.199865 IP (tos 0xc0, ttl 253, id 42681, len 75) 172.20.201.198 > 
10.10.10.165: icmp 55: 172.20.201.198 udp port 2055 unreachable 
14:10:24.200023 IP (tos 0xc0, ttl 253, id 42682, len 75) 172.20.201.198 > 
10.10.10.165: icmp 55: 172.20.201.198 udp port 2056 unreachable 
14:10:24.203752 IP (tos 0xc0, ttl 253, id 42683, len 75) 172.20.201.198 > 
10.10.10.165: icmp 55: 172.20.201.198 udp port 2057 unreachable  
..... 
 
You see in the above example the attacker is scanning for UDP ports.  In above scan 
attempt you can see ttl values and source ports are not changing but IP ID and 
destination ports are changing means attacker is initiating new connections.  You also 
see icmp unreachable message for some ports which are closed.  One more thing I 
noticed is the timestamp.  Scanner is trying to scan three times every 5 minutes 
because of its connectionless nature of UDP.  Scanner may assume packets may not 
reach the target so it will try a couple more times to make sure that port is really closed. 
 
14:10:14.171828 IP (tos 0x0, ttl 128, id 44697, len 47) 10.10.10.165.2022 > 
172.20.201.198.236: [udp sum ok] udp 19 
    4500 002f ae99 0000 8011 019b 0a0a 0aa5 
   ---------------------------------------- IP Header 
    ac14 c9c6 07e6 00ec 001b 8afe 5544 5020 
   ----------| UDP Header---------|-data 
    5363 616e 2062 7920 4953 5320 2831 29 
   -------data ------------------------- 
14:10:14.171898 IP (tos 0x0, ttl 128, id 44698, len 47) 10.10.10.165.2022 > 
172.20.201.198.237: [udp sum ok] udp 19 
    4500 002f ae9a 0000 8011 019a 0a0a 0aa5 
    ac14 c9c6 07e6 00ed 001b 8afc 5544 5020 
    5363 616e 2062 7920 4953 5320 2832 29 
14:10:14.171942 IP (tos 0x0, ttl 128, id 44699, len 47) 10.10.10.165.2022 > 
172.20.201.198.238: [udp sum ok] udp 19 
    4500 002f ae9b 0000 8011 0199 0a0a 0aa5 
    ac14 c9c6 07e6 00ee 001b 8afa 5544 5020 
    5363 616e 2062 7920 4953 5320 2833 29 ........n 
 
14:10:14.196294 IP (tos 0xc0, ttl 253, id 42550, len 75) 172.20.201.198 > 
10.10.10.165: icmp 55: 172.20.201.198 udp port 236 unreachable 
    45c0 004b a636 0000 fd01 8c31 ac14 c9c6 
   ---------IP Header---------------------- 
    0a0a 0aa5 0303 87b3 0000 0000 4500 002f 
   ----------|---icmp ------ 
    ae99 0000 7e11 039b 0a0a 0aa5 ac14 c9c6 
    07e6 00ec 001b 8afe 5544 5020 5363 616e 
    2062 7920 4953 5320 2831 29 
.....n 
 
You can see in above packets all length fields looks to be right.  Only in the data field 
did ISS craft custom data.  From all the above details I can conclude the attacker is in 
the first stage of reconnaissance.  The attacker is trying to determine open UDP ports or 
looking for any backdoor application which would allow remote access to target.   
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 39 

6) CORRELATIONS 
 
This type of UDP scan is not new at this time.  NMAP also has an option to use UDP 
scan for fingerprinting.  Since ISS is crafting some data which makes them different 
then other scanners.  Even now ISS scanner has an option for smart UDP scan which 
reduce false positive scan.  I could not find any snort signature for this kind of UDP 
scan. 
Find knowledgebase article at ISS website http://xforce.iss.net/xforce/xfdb/3105 about 
UDP Scan. 
Here some more articles about UDP Denial-of service attack. 
http://www.securityfocus.com/bid/4111 
http://xforce.iss.net/xforce/xfdb/8572 
http://www.cert.org/advisories/CA-1996-01.html 
     
 
 
7) EVIDENCE OF ACTIVE TARGETING 
 
14:10:14.171828 IP (tos 0x0, ttl 128, id 44697, len 47) 10.10.10.165.2022 > 
172.20.201.198.236: [udp sum ok] udp 19 
14:10:14.171898 IP (tos 0x0, ttl 128, id 44698, len 47) 10.10.10.165.2022 > 
172.20.201.198.237: [udp sum ok] udp 19 ..... 
14:11:41.018283 IP (tos 0x0, ttl 128, id 63474, len 49) 10.10.10.165.2074 > 
172.20.201.1.183: [udp sum ok] udp 21 
14:11:41.018345 IP (tos 0x0, ttl 128, id 63475, len 49) 10.10.10.165.2074 > 
172.20.201.1.184: [udp sum ok] udp 21 .... 
14:11:42.167979 IP (tos 0x0, ttl 128, id 63828, len 48) 10.10.10.165.2073 > 
172.20.201.135.89: [udp sum ok] udp 20 
14:11:42.168022 IP (tos 0x0, ttl 128, id 63829, len 48) 10.10.10.165.2073 > 
172.20.201.135.90: [udp sum ok] udp 20 ..... 
 
As we can see above, the attacker has launched a scan on many hosts on the network. 
The attacker was performing a comprehensive scan on all hosts to find out live hosts 
that could be a target. 
 
8) SEVERITY 
 
To calculate severity of these alerts I have followed the guidelines which available at 
http://www.giac.org/GCIA_assignment.php. 
 
Severity= (criticality+lethality)-(system countermeasures + network 
countermeasures) 
 
Criticality: measure of how critical the target system is. 
 In the log I see ip port unreachable message for almost all port that scanner was 
scanning for this host so that means appears to be all scanned ports are closed. 
Criticality=0 
 
Lethality: how severe the damage to targeted system would be if attack occurred. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 40 

 Looks to be attacker is doing reconnaissance at this point. It is safe for me to 
assume at this point 2, but in reality this type of scan is common so we can give 1. 
 
System Countermeasures: measure of the strength of defensive mechanisms in place 
on host itself. 
 Again appears to be all scanned port closed so I can assume 5. 
Network Counter Measures: measure of defensive mechanisms in place on network 
such as firewall. 
       We can see ports were closed but attacker is getting ip unreachable messages. 
Appears to be router do not have any access-list to protect against this kind of scan. I 
can assume to be 4. 
 
Severity= (0+2)-(5+4) = -7 
 
These ratings do not require any further more investigation at this stage. 
 
 
9) DEFENSIVE RECOMMENDATION 
 
Block unnecessary UDP ports for all incoming UDP traffic at firewall.  Setup the router 
to not send IP unreachable message to sender.  For Cisco you can do by "no ip 
unreachable" command.  Block incoming and outgoing icmp message.  Honeypots are 
also a good defensive for UDP port scanner.  Also do not forget host hardening is very 
important, always keep updating the operating system for newer vulnerability and 
disable all unnecessary services. 
 
10) Multiple choice question 
 
1) If you send large packets (more then MTU), packet will get fragmented at router and 
destination host will re-assemble this packets. What happened if one packet will miss 
from same fragmentation train? 
 
A) Destination host send message for resend packet that lost 
B) No big attempt to reassemble and the whole IP packet will be dropped. 
C) Generate IP unreachable message 
 
Answer: B 
UDP does not do something as TCP because of its connection-less nature.  It will do 
not make any attempt to reassemble this and just drops whole IP packet. 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 41 

Assignment: 3: Analyze This 
 
Executive Summary: 
Over the Five-day period, there were about 40,446 alert, 7,911,236 scanning probes 
and 4,959 out-of-spec alerts reported.  The following graphs show better trends by 
hours for alerts and scanning probes. To keep a manageable size of the alerts, I have 
removed all port scan entries from the alert log files.  Technically those entries must 
also be in port scan logs so I do not want to analyze it twice. 
 
