
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 3.4

Kam Hung Ng

May 2, 2004

Page 1 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

This version 3.4 assignment was written for the GCIA certification. It covers all
the three parts as required.

Part 1 – Describe the state of Intrusion Detection

• Security Information Management (SIM) System

Part 2 – Network Detects

• Network Detect #1: Microsoft DCOM/RPC Buffer Overflow - Microsoft alert
MS03-026

• Network Detect #2 : SHELLCODE x86 0xEB0C NOOP - ftp shellcode exploit
• Network Detect #3 : BAD-TRAFFIC ip reserved bit set

Part 3 – Analyze this

Date of log covered:
Scan logs: Alert logs: Out-of-Spec logs:
scans.040407 alert.040407 oos_report_040403
scans.040408 alert.040408 oos_report_040404
scans.040409 alert.040409 oos_report_040405
scans.040410 alert.040410 oos_report_040406
scans.040411 alert.040411 oos_report_040407

Page 2 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Security Information Management (SIM) System

Abstract

Today, corporations are commonly using point security solutions to monitor the
security of their IS infrastructure such as firewalls, intrusion detection systems,
proxies, screening routers, anti-virus system, anti-spam system, system
monitoring software and other network monitoring devices.

There is one thing in common that they all can produce massive amount of alerts
and logs. This was not a problem some years ago when the security landscape
was still calm and quiet. But now, most networks are flooded with exploit traffic,
improperly designed application traffic and other noises. This causes too many
false positives to the security monitoring system which plagues the detection
capability of real intrusions.

The common ways to handle these log data are 1) doing nothing; 2) manual data
analysis, and 3) using in-house automation tools. [9] Often time, event
information from only one source is not sufficient to get to the root cause of an
alert. The security analyst will also have to refer to logs in other areas such
firewall, system log and etc. This manual process could take a long time.
Automation can help to improve the situation.

Organization is consistently under pressure to improve the bottom line and
reduce cost. This will affect the resources available to security alert monitoring.
How can the security team do more with less? The natural choice is to automate
some of the time consuming and repetitive security tasks.

In response to these problems, security vendors develop better security
management solutions. They are commonly referred to as Security Information
Management (SIM) System.

Security Information Management (SIM) System

Richard Stiennon, Director, Gartner Group:

“Security event management solves todays' critical problem of aggregation and
correlating diverse log data for real-time event detection and response. In the
future I see these security management platforms serving as the central
intelligence systems for security operations”

In essence, SIM acts as a hub of security information flow and provides a
consistent analysis framework to produce near real time alert and long term
threat trending report. The real time alert capability is critical for monitoring
general exploit activities and the trending part has a better chance to detect

Page 3 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

stealthy exploits.

SIM systems on the market today share similar architecture. Diagram below
shows the basic ArcSight SIM system architecture. [v9]

System generally consists of the following basic components:

1. Event collector to collect the events from the security end-points such as IDS,
firewalls, syslog and etc.

2. An event correlation engine to correlate the incoming events.
3. Database to store the event information.
4. Management and Alert console.
5. Data mining and reporting tools.

From functional perspective, SIM system has the following capabilities in
general: [1]

1. Data Normalization – As SIM will take messages from security end-point
systems of different suppliers with incompatible data format messages. The
event collector of the SIM must be able to normalize the events to facilitate
data process within the system.

2. Aggregation/Data Reduction – Consolidate data through deletion of
duplicates, combining similar events into a single event.

3. Correlation Engine – The process of correlating related events into a single
incident alert.

4. Data Transport – Moving log data around.
5. Alert Prioritization: Based on event severity, event decay time and other pre-

defined parameters.
6. Response: This includes:

• Automated notification to the console, pagers, and cell phones.
• Incident Management system that keeps incident information and

Page 4 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

provides flow management to the administrator to manage events.
• Knowledge Base of relevant industry, vendor, and organization policies

to help event handling.
• Automatic and manual scripts/programs launching capabilities in

response to an incident.
7. Data Mining: Capabilities to run report against the security event database to

produce reports and metrics.

Event Correlation

Correlation is the key to SIM system. Correlation is a causal, complementary,
parallel, or reciprocal relationship, especially a structural, functional, or
qualitative correspondence between two comparable entities: a correlation
between drug abuse and crime. [1]

The common types of correlation used are rule-based and statistical. [1][8] Rule-
based correlation deals with states, conditions, time and other related
actions/activities. Statistical(algorithmic) correlation employs special numeric
algorithms to calculate threat levels of current attacks.

No one correlation method is better than the other. Statistical correlation system
works like an anomaly detection system that it bases its decision on baseline
information. While rule-based systems acts like a signature based intrusion
detection system.

The datasets that SIM system correlates includes 1) security events and 2)
system vulnerability database. Type 1 correlates only security events that SIM
receives. Type 2 correlates incoming events with the information in the
vulnerability database of the target system. SIM systems on the market use one
type or both.

There are different level of correlations:

Atomic Level Correlation – The normalized raw event data from the security
monitoring end-points are correlated. Often time the source IP, destination IP
and the event class are used as the key correlation factors. Event class refers to
a higher level of abstract event type. For example, for the same web server
attack, IDS reports a “http_unicode_attack” event while the proxy server reports
the same with different name “web_unicode_traffic”. In order to let the correlation
engine to relate these two events, they have to be normalized with the same
abstract event class name, say, “web_URL_attack” before sending it to the
correlation engine. Of course, different vendor has different event class name.
There are movement to unify this.[11]

Rule Correlation – An event may be tagged with time decay, severity decay and
other attributes. It will be correlated based on the rule set of the correlation

Page 5 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

engine. The value of these attributes will be adjusted by the correlation engine
over time based on the algorithm used.

Vulnerability correlation – The process correlates the incoming event with a
vulnerability database to determine the severity level of the event. The resulting
event severity will be low if there is no vulnerabilities found on the target system
for the current attack, for example, linux attack against a Window system.

Profile (Finger Print) Correlation [1] - Forensic network data such as remote port
scans, remote OS finger prints, finger information, and banner snatching
provides a series of data sets that can be compared to help correlate attacks to
attacker profiles.

Watch List Correlation [1] – Using a set of learned inputs the watch list can serve
as a reminder of previous offenders in real-time. Correlating previous attackers
with current attacks.

SIM Can Reduce False Positive

SIM can reduce false positive mainly through atomic level, rule and vulnerability
correlation.

Without correlation, all the event alerts from the point solution system will be sent
to the corresponding monitor console, bombarding the administrator. The
administrator can choose to trim down the amount of alerts by arbitrarily filtering
off high noise alerts but taking the risks of missing critical and lethal events. It's a
very difficult decision to make.

With atomic correlation, the SIM correlation engine inspects the incoming
normalized raw event data from different end-points for:

1. Duplicated events. Duplicated events can come from the same sensor end-
point or from different end-points. A lengthly network scan against a single
system can generate a lot of IDS events. Normally, IDS systems already
reduces the amount of alert event with threshold settings. But SIM system
provides a second level of control to deal with the situation.

2. Related events. When a class C subnet was scanned by an attacker, it can
generate roughly about 256K events assuming only the well-known low ports
were scanned. Let say the IDS is stateful and only reports attacks against
each system, you are still seeing 256 events on the IDS console. On the other
hand, when these 256 host attack events were send to the SIM system, it can
reduce to one single incident of attack class of a class C subnet scanning.

3. DDOS events. For normal IDS and firewall, they will produce large volume of

Page 6 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

alerts as triggered by the DDOS event. But on a SIM system, it can reduce it
down to a single incident warning that the victim was being attacked by many
other systems.

With rule correlation, the SIM system correlation engine processes the incoming
events based on time decay, severity decay and other attributes.

1. Time decay. The allows the correlation engine to accumulate events in the
system until it reach the preset threshold before it sends alert to the console.
This is helpful in reducing network activities like random probing. The attacker
might just randomly send one or two probing packets to a systems and went
away. Sending alerts for this kind of activities does not provide good value
from intrusion monitoring perspective.

2. Severity decay. The severity of an alert will decay over time if the same alert
does not happen again for a certain period of time. If this attack was really that
lethal, the system should have been compromised at the first attack already.
Therefore, if it does not come back within a preset period, the severity level
should be reduced. Once it was reduced say from high to medium, the analyst
will have one less alert to worry.

In my personal opinion, vulnerability correlation is one of the best ways to reduce
false positive. It's a very straight forward approach. SIM system with this
capability runs system vulnerabilities scanning at a preset schedule to perform
security assessment on the systems it monitors. The results are stored to a
central database. When the SIM system receives events, it checks them against
the vulnerabilities database to see if the target system is vulnerable. Normally, if
the target system is vulnerable to the attack, SIM will send an alert to the
monitoring console. If no vulnerability is found for this exploit, it may just drop the
incoming alert or only sends it to the alert repository for other use.

In essence, SIM system correlates information from multiple point detection
systems running in solo to gain a better holistic view of the security context in the
environment it protects, similar to the way an IDS analyst will do.

What Can We Do With SIM

Threat Analysis

One of the application of SIM is threat analysis. It is being used for near real time
intrusion monitoring. Once an incident was alerted, either the system will fire off
an automated response or the on-duty analyst will respond using the system.

Most of the IDS can do this. What makes SIM a better system?

Page 7 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. SIM can reduce false positive.
2. It provides a more holistic view of the incident. Information pertaining to the

event reported will be available to analyst at one single location presented in
different view instead of the analyst has to look for information in several
different systems. This speeds up the analysis process making the incident
response time shorter.

3. Normally, SIM system presents a high level view of the incident alert that an
analyst with less low level system knowledge is also able to handle the
incident. This means that tight supply situation of qualified intrusion analyst
will be somewhat improved. I am not here to suggest that the analysts are no
longer needed to know the basic but with SIM system people somewhat less
knowledge is still able to handle the common incidents.

4. SIM system provides flow management tool to help to manage the flow of
incident handling and provides audit trail on the incident response. This will
help to improve the performance of the security monitoring team.

Threat Trending

Most of the time, we are dealing with three major classes of exploits: noisy
exploits, stealthy exploits and resource misuse. Noisy exploit activities can be
handled by threat analysis discussed above. However, stealthy exploits and
internal misuse often time requires to review tons of logs to discover. With the
huge volume of logs, doing it manually or using once-awhile home grown scripts
may not able to handle such a demand effectively and efficiently.

SIM system comes with canned data mining reporting modules for the user to
use. It's relatively easy to show the top talkers, the top attackers, the top exploit
class, the volume graph and etc.

But over time, custom reports will normally be needed to meet the unique needs
of individual company. The information query is normally handled by database
query scripts and reporting software such as SQL, Crystal report, PowerPlay and
etc. Knowing how to use these tools is definite helpful to the analyst.

Trending provides valuable information about hidden security and non-security
problems such as stealthy scan and exploits and someone has been spending
most of the day in his/her office surfing the Internet.

Forensic Analysis

SIM system can help performing forensic analysis for system compromise or
investigation. With the information stored in SIM system and the reporting and
searching capabilities it provides, the analyst will be better equipped to handle
computer security incidents. Forensic investigation normally requires reviewing
load of historical data in a systematic manner. SIM system provides log data

Page 8 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

storage and data mining capabilities for such purpose.

Policy Analysis

SIM system provides a more holistic view of the security posture of an
organization. It gives a general overview of how the IS infrastructure is being
used. With this information on hand, the organization can audit how well the
corporate policies are being enforced and if the policies have to be adjusted to
meet the consistent changing needs of the company.

Benefits of SIM

SIM system provides a centralized information management system as
compared to the islands setup by individual point products. With SIM system, all
events are displayed on centralized location/s with a unified view and the event
data is kept in a central repository using the same data schema. Better quality
information can be pulled from the SIM system to improve the decision-making
process. This will also dramatically reduce the incident handling response time.
All this will make the management of alerts, security incidents, reporting and
metric generation more effective and efficient.

If the proper product is chosen and configured properly, false positive can be
significantly reduced. This will put less strain on the analyst that they can focus
on the real security issues.

After the SIM system has been configured and trained to do some of the
repetitive incident handling work for the analysts, the efficiency of security
operation will be increased, either operating resources can be reduced or the
security operation team can do more in other areas to improve the organization
security.

SIM system can provide better scalability. This is a big benefit to organization
when more and more monitoring end-points are deployed to improve the security
of the organization. Point solutions will not scale well in this kind of expansion
requirements.

SIM systems currently on the market are able to work with third party security
systems in existence today. Organization can leverage on the SIM system to
make better utilization of existing security infrastructure and probably be able to
extend their useful life to improve their return on investment. Also this allows
customers to choose to use the the “Best of Breed” security products to make
the best use of their security investment.

Page 9 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SIM System Selection Criteria

Architecture design

1. The architecture design of the product must provide good scalability that will
meet the future plan of the organization.

2. The deployment and system maintenance requirements have to match with
the organization requirements. Will this affect the service level of the
organization during product installation and maintenance.

3. Does the product design follow good security guide lines and principles. I have
seen security products with poor security design.

4. System redundancy.

Correlation

1. What correlation algorithm the product is using? Completely proprietary or
using standard approach.

2. How difficult to make adjustment to the algorithm and the rules. I have seen
product that requires actual configuration files and rule base file changes and
yet the procedure is poorly documented. The system has to be reloaded even
with minor changes. This may also cause problem in system software
update/upgrade in the future. GUI approach sometimes make the adjustment
easier and often it's less prone to incompatibility issues when changing
version of the software as the users is isolated from making change to the
core of the system directly.

System Configuration

1. How to configure the system.
2. Does the system provide configuration change audit and rollback capabilities.
3. Is system reboot required for configuration changes.

Third Party Product Support

1. List of support products.
2. Support information readily available and properly maintained.

Human Interface

1. How customizable is the administrator and monitoring console.
2. Does it have a reasonable layout?
3. Thin or thick client?
4. Security control of administrator and regular analysts access.
5. How many view of the same data is available.

Page 10 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Data Mining and Reporting

1. What database is supported?
2. Database access method?
3. Security control of the database.

Response Type

1. Send alert via email, pager, SNMP and other protocol.
2. Manual response, manual initiated script response, automated script

response.
3. Sending response to other products.
4. Controllable from other systems.

Performance

1. System throughput.
2. Alert response time.

System Requirements

1. Operation System requirements. Does it use the standard OS platform in your
organization.

2. Hardware requirements. Does it use the standard hardware platform in your
organization.

System Maintenance

1. Regular system recycle requirement.
2. SIM software system patch notification mechanism.
3. Database maintenance utility included.

System Recovery

1. What to back up?
2. How often to backup?
3. System Recovery time?

Total Cost of Owner

1. Operation System software
2. Database license cost
3. Hardware cost
4. One time SIM software license cost
5. Recurring SIM software license cost

Page 11 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6. Maintenance charge
7. Installation cost
8. Training cost
9. administration cost

Conclusion

SIM systems will improve the effectiveness and efficiency of existing security
monitoring and control operation if deployed properly. But it is still at its infancy
stage. It will take many years to develop. How good it will end up is still a big
unknown. The various correlation mechanism that comes with the product today
is still very rudimentary that it is only good at detecting DDOS, network scan and
similar real time attacks.

Setting up the system to monitor application level attack may not be a trivial task.
SIM system relies on quality event inputs and the rule bases to make event
correlation. Like a signature base IDS, it will not be able to detect security
problem yet unknown to the administrator. It is definitely way more difficult and
complicated than the story the vendor try to tell to convince you to open your
wallet.

It is a real challenge for the IDS analysts to figure out ways to streamline and
make the correlation more effective in detecting real intrusions over time in the
dynamic security environment. In my personal opinion, I see that improvement
and optimization in both the correlation engine and the input data are the top two
factors critical to the successful implementation of SIM systems.

Like any other security products, it will never be a once-for-all situation. It has a
life cycle needs to be maintained properly. Constantly baby sitting the system
should be expected as the security landscape is constantly changing.

If the management thinks that SIM system can replace a seasoned IDS analyst
because a buddy told him/her in the airport cafe, it's a very dangerous scenario.

Security is a human problem. Totally relying on machines to deal with human
problems is bound for failure. History has proved this to us over and over again.
I don't expect IT folks along can improve SIM systems to great extent. It needs
support, knowledge and technology in various scientific disciplines in physics,
signal processing, electronics engineering, computer science, sociology,
cognitive, psychology, and evolutionary computing and worldwide cooperation.

Vendor Lists:
[v1] Network Intelligence: Network Intelligence Engine
URL: http://www.network-intelligence.com/products/
[v2] Netforsenics: Security Information Management (SIM)

Page 12 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

URL: http://www.netforensics.com/documents/pr_sim.asp
[v3] Open : Threat manager
URL: http://www.open.com/
§§§§§[v4] Guardednet: neuSECURE
URL: http://www.guarded.net/prod.html
[v5] HP:
URL: http://h71028.www7.hp.com/enterprise/cache/7940-0-0-0-121.aspx
[v6] HigherTower: TowerView
URL: http://www.hightowersecurity.com/Unique.html
[v7] NetIQ: Incident and Event Management suite
URL: http://www.netiq.com/solutions/security/incident.asp
[v8] ArcSight: ArcSight product suite
URL: http://www.arcsight.com/product.htm
[v9] Symantec: Incident Manager
URL:
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=166&E
ID=0
[v10] ISS: Site Protector
URL:
http://www.iss.net/products_services/enterprise_protection/rssite_protector/sitepr
otector.php
[v11] IBM: Risk Manager
URL: http://www-306.ibm.com/software/tivoli/products/risk-mgr/
[v12] Tenable: Lightning Console URL:
http://www.tenablesecurity.com/ids_fp.html
[v13] Intellitactics: Network Security Manager
URL: http://www.intellitactics.com/products/index.html
[v14] QuIDScor: Open source Qualys IDS Corrector Daemon
URL: http://quidscor.sourceforge.net/

Reference:
[1] GuardedNet Presentation:
URL: http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-usa-
02/bh-us-02-caldwell-event.ppt
[2] NetIQ white paper:
URL:
http://download-src.netiq.com/Library/white_papers/Security_Event_Correlation-
Where_Are_We_Now.pdf
[3] McIntyre, Kevin. “Event Correlation Systems”. 18 Feb 2003.
URL: http://www.giac.org/practical/GSEC/Kevin_McIntyre_GSEC.pdf
[4] Desai, Neil. “IDS Correlation of VA Data and IDS Alerts”. 30 Jun 2003.
URL: http://www.securityfocus.com/infocus/1708
[5] Caldwell, Matthew. “IDS correlation thread”. 22 Mar 2002.
URL: http://archives.neohapsis.com/archives/sf/ids/2002-q1/0403.html
[6] Dillis, Christoper. “IDS Event Correlation with SEC” 27 Jun 2003.

