
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“Snort Overdrive”
GCIA Practical Assignment, version 3.4

(Revised September 23, 2003)

Submission by Patrik Sternudd,
on June 25, 2004

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 1(75)

Abstract
The paper was written during Spring 2004. Is divided into three
parts, and follows the guidelines of Assignment 3.4, which is
valid until August 2004.
In part one, some of the issues with encryption (in relevance
to network intrusion detection) are discussed. A few of the
more commonly available encryption techniques are analysed
to see if Snort rules can be written to detect them (or the
abscense of them where they are expected).
In part two, three network detects are analysed.
 Detect one is traffic with loose source routing. The raw
 data comes from incidents.org
 Detect two is buffer overflow attempt targeting the
 Microsoft Workstation service (described in MS03-049)
 The final detect analyses the behaviour of the DeadHat.B
 worm. While most antivirus companies already have descriptions
 of it, the author found that they generally do not describe
 a worm's network traffic to the extent possible. This was
 true also for DeadHat.B.
Part three is an analysis on five days worth of logged data
from an university in the United States. The dates analysed
was April 7 to April 11.
The analysis in part three was performed with a MySQL database.
The raw data had some corrupt lines in it, so some effort was
spent removing those. Findings include several false alerts,
but also signs of compromised internal hosts (mostly by worms).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents
1.PART 1 – NIDS AND DEALING WITH ENCRYPTION.. 3

1.1.INTRODUCTION... 3
1.2.WHY SHOULD WE CARE AT ALL? ... 3
1.3.WHAT SHOULD WE LOOK FOR, THEN?... 4
1.4.A PROBLEM (OR TWO) WITH SNORT... 5
1.5.SSH.. 6
1.6.SSL AND TLS... 7
1.7.RUNNING A SNORT RULESET ... 10
1.8.CONCLUSION... 13
1.9.REFERENCES.. 15

2.PART 2 – NETWORK DETECTS.. 16
2.1.DETECT 1 (INCIDENTS.ORG) - LSRR ATTEMPT.. 16
2.2.SOURCE OF TRACE FOR DETECTS 2 AND 3... 26
2.3.DETECT 2 – MICROSOFT WKSSVC.DLL BUFFER OVERFLOW ATTACK.......................... 26
2.4.DETECT 3 – THE DEADHAT.B WORM.. 33

3.PART 3 – ANALYSIS ON .EDU DATA.. 41
3.1.EXECUTIVE SUMMARY... 41
3.2.DEFENSIVE RECOMMENDATIONS... 42
3.3.LINK GRAPH... 45
3.4.LIST OF ANALYSED FILES... 45
3.5.TOP TALKERS... 46
3.6.REGISTRY INFORMATION.. 47
3.7.ACTIVITY ORIGINATING FROM INTERNAL HOSTS (MY.NET.X.X).. 51
3.8.ACTIVITY FROM EXTERNAL SYSTEMS.. 56
3.9.MORE ON SCANS .. 59
3.10.OUT OF SPEC TRAFFIC.. 64
3.11.ANALYSIS PROCESS... 67

4.REFERENCES FOR PART TWO AND THREE.. 73

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 2(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. Part 1 – NIDS and dealing with encryption

1.1. Introduction

Sometimes, I get the feeling the attitude towards NIDS (Network Intrusion Detection
Systems) and encrypted data is that as soon as you encounter it, you are out of
luck. But is that really the case? Should we just shrug and say “there's nothing for it”
and go for a coffee? Personally, I do not think so.

In this paper, I will take a look on some common methods for encrypting network
data and attempt to answer two primary questions:

1. How do we know we are dealing with encryption?
2. Can we write rules for Snort [0], allowing us to detect it?

My goal is to show that even though most of the data is encrypted, there is still some
information available which we can use to enhance our security.

In order to limit the scope, there are some issues I will not cover:

• Loki and other innovate backdoor tunnelling which may or may not be encrypted.
• Strategic placement of NIDS sensors to sidestep the problem (it can be argued

this does not help – what if encrypted traffic appears nevertheless?).

Neither will I attempt to cover all possible ways to do encryption; I will only select a
few to show that it is, in fact, possible to detect this kind of data when desirable.

This paper is highly technical. The reader should be familiar with TCP/IP concepts
and terminology. Generally accepted acronyms may be used without further
explanations. A basic understanding of cryptography may be useful, but is not
required. Familiarity with Snort is likely to be helpful.

All IP addresses and host names has been obfuscated; any semblance with real
networks or domains are entirely coincidental, and should be regarded as such.
Network traces has been arbitrarily truncated to allow for easier reading.

1.2. Why should we care at all?

As security professionals, why should we care? Is not data encryption a good thing,
something that adds security to our network?

Well, it is, but only when we are in control of it. Encryption could be used against us
as well. It is referred to within that context in several papers dealing with NIDS
evasion techniques.

It could also be used in various backdoors and worms calling home.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 3(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Another thing to worry about is if - and, in particular, how - it is utilised internally. A
lot of encrypted sessions on our internal networks could make us lose the real
picture of what is going on. This is particularly true if end users are bringing up
encrypted tunnels to the outside. On the other hand, we will certainly want to encrypt
our sessions to critical systems such as IDS sensors. System administrators wants
(or at least should want) to use SSH to manage servers and network devices. And
end users want the privacy offered by encryption services when they access certain
resources on the Internet (such as on-line banking).

I will further make three observations that together provide the rationale for the focus
of this paper (which is aimed more towards detecting policy violations than the latest
worm or hacker attacks):

1. In my experience, people sometimes seem to feel that the IANA1 assigned
numbers2 are as law. If it comes on port 22, it must be SSH, because it says so,
right there in the specification!

2. On a similar note, there are a few ports that almost always seem to be open
outbound, even though the firewall is rather restrictive otherwise. Among these,
TCP/80 (HTTP) and TCP/443 (HTTPS) are by far the most frequent ones.

3. Security personnel would do well never to underestimate the creativity of end
users who feel they are impeded by the firewall or other security measures. They
will find ways around it, sooner or later (this is increasingly true for technically
savvy people, such as normal system administrators, or simply just people fooling
around with computers at home).

The corollary: seeing TCP traffic on ports 22 and 443, we might assume we are
seeing SSH and HTTPS. That may unfortunately be an incorrect assumption. What
if someone ran a SSH server on port 443 in order to sneak through the firewall?

The issues described above could of course be mitigated by having restrictive
policies and firewall rulesets in place, and only allowing traffic to pass through
application layer proxies. But still, many sites do have quite liberal rulebases (or no
firewalls at all, e.g. some universities). In those cases, detecting possibly malicious
traffic becomes even more important.

1.3. What should we look for, then?

While one could theoretically perform some sort of analysis on the encrypted
payload in order to pinpoint encryption algorithms, it does not work out very well in
reality. Not yet, at least, although anomaly3 detection systems may be of some use
(they do not necessarily need to know the specifics of the payload; instead they may

1 Internet Assigned Numbers Authority
2 As of Jan 2002, the Internet Assigned Numbers is no longer a RFC[1]; the latest version is instead

available on the IANA website[2].
3 For more information regarding different types of intrusion detection systems, I recommend the

book “Intrusion Detection” by Rebecca Gurley Bace[3].

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 4(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

alert on the fact that previously unknown data is flowing from an usually quiet
internal system to the Internet).

For one thing, there are numerous algorithms that are commonly used. Then
consider that many of these may be run in different modes (for example, SSL v3.0
supports 37 different cipher specifications). It would take an extensive amount of
work (and a vast competence in cryptography, which I do not have) to be able to
detect all conceivable combinations.

Add to this the fact that this method will require more data to perform the analysis,
and we have reached a point where we cannot automate the process without
spending huge memory and CPU resources (and perhaps not even then). The old
but still excellent treatise by Thomas H. Ptacek and Timothy Newham[4] mentions
this in passing.

I will take another approach and take a look at the lower levels of the communication
which are supporting the different algorithms. Perhaps we could call them
“encryption carriers”. The most common of these are SSL, TLS, SSH and IPSec
(there are quite a few of them, the list could definitely be larger).

If we can detect the carriers in a somewhat simple manner, it does not really matter
that we do not know the exact algorithm. And unless we want to ensure that we are
using secure (in regard to acceptable risk) methods, or want to decrypt the data, we
do not even care. If I see a SSL Handshake on the wire, I can then assume that
some encryption is going on. The same thing applies for IPSec SA negotiations.

For the remainder of this paper, I will take a closer look at SSL, TLS and SSH in
order to describe their characteristics. These characteristics will later be used to
write rules for detection. I had originally included an IPSec part as well, but it was
removed to make the other sections more in-depth. IPSec is also easier to control at
the border – block IP protocols 50, 51 and UDP port 500 and you will probably be
safe4.

1.4. A problem (or two) with Snort

I found that for many detects, it would be useful to look only at specific packets in a
TCP session5. But how can we tell Snort we are only interested in the first packet
after a three-way-handshake, or TWH (this would normally be packet number four in
a TCP session)? In theory, it is not has hard as it initially appears; such packets
have relative SEQ (sequence) and ACK (acknowledgement) numbers of 1 and a
payload greater than zero (if it is zero, it is the ACK completing the handshake).

The problem is that Snort has no capability to inspect relative ACK or SEQ numbers,
only absolute ones (it is of course much harder to deal with relative ones, as this
require awareness of the session state).
4 It is always possible to tunnel everything through something else, butmost VPN services (even

those that are encapsulated to handle NAT) use IKE on UDP 500.
5 TCP is described in RFC 793 [5]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 5(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

To my everlasting gratitude, during the time I considered how to resolve this
problem, the Snort Team released Snort 2.1.1 with a new capability called flowbits6,
allowing user defined attributes to be set on flows (I do have a hunch that I am not
using them quite as the authors imagined, but nevertheless, it solved my problem).

While proceeding with the rule creation, I found another problem. The stream4
preprocessor tags a stream as established as soon the TWH is completed. Well and
good, but it then passes it on to the detection module. So, when using the
established keyword without any content checks, the first packet it will trigger on is
not the first data packet after the TWH, but the ACK message completing the TWH.
That really messed up my rules.

One workaround would be to use the “flags: A+” check, but getting rid of that was
one of the reasons for making the “established” check. Also, even though they are
extremely common, PSH (push) and other TCP flags are optional, not required.
The workaround I finally decided for was to check for data sizes greater than zero
(the ACK completing the TWH should not contain any data).

1.5. SSH

SSH connections are quite straightforward to detect. Section 4.2 (Protocol Version
Exchange) in the Internet-Draft7 states:

When the connection has been established, both sides MUST send an
identification string. This identification string MUST be

 SSH-protoversion-softwareversion SP comments CR LF

As a quick note: the draft also says this string not necessarily must be the first line
sent, but it appears to be the case in most implementations.

All we need to do is to take a look at the first packet after the completed TWH. If the
first four octets contain the ASCII string “SSH-”, chances are good that we are
seeing a SSH session. A sample packet is showed in figure 1. The TWH is not
included in the sample, nor will it be in subsequent ones.

6 This is covered in the Snort documentation which is available online [6].
7 Ylonen & Lonvick p.4. [7]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 6(75)

IP server.net.22 > client.org.1536: P 1:21(20) ack 1

0x0000 4500 003c 946c 4000 3906 XXXX XXXX XXXX E..<.l@.9.......
0x0010 XXXX XXXX 0016 0600 4dfb 7c0c fca7 1442 M.|....B
0x0020 5018 c4e0 XXXX 0000 5353 482d 322e 302d P.......SSH-2.0-
0x0030 5375 6e5f 5353 485f 312e 300a Sun_SSH_1.0.
Fig 1 SSH Server response.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A snort rule to detect it can be written thus:

alert tcp any 22 -> any any (msg: "SSH server response"; \
flow:established; \
flowbits:isnotset,FIRST_PACKET_SEEN; \
content: "SSH-"; depth:4; \
flowbits:set,FIRST_PACKET_SEEN;)

Note that the flowbits label “FIRST_PACKET_SEEN” is entirely arbitrary (it is a
convenient one in my opinion, but I am biased). So what does it do? Well, first it
checks that the flow is in an established state. Then it proceeds to check that the
attribute “FIRST_PACKET_SEEN” is not set (if it is, this flow has been dealt with
before). The actual content check follows, and if all condition match, the
“FIRST_PACKET_SEEN” attribute is added to the flow.

In order to detect SSH going on non-standard ports, the port number 22 should of
course be prefixed with an exclamation mark.

1.6. SSL and TLS

A quick primer on SSL and TLS has been written by Holly Lynne McKinley as a
GSEC practical [8], and is recommended reading for those without prior knowledge
of those protocols. For the purpose of this document, the reader should be aware
that there are different internal protocols. At the lowest level is the Record Protocol.
Go up one level and we find the Handshake Protocol, which is responsible for
setting up new sessions. For doing the session initiation, Hello messages are used
(the data structures differ between the variants).

When a client first connects to a server it is required to send
the client hello as its first message.8

Great! Just what we needed. In the next three sections I will go through these
variants and show the structures they are using (the specifications are not really
quotation-friendly, so I will use my own style).

Again, (as with SSH), it is the fourth packet in the TCP session that is of interest.
Please be aware of the difference between SSH, though: In SSL/TLS, it is the client
that will send the first data packet, not the server.

Note that I have written the version as a 16 bit hexadecimal number. In the
specifications, it is actually composed of two separate octets, the first being the
major number and the second the minor.

SSL version 2.0

A SSL version 2.0 [10] (I will henceforth refer to it as SSL v2) header is structured in
the following way (only interesting portions are showed):

8 Dierks & Allen, p.33. [9]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 7(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SSL version 2.0 header
Byte offset Field Value Meaning

0,1 Record Length <variable>
2 Message Type 0x01 Client Hello
3,4 Client Version 0x0002 SSL v2.0
5,6 Cipher Specification Length <variable>
9.. Cipher Specifications <variable>

A sample packet is showed in figure 2 (below).

The bytes 5 and 6 (from the beginning of the payload) tells us that the cipher
specifications takes up 18 bytes. Each specification consists of three octets of data
(for example, “01 00 80” equates to “SSL_CK_RC4_128_WITH_MD5”), which
means that we should have 6 different specifications in this message. At offset 9
and 18 bytes onward, the various specifications included in the message are
defined. In version 2, all valid alternatives have the middle octet set to zero. A quick
comparison against that format shows the above packet to be correct in this regard.
Unfortunately, we are unable to use the specifications for our rule writing, as they
are variable (the reason this section is here will become apparent later).