Alerts by Hours of day:       Scans by Hours of day: 

     
 
The University was using mostly customized snort rules for detections but still there are 
some configuration issues resulting some false alerts.  Another major issue is the 
tremendous amount of peer-to-peer (P2P) file sharing traffic on the network.  The file 
sharing on a P2P network with external hosts exposes the university networks to 
viruses and Trojans. 
 Aside from some false alarms and less important alerts, some internal hosts 
need further investigation.  These hosts should be taken offline and investigated by 
technical staff. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 42 

 
MY.NET.97.22 
MY.NET.97.66 
MY.NET.97.193 
MY.NET.97.179 
MY.NET.97.149 
MY.NET.97.81 
MY.NET.97.178 

 
 
Logs Analyzed: 
 The Logs files used for this analysis were from the time period Feb. 4th, 2004 
through Feb. 8th, 2004.  These files were downloaded from 
http://www.incidents.org/logs/ . 
The specific details are as follows: 

Alerts Scan OOS ( Out of Spec) 
Alert.040204.gz Scans.040204.gz Oos_report_040204 
Alert.040205.gz Scans.040205.gz Oos_report_040205 
Alert.040206.gz Scans.040206.gz Oos_report_040206 
Alert.040207.gz Scans.040207.gz Oos_report_040207 
Alert.040208.gz Scans.040208.gz Oos_report_040208 

 
Without knowing information about the monitored network, some assumptions have 
been made in order for further analysis.  The logs were generated with Snort IDS 
systems.  Since Snort version is not specified, I will assume the current version was 
used with slightly modified rule sets. 
 
Summary of Alerts: 
 Below is a list of all alerts generated in a five-day period.  They are ordered according 
to the number of alerts generated per signature.  Using snortsnarf-analyzed data 
generates this summary.  It has provided very useful information by providing 
summarized alerts by signatures, numbers of unique source and destination hosts 
involved.  
 
Summary of all Snort alerts between Feb. 4th, 2004 and Feb. 8th, 2004 by no. alerts 
per signature: 

Signature Alerts  Sources  Dest.  
MY.NET.30.4 activity 13240 282 1 
High port 65535 tcp - possible Red Worm - traffic 7140 101 135 
MY.NET.30.3 activity  5971 121 1 
Incomplete Packet Fragments Discarded  3137 59 39 
SMB Name Wildcard  2653 53 373 
[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to 
IRC  1949 8 3 
connect to 515 from outside  1946 1 1 
EXPLOIT x86 NOOP  1150 239 90 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 43 

NMAP TCP ping!  579 140 48 
Null scan!  489 93 52 
SUNRPC highport access!  415 25 28 
High port 65535 udp - possible Red Worm - traffic  334 52 49 
Tiny Fragments - Possible Hostile Activity  316 6 7 
[UMBC NIDS IRC Alert] IRC user /kill detected  possible trojan.  256 47 50 
Possible trojan server activity  193 38 37 
TCP SRC and DST outside network  128 34 50 
IRC evil - running XDCC  127 9 7 
RFB - Possible WinVNC - 010708-1  53 12 13 
FTP passwd attempt  51 45 1 
[UMBC NIDS] External MiMail alert  46 17 1 
SMB C access  46 24 3 
TCP SMTP Source Port traffic  38 3 6 
EXPLOIT x86 setuid 0  32 26 23 
[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected.  30 4 6 
EXPLOIT x86 setgid 0  29 24 23 
ICMP SRC and DST outside network  26 18 23 
EXPLOIT NTPDX buffer overflow  8 6 6 
TFTP - Internal UDP connection to external tftp server  8 3 3 
[UMBC NIDS IRC Alert] User joining XDCC channel detected. Possible 
XDCC bot  8 4 1 
DDOS shaft client to handler  6 2 1 
[UMBC NIDS IRC Alert] XDCC client detected attempting to IRC  6 2 2 
SYN-FIN scan!  5 5 4 
EXPLOIT x86 stealth noop  4 3 3 
[UMBC NIDS IRC Alert] K\:line'd user detected  possible trojan.  3 1 3 
External FTP to HelpDesk MY.NET.70.49  2 2 1 
FTP DoS ftpd globbing  2 2 2 
Attempted Sun RPC high port access  2 1 1 
External FTP to HelpDesk MY.NET.70.50  2 2 1 
NIMDA - Attempt to execute cmd from campus host  2 2 2 
TFTP - External UDP connection to internal tftp server  1 1 1 
Probable NMAP fingerprint attempt  1 1 1 
MY.NET.30.4 activity [**] 68.33.138.19302/06-17:30:52.166475 [**] 
MY.NET.30.4 activity  1 1 1 
[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to 
IRC [**] MY.NET.97.4002/08-07:41:47.803783 [**] [UMBC NIDS IRC Alert] 
Possible sdbot floodnet detected attempting to IRC  1 1 1 
Back Orifice  1 1 1 
High port 65535 tcp - possible Red Worm - traffic [**] 220.12.4.21702/07-
23:16:04.676946 [**] High port 65535 tcp - possible Red Worm - traffic  1 1 1 
MY.NET.30.4 activity [**] 129.41.68.202/05-14:17:51.927120 [**] Null scan!  1 1 1 
High port 65535 tcp - possible Red Worm - traffic [**] MY.NET.42.102/07-
23:09:12.210720 [**] High port 65535 tcp - possible Red Worm - traffic  1 1 1 
High port 65535 tcp - possible Red Worm - traffic [**] 220.12.4.21702/07- 1 1 1 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 44 

23:45:01.992508 [**] High port 65535 tcp - possible Red Worm - traffic  
[UMBC NIDS IRC Alert] User joining Warez channel detected. Possible 
XDCC bot  1 1 1 
EXPLOIT x86 NOPS  1 1 1 
NETBIOS NT NULL session  1 1 1 
DDOS mstream client to handler  1 1 1 
External FTP to HelpDesk MY.NET.53.29  1 1 1 

 
________________________________________________________________________ 
 

 
________________________________________________________________________ 
 
Over 40446 events were recorded in five days of alerts data.  Some Snort rules were 
modified from the defaults for their needs.  There is some evidence of some 
configuration errors, which lead to false positive Snort alerts.  I will be discussing those 
in later sections.  My goal in this analysis is to find out noisy rules, which may hide real 
intrusive alerts. 
 
 
 

% Alerts per Signatures 
MY.NET.30.4 
activity 
High port 65535 tcp - possible Red 
Worm - traffic 
MY.NET.30.3 
activity  
Incomplete Packet Fragments 
Discarded 
SMB Name Wildcard 

[UMBC NIDS IRC Alert] Possible sdbot 
floodnet detected attempting to IRC 
connect to 515 from outside 

EXPLOIT x86 NOOP 

NMAP TCP ping! 

Null scan! 

SUNRPC highport access! 