Page 13 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

URL: http://www.giac.org/practical/GCIA/Christopher_Dillis_GCIA.pdf
[7] Simple Event Correlator:
URL: http://kodu.neti.ee/~risto/sec/
[8] Chuvakin, Anton. “Event Correlation in Security”. May 2003.
URL: http://www.tisc2001.com/newsletters/57.html
[9] Chuvakin, Anton. “Cross Platform Security Analysis”. May 2003.
URL: http://www.tisc2003.com/newsletters/418.html
[10] Moyer, Philip. “IDS correlation Thread” 22 Mar 2002.
URL: http://archives.neohapsis.com/archives/sf/ids/2002-q1/0410.html
[11] http://archives.neohapsis.com/archives/sf/ids/2002-q1/thread.html#401

Part 2 – Network Detect

Network Detect #1: Microsoft DCOM/RPC Buffer Overflow - Microsoft alert
MS03-026

[**] [1:2351:1] NETBIOS DCERPC ISystemActivator path overflow attempt little
endian [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
08/22/03-06:34:23.861089 0:D0:59:2B:7A:57 -> 0:50:DA:C5:9D:8B type:0x800
len:0x5EA
192.168.2.101:32777 -> 192.168.2.102:135 TCP TTL:64 TOS:0x0 ID:15427
IpLen:20 DgmLen:1500 DF
A* Seq: 0xBBCCB264 Ack: 0x3704D4B Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 167847 11838
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352]

Source of Trace
The raw log was download from http://isc.sans.org/logs/Raw/log_22_aug.raw.gz.
All the analysis was done on a laptop running Fedora Linux (2.6.3 kernel). In
order to aid the analysis of the detect, I wrote several scripts. To use these
scripts, I exported the raw log file to text format file first by running the following
commands.

- gunzip log_22_aug.raw.gz
- tcpdump -r log_22_aug.raw -e >> log.txt

Scanlog [20] script was used to summarize the traffic flow and to guess network
devices in the system. Network devices like router, firewall and gateway will
normally have more than one IP address associated with their MAC address.
The oui.txt from IEEE (http://standards.ieee.org/regauth/oui/oui.txt) was also
used as another indicator for network equipment. If the NIC belongs to Cisco, it
has higher chance that it's a network device.

Page 14 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network traffic summary (<N-D> after the MAC address indicates that the NIC
is very likely belong to a network device):

00:04:e2:49:01:5e(SMCNetworks,Inc.)<N-D>|207.68.171.244|-->|
00:50:da:c5:9d:8b(3COMCORPORATION)|192.168.2.102
00:04:e2:49:01:5e(SMCNetworks,Inc.)<N-D>|208.172.13.190|-->|
00:50:da:c5:9d:8b(3COMCORPORATION)|192.168.2.102
00:50:da:c5:9d:8b(3COMCORPORATION)|192.168.2.102|-->|00:04:e2:49:01:5e
(SMCNetworks,Inc.)<N-D>|207.68.171.244
00:50:da:c5:9d:8b(3COMCORPORATION)|192.168.2.102|-->|00:04:e2:49:01:5e
(SMCNetworks,Inc.)<N-D>|208.172.13.190
00:50:da:c5:9d:8b(3COMCORPORATION)|192.168.2.102|-->|00:d0:59:2b:7a:57
(AMBITMICROSYSTEMSCORP.)|192.168.2.101
00:d0:59:2b:7a:57(AMBITMICROSYSTEMSCORP.)|192.168.2.101|-->|
00:50:da:c5:9d:8b(3COMCORPORATION)|192.168.2.102

All Mac and IP inventory list (src and dst: NIC used as source and destination
respectively):
00:04:e2:49:01:5e(SMCNetworks,Inc.)<N-D>|207.68.171.244|dst
00:04:e2:49:01:5e(SMCNetworks,Inc.)<N-D>|207.68.171.244|src
00:04:e2:49:01:5e(SMCNetworks,Inc.)<N-D>|208.172.13.190|dst
00:04:e2:49:01:5e(SMCNetworks,Inc.)<N-D>|208.172.13.190|src
00:50:da:c5:9d:8b(3COMCORPORATION)|192.168.2.102|dst
00:50:da:c5:9d:8b(3COMCORPORATION)|192.168.2.102|src
00:d0:59:2b:7a:57(AMBITMICROSYSTEMSCORP.)|192.168.2.101|dst
00:d0:59:2b:7a:57(AMBITMICROSYSTEMSCORP.)|192.168.2.101|src

MAC/IP duplicate use statistics (The number in the third column separated by |
tells how many IP were used with the MAC address. More than one will normally
indicates a network devices such as router, firewall or gate.):

multi ip|src mac|2|00:04:e2:49:01:5e(SMCNetworks,Inc.)
multi ip|dst mac|2|00:04:e2:49:01:5e(SMCNetworks,Inc.)

From the data collected above, I believe this is a home network with a SMC
firewall/router connected to the Internet. The default IP address of the SMC
router inside interface is 192.168.2.0/24. There are two desktops sitting on the
inside. The IDS was sitting on the internal network.

Page 15 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(Internet)
 |
[SMC FW/Router] 00:04:e2:49:01:5e <- Internet Gateway
 |
[PC 192.168.2.101/00:d0:59:2b:7a:57] <- Internal network
[PC 192.168.2.102/00:50:da:c5:9d:8b] <- Internal network
[IDS] <- Internal network

Script scan_allow2 [22] checks the allow inbound and outbound traffic to gain a
better understanding about the environment. I used the following crude criteria
for checking:

1. Allow outbound = syn packet out and there is syn/ack packet in for the same
source and destination IP address combination. Syn and ack seq numbers are
not tracked to simplify the program. This is why I said it is a crude method. But
I believe this is good enough for this purpose.

2. Allow inbound = syn packet allow in.

The result indicates that only outbound http 80 traffic was generated. No outside
initiated inbound traffic was reported. This combination matches quite well with
home use router setting.

Detect was generated by:
Snort Version 2.1.2 (Build 25) was used to generate the alert. The following
command line was used:

snort -r log_22_aug.raw -h 192.168.2.0/24 -l log -k none -c snort.conf -yeX

Switch -k was used because the raw log checksum has been modified.

The snort.conf has all the rules selected and the flow-portscan preprocessor
turned on.

Snort created directory 192.168.2.101 and alert file. Under 192.168.2.101
directory, there are two files TCP:32777-135 and TCP:32778-53.

Script scanalertip [23] was then run against the 'alert' file to summarize the attack
signature and IP address information. The output is listed immediately below.
The leftmost number is the signature hit count.

3 [**] ATTACK-RESPONSES directory listing [**]|192.168.2.102:53|->|
192.168.2.101:32778|TCP
1 [**] NETBIOS DCERPC ISystemActivator path overflow attempt little endian
[**]|192.168.2.101:32777|->|192.168.2.102:135|TCP

I picked 'NETBIOS DCERPC ISystemActivator path overflow attempt little

Page 16 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

endian' alert as it is an interesting one to me.

This alert was generated by the following snort rule.

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC
ISystemActivator path overflow attempt little endian"; flow:to_server,established;
content:"|05|"; distance:0; within:1; byte_test:1,&,16,3,relative; content:"|5c 00 5c
00|"; byte_test:4,>,256,-8,little,relative; reference:cve,CAN-2003-0352;
classtype:attempted-admin; sid:2351; rev:1;)

This is not a simple rule that deserves some explanation. Snort Users manual
2.1.1 is used as reference.

1. Flow rule option 'to_server': only traffic flow to server will trigger this rule.
2. First content check: a value of 0x05 (0x = hex) has to be at the first byte of the

payload data.
3. Second content check: a value of 0x10 has to be at the fourth (offset of 3)

byte after the first 0x05 detected.
4. Then, it looks for pattern match of 0x5c005c00.
5. Lastly, check 4 bytes at a time for value greater than 256, starting 8 bytes

before the match of item 4 above. These bytes will be processed in little
endian fashion (Windows system data memory storage standard.

Actual captured traffic with some payload data to illustrate the rule triggering
points:

[**] NETBIOS DCERPC ISystemActivator path overflow attempt little endian [**]
08/22/03-06:34:23.861089 0:D0:59:2B:7A:57 -> 0:50:DA:C5:9D:8B type:0x800
len:0x5EA
192.168.2.101:32777 -> 192.168.2.102:135 TCP TTL:64 TOS:0x0 ID:15427
IpLen:20 DgmLen:1500 DF
A* Seq: 0xBBCCB264 Ack: 0x3704D4B Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 167847 11838

0x0000 4500 05dc 3c43 4000 4006 72bd c0a8 0265 E...<C at .
0x0010 c0a8 0266 8009 0087 bbcc b264 0370 4d4b ...f.......d.pMK
0x0020 8010 16d0 8454 0000 0101 080a 0002 8fa7 T..........
0x0030 0000 2e3e [05(2)] 00 0003 [10(3)] 00 0000 a806 0000 ...>............

NOTE:
1. [05(2)] marked above meets the matching criteria #2 as it's the first byte of

value 0x05 of the payload right after 20 bytes of IP and 32 bytes of TPC
headers.

2. [10(3)] marked above meets the matching criteria #3 as it's third bytes
counting from 0 after the matching of [05(20].

Page 17 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<snip>
0x0390 0000 0000 8601 0000 0000 [0000 8601(5)] 0000
0x03a0 [5c00 5c00(4)] 4600 5800 4e00 4200 4600 5800 \.\.F.X.N.B.F.X.
0x03b0 4600 5800 4e00 4200 4600 5800 4600 5800 F.X.N.B.F.X.F.X.

NOTE:
1. [5c00 5c00(4)] matches the fourth criteria.
2. [0000 8601(5)] matches the last criteria. Of course I assume an offset of -8 is

valid.

Probability the source address was spoofed:

The source must be the true IP address as:
1. This attack used TCP.
2. The attacker was actually controlling the system using the back door shell

after the compromise was successful. The attacker's action will be described
briefly below in the 'Attack mechanism' section.

3. There are only two machines involved in this scenario. Traffic analysis does
not indicate there's other system involved that could be used as an
intermediary system.

Description of Attack:
The attack was originated from system with IP 192.168.2.101 sitting on the
inside network of the home system same as the victim Windows system with IP
192.168.2.102. The attack targeted a critical Windows Distributed Component
Object Model (DCOM) Remote Procedure Call (RPC) interface vulnerability
(MS03-026: http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx)
existed in the victim machine. The target port used to exploit the buffer overflow
vulnerability was TCP 135. The back door port on the victim system was chosen
by the attacker at TCP port 53.

I believed that the attack was based on a C program called dcom.c or its
variants. Paper of both Brian [2.2] and Wayne [2.1] mention other variants.

The dcom.c exploit program is at http://www.metasploit.com/tools/dcom.c.

The header section of the program is listed below for discussion.
/*
DCOM RPC Overflow Discovered by LSD
-> http://www.lsd-pl.net/files/get?WINDOWS/win32_dcom
 Based on FlashSky/Benjurry's Code
-> http://www.xfocus.org/documents/200307/2.html
 Written by H D Moore <hdm [at] metasploit.com>
-> http://www.metasploit.com/

Page 18 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 - Usage: ./dcom <Target ID> <Target IP>
- Targets:
- 0 Windows 2000 SP0 (english)
- 1 Windows 2000 SP1 (english)
- 2 Windows 2000 SP2 (english)
- 3 Windows 2000 SP3 (english)
- 4 Windows 2000 SP4 (english)
- 5 Windows XP SP0 (english)
- 6 Windows XP SP1 (english)
*/

It can be seen that this exploit targets only Windows systems. It will adjust itself
for different service pack level of the target system.

Once compiled, it is very simple and easy to use. For example, 'dcom 3
192.168.2.102' will compromise the vulnerable system 192.168.2.102 running
Windows 2000 with SP3(Service Pack 3).

This exploit starts up a command shell at the target system as determined by the
'target_ip.sin_port = htons(4444);' statement in the program. The default in the
program is 4444 but it can be changed to any port by the attacker. For this
detect, it's using port 53.

Attack Mechanism:
Based on the analysis of Wayne [2.1] and Brian [2.2], the exploit targeted the
'szName' buffer in the DCOM function 'CoGetInstanceFromFile'. It connects to
TCP port 135 of a vulnerable victim machine to issue an MSRPC request for the
file '\\servername\c$\123456111111111111111.doc' to overflow the 'szName'
buffer to run its own code in the payload to spawn a command shell on a port
defined by the attacker. It's tcp port 53 in this case.

The attack was done in the following sequence starting at 06:34:19. Note that
192.168.2.101 is the attacker system.

• 192.168.2.101:32777 -> 192.168.2.102:135 S <- Start 3 way TCP,
handshake on port 135
used by Microsoft RPC

• 192.168.2.102:135 -> 192.168.2.101:32777 S/A
• 192.168.2.101:32777 -> 192.168.2.102:135 ./A
• 192.168.2.101:32777 -> 192.168.2.102:135 P/A
• 192.168.2.102:135 -> 192.168.2.101:32777 ./A
• 192.168.2.102:135 -> 192.168.2.101:32777 P/A
• 192.168.2.101:32777 -> 192.168.2.102:135 ./A
• 192.168.2.101:32777 -> 192.168.2.102:135 ./A <- Run buffer Overflow

in this data packet
0x0000 4500 05dc 3c43 4000 4006 72bd c0a8 0265 E...<C at .

Page 19 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0010 c0a8 0266 8009 0087 bbcc b264 0370 4d4b ...f.......d.pMK
0x0020 8010 16d0 8454 0000 0101 080a 0002 8fa7 T..........
0x0030 0000 2e3e 0500 0003 1000 0000 a806 0000 ...>............
0x0040 e500 0000 9006 0000 0100 0400 0500 0600
<snip>
0x0390 0000 0000 8601 0000 0000 0000 8601 0000
0x03a0 5c00 5c00 4600 5800 4e00 4200 4600 5800 \.\.F.X.N.B.F.X.
0x03b0 4600 5800 4e00 4200 4600 5800 4600 5800 F.X.N.B.F.X.F.X.
0x03c0 4600 5800 4600 5800 9f75 1800 cce0 fd7f F.X.F.X..u......
0x03d0 cce0 fd7f 9090 9090 9090 9090 9090 9090
0x03e0 9090 9090 9090 9090 9090 9090 9090 9090
0x03f0 9090 9090 9090 9090 9090 9090 9090 9090

NOTE: classical NOOP 0x90 data pattern found in Intel system Buffer Overflow
showed up here ...
<snip>
NOTE: Blow is the buffer overflow attack code..

0x0470 9090 9090 9090 9090 9090 90eb 195e 31c9 ^1.
0x0480 81e9 89ff ffff 8136 80bf 3294 81ee fcff 6..2.....
0x0490 ffff e2f2 eb05 e8e2 ffff ff03 5306 1f74 S..t
0x04a0 5775 9580 bfbb 927f 895a 1ace b1de 7ce1 Wu.......Z....|.
<snip>
0x05a0 8fb1 78d4 320e b0b3 7f01 5d03 7e27 3f62 ..x.2.....].~'?b
0x05b0 42f4 d0a4 af76 6ac4 9b0f 1dd4 9b7a 1dd4 B....vj......z..
0x05c0 9b7e 1dd4 9b62 19c4 9b22 c0d0 ee63 c5ea .~...b..."...c..
0x05d0 be63 c57f c902 c57f e922 1f4c .c.......".L

• 192.168.2.101:32777 -> 192.168.2.102:135 P/A

0x0000 4500 0134 3c44 4000 4006 7764 c0a8 0265 E..4<D at .
0x0010 c0a8 0266 8009 0087 bbcc b80c 0370 4d4b ...f.........pMK
0x0020 8018 16d0 3ad9 0000 0101 080a 0002 8fa7 :...........
<snip>
0x00c0 e4f0 9080 2fa2 0400 5c00 4300 2400 5c00 /...\.C.$.\.
0x00d0 3100 3200 3300 3400 3500 3600 3100 3100 1.2.3.4.5.6.1.1.
0x00e0 3100 3100 3100 3100 3100 3100 3100 3100 1.1.1.1.1.1.1.1.
0x00f0 3100 3100 3100 3100 3100 2e00 6400 6f00 1.1.1.1.1...d.o.
0x0100 6300 0000 0110 0800 cccc cccc 2000 0000 c...............
0x0110 3000 2d00 0000 0000 882a 0c00 0200 0000 0.-......*......
0x0120 0100 0000 288c 0c00 0100 0000 0700 0000 (...........
0x0130 0000 0000
NOTE: The 123456111111111111111.doc was pushed over to the victim in the
packet above.

Page 20 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• 192.168.2.101:32777 -> 192.168.2.102:135 F/A
• 192.168.2.102:135 -> 192.168.2.101:32777 ./A
• 192.168.2.102:135 -> 192.168.2.101:32777 F/A
192.168.2.101:32777 -> 192.168.2.102:135 . /A <- graceful

termination
NOTE: Accessing the newly established back door on the victim machine..