Sadly, the string “01 00 02” in that particular position is not too much to go on. We
need to make our signature more precise somehow, or we might drown in false
positives. This can be achieved by reading through the specification and calculate
the maximum payload size. A specification compliant layer two Client Hello will have
a maximum payload of 80 (for this to happen, all possible cipher specifications
would have to be enabled, which is not very likely).

The snort rule could go along these lines:

alert tcp any any -> any !443 (msg: "SSL v2 client hello"; \
flow:established; \
dsize: < 81; \
flowbits:isnotset,FIRST_PACKET_SEEN; \
content: "|01 00 02|"; offset:2; depth:3; \
flowbits:set,FIRST_PACKET_SEEN;)

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 8(75)

IP client.org.1554 > server.net.443: P 1:46(45) ack 1
0x0000 4500 0055 4ec1 4000 8006 XXXX XXXX XXXX E..UN.@.........
0x0010 XXXX XXXX 0612 01bb 024e 7541 45c7 9ee3 NuAE...
0x0020 5018 fc00 XXXX 0000 802b 0100 0200 1200 P........+......
0x0030 0000 1001 0080 0300 8007 00c0 0600 4002 @.
0x0040 0080 0400 80a4 46ea 981a 400d b785 11c0 F...@.....
0x0050 188b 0b9c bf
Fig 2 SSL v2 Client Hello.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SSL version 3.0 and TLS version 1.0

SSL version 3.0 [11] and TLS version 1.0 [9] (henceforth referred to as SSL v3 and
TLS) both use the same header. The only difference is the version numbers (which
is 0x0300 and 0x0301, respectively).

SSL version 3.0 and TLS 1.0 header
Byte Offset Field Value Meaning

0 Record Content Type 0x16 Handshake
1,2 Protocol Version 0x0300 SSL v3.0
3,4 Record Length (bytes) <variable>
5 Handshake Type 0x01 Client Hello
6,7,8 Message Length (bytes) <variable>
9,10 Client Version 0x0300 SSL v3.0

The obligatory packet dump (figure 3):

As can be seen, this header is more complex than the one used by the previous
version. This requires a more complex snort rule, but with the advantage that we are
reducing the likelihood of false positives. Only the SSL v3 sample rule is displayed.

alert tcp any any -> any !443 (msg: "SSL v3 client hello"; \
flow:established; \
flowbits:isnotset,FIRST_PACKET_SEEN; \
content: "|16 03 00|"; depth:3; \
content: "|01|"; offset:5; depth:1; \
content: "|03 00|"; offset:9; depth:2; \
flowbits:set,FIRST_PACKET_SEEN;)

SSLv3 or TLS 1.0 in backward compatibility mode

Both SSL v3 and TLS can be backwards compatible with SSL v2 This is done by
using a SSL v2 Client Hello message with the version number of 0x0300 or

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 9(75)

IP client.org.1553 > server.net.443: P 1:121(120) ack 1
0x0000 4500 00a0 4e70 4000 8006 XXXX XXXX XXXX E...Np@.........
0x0010 XXXX XXXX 0611 01bb 010f 5aa5 4114 af17 Z.A...
0x0020 5018 fc00 XXXX 0000 1603 0000 7301 0000 P...........s...
0x0030 6f03 0000 009a bc55 cacd 611f 5f93 2919 o......U..a._.).
0x0040 4768 87ba 1ac5 4cd2 5b02 4992 c0a1 34aa Gh....L.[.I...4.
0x0050 8c65 1720 47cb a5e4 5bd0 72ed b3f4 a069 .e..G...[.r....i
0x0060 d719 15e2 2a14 c697 65fa 9d30 d567 3cd2 *...e..0.g<.
0x0070 afaf 552c 0028 0039 0038 0035 0033 0032 ..U,.(.9.8.5.3.2
0x0080 0004 0005 002f 0016 0013 feff 000a 0015 /..........
0x0090 0012 fefe 0009 0064 0062 0003 0006 0100 d.b......
Fig 3 SSL v3 Client Hello.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0301, respectively. The higher number of possible cipher specifications means
the maximum payload will be 170 or 161 bytes (TLS has fewer specifications than
SSL v3).

A modified snort rule could look thus (this time, the TLS sample is showed):

alert tcp any any -> any !443 (msg: "TLS backwards compatible ClientHello"; \
dsize: < 162; \
flow:established; \
flowbits:isnotset,FIRST_PACKET_SEEN; \
content: "|01 03 01|"; offset:2; depth:3; \
flowbits:set,FIRST_PACKET_SEEN;)

SSL v3 would of course use “dsize: < 171” instead of 162.

1.7. Running a Snort Ruleset

My theories naturally had to be put to the test. A sniffer running snort was put on a
network segment just between the corporate firewall (at an undisclosed site) and the
upstream router. The ruleset used is described in the next section (for brevity, the
complete ruleset is not included; however, the rules presented in the previous
sections are used without other alterations than different port numbers or rule
actions).

The ruleset

First, in order to use pass rules to ignore traffic we know is good (or rather do not
care about in this context), it is necessary to reconfigure the action order:

config order: pass alert log activation dynamic

Then, of course, we need the stateful capability and the preprocessors that use it:

config stateful
preprocessor flow
preprocessor stream4

As for the rules, it begins with a rule for alerting on SSH traffic coming on non-
standard ports (i.e. anything except port 22). A rule for SSH on the standard port is
also active, mostly as a reference.

Then there are three rules to alert on SSL versions 2 and 3, plus TLS. Two
additional ones handle backward compatible Client Hello's for TLS and SSL v3.
These five rules only trigger on ports different from 443.

The following five rules are identical to the previous ones except for the facts they
are monitoring port 443 only, and they are passing the traffic instead of alerting
(there was a lot of encrypted web traffic on that port, which had to be excluded).

The final rule (shown below) is the reason for the changed config order. It will alert
on anything on port 443 that has not been passed by the previous rules. Without

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 10(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

being able to lock it down to the first packet after TWH, this rule would have
generated too many false positives to have been even remotely useful.

alert tcp any any -> any 443 (msg: "Non TLS/SSL on TLS/SSL port"; \
!dsize:0; \
flow:established,to_server; \
flowbits:isnotset,FIRST_PACKET_SEEN; \
flowbits:set,FIRST_PACKET_SEEN;)

Some SSL v2 false positives

As I had feared, the static content of the SSL v2 header was not specific enough,
the pattern may occur in non-SSL traffic as well.

[**] [1:0:0] SSL v2 client hello [**]
03/06-13:00:33.849067 web server.org:80 -> client.com:1432
TCP TTL:254 TOS:0x0 ID:6050 IpLen:20 DgmLen:116 DF
A* Seq: 0xAC50B003 Ack: 0x3BE76F Win: 0x2398 TcpLen: 20

The packet triggering the alert is displayed in figure 4.

Well, that packet does not really look like a SSL v2 header. I see no trace of any
cipher specifications, and the payload is larger than usual for SSLv2 packets (of
course, knowing that web server.org is a legitimate web server also helps the
analysis, but the most telling fact is undoubtedly the absence of the cipher
specifications). A couple more of these appears in the alert log, but they are not too
frequent, just a minor annoyance.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 11(75)

IP web server.org.80 > client.com.1432: . 2890969091:2890969167(76) ack 3925871
win 9112 (DF)
0x0000 4500 0074 17a2 4000 fe06 XXXX XXXX XXXX E..t..@.........
0x0010 XXXX XXXX 0050 0598 ac50 b003 003b e76f P...P...;.o
0x0020 5010 2398 XXXX 0000 0d61 0100 0211 0304 P.#......a......
0x0030 2112 3105 4151 6113 2271 8132 0614 91a1 !.1.AQa."q.2....
0x0040 b142 2324 1552 6233 34c1 7282 4307 2592 .B#$.Rb34.r.C.%.
0x0050 0853 d1f0 6373 3516 e1a2 f1b2 8326 4493 .S..cs5......&D.
0x0060 5464 45c2 a374 3617 18d2 55e2 65f2 b384 TdE..t6...U.e...
0x0070 c3d3 75e3 ..u.

Fig 4 False SSLv2 packet.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SSH traffic

A bunch of alerts came within a very short interval (a subset being showed below):

[**] [1:0:0] SSH server response [**]
03/08-04:54:44.763433 172.16.1.222:22 -> obvious.scanner:38711

[**] [1:0:0] SSH server response [**]
03/08-04:54:44.815555 172.16.1.231:22 -> obvious.scanner:38720

[**] [1:0:0] SSH server response [**]
03/08-04:54:44.822176 172.16.1.232:22 -> obvious.scanner:38721

[**] [1:0:0] SSH server response [**]
03/08-04:54:44.826248 172.16.1.242:22 -> obvious.scanner:38731

Nothing very exciting, seems to be a normal portscan targeting systems at the
corporate network. We do have the TWH (it must be completed for this rule to
trigger), so it is probably not spoofed. From looking at the source port numbers of
the scanner (they are increasing over time), I would hazard a guess that a common
TCP Connect scan is being done, targeting port 22 only. Notice that the complete
network is being scanned, with destination IP incrementing sequentially. Not too
clever, and easy to detect (hey, that signature was not even built for detecting port
scans!).

There is an extra bonus, though. While looking at the payload with tools as tcpdump
or Ethereal, we can see the SSH server version right after the initial “SSH-” string
(please refer to figure 1 for a sample). The four responses yielded two different
versions of OpenSSH: 3.4p1 and 3.7.1p2. Why is this interesting? Well, according to
the security page on the OpenSSH website [12], all versions prior to 3.7.1p2 has one
or more security vulnerabilities. In other words, we have vulnerable remote access
protocols running at “our” site, and all inhabitants on the Internet seems to be free to
connect to them at will. Not very cool at all.

The next SSH-related alert looked like this:

[**] [1:0:0] SSH server response on non-standard port [**]
03/08-09:41:18.394286 large_netblock.isp:2214 -> client.org:1266
TCP TTL:51 TOS:0x0 ID:43435 IpLen:20 DgmLen:65 DF
AP Seq: 0xAF306541 Ack: 0xB6FD07FA Win: 0x16D0 TcpLen: 20

Obviously, someone is running SSH from the internal network to an external SSH
server on the Internet, and it is listening on port 2214. That might be worth looking
into. It could be a compromise, but it would not surprise me if it is someone
connecting to their home computer during work hours.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 12(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Something sneaky

Snort picked up the following.

[**] [1:0:0] Non TLS/SSL on TLS/SSL port [**]
03/08-11:00:38.541282 client.com:52374 -> server.net:443
TCP TTL:115 TOS:0x0 ID:13497 IpLen:20 DgmLen:46 DF
AP Seq: 0xDA5B044C Ack: 0xF82BD099 Win: 0xFBFA TcpLen: 20

The offending packet is showed in figure 5.

Now, that packet really should be SSL or TLS, but obviously it is not. More of these
packets are seen throughout the capture (which spanned over a couple of days).
They do not occur frequently, just a few times for each source host and day (more
sessions were seen from other sources but to the same destination). The payload
did always consist of the hexadecimal sequence visible in the capture (“7f7f 4943
4100”), so it can probably be used for a new rule to detect this kind of traffic.

The string “ICA” corresponding to the hexadecimal value of “49 43 41“ is a good
clue. MetaFrame [13] is quite a nice remote desktop product from Citrix, and the
protocol they use is called ICA (Independent Computing Architecture). The port
usually associated with this traffic is 1494 (it is registered with IANA), but I would
guess there is some kind of firewall-evading business going on here.

1.8. Conclusion

Encrypted network traffic is a challenge for intrusion detection and should be
deployed only in a controlled manner. This is of course a policy issue more than
anything else, but if controls are in place, it becomes much easier decide whether
encrypted data is acceptable or not (“hey, there should be no SSL going coming
from that network!”). It does not help if we can detect SSL unless we also can decide
whether the traffic is legitimate or not.

Even though only a specific service is expected (as listed by IANA) on a certain port,
there is no guarantee someone does not deploy another service through it. An
encrypted service may be used on a port not usually associated with encrypted data
or vice versa. A NIDS such as Snort can be used to detect such anomalies.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 13(75)

IP client.com.52374 > server.net.443: P 3663397964:3663397970(6) ack 4163621017
win 64506 (DF)
0x0000 4500 002e 34b9 4000 7306 5891 XXXX XXXX E...4.@.s.......
0x0010 XXXX XXXX cc96 01bb da5b 044c f82b d099 [.L.+..
0x0020 5018 fbfa XXXX 0000 7f7f 4943 4100 P.........ICA.

Fig 5 Suspicious packet on port 443 (interesting parts highlighted in red)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The “normal” (if there is such a thing) usage for Snort is being a signature based
NIDS, or possibly a sniffer. The purpose in these cases is to detect specific attacks.
However, if a signature can be written for a protocol, Snort can also easily be used
to detect that protocol on unusual ports. It can of course also be used to detect
anything except the, for a specific port, expected protocols. This is perhaps more of
a network policy appliance than an outright intrusion detection one.

For the really sneaky and patient attacker, the discussed measures will not be
enough. If someone did the extreme and tunnelled TCP over HTTP over TLS on port
443, none would be the wiser.

While it is certainly possible to write Snort rules to detect encryption carriers, it is a
bit awkward. A specific crypto preprocessor would be really welcome in the future (it
would probably be a lot faster than the rules I wrote). Another thing I think Snort
could benefit from is the possibility of more complex rules (I would absolutely love to
be able to use logic operators). This would eliminate the need for the “pass” rules I
used to detect anything except the known good traffic. Oh, and while I am at it. Pure
not rules would be even nicer (i.e. to prepend an exclamation mark before the
content check to match anything except the specified content).

In his GSEC practical about IDS evasion, Corbin Del Carlo writes:

To protect against an attacker encrypting their commands, future NIDSs should
alert if they see any outbound encrypted session from any host that does not
normally conduct encrypted sessions, as well as any large number of inbound
session initiations that would be typical of a brute force password guessing
attack over SSH or an SSL VPN.9

A crypto preprocessor could possibly make anomaly detection engines such as
SPADE10 more accurate, if they could be made to cooperate.