High port 65535 udp - possible Red 
Worm - traffic 
Tiny Fragments - Possible Hostile 
Activity 
[UMBC NIDS IRC Alert] IRC user /kill 
detected  possible trojan. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 45 

Top 20 most active sources IP involved: 
Total # Alerts Source IP # Signatures triggered Destinations involved 
3097 alerts 220.12.4.217 5 signatures MY.NET.42.1 
3015 alerts MY.NET.42.1 4 signatures (5 destination IPs) 
1972 alerts 68.33.138.193 2 signatures MY.NET.30.4 
1946 alerts 68.32.127.158 1 signatures MY.NET.24.15 
1751 alerts 68.55.241.46 1 signatures MY.NET.30.4 
1659 alerts MY.NET.75.13 1 signatures (155 destination IPs) 
1642 alerts MY.NET.97.40 2 signatures 194.68.45.50 
1434 alerts 68.86.184.21 1 signatures MY.NET.30.4 
1300 alerts 131.92.177.18 1 signatures MY.NET.30.3 
1138 alerts MY.NET.21.68 1 signatures (6 destination IPs) 
1123 alerts 129.41.68.2 2 signatures MY.NET.30.3, MY.NET.30.4 
1032 alerts 68.50.102.64 1 signatures MY.NET.30.4 
952 alerts 68.55.27.157 2 signatures MY.NET.30.3, MY.NET.30.4 
890 alerts MY.NET.21.67 1 signatures (6 destination IPs) 
862 alerts MY.NET.21.69 1 signatures (4 destination IPs) 
779 alerts 24.35.70.49 1 signatures MY.NET.30.4 
670 alerts 68.54.168.204 1 signatures MY.NET.30.4 
653 alerts 68.55.241.230 1 signatures MY.NET.30.4 
648 alerts 68.55.178.168 2 signatures MY.NET.30.3, MY.NET.30.4 
501 alerts 68.55.62.79 2 signatures MY.NET.30.3, MY.NET.30.4 

 
Top 20 active destinations IP involved: 

Total # Alerts Destination IP 
# Signatures 

triggered Originating sources 
13242 alerts MY.NET.30.4 3 signatures (283 source IPs) 
5971 alerts MY.NET.30.3 1 signatures (121 source IPs) 
3138 alerts MY.NET.42.1 10 signatures (15 source IPs) 
2956 alerts 220.12.4.217 2 signatures MY.NET.42.1 
1946 alerts MY.NET.24.15 1 signatures 68.32.127.158 
1942 alerts 194.68.45.50 2 signatures (3 source IPs) 
1058 alerts 65.168.38.242 1 signatures MY.NET.75.13 
979 alerts 65.141.62.206 1 signatures (3 source IPs) 
870 alerts 68.10.226.197 1 signatures (3 source IPs) 
482 alerts 208.155.109.200 1 signatures MY.NET.21.68, MY.NET.21.67 
327 alerts MY.NET.1.3 2 signatures (50 source IPs) 
315 alerts 202.91.34.9 1 signatures (3 source IPs) 
250 alerts MY.NET.98.19 1 signatures 221.189.158.241 
222 alerts MY.NET.98.62 1 signatures 66.187.232.35 
220 alerts 221.189.158.241 1 signatures MY.NET.98.19 
219 alerts MY.NET.12.6 9 signatures (74 source IPs) 
218 alerts MY.NET.82.87 3 signatures (3 source IPs) 
204 alerts 204.152.186.58 1 signatures (3 source IPs) 
164 alerts MY.NET.5.20 2 signatures (4 source IPs) 
133 alerts MY.NET.153.37 7 signatures (13 source IPs) 

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 46 

Frequent Alert Details: 
 
MY.NET.30.4 Activity     
Severity: Noise  
Reported: 13,240 times 
Background: 
This is a custom alert referring to MY.NET.30.4 (MY.NET.30.4).  Most traffic is destined 
for ports 80, 51443, 524.  Some Novell Netware Implementations may generate this 
traffic.  The Novell apache service iFolder use port 51442 by default.   May be it is used 
for sharing files over the Internet. 
Analysis: 
 
02/06-17:18:39.18 [**] MY.NET.30.4 activity [**] 68.33.138.193:15197 -> MY.NET.30.4:80 
02/06-17:18:39.20 [**] MY.NET.30.4 activity [**] 68.33.138.193:15196 -> MY.NET.30.4:80  
02/06-17:18:49.08 [**] MY.NET.30.4 activity [**] 68.33.138.193:15207 -> 
MY.NET.30.4:51443  
02/06-17:18:49.46 [**] MY.NET.30.4 activity [**] 68.33.138.193:15207 -> 
MY.NET.30.4:51443 
... 
02/06-06:10:25.22 [**] MY.NET.30.4 activity [**] 68.55.241.46:1224 -> MY.NET.30.4:51443  
02/06-06:10:25.23 [**] MY.NET.30.4 activity [**] 68.55.241.46:1224 -> MY.NET.30.4:51443  
02/06-06:10:25.23 [**] MY.NET.30.4 activity [**] 68.55.241.46:1222 -> MY.NET.30.4:51443  
... 
02/04-08:24:40.16 [**] MY.NET.30.4 activity [**] 129.41.68.2:57001 -> MY.NET.30.4:524  
02/04-08:24:40.18 [**] MY.NET.30.4 activity [**] 129.41.68.2:57001 -> MY.NET.30.4:524  
02/04-08:25:40.30 [**] MY.NET.30.4 activity [**] 129.41.68.2:57001 -> MY.NET.30.4:524 
... 
02/08-13:48:28.58 [**] MY.NET.30.4 activity [**] 66.44.63.88:1312 -> MY.NET.30.4:80  
02/08-13:48:41.03 [**] MY.NET.30.4 activity [**] 66.44.63.88:1312 -> MY.NET.30.4:80 
 
 
Correlations: 
http://support.novell.com/cgi-bin/search/searchtid.cgi?/10078035.htm 
http://support.novell.com/cgi-bin/search/searchtid.cgi?/10067181.htm 
http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf 
 
 
 
High port 65535 tcp - possible Red Worm – traffic    
Severity: Noise  
Reported: 7140 times 
Background: 
Red Worm (Adore worm) is similar to the lion and ramen worms.  It is a Linux worm, 
which uses vulnerability in older versions of wu-ftpd, LPrng, rpc-statd and BIND.  A nice 
article on this worm can be found at http://www.dials.ru/english/inf/linux_adore.htm.  The 
end result of this worm is the opening of port 65535 which waits for connections and 
initiates a root shell session with remote shell.  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 47 

Analysis: 
 There were 7140 alerts for port 65353.  The table below is a list of top source 
and destination, with a number of destinations and sources involved.  Host 
220.12.4.217 and MY.NET.42.1 were generating the most percentage of alerts. 
 

Source 
# Alerts 
(total) 

# Dsts 
(total)  Destinations # Alerts (total) 

# Srcs 
(total) 

220.12.4.217 3097 1  MY.NET.42.1 3138 15 

MY.NET.42.1 3015 5  220.12.4.217 2956 1 

221.189.158.241 250 1  MY.NET.98.19 250 1 

MY.NET.98.19 220 1  221.189.158.241 220 1 

MY.NET.34.11 55 6  24.215.192.158 41 1 

MY.NET.34.14 36 12  MY.NET.34.11 70 27 

MY.NET.53.60 27 1  MY.NET.12.6 219 74 

24.215.192.158 27 1  203.165.202.88 27 1 
 

Count Src ports -> Dst Posts 
3092 65535  -> 4662 
2955 80  -> 65535 
250 4662  -> 65535 
220 65535  -> 80 
199 2025  -> 65535 
111 65535  -> 3472 
83 113  -> 65535 
66 110  -> 65535 
27 65535  -> 110 

 
Another rule appears to be triggering for Source or destination TCP port 65535.  This 
may lead to many false positive alerts.  There is definitely a correlation in the above 
table’s data.   Port 4662 is involved in some peer file sharing.   I believe this is a false 
positive alert for some peer file sharing traffic.   Port 65353 source or destination ports 
have triggered these alerts. 
 