• 192.168.2.101:32778 -> 192.168.2.102:53 S <- access the back
door

• 192.168.2.102:53 -> 192.168.2.101:32778 S/A
<snip>
• 192.168.2.102:53 -> 192.168.2.101:32778 P/A

0x0000 4500 005e 008e 4000 8006 73f0 c0a8 0266 E..^.. at ...s....f
<http://www.dshield.org/mailman/listinfo/intrusions>
0x0010 c0a8 0265 0035 800a 0383 8fb3 bc33 298d ...e.5.......3).
0x0020 8018 4470 2ad2 0000 0101 080a 0000 2e61 ..Dp*..........a
0x0030 0002 900c 4d69 6372 6f73 6f66 7420 5769 Microsoft.Wi
0x0040 6e64 6f77 7320 3230 3030 205b 5665 7273 ndows.2000.[Vers
0x0050 696f 6e20 352e 3030 2e32 3139 355d ion.5.00.2195]

NOTE: The victim system displayed system prompt. At this point, the attacker
was having full access to the system such as listing files on the system.
0x0170 2020 2020 3c44 4952 3e20 2020 2020 2020 <DIR>.......
0x0180 2020 2050 726f 6772 616d 2046 696c 6573 ...Program.Files
0x0190 0d0a 3038 2f30 312f 3230 3033 2020 3131 ..08/01/2003..11
0x01a0 3a32 3561 2020 2020 2020 2020 2020 2020 :25a............
0x01b0 2033 3937 2c33 3132 2057 696e 4475 6d70 .397,312.WinDump
0x01c0 2e65 7865 0d0a 3038 2f31 312f 3230 3033 .exe..08/11/2003
0x01d0 2020 3039 3a33 3061 2020 2020 2020 3c44 ..09:30a......<D

NOTE: And the attacker was now able to run Windump.

0x0030 0002 b28f 7769 6e64 756d 702e 6578 6520 windump.exe.
0x0040 2d6e 5876 7320 3020 6970 2061 6e64 2068 -nXvs.0.ip.and.h
0x0050 6f73 7420 3139 322e 3136 382e 322e 3130 ost.192.168.2.10
0x0060 3220 616e 6420 7463 700a 2.and.tcp.
<snip>
0x0000 4500 0082 00b5 4000 8006 73a5 c0a8 0266 E..... at ...s....f
0x0010 c0a8 0265 0035 800a 0383 9896 bc33 29e7 ...e.5.......3).
0x0020 8018 4416 46e4 0000 0101 080a 0000 31bc ..D.F.........1.
0x0030 0002 b28f 7769 6e64 756d 702e 6578 653a windump.exe:
0x0040 206c 6973 7465 6e69 6e67 206f 6e20 5c44 .listening.on.\D
0x0050 6576 6963 655c 4e50 465f 7b37 4630 3244 evice\NPF_{7F02D
0x0060 3334 362d 4342 3039 2d34 3139 332d 4232 346-CB09-4193-B2

Page 21 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0070 3343 2d43 3542 3337 3244 3441 3741 417d 3C-
C5B372D4A7AA}

<snip>
0x0160 2e2e 0d0a 3078 3030 3230 0920 3730 3032 0x0020..7002
0x0170 2034 3030 3020 3765 3936 2030 3030 3020 .4000.7e96.0000.
0x0180 3032 3034 2030 3562 3420 3031 3031 2030 0204.05b4.0101.0
0x0190 3430 3209 702e 402e 7e2e 2e2e 2e2e 2e2e 402.p. at .
0x01a0 2e2e 2e2e 0d0a 3038 3a33 363a 3033 2e30 08:36:03.0
0x01b0 3835 3335 3920 4950 2028 746f 7320 3078 85359.IP.(tos.0x
0x01c0 302c 2074 746c 2034 382c 2069 6420 3334 0,.ttl.48,.id.34
0x01d0 3037 392c 206c 656e 2034 3829 2032 3037 079,.len.48).207
0x01e0 2e36 382e 3137 312e 3234 342e 3830 203e .68.171.244.80.>
0x01f0 2031 3932 2e31 3638 2e32 2e31 3032 2e31 . 192.168.2.102.1
0x0200 3034 313a 2053 205b 7463 7020 7375 6d20 041:.S.[tcp.sum.
0x0210 6f6b 5d20 3232 3932 3933 3538 3536 3a32 ok].2292935856:2
0x0220 3239 3239 3335 3835 3628 3029 2061 636b 292935856(0).ack
0x0230 2038 3335 3930 3337 3420 7769 6e20 3137 .83590374.win.17
0x0240 3532 3020 3c6d 7373 2031 3436 302c 6e6f 520.<mss.1460,no
0x0250 702c 6e6f 702c 7361 636b 4f4b 3e20 2844 p,nop,sackOK>.(D

NOTE: Windump was successfully run as shown above. At this point, there's no
question that the attacker was the co-owner of the victim system.

Correlation
The alerts were posted at a number of websites. I just choose same to list:

1. http://xforce.iss.net/xforce/xfdb/12629
2. http://www.cert.org/advisories/CA-2003-16.html
3. http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx
4. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352
5. http://isc.incidents.org/diary.php?date=2003-08-01

The Microsoft DCOM/RPC buffer overflow exploit was discussed in details in the
following Internet sites:
[2.1] Freeman, Wayne. “An Analysis of the Microsoft RPC/DCM vul”. 22 Sep
2003.
URL: http://www.inetsecurity.info/downloads/papers/MSRPCDCOM.pdf
[2.2] Porter, Brian. “RPC-DCOM Vulnerability & Exploit”. 2 Nov 2003.
URL: http://www.giac.org/practical/GCIH/Brian_Porter_GCIH.pdf
[2.3]. alt.don. “Cursory analysis of the RPC DCOM exploit rewritten by hdm”. 6
Aug 2003.
URL: http://www.helpforums.co.uk/forum/viewtopic.php?t=7341.
[2.4] Counterpane Security Alerts, Microsoft RPC DCOM Remote Shell
Vulnerabilities, 1 Aug 2003.
URL: http://www.counterpane.com/alert-v20030801-001.html

Page 22 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The exploit in this analysis used TCP 53 for the back door on the victim system
instead of port 4444 as generally mentioned in the websites above. This can be
changed very easily in the dcom.c C program. All the attacker has to do is to
change the port parameter in statement 'target_ip.sin_port = htons(4444);' and
recompile the C code. I am not suggesting that this exploit must have the port
changed this way but it's a possibility. As Brian [2.2] mentioned in his paper that
some exploit variants allow attacker to specify port at run time.

Evidence of Active targeting
It is evident that the attacker at 192.168.2.101 was actively targeting the MSRPC
vulnerability in victim machine 192.168.2.102 at TCP port 135. After the exploit
was successful, the attacker poked around the system and ran windump. There's
no other system on the same subnet for the attacker to target.

Severity
Severity = (criticality + lethality) - (system countermeasures + network
countermeasures)

5 = (3 + 5) - (2 + 1)

Criticality = 3. It's a home system and there are only two, I personally would be
very concerned about any potential system compromise. But still it is not the end
of the world. So I give it a three.

Lethality = 5. The attacker owned the system already and was having full access.

System Countermeasures = 2. Obviously, the system was missing patch to allow
the exploit. I rate it on the safe side as I don't have other information to properly
assess the situation.

Network Countermeasures = 1. The intruder and the victim systems are running
on the same subnet. Normally, there will be no firewall in between. So there's
basically no network countermeasures.

A score of severity of 5 is a very bad security situation that immediate action
must be taken to mitigate the risks.

Defensive Recommendation
We have to address the following:
1. How to prevent the victim system from future exploits?
2. How can a system on the internal trusted subnet become an evil machine?

For point #1:
1. I would like to shut down MSRPC but I don't think this is a practical option with

Page 23 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Windows system.
2. The most important measure is to keep the system patch level up to date.

Every single web page I came cross that relates to this exploit urges user to
do so. And from a system security vulnerability perspective, this is the most
effective mitigation and most often is the only resolution.

For point #2:
1. System access control has to be reviewed and further tightened up if deemed

necessary.
2. The policy guards against system misuse must be reviewed. A new one must

be written immediately if not in place yet.
3. Communicate the policy to the users to raise their security awareness.

If the above recommendations can be carried out, I will give both system and
network countermeasures at least a four. I did not recommend any network
security change, why I give network countermeasure a four also. It's because in
this situation to deal with an internal network, a good security policy and user
awareness should be able to improve the situation and adding a firewall is not a
practical solution.

With these countermeasure improvement in place, we can re-calculate the
severity.

Severity = (3 + 5) - (4 + 4) = 0, a significant improvement.

Multiple choice test question
Why 0x90 is normally seen in a buffer overflow exploiting Intel based systems?
a. It's a random data filler in the data stream helps to overflow the target buffer.
b. It's the procedure header preamble in Windows system.
c. Loading some 0x90 (NOP in Intel system) data pattern before the buffer
overflow code ease the prediction of the program return address in a buffer
overflow attempt.
d. It must be loaded into the buffer otherwise the buffer overflow attempt will fail.

Answer: c.

As quoted from http://www.securiteam.com/securityreviews/5OP0B006UQ.html

'Well, this is the top of the stack at crash time. It is safe to presume that we can
use this as return address to our shellcode. We will now add some NOP (no
operation) instructions before our buffer, so we do not have to be 100% correct
regarding the prediction of the exact start of our shellcode in memory (or even
brute forcing it).'

Page 24 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Intrusions@incidents.org mailing list posting

I posted this detect twice and have not received any questions or comments so
far.

First post: [Intrusions] LOGS: GIAC GCIA Version 3.4 Practical Detect (Kam
Ng)
kam ng <my_email_address>Sun Apr 18 15:06:42 UTC 2004

Second Post: [Intrusions] LOGS: GIAC GCIA Version 3.4 Practical Detect (Kam
Ng) Kam Ng <my_email_address>Mon Apr 26 14:55:38 UTC 2004

Network Detect #2 : SHELLCODE x86 0xEB0C NOOP - ftp shellcode exploit

[**] [1:1424:6] SHELLCODE x86 0xEB0C NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/02/02-05:09:06.526507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800
len:0x23E
195.232.55.6:1701 -> 207.166.87.42:21 TCP TTL:45 TOS:0x0 ID:55450
IpLen:20 DgmLen:560 DF
AP Seq: 0x82340FD5 Ack: 0x4333A866 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1040178 3948516

Source of Trace
The raw log was download from http://isc.sans.org/logs/raw/2002.10.2

All the analysis was done on a laptop running Fedora Linux (2.6.3 kernel). In
order to aid the analysis of the detect, I wrote several scripts. To use these
scripts, I exported the raw log file to text format file first by running the following
commands.

- tcpdump -r 2002.10.2 -ne >> log.txt

The 'scanlog' [20] script was used to summarize the traffic flow and to guess
network devices in the system. Network devices like router, firewall and gateway
will normally have more than one IP address associated with their MAC address.
The oui.txt from IEEE (http://standards.ieee.org/regauth/oui/oui.txt) was also
used as another indicator for network equipment. If the NIC belongs to Cisco, it's
higher chance that it's a network device.

Network traffic summary
The script produced a very long list of IP address, too long to be put here. I ran it
based on host and class A, B and C subnet type to guess the network

Page 25 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

infrastructure. I concluded that Class B subnet 207.166.0.0/16 was hiding behind
a Cisco device with MAC 00:00:0c:04:b2:33 on its outside interface. I took
207.166 class B subnet as the home subnet to protect.

Sample traffic out from this home class B subnet:

00:00:0c:04:b2:33(CISCOSYSTEMS,INC.)|207.166|-->|00:03:e3:d9:26:c0
(CiscoSystems,Inc.)<N-D>|12
00:00:0c:04:b2:33(CISCOSYSTEMS,INC.)|207.166|-->|00:03:e3:d9:26:c0
(CiscoSystems,Inc.)<N-D>|128
00:00:0c:04:b2:33(CISCOSYSTEMS,INC.)|207.166|-->|00:03:e3:d9:26:c0
(CiscoSystems,Inc.)<N-D>|129

Sample traffic into the home class B subnet:

00:03:e3:d9:26:c0(CiscoSystems,Inc.)<N-D>|128.167|-->|00:00:0c:04:b2:33
(CISCOSYSTEMS,INC.)|207.166
00:03:e3:d9:26:c0(CiscoSystems,Inc.)<N-D>|131.230|-->|00:00:0c:04:b2:33
(CISCOSYSTEMS,INC.)|207.166
00:03:e3:d9:26:c0(CiscoSystems,Inc.)<N-D>|134.53|-->|00:00:0c:04:b2:33
(CISCOSYSTEMS,INC.)|207.166

All Mac and IP inventory list
The script produced a very long list to be included here. It's absence should not
hinder the understanding of this detect.

MAC/IP duplicate use statistics (The number in the third column separated
with | tells how many IP were used with the MAC address. More than one will
normally indicates a network devices such as router, firewall or gate.):

multi ip|src mac|2|00:00:0c:04:b2:33(CISCOSYSTEMS,INC.)
multi ip|src mac|45|00:03:e3:d9:26:c0(CiscoSystems,Inc.)
multi ip|dst mac|984|00:00:0c:04:b2:33(CISCOSYSTEMS,INC.)
multi ip|dst mac|1134|00:03:e3:d9:26:c0(CiscoSystems,Inc.)

From the data collected above, I believe that the traffic was monitored between a
Cisco firewall/border router and a uplink/ISP (Internet Service Provider) Cisco
router/switch.

Page 26 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(Internet)
 |
[Cisco router/switch 00:03:e3:d9:26:c0] <- ISP
 |

| <--- [IDS]
|

[Cisco firewall/border router 00:00:0c:04:b2:33] <- Corporate border
 |
[Inside Class B subnet 207.166.0.0/16] <- Internal network

Script scan_allow2 [22] failed to check the allowed inbound and outbound
services. It's because the log only contains traffic that trigger snort alert
according to the log's website. Quoted from the site's readme: ' The log files are
the result of a Snort instance running in binary logging mode. This means that
only the packets that violate the rule set will appear in the log.'

Detect was generated by
Snort Version 2.1.2 (Build 25) was used to generate the alert. The following
command line was used:
snort -r 2002.10.2 -h 207.166.0.0/16 -l log -k none -c snort.conf -yeX

Switch -k was used because the readme in the incident.org raw log folder
mentions that the checksum has been modified.

The snort.conf has all the rules selected and the flow-portscan preprocessor
turned on.

Snort created directory 131.230.217.56, 134.53.212.120,
140.128.251.21,72.184.145.241, 192.6.234.9, 195.232.55.6, 198.150.73.5,
205.188.135.151, 213.99.232.219, 216.77.216.154, 24.159.255.58,
24.165.202.171, 255.255.255.255, 62.103.210.66, 64.154.80.44, 64.154.80.47,
64.154.80.51, 65.65.24.94, 67.36.84.5, 68.3.48.37, 68.39.106.20, 68.85.156.58,
80.6.58.50 and the alert file.

Script 'scanalertip' [23] was then run against the 'alert' file to summarize the
attack signature and IP address information. It produces 1012 items which is too
long to be listed here. Instead I just list the sample of he attack I picked for
analysis.

1 [**] SHELLCODE x86 0xEB0C NOOP [**]|195.232.55.6:1701|->|
207.166.87.42:21|TCP
1 [**] SHELLCODE x86 0xEB0C NOOP [**]|195.232.55.6:1710|->|
207.166.87.40:21|TCP
1 [**] SHELLCODE x86 0xEB0C NOOP [**]|195.232.55.6:1737|->|
207.166.87.41:21|TCP

Page 27 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This alert was generated by the following snort rule.

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 0xEB0C NOOP"; content:"|EB 0C EB 0C EB 0C EB 0C
EB 0C EB 0C EB 0C EB 0C|"; classtype:shellcode-detect; sid:1424; rev:6;)

This is a simple rule that checks for a unique repeated pattern of EB0C.

Actual captured traffic with some payload data to illustrate the rule triggering
point:

05:09:06.526507 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4, length
574: IP (tos 0x0, ttl 45, id 55450, offset 0,
flags [DF], length: 560, bad cksum 9bb8 (->516e)!) 195.232.55.6.l2tp >
207.166.87.42.ftp: P [bad tcp cksum 7135 (->25e2)!] 2184450005:2184450513
(508) ack 1127458918 win 5840 <nop,nop,timestamp 1040178 3948516>
0x0000 4500 0230 d89a 4000 2d06 9bb8 c3e8 3706 E..0..@.-.....7.
0x0010 cfa6 572a 06a5 0015 8234 0fd5 4333 a866 ..W*.....4..C3.f
0x0020 8018 16d0 7135 0000 0101 080a 000f df32 q5.........2
0x0030 003c 3fe4 4357 4420 3030 3030 3030 3030 <?.CWD.00000000
0x0040 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
<snip>
0x0120 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0130 3030 3030 3030 3030 f0fc 4031 0708 985f 00000000..@1..._
0x0140 0808[eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0150 eb0c] eb0c eb0c eb0c eb0c eb0c eb0c eb0c
<snip>
0x01e0 eb0c eb0c eb0c eb0c 9090 9090 9090 9090
0x01f0 9090 9090 31db 43b8 0b74 510b 2d01 0101 ...1.C..tQ.-...
0x0200 0150 89e1 6a04 5889 c2cd 80eb 0e31 dbf7 P..j.X......1..
0x0210 e3fe ca59 6a03 58cd 80eb 05e8 ed0a ca59 ..Yj.X........Y
0x0220 6a03 58cd 80eb 05e8 edff ffff ffff ff0a j.X.............

NOTE: [eb0c .. eb0c] marked above meets the matching criteria.

Probability the source address was spoofed
What's the intent of this exploit? It's mainly to gain shell access on the victim
system. Because of this, it's very unlikely that the source is spoofed.