To conclude my findings, I would say that it is indeed possible to detect encrypted
traffic by looking at the carrying protocols. It is my assumption that other carriers can
be identified and put into rules by the same method I used (i.e. by reading the
specifications). And as usual, a human mind is still required to tell false positives
from real events. There are still no replacements for trained analysts.

9 Del Carlo, p.6. [14]
10 SPADE is a Snort Preprocessor – Statistical Packet Anomaly Detection Engine [15]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 14(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1.9. References

[0] ”Snort”. URL: http://www.snort.org/ (25 Jun 2004)

[1] Reynolds, Joyce K (editor). ”Assigned Numbers: RFC 1700 is replaced by an On-Line Database”.
Jan 2002. URL: http://www.ietf.org/rfc/rfc3232.txt (25 Jun 2004)

[2] IANA. ”TCP and UDP Port Numbers” 19 Mar 2004.
URL: http://www.iana.org/assignments/port-numbers (25 Jun 2004)

[3] Bace, Rebecca Gurley. ”Intrusion Detection”. Macmillan Technical Publishing.
2000. ISBN 1-57870-185-6

[4] Ptacek, Thomas H & Newsham, Timothy N. ”Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection”. Jan 1998.
URL: http://www.snort.org/docs/idspaper/ (25 Jun 2004)

[5] Postel, Jon (editor). ”Transmission Control Protocol”. Sep 1981.
URL: http://www.ietf.org/rfc/rfc0793.txt (25 Jun 2004)

[6] The Snort Project. ”SnortUsers Manual” 12 May 2004.
URL: http://www.snort.org/docs/snort_manual.pdf (24 Jun 2004)

[7] Ylonen, Tatu & Lonvick, C (editor). ”SSH Transport Layer Protocol”. Jun 2004.
URL: http://www.ietf.org/internet-drafts/draft-ietf-secsh-transport-18.txt (25 Jun 2004)

[8] McKinley, Holly Lynne. “SSL and TLS: A beginner's guide”. 2003.
URL: http://www.sans.org/rr/papers/44/1029.pdf (25 Jun 2004)

[9] Dierks, T & Allen, C. ”The TLS Protocol Version 1.0”. Jan 1999.
URL: http://www.ietf.org/rfc/rfc2246.txt (25 Jun 2004)

[10] Hickman, Kipp E.B. ”SSL 2.0 PROTOCOL SPECIFICATION”. 9 Feb 1995.
URL: http://wp.netscape.com/eng/security/SSL_2.html (25 Jun 2004)

[11] Freier, Alan O. et al ”The SSL Protocol Version 3.0”. 18 Nov 1996.
URL: http://wp.netscape.com/eng/ssl3/draft302.txt (25 Jun 2004)

[12] ”OpenSSH Security”. URL: http://www.openssh.org/security.html (25 Jun 2004)

[13] ”Citrix Remote Office Connectivity Solutions for the On-Demand Enterprise”.
URL: http://www.citrix.com/site/PS/solutions/solution.asp?solutionID=1408 (25 Jun 2004)

[14] Del Carlo, Corbin. ”Intrusion detection evasion: How Attackers get past the burglar alarm”.
25 Sep 2003. URL: http://www.sans.org/rr/papers/index.php?id=1284 (25 Jun 2004)

[15] Hoagland, James & Staniford, Stuart. “SPICE / SPADE”.
URL: http://www.silicondefense.com/software/spice/index.htm (23 Mar 2004)

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 15(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. Part 2 – Network detects

I will attempt to explain most issues I write about. However, I do expect the reader to
have at least a basic knowledge of Snort [0] and tcpdump output. I will explain why
rules trigger, but I will not explain every field. Similarly, I may truncate the tcpdump
or Snort output in an arbitrary manner. I expect the reader to have enough
knowledge about TCP/IP, Snort and tcpdump to understand what they are seeing.

2.1. Detect 1 (incidents.org) - LSRR attempt

Source of trace

The detect described in this section was found in the file 2003.12.15.7, which is one
of several in the archive listed below:

http://www.incidents.org/logs/Raw/2003.12.15.tgz [1]

From looking at MAC and IP addresses and applying techniques described in Ian
Martin's GCIA practical [2], I can speculate a bit about the network layout.

It is known that the addresses are obfuscated. I will make the assumption that
subnet relationships has been preserved. If not, all bets are off.

All IP addresses on 10.10.10.0/24 have different MAC addresses (see figure 6), so it
feels logical to assume this is the segment where the Snort sensor is located.

All addresses on other internal networks appears to have the same MAC address –
00:50:56:40:00:6d – which probably means it is the gateway to those networks.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 16(75)

$ tcpdump -enqr 2003.12.15.7 "ip src net 10.10.10.0/24" | cut -d " " -f 2,9 \
| cut -d "." -f 1-4 | sort | uniq -c

 4 00:0c:29:14:1e:63 10.10.10.142
 2257 00:0c:29:9e:ef:53 10.10.10.224
 21 00:50:56:40:00:64 10.10.10.2
 33 00:50:56:40:00:6d 10.10.10.1
 260 00:a0:c9:ba:6d:85 10.10.10.196
 2338 00:d0:59:c6:5e:14 10.10.10.141

Fig 6 Excerpt of local MAC addresses. Field 2 is SRC MAC, field 9 is SRC IP.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Returning to figure 6, the IP address associated with MAC 00:50:56:40:00:6d can be
seen. The address, 10.10.10.1, is a likely IP for a gateway. Experience says it
should be a router, switch or firewall. Can the device type be deduced?

According to the IEEE database [3], the OUI11 “00:50:56” belongs to VMWare, Inc.

That is somewhat interesting. Last time I checked, VMWare was not one of the
major router vendors. If I was to speculate, I would say it is a Linux instance (in
VMWare) running routing software (it does of course not have to be VMWare; MAC
addresses may be spoofed by any decent OS, so looking at the IEEE OUI is merely
an indication, not a proof). Another indication supporting my theory is that the MAC
address of 10.10.10.2 is very similar (the last number is 0x64 instead of 0x6d); I
assume it is the same system.

OK, The first hop is covered. Are there more of them? I cannot be sure of course,
but there are a lot of returning packets from the target. All said packets have a TTL
of 62. Assuming the initial TTL is 64 (which is a common enough value), and that
10.10.10.1 is doing its job (i.e. decreasing the value by one before passing it to the
final destination), it follows there must be at least another routing device in between.
I will qualify that guess by saying that it is more likely a router than a firewall, since I
see the responses (RST/ACK) from a complete portscan coming back (“wide open”
is just not the most common firewall configuration I have come across so far – if the
filtering capability is not required, a router will usually be preferred since it is faster).

With the information available at this point, I expect the network to be designed
along the lines shown in figure 8 (at least the parts of it that is relevant to the detect).

11 Organisation Unique Identifier [4]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 17(75)

$ tcpdump -enqr 2003.12.15.7 "ip and not dst net 10.10.10.0/24" \
| cut -d " " -f 4,11 | cut -d "." -f 1-4 | sort | uniq -c

 2359 00:50:56:40:00:6d, 172.20.11.2
 9708 00:50:56:40:00:6d, 172.20.11.80
 29 00:50:56:40:00:6d, 192.168.17.1
 3877 00:50:56:40:00:6d, 192.168.17.135
Fig 7 Excerpt of destionation MAC addresses. Field 4 is DST MAC, field 11 is DST IP.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detect was generated by

The README12 file clearly states that the traces were recorded by a Snort ruleset of
unknown version. Therefore it made sense to run the binary logfile through another
instance of Snort to see just what was going on.

For this purpose, I used Snort version 2.1.1 (build 24) with the standard ruleset. The
following alerts (of same type) caught my interest (reference fields are removed from
alerts two and three):

[**] [1:500:2] MISC source route lssr [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
11/18-21:09:27.593273 10.10.10.141:35512 -> 172.20.11.2:22
TCP TTL:64 TOS:0x0 ID:31113 IpLen:24 DgmLen:44
IP Options (1) => LSRR
******S* Seq: 0x68474C99 Ack: 0x0 Win: 0x200 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS418]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0909]
[Xref => http://www.securityfocus.com/bid/646]

[**] [1:500:2] MISC source route lssr [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
11/18-21:09:32.631092 10.10.10.141:35512 -> 172.20.11.2:22
TCP TTL:64 TOS:0x0 ID:31113 IpLen:24 DgmLen:44
IP Options (1) => LSRR
******S* Seq: 0x68474C99 Ack: 0x0 Win: 0x200 TcpLen: 20

[**] [1:500:2] MISC source route lssr [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
11/18-21:09:37.740989 10.10.10.141:35512 -> 172.20.11.2:22
TCP TTL:64 TOS:0x0 ID:31113 IpLen:24 DgmLen:44
IP Options (1) => LSRR
******S* Seq: 0x68474C99 Ack: 0x0 Win: 0x200 TcpLen: 20

What rule triggered this alert? A quick grep in the rules directory showed the
following entry in the file misc.rules (for the record, both EXTERNAL_NET and
HOME_NET were set to any, meaning they match everything):

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC source route lssr";
ipopts:lsrr; reference:bugtraq,646; reference:cve,CVE-1999-0909;
reference:arachnids,418; classtype:bad-unknown; sid:500; rev:2;)

12 Available at http://www.incidents.org/logs/Raw/README [5]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 18(75)

Fig 8 Perceived network layout

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The rule triggers on all packets with the IP option LSRR, or “Loose Source Route
and Record Route”. Consequently, such packets should exist in the binary log file.
This is confirmed in figure 9. The tcpdump filter could be written to check specifically
for LSRR (by adding “and ip[20] = 0x83”), but I wanted to see if there was any other
traffic with IP options (it was not).

Two almost identical packets (the only differing fields are the IPID and ISN) follows
at 21:09:32 and 21:09:37, which could indicate retries of some sort (normal TCP
retries would probably not come every fifth second, though). A quick glance in the
RFC13 confirms that IP option 0x83 (131 decimal) is indeed LSRR.

Probability the source address was spoofed

There are three alternatives to take into consideration: Spoofed, not spoofed, or
third party effect.

I am quite confident it is no third party effect. The Snort sensor is sitting on the same
subnet as the attacking host, and it is sending out TCP packets with the SYN flag
set; hence it is not a response coming back from somewhere.

Is the traffic spoofed by another host on the same subnet? While possible, after
taking a look at the traffic directly preceding the LSRR (figure 10), I do not think that
is the case, either.

13 RFC 791, p. 18. [6]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 19(75)

$ tcpdump -r 2003.12.15.7 -X -s 1514 -n -v "tcp and ip[0] & 0x0f > 5"
21:09:27.593273 IP (tos 0x0, ttl 64, id 31113, offset 0, flags [none], length:
44, optlength: 4 (LSRR{#} EOL)) 10.10.10.141.35512 > 172.20.11.2.22: S [bad
tcp cksum a286 (->599d)!] 1749503129:1749503129(0) win 512

 0x0000: 4600 002c 7989 0000 4006 ad92 0a0a 0a8d F..,y...@.......
 0x0010: ac14 0b02 8303 0400 8ab8 0016 6847 4c99 hGL.
 0x0020: 0000 0000 5002 0200 a286 0000 0000 P.........
Fig 9 Packet with loose source route.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

If the traffic had been spoofed, 10.10.10.141 would hardly have responded with a
completing ACK; rather a RST would have been sent.

A quick note - it could be argued the LSRR traffic is spoofed, while the above is not.
I am ruling out this alternative since it is the same MAC address, and the fact the
above trace is from a TCP Connect scan, and the LSRR packets follows
immediately after (there is approximately 50 seconds between them, and the scan
was starting on port 0 and going upwards).

Description of attack

The attack is a reconnaissance scan produced by the vulnerability scanner
Nessus14. The goal is to establish whether IP packets with the option LSRR (Loose
Source Route and Record Route) will be allowed. The primary target is not really the
remote host itself, but rather firewalls and routers on the way.

The documentation [8] for this specific Nessus plugin can be found at the following
URL: http://cgi.nessus.org/plugins/dump.php3?id=11834

In my opinion, none of the Snort references15 really applies to the Nessus plugin.
More to the point is the CVE candidate - CAN-1999-0510 [9] – which simply states:
“A router or firewall allows source routed packets from arbitrary hosts“ (perhaps a bit
broad, but I think it will serve if it ever is accepted as a CVE). The URL for this CAN
is: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0510

Attack mechanism

I will begin to establish some of the problems associated with source routing (and
loose source route, in particular). ISS16 offers the following description [10]:

14 Nessus is open source and available at http://www.nessus.org [7]
15 More thourougly described in the correlations section.
16 Internet Security Systems.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 20(75)

$ tcpdump -nc 3 -r 2003.12.15.7 \
"host 10.10.10.141 and host 172.20.11.2 and tcp port 22"

21:08:43.859334 IP 10.10.10.141.32808 > 172.20.11.2.22: S 3285526535:3285526535
(0) win 5840 <mss 1460,sackOK,timestamp 45333 0,nop,wscale 0>

21:08:44.086622 IP 172.20.11.2.22 > 10.10.10.141.32808: S 4163270468:4163270468
(0) ack 3285526536 win 5792 <mss 1460,sackOK,timestamp 5038103 45333,nop,wscale
0>

21:08:44.086734 IP 10.10.10.141.32808 > 172.20.11.2.22: . ack 1 win 5840
<nop,nop,timestamp 45356 5038103>

Fig 10 Packet trace with TWH.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

LSRR can be used in a number of ways for hacking purposes. Sometimes
machines will be on the Internet, but will not be reachable. (It may be using a
private address like 10.0.0.1). However, there may be some other machine that
is reachable to both sides that forwards packets. Someone can then reach that
private machine from the Internet by source routing through that intermediate
machine.

Furthermore, as the GCIA course material17 states, source routing can be used to
get spoofed packets back, as the return path usually will be the same one they
arrived on (this is where the “Record Route” part of the name comes into play).

Here comes the reason I decided to take a closer look on the source routed traffic.
Something odd with those packets caught my eye. According to the RFC, the first
octet is the option, the second is the length (including the first three octets), and the
third is the pointer (all specified hops are processed when the pointer is larger than
the length). The IP header shown in figure 9 is 24 bytes long. The LSRR length
value is 3, and the pointer 4. Fine. An IP address is four octets long in my book. So,
how many addresses can be squeezed into the remaining length? Yup. None.

My next question was “Why would somebody want to do that?” It just did not look
very dangerous. It was not even malformed (for example, the pointer byte could be
manipulated in order to cause a denial of service in poorly written IP stacks).