MY.NET.30.3 activity    
Severity: Noise   
Reported: 5971 times 
 
Background: 
This is also another custom alert.  Most traffic was destined for MY.NET.30.3 host for 
TCP Port 524.   The traffic may be generated by Novell Netware systems.  In pure IP 
Mode and not using SLP for locating servers, all communications happen on this port.   
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 48 

 
Analysis: 
02/04-08:24:40.164151 [**] MY.NET.30.4 activity [**] 129.41.68.2:57001 -> 
MY.NET.30.4:524  
02/04-08:24:40.189013 [**] MY.NET.30.4 activity [**] 129.41.68.2:57001 -> 
MY.NET.30.4:524  
02/04-08:25:40.305980 [**] MY.NET.30.4 activity [**] 129.41.68.2:57001 -> 
MY.NET.30.4:524  
02/04-08:25:40.558755 [**] MY.NET.30.4 activity [**] 129.41.68.2:57001 -> 
MY.NET.30.4:524 
 
Correlations: 
http://support.novell.com/cgi-bin/search/searchtid.cgi?/10014320.htm 
http://support.novell.com/cgi-bin/search/searchtid.cgi?/10013531.htm 
 
 
Incomplete Packet Fragments Discarded   
Severity: Noise 
Reported: 3137 times 
Snort Signature ID: None 
 
These alerts were more of a snort configuration issue.  They come from an old de-
fragmentation preprocessor.   The newer frag2 preprocessor should be used instead.  
According to Dragos, Raju, this message is given by the defragmentation preprocessor 
when packets bigger than 8k that are more than half empty when the last fragment is 
received are discarded.   This may also be caused by transmission errors. 
Analysis: 
02/04-20:53:02.656025 [**] Incomplete Packet Fragments Discarded [**] 
MY.NET.21.68 -> 68.10.226.197  
02/04-20:53:02.911583 [**] Incomplete Packet Fragments Discarded [**] 
MY.NET.21.68 -> 68.10.226.197  
02/04-20:53:05.706659 [**] Incomplete Packet Fragments Discarded [**] 
MY.NET.21.68 -> 68.10.226.197 
.... 
2/04-16:35:07.695584 [**] Incomplete Packet Fragments Discarded [**] 
209.208.199.46:0 -> MY.NET.152.12:0  
02/04-16:35:08.793386 [**] Incomplete Packet Fragments Discarded [**] 
209.208.199.46:0 -> MY.NET.152.12:0 
 
Last example shows traffics to source and destination port 0, which is a reserved port.  
We should not see any normal traffics using same port in any directions. 
 
Correlations: 
 
http://www.geocrawler.com/archives/3/4890/2001/2/350/5151528 
 
 
 
 
Cut, Sed, Awk, Sort 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 49 

SMB Name Wildcard    
Severity: Noise   
Reported: 2653 times 
Snort Signature ID: ? 
alert UDP $EXTERNAL any -> $INTERNAL 137 (msg: "IDS177/netbios-name-query"; 
content: "CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|00 00|";) 
 
 
Background: 
Server Message Block (SMB) protocol is used when File and print sharing is turned on 
windows systems.  The windows systems used these types of queries in normal 
operations to locate the NetBIOS name when the IP address is known.  This types of 
traffic should not be allowed from outside. There is also worm activity (network.vbs) 
involved with this port. 
Analysis: 
The following tables show all source hosts involved in this traffic.  I have only found 
internal hosts initiating all traffic.  This is definitely noise for IDS Systems.  These kinds 
of alerts may hide some real attacks from an intrusion analyst.  I do not see any SMB 
alerts from outside so we can safely ignore these alerts. 
 
 

Source 
# Alerts 
(total)  Source 

# Alerts 
(total) 

MY.NET.75.13 1659  MY.NET.42.4 9 
MY.NET.150.198 231  MY.NET.152.168 2 
MY.NET.150.44 178  MY.NET.84.216 2 
MY.NET.190.102 86  MY.NET.53.31 2 
MY.NET.53.110 74  MY.NET.153.153 5 
MY.NET.150.11 65  MY.NET.153.145 2 
MY.NET.11.4 61  MY.NET.75.20 2 
MY.NET.112.161 54  MY.NET.66.50 2 
MY.NET.42.3 59  MY.NET.53.61 2 
MY.NET.42.2 26  MY.NET.75.155 2 
MY.NET.53.223 15  MY.NET.153.90 1 
MY.NET.190.95 15  MY.NET.81.81 1 
MY.NET.190.92 14  MY.NET.153.157 1 
MY.NET.42.1 3015  MY.NET.153.182 1 
MY.NET.190.93 13  MY.NET.42.7 85 
MY.NET.29.30 15  MY.NET.153.94 1 
MY.NET.42.6 10  MY.NET.84.131 1 
MY.NET.153.196 9  MY.NET.151.72 1 
MY.NET.53.50 8  MY.NET.53.93 1 
MY.NET.153.21 7  MY.NET.69.253 1 
MY.NET.153.93 5  MY.NET.153.159 4 
MY.NET.153.77 5  MY.NET.189.41 1 
MY.NET.62.2 5  MY.NET.11.6 1 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 50 

MY.NET.82.27 4  MY.NET.153.167 1 
MY.NET.53.185 4    
MY.NET.84.155 4    
MY.NET.153.151 3    
MY.NET.29.3 3    
MY.NET.109.86 3    

 
 
Correlations: 
http://whitehats.com/cgi/arachNIDS/Show?_id=ids177&view=research 
http://www.sans.org/resources/idfaq/port_137.php 
 
 
 
[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC 
Severity: High 
Reported: 1949 times 
Snort Signature ID:  ? 
alert tcp $HOME_NET any -> $EXTERNAL_NET 6660:7000 \ 
(content: "USER ";\ 
content: " 0 0 "; nocase;\ 
msg: "Possible sdbot floodnet detected attempting to IRC";\ 
classtype:misc-activity;) 
 
Background: 
There are 10 different variations of this Trojan.  This Trojan connects to IRC channels 
and accept commands, and is related to Denial of Service attacks and allows remote 
access to the victim system(s).   
Analysis: 
The following table shows all internal source hosts involved in this traffic.  All these 
hosts are definitely involved in IRC traffic.  Most traffic is resolved to the dal.net IRC 
Channel.  The very few connections to other university may be to share some files 
through IRC. The Snort Signature only captures logon activity to those ports.  It might 
be possible that these hosts are not compromised but only used for IRC Channels.  Still 
these hosts are a big suspect for SDBOT Trojan and need further investigations. 
 
 

Source 
# Alerts 
(total) 

# Dsts 
(total) 

MY.NET.97.40 1642 1 
MY.NET.97.22 298 1 
MY.NET.97.66 2 1 
MY.NET.97.193 2 1 
MY.NET.97.179 2 1 
MY.NET.97.149 2 1 
MY.NET.97.81 1 1 
MY.NET.97.178 1 1 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 51 

 

Destinations 
# Alerts 
(total) # Srcs (total) 

194.68.45.50 (irc.dal.net) 1942 3 
140.126.17.129 (a17-129.cv.chu.edu.tw) 7 4 
169.226.226.247 (H226-
247.INDIAN.resnet.albany.edu) 1 1 

 
 
Correlations: 
http://www.giac.org/practical/GCIA/Don_Murdoch_GCIA.pdf 
http://www.giac.org/practical/GCIA/Daniel_Clark_GCIA.pdf 
http://www.viruslibrary.com/virusinfo/Backdoor.IRC.SdBot.htm 
 
 
Connect to 515 from outside    
Severity: Noise  
Reported: 1946 times 
Snort Signature ID: None 
 
Background: 
This port is used for lpd printing service called LPRng.  Some vulnerabilities exist for 
this port for some UNIX versions. See URL http://www.cert.org/advisories/CA-2000-
22.html.   
These alerts were triggered for any traffic destined for port 515.  
 