I also looked into the tcp/ip packets to see sign of spoofed source IP. I ran the
command:

tcpdump -r 2002.10.2 -n -vv -S '(src host 195.232.55.6 and dst net 207.166.87)

Page 28 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

or (src net 207.166.87 and dst host 195.232.55.6)' | cut -d " " -f
1,5,6,7,8,9,14,15,20,21,22,29,30,31 | more

-r: read from file 2002.10.2
-n: don't resolve IP to name
-vv: more verbose
-S: absolute sequence number

Result:
05:09:06.526507 ttl 45, id 55450, length: 560, 195.232.55.6.l2tp >
207.166.87.42.ftp: 2184450005:2184450513(508) ack 1127458918
05:09:06.976507 ttl 45, id 55451, length: 68, 195.232.55.6.l2tp >
207.166.87.42.ftp: 2184450513:2184450529(16) ack 1127459439
05:09:09.716507 ttl 45, id 55459, length: 59, 195.232.55.6.l2tp >
207.166.87.42.ftp: 2184450617:2184450624(7) ack
112745975005:10:00.686507 ttl 45, id 37808, length: 560, 195.232.55.6.1710 >
207.166.87.40.ftp: 2255257131:2255257639(508) ack 1173953630
05:10:01.146507 ttl 45, id 37809, length: 68, 195.232.55.6.1710 >
207.166.87.40.ftp: 2255257639:2255257655(16) ack 1173954151
05:10:03.846507 ttl 45, id 37817, length: 59, 195.232.55.6.1710 >
207.166.87.40.ftp: 2255257743:2255257750(7) ack
117395446205:10:51.706507 ttl 45, id 11897, length: 560, 195.232.55.6.1737 >
207.166.87.41.ftp: 2305939120:2305939628(508) ack 1223541630
05:10:52.156507 ttl 45, id 11898, length: 68, 195.232.55.6.1737 >
207.166.87.41.ftp: 2305939628:2305939644(16) ack 1223542151
05:10:54.846507 ttl 45, id 11906, length: 59, 195.232.55.6.1737 >
207.166.87.41.ftp: 2305939732:2305939739(7) ack
122354246205:11:41.886507 ttl 45, id 29061, length: 560, 195.232.55.6.1756 >
207.166.87.60.ftp: 2365219651:2365220159(508) ack 1273684817
05:11:42.356507 ttl 45, id 29064, length: 68, 195.232.55.6.1756 >
207.166.87.60.ftp: 2365220159:2365220175(16) ack 1273685338
05:11:45.016507 ttl 45, id 29072, length: 59, 195.232.55.6.1756 >
207.166.87.60.ftp: 2365220263:2365220270(7) ack
127368564905:12:32.626507 ttl 45, id 14521, length: 560, 195.232.55.6.1763 >
207.166.87.58.ftp: 2407932020:2407932528(508) ack 1330230075
05:12:33.056507 ttl 45, id 14522, length: 68, 195.232.55.6.1763 >
207.166.87.58.ftp: 2407932528:2407932544(16) ack 1330230596
05:12:36.046507 ttl 45, id 14530, length: 59, 195.232.55.6.1763 >
207.166.87.58.ftp: 2407932632:2407932639(7) ack 133023090

I see that:
1. The TTL is the same for all the traffic. This very likely indicates that these

captured exploits were coming from the same physical location.
2. The packet length pattern was consistent for all the exploit against different

hosts. This is very likely that the target systems were under the same attacks.
3. The sync seq number could have been more random. This could mean

Page 29 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

crafted packets but could just be a system signature.
4. I would expect the IP id should be linearly increased but not within this short

period of time unless the system was very busy with its network or it's a newer
OS that uses random IP id.

There's no strong indications that these are crafted packets. So based on all
these observations, I still believe that the source is not spoofed.

Description of Attack:
I ran the following command to summarize the network connections between
attacker and target systems:

tcpdump -r 2002.10.2 -n -vv '(src host 195.232.55.6 and dst net 207.166.87) or
(src net 207.166.87 and dst host 195.232.55.6)' | cut -d " " -f 20,21,22 | sort -u

Result:
195.232.55.6.1710 > 207.166.87.40.ftp:
195.232.55.6.1737 > 207.166.87.41.ftp:
195.232.55.6.1756 > 207.166.87.60.ftp:
195.232.55.6.1763 > 207.166.87.58.ftp:
195.232.55.6.l2tp > 207.166.87.42.ftp:

The attacker was at system with IP 195.232.55.6 sitting on the Internet side and
targeted five ftp systems located inside the class B 207.166.0.0/16 network. The
attack targeted x86/linux wu_ftpd remote root exploit based on a memory
handling problem of the globbling codes in the ftp daemon that allows user to run
codes of their choice under certain operating conditions.

I believe that exploit code was similar to exploit code called 7350wurm and its
variants. It was written to target wu-ftp server but other ftp serves are also found
to be vulnerable as Stephen's GCIH paper points out. [3.6].This could also be
coming from a network scanner.

The code can be found at: http://www.packetstormsecurity.org/0205-
exploits/7350wurm.c

Attack Mechanism
Snort only alerts 'SHELLCODE x86 0xEB0C NOOP' for these systems in this raw
log. However, you can see from below that this signature is only one part of the
exploit that sent the necessary shell code into the buffer.

According to the report at [3.3], in order to exploit this, the attacker must have ftp
access to the system first, either as a valid ftp user or anonymous users. This is
evident that it's the case as the attacker was able to issue a ftp CWD (change
directory) command on the system. However, this portion of traffic was missing

Page 30 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

from the raw log. According to the raw log readme, only packets that violate the
rule set will appear in the log.

In order to understand the actual traffic for comparison purpose, I compiled the
download 7350wurm C code and watched the traffic using tcpdump when it
attacked another PC running ftp daemon on my home network.

To do all these, I ran:
1. 'gcc 7350wurm.c -o ftp.exp' to generate the executable code.
2. 'tcpdump -i eth0 -n -xxxV -s 1024 'src host <attacker> or src host <target IP>' |
tee -a >> wuftp.dump' to capture the actual traffic. With the utility 'tee', I can
watch the packets and send them to a file at the same time.
3. run './ftp.exp -v -a -u <user> -p <password> -d <target IP>'
From the tcpdump output, the exploit flowed as showed below:
1. Attacker log on to the ftp server successfully using the user id and password

supplied.
2. It issued a number of RNFR ././. to fill up the wuftp heap space which did not

free up properly.
3. Then it sent a CWD command with a long argument of zeros, others data, the

short shell code and its address pointer. The data sent was very similar even
not 100% to the data in the raw log of this detect.

4. Then it sent more packets containing the CWD command with different
combination of ~, { and ./. The real killer was the last CWD ~{ command sent,
which ran the exploit code in the previous packet sent. These packets were
seen in the raw log also.

5. Once this exploit is successful, a linux shell code was sent to run setreuid(0,0)
and a shell was created with root privilege.

6. When all above were execute successfully, the attacker owned the system.

Correlation
It took some time at the beginning to found detail information about this alert until
I googled '\x31\xdb\x43\xb8' which is part of the exploit code.

The information pertaining to this alert are posted at the websites below.
[3.1] CERT. “Advisory CA-2001-33 Multiple Vulnerabilities in WU-FTPD” 12 Feb
2003
URL: http://www.cert.org/advisories/CA-2001-33.html
[3.2] 73050wurm source code
URL: http://www.packetstormsecurity.org/0205-exploits/7350wurm.c
[3.3] Corelabs. “Vulnerability Report for WU-FTPD Server” 28 Nov 2001.
http://www1.corest.com/common/showdoc.php?idxseccion=10&idx=172
[3.4] Power, Matt. “FTP exploit discussion” 20 Apr 2001.
URL: http://archives.neohapsis.com/archives/vuln-dev/2001-q2/0311.html
[3.5] Martynox, Evgueni. “GCIA Practical Assignment V3.2”
URL: http://www.giac.org/practical/GCIA/Evgueni_Martynov_GCIA.doc
[3.6] Hall, Stephen. “A variant of the WU-FTPD File Globbing Heap Corruption

Page 31 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Vulnerability” 17 Nov 2003.
URL: http://www.giac.org/practical/GCIH/Stephen_Hall_GCIH.pdf

Evidence of Active targeting
It is evident that the attacker at 195.232.55.6 was actively targeting four ftp
servers located on subnet 207.166.0.0/16.

Unfortunately, there's no traffic in the raw log that I could use to check if the
attack was successful. There's no returning traffic to the attacking system. I ran
'tcpdump -r 2002.10.2 -ne 'dst host 195.232.55.6'' and nothing returned.

Severity
Severity = (criticality + lethality) - (system countermeasures + network
countermeasures)

4 = (4 + 5) - (2 + 3)

Criticality = 4. As I could see the actual glob exploit traffic from the raw log, the
attacker must have gained ftp access already. This tells me that they were
actually ftp servers. There were five of them. They should belong to a business
organization. It's very likely they are part of the business infrastructure.

Lethality = 5. This vulnerability has the potential to allow attacker to run code of
their own choice. There's a potential to gin root access.

System Countermeasures = 2. Obviously, the system was missing patches to
allow the exploit.

Network Countermeasures = 3. The organization has a business to run. I
assume that the firewall/border was configured properly to restrict access to their
servers. This vulnerability is at application layer.

A score of severity of 4 is a bad security situation that immediate action must be
taken to mitigate the risks.

Defensive Recommendation
We have to address the following:
1. Make sure the network control only allow opening for services with real
business need?
2. The system is not vulnerable to current exploits at least for the services open
to any untrusted zone. Internet is one example.

For point #1:
1. The network security should be reviewed to make sure proper control is in
place.

Page 32 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. The Internet point of presence should be audit on a regular basis.
3. All these should not be a one time task but on-going.

For point #2:
1. If the system was compromised, the current system security alert monitoring
and patching process must be reviewed to understand why this time the exploit
was successful and improve the process based on the lesson learned. Also, the
system configuration has to be reviewed to make sure proper security measures
are in place to defend the ftp service from attackers.
2. Are we offering more than necessary ftp services to the outside. Do we need
to offer anonymous ftp? If not, shut them down. The very basic and effective
security principle is not to offer unnecessary services.

If the above recommendations can be carried out, I will give system
countermeasures a four.

With these countermeasure improvement in place, we can re-calculate the
severity.

Severity = (4 + 5) - (4 + 3) = 2, an improvement over 4. But still this indicates
that system is vulnerable to unknown exploit even the administrators are vigilant
enough on maintaining the system patches up to date.

This is a risk to run their business. This has to be communicate to management.
And a good incident handling process must be setup if not in place yet.

Multiple choice test question
What is the RNFR command in ftp:
a. Specify the old file name to be renamed.
b. Remove non-existing file resources.
c. Read the number of the file record.
d. None of the above

Answer: a.

Reference: RFC959

Verify the Snort Running On My System
I was missing some of the ftp exploit related alerts that I expected to see during
this analysis. What is the problem? I determined to check the situation by using
snort on my system to alert exploits generated by running ftp.exp.

I ran the following commands for this trouble shooting:
1. Snort: snort -i eth0 -h 192.168.2.116/32 -l log -c snort.conf -yeX in which
192.168.2.116 is the target system running with wu-ftp server.

Page 33 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. ftp exploit: ./ftp.exp -a -v -u kam -p <password> -d 192.168.2.116

I ran 'scanalertip' to summarize snort alerts generated:

2 [**] FTP CWD ~ attempt [**]|192.168.2.146:33101|->|192.168.2.116:21|TCP
75 [**] FTP RNFR ././ attempt [**]|192.168.2.146:33101|->|192.168.2.116:21|
TCP
1 [**] SHELLCODE x86 0xEB0C NOOP [**]|192.168.2.116:21|->|
192.168.2.146:33101|TCP
1 [**] SHELLCODE x86 0xEB0C NOOP [**]|192.168.2.146:33101|->|
192.168.2.116:21|TCP

This proves that snort running on my system is working as expected. So where is
the problem? I took a look at the 'FTP CWD ~ attempt' rule in the ftp.rules file.

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP CWD ~
attempt"; flow:to_server,established; content:"CWD"; pcre:"/^CWD\s+~/smi";
reference:cve,CAN-2001-0421; reference:bugtraq,2601; reference:bugtraq,9215;
classtype:denial-of-service; sid:1672; rev:7;)

The only thing I could think of that may cause this rule to fail is missing the
corresponding state packets in the raw log for the flow rule to decode. This is
very likely the case as I checked that lot of the packets pertaining to this attack
were missing from this raw log.

Network Detect #3 : BAD-TRAFFIC ip reserved bit set
[**] [1:523:4] BAD-TRAFFIC ip reserved bit set [**]
[Classification: Misc activity] [Priority: 3]
06/15-21:25:49.004488 192.1.1.188 -> 46.5.226.187
TCP TTL:239 TOS:0x0 ID:0 IpLen:20 DgmLen:40 RB
Frag Offset: 0x0864 Frag Size: 0x0014

Source of Trace
The raw log was download from http://isc.sans.org/logs/Raw/2002.5.16. All the
analysis was done on a laptop running Fedora Linux (2.6.3 kernel). In order to
aid the analysis of the detect, I wrote several scripts . To use these scripts, I
exported the raw log file to text format file first by running the following
commands.

- tcpdump -r 2002.5.16 -ne >> log.txt

The 'scanlog' [20] script was used to summarize the traffic flow and to guess
network devices in the system. Network devices like router, firewall and gateway
will normally have more than one IP address associated with their MAC address.
The oui.txt from IEEE (http://standards.ieee.org/regauth/oui/oui.txt) was also

Page 34 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

used as another indicator for network equipment. If the NIC belongs to Cisco, it's
higher chance that it's a network device.

Network traffic summary
The script produced a very long list of IP address, too long to be put here. I ran it
based on host and class A, B and C subnet type to guess the network
infrastructure. I concluded that: Class B subnet 46.5.0.0/16 was hiding behind a
Cisco device with MAC 00:00:0c:04:b2:33 on its outside interface. I took 46.5.0.0
class B subnet as the home subnet to protect.

Sample traffic from this home class B subnet:

00:00:0c:04:b2:33(CISCOSYSTEMS,INC.)<N-D>|46.5.180|-->|00:03:e3:d9:26:c0
(CiscoSystems,Inc.)<N-D>|152.163.209
00:00:0c:04:b2:33(CISCOSYSTEMS,INC.)<N-D>|46.5.180|-->|00:03:e3:d9:26:c0
(CiscoSystems,Inc.)<N-D>|204.253.104
00:00:0c:04:b2:33(CISCOSYSTEMS,INC.)<N-D>|46.5.180|-->|00:03:e3:d9:26:c0
(CiscoSystems,Inc.)<N-D>|208.184.29

Sample traffic into the home class B subnet:

00:03:e3:d9:26:c0(CiscoSystems,Inc.)<N-D>|12.108.43|-->|00:00:0c:04:b2:33
(CISCOSYSTEMS,INC.)<N-D>|46.5.15
00:03:e3:d9:26:c0(CiscoSystems,Inc.)<N-D>|12.108.43|-->|00:00:0c:04:b2:33
(CISCOSYSTEMS,INC.)<N-D>|46.5.64
00:03:e3:d9:26:c0(CiscoSystems,Inc.)<N-D>|12.108.43|-->|00:00:0c:04:b2:33
(CISCOSYSTEMS,INC.)<N-D>|46.5.7

All Mac and IP inventory list
The script produced a very long list to be included here. It's absence should not
hinder the understanding of this detect.

MAC/IP duplicate use statistics (The number in the third column separated
with | tells how many IP were used with the MAC address. More than one will
normally indicates a network devices such as router, firewall or gate.):

multi ip|src mac|35|00:03:e3:d9:26:c0(CiscoSystems,Inc.)
multi ip|dst mac|109|00:00:0c:04:b2:33(CISCOSYSTEMS,INC.)
multi ip|dst mac|11|00:03:e3:d9:26:c0(CiscoSystems,Inc.)

It's interesting to observe that MAC 00:00:0c:04:b2:33 was used as destination
only. This is very rare for such a network. The problem could be coming from my
script, the log is missing something or it's the way it is.

To verify this, I manually check this by running the following command.

Page 35 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

tcpdump -r 2002.5.16 -ne 'ether src 00:00:0c:04:b2:33' | cut -d " " -f 10 | cut -d "."
-f 1-4 | uniq -c

The result was : 577 count of IP 46.5.180.250 using this Mac as source, no
other IP. Only one IP had used this MAC as source. I could safely say that my
script was working as expected.

From the data collected above, I believe that the traffic was monitored between a
Cisco firewall/border router and a uplink/ISP (Internet Service Provider) Cisco
router/switch.

(Internet)
 |
[Cisco router/switch 00:03:e3:d9:26:c0] <-- ISP
 |

| <--- [IDS]
|

[Cisco firewall/border router 00:00:0c:04:b2:33] <-- Corporate border
 |
[Inside Class B subnet 46.5.0.0/16] <-- Internal network

Detect was generated by
Snort Version 2.1.2 (Build 25) was used to generate the alert. The following
command line was used:

snort -r 2002.5.16 -h 46.5.0.0/16 -l log -k none -c snort.conf -yeX

Switch -k was used because the readme in the incident.org raw log readme
mentions that the checksum has been modified.

The snort.conf has all the rules selected and the flow-portscan preprocessor
turned on.

Snort created directories 12.108.43.5, 159.226.208.40, 163.22.229.253,
163.23.190.2, 163.23.190.34, 192.1.1.188, 194.108.153.205, 194.78.59.253,
200.184.104.200, 202.96.52.99, 203.197.102.29, 209.236.203.101, 11.152.3.40
212.88.236.2, 218.96.62.2, 255.255.255.255, 61.218.166.106, 61.218.166.98,
61.221.99.242, 64.12.151.56, 64.154.80.50, 64.154.80.51, 64.94.89.210 and the
alert file.

Under 192.1.1.188, there's only one file, IP_FRAG

Script 'scanalertip' [23] was then run against the 'alert' file to summarize the
attack signature and IP address information. The output is listed immediately
below. The leftmost number is the signature hit count.

Page 36 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1 [**] BAD-TRAFFIC ip reserved bit set [**]|06/15-21:25:49.004488|
192.1.1.188|->|46.5.226.187
1 [**] BAD-TRAFFIC ip reserved bit set [**]|06/15-21:32:20.144488|
192.1.1.188|->|46.5.20.200
1 [**] BAD-TRAFFIC ip reserved bit set [**]|06/16-02:11:01.594488|
192.1.1.188|->|46.5.132.21

This alert was generated by the following snort rule.

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-TRAFFIC ip
reserved bit set"; fragbits:R; sid:523; classtype:misc-activity; rev:4;)

This is a relatively simple rule that detect IP traffic with the reserved flag bit
located at bit 8 of byte 6 of the IP header, counting from 0.

21:25:49.004488 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4, length
60: IP (tos 0x0, ttl 239, id 0, offset 17184, flags [rsvd], length: 40, bad cksum
76f3 (->70ed)!) 192.1.1.188 > 46.5.226.187: tcp
0x0000 4500 0028 0000 [8]864 ef06 76f3 c001 01bc E..(...d..v.....
0x0010 2e05 e2bb 0723 0050 1275 894e 1275 894e #.P.u.N.u.N
0x0020 0004 0000 f46e 0000 0000 0000 0000 n........

NOTE: [8] marked above meets the matching criteria. This where the IP flag field
located.