Further review (manually, using Ethereal) on the captured data found the following
packet sequence following the completion of a TWH (Three Way Handshake):

17 Novak et al. section 8, p 25. [11]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 21(75)

21:09:20.465151 IP 172.20.11.2.22 > 10.10.10.141.34048: P 1:24(23) ack 1 win
5792 <nop,nop,timestamp 5041733 48990>
 0x0000: 4500 004b b586 4000 3e06 bb79 ac14 0b02 E..K..@.>..y....
 0x0010: 0a0a 0a8d 0016 8500 fa21 5bc4 c5de 7fc8 ![.....
 0x0020: 8018 16a0 58ea 0000 0101 080a 004c ee45 X........L.E
 0x0030: 0000 bf5e 5353 482d 312e 3939 2d4f 7065 ...^SSH-1.99-Ope
 0x0040: 6e53 5348 5f33 2e35 7031 0a nSSH_3.5p1.

21:09:20.465272 IP 10.10.10.141.34048 > 172.20.11.2.22: . ack 24 win 5840
<nop,nop,timestamp 48994 5041733>
21:09:20.465539 IP 10.10.10.141.34048 > 172.20.11.2.22: P 1:23(22) ack 24 win
5840 <nop,nop,timestamp 48994 5041733>
 0x0000: 4500 004a c0a0 4000 4006 ae60 0a0a 0a8d E..J..@.@..`....
 0x0010: ac14 0b02 8500 0016 c5de 7fc8 fa21 5bdb ![.
 0x0020: 8018 16d0 935f 0000 0101 080a 0000 bf62 _.........b
 0x0030: 004c ee45 5353 482d 322e 302d 4e65 7373 .L.ESSH-2.0-Ness
 0x0040: 7573 5353 485f 312e 300a usSSH_1.0.

Fig 11 Three packets immediately following TWH (the second packet is shown without data).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Right! Two more bits of information. For one thing, it seems to be a real SSH server
listening on the target, and for another, I got an idea what was generating the traffic:
The well-known vulnerability scanner named Nessus!

At this point, it was logical to do a lab experiment with said vulnerability scanner.
And, as a matter of fact, it did have a plugin for testing LSRR (located in the
Firewalls plugin section, titled "Source routed packets").

It would seem that the attack not is directed at the target host itself, but rather at
firewalls and other network devices in front of it. However, the purpose would still be
to find means to compromise the target (or other hosts on the same network) by
some sort of creative packet crafting.

As already demonstrated, there is a SSH service running at the target host, and it is
not blocked by any filtering devices. If the LSRR packet arrived to it, a SYN/ACK
packet would be returned (unless the host is configured to ignore such traffic).

A note though: the attack is not targeting port 22 for any other reason than it is
known to be open from prior scanning. It is, in other words, not a SSH attack.

Correlations

While I have found no prior analysis on the Nessus LSRR scan, source routing by
itself is certainly nothing new.

The Snort signature comes with three references:

1. http://www.whitehats.com/info/IDS418
This reference [12] is not entirely to the point as it refers to UDP packets, while
the trace described above is TCP. It does state that “Source routing IP Options
should be blocked by your firewall or routers“, which is sound advice.

2. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0909
This CVE [13] describes an attack against Microsoft Windows systems, where
a source routed packet with an offset greater than the length will be passed on
to the application layer even if source routing is disabled (as discussed
previously, the offset pointer being greater than the length indicate that all
routers in the list has been traversed).

3. http://www.securityfocus.com/bid/646
This is the Security Focus description [14] of CVE-1999-0909. It is not very
detailed, so I recommend the NAI advisory [15] instead:
http://www.securityfocus.com/advisories/1761

As has already been discussed, I feel the CVE candidate CAN-1999-0510 is more
relevant to this attack. The URL for this candidate is:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0510

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 22(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Evidence of active targeting

This specific attack is directed at a host known to be up, and a service known to be
responding. On the other hand, it seems to be just one of many different probes. But
in any case, if someone starts a vulnerability scan directed at another internal host, it
is probably not a wrong number. In my opinion, this is a case of active targeting.

Severity

I will discuss each parameter separately, and attempt to motivate the scores.
The formula that will be used is: Severity = (Criticality + Lethality) - (Host
countermeasures + Network countermeasures).

Criticality

When I started to estimate the criticality, I found that I would like to know a bit more
about the target host. In particular, did it offer any other services?

Figure 12 shows SYN-ACK packets from the target to the attacker.
Such packets indicate an open service18.

From the result, I surmise the target is a DNS server, and that SSH is used to
manage it remotely. Another assumption is that the target is a UNIX or Linux system,
as it is running both SSH and DNS, but not any NetBIOS services.

Being a DNS server makes the host critical indeed. Even if it were "only" an internal
DNS, a compromise could still severely affect the overall security (having control of a
DNS server must be one of the most simple methods to do man-in-the-middle
attacks). As such, I feel the criticality must be given the maximum score (5).

Lethality

As the attack described is a reconnaissance scan, and that I see no potential for a
denial of service due to it, the lethality is very low (1). However, if the attack
succeeded, it would give the attacker the information that other, more vicious attacks
might be performed. Another thing I considered here is that source routed packets
hardly is something new on the scene – it should not be a surprise to anybody.
18 TCP is described in RFC 793 [16].

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 23(75)

$ tcpdump -n -r 2003.12.15.7 \
"dst host 10.10.10.141 and src host 172.20.11.2 and tcp[13] = 0x12" \
| awk '{print $3}' | sort | uniq -c

 19 172.20.11.2.22
 13 172.20.11.2.53

Fig 12 Responding services on IP 172.20.11.2.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Host and network countermeasures

Obviously, the attack is thwarted somewhere along its path. What I cannot tell is
exactly where that does happen. As a result, I must do an educated guess and
choose between three alternatives:

1. The host drops LSRR packets
2. A network device on the path drops the packets
3. Both the network and the host drops LSRR packets.

Remember, I know what version the SSH server is running: OpenSSH 3.5p1. Now,
as stated in Part 1, that version has some problems associated with it19:

"September 16, 2003: OpenSSH Buffer Management bug"
“September 23, 2003: Portable OpenSSH Multiple PAM vulnerabilities”

If the administrator of the host does not keep the SSH daemon up to date, I will
assume the worst and say that the host probably do allow LSRR packets (on the
other hand, no TCP small services were running, so the box seems to be somewhat
hardened).

If indeed it was a network device that blocked the traffic, it is also configured not to
emit an ICMP error message. Such a message would give the attacker two valuable
pieces of information: that the LSRR packet was dropped, and the IP address of the
device (when testing in a lab, I got back an ICMP type 12, code 0, which is
"parameter problem"20).

Thus, I will give the network counter-measure a score of 3 (even though it otherwise
seems to be quite wide-open; for this attack it made it!) and the host
countermeasure a 2 (even if the current administrator has lax patching routines,
there are at least some indication that the host was sufficiently hardened when it
was installed).

Result

The severity, then, would be (5 + 1) - (2 + 3), which equals 1.

The outcome is very dependent on the network countermeasures. If I were to grade
the overall network protections (i.e. not pertaining to just this attack), it would
probably be 1 or 2 instead, which naturally would effect the severity.

Defensive recommendation

19 Source: the OpenSSH security page, located at http://www.openssh.org/security.html [17]
20 One might expect a “Destination Unreachable: Source Route Failed” message (type 3, code 5).

However, the parameter problem pointer was 40, which in this case was the first octet of the IP
options. The router might have been configured to disallow all IP options rather than just LSRR.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 24(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As most firewall analysts agree21, source routing should under no circumstances be
allowed into the network. Apparently, the attack was unsuccessful since the attacker
failed to get a response back. But as stated in the Severity section, it is not clear at
which point the attack was stopped.

The first defensive recommendation would therefore be to check the target host and
all network devices on the path to verify they block source routed packets. All such
packets should be discarded silently, as to not allow potential attackers to receive
any extra information about the network layout.

The second one is actually more important, but it does not relate exactly to the
attack. The target host is running an old SSH daemon with known vulnerabilities. It
should be upgraded to the latest one as soon as possible.

I can of course only speculate on the internal network design and local policies, but
it might also be a good idea to restrict SSH access for all hosts except those located
on management networks, especially when it comes to such important systems as
DNS servers. It is of course a possibility that 10.10.10.0/24 is a management
network, and 10.10.10.141 is an administrator's box testing the target system for
vulnerabilities.

Multiple choice question

Which of the following is not true in regard to loose source routing?

A) The RFC terminology is LSRR - Loose Source Route and Record Route.
B) It is considered a “bad thing”, even though there are legitimate uses for it.
C) It can used by an attacker to get responses from spoofed packets.
D) When set, the total length of the IP options field must be four bytes.

Correct answer: D

(As has been discussed, a length of three bytes means an empty list; four bytes
would be malformed as it could contain only the first octet of an IP address).

Response from the incidents.org mailinglist

I submitted my analysis to the incidents list at April 22. The URL is listed below:
http://www.dshield.org/pipermail/intrusions/2004-April/007902.php [19]

At April 28, I resubmitted the analysis after having done some corrections:
http://www.dshield.org/pipermail/intrusions/2004-April/007945.php [20]

Unfortunately, at the time of submission, no respone has been received on any of
the two postings, so I am unable to include this or any subsequent defense.

21 The earliest reference I have found is the "Firewalls and Internet Security" book by Cheswick and
Bellovin (p 114), which was published in 1994 [18].

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 25(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.2. Source of trace for detects 2 and 3

Detects two and three were captured at an undisclosed site. Below (figure 13) is a
sanitised network diagram showing involved hosts. This section effectively replaces
“Source of trace” for the remaining two detects. Detects are recorded by the Snort
sensor which is running Snort [0] version 2.1.0 on a GNU/Linux system.

Please be aware that IP addresses has been obfuscated where appropriate to
protect the company in question.

2.3. Detect 2 – Microsoft WKSSVC.DLL Buffer Overflow Attack

Detect was generated by

One of the alerts looked thus:

[**] [1:653:6] SHELLCODE x86 unicode NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
04/05-17:59:18.713828 195.29.53.74:4035 -> X.X.X.26:139
TCP TTL:118 TOS:0x0 ID:57532 IpLen:20 DgmLen:1468 DF
AP Seq: 0xCBE163D Ack: 0x8E8F8783 Win: 0x2017 TcpLen: 20

It was generated by the following rule (from the shellcode.rules file):

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 unicode NOOP";

 content: "|90009000900090009000|";
classtype:shellcode-detect; sid:653; rev:6;)

The rule looks at the packet payload for the sequence of 90009000 (and so on),
which is an UTF-16 LE22 encoded NOP23 for the x86 processor family. This rule
generated several false positives from HTTP sessions; however this particular

22 UTF-16 is part of Unicode. LE stands for Little Endian; UTF-16 and UTF-32 can be encoded both
as Big and Little Endian. Microsoft Windows generally use Little Endian. [21]

23 NOP (and also NOOP) stands for “No Operation” and is used for telling the CPU that no particular
operation is desired for the current instruction. Several NOPs in a sequence is called a NOP Sled,
and is used to broaden the valid return range when writing buffer overflows.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 26(75)

Fig 13 Network layout at an undisclosed site

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

packet (figure 13) is directed towards the NetBIOS Session Service, which
immediately makes it more interesting. Worth to note is that the rule is wont to
trigger on Big Endian NOPs as well, due to the fact that the NOP sequence in most
cases will be longer than the one in the rule (thus, the sequence could be 00 90 00
90 and so on, and still trigger, as long as there is at least two more NOPs than
specified in the rule). The packet it triggered on was Little Endian and contained 42
NOPs in the first sequence. This can be seen in figure 14.

Probability the source address was spoofed

This analysis is quite difficult since I only have traces of packets going from the
attacker to the target. Simply put, I have no hard proof that the target responded.
Nevertheless, there is an indication that the triggering packet was part of a TCP
session (it has the same source port as an incoming SYN, and the portscan log
showed that the source port increased after each new session, thus conforming with
the TCP standard). There are also further indications that the attacking host got
responses back, and subsequently made use of that information. My analysis,
therefore, is that it is unlikely that the source address is spoofed.

Description of attack

I think the attack is targeting the WKSSVC.DLL (Workstation Service) on Microsoft
Windows 2000 and XP systems. The attack can be triggered by sending a long
unicode string to port 139 or 445 (both TCP). If succeeded, a buffer overflow will
occur in a vsprintf() call as no prior bound checking is performed.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 27(75)

17:59:18.713828 IP 195.29.53.74.4035 > X.X.X.26.139: P
213784125:213785553(1428) ack 2391771011 win 8215 NBT Packet
 0x0000: 4500 05bc e0bc 4000 7606 XXXX c31d 354a E.....@.v.)...5J
 0x0010: XXXX XXXX 0fc3 008b 0cbe 163d 8e8f 8783 .B9........=....
 0x0020: 5018 2017 XXXX 0000 4100 4100 4100 4100 P.......A.A.A.A.
 0x0030: 4100 4100 4100 4100 4100 4100 4100 4100 A.A.A.A.A.A.A.A.
..
..
 0x04e0: 4100 4100 4100 4100 4100 4100 4100 4100 A.A.A.A.A.A.A.A.
 0x04f0: 4100 4100 4100 4100 4100 4100 9000 9000 A.A.A.A.A.A.....
 0x0500: 9000 9000 9000 9000 9000 9000 9000 9000
 0x0510: 9000 9000 9000 9000 9000 9000 9000 9000
 0x0520: 9000 9000 9000 9000 9000 9000 9000 9000
 0x0530: 9000 9000 9000 9000 9000 9000 9000 9000
 0x0540: 9000 9000 9000 9000 9000 9000 9000 9000
 0x0550: 9000 9000 4700 a700 1800 7500 9000 9000 G.....u.....
 0x0560: 9000 9000 9000 9000 9000 9000 9000 9000
 0x0570: 9000 9000 9000 9000 9000 9000 eb00 1900
 0x0580: 5e00 3100 c900 8100 e900 3020 d902 d902 ^.1.......0.....
 0x0590: d902 8100 3600 ac20 7c01 3200 1d20 8100 6...|.2.....
 0x05a0: ee00 fc00 d902 d902 d902 e200 4801 eb00 H...
 0x05b0: 0500 0d01 e200 d902 d902 d902
Fig 14 Possible executable code?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The vulnerability was discovered by eEye Digital Security and published in
November 12 last year (2003). The URL to the advisory is listed below:

http://www.eeye.com/html/Research/Advisories/AD20031111.html [22]

Microsoft released a patch for the problem. Additional information is available in
Microsoft's Security Bulletin MS03-49:

http://www.microsoft.com/technet/security/bulletin/MS03-049.mspx [23]

The CVE candidate for this vulnerability is CAN-2003-0812 [24].