Analysis: 
Connect to 515 from outside [**] 68.32.127.158:51168 -> MY.NET.24.15:515 
 
 

Source 
# Alerts 
(total) Destination 

68.32.127.158  1946 MY.NET.24.15 
 
We have one source host attacking one destination IP address only.  This host needs 
immediate attention for software version.  If this host is running an older version of 
LPRng then it needs to have a patch applied as soon as possible and block all traffic 
destined for port 515 at the firewall gateway. 
 
Correlations: 
http://www.satx.rr.com/support/security/significant_increase_in_unix.html 
http://xforce.iss.net/xforce/alerts/id/advise80 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 52 

IRC evil - running XDCC     
Reported: 127 times 
Snort Signature ID: None 
 
Background: 
This is another custom alert, which triggered alerts for port 6667 or 7000.  IRC servers 
commonly used port 6666, 6667 and 7000. These ports are also used by several 
Trojans; NetBus, DarkFTP, Moses etc.  This Bot provides file-sharing capability to the 
IRC Interface.  You need to connect to the IRC server and associate with a particular 
channel before you may access resources that XDCC advertises.  There is a possibility 
of a Trojan installed on the Bot, which could look for other host on network to 
compromise.  
The following host MY.NET.42.1, MY.NET.42.3, MY.NET.42.7, MY.NET.42.10, 
MY.NET.42.8, MY.NET.112.199, MY.NET.42.4, MY.NET.42.11, and MY.NET.82.79 
needs immediate attention for further investigations. 
 
TCP SRC and DST outside network     
Reported: 124 times 
Snort Signature ID: None 
Background: 
This traffic triggers when IDS sees traffic that is source and destined for an outside 
network.  The internal IP address is neither source nor destination for these packets. 
Analysis: 
[**] TCP SRC and DST outside network [**] 172.170.100.93:1933 -> 216.155.194.64:5100  
[**] TCP SRC and DST outside network [**] 172.170.100.93:5101 -> 67.33.201.6:50935  
[**] TCP SRC and DST outside network [**] 172.173.110.24:2312 -> 64.12.39.89:80  
[**] TCP SRC and DST outside network [**] 172.173.110.24:2313 -> 64.12.39.67:80 
 
I have looked for this host in scan or OOS logs but it does not seem to exist.  This is 
definitely possible spoofed traffic.  We do not have enough information to conclude this 
for fact.  The spoof address is hard to find but not impossible.  The TCPDUMP or 
Ethereal Packet sniffers may help finding these hosts on the local network (depending 
on network topology). 
Recommendations: 
Setup ingress and egress access-lists on border routers or firewall to block spoofed 
traffic. 
 
 
 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 53 

Scan Analysis: 
 
In this section we will cover the port scan activity that happening on the network.  
 
TOP SOURCE HOST: 

 
 
 
 
 
 
TOP DESTINATION HOST: 

 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 54 

TOP DESTINATION PORTS: 

 
For Further Analysis I have broken down Scan Logs by Protocols: TCP and UDP.  
TCP Port Scans: 
3269397 ALL TCP Scans 
3259149 TCP SYN scans 

8366 TCP RSV scans 
900 TCP INVACK scans 
402 TCP NULL scans 
260  TCP FIN scans 
210  TCP NOACK scans 
77  TCP VECNA scans 
15 TCP XMAS scans 
7  TCP SPAU scans 
5 TCP SYNFIN scans 
2 TCP NAMPID scans 

 
TCP Port scans with RESERVED BIT: 

8366 ALL TCP RSV Scans 
7317  TCP RSV SYN scans 
313  TCP RSV NOACK scans 
301 TCP RSV UNKNOWN scans 
235  TCP RSV INVACK scans 
63 TCP RSV VECNA scans 
54 TCP RSV XMAS scans 
24 TCP RSV FIN scans 
21 TCP RSV SYNFIN scans 
16  TCP RSV NULL scans 
14 TCP RSV SPAU scans 
8 TCP RSV NMAPID scans 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 55 

 
TOP Destination UDP Ports: 

Count 
Destination 

ports 
    

3237960 53 
113320 41170 
66979 22321 
13021 123 
12479 1214 
7091 7674 
5220 33492 
4992 8402 
4867 32912 
4593 6112 

 
Scans: Peer-To-Peer Applications 
 
Edonkey Scan: 

Top Source Destinations 
130.85.111.34 66.58.18.82 
130.85.97.16 218.252.164.20 
130.85.81.39 217.172.185.4 

   
Gnutella Scan: 

Top Source Destinations 
130.85.98.99 65.33.27.21 
130.85.53.225 66.233.191.53 
130.85.97.58 24.190.63.202 

 
 
Kazaa Scan: 

Top Source Destinations 
130.85.153.37 209.6.181.179 
130.85.111.34 24.44.196.183 
130.85.153.85 205.251.242.241 
130.85.153.32 81.100.150.135 

 
WinMX Scan: 

Top Source 
130.85.42.7 
130.85.42.1 
130.85.42.10 

 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 56 

 
 
 
 
Blubster: 

Top Source Destinations 
130.85.72.155 38.118.160.159 
130.85.97.37 38.118.160.160 
130.85.97.62  65.60.191.2 
130.85.97.40 66.31.245.9 
130.85.97.224 152.23.186.243 

 
The ports used above are 4665 (Edonkey), 6346 (Gnutella), 6347 (Gnutella), 1214 
(Kazaa), 6257 (WinMX), and 41170 (Blubster).  The University’s network is heavily used 
by peer-to-peer applications. 
 
PORT 135 ACTIVITY (Worm Propagation): 
The vast majority of port 135 activity is certainly indicative of MSBlaster, Welchia or 
RPC worm propagation attempts. 

Count Source Host 
1264580  130.85.81.39 
247316  130.85.42.6 
242303  130.85.163.107 
240089  130.85.162.92 
57575  130.85.80.243 
21386  130.85.163.234 
10518  130.85.150.227 

 
Recommendations: 
The port 135 activities are common today on the Internet.  Many MSBlaster or Welchia 
infected hosts still exist on the Internet, which may use up bandwidth on some 
networks.  This needs to be blocked on port 135 at the gateway or some honey pot (Tar 
pit) which may help for this kind of activity.  
 
Scans for Well-Known Services: 

Count Source Host Dst. Port 
31967  130.85.81.39 21 
18452  130.85.111.34 21 
19843  209.71.206.162 80 
9195  130.115.2.18 80 

213574  130.85.34.14 25 
32461  130.85.81.39 25 

The above host is scanning university networks for ftp, http or SMTP servers.  These 
services more likely to be exposed for inbound traffic.  
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 57 

Port TCP 6129 Probe (Dame Ware Remote Admin): 
The External Host is looking for a compromised host, which has Dame Ware remote 
control tools installed.  This port always is in a top ten target ports at Dshield.org.  
 
 

Count Top Source 
16763 212.7.193.133 
14681 211.94.206.191 
14107 24.20.215.40 
13318 216.191.146.179 

Port TCP 20168 Activity (? Windows Update Virus): 
Count Top Source 

14989 131.183.184.100 
8906 4.19.90.11 
8081  166.66.15.149 

According to http://isc.sans.org/diary.html?date=2003-12-11 , this port is attributed to 
worms which use this port for tftp file transfer of worm code.  
 