Probability the source address was spoofed
A visit to samspade returned the following network information for 192.1.188:

OrgName: BBN Communications
OrgID: BBNP
StateProv: MA
Country: US
NetRange: 192.1.0.0 - 192.1.255.255
CIDR: 192.1.0.0/16

This is within the Internet route-able IP address range.

The traffic generated was TCP but there's not enough information from this raw
log that I could inspect the traffic state to determine if the source IP was spoofed.

What does Snort site say about this rule at http://www.snort.org/snort-
db/sid.html?sid=523. Quoted:'Under normal circumstances IP packets do not
use the reserved bit. This may be an indicator of the use of the reserved bit by a

Page 37 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

malicious user to instigate covert channel communications. An indicator of
unauthorized network use, reconnaissance activity or system compromise.
These rules may also generate an event due to improperly configured network
devices.'

For most of the covert channel, reconnaissance activity, system compromise and
the result of mis-configured network devices, the source IP addresses are not
spoofed. There are stealthy scanning technique involves a silent host but it's only
good at checking if a host or the service is up but not finger-printing.

We all know that some of the security tools such nmap use specially crafted
packets to finger-print systems. Most cases, the source IP addresses are not
spoofed.

Based on all I could get out of the raw log, Internet and reading research, I
believe it's very unlikely the source IP address was spoofed.

Description of Attack
The attack was originated from system with IP 192.1.1.188. I ran the following
command trying to get all the traffic related to the attacker.

tcpdump -r 2002.5.16 -n 'host 192.1.1.188'.
Result:
21:25:49.004488 IP 192.1.1.188 > 46.5.226.187: tcp
21:32:20.144488 IP 192.1.1.188 > 46.5.20.200: tcp
02:11:01.594488 IP 192.1.1.188 > 46.5.132.21: tcp
05:10:30.204488 IP 192.1.1.188 > 46.5.72.213: tcp
07:14:48.704488 IP 192.1.1.188 > 46.5.130.136: tcp
14:12:37.084488 IP 192.1.1.188 > 46.5.94.235: tcp
14:43:14.304488 IP 192.1.1.188 > 46.5.178.85: tcp
15:44:30.484488 IP 192.1.1.188 > 46.5.51.201: tcp
17:36:39.194488 IP 192.1.1.188 > 46.5.109.103: tcp

The normal attributes that comes with a TCP packet are missing, e.g. the
sequence number, the flags, the windows size and so on.

Let see why it's the case by reviewing the actual data in one of the packets.

21:25:49.004488 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4, length
60: IP (tos 0x0, ttl 239, id 0, offset 17184, flags [rsvd], length: 40, bad cksum
76f3 (->70ed)!) 192.1.1.188 > 46.5.226.187: tcp
0x0000 4500 0028 0000 8864 ef06 76f3 c001 01bc
0x0010 2e05 e2bb 0723 0050 1275 894e 1275 894e
0x0020 0004 0000 f46e 0000 0000 0000 0000

Bytes 4 to 5 (=0000) is the IP ID field. It's 0.

Page 38 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Bytes 6 to 7 (=8864) is the flags and fragment offset field. They are broken down
below for easy read.

Byte 6, bit 7 = reserved bit. Normally set to 0 (zero) but was 1.
Byte 6, bit 6 = Don't Fragment bit set to zero.
Byte 6, bit 5 = More fragment bit set to zero.
Byte 6, bit[4-0] + Byte 7, bit[7-0] = IP fragment offset. Set to

 0x864 which equals 0x864 x 8 bytes = 17184 decimal.
Byte 9 (=06) indicating it's a TCP protocol

Putting all these observations together:
1. It's TCP packets.
2. It's fragmented packet and the fragment offset is non-zero. Therefore the

normal TCP attributes such as sequence number and TCP flags were
missing.

3. It's the last packet as the MF flag was not set.

I ran the following command to list some of the attributes for all the detected
traffic to look for similarity and difference.

tcpdump -r 2002.5.16 -ne -vvv 'host 192.1.1.188' | cut -d " " -f 7-21,26-29

length 60: IP (tos 0x0, ttl 239, id 0, offset 17184, flags [rsvd], length: 40,
192.1.1.188 > 46.5.226.187: tcp
length 60: IP (tos 0x0, ttl 239, id 0, offset 17184, flags [rsvd], length: 40,
192.1.1.188 > 46.5.20.200: tcp
length 60: IP (tos 0x0, ttl 239, id 0, offset 17184, flags [rsvd], length: 40,
192.1.1.188 > 46.5.132.21: tcp
length 60: IP (tos 0x0, ttl 239, id 0, offset 17184, flags [rsvd], length: 40,
192.1.1.188 > 46.5.72.213: tcp
length 60: IP (tos 0x0, ttl 239, id 0, offset 17184, flags [rsvd], length: 40,
192.1.1.188 > 46.5.130.136: tcp
length 60: IP (tos 0x0, ttl 239, id 0, offset 17184, flags [rsvd], length: 40,
192.1.1.188 > 46.5.94.235: tcp
length 60: IP (tos 0x0, ttl 239, id 0, offset 17184, flags [rsvd], length: 40,
192.1.1.188 > 46.5.178.85: tcp
length 60: IP (tos 0x0, ttl 239, id 0, offset 17184, flags [rsvd], length: 40,
192.1.1.188 > 46.5.51.201: tcp
length 60: IP (tos 0x0, ttl 239, id 0, offset 17184, flags [rsvd], length: 40,
192.1.1.188 > 46.5.109.103: tcp

These packet are having the following common characteristics:
1. Total packet length = 60 bytes
2. TOS = 0x0
3. TTL = 239
4. IP = 0
5. IP fragment offset = 17184

Page 39 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6. IP reserved flag bit set.
7. TCP protocol.

It's the IP ID = 0 makes me to believe that this is a crafted packet. You may be
having 1 out of 65535 chance to run with IP ID = 0 but not everyone of them.

What can the attacker gain from sending this packet? Gaining insight in the
target system by running system reconnaissance and finger printing activities, I
believe.

Attack Mechanism
I believe these packets are part of system reconnaissance or finger printing
activities. However, I don't believe sending these packets alone would be able to
solicit any response from the target systems.

In order to verify this point I just made, I used tool to craft similar packets to see
if I could get any response from Windows98 and Redhat 9 system which I have
at home. I used hping2 with a minor modification as it does not have the option
to modify the IP 'reserved bit'.

I did not have the time to spend to understand the whole hping program, I did a
dirty trick to disable the right shifting of the fragment offset parameter and then
adjusted the offset parameter in the command line to trick the program to send
the packets with 'reserved bit' set.

Below is the modification in the sendip.c:

/* ip->frag_off |= htons(fragoff >> 3); shift three flags bit */
 ip->frag_off |= htons(fragoff); /* Kam - dirty trick to set reserved bit */

Then I ran the following on two different terminal sessions on my linux laptop:
1. hping2 192.168.2.100 --id 0 --ttl 239 --tos 0 --fragoff 34916 -c 5 -n

• 192.168.2.100 is the target systems, Linux and Windows98.
• id (IP ID) = 0 but this was not zero at run time. But this should not matter.
• tos (Type of service) = 0
• ttl (Time to Live) = 239
• fragoff (IP fragment offset) = 34916 = 0x8864. The first digit 8 set the reserved

bit but not the other fragment flag bit. I used the value of byte 6 and 7 found in
the packets that triggered the 'ip reserved bit' rule.

• c (count) = 5, run 5 times
• n (do not resolve name)

Output:
HPING 192.168.2.116 (eth0 192.168.2.116): NO FLAGS are set, 40 headers + 0
data bytes

Page 40 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

--- 192.168.2.116 hping statistic ---
5 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

Capture the hping2 traffic using tcpdump -i eth0 -vvvX -n

Output (one sample, others were the same):
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
20:08:35.740653 IP (tos 0x0, ttl 239, id 63990, offset 17184, flags [rsvd], length:
40) 192.168.2.146 > 192.168.2.100: tcp
0x0000: 4500 0028 f9f6 8864 ef06 c32d c0a8 0292 E..(...d...-....
0x0010: c0a8 0264 0586 0000 55e2 40c1 558e 4803 ...d....U.@.U.H.
0x0020: 5000 0200 ede2 0000 P.......

There's no response from the target systems, both Windows98 and Linux
systems.

This test makes me to believe that this stimulus will not generated response from
system. Therefore, I tends to believe that the raw log is missing some important
information about the pre-scan and possibly post-scanning activities.

If I am allowed to take a wild guess, I believe that someone must have send the
first TCP segment to initiate the handshake and then sent this packet to finger
print the system.

Correlation
There were some information on the Internet but this signature has been
discussed a lot. Some discussion were posted at the following websites:
1. Roesch, Martin. “Snort discussion thread”. 11 Oct 2001.
URL: http://archives.neohapsis.com/archives/snort/2001-10/0357.html
2. Granier, Thomas. “GCIA version 3.3 Practical Detect – Reserved bit set” 27

Nov 2002
URL: http://www.dshield.org/pipermail/intrusions/2002-November/006015.php
3. Macbeth, Soren. “GCIA version 3.3 Practical Detect”.8 Oct 2002.
URL: http://www.dshield.org/pipermail/intrusions/2002-October/005553.php
4. Snort. Rule search.
URL: http://www.snort.org/snort-db/sid.html?sid=523 – snort explanation
5. Granier, Brian. “Intrusion Analysis and LaBra Sentry” 21 Oct 2002.
URL: http://www.giac.org/practical/GCIA/Brian_Granier_GCIA.pdf

Evidence of Active targeting
The network activities generated by this exploit is summarized below:
192.1.1.188|->|46.5.226.187
192.1.1.188|->|46.5.20.200

Page 41 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

192.1.1.188|->|46.5.132.21
192.1.1.188|->|46.5.72.213
192.1.1.188|->|46.5.130.136
192.1.1.188|->|46.5.94.235
192.1.1.188|->|46.5.178.85
192.1.1.188|->|46.5.51.201
192.1.1.188|->|46.5.109.103

Judging from the target system IP address pattern, I believe these systems were
not being actively targeted. Instead, this was more to me of a system
reconnaissance and finger printing Internet activities.

Of course, someone can argue that the attacker could be actively targeting the
whole organization. This may be the case but I don't believe anyone is having
solid information to back up to their claims on either sides.

Severity
Severity = (criticality + lethality) - (system countermeasures + network
countermeasures)

-1 = (3 + 2) - (3 + 3)

Criticality = 3. I don't think the raw log contains information about what kind of
system they were. I gives it a three to be on the safe side.

Lethality = 2. I believe this is just a system reconnaissance and finger printing
activities. But this could turn into a lethal situation if the attacker could locate
vulnerabilities to penetrate.

System Countermeasures = 3. No information to determine this too. I give it a
three assuming these systems are under normal management.

Network Countermeasures = 3. No information to determine this too. I give it a
three assuming these systems are under normal management.

A score of severity of -1 is not a bad security situation. Immediate action is not
necessary to be taken to mitigate risk.

Defensive Recommendation
To prevent the systems from future scan of this type:
1. If technical possible, the border router/firewall should be setup to block traffic
that has the 'IP flag reserved bit' set. This could present problem if Explicit
Congestion Notification is enabled. The situation has to be review with the
network administrator.
2. The IDS should be setup to monitor this type of out-of-spec network traffic.

Page 42 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3. As this technique may be implemented in very slow stealthy scan, it's more
effective to do trending report on out-of-spec traffic.

Multiple choice test question

Which packets below will trigger the 'BAD-TRAFFIC ip reserved bit set' snort
rule:
a. 0x0000: 4500 0028 f9f6 8464 ef06 c32d c0a8 0292
b. 0x0000: 4500 0028 f6f9 2464 ef06 c32d c0a8 0292
c. 0x0000: 4500 0028 9f6f 2864 ef06 c32d c0a8 0292
d. 0x0000: 4500 0028 6f9f 0864 ef06 c32d c0a8 0292

Answer: a. It's the only packet contains a value in byte 6 that set the 'ip reserved
bit'.

Part 3: Analyze This

Executive Summary
This report was prepared base on the findings from analyzing the logs supplied
which covers period from 7th to 11th April, 2004. There are several areas that the
University is recommended to consider to improve the computer security of the
campus.

The IDS can be improved by further reducing the false positive. During the
analysis, it was found that the system generate more false positive HTTP and
other traffic than I believe it should be. This is a very preliminary observation.
However, this seems to be a good opportunity to take a second look at the IDS
system for improvement.

Through this exercise, it seems that the University is allowing quite wide open
access between the campus network and the Internet. As we could understand
that University in general wants to maintain close contacts with the outside to
foster free exchange of information and encourage research cooperation. But the
University should still run their computer infrastructure as securely as possible.
Network in the campus should be properly segregated with appropriate security
control so that the crown jewelry is sufficiently protected from attacks.

Seemingly, there are services that may not necessarily needed but allowed. This
could have been setup for the students or are run by the students themselves.
Some may just be abandon old systems. With these system running without
appropriate administration, they are potential candidates of attack and then
becoming attackers. This poses not just internal security concerns but liability of
the University to the outside world. The University may still be paying for its
maintenance such as computer room space, software license (very low of

Page 43 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

course) and hardware maintenance fee, utility bill and etc. So the University
should audit these systems to capture possible saving opportunities.

Running with an open network policy, the University should review the system
maintenance policy to prioritize system patch management for systems at
different security zones. Using a one size fits all approach will be too costly to the
University which may end up with nothing done.

There are number of systems identified with possible security compromise. The
University must investigate them and take appropriate actions to recover these
systems. Also, the investigation results should be reviewed to prevent the same
problems in the future.

The University should review the external attacker IP reported below to put a
stop to the external attackers who may have been using the University
computing resources to exploit others.

One of the University systems has been identified as an participant in an DDOS
attack network. This poses danger to the University as the attacker can use the
University's computing resources to launch a massive DDOS against the
University itself or organizations on the outside. Either way, the image of the
University will be damaged if that ever happened.

Source of Log files

These logs were download from http://isc.sans.org/logs/
Scan logs: Alert logs: Out-of-Spec logs:
scans.040407 alert.040407 oos_report_040403
scans.040408 alert.040408 oos_report_040404
scans.040409 alert.040409 oos_report_040405
scans.040410 alert.040410 oos_report_040406
scans.040411 alert.040411 oos_report_040407

For some reasons the time stamp of the OOS filename is not consistent with the
actual time stamp in the log items. The time range of the files I am interested in
is offset by 4 days later. That's why I used the files as listed to match time with
the other logs. I believed it's more advantageous from analysis perspective to
keep using logs from the same time period.

I did the following before using these logs for analysis:
1. Checked and cleaned up corrupted data. I encountered three logs with this

problem.
2. Merged the individual type of logs into one single log in proper chronological

Page 44 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sequence. They are called alert.all (215MB) , oos.all (3.4 MB) and scans.all (1
GB). These logs cover events from 07 to 11 April, 2004.

3. Removed duplicated space in the field separator to ease log analysis.

Alert Analyzed
Before picking what alerts to analyze, I ran the following command to get the
alerts statistics. Port scan activities were purposely filtered off (grep -v 'portscan')
as most of them should be covered in the scan log analysis.

cat alert.all | sed 's/\[**\]/|/g' | cut -d "|" -f 2 | grep -v 'portscan' | sort | uniq -c |
sort -nr

Summary results (occurrence count Alert Message):
 28842 EXPLOIT x86 NOOP
 13011 MY.NET.30.3 activity
 12178 SMB Name Wildcard
 10667 High port 65535 tcp - possible Red Worm - traffic
 10212 MY.NET.30.4 activity
 8011 Tiny Fragments - Possible Hostile Activity
 3263 DDOS mstream handler to client
 1127 Null scan!
 1098 NMAP TCP ping!
 1082 Possible trojan server activity
 930 External RPC call
 638 SUNRPC highport access!
 512 Incomplete Packet Fragments Discarded
 309 TCP SRC and DST outside network
 245 High port 65535 udp - possible Red Worm - traffic
 210 ICMP SRC and DST outside network
 158 [UMBC NIDS] Internal MiMail alert
 147 [UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan.
 142 DDOS shaft client to handler
 108 [UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to
IRC
 100 FTP passwd attempt
 83 TCP SMTP Source Port traffic
 72 IRC evil - running XDCC
 66 EXPLOIT x86 setuid 0
 55 SMB C access
 47 [UMBC NIDS] External MiMail alert
 46 connect to 515 from outside
 33 EXPLOIT x86 setgid 0
 28 EXPLOIT x86 stealth noop
 25 [UMBC NIDS IRC Alert] Possible drone command detected.
 24 RFB - Possible WinVNC - 010708-1

Page 45 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 22 FTP DoS ftpd globbing
 17 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request
Detected.
 15 NIMDA - Attempt to execute cmd from campus host
 14 TFTP - Internal UDP connection to external tftp server
 14 Attempted Sun RPC high port access
 13 SYN-FIN scan!
 10 EXPLOIT NTPDX buffer overflow
 8 EXPLOIT x86 NOPS

The 10 alerts in bold will be analyzed below. The reasons for their choice varies
as shown in the table below.

Alert Reason
EXPLOIT x86 NOOP high volume alert
MY.NET.30.3 activity high volume alert
SMB Name Wildcard high volume alert
High port 65535 tcp - possible Red
Worm - traffic

high volume alert

DDOS mstream handler to client high volume alert and more critical than
the previous two in the original list

Possible trojan server activity high volume alert and more critical than
the previous two scan types alerts in
the original list.

External RPC call high volume alert
FTP passwd attempt something that catch my eye
IRC evil - running XDCC IRC is a commonly used service
RFB - Possible WinVNC - 010708-1 could be used a system back door

Alert #1 - EXPLOIT x86 NOOP
Alert rule
I was not able to find this rule in my Version 2.1.2 (Build 25) rule base and the
rule base in the snort website. So this may be a custom rule.

Even worse, google search returned two different set of rules. One is for UDP
and one for TCP. They are very similar but the interpretation of the alerts based
on two rules are quite different.

From http://www.security-labs.org/index.php3?page=408,
§§§§§
alert udp $EXTERNAL_NET any -> $HOME_NET any (msg:"EXPLOIT x86

Page 46 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

NOOP";
content:"|9090 9090 9090 9090 9090 9090 9090 9090|";
reference:arachnids,181;)

From http://www.devking.com/networx/Intrusion%20Detection.doc,

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"EXPLOIT x86
NOOP"; content: "|90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90|"; flags: A+; reference:arachnids,181;)

I have chosen to use the TCP version as port 80 was involved. It is very
uncommon that UDP is used for port 80. UDP port 80 is very unlikely exploitable
today, hackers are unlikely to us it.