Attack mechanism

The first thing to decide: is it a false positive or not? To do this, we need to look at
the entire packet (please refer back to figure 14).

There is a whole lot of 'A's in that packet. And each 'A' is followed by 0, which
usually is used for NULL termination of strings. However, the pattern will also be
seen when the ASCII 'A' is encoded in UTF-16 LE (which happens to be used by
Microsoft Windows systems). To be exact, there are 618 occurences of the "41 00"
pattern, meaning 618 'A's when converted to ASCII (according to eEye, the ASCII
conversion will happen before the overflow occurs).

After all those "41 00"s, there comes a bunch of x86 unicode NOP's (an UTF-16 LE
encoded NOP is “90 00”, which differs from the ASCII one that is “90”. Then some
other data appears, followed by more NOPs, and even more data. This looks like an
attempted buffer overflow to me.

The analysis is made more complicated by the fact this is the only packet in the
sequence. Did any other preceed it? What came after?

Luckily, the attacking host did some other things as well. In fact, it did so much other
stuff that Snort's portscan preprocessor kicked in, and thus also logged the
existence of related packets (even though it did not log the entire packets; at this
point I was grateful for anything). The related packets are shown below:

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 28(75)

Apr 5 17:59:05 195.29.53.74:4022 -> X.X.X.26:139 SYN ******S*
Apr 5 17:59:08 195.29.53.74:4035 -> X.X.X.26:139 SYN ******S*
Apr 5 17:59:11 195.29.53.74:4035 -> X.X.X.26:139 SYN ******S*
Apr 5 17:59:53 195.29.53.74:4230 -> X.X.X.26:139 SYN ******S*
Apr 5 17:59:56 195.29.53.74:4230 -> X.X.X.26:139 SYN ******S*
Apr 5 17:59:59 195.29.53.74:4248 -> X.X.X.26:139 SYN ******S*
Apr 5 18:00:04 195.29.53.74:4270 -> X.X.X.26:139 SYN ******S*
Apr 5 18:00:49 195.29.53.74:4404 -> X.X.X.26:139 SYN ******S*
Apr 5 18:00:59 195.29.53.74:4450 -> X.X.X.26:139 SYN ******S*
Apr 5 18:01:00 195.29.53.74:4452 -> X.X.X.26:139 SYN ******S*
Fig 15 Excerpt from portscan.log

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

With the portscan log at hand, I can do a speculation on what occured here.

1. It all begins with a scan (either SYN or a full connect – I cannot tell).
2. The target responds - the attacker knows the port is open.
3. The attack starts. A SYN is sent. For some reason, no respone is forthcoming.
4. Another SYN with same source port. Looks like a normal TCP retry (same source

port and three seconds after the first packet). TCP establishment occurs. Perhaps
some packets after the TWH, but I doubt it.

5. The attack takes place. It may or may not have succeeded. The TCP session may
or may not have been terminated gracefully.

6. After the attack, a new session is started. The response never returned so a TCP
retry is sent. Then establishment. From looking at the source ports, the attacking
host appears to be doing lots of things at the same time. This may explain the
retries – the attacker's host could be too busy to process all answers.

7. The last thing for destionation port 139 is five additional sessions. I do not know
about the purpose of those. Checking for success, perhaps?

I would give a kingdom for a complete packet trace between those hosts. The
problem is, as I have no kingdom to spare at the moment, I will have to resort to
some additional research instead.

For example, were any other ports targeted?

As can be seen, a few other ports were scanned. Were any of them attacked?

At this point, some information regarding the server was aquired. It was a NT 4
system (which did not come as a surprise considering the targeted ports), running
the IIS web server for a few domains.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 29(75)

$ grep 195.29.53.74 portscan.log | grep X.X.X.26 | awk '{print $6}'
| sort | uniq -c

 3 X.X.X.26:135
 10 X.X.X.26:139
 1 X.X.X.26:26
 1 X.X.X.26:4444
 8 X.X.X.26:445
 2 X.X.X.26:80
Fig 16 Other scanned ports from source 195.29.53.74

$ grep -E '195\.29\.53\.74:[[:digit:]]+ -> X\.X\.X\.26:[[:digit:]]+' \
alert -B 2 | sed -e 's/^--$//g'

[**] [1:2192:1] NETBIOS DCERPC ISystemActivator bind attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
04/05-17:58:48.222574 195.29.53.74:3920 -> X.X.X.26:135

Fig 17 Excerpt of other attacks from source 195.29.53.74 (please note that GNU grep is required)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Of the targeted ports, only 135 and 139 were open (verified with netstat on the host
itself). The reason port 80 did not respond is that the web servers ran as virtual
hosts bound to different IP addresses.24

The buffer overflow was targeted only towards port 139. This means we do not have
to consider vulnerabilites that can be targeted at both 135 and 139. We still need to
consider the other ports though – especially port 445 as this is also used for
authentication, but in W2K domains. Another important tidbit of data to keep in mind,
port 135 was both scanned and attacked before port 139, which adds to the
conclusion that port 139 was deliberately targeted for this particular attack.

With this information, it was possible to start to search for corresponding
vulnerabilites and attacks. As for vulnerability, the one discussed in the Attack
Description seemed to fit nicely (it targets both ports 139 and 445, and the attack is
carried out by a long Unicode string that is later on converted to ASCII).

If that is correct, then the likelihood of success is small, even if the system would not
be up to recommended patch levels (according to both eEye and Microsoft, NT4 is
not vulnerable).

What becomes interesting next is the status of the server. Are all recommended
security patches applied, and was it compromised? If it were, my analysis would be
wrong.

Well, nothing untoward seems to be running on the system, even though there are a
few unpatched vulnerabilites on it (SP6a is not applied, for one thing).

There are several reports of this attack existing in the wild, Unfortunately, the only
way to be sure of my guess would be to test the attack on a W2K or XP system and
see what happens, or to decode the UTF data and try to match the 'A's and
shellcode with public exploits. Both alternatives have their drawbacks, and I feel it is
outside the scope for this detect.

Correlations

The reference section of the CVE candidate contains listings to several advisories
(which is some cases started discussions on the mailing lists where they were
publicised). The URL for the candidate is:

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0812 [24]

I have not found any other reports on this exact pattern.

The attacking address, which is 195.29.53.74, resolves to ad18-m74.net.htnet.hr.
The netblock belongs to Croatian Telecom, which fits the .hr ccTLD perfectly. I have
found no evidence that this system has participated in other attacks.

24 These were also attacked, but that does not belong to this analysis.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 30(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Evidence of active targeting

To sum up my findings in the Attack Mechanism section: The attack is targeted at
port 139 (and probably 445 as well) when known to be open. The attack was
preceeded by a portscan to find open ports. So yes, the attack is somewhat
targeted, but not as scary as it would have been if it came without the portscan.

Severity

Criticality

The system is a public web server, and contains no confidential information. Less
than 10 domains are running on it. A compromise could cause bad will if the web
pages were defaced or became unavailable for a longer period of time. Score: 2

Lethality

A buffer overflow targeted at the OS. It could yield SYSTEM25 level access if
succeeded. I am reserving myself a bit though: I have not verified that the shellcode
works, but if I have connected the attack to the correct vulnerability, the potential
impact is arbitrary commands executed as SYSTEM. Score 5.

Network countermeasures

There is no firewall in front of the system. The router does no ingress filtering at all.
The score here must unfortunately be the lowest possible. Score: 1

Host countermeasures

The system is not up to date on patches. No internal firewall is protecting it and the
targeted port is listening. The reason I give a 2 here (instead of 1) is that the system
is too old for the attack – it does not work against NT 4. That is not a whole lot of
defenses, though. Score: 2

Result

Severity: (2 + 5) - (1 + 2) = 4. This is kind of interesting given the low criticality. On
the other hand, it is only fair. The only thing saving this box from compromise is the
fact the attack targeted W2K and WXP boxes rather than NT4. And a rooted box is
never good news. Once on the same network segment as the firewall, attacks such
as ARP spoofing becomes possible.

Defensive recommendation

I will list some of the problems associated with the system and the network, and the
suggested corrective actions to resolve each issue.

25 SYSTEM level access is the Windows equivalent to root in UNIX systems.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 31(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A Microsoft IIS server is located outside of the corporate firewall

I am not attempting to do any Microsoft bashing here, but it is well-known that both
the OS (NT4) and the IIS web server has suffered from several critical
vulnerabilities. New ones are likely to be discovered.

Common sense says such systems should be placed behind a firewall (in fact, all
systems should be behind a firewall, no matter how seldom vulnerabilites are
discovered).

It is not part of a domain, but it is still listening on NetBIOS ports

The recommendation is to turn of NetBIOS altogether in order to avoid future attacks
or information leakage. A service that does not run is hard to attack.

NetBIOS is not blocked at the border router

Well, it should be, really. There is few reasons to allow it, and even if the need
existed, it would be prudent to allow access only through a VPN.

Old software versions

The server is running IIS version 4, on NT4. Both are old, and NT4 is approaching its
End of Life statement (it has in fact been extended several times due to many
corporations lack of interest to upgrade). The organisation should consider how to
upgrade the system before the software expires (the biggest security implication of
expired software would be no more security patches).

System not up-to-date on patches

First, all recommended security patches should be applied. This will fix the symptom.
As for the real problem, a patch policy should be written if not already existing. If it
exists, it should either be revised or be more stringently followed.

Multiple choice question

When used in conjunction with a buffer overflow, what purpose fits best for the
following data sequence: “90 00 90 00 90 00 90 00 90 00”?

A) The contents of the buffer to be overflowed is oftenly filled with it.
B) It is a common NOP code for the UltraSparc II ISA.
C) It is a common NOP code for most x86 ISAs
D) It is an x86 ISA NOP code encoded with UTF-16 (Unicode)

Correct answer: D

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 32(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.4. Detect 3 – The Deadhat.B Worm

Detect was generated by

The following detects where found in the Snort alert file. Well, in fact, several more
of these were found, these are only the first four in a sequence of about 85.
[**] [1:615:5] SCAN SOCKS Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/31-11:55:18.474173 218.5.20.107:22002 -> X.X.X.2:1080
TCP TTL:108 TOS:0x0 ID:64668 IpLen:20 DgmLen:40
******S* Seq: 0x4812 Ack: 0x6F7D Win: 0x7A67 TcpLen: 20
[Xref => http://help.undernet.org/proxyscan/]

[**] [1:618:5] SCAN Squid Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/31-11:55:18.674354 218.5.20.107:22002 -> X.X.X.2:3128
TCP TTL:109 TOS:0x0 ID:64680 IpLen:20 DgmLen:40
******S* Seq: 0x3789 Ack: 0x69C0 Win: 0x7EC9 TcpLen: 20

[**] [1:615:5] SCAN SOCKS Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/31-11:55:18.874769 218.5.20.107:22002 -> X.X.X.3:1080
TCP TTL:122 TOS:0x0 ID:64690 IpLen:20 DgmLen:40
******S* Seq: 0x2700 Ack: 0x6403 Win: 0x32B TcpLen: 20
[Xref => http://help.undernet.org/proxyscan/]

[**] [1:618:5] SCAN Squid Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/31-11:55:19.074799 218.5.20.107:22002 -> X.X.X.3:3128
TCP TTL:123 TOS:0x0 ID:64700 IpLen:20 DgmLen:40
******S* Seq: 0x7476 Ack: 0x691 Win: 0x4D56 TcpLen: 20

The following rules are included in the scan.rules file, which is part of the installation:

alert tcp $EXTERNAL_NET any -> $HOME_NET 3128 (msg:"SCAN Squid Proxy attempt";
stateless; flags:S,12; classtype:attempted-recon; sid:618; rev:5;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 1080 (msg:"SCAN SOCKS Proxy attempt";
stateless; flags:S,12; reference:url,help.undernet.org/proxyscan/;
classtype:attempted-recon; sid:615; rev:5;)

The rules checks for inbound TCP packets with the SYN flag set (ignoring ECN bits),
and does not care about prior state of the session (this is done with the stateless
keyword).The packets the rules are triggering on is showed in figure 18.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 33(75)

11:55:18.474173 IP 218.5.20.107.22002 > X.X.X.2.1080: S
11:55:18.674354 IP 218.5.20.107.22002 > X.X.X.2.3128: S
11:55:18.874769 IP 218.5.20.107.22002 > X.X.X.3.1080: S
11:55:19.074799 IP 218.5.20.107.22002 > X.X.X.3.3128: S

Fig 18 Packets triggering the Snort rules.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Probability the source address was spoofed

There is a possibility that the source address is spoofed; there are evidence of other
IP header fields being crafted. On the other hand, the analysis shows that this is a
worm attempting to spread, and it is using TCP to communicate. The network traces
confirm that two-part communication is taking place. As such, my conclusion must
be that this traffic not is being spoofed. This conclusion was later verified when
running the worm in a contained test environment.

Description of attack

The attack is a worm targeting backdoors left in place by various MyDoom
malwares26. Symantec's name is W32.HLLW.Deadhat.B [25]. It is reputed to have
several attack vectors, but my main concern is its method of portscanning and then
uploading a file for execution. When executed by the MyDoom backdor, it inactivates
the MyDoom binary, and adds itself to the registry to get automatically started after a
system reboot. As its name indicate, it targets Win32 systems.

It does have some characteristics that provides for easy identification:

• It scans TCP ports 1080, 3127, 3128, 10080.
• Source port is usually fixed to 22002.
• It establishes a new backdoor on port 2766.
• The TTLs are varying wildly between packets.

The worm does not cause any immediate damage (such as destroying data).
However, the scanning seem to be quite network intense, and might cause denial of
service conditions, especially at sites with limited bandwidth.

Attack mechanism

The one thing that really caught my interest was the source port, which was
constant, and not increasing, as it should be for most normal applications. My initial
thought was that I was seeing some sort of proxy scanning generated by a tool like
nmap27 which allows for user modified source ports.