OOS Logs: 
As a final stage of analysis, we take a closer looks at “out-of-spec” packets.  The Out of 
Spec logs are generated when snort encounters a problem with TCP options or flags.  
This is mainly generated due to some corruption in packets, crafted packets for 
fingerprinting or a new implementation of ECN (Explicit Congestion Notification) Flag.   
TOP 10 OOS SOURCE HOSTS: 

Count Source host 
1174 68.54.84.49 
521 207.138.63.21 
296 207.138.63.20 
177 207.138.63.26 
156 202.175.245.90 
132 207.138.63.25 
122 207.138.63.24 
92 62.210.155.58 
90 67.114.19.186 
85 202.138.189.60 

The majority traffic from host 68.54.84.49 destined for port 110 and from host 
207.138.63.0 networks destined for port 25. 
TOP 10 OOS DESTINATIONS: 

Count Destination host 
2077 MY.NET.12.6 
1320 MY.NET.6.7 
325 MY.NET.24.44 
145 MY.NET.84.235 
103 MY.NET.34.11 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 58 

96 MY.NET.60.39 
70 MY.NET.60.16 
70 MY.NET.60.38 
66 MY.NET.42.12 
55 MY.NET.12.4 

It is apparent from the table above that MY.NET seems to be a receiving end of most 
traffic.   
TOP 10 SOURCE PORTS: 

Count Source port 
62 3920 
31 1088 
16 1038 
15 80 
11 6881 
10 2821 
9 3656 
8 3153 
7 1474 
7 25 

 
TOP 10 DESTINATION PORTS: 

Count Destination port 
2130 25 
1229 110 
901 80 
168 4662 
76 113 
62 1039 
43 6881 
42 3300 
31 1159 
28 2234 

 
The majority of OOS traffic was triggered for two high order ECN flag bits.  These flags 
implement “Active queue management” of data flow to TCP traffic to prevent bottleneck 
at the router. Many routers have implemented this functionality but many IDS still 
consider this as a violation of TCP specifications. 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
02/08-00:05:23.401475 216.95.201.20:58437 -> MY.NET.12.6:25 
TCP TTL:48 TOS:0x0 ID:51755 IpLen:20 DgmLen:60 DF 
12****S* Seq: 0xD5336D3C  Ack: 0x0  Win: 0x16D0  TcpLen: 40 
TCP Options (5) => MSS: 1380 SackOK TS: 747969960 0 NOP WS: 0 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
Majority of this traffic are false positive.  These alerts were triggered because router has 
set ECN TCP flags. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 59 

We also see some possible crafted packets for null scan as following, may be with 
NMAP or HPING tools. 
 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
02/08-00:11:08.629907 68.122.128.1:47633 -> MY.NET.12.4:110 
TCP TTL:80 TOS:0x0 ID:4660 IpLen:20 DgmLen:40 
******** Seq: 0x7D05001  Ack: 0x8D534C97  Win: 0x800  TcpLen: 20 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
The following packet are example of strange TCP flags set where Urgent, ack, reset, 
syn, fin bits are set. 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
02/08-00:35:47.247400 68.66.9.125:4349 -> MY.NET.42.6:6882 
TCP TTL:105 TOS:0x0 ID:18421 IpLen:20 DgmLen:40 DF 
**UA*RSF Seq: 0x734418CA  Ack: 0x368A5CA8  Win: 0xEF37  TcpLen: 4  UrgPtr: 
0xAFC5 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
Here is also another example of false positive traffic.  This seems to be an example of 
Yahoo IM with HTTP proxy support. 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 
 
02/08-03:28:05.818926 66.218.77.72:80 -> MY.NET.97.63:2478 
TCP TTL:50 TOS:0x0 ID:57920 IpLen:20 DgmLen:478 DF 
12UA**SF Seq: 0xC66024AB  Ack: 0x4879A7A2  Win: 0x5D33  TcpLen: 20  UrgPtr: 
0x6EE5 
B7 E1 A1 75 5A 43 2E CF 36 68 B5 41 5D D3 15 9F  ...uZC..6h.A]... 
99 0B 81 40 0D 6C 00 00 75 6E 2C 20 30 38 20 46  ...@.l..un, 08 F 
65 62 20 32 30 30 34 20 30 38 3A 32 38 3A 30 35  eb 2004 08:28:05 
20 47 4D 54 0D 0A 50 33 50 3A 20 70 6F 6C 69 63   GMT..P3P: polic 
79 72 65 66 3D 22 68 74 74 70 3A 2F 2F 70 33 70  yref="http://p3p 
2E 79 61 68 6F 6F 2E 63 6F 6D 2F 77 33 63 2F 70  .yahoo.com/w3c/p 
33 70 2E 78 6D 6C 22 2C 20 43 50 3D 22 43 41 4F  3p.xml", CP="CAO 
20 44 53 50 20 43 4F 52 20 43 55 52 20 41 44 4D   DSP COR CUR ADM 
20 44 45 56 20 54 41 49 20 50 53 41 20 50 53 44   DEV TAI PSA PSD 
20 49 56 41 69 20 49 56 44 69 20 43 4F 4E 69 20   IVAi IVDi CONi  
54 45 4C 6F 20 4F 54 50 69 20 4F 55 52 20 44 45  TELo OTPi OUR DE 
4C 69 20 53 41 4D 69 20 4F 54 52 69 20 55 4E 52  Li SAMi OTRi UNR 
69 20 50 55 42 69 20 49 4E 44 20 50 48 59 20 4F  i PUBi IND PHY O 
4E 4C 20 55 4E 49 20 50 55 52 20 46 49 4E 20 43  NL UNI PUR FIN C 
4F 4D 20 4E 41 56 20 49 4E 54 20 44 45 4D 20 43  OM NAV INT DEM C 
4E 54 20 53 54 41 20 50 4F 4C 20 48 45 41 20 50  NT STA POL HEA P 
52 45 20 47 4F 56 22 0D 0A 43 6F 6E 74 65 6E 74  RE GOV"..Content 
2D 4C 65 6E 67 74 68 3A 20 34 33 0D 0A 43 61 63  -Length: 43..Cac 
68 65 2D 43 6F 6E 74 72 6F 6C 3A 20 70 72 69 76  he-Control: priv 
61 74 65 0D 0A 45 78 70 69 72 65 73 3A 20 54 68  ate..Expires: Th 
75 2C 20 31 35 20 41 70 72 20 32 30 31 30 20 32  u, 15 Apr 2010 2 
30 3A 30 30 3A 30 30 20 47 4D 54 0D 0A 43 6F 6E  0:00:00 GMT..Con 
6E 65 63 74 69 6F 6E 3A 20 63 6C 6F 73 65 0D 0A  nection: close.. 
43 6F 6E 74 65 6E 74 2D 49 60 AC 6F B9 CC 20 5E  Content-I`.o.. ^ 
78 91 B2 A8 C3 9A 45 0E B9 C0 38 7A 8A EF 77 9A  x.....E...8z..w. 
96 CB A9 72 BD FD 5D B4 FF FF FF 00 00 00 21 F9  ...r..].......!. 
04 01 00 00 00 00 2C 00 00 00 00 01 00 01 00 00  ......,......... 
02 02 44 01 00 3B                                ..D..; 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+= 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 60 

 
Most of these crafted packets were used in fingerprinting systems. The Out-of-specs 
logs provide valuable information for crafted packets.   
 