This rule performs a simple detection of a consecutive occurrence of pattern
hexadecimal data of 90 which is the no-operation (noop) code for Intel based
processor. A long string of noop is a typical signature of a buffer overflow exploit
of some kind against the target system, adding them into the exploit data packet
to make the exploit somewhat more forgiving.

More analysis can be found at:
1. Oborn, David. “SANS GCIA Practical Assignment”.
URL: http://www.giac.org/practical/David_Oborn_GCIA.html#detect4
2. Larratt, Glenn. “GCIA Practical Assignment Version 3.0”
URL: http://is.rice.edu/~glratt/practical/Glenn_Larratt_GCIA.html#x86ml

Analysis
First of all, I ran the following command to summarize this alert type.

cat alert.all | grep 'EXPLOIT x86' | sed 's/ \[**\] /|/g' | cut -d "|" -f 3 | gawk '{ split
($1, T, ":"); print T[1], $2, $3;}' | sort | uniq -c | sort -nr

Note: gawk in the command line above will remove the source port to reduce
down the length of the list significant.

Sample Result:
 773 199.131.21.34 -> MY.NET.84.235:80
 767 199.131.21.34 -> MY.NET.84.236:80
 305 199.131.21.34 -> MY.NET.84.204:80

Note that the number on the rightmost column is the number of occurrence.

I put the output data into spreadsheet to pull statistics out of it. The result is
shown in the table below.

Page 47 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Item Source IP Dest IP, MY.NET Dest Port Count
1 wide range wide range 80 3163

2
wide range 190.102; 190.93; 190.95;

190.97 135 254

3

216.65.73.26 11.11; 11.3; 11.6; 11.7;
25.19; 29.13; 29.15; 70.5;
97.81 389 9

4 wide range 190.95; 190.97 445 14
5 wide range wide range 1025 1210
6 wide range wide range 5000 466

7
wide range 27.103; 66.32; 75.30;

75.6; 84.145 6129 16
8 wide range wide range others 162

Item 1:
1. This is very likely false positive of normal http traffic.
2. As this TCP data exchange, the involved systems must have completed the 3-

ways TCP hand-shake successfully before the IDS would see this data
packet. So the internal systems were actually running web servers.

Item 2:
1. Very likely these were Microsoft RPC exploit. A normal data transfer should

not contain that many noop code.
2. Assuming this is TCP, the RPC was actually running on these systems. There

were four internal servers involved. In general, this is not a good idea to
expose this service on the Internet.

Item 3:
1. External 216.65.73.26 was exploiting nine internal seemingly ldap servers.
2. This external site belongs to flashhost, a adult web hosting service provider.

There should not be any business relationship between the University and this
provider.

3. Why ldap was involved could have many reasons such as this could be a VPN
gateway use or the ldap server was unintentionally exposed to the Internet.

Item 4:
1. Port 445 is used by Microsoft system to send SMB(Server Message Block)

messages over TCP.
2. These two internal IP showed up in port 135 use as well. This further proves

that these systems are running Microsoft OS and are accessible from the
Internet. No a good security thing.

Item 5:
1. I can speculate many possibilities on TCP port 1025 - Microsoft Remote

Procedure Call (RPC) service, Blackjack network, trojan and etc.

Page 48 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Item 6:
1. Port 5000 is used for Windows Universal plug and play service (UPNP). There

are exploit for the UPNP service.
Item 7:
1. Port 6129 is used by the Dameware remote administration software.
2. Older versions of Dameware can allow for unauthorized login and hence

unauthorized use of Dameware for remote administration of a computer.
Dameware was installed by some viruses for the purpose of remote
administration of the infected system.
(http://www.linklogger.com/TCP6129.htm)

3. Five system involved.
Item 8:
1. This contains a collection of randomly accessed port. Fully analyzing them will

take too much time.

Concerns
1. Http traffic false positive is a concern.
2. Internet access to internal servers.
3. Unauthorized services running in internal servers

Recommendations
1. The IDS system could probably further fine tune to reduce the false positive

on the port 80 traffic.
2. The University should review their policy on the access to the following

systems from the Internet:
• Windows OS systems.
• ldap system.

3. The systems that runs Dameware should be examined

Alert #2 - MY.NET.30.3 activity
Alert rule
Unknown, probably custom rule.

Analysis
First of all, I ran the following command to summarize this alert type.

cat alert.all | grep 'MY.NET.30.3 activity' | sed 's/ \[**\] /|/g' | cut -d "|" -f 3 | gawk
'{ split($1, T, ":"); print T[1], $2, $3;}' | sort | uniq -c | sort -nr

Sample Result:.
2166 131.92.177.18 -> MY.NET.30.3:524
1625 68.57.90.146 -> MY.NET.30.3:524
1558 69.138.77.62 -> MY.NET.30.3:524

Page 49 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The target ports were:
21, 80, 389, 427, 443, 446, 524, 554, 715, 1025, 1080, 1433, 2745, 2812, 3019,
3128, 3389, 3410, 4000, 4899, 5000, 6129, 8000, 9898, 12849, 20168, 55838

To get a better picture around My.NET.30.3, I ran the following command to
check alerts other than MY.NET.30.3 activity.

cat alert.all | grep 'MY.NET.30.3' | grep -v 'MY.NET.30.3 activity'

Results:
04/08-08:13:54.361238 [**] NMAP TCP ping! [**] 216.54.131.241:80 ->
MY.NET.30.3:427
04/08-08:13:54.394632 [**] NMAP TCP ping! [**] 216.56.88.61:81 ->
MY.NET.30.3:427

I can't see exactly why the particular system was monitored so closely. A lot of
services might be running on this system. Is this a honey pot of some sort.

Concerns
If there's rule specifically written for it, it must be monitored closely and I did not
see other malicious traffic outside those being monitored. I therefore tend to
believe there is not much we should be worrying about this system.

Recommendations
1. If it's a honey pot installed with a legitimate reason, just to make sure it's

properly isolated from the normal production network and monitored closely.
Once it's purpose is done, it should be removed from the network
immediately.

2. If installed with no legitimate reason, remove it immediately.

Alert #3 - SMB Name Wildcard
Alert rule
alert udp any any -> $HOME_NET 137 (msg:"SMB Name Wildcard";
content:"CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|0000|";)

This is a very well known rule for detecting this activity.

Analysis
First of all, I ran the following command to summarize this alert type.

cat alert.all | grep 'SMB Name Wildcard' | sed 's/ \[**\] /|/g' | cut -d "|" -f 3 | gawk
'{ split($1, T, ":"); print T[1], $2, $3;}' | sort | uniq -c | sort -nr

Sample result:
5185 MY.NET.11.7 -> 169.254.0.0:137

Page 50 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1831 MY.NET.11.7 -> 169.254.25.129:137
991 MY.NET.111.228 -> 209.2.144.10:137

According to http://archives.neohapsis.com/archives/snort/2000-01/0222.html,
Windows machines typically send these types of queries in normal operation,
particularly when file sharing is active, to determine NetBIOS names when only
IP addresses are known. This type of query, when originating from an external
network, is usually a pre-attack probe to gather netbios name table information
such as workstation name, domain, and a list of currently logged in users.

The source IP were all from MY.NET. About 70% of the destination IP is inside
169.254.0.0/16. Running whois reveals the following information. It's IANA.

whois 169.254.0.0
[Querying whois.arin.net]
[whois.arin.net]

OrgName: Internet Assigned Numbers Authority
OrgID: IANA
Country: US
NetRange: 169.254.0.0 - 169.254.255.255
CIDR: 169.254.0.0/16
Comment: Please see RFC 3330 for additional information.

According to http://www.faqs.org/rfcs/rfc3330.html, 169.254.0.0 is used for the
following purpose.

Quoted: '169.254.0.0/16 - This is the "link local" block. It is allocated for
communication between hosts on a single link. Hosts obtain these addresses by
auto-configuration, such as when a DHCP server may not be found.'

After discounting the DHCP IP 169.254.0.0/16, I still have to look at the following
ones:
Source IP, MY.NET Dest IP Count
150.198 Internet, wide range 674
150.44 Internet, wide range 632
190.95 Internet, wide range 285
75.13 Internet, wide range 598

I do not know what's the real purpose of the traffic generated by these internal
systems. They may be victim machines themselves or someone from inside
were practicing hacking.

Page 51 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

To check if the systems with these source IP have been involved with other
malicious activities, the following command was run:

grep '<source_ip> alert.all | grep -v 'SMB Name Wildcard'. The “grep -v” filtered
the alerts generated by the SMB rule.

MY.NET.150.198:
04/10-12:28:10.327710 [**] Null scan! [**] 216.250.41.184:33365 ->
MY.NET.150.198:38598
04/10-12:28:10.327710 [**] Null scan! [**] 216.250.41.184:33365 ->
MY.NET.150.198:38598

MY.NET.150.44 (sample output only):
04/11-10:10:49.061779 [**] EXPLOIT x86 NOOP [**] 203.218.215.28:3384 ->
MY.NET.150.44:80
04/11-10:10:49.082775 [**] EXPLOIT x86 NOOP [**] 203.218.215.28:3384 ->
MY.NET.150.44:80

MY.NET.190.95 (sample output only):
04/10-03:34:36.840094 [**] External RPC call [**] 217.160.94.163:111 ->
MY.NET.190.95:111
04/10-04:09:10.919635 [**] EXPLOIT x86 NOOP [**] 61.230.239.29:4122 ->
MY.NET.190.95:135
04/10-16:08:33.162323 [**] Possible trojan server activity [**]
213.189.89.109:2998 -> MY.NET.190.95:27374
04/11-02:57:47.951482 [**] SMB C access [**] 155.239.84.234:1136 ->
MY.NET.190.95:139

MY.NET.75.13:
04/07-21:07:44.903489 [**] EXPLOIT x86 NOOP [**] 218.145.182.190:2596 ->
MY.NET.75.13:80
04/09-06:18:02.620337 [**] NMAP TCP ping! [**] 194.75.139.2:80 ->
MY.NET.1.3:53
04/10-00:45:31.475621 [**] MY.NET.30.3 activity [**] 210.75.133.105:4729 ->
MY.NET.30.3:3128
04/11-07:15:12.028795 [**] EXPLOIT x86 NOOP [**] 68.43.170.140:3736 ->
MY.NET.75.13:80

Concern
Three out of the four systems identified had been compromised, probably with
root shell. This enables remote access through back door setup after the
compromise.

Recommendations
1. Check and clean systems identified with compromise.

Page 52 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. If the external hacker IP could be identified, block them at the gateway if
possible. I know this may not be effective as the attacker can change IP pretty
easily. But at least they should be blocked for some time.

3. Review the IDS system for the activities generated by these attacker to
eradicate any other compromises they might have successfully done.

Alert #4 - High port 65535 tcp - possible Red Worm – traffic
Alert rule: I could not find this rule either from the current rule set or in the
Internet, including snort website. I believe this rule simply detect traffic from port
65535.

Analysis
First of all, I ran the following command to summarize this alert type.

cat alert.all | grep 'Red Worm' | sed 's/ \[**\] /|/g' | cut -d "|" -f 3 | gawk '{ split($1,
T, ":"); print T[1], $2, $3;}' | sort | uniq -c | sort -nr

Sample Result:
 2168 MY.NET.60.16 -> 141.157.102.155:65535
 618 MY.NET.97.51 -> 24.5.46.4:65535
 608 62.77.191.33 -> MY.NET.153.83:1330

According to
http://is.rice.edu/~glratt/practical/Glenn_Larratt_GCIA.html#p65535RW,
The "Red Worm" (not to be confused with "Code Red") is a Linux-specific
infection, typified by a back door listening on port 65535 (which otherwise should
not be used). Traffic seen from this port strongly indicates a compromised host.
It's also aliased as Adore.

Other reference:
http://www.europe.f-secure.com/v-descs/adore.shtml
http://www.sans.org/y2k/adore.htm

According to the f-secure description, http://www.europe.f-secure.com/v-
descs/adore.shtml:

Adore is a worm, that spreads in Linux systems using four different, known
vulnerabilities already used by Ramen and Lion worms. These vulnerabilities
concern BIND named, wu-ftpd, rpc.statd and lpd services.

I used spreadsheet to analyze the summary data to locate internal systems
possibly be infected with the Red Worm as shown in the list below:
MY.NET.102.131
MY.NET.12.6
MY.NET.152.174

Page 53 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MY.NET.153.35
MY.NET.153.83
MY.NET.24.20
MY.NET.24.44
MY.NET.25.67
MY.NET.34.14
MY.NET.34.5
MY.NET.60.16
MY.NET.6.7
MY.NET.82.43
MY.NET.84.234
MY.NET.84.234
MY.NET.84.235
MY.NET.84.235
MY.NET.84.235
MY.NET.97.106
MY.NET.97.213
MY.NET.97.51
MY.NET.97.51
MY.NET.97.51
MY.NET.97.92
MY.NET.97.92

A total of 25 infected systems.

Concern
The Red Worm/Adore targets BIND named, wu-ftpd, rpc.statd and lpd services
which are common services offered inside University campus. If this is not dealt
with in a timely manner, the Red Worm could spread very quickly when
unleashed.

Recommendations
1. Check, clean and patch up the identified 25 systems.
2. Block port 65535 at the border of the University.

Alert #5 - DDOS mstream handler to client
Alert rule
alert tcp $HOME_NET 12754 -> $EXTERNAL_NET any (msg:"DDOS mstream
handler to client"; content: ">"; flow:to_client,established; reference:cve,CAN-
2000-0138; classtype:attempted-dos; sid:248; rev:2;

Analysis
First of all, I ran the following command to summarize this alert type.

cat alert.all | grep 'DDOS mstream handler to client' | sed 's/ \[**\] /|/g' | cut -d "|"

Page 54 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

-f 3 | gawk '{ split($1, T, ":"); print T[1], $2, $3;}' | sort | uniq -c | sort -nr

There are 7 items in the summary list:

3240 MY.NET.84.235 -> 82.48.242.184:4662
5 MY.NET.60.17 -> 65.54.252.99:25
3 MY.NET.84.235 -> 62.42.66.52:4662
2 MY.NET.84.235 -> 81.102.85.92:4662
1 MY.NET.84.235 -> 81.69.163.174:4662
1 MY.NET.84.235 -> 80.15.47.94:4662
1 MY.NET.84.235 -> 217.236.97.47:4662

According to http://www.giac.org/practical/Michael_Murphy_GCIH.doc,
Mstream is a three-tiered DDoS tool, allowing an attacker to direct systems that
have been infected with the mstream agent to flood target system(s) with
sustained bursts of TCP packets, which significantly slows down the host by
overburdening the CPU and even restricts network bandwidth.

These traffic did not use the same ports as shown in the CERT site
(http://www.cert.org/incident_notes/IN-2000-05.html):
intruder --------- 6723/tcp -> handler
handler --------- 7983/udp -> agent
agent --------- 9325/udp -> handler

I was not able to find information pertaining the use of port 4662 in the
communication between the handler and agent. This is very the port setting for a
variant of the mstream exploit.

Other reference:
CIAC. “mstream DDOS tool” 3 May 2000
URL: http://www.ciac.org/ciac/bulletins/k-037.shtml

Concerns
A massive DDOS against the University may have potential to grind their network
to a complete halt. The University should take a very serious stand on this to
clean up the compromised systems.

Recommendations
1. Check the following systems for potential mstream infection:
 MY.NET.84.235
 MY.NET.60.17
2. Block the following external IP:

82.48.242.184
 65.54.252.99
 81.102.85.92

Page 55 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 217.236.97.47

Alert #6 - Possible trojan server activity
Alert rule: I could not find this rule either from the current rule set or in the
Internet, including snort website. I believe this rule simply detect port 27374
activities.

Analysis
First of all, I ran the following command to summarize this alert type.

cat alert.all | grep 'Possible trojan server activity' | sed 's/ \[**\] /|/g' | cut -d "|" -f 3
| sort | uniq -c | sort -nr

This command line is somewhat different from the other as I want to see the
source as well. To do this, I removed the gawk portion.

Sample result:
 38 68.55.195.232:27374 -> MY.NET.12.6:25
 31 MY.NET.12.6:25 -> 68.55.195.232:27374
 16 MY.NET.24.44:80 -> 170.91.5.4:27374

According to Glenn,
http://is.rice.edu/~glratt/practical/Glenn_Larratt_GCIA.html#posstroj is exclusively
triggered on port 27374 which is commonly used by trojans.

This alert was studied in Hee's paper, http://www.sans.org/rr/papers/23/836.pdf

Concerns
As port 27374 is commonly used by trojan. This means that system runs with this
port may indicate the existence of trojan on system.

Feeding the summary data generated above into a spreadsheet, I found the
following interesting points:

1. I believe there were some false positives. There are normal 27374 client port
used for network traffic accessing external email, web, POP and SSL servers.

Example:
MY.NET.12.6 SMTP
MY.NET.24.34/44/11 HTTP
MY.NET.12.4 POP3
MY.NET.24.74 SSL

2. External IP 213.189.89.54 might have control of a large number of systems in
the MY.NET.190.0/24 subnet. It was using sequentially incremented source port

Page 56 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

to access port 27374 on the machine in this internal subnet.
Example:
213.189.89.54 port 1181 -> 4922 -> MY.NET.190.1 -> 254
213.189.89.109 port 1862 -> 4458-> MY.NET.109.1 -> 254

Both these systems run on the qualitynet.net network.

Recommendations
1. Check the internal systems on internal subnet My.NET.190.0/24 listed above
for Possible trojan server activity.
2. Block the following external IP listed above.

1. 213.189.89.54
2. 213.189.89.109

3. Fine tune the IDS to filter normal activities using port 27374 to reduce false
positive.

Alert #7 - External RPC call
Alert Rule – I could not find this rule either from the current rule set or in the
Internet, including snort website. I believe this rule simply detect port 111
activities.