It was at this stage I thought this might be worth to write about, and I took a look at
the Intrusions mailinglist to see if it had already been covered. I found some other
reports (these are covered in the correlations section), but no in-depth analysis.
One of the posts there gave me an additional clue. It was not only the ports 3128
and 1080 that was being targeted, but also 3127 and 10080. I got access to the
firewall logs, and managed to verify that was indeed the case.

26 It is getting harder and harder to say if something is a virus or a worm since they use techniques
from both categories. Thus the term malware is becoming more and more favoured. For my part, I
still think a worm is something that propagates through the network without user intervention (such
as clicking on attachments or viewing it in the preview pane), so that will be my meaning whenever
I use the term 'worm'.

27 Available from http://www.insecure.org/nmap [26]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 34(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Excerpt from Firewall Log (the log does not show TTLs)
Date Time Action Proto SRC IP DST IP DPORT SPORT

6Apr2004 16:29:39 drop tcp 62.201.64.66 10.1.2.2 3127 22002

6Apr2004 16:29:39 drop tcp 62.201.64.66 10.1.2.2 1080 22002

6Apr2004 16:29:39 drop tcp 62.201.64.66 10.1.2.2 10080 22002

6Apr2004 16:29:39 drop tcp 62.201.64.66 10.1.2.2 3128 22002

A new snort rule was added to capture the complete scan. The complete scan
pattern is shown in figure 19. The TTL values are really interesting.

I do expect the TTL to vary, but not that much. It would indicate an incredibly
unstable connection. And when I see the same pattern from three different locations
(not showed in the trace), I go “hmm!”. The word “crafted” comes to mind. But why?
Since someone obviously thought it worth the effort, there is probably some reason
behind it. My guess is that it is supposed to stop us analysts from pinpointing the
location, or distance. It might be wrong, but it is the only thing I can come up with
right now.

I got curious, and let a host listen on port 3127 over a night, and captured all data
with a sniffer. The scan hit, my host dutifully answered SYN-ACK, and got a RST
back. Immediately after, another connection was made from the same source,
but now with a normal source port (2241). Figure 20 shows the beginning of the
conversion (the TWH has already taken place).

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 35(75)

07:34:12.514505 IP (ttl 114, length: 40) 192.168.1.5.22002 > X.X.X.2.3127: S
07:34:12.568048 IP (ttl 111, length: 40) 192.168.1.5.22002 > X.X.X.2.1080: S
07:34:12.645453 IP (ttl 127, length: 40) 192.168.1.5.22002 > X.X.X.2.10080: S
07:34:12.712233 IP (ttl 124, length: 40) 192.168.1.5.22002 > X.X.X.2.3128: S
07:34:12.785866 IP (ttl 109, length: 40) 192.168.1.5.22002 > X.X.X.3.3127: S
07:34:13.005955 IP (ttl 125, length: 40) 192.168.1.5.22002 > X.X.X.3.1080: S
07:34:13.098609 IP (ttl 114, length: 40) 192.168.1.5.22002 > X.X.X.3.10080: S
07:34:13.232869 IP (ttl 119, length: 40) 192.168.1.5.22002 > X.X.X.3.3128: S

Fig 19 Scanning pattern – notice the TTLs.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As can be seen, first thing after the TWH, there comes a packet (PSH) with only one
byte: 0x85. In the next packet, the following bytes comes: 0x13, 0x3C, 0x9E and
0xA2. I am not sure what these are for, probably some kind of instruction or length.
After those, however, things begin to clear up. The next two bytes is 0x4D and 0x5A.
Or, as it is in ASCII: MZ (anyone hear bells ringing?) Oh, and the string “This
program cannot be run in DOS mode” is there too.

I was able to extract a fully functional PE28 from the tcpdump logfile. The file size
was 56 832 bytes, which is consistent with Symantec's report.

The next thing that is supposed to happen is that the uploaded binary is to be
executed by a backdoor already in place (netcat on a non-windows system was not
obliged to comply with the wishes of the worm).

However, if the file were to be executed on the Windows system, it would do several
things, and few of them good (I set up an isolated network with a fresh Windows XP
system to act as my sacrifice box):

Commence Scanning

Immediately after execution, it began the scanning. A certain pattern can be seen:

• It randomizes five sets of two bytes (denoted X and Y) used for the first two fields
of the IP addresses. Then it begins to scan X.Y.0.0 on all four ports, continues to
X.Y.0.1, and so on, for all five sets simultaneously.

• When X.Y.0.255 is reached, it goes over to X.Y.1.0 and starts over. In other
words, each set contains 65,536 addresses. It spews out approximately one
packet every 0.02 second.

28 Portable Executable

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 36(75)

01:02:49.827280 IP 67.97.205.104.2241 > X.X.X.X.3127: P 1:2(1) ack 1
0x0000 4500 0029 ba90 4000 7306 XXXX 4361 cd68 E..)..@.s.@*Ca.h
0x0010 XXXX XXXX 08c1 0c37 79e3 c5e2 581c 190b .B9....7y...X...
0x0020 5018 faf0 XXXX 0000 8500 0000 0000 P.............
01:02:49.827374 IP X.X.X.X.3127 > 67.97.205.104.2241: . ack 2 win
01:02:49.840318 IP 67.97.205.104.2241 > X.X.X.X.3127: . 2:1462(1460) ack 1
0x0000 4500 05dc ba91 4000 7306 XXXX 4361 cd68 E.....@.s.:vCa.h
0x0010 XXXX XXXX 08c1 0c37 79e3 c5e3 581c 190b .B9....7y...X...
0x0020 5010 faf0 XXXX 0000 133c 9ea2 4d5a 9000 P........<..MZ..
0x0030 0300 0000 0400 0000 ffff 0000 b800 0000
0x0040 0000 0000 4000 0000 0000 0000 0000 0000 @...........
0x0050 0000 0000 0000 0000 0000 0000 0000 0000
0x0060 0000 0000 0000 0000 f000 0000 0e1f ba0e
0x0070 00b4 09cd 21b8 014c cd21 5468 6973 2070 !..L.!This.p
0x0080 726f 6772 616d 2063 616e 6e6f 7420 6265 rogram.cannot.be
0x0090 2072 756e 2069 6e20 444f 5320 6d6f 6465 .run.in.DOS.mode
Fig 20 Data exchange after a scanned port proved to be open.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• I do not know what happens when it reaches X.Y.255.255. I assume one of:
• New randomize (this is where I would place my bet).
• Fall silent.
• Increase the second octet (and ultimately the first one).

• The initial analysis that the TTLs were forged was quite correct. In the lab, i.e. on
the originating subnet, I saw no TTL greater than 141, and no lesser than 122.
This is also where I verified it did not spoof the source addresses.

Shutdown MyDoom processes

A copy of MyDoom-A [27] was retrieved from a nearby virus quarantine, and was
executed on the system (after the date was set to January29). A listening port on
address tcp/3127 appeared.

Then the new executable was run again. Port 3127 disappeared. However, the files
installed by MyDoom was left intact, and so was the registry entries). It only stopped
the backdoor process.

My findings disagree with Symantec's description, as the MyDoom registry entries or
files not were removed. However, the MyDoom-A process will be started before
Deadhat.B after reboot, which means it will be shut down again.

No other versions of MyDoom were tested, but I do not doubt they would be stopped
as well (why else scan for the other three ports?)

Ensure survival through system reboots

It copied itself to C:\WINDOWS\SYSTEM32\MSGSRV32.EXE and created a registry
entry in the Run folder to reload after reboot.

Establish new backdoor

It closes one hole, but opens another. A new listening port is opened at tcp/2766.
When connected to with telnet or netcat, it responds with:
“SSH-2.0-OpenSSH_3.7.1p2 \m/”

It looks almost correct. Except the fact that normal OpenSSH servers do not
terminate with “\m/”.

And it is not SSH either, of course. When trying to connect with a SSH client, I get a
"connection closed" message back.

Final observations

An odd thing: There were also scans going to the same target ports, but without TTL
or source port crafting. Those packets were very few in comparision, but did still
appear. Why? I have no idea. The TTL on these were the OS default of 128.

29 MyDoom-A will not spread after February 12 [27]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 37(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

I am not very good at debugging executables myself (which is why it is very neat to
have friends who are). It appears the running process has capability to detect if
someone is debugging it. Result: the logged in XP user was suddenly logged off!
Harmless, but still quite fun, if one indeed is allowed to say that about malware. This
is probably due to the compression/encryption rather than the worm itself. According
to Panda30, tElock v0.98 was used for this purpose.

Correlations

The scanning pattern has been reported in various postings from Ken Connelly, of
which the below post is the first one (dated February 12):

http://cert.uni-stuttgart.de/archive/intrusions/2004/02/msg00105.html [29]

The first [public] query on what this traffic actually was came from Michael
Schwartzkopff in February 20 (although only ports 1080 and 3128 were reported):

http://cert.uni-stuttgart.de/archive/intrusions/2004/02/msg00126.html [30]

Finally, Carl Gibbons reports the pattern as well (March 8):
http://cert.uni-stuttgart.de/archive/intrusions/2004/03/msg00032.html [31]

As the scanning is made by a worm, I felt it would not add anything to the analysis
by attempting to correlate source addresses. It suffice to say that most of the scans
I have seen comes from various ISP:s, distributed on several countries.

Symantec, in addition to most other antivirus vendors, has a description of this
worm. Unfortunately, their analysis does not mention the portscanning behaviour
more than to state “Attempts to connect to sequential IP addresses on TCP ports
3127, 3128, and 1080 (ports that the Mydoom worm used)“. I see no mention of port
10080 (I am confident that it is the same binary, as it does have the same file size
and otherwise matches the described behaviour).
Even so, Symantec has the most accurate description I have found.

http://securityresponse.symantec.com/avcenter/venc/data/ (line wrapped)
w32.hllw.deadhat.b.html [25]

I did post an analysis on this worm on the intrusions list, in hope it could be useful to
somebody before the completion of this practical. This posting is available in
DShield's archive, URL listed below:

http://www.dshield.org/pipermail/intrusions/2004-April/007888.php [32]

Evidence of active targeting

Normally, worms do not perform active targeting (unless, as has been seen in some
cases lately, they try to perform a DoS against a third party). As has been showed,

30 http://www.pandasoftware.com/virus_info/encyclopedia/overview.aspx?lst=det&idvirus=44590 [28]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 38(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the target selection is entirely random. My conclusion is that there is no active
targeting associated with this attack.

Severity

Criticality

The scan hit several important systems on the network, among them a DNS server,
firewall, and a VPN endpoint. This section is therefore awarded full score (5).

Lethality

If the attack were successful, it would cause remote system access to everyone with
access to the listening port. This section is also awarded 5 points.

Network countermeasures

All critical hosts were placed behind a firewall. None of the target ports were allowed
through it. The design of the rulebase was “drop what is not explicitly allowed”. The
score for network countermeasures is set to 4.

Host countermeasures

These varied between the hosts. Many of them were UNIX systems, making it
virtually impossible for them to execute a MSDOS PE file. Most of them had recent
operating systems installed. Among the Microsoft Windows systems, some where
found to have antivirus products installed. None were infected with MyDoom (of any
version), making this specific attack very hard to succeed.

With the above in mind, I have given this section 3 points (due to some
inconsistencies with the regard to existing patch policies).

Result

The severity of this attack is 3 ((5 + 5) – (4 + 3)).

Defensive recommendation

Some of the source addresses comes from the reserved RFC 1918 [33] address
space. That tells us two things. There is not enough egress filtering being done near
the source. This is outside of our control; however, as these packets also arrive
unmolested, we can also also assume there is a lack of ingress filtering on our part.
This in turn could mean there is insufficient egress filtering as well. The
recommendation, then, is to ensure that both egress and ingress filtering is
performed (at the very least, anti-spoofing measures should be employed – there is
no reason to allow RFC 1918 addresses coming into the network, nor should any
source addresses not part of the network be let out onto the Internet).

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 39(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Another thing would be to create new Snort rules, and configure them to watch for
internal system responding on ports 1080, 3127, 3128, 10080 and 2766 (Any Squid
proxies would have to be exempt for the ports they actually use).

It might also be prudent to watch for such traffic going out. This could indicate an
internal compromise (by way of IRC, P2P, or other means31), or simply an internal
user scanning external systems (which is a bad thing in almost all cases).

Finally, as this worm targets backdoors left in place by email borne viruses, it would
be in an organisation's best interest to ensure all Microsoft Windows systems have
up-to-date antivirus definitions, and that its employees are receiving on-going
security education. A policy concerning email attachments should also exist.

Multiple choice question

TTL can be used in many ways. Which of the following statements is true?

A) TTL is defined in both the TCP and UDP headers
B) The TTL values will always be identical for all packets within a TCP session.
C) 128 is a common value for packets leaving a host (i.e. the initial value)
D) A common misconception is that TTLs is used by the Windows tracert command.

Correct answer: C

(I am attempting to trick the unwary to answer “D”. Windows tracert does differ, truly
enough, but only because it is using ICMP instead of UDP high-ports. TTL is
manipulated in the same way on both platforms. Many UNIX traceroute commands
has an option to use ICMP as well)

31 This is covered in more detail by the antivirus vendors.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 40(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3. Part 3 – Analysis on .edu data

3.1. Executive Summary

This report is the result of an analysis performed on data produced by the on-site
network intrusion detection system (NIDS). The data spanned a period of five days.

The following events were processed:

Type Description Count
Scans Packets parts of reconnaissance probes 15,684,914
Alerts Packets marked as possible attacks 93,538
OOS "Out of Spec" - suspicious packets, but

not necessarily attacks
5,896

The amount of recorded attacks and scans are large for a five day period. However,
quite a few of them boils down to false alarms. This does not mean that all of them
were so; in fact, there is evidence of internal systems that are infected by worms.
Others have been found to perform network activity of questionable nature. More
information about these systems, along with corrective recommendations, can be
found in the "Defensive Recommendations" section.

It should be pointed out that far from every event was analysed in depth. The data
set was simply too large. The methodology instead focuses on the Ten Top Talkers
of each event type (scans, alerts and oos), but other systems and events of
relevance have been covered where applicable.

The report begins with the defensive recommendations, and is followed by a link
graph which reflects some of the activities that took place during the data set. Then
comes a list of the files that were analysed, and the Top Ten Talkers for each event
type. Next is the network registry information about five external systems that stood
out during the assessment. After this comes four sections of more technical nature,
and where more in-depth knowledge of network protocols and intrusion detection
may be useful: activity which originates from the internal network, activity from
external hosts, analysis on scanning activity, and a summary of abnormal traffic (“out
of spec”). The report ends with a description on how the analysis was performed.