 
Conclusion and Recommendations: 
After analyzing five days worth of all logs files, I believe the university has some snort 
configuration and rules issues.  The IDS rules need to be fine-tuned to further reduce 
false positive alerts and less important events.  Many false alerts always hide real 
attacks from the intrusion analyst. If the university does not need all preprocessors for 
snort then they should be turned off in snort configuration. 
 Security policy is always most important in any network.  The university should 
have established a policy for P2P software use, anti-virus scan etc. The security policy 
needs to be established for service to be available from outside.  There should be an 
outline established for student access from outside of the network. 
 Host hardening and patch management are also an important piece in security.  
Patching all systems on the local network is needed on the university network.  Many 
times the systems administrator will patch important systems but get forget less 
important systems. (Some printers are also on a UNIX OS with web server for 
management). The attacker may compromise those systems and then look for other 
systems to compromise. 
 I also recommend improving the firewall rules set and access-lists on border 
gateway routers.  The gateway router should be a first line of defense.  Setup an 
access-list to block IP spoofing traffic.  Any traffic with a private IP address as a source 
should not enter from the outside.  Establish a content filter to block worm traffic. The 
honey pot may also help reduce worm and port scan traffic.  There should be no traffic 
allowed on port 135 from the Internet. All port 135 traffic must be blocked by the firewall. 
 Finally, Security Awareness is also important to teach users about the risk and 
danger of using P2P applications open window shares, Trojans and legal issues 
surrounding the sharing of music files, application and other copyright protected 
information. 
 
Process Used in this analysis: 
First I have condensed all five days of logs files into one by using cat and sort 
commands.  I have also found some corruption in the alerts log files.  With some 
manual manipulation and some with scripts, I have cleared up those corruptions.  In the 
alerts and OOS file local network was referenced with MY.NET. to follow the advice 
from older practical and use some UNIX scripts, sed, awk commands and changed 
reference MY.NET to some fake address 999.999.  I was planning to use ACID for 
further analysis but it was not worthwhile to write scripts in this short time to put all alerts 
in a complex database.  Then I started looking in other student’s assignments as well as 
their advice.  I have tried snortalog but it did not work with these logs.  Then I decided to 
use snortsnarf.  I followed the instructions found on their website 
www.silicondefense.com . The snortsnarf works fine for alert files.  The snorsnarf is a 
memory intensive application.  I was using 2Gz processor with 1GB memory but still I 
was not able to run port scan logs with snortsnarf.  I decided to analyze scan logs 
manually with some UNIX shell scripts using Grep, Awk, Sort, cut and uniq commands.  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 61 

I have divided the scan logs into TCP and UDP scans for further analysis.  I have 
followed same procedures for OOS logs also.  The results were stored in text files and 
Excel to help organize and sort IP and Port information.  I have also tried the sawmill log 
analyzer to compare my results. 
 
REFERENCES: 
www.google.com 
 
http://www.dshield.org/ipinfo.php 
 
http://www.geektools.com/whois.php 
 
http://www.silicondefense.com/software/snortsnarf/ 
 
http://jeremy.chartier.free.fr/snortalog/ 
 
http://www.snort.org 
 
http://www.sawmill.net/ 
 
http://whitehats.com/ 
 
CERT Advisory CA-2000-22 
http://www.cert.org/advisories/CA-2000-22.html 
 
http://www.dials.ru/english/inf/linux_adore.htm 
 
http://www.geocrawler.com/archives/3/4890/2001/2/350/5151528 
 
http://ist.uwaterloo.ca/security/vulnerable/20030103.note 
 
http://www.whitehats.ca/main/members/Herc_Man/Files/Al_Williams_GCIAPractical.pdf 
 
http://www.ussg.iu.edu/hypermail/linux/kernel/0011.1/1186.html 
 
http://www.cert.org/current/services_ports.html 
 
http://cert.uni-stuttgart.de/archive/incidents/2003/06/msg00130.html 
 
http://www.sans.org/resources/idfaq/port_137.php 
 
http://www.satx.rr.com/support/security/significant_increase_in_unix.html 
 
http://www.dal.net/admin/vote/index.php3 
 
http://www.hping.org/ 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 62 

 
http://support.novell.com/ 
 
http://www.linklogger.com/TCP6129.htm 
 
GCIA PRACTICALS: 
 
http://www.giac.org/practical/GCIA/Don_Murdoch_GCIA.pdf 
 
http://www.giac.org/practical/GCIA/Knut_Bjornstad_GCIA.pdf 
 
http://www.giac.org/practical/GCIA/Loic_Juillard_GCIA.pdf 
 
http://www.giac.org/practical/GCIA/Saro_Hayan_GCIA.pdf 
 
http://www.giac.org/practical/GCIA/Marshall_Heilman_GCIA.pdf 
 
http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf 
 
http://www.giac.org/practical/GCIA/Joanne_Schell_GCIA.pdf 
 
http://www.giac.org/practical/GCIA/Johnny_Wong_GCIA.pdf 
 
http://www.giac.org/practical/GCIA/Ian_Martin_GCIA.pdf 
 
http://www.giac.org/practical/GCIA/SaiPrasad_Kesavamatham_GCIA.pdf 
 
http://www.giac.org/practical/GCIA/John_Ruiz_GCIA.pdf 
 
http://www.giac.org/practical/GCIA/Sylvain_Randier_GCIA.pdf 
 
http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc 
 
http://www.giac.org/practical/Tod_Beardsley_GCIA.doc 
 
 
 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 63 

APPENDIX: A  Link Graph 
 
The link graph below shows IRC Evil – Running XDCC activity on Internal Host. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 64 

IP Information for Top Destination involved in IRC Evil – Running XDCC Activity. 
 
IP Address:216.152.67.21  
HostName:216.152.67.21 
OrgName:    WebMaster, Incorporated  
OrgID:      WBMR 
Address:    1601 Civic Center Drive, Suite 101 
City:       Santa Clara 
StateProv:  CA 
PostalCode: 95050 
Country:    US 
 
NetRange:   216.152.64.0 - 216.152.79.255  
CIDR:       216.152.64.0/20  
NetName:    WEBMASTER-BLK-1 
NetHandle:  NET-216-152-64-0-1 
Parent:     NET-216-0-0-0-0 
NetType:    Direct Allocation 
NameServer: NS1.WEBMASTER.COM 
NameServer: NS1.WEBCHAT.ORG 
Comment:    ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE 
RegDate:    2000-07-18 
Updated:    2003-09-05 
 
TechHandle: MO21-ARIN 
TechName:   Owen, Mark  
TechPhone:  +1-408-345-1800 
TechEmail:  mark@webmaster.com  
 
IP Address:216.248.61.76  
HostName:216.248.61.76 
CustName:   Excelsior Media Studios 
Address:    Private Residence 
City:       Lexington 
StateProv:  KY 
PostalCode: 40511 
Country:    US 
RegDate:    2003-11-11 
Updated:    2003-11-11 
 
NetRange:   216.248.61.64 - 216.248.61.127  
CIDR:       216.248.61.64/26  
NetName:    ABS-LXTNKY-EMS 
NetHandle:  NET-216-248-61-64-1 
Parent:     NET-216-248-0-0-1 
NetType:    Reassigned 
Comment:     
RegDate:    2003-11-11 
Updated:    2003-11-11 
 
TechHandle: VJN-ARIN 
TechName:   Newton, Valerie Jo 
TechPhone:  +1-814-260-2764 
TechEmail:  valerie.newton@telcove.com  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 65 

OrgAbuseHandle: ABUSE167-ARIN 
OrgAbuseName:   Abuse  
OrgAbusePhone:  +1-814-260-2633 
OrgAbuseEmail:  abuse@adelphiabusiness.net 
 