Analysis
First of all, I ran the following command to summarize this alert type.
cat alert.all | grep 'External RPC call' | sed 's/ \[**\] /|/g' | cut -d "|" -f 3 | gawk
'{ split($1, T, ":"); print T[1], $2, $3;}' | sort | uniq -c | sort -nr

Sample result:
 8 213.46.246.46 -> MY.NET.6.15:111
 3 213.46.246.46 -> MY.NET.5.5:111
 3 213.46.246.46 -> MY.NET.190.99:111

Further analyzing the table generated above using spreadsheet, I found that
there are only two major external attackers: 213.46.246.46 and 217.169.94.163.
The internal subnet that they probed or accessed is MY.NET.190.0/16.

nslookup reveals:
213.46.246.46 - magyar.chello.hu
217.169.94.163 – failed to resolve name

To check for other clues on the attacks, I ran more check around these IP in the
alert, oos and scan log. The basic command is grep '<ip>' <log type> | grep -v
'External RPC call'. The example for alert log is grep '213\.46\.246\.46' alert.all |
grep -v 'External RPC call'.

Page 57 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Alert log result:
213.46.246.46 – port scan
217.169.94.163 – nothing found

OOS log result:
213.46.246.46 – nothing found
217.169.94.163 – nothing found

Scan log result:
213.46.246.46 – sync scan port 111 only
217.169.94.163 – sync scan port 111 only

The same alert was discussed in the following papers:
Menke, Mark. “GCIA Practical Assignment V2.2.5”
URL: http://www.giac.org/practical/Mark_Menke_GCIA.doc

Concerns
After reviewing all the logs, I don't think there's immediate threat to the University
from this activity. These two external attackers had only launched scans on the
RPC port. It doesn't seem to me anything had been compromised as a result. If
any of these target systems was compromised, I should see some other
connections to the high ports on the target systems from the attacker systems.
But this was not the case. So I could safely say that the University was safe this
round.

Recommendations
Safe this time does not necessary be good forever. So the University should take
the following precautions to make sure:
1. Keep the system patches up to date for those system that offer RPC services.
2. Review and only allow necessary connection to the outside world.
3. Block the two external attacker IP for some period of time. It's very easy to
change their IP.

Alert #8 - FTP passwd attempt
Alert rule: I could not find this rule either from the current rule set or in the
Internet, including snort website.

Analysis
First of all, I ran the following command to summarize this alert type.

cat alert.all | grep 'FTP passwd attempt' | sed 's/ \[**\] /|/g' | cut -d "|" -f 3 | gawk
'{ split($1, T, ":"); print T[1], $2, $3;}' | sort | uniq -c | sort -nr

Page 58 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Sample result:
 3 202.20.73.30 -> MY.NET.24.47:21
 3 198.204.133.209 -> MY.NET.24.47:21
 2 69.34.61.222 -> MY.NET.24.47:21

Further analyzing the table generated above using spreadsheet, I found that this
seems to be a simple case as only one internal systems involved,
MY.NET.24.47. The attacking systems were random from the Internet.

To check for other clues on this attacks, I ran more check around these IP in the
alert, oos and scan log. The basic command is grep '<ip>' <log type> | grep -v
'FTP passwd attempt'. The example for alert log is grep '\.24\.47' alert.all | grep
-v 'FTP passwd attempt'.

Alert log result:
MY.NET.24.47 – port scanned others and being null scanned by 4.8.204.245.

OOS log result:
MY.NET.24.47 – always be the target.

Scan log result:
MY.NET.24.47 – being scanned by external and internal system 130.85.150.199.
This internal system seems to be infected with the Agobot/Gaobot worm. See
scan analysis section below for information about this worm.

Apr 7 15:36:41 130.85.150.199:1700 -> 130.158.24.47:2745 SYN ******S*
Apr 7 15:36:41 130.85.150.199:1701 -> 130.158.24.47:135 SYN ******S*
Apr 7 15:36:41 130.85.150.199:1702 -> 130.158.24.47:1025 SYN ******S*
Apr 7 15:36:41 130.85.150.199:1703 -> 130.158.24.47:445 SYN ******S*
Apr 7 15:36:41 130.85.150.199:1704 -> 130.158.24.47:3127 SYN ******S*
Apr 7 15:36:41 130.85.150.199:1705 -> 130.158.24.47:6129 SYN ******S*
Apr 7 15:36:41 130.85.150.199:1706 -> 130.158.24.47:139 SYN ******S*
Apr 7 15:36:41 130.85.150.199:1707 -> 130.158.24.47:80 SYN ******S*

Concerns
I don't believe there's immediate concern from this alert.

Recommendations
Safe this time does not necessary be good for ever. So the University should
take the following precautions to make sure:
1. Keep the patches up to date for those system that offer the ftp services.
2. Review and only allow necessary connection to the outside world.

Page 59 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Alert #9 - IRC evil - running XDCC
Alert rule: I could not find this rule either from the current rule set or in the
Internet, including snort website. It's very likely that this is a custom rule.

Analysis
First of all, I ran the following command to summarize this alert type.

cat alert.all | grep 'IRC evil - running XDCC' | sed 's/ \[**\] /|/g' | cut -d "|" -f 3 |
gawk '{ split($1, T, ":"); print T[1], $2, $3;}' | sort | uniq -c | sort -nr

There only 4 items in the summary list:
 60 MY.NET.43.2 -> 64.246.60.72:6667
 10 MY.NET.82.79 -> 207.36.180.241:6663
 1 MY.NET.82.79 -> 207.36.180.241:6669
 1 MY.NET.43.7 -> 64.62.196.26:6667

nslookup for the target systems:
64.62.196.26 - purplecone.widge.net
64.246.60.72 - dddbox.triple-d.us
207.36.180.241 – no name resolved.

According to Donald's paper
(http://www.giac.org/practical/GCIA/Donald_Merchant_GCIA.doc), the alert could
indicate the following:
1. Computers running XDCC may be remotely controlled by people in the IRC
channels.
2. The hacked machines were found to be running a back door remote access
service, also called XDCC.
3. This additional back door allows the intruder to access the machine as an
administrator from a remote computer.

Al's paper also analyzed this alert
(http://www.whitehats.ca/main/members/Herc_Man/Files/Al_Williams_GCIAPract
ical.pdf).

Concern
ICQ in general is having lot of security problems. It's home to lot of blackhats.

Recommendations
There is not much choices on security solution that are effective, less costly and
yet not prohibiting the free information exchange environment in an University.

I have given thoughts to the following mitigation but gave up:
1. Restrict access to ICQ at the gateway. This is too disturbing.
2. Security awareness promotion on the use of ICQ and other instant messaging

Page 60 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

solutions. I really doubt its effectiveness. Be realistic, how many students will be
coming to listen.

I believe the best protection that the University should do is to segregate the
teaching stuff and student network from the networks that host the critical
infrastructure of their IT systems.

Alert #10 - RFB - Possible WinVNC – 010708-1
Alert rule: I could not find this rule either from the current rule set or in the
Internet, including snort website. It's very likely that this is a custom rule.

Analysis
First of all, I ran the following command to summarize this alert type.

cat alert.all | grep 'RFB - Possible WinVNC' | sed 's/ \[**\] /|/g' | cut -d "|" -f 3 |
sort | uniq -c | sort -nr

This command line is somewhat different from the other as I want to see the
source as well. To do this, I removed the gawk portion.

Sample result:
 1 MY.NET.84.231:5901 -> 141.157.72.181:3873
 1 MY.NET.84.231:5901 -> 141.157.72.181:3157
 1 MY.NET.70.225:5900 -> 68.55.111.191:3606

According to description in http://www.csd.uwo.ca/staff/magi/doc/vnc/start.html,
the default port of VNC server is at 5900 for display number zero, 5901 for
display number one. VNC client can choose different display number to connect.

Further analyzing the table generated above using spreadsheet, I found one
external VNC server but several internal ones.
1 MY.NET.53.31 3791 -> 68.55.111.196 5900
1 MY.NET.53.44 3047 -> 68.55.111.196 5900
1 68.55.205.88 4138 -> MY.NET.111.46 5900
1 68.55.205.88 4379 -> MY.NET.111.46 5900
1 68.55.192.251 60253 -> MY.NET.111.51 5900
1 68.55.192.251 63445 -> MY.NET.111.51 5900
1 68.55.192.251 62902 -> MY.NET.111.51 5900
1 68.55.192.251 62931 -> MY.NET.111.51 5900
1 68.55.111.191 3606 -> MY.NET.70.225 5900
1 68.55.111.191 3240 -> MY.NET.70.225 5900
1 141.157.72.181 3873 -> MY.NET.84.231 5901
1 141.157.72.181 3157 -> MY.NET.84.231 5901
1 141.157.72.181 3362 -> MY.NET.84.231 5901

Page 61 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Concerns
VNC could both be a legit server or a trojan. The major concerns are:
1. The VNC server is actually trojan or illegal system back door.
2. If it's legitimate service, how secure it is.

Recommendations
1. Check the following systems if the VNC servers are legitimate.
MY.NET.111.46
MY.NET.111.51
MY.NET.70.225
MY.NET.84.231
2. Restrict access to internal VNC service.

OOS Logs Analysis

OOS logs capture packet with non-standard TCP flag bits. This could be the
results of new protocol features, network problem and malicious activities.
Malicious activities can range from system reconnaissance, finger-printing,
system invasion and etc.

I wrote a little script called scanoos [24] to summarize the five days OOS log
down to the source, destination and the flag bit combination.

From the defense point of view, I sorted destination IP of the OOS summary.
This gave me the view of looking out from the University. I picked out the
summary traffic that I have concerned and listed them immediately below.

Page 62 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. Most of the flag settings in the table above have bits 1 (CWR, Congestion

Page 63 of 77

Cnt Source Destination Flag
1 207.217.120.232 MY.NET.12.6:25 12**PRS*
1 211.253.127.81 MY.NET.12.6:25 12UAPR**
1 211.74.6.132(211-74-6-132.adsl.dynamic.seed.net.tw.) MY.NET.12.6:25 ******SF
1 4.5.82.74 MY.NET.12.6:25 *2U***SF
1 64.110.199.1 MY.NET.12.6:25 12UAPRS*
1 66.218.66.79 MY.NET.12.6:25 ********
2 200.59.101.29(modem29-as1.comodoro.sinectis.com.ar.) MY.NET.153.35:3247 ********
1 68.167.207.243(h-68-167-207-243.snfccasy.dynamic.covad.net.) MY.NET.153.35:3247 ***AP*SF
1 68.167.207.243(h-68-167-207-243.snfccasy.dynamic.covad.net.) MY.NET.153.35:3247 **U*****
1 68.167.207.243(h-68-167-207-243.snfccasy.dynamic.covad.net.) MY.NET.153.35:3247 **U*P*SF
1 68.167.207.243(h-68-167-207-243.snfccasy.dynamic.covad.net.) MY.NET.153.35:3247 *2*A*RSF
1 68.167.207.243(h-68-167-207-243.snfccasy.dynamic.covad.net.) MY.NET.153.35:3247 *2U***SF
1 68.167.207.243(h-68-167-207-243.snfccasy.dynamic.covad.net.) MY.NET.153.35:3247 *2UA*RSF
1 68.7.138.89(ip68-7-138-89.sd.sd.cox.net.) MY.NET.153.35:3247 12U*PR**
1 82.72.190.47(cm53719-a.maast1.lb.home.nl.) MY.NET.153.35:3247 **U*P*SF
1 138.23.236.133(ultrafast6.ucr.edu.) MY.NET.24.47:1063 12*****F
1 138.23.236.133(ultrafast6.ucr.edu.) MY.NET.24.47:1063 12*A*R**
1 138.23.236.133(ultrafast6.ucr.edu.) MY.NET.24.47:1068 ******SF
1 138.23.236.133(ultrafast6.ucr.edu.) MY.NET.24.47:1076 ********
1 138.23.236.133(ultrafast6.ucr.edu.) MY.NET.24.47:1079 *2U***SF
3 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3964 ********
2 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3964 **U*****
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3964 1***P*SF
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3964 12*A**SF
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3964 12*AP*SF
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3964 12U***SF
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3964 12U*PR*F
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3964 12U*PRS*
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3964 12UAP*S*
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3964 12UAPR*F
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3964 12UAPRSF
9 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 ********
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 ****PRSF
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 **U**RSF
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 1**AP*SF
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 1*U*PRSF
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 1*UA*RSF
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 12****SF
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 12***R**
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 12**P*S*
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 12**PRS*
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 12*AP***
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 12*APRS*
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 12U**RS*
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 12U*P***
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 12U*PRSF
1 4.8.204.245(wbar1.lax1-4-8-204-245.dsl-verizon.net.) MY.NET.24.47:3970 12UA*RSF

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Window Reduced) and bit 2 (ECN-E, Explicit Congestion Notification Echo)
turned on together with other flag bit.

2. The flags with bit 1, 2 and S (syn) turned on have been filtered off already
because this combination could be a legitimate use.

3. CWR and ECN-E and SYN will be turned on at the same time to negotiate
ECN operation. However, some OS fingerprinting scanner such as QUESO
also use this combination to scan system. The way to tell the difference is to
look at the whole state to see if the full ECN exchange was actually completed
or just only seeing this combination.

The valid combinations according to the GCIA training material are:

Condition TCP-CWR TCP-ECE
SYN 1 1
SYN-ACK 0 1
ACK 0 0
No Congestion 0 0
Congestion 0 0
Receiver Response 0 1
Sender Response 1 1

Most of flag combination in the above table are not valid. This makes me to
believe that either they were used to fingerprint systems or to evade firewall or
IDS systems.

Realistically, system reconnaissance and fingerprinting are very normal activities
these days on the Internet. The important consideration is not how to stop them
but how to best protect yourself by not leaking system information to the wrong
hands.

Concern
Someone will eventually find a way to compromise these systems which could
be used as a jumping board to hurt the University, to hurt others or use them to
host inappropriate materials/services on the Internet.

Is it possible that some of these systems had been compromised already? I
checked the destination addresses against the alert and scan logs by running
“grep '\.153\.35' alert.all “.

The alert log review result may suggest that MY.NET.153.35 was compromised
and became an evil machine:
04/07-23:07:35.457071 [**] EXPLOIT x86 NOOP [**] 63.199.127.11:17145 ->
MY.NET.153.35:1025
04/08-10:23:31.250345 [**] EXPLOIT x86 NOOP [**] 67.101.252.13:4250 ->
MY.NET.153.35:1025

Page 64 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

04/08-10:41:46.150726 [**] EXPLOIT x86 NOOP [**] 68.248.29.158:1104 ->
MY.NET.153.35:80
04/08-12:11:38.684370 [**] EXPLOIT x86 setgid 0 [**] 81.76.69.63:2109 ->
MY.NET.153.35:3247
04/08-16:30:30.467324 [**] EXPLOIT x86 setuid 0 [**] 65.28.248.111:2679 ->
MY.NET.153.35:3247
04/08-17:06:32.350115 [**] EXPLOIT x86 setuid 0 [**] 24.162.203.193:4410 ->
MY.NET.153.35:3247
04/08-18:34:06.225704 [**] spp_portscan: PORTSCAN DETECTED from
MY.NET.153.35 (THRESHOLD 12 connections exceeded in 6 seconds) [**]
04/08-18:34:09.811632 [**] spp_portscan: portscan status from MY.NET.153.35:
18 connections across 18 hosts: TCP(3), UDP(15)
[**]

As shown in the sample log above, MY.NET.153.35 were exploited in the
following sequence and then it started to scan the network crazily.
1. EXPLOIT x86 NOOP
2. EXPLOIT x86 setuid 0
3. Then it generated lots of port scanning activities.

Looks like port 3247 was an open shell port setup after the system was
compromised. Google search did not return any information that indicates this is
a port used in common exploit. I did a search on Dshield port information
(http://ww.dshield.org/port_report.php), the volume of its use around the period
of these logs were very low at about 50 records a day as compared to a daily of
100-150 K of Mydoom port 3127 records. This indicates that the port has not
been widely used so far.

External system 68.167.207.243 has scanned the University systems but no
other exploit was alerted. I suspected that it was just able to locate port 3247 left
behind by the previous attackers.

Recommendations
1. Verify if these services are really needed to be open to the Internet.
2. If yes, make sure they are running with sufficient network protection, up-to-

date system patches, idle user accounts are removed and best security
practices are followed to secure the systems.

3. If not needed, they should be shut down immediately.

Correlation
1. Fyodor. “Remote OS detection via TCP/IP Stack FingerPrinting” 18 Oct 1998
URL: http://www.insecure.org/nmap/nmap-fingerprinting-article.txt
2. So, Hee. “GCIA Practical Assignment v 3.0”. 16 Feb 2002.
URL: http://www.sans.org/rr/papers/23/836.pdf
3. ZVON. “The Specific Example of ECN”

Page 65 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

URL: http://www.zvon.org/tmRFC/RFC3360/Output/chapter3.html
4. GCIA training material, Network Traffic Analysis Using Tcpdump, page 5-21.
5. Warner, Neil. “Scan 23”
URL: http://project.honeynet.org/scans/scan23/sol/Neil.html. Quoted 'At packet
#150759 a TCP XMAS Tree scan starts. A XMAS tree scan sets the FIN, URG
and PSH flags. If a port is closed and receives the XMAS tree scan the target
will send back a RST. '

Scan Log Analysis

I ran the following command to get a feel how much scanning activities there and
get a summary out of all the scan logs.

cat scans.all | awk -F" " '{ split($4, TEMP, ":"); split($6, TEMP1, ":"); print TEMP
[1],$5,TEMP1[2],$7; }' | sort | uniq -c | sort -nr >> scans.sum.nosrcport.nodstip

But there's no MY.NET.x.x IP addresses in the scan log. Googled 'MY.NET' &
'130.83' returned the following link
http://www.dshield.org/pipermail/intrusions/2003-February/006925.php which
confirmed my thinking that '130.83' equals to 'MY.NET'.

There are 1308 items found. It's not realistic to list all. I import the space
separated file to spreadsheet to sort the source IP to look for scan pattern. The
patters were summarized in the table immediately below.

Count Src IP,
MY.NET.

Src Port Dst Port Proto Remark

2878693 1.3 32783 53

UDP DNS server,
critical
infrastructur
e

786948 1.4 32788 53

UDP DNS server,
critical
infrastructur
e

656515

111.34;
153.35

- high ports,
1024 –
65535, not
all

UDP UDP port
scan

Page 66 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Count Src IP,
MY.NET.