It should be noted that all fully qualified host names reflect the information at the
time of writing. As the names are easy to change, and outside of control, they are
only an indication of the remote identity. A malicious individual or organisation with
control of the reverse DNS zone of their network may easily change any of their IP-
addresses to resolve to "www.sans.org" or any other arbitrary name (note that it will
not make www.sans.org to resolve to the IP - it is the other way around!).

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 41(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.2. Defensive Recommendations

Observations on the IDS system itself

While it is certainly good to have a network intrusion detection system in place,
it should also be kept up to date with the latest software and configuration. This is
exceedingly true for signature based ones as Snort [0] (its ability to detect attacks is
similar to the antivirus products available today; the virus definitions must be kept up
to date, or it will miss new viruses). Hence, my first recommendation is to upgrade
the NIDS sensor itself.

After the upgrade, the rules should be customised to reduce the vast amounts of
false positives. A single SSH session generated approximately 4500 alerts due to
the fact the source port of the client happened to be 65535. Those over-generalised
rules may cause more problems than they solve.

It is essential that the alert load is such that the analysts can handle it. An analyst
that is drowned in false alerts is likely to miss out potentially important ones.

Furthermore, from the fact that I have seen no alerts or scans from internal to other
internal systems, I surmise that the sensor is located at the border. It is possible that
I have only been given data from one of several sensors; but if not (i.e. this is the
only one), I highly recommend that an internal sensor between key networks is
considered.

Network observations

Even though many universities do not deploy firewalls by policy or other reasons, I
still suggest that a firewall is considered. The load on the NIDS system would be
heavily reduced if it were placed behind a filtering device. Additionally, it could
protect the organisation from bad reputation or in worst case liability caused by
outsiders using internal hosts as a springboard for further attacks.

If my analysis regarding the placement of the NIDS sensor is correct, the internal
routers should be investigated for their policies regarding RFC 1918 [33] and RFC
3330 [34] addresses (private and link local addresses) as these have no business
being routed to the outside.

Policy issues

As I have no knowledge of the site's security policy or acceptable use policies, I will
say very little about this subject. The usual apply, though. If there are no policies
regarding acceptable use in place (from the traffic being observed, particularly
policies relating to scanning and file sharing would be of interest), such documents
should be written, approved and clearly communicated to the users of the network.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 42(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Suspicious internal systems

During the assessment, some internal systems were found performing suspicious
activities. It would be prudent to further investigate these systems.

MY.NET.84.235

This system should be investigated as soon as possible as it appears to be
responsible for multiple activities of questionable nature:

• File sharing with Overnet/Edonkey2000 [35]
• Scanning for other users with Overnet/Edonkey2000
• Connections to external backdoors left by Red Worm/Adore [36]
• Possibly infected by SdBot (or similar) backdoor [37]
• It is probably running some sort of web server

Systems that are likely to be infected by worms

The below systems are probably infected by an Agobot/Gaobot/PolyBot variant:

• MY.NET.70.96 • MY.NET.112.152 • MY.NET.66.56

• MY.NET.42.2 • MY.NET.151.75 • MY.NET.80.224

• MY.NET.153.174 • MY.NET.43.10 • MY.NET.80.5

• MY.NET.97.66 • MY.NET.150.199

Port 135 scanning

The hosts MY.NET.111.51 and MY.NET.81.39 performed massive scanning for
external systems listening on port 135.

Miscellaneous UDP scanning from MY.NET.153.53

The system targeted port 1214 on 4488 different hosts, as well as port 65535 on 5
hosts, among them 24.5.46.4. All traffic used UDP.

Systems trying to enumerate NetBIOS shares on Link Local addresses

While this traffic could be benign, I still recommend that some investigation is
performed as to locate the reason for the traffic.

• MY.NET.11.4 • MY.NET.11.5
• MY.NET.11.6 • MY.NET.11.7

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 43(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Systems performing external NetBIOS share enumeration

• MY.NET.150.44
• MY.NET.150.198
• MY.NET.75.13

Troublesome external hosts

24.5.46.4 (c-24-5-46-4.client.comcast.net)

Several internal hosts connected to this host on TCP port 65535 (which may be
associated with the Red Worm/Adore backdoor). Yet another internal host
connected to it on the same port, but over UDP. It may be that some other service is
running there. Further investigation is recommended.

199.131.21.34 (zc7831522.ip.fs.fed.us)

The network segment appears to belong to the US Department of Agriculture. The
host in question appears to be infected by one worm or another; it scanned and tried
to exploit multiple internal hosts.

68.55.192.251 (pcp229440pcs.catonv01.md.comcast.net)

Traces indicate that this system connected to a VNC service located on
MY.NET.111.51. It may be of interest to investigate this further, especially since
MY.NET.111.51 did participate in other suspicious activity (RPC scanning).

128.122.66.204 (KAPTEREV.ICAS.FAS.NYU.EDU)

This is a system to which 16 internal hosts generated traffic that may very well be
from a SdBot backdoor. Totally 104 matching packets were sent to it from the 16
hosts (each alert was part of a separate session) .

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 44(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.3. Link Graph

The graph below represents relationships with one of the more troublesome internal
hosts – MY.NET.84.235.

3.4. List of Analysed Files

The files listed below were retrieved from the http:// isc.sans.org /logs/ site [38] for
analysis. Note that the date sequence in the file names differ for the OOS files. For
no reason I can understand, there seem to be some inconsistencies in the naming
process; however the data inside the files cover the same dates (040407-040411).
The contents also reflects the date the file was created on the website.

"Alert" files "Out of Spec" files "Scan" files
alert.040407.gz oos_report_040403 scans.040407.gz

alert.040408.gz oos_report_040404 scans.040408.gz

alert.040409.gz oos_report_040405 scans.040409.gz

alert.040410.gz oos_report_040406 scans.040410.gz

alert.040411.gz oos_report_040407 scans.040411.gz

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 45(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

An important statement must be made regarding the contents in the scans file. In
difference with the alert and oos files, internal IP addresses were not obfuscated. I
have been able to correlate traffic patterns from the other two files to establish the
real numbers of MY.NET. While this may be intentional, and the MY.NET
substitutions may only be for the purpose to distinguish what the internal network
was, I have replaced the two octets in the scans file to MY.NET as well. Except for
protecting the information, it also gives the advantage of making the report more
consistent. A side effect is that I will not list any reverse DNS information for internal
hosts, as this would be an obvious give-away.

3.5. Top Talkers

My criteria for choosing the Top Talkers was simply to select the ten most frequent
source addresses of each log type (scans, alerts and OOS). As I will refer back to
these lists in the rest of the report, I will call the scan list T10S, the alert list T10A,
and the OOS list T10O.

Top Ten Scanners

Top Ten Scan Sources (T10S)
No IP Address Number of Packets
1 MY.NET.1.3 2,890,566

2 MY.NET.111.51 1,623,412

3 MY.NET.153.35 1,522,557

4 MY.NET.81.39 1,189,565

5 MY.NET.70.96 1,130,812

6 MY.NET.112.152 1,082,026

7 MY.NET.1.4 796,703

8 MY.NET.66.56 338,680

9 MY.NET.84.235 295,233

10 MY.NET.42.2 253,157

Top Ten Attackers

Top Ten Attack Sources (T10A)
No IP Address Resolves To Count
1 212.76.225.24 cable-212.76.225.24.coditel.net 7,559

2 MY.NET.11.7 <omitted> 7,017

3 MY.NET.84.235 <omitted> 3,952

4 199.131.21.34 zc7831522.ip.fs.fed.us 3,480

5 68.81.0.87 pcp01333933pcs.columb01.pa.comcast.net 2,993

6 141.157.102.155 pool-141-157-102-155.balt.east.verizon.net 2,693

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 46(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Top Ten Attack Sources (T10A)
7 MY.NET.60.16 <omitted> 2,169

8 131.92.177.18 aeclt-cf00a4.apgea.army.mil 2,166

9 68.57.90.146 pcp912734pcs.brndml01.va.comcast.net 1,660

10 69.138.77.62 pcp08479849pcs.desoto01.md.comcast.net 1,628

Top Ten Generators of Anomalous Data (OOS)

Top Ten OOS Sources (T10O)
No IP Address Resolves To Count
1 68.54.84.49 pcp01741335pcs.howard01.md.comcast.net 1,716

2 202.144.28.167 kurinji.tenet.res.in 699

3 141.224.64.4 bessie.augsburg.edu 265

4 62.174.236.17 FW-17-236.go.retevision.es 171

5 193.170.194.27 <not available> 169

6 66.225.198.20 unknown.splashhost.net 166

7 80.54.249.136 cnet-u-249-136.petrus.pl 163

8 80.38.206.68 68.Red-80-38-206.pooles.rima-tde.net 116

9 MY.NET.199.202 <omitted> 96

10 202.54.60.162 <not available> 90

3.6. Registry Information

I have selected the (in my opinion) five most suspicious external hosts and retrieved
network registry information for them. The result is displayed in this section. They
are ordered by priority, with the most suspicious system first.

199.131.21.34 (zc7831522.ip.fs.fed.us)

The host (number 4 on Top Ten Attackers) appears to be sending shellcode
typically associated with buffer overflows to multiple internal hosts. It also performed
broad-scale scanning indicating a possible worm infection.

Registry: ARIN

OrgName: USDA Office of Operations
OrgID: UOO-2
Address: Suite 133, Building A
Address: 2150 Centre Ave
City: Fort Collins
StateProv: CO
PostalCode: 80526

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 47(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Country: US
NetRange: 199.128.0.0 - 199.159.255.255
CIDR: 199.128.0.0/11
NetName: USDA-CBLK
NetHandle: NET-199-128-0-0-1
Parent: NET-199-0-0-0-0
NetType: Direct Allocation
NameServer: NS.USDA.GOV
NameServer: NS2.USDA.GOV
NameServer: NS3.USDA.GOV
Comment:
RegDate: 1994-02-08
Updated: 2000-06-16
TechHandle: ZU20-ARIN
TechName: USDA - Office of the ChiefInformation Officer
TechPhone: +1-970-295-5277
TechEmail: Network.Operations@usda.gov
OrgAbuseHandle: ZU20-ARIN
OrgAbuseName: USDA - Office of the ChiefInformation Officer
OrgAbusePhone: +1-970-295-5277
OrgAbuseEmail: Network.Operations@usda.gov
OrgNOCHandle: ZU20-ARIN
OrgNOCName: USDA - Office of the ChiefInformation Officer
OrgNOCPhone: +1-970-295-5277
OrgNOCEmail: Network.Operations@usda.gov
OrgTechHandle: ZU20-ARIN
OrgTechName: USDA - Office of the ChiefInformation Officer
OrgTechPhone: +1-970-295-5277
OrgTechEmail: Network.Operations@usda.gov

128.122.66.204 (KAPTEREV.ICAS.FAS.NYU.EDU)

This is a system to which 16 internal hosts generated traffic that may very well be
from a SdBot backdoor. Totally 104 matching packets were sent to it from the 16
hosts (each alert was part of a separate session) .

Registry: ARIN

OrgName: New York University
OrgID: NYU
Address: Academic Computing Facility
Address: 251 Mercer Street
City: New York
StateProv: NY
PostalCode: 10012
Country: US
NetRange: 128.122.0.0 - 128.122.255.255
CIDR: 128.122.0.0/16
NetName: NYU-NET
NetHandle: NET-128-122-0-0-1
Parent: NET-128-0-0-0-0
NetType: Direct Assignment
NameServer: CMCL2.NYU.EDU

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 48(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

NameServer: EGRESS.NYU.EDU
NameServer: NYUNSB.NYU.EDU
Comment:
RegDate: 1986-05-02
Updated: 2001-05-21
TechHandle: ZN68-ARIN
TechName: New York University
TechPhone: +1-212-998-3431
TechEmail: NOC@nyu.edu

24.5.46.4 (c-24-5-46-4.client.comcast.net)

Multiple internal hosts connected to port 65535 on this system. As the port is not
usually associated with any benign traffic, it became exceedingly interesting to
pursue this further.

Registry: ARIN

CustName: Comcast Cable Communications
Address: 3 Executive Campus
Address: 5th Floor
City: Cherry Hill
StateProv: NJ
PostalCode: 08002
Country: US
RegDate: 2003-11-05
Updated: 2003-11-05
NetRange: 24.4.0.0 - 24.5.255.255
CIDR: 24.4.0.0/15
NetName: BAYAREA-9
NetHandle: NET-24-4-0-0-1
Parent: NET-24-0-0-0-1
NetType: Reassigned
Comment: NONE
RegDate: 2003-11-05
Updated: 2003-11-05
OrgAbuseHandle: NAPO-ARIN
OrgAbuseName: Network Abuse and Policy Observance
OrgAbusePhone: +1-856-317-7272
OrgAbuseEmail: abuse@comcast.net
OrgTechHandle: IC161-ARIN
OrgTechName: Comcast Cable Communications Inc
OrgTechPhone: +1-856-317-7200
OrgTechEmail: cips_ip-registration@cable.comcast.com

212.76.225.24 (cable-212.76.225.24.coditel.net)

Number one of the Top Ten Attackers. Suspicious traffic from it indicates a possible
attack against security systems such as IDSses and firewalls as well as TCP/IP
stack fingerprinting.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 49(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Registry: RIPE

inetnum: 212.76.225.0 - 212.76.225.255
netname: CODITEL
descr: Coditel - Internet Services
country: BE
admin-c: XD6
tech-c: YB490-RIPE
status: ASSIGNED PA
notify: tech.registry@coditel.be
mnt-by: CODITEL-MNT
mnt-lower: CODITEL-MNT
changed: xavier.darche@coditel.be 20010109
changed: xavier.darche@coditel.be 20030513
changed: xavier.darche@coditel.be 20030514
source: RIPE
route: 212.76.224.0/19
descr: DN-21276224-BLOCK
descr: Coditel
descr: For routing issues:noc@attglobal.net
remarks: --
remarks: Abuse notifications to: abuse@coditel.be
remarks: --
origin: AS2686
notify: xdarche@netscape.net
mnt-by: CODITEL-MNT
changed: xavier.darche@coditel.be 20000605
changed: xavier.darche@coditel.be 20030514
source: RIPE
person: Xavier Darche
address: Coditel SA
address: 26 Rue des Deux Eglises
address: B - 1000 Brussels
address: Belgium
phone: +32 2 226 54 04
fax-no: +32 2 218 77 00
e-mail: xavier.darche@coditel.be
nic-hdl: XD6
remarks: --
remarks: Abuse notifications to: abuse@coditel.be
remarks: --
notify: xavier.darche@coditel.be
mnt-by: CODITEL-MNT
changed: xavier.darche@coditel.be 20030416
source: RIPE
person: Yves Beckers
address: Coditel SA
address: 26 Rue des Deux Eglises
address: B - 1000 Brussels
address: Belgium
phone: +32 2 226 54 23
fax-no: +32 2 219 77 25
e-mail: yves.beckers@coditel.be
nic-hdl: YB490-RIPE
remarks: --
remarks: Abuse notifications to: abuse@coditel.be
remarks: --
notify: yves.beckers@coditel.be

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 50(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

mnt-by: CODITEL-MNT
changed: xavier.darche@coditel.be 20030416
source: RIPE

141.157.102.155 (pool-141-157-102-155.balt.east.verizon.net)

The host 141.157.102.155 initiated a 75 minutes long SSH session to the internal
host MY.NET.60.16. It is of interest to see what organisation the host is associated
with. The system is number 6 on the Top Ten Attackers list.