OrgTechHandle: AMB37-ARIN 
OrgTechName:   Barentine, Angela M 
OrgTechPhone:  +1-814-260-2757 
OrgTechEmail:  angela.barentine@telcove.com 
 
OrgTechHandle: RSI4-ARIN 
OrgTechName:   Sirghie, Razvan  
OrgTechPhone:  +1-814-260-2756 
OrgTechEmail:  razvan.sirghie@telcove.com 
 
IP Address:203.167.224.18  
HostName:neptune.gameplanet.net.nz 
inetnum: 203.167.224.0 - 203.167.224.63 
netname: CLIX-CLIXACLD-NZ 
descr: CLIX Auckland Red Network 
country: NZ 
admin-c: CCNO1-AP 
tech-c: CCNO1-AP 
remarks: Delegated by CLEAR Communications Ltd 
remarks: 24/7 CLEAR NOC phone +64 9 912-4990 
notify: netobjs@clear.net.nz 
mnt-by: MAINT-CLIX-NZ 
changed: netobjs@clear.net.nz 20010624 
status: ASSIGNED NON-PORTABLE 
source: APNIC 
changed: hm-changed@apnic.net 20020827 
 
role: CLEAR Communications Network Objects Maintainer 
address: ISP Duty Officer, CLEAR Net Operations 
address: CLEAR Communications Limited 
address: Private Bag 92143 
address: Auckland 
country: NZ 
phone: +64 9 912-5024 
fax-no: +64 9 912-5008 
e-mail: netobjs@clear.net.nz 
admin-c: CCNO1-AP 
tech-c: CCNO1-AP 
nic-hdl: CCNO1-AP 
remarks: For network abuse contact abuse@clear.net.nz 
remarks: For 24/7 after-hours NOC, please call +64 9 912-4990 
notify: netobjs@clear.net.nz 
mnt-by: MAINT-CLIX-NZ 
changed: netobjs@clear.net.nz 20010821 
source: APNIC 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 66 

IP Address:64.71.177.228  
HostName:ca.enterthegame.com 
ustName:   Jeff Walter 
Address:    42657 Newport Drive 
City:       Fremont 
StateProv:  CA 
PostalCode: 94538 
Country:    US 
RegDate:    2003-12-09 
Updated:    2003-12-09 
 
NetRange:   64.71.177.224 - 64.71.177.239  
CIDR:       64.71.177.224/28  
NetName:    HURRICANE-CE1347-3B1 
NetHandle:  NET-64-71-177-224-1 
Parent:     NET-64-71-128-0-1 
NetType:    Reassigned 
Comment:     
RegDate:    2003-12-09 
Updated:    2003-12-09 
 
TechHandle: ZH17-ARIN 
TechName:   Hurricane Electric  
TechPhone:  +1-510-580-4100 
TechEmail:  hostmaster@he.net  
 
OrgTechHandle: ZH17-ARIN 
OrgTechName:   Hurricane Electric  
OrgTechPhone:  +1-510-580-4100 
OrgTechEmail:  hostmaster@he.net 
 

APPENDIX: C  IP INFO. FOR TOP SOURCE HOST IN ALERT LOGS 
 
IP Address: 220.12.4.217 
HostName: YahooBB220012004217.bbtec.net 
inetnum: 220.0.0.0 - 220.63.255.255 
netname: BBTECH 
descr: Japan nation-wide Network of SOFTBANK BB CORP 
descr: Tokyo, Japan 
country: JP 
admin-c: SA127-AP 
tech-c: SA127-AP 
mnt-by: APNIC-HM 
mnt-lower: MAINT-JP-BBTECH 
changed: hostmaster@apnic.net 20020412 
changed: hm-changed@apnic.net 20030616 
status: ALLOCATED PORTABLE 
source: APNIC 
 
role: SoftbankBB ABUSE 
address: 24-1, Nihonbashi Hakozaki-Cho ,Chuo-Ku ,Tokyo 
country: JP 
phone: +81-0570-919-820 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 67 

e-mail: hostmaster@bbtec.net 
trouble: Please send spam report,virus alart 
trouble: or any other abuse report 
trouble: to abuse@bbtec.net 
trouble: Any other Information, Notice, 
trouble: Please send to hostmaster@bbtec.net 
admin-c: TT123-AP 
tech-c: ST222-AP 
nic-hdl: SA127-AP 
notify: admin@bbtec.net 
mnt-by: MAINT-JP-BBTECH 
changed: stsuruma@softbank.co.jp 20030613 
source: APNIC 
 
 
 
IP Address: 68.33.138.193 
HostName: esx136dhcp705.essex01.md.comcast.net 
Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-0-0-1)  
68.32.0.0 - 68.63.255.255 
Comcast Cable Communications, Inc. BALTIMORE-B-1 (NET-68-33-0-0-1)  
68.33.0.0 - 68.33.255.255 
 
IP Address: 68.32.127.158 
HostName: pcp01823879pcs.howard01.md.comcast.net 
Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-0-0-1)  
68.32.0.0 - 68.63.255.255 
Comcast Cable Communications, Inc. BALTIMORE-B-1 (NET-68-33-0-0-1)  
68.33.0.0 - 68.33.255.255 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 68 

APPENDIX: B Scan Analysis 
 
TOP SOURCE PORTS: 

 
 
 
TCP Port Scan Analysis: 
 
Top Destination Hosts: 

Count Destination 
20317 130.85.97.55 
18221 61.156.14.122 
8767 218.15.192.166 
7967 130.85.112.222 

6805 
 
129.132.227.151 

6718 216.188.76.37 
6552 213.138.148.10 
6048 198.247.172.10 
6015 219.153.1.212 
5160 195.41.53.186 
4598 127.0.1.50 
4393 81.94.131.69 
4251 194.106.143.68 
4250 64.224.20.142 
4146 209.133.28.19 
4117 130.85.12.6 
4094 129.97.56.22 
4027 202.103.30.41 

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 69 

 
 
UDP Scan Analysis:    
     

Count Top UDP Source  Count 
Top 

Destination 
2793253 130.85.1.3  83490 69.6.33.10 
460558 130.85.1.4  75513 69.6.33.11 
370430 130.85.153.37  64808 192.26.92.30 
221628 130.85.111.34  38437 203.20.52.5 
157096 130.85.110.72  38192 192.5.6.30 
142556 130.85.110.72  35335 192.55.83.30 
73075 130.85.82.15  30943 192.48.79.30 
68290 130.85.70.207  30622 131.118.254.34 
65281 130.85.84.131  29134 216.109.116.17 
40883 130.85.72.155  27868 131.118.254.33 
33563 130.85.97.37  27739 69.20.36.152 
28753 130.85.153.97  26798 69.20.36.154 
26383 130.85.69.214  25883 165.230.209.227 
22084 130.85.153.87  23554 69.6.33.9 
18765 130.85.53.225  23269 67.68.12.4 
12216 130.85.42.7  23121 209.92.188.201 
11893 130.85.97.58  22505 68.83.32.174 
11684 130.85.69.226  19851 128.194.254.5 
10417 130.85.97.62  19849 69.6.27.88 
7078 130.85.97.40  19689 131.118.254.35 

 
Some Interesting Probes in Port scan Logs: 

Count Top Source Dst. port Description 
11597 211.110.127.133 4899 ?Radmin 
7618 61.107.181.148 4899 ?Radmin 

15192 69.0.147.187 4000 icq 
5360 80.222.6.95 4000 icq 

10059 61.155.11.30 554 Real server 
11177 212.27.197.78 5900 vnc 
8180 216.99.99.120 555 ?Raman Worm 
8001 172.210.122.200 7300 ?Kuang2 

 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 70 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