Src Port Dst Port Proto Remark

3933721

66.56;
70.96;
80.224;
80.5;
84.145;
84.224;
12.152;
150.199;
150.210;
151.75;
42.2; 43.10;
43.5;
153.174

- 135,139,44
5,1025,274
5,3127,341
0,5000,612
9

TCP Agobot/Gao
bot worm.

DNS Server Scanning
The default source UDP port for DNS queries is also 53. But MY.NET.1.3 and
MY.NET.1.4 used 32783 and 32788. The DNS source port setting can be set to
any port greater than 1023. See excerpt from
http://www.oreillynet.com/pub/a/network/excerpt/dnsbindcook_ch07/ below:
(On BIND 8 name servers, query-source also controls the source port for
NOTIFY messages and refresh queries.) For example, to instruct a name server
to use port 1053 as the source port for all outbound queries, use:
options {
 directory "/var/named";
 query-source address * port 1053;
};

There's another possibility that the traffic was generated by malicious code as
the source port was fixed. I checked into the alert log to see if there's any sign of
system compromise. I ran the following command:
grep 'MY\.NET\.1\.3' alert.all | grep -v 'portscan' | grep -v 'NMAP TCP ping' | cut
-d " " -f 2- | sort | uniq -c | sort -nr

Results:
11 [**] EXPLOIT x86 NOOP [**] 61.207.234.254:3278 -> MY.NET.1.3:80
10 [**] EXPLOIT x86 NOOP [**] 66.32.128.69:3505 -> MY.NET.1.3:80
8 [**] EXPLOIT x86 NOOP [**] 64.219.108.66:4673 -> MY.NET.1.3:80
7 [**] EXPLOIT x86 NOOP [**] 61.109.238.42:4858 -> MY.NET.1.3:80
5 [**] EXPLOIT x86 NOOP [**] 210.106.239.115:2114 -> MY.NET.1.3:80
4 [**] EXPLOIT x86 NOOP [**] 24.235.213.166:1274 -> MY.NET.1.3:80
1 [**] EXPLOIT x86 NOOP [**] 203.70.116.4:4347 -> MY.NET.1.3:80
11 [**] EXPLOIT x86 NOOP [**] 61.207.234.254:3278 -> MY.NET.1.3:80

Page 67 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

So this DNS server has been attacked that there's chance the fix source port
could be crafted.

But I lean toward to think that it's the University administrator picked this port.
However, the University should be prudent to check the systems to make sure
there's no compromise.

Concern
DNS system MY.NET.1.3 and MY.NET.1.4 may have been compromised.

Recommendation
These two system should be investigated to make sure they have not be
compromised.

UDP port scan
This seems to be scans from a compromised systems MY.NET.111.34 and
MY.NET.153.35. The University should check these systems out.

To check if there's any correlation information exists in the alert log, run:
 grep 'MY\.NET\.111\.34' alert.all | grep -v 'portscan' | cut -d " " -f 2- | sort | uniq -c
| sort -nr

Sample results:
EXPLOIT x86 NOOP [**] 200.104.40.64:2658 -> MY.NET.111.34:80
EXPLOIT x86 setuid 0 [**] 61.49.164.14:4662 -> MY.NET.111.34:1585
EXPLOIT x86 setuid 0 [**] 80.38.200.21:1282 -> MY.NET.111.34:4662
TFTP - Internal UDP connection to external tftp server [**] MY.NET.111.34:4672
-> 80.53.47.2:69
NMAP TCP ping! [**] 65.71.55.244:80 -> MY.NET.111.34:4672
High port 65535 udp - possible Red Worm - traffic [**] MY.NET.111.34:4672 ->
207.248.43.224:65535

The sample results have some interesting observations:
1. Even this sample result did not have the same external IP, we can still try to

put the puzzle together.
2. This system seems to be running a web server.
3. It was compromised by the “EXPLOIT x86 NOOP” buffer overflow exploit.
4. Once a shell was setup, the attacker gain root access by setting the uid to 0

which is root.
5. Then the attacker used tftp to download the other exploit code to the system.

Then MY.NET.111.34 always used port 4672 as the source ports after the
“EXPLOT” and “TFTP” alerts.

Concern
The identified systems may have a good chance that they have been

Page 68 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

compromised.

Recommendations
These systems should be investigated. They should be cleaned if showing sign
of compromise.

Agobot/Gaobot worm

The following systems were infected with Agobot/Gaobot or other variants:
MY.NET.66.56
MY.NET.70.96
MY.NET.80.224
MY.NET.80.5
MY.NET.84.145
MY.NET.84.224
MY.NET.12.152
MY.NET.150.199
MY.NET.150.210
MY.NET.151.75
MY.NET.42.2
MY.NET.43.10
MY.NET.43.5
MY.NET.153.174

Correlation
As quoted from FSecure webpage “ The back door can scan subnets for
exploitable computers and send a list of their IPs to the bot operator. The scan is
performed on ports 80, 135 and 445 for RPC/DCOM (MS03-026), RPC/Locator
(MS03-001) and WebDAV (MS03-007) vulnerabilities. The backdoor can also
scan for computers infected with MyDoom worm (port 3127), Bagle worm (port
2745) and also for computers where DameWare remote system management
software is installed (port 6129).”

F-Secure, “Agobot.FO” Mar 2004
URL: http://www.f-secure.com/v-descs/agobot_fo.shtml#details

Concern
This type of worm has very damaging capabilities. Leaving them uncleaned risks
a future computer security incident outbreak.

Recommendation
These systems are very likely infected with the Agobot/Gaobot worm. They
should be virus scanned and the system administrators should take appropriate
action to clean the worm in case infected.

Page 69 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Top 10 talker

Alert logs

By Source IP and Volume
I ran the following command to get the top 10 IP:
cat alert.all | grep -v 'portscan' | sed 's/ \[**\] /|/g' | sed 's/ -> /|/g' | gawk -F "|"
'{ split($3, T, ":"); split($4, U, ":"); printf("%s\n", T[1]); }' | sort | uniq -c | sort -nr

Result (Count IP):
 7559 212.76.225.24
 7016 MY.NET.11.7
 3954 MY.NET.84.235
 3480 199.131.21.34
 2993 68.81.0.87
 2693 141.157.102.155
 2169 MY.NET.60.16
 2166 131.92.177.18
 1660 68.57.90.146
 1628 69.138.77.62

By Source IP, Alert Message and Volume
Then I included the alert message as well to see these top talkers were detected
by more than one signature:
cat alert.all | grep -v 'portscan' | sed 's/ \[**\] /|/g' | sed 's/ -> /|/g' | gawk -F "|"
'{ split($3, T, ":"); split($4, U, ":"); printf("%s|%s\n", T[1], $2); }' | sort | uniq -c | sort
-nr
Note: $2 added in the printf statement produce the alert message as well.

Result (Count Source IP|Alert Message):
 7502 212.76.225.24|Tiny Fragments - Possible Hostile Activity
 7016 MY.NET.11.7|SMB Name Wildcard
 3479 199.131.21.34|EXPLOIT x86 NOOP
 3250 MY.NET.84.235|DDOS mstream handler to client
 2993 68.81.0.87|MY.NET.30.4 activity
 2693 141.157.102.155|High port 65535 tcp - possible Red Worm - traffic
 2168 MY.NET.60.16|High port 65535 tcp - possible Red Worm - traffic
 2166 131.92.177.18|MY.NET.30.3 activity
 1625 68.57.90.146|MY.NET.30.3 activity
 1558 69.138.77.62|MY.NET.30.3 activity

By Source IP, Alert Message, Destination Port and Volume
Then I included also the destination port:
cat alert.all | grep -v 'portscan' | sed 's/ \[**\] /|/g' | sed 's/ -> /|/g' | gawk -F "|"
'{ split($3, T, ":"); split($4, U, ":"); printf("%s|%s|%s\n", T[1], $2, U[2]); }' | sort |

Page 70 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

uniq -c | sort -nr
Note: U[2] is the destination port.

Result (Count Source IP|Alert Message|Destination Port):
 7502 212.76.225.24|Tiny Fragments - Possible Hostile Activity|
 7016 MY.NET.11.7|SMB Name Wildcard|137
 3248 MY.NET.84.235|DDOS mstream handler to client|4662
 2975 68.81.0.87|MY.NET.30.4 activity|51443
 2885 199.131.21.34|EXPLOIT x86 NOOP|80
 2693 141.157.102.155|High port 65535 tcp - possible Red Worm - traffic|22
 2168 MY.NET.60.16|High port 65535 tcp - possible Red Worm - traffic|65535
 2166 131.92.177.18|MY.NET.30.3 activity|524
 1625 68.57.90.146|MY.NET.30.3 activity|524
 1558 69.138.77.62|MY.NET.30.3 activity|524

It is interesting to see that the top 10 talkers remain the same for these three
level of search. This tells me that they only generate the same traffic against the
same target port. This may mean either they were infected with something or
running some kind automatic systems such as network scan system.

OOS logs Analysis

First of all, I ran script scanoos [24] to normal the OOS log for easy handling. Its
original format makes analysis using machine more difficult. The name of the
normalized OOS log file I will be using is called oos.normal.

By Source IP and Volume
Command used: cat oos.normal | gawk '{ split($2,T,":"); print T[1];}' | sort | uniq -c
| sort -nr

Result (Count IP):
 1707 68.54.84.49
 700 202.144.28.167
 259 141.224.64.4
 171 62.174.236.17
 169 193.170.194.27
 166 66.225.198.20
 163 80.54.249.136
 116 80.38.206.68
 96 MY.NET.199.202
 90 202.54.60.162

By Source IP, Alert Message and Volume
Command used: cat oos.normal | gawk '{ split($2,T,":"); printf("%s|%s\n", T[1],
$12);}' | sort | uniq -c | sort -nr

Page 71 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Result (Count Source IP|Alert Message):
 1707 68.54.84.49|12****S*
 700 202.144.28.167|12****S*
 259 141.224.64.4|12****S*
 171 62.174.236.17|12****S*
 169 193.170.194.27|12****S*
 166 66.225.198.20|12****S*
 163 80.54.249.136|12****S*
 116 80.38.206.68|12****S*
 96 MY.NET.199.202|12****S*
 90 202.54.60.162|12****S*

By Source IP, Alert Message, Destination Port and Volume
Command: cat oos.normal | gawk '{ split($2,T,":"); split($4,U,":"); printf("%s|%s|%
s\n", T[1], $12, U[2]);}' | sort | uniq -c | sort -nr

Result (Count Source IP|Alert Message|Destination Port):
 1707 68.54.84.49|12****S*|110
 700 202.144.28.167|12****S*|4662
 259 141.224.64.4|12****S*|25
 171 62.174.236.17|12****S*|24842
 168 193.170.194.27|12****S*|113
 166 66.225.198.20|12****S*|25
 163 80.54.249.136|12****S*|4662
 116 80.38.206.68|12****S*|28053
 90 202.54.60.162|12****S*|80
 86 68.121.194.43|********|110

The result is very similar to alert log except MY.NET.199.202 drops off the last
top 10 list. So I ran the command again but only captured the output for this IP.

Result:
 41 MY.NET.199.202|12****S*|443
 35 MY.NET.199.202|12****S*|80
 10 MY.NET.199.202|12****S*|143
 8 MY.NET.199.202|12****S*|22
 2 MY.NET.199.202|12****S*|25

It falls within my expectation that this machine target more than one single
destination ports.

Scan logs Analysis

By Source IP and Volume

Page 72 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Command used: cat scans.all | gawk '{ split($4,T,":"); print T[1]; }' | sort | uniq -c |
sort -nr

Result (Count IP):
2890410 130.85.1.3
1623397 130.85.111.51
1522547 130.85.153.35
1189494 130.85.81.39
1130696 130.85.70.96
1082054 130.85.112.152
 796676 130.85.1.4
 338578 130.85.66.56
 295221 130.85.84.235
 253164 130.85.42.2

By Source IP, Scan Type and Volume
Command used: cat scans.all | gawk '{ split($4,T,":"); printf("%s|%s\n", T[1],$7); }'
| sort | uniq -c | sort -nr

Result (Count Source IP|Scan Type):
2890110 130.85.1.3|UDP
1623293 130.85.111.51|SYN
1512393 130.85.153.35|UDP
1189337 130.85.81.39|SYN
1130693 130.85.70.96|SYN
1082027 130.85.112.152|SYN
 796630 130.85.1.4|UDP
 338570 130.85.66.56|SYN
 278697 130.85.84.235|SYN
 253157 130.85.42.2|SYN

By Source IP, Scan Type, Destination Port and Volume
Command used: cat scans.all | gawk '{ split($4,T,":"); split($6,U,":"); printf("%s|%
s|%s\n", T[1],$7,U[2]); }' | sort | uniq -c | sort -nr

Result (Count Source IP|Scan Type |Destination Port):
2878693 130.85.1.3|UDP|53
1622974 130.85.111.51|SYN|135
1188912 130.85.81.39|SYN|135
 786948 130.85.1.4|UDP|53
 230195 130.85.34.14|SYN|25
 216911 130.85.84.235|SYN|4662
 214518 130.85.97.28|SYN|80
 203647 130.85.97.55|UDP|22321
 166819 130.85.112.152|SYN|2745

Page 73 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 151458 130.85.112.152|SYN|135

Some systems scanned more than one port. The top talkers are the same for the
first two reports. But four of them dropped off from the last report which also
included the destination port. The only reason I can think of is that they scan
more than one single point that their original count got thinned out.

I counted the number of different ports these systems had scanned:
130.85.153.35 : 7118
130.85.70.96 : 14
130.85.66.56 : 20
130.85.42.2 : 18

Reviewing the alerts logs for 130.85.153.35, it had been attacked by buffer
overflow, Red Worm and different scans. I believe that this machine has been
compromised very seriously.

The others were running IRC and the logs did not reveal any sign of
compromise.

Page 74 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Five Selected External Source Addresses

These IP were picked from the list of external system identified with suspicious
activities.

Information gathered from samspade.org and www.arin.net:

Host Information Contact
216.65.73.26 Host name:

flashca249.flashhost.com
Org Name: Maxim
Country: US

TechName:Maxim Computer
System
Add: 42712 Lawrence Place,
Fremont, CA, 94538.
Ph:1-510-226-0695
Email: noc@maxim.net

131.92.177.18 Host name: aeclt-
cf00a4.apgea.army.mil
Org Name: Army Information
System Command –
Aberdeen(EA)
Country: US

TechName: Ward Ronnie
Add:AMSSB-SCI-N/BLDG
E5234, Aberdeen Proving
Ground, MD
Ph: 1-410-436-4755
Email:
ronnie.ward@sbccom.apgea.arm
y.mil

141.157.102.1
55

Host name: pool-141-157-
102-155.balt.east.verizon.net
Org Name: Verizon Internet
Services
Country: US

TechName:
Add: 1880 Campus Commons
Dr, Reston, VA, 20191
Ph: 1-703-295-4583
Email: noc@gnilink.net

68.55.195.232 Host name:
pcp230189pcs.catonv01.md.
comcast.net
Org Name: Comcast Cable
Communications Inc.
Country: US

TechName: Comcast Cable
Communications Inc
Add: 1800 Bishops Gate Blvd, Mt
Laurel, NJ, 08054
Ph: 1-856-317-7200
Email: cips_ip-
registration@cable.comcast.com

213.46.246.46 Host name: magyar.chello.hu
Org Name: Chello
Broadband
Country: Netherlands

TechName: Gary Mendel
Add: Boeing Avenue 101,
1119pe schipol rijk.
Ph: +31 207788200
Email: hostmaster@chello.com

Page 75 of 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Link Graph

Source of data: alert logs.

MSTREAM DDOS Attacking System Link Graph

Legend:
 Destination Port Number

This link graph shows the relationship between the Attacker, Handler and Agents
of mstream DDOS (Distributed Denial of Service) attacking system. Only the
Handler is sitting inside the University's network. Five other systems were
RedWorm infected and were connected to the Handler.

Page 76 of 77

131.96.118.15

217.234.30.70

MY.NET.84.235

217.236.97.47

24.185.106.43

62.42.66.52

80.125.100.242

80.141.209.242

81.129.45.150

80.133.117.198

81.102.85.92

82.48.242.184

65535

Attacker

65535

217.95.183.166

65535 217.95.189.202

65535
81.203.197.37

65535

4662

4662

4662

4662

46624662

4662

4662

466283.112.208.123
Handler

Agent

Agent

Agent

Agent

AgentAgent

Agent

Agent

Agent Red Worm

Red Worm

Red Worm

Red Worm

Red Worm

####

7000 IRC

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Reference:
Dittrich, Dave. “The mstream DDOS attack tool”. 1 May 2000.
URL: http://security.royans.net/info/posts/bugtraq_ddos5.shtml

Method of Analysis

I wrote several scripts to normalize and reorganize the logs to the form that I can
manually analyze the contents using spreadsheet and/or command lines..

1. Script scanlog is used to do a preliminary analysis of the network based on
the log contents. It tries to locate network devices. It also add the NIC
manufacturer name to the report. But you also need to get the NIC OUI file
listed below. [20]

2. Ouiconv.txt [21]
3. Script scan_allow2 is used to check for allowed inbound and outbound traffic.

But I found that it's not very helpful as the logs file keeps only snort alerts.
Other normal traffic that this script relies on are most of the time missing. [22]

4. Script scanalertip generates a summary from the snort generated alert file so
that I can have high level view pretty quick. [23]

5. Script scanoos's main job is to reformat the OOS logs as it's original format is
not machine friendly. [24]

Linux command lines were used at other time to generate the result I needed.
The commands I used were shown in the corresponding sections in this report.

Reference
Besides those listed below, other references are included in the body of this
document.

[20] Scanlog
URL: http://members.shaw.ca/kamng/scanlog
§§§§[21] ouiconv.txt
URL: http://members.shaw.ca/kamng/ouiconv.txt.
[22] scan_allow2
URL: http://members.shaw.ca/kamng/scan_allow2
[23] scanalertip
URL: http://members.shaw.ca/kamng/scanalertip
[24] scanoos
URL: http://members.shaw.ca/kamng/scanoos

Page 77 of 77