Registry: ARIN

CustName: Verizon Internet Services
Address: 1880 Campus Commons Drive
City: Reston
StateProv: VA
PostalCode: 20191
Country: US
RegDate: 2002-03-21
Updated: 2002-03-21
NetRange: 141.157.57.0 - 141.157.126.255
CIDR: 141.157.57.0/24, 141.157.58.0/23, 141.157.60.0/22,

 141.157.64.0/19, 141.157.96.0/20, 141.157.112.0/21,
 141.157.120.0/22, 141.157.124.0/23, 141.157.126.0/24

NetName: VZ-DSLDIAL-CYVLMD-9
NetHandle: NET-141-157-57-0-1
Parent: NET-141-149-0-0-1
NetType: Reassigned
Comment:
RegDate: 2002-03-21
Updated: 2002-03-21
TechHandle: ZV20-ARIN
TechName: Verizon Internet Services
TechPhone: +1-703-295-4583
TechEmail: noc@gnilink.net
OrgAbuseHandle: VISAB-ARIN
OrgAbuseName: VIS Abuse
OrgAbusePhone: +1-703-295-4583
OrgAbuseEmail: abuse@verizon.net
OrgTechHandle: ZV20-ARIN
OrgTechName: Verizon Internet Services
OrgTechPhone: +1-703-295-4583
OrgTechEmail: noc@gnilink.net

3.7. Activity originating from internal hosts (MY.NET.X.X)

Attacks and other suspicious activity originating from the internal network could
imply compromised hosts being used by a malicious outsider as well as illicit activity
from an internal party. As such, internal activity is given extra consideration. The
starting point are those internal hosts found on the T10A list. Despite this, the data

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 51(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

presented will be organised in terms of events rather than hosts as this will give a
better overview.

SMB Name Wildcards

The first system to take a closer look at is MY.NET.11.7. (number 2 on T10A) It is
responsible for 7017 alerts, all of them being of type "SMB Name Wildcard". This
could potentially be a information gathering attack (the "nbtstat -A" command will
generate this alert). For more information regarding the signature, see the following
URL at www.whitehats.com:

http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids177&view=research [39]

To fully analyse this event, it becomes interesting to check other hosts and
destinations for the same attack signature. The data is presented below.

SMB Wildcards to Link Local addresses
Source Target Count

MY.NET.11.7 169.254.0.0 5,186

MY.NET.11.7 169.254.25.129 1,831

MY.NET.11.6 169.254.0.0 518

MY.NET.11.5 169.254.0.0 19

MY.NET.11.4 169.254.25.129 17

In addition, 111 different hosts on other internal networks than MY.NET.11.0/24 sent
this traffic to 169.254.45.176 for a total of 802 times.

What is peculiar with the traffic is that the 169.254 network is an IANA "special
allocation". From RFC 3330 [34]:

169.254.0.0/16 - This is the "link local" block. It is allocated for communication
between hosts on a single link. Hosts obtain these addresses by auto-
configuration, such as when a DHCP server may not be found.

The only clients I am aware of that actually do auto-configuration when failing to get
a DHCP response is Microsoft Windows workstations.

From reading older reports32 concerning this network, I have come to the conclusion
that MY.NET.11.6 and MY.NET.11.7 may be Windows domain controllers. Then it is
also logical that the other systems on the network is Windows servers. Thus, a worm
striking one of them might as easy strike the others (it is not uncommon that all
servers on a small segment are patched at the same time. It then follows that if one
system is vulnerable, chances are that all of them are).

32 Tod Beardsley's GCIA practical is one such example [40].

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 52(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

There is no exact pattern to the packets, but they are evenly spread throughout the
complete five day dataset.

It is somewhat puzzling why the traffic is occurring. One explanation could be that
the sending hosts are infected with one of the numerous worms that scans for open
Windows shares to propagate through (a worm would probably not know or care
about the special allocation of 169.254.0.0/16). However, this is a wild guess. In any
case, these systems should be looked into to determine what is going on.

Additionally, the following systems have issued wildcard requests to a number of
different unique external hosts. While this could be worm activity, I think it to be
more likely they are scanning these hosts for other purposes.

SMB Wildcards from internal hosts (NetBIOS enumeration)
Source Unique Targets

MY.NET.75.13 171

MY.NET.150.198 167

MY.NET.150.44 165

"DDOS mstream" alerts

From MY.NET.84.235 (number 3 on T10A), there are a total of 3248 occurrences of
the alert "DDOS mstream handler to client". The alleged mstream traffic is directed
to 6 different hosts. The Snort rule uses both port and content. The content check
reduces the likelihood for false positives. According to the Snort rule documentation,
there is no known false positives for the rule. Unfortunately, the content check is a
bit too vague; a ">" in the payload in addition to the port (either one of 12754 and
15104) will trigger the alert.

The table below shows the distribution of the alerts for this host.

"DDOS mstream handler to client" alerts from MY.NET.84.235
SRC Port Target Resolves To DST Port Count

12754 82.48.242.184 host184-242.pool8248.interbusiness.it 4662 3,240

12754 62.42.66.52 MS1-3A-u-0563.mc.onolab.com 4662 3

15104 81.102.85.92 cpc1-cosh5-4-0-cust92.cos2.cable.ntl.com 4662 2

15104 81.69.163.174 amr-dmr-185ae.adsl.wanadoo.nl 4662 1

15104 217.236.97.47 pD9EC612F.dip.t-dialin.net 4662 1

15104 80.15.47.94 ARouen-106-1-10-94.w80-15.abo.wanadoo.fr 4662 1

My analysis is that this is a false positive (no matter what the Snort documentation
says). For a real mstream handler, I would expect more hosts, and not 3240
commands to one of them and just an occasional one for the others. What I think
generated this traffic is the file sharing clients Edonkey2000 and Overnet.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 53(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Both clients are made by the same company, and both makes use of destination
port 4662.

From the Edonkey FAQ [41]:

What ports does the donkey use?
TCP port 4662 to connect to other clients.

From the Overnet FAQ [42]:

What ports does Overnet use and how do I change them?
It can run over any port. It uses TCP port 4662 by default
to connect to other clients.

After all, source ports 12754 and 15104 are perfectly valid ephemeral ports. And it is
not very unlikely that a file containing one or more ">" would be transferred by a file
sharing protocol. For example, most MP3 files seem to contain far more than one
">". And if popular rumours are to be believed, MP3's are commonly swapped
through such systems.

Another probable false positive is a connection from MY.NET.60.17 to 65.54.252.99
on port 25. This looks like SMTP to me; especially so since the destination resolves
to mc5.bay6.hotmail.com.

High port 65535 tcp - possible Red Worm - traffic

The Snort signature that generated this alert is not aimed to detect the worm itself,
but rather the backdoors left in place by it. Worth to mention that the worm made
more fame under the name "Adore", for which Red Worm is an alias.

According to F-Secure (http://www.f-secure.com/v-descs/adore.shtml): [36]

The script also replaces "/sbin/klogd" with a version that has a backdoor. The
backdoor activates when it receives a ping packet with correct size, and opens
a shell in the port 65535. Orginal "klogd" will be saved to "/usr/lib/klogd.o".

The Snort rule is far from perfect. It triggers on all TCP or UDP packets where either
the source or destination port is 65535. That is an ephemeral port, meaning that
most systems sooner or later is bound to use it as source port when initiating new
sessions.

For example, there are such alerts from MY.NET.60.16 (number 7 on T10A),
apparently targeting 141.157.102.155 (number 6 on the same list). During a time
period of 75 minutes, 2168 alerts were generated, and all of them had the same
source and destination ports. The source port in question was 22. Also, another
2693 alerts were generated, but this time 141.157.102.155 was the source, and
MY.NET.60.16 the destination. The time interval and port number was identical. To
have a rule trigger on every packet in both directions is impractical in my opinion. My

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 54(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

conclusion is that these 4861 alerts were caused by a single SSH session. To back
up this analysis, I verified that the first packet with destination port 22 preluded the
first one with source port 22 (approximately 0.02 seconds between them).

That an external host established a SSH session (since it lasted for over an hour, it
can be assumed successful authentication took place) to an internal one may be
cause of concern, or be perfectly legitimate, all depending on the site's policy.

The rule is not entirely useless, though. If all connections where one of ports
belongs to a well-known service are removed from the search criteria, a few hosts
remains which may be worth to look further into. The ports removed were 22, 25, 80,
110, 143 and 443.

The first table shows a pattern where several internal hosts connected to a single
destination host ("sessions" indicate how many unique source ports were used, but
not how much data passed through each connection).

Port 65535 connections to 24.5.46.4 (c-24-5-46-4.client.comcast.net)
Source Number of Sessions

MY.NET.97.51 112

MY.NET.97.92 47

MY.NET.97.182 36

MY.NET.97.196 30

MY.NET.97.104 21

MY.NET.97.124 4

MY.NET.98.87 4

The second table shows a case where one internal host connected to multiple
external hosts.

Port 65535 connections from MY.NET.84.235
Target Resolves To Number of Sessions

81.203.197.37 81-203-197-37.user.ono.com 70

217.95.183.166 pD95FB7A6.dip.t-dialin.net 36

217.95.189.202 pD95FBDCA.dip.t-dialin.net 5

80.141.209.242 p508DD1F2.dip0.t-ipconnect.de 3

80.178.191.31 80.178.191.31.forward.012.net.il 2

Patterns like above generally makes me twitchy; something is probably going on
here. It could be the Red Worm (Adore) backdoor, but it could also be something
else (I have lost count of the number of file sharing and instant messaging programs
out there, and everyone seem to be configurable to run on some custom port or
another). Another thing worth to mention is that the number of packets per session is

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 55(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

quite low; most are between 1 and 20 (this is one direction only, but as it is TCP, the
number on the other side should be approximately the same).

On a final note - there is no registered (i.e. by IANA) usage of port 65535; neither
does it seem to be any well-known but not registered application making use of it.

3.8. Activity from external systems

"MY.NET.30.X Activity"

Apparently, there are rules that logs some - or all -traffic with a destination of
MY.NET.30.3 or MY.NET.30.4. This being the case, one can only surmise those
systems are considered important. As both events occur frequently both in terms of
total events and in the event set of the most frequent external systems, I feel it
necessary to present what the traffic constituted.

The four most frequent “offenders” are also on the T10A list:

Most frequent offenders in terms of events
T10A Source Address Resolves To Most Targeted Port

5 68.81.0.87 pcp01333933pcs.columb01.pa.comcast.net 51443

8 131.92.177.18 aeclt-cf00a4.apgea.army.mil 524

9 68.57.90.146 pcp912734pcs.brndml01.va.comcast.net 524

10 69.138.77.62 pcp08479849pcs.desoto01.md.comcast.net 524

If we change view and look at the sessions with most packets (assuming that source
and destination port is the same during a session, and that all packets - i.e. not only
SYN - were logged), we get a pretty accurate picture of what is going on.

Sessions going to MY.NET.30.3
Source IP Resolves To SRC Port DST Port Count

131.92.177.18 aeclt-cf00a4.apgea.army.mil 1033 524 2166

68.57.90.146 pcp912734pcs.brndml01.va.comcast.net 1030 524 1136

68.55.113.194 pcp311543pcs.woodln01.md.comcast.net 32852 524 719

...and so on down to:
68.43.170.140 bgp01087647bgs.waren301.mi.comcast.net 1880 80 28

68.43.170.140 bgp01087647bgs.waren301.mi.comcast.net 1670 80 21

207.245.65.114 207-245-65-114.theenterprisecenter.com 51601 80 16

The protocol associated with port 80 is known to most people. The conclusion that a
web server is running on the system seem natural. Port 524 may not be as common,
but in this case, most of the traffic goes there. People with a background in Novell

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 56(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

system will immediately think "NCP" or NetWare Core Protocol. A brief explanation
can be found at protocols.com [43]:

The Novell NetWare Core Protocol (NCP) manages access to the
primary NetWare server resources. It makes procedure calls to the
NetWare File Sharing Protocol (NFSP) that services requests
for NetWare file and print resources.

The system should either be a Novell NetWare server running a web server, or a
Linux system with a web server and NCP services. Both seem as likely to me.

Sessions going to MY.NET.30.4 (each row indicates a session)
Source IP Resolves To SRC Port DST Port Count

68.81.0.87 pcp01333933pcs.columb01.pa.comcast.net 43461 51443 1,417

68.81.0.87 pcp01333933pcs.columb01.pa.comcast.net 51652 51443 642

68.55.116.84 pcp312201pcs.woodln01.md.comcast.net 41413 524 146

68.81.0.87 pcp01333933pcs.columb01.pa.comcast.net 39108 51443 125

68.67.86.74 pa-jefferson1a-74.chvlva.adelphia.net 1028 524 40

69.140.109.252 pcp04418584pcs.nrockv01.md.comcast.net 1082 80 38

68.57.90.146 pcp912734pcs.brndml01.va.comcast.net 1033 524 32

172.169.96.44 ACA9602C.ipt.aol.com 1978 80 31

138.88.183.54 pool-138-88-183-54.res.east.verizon.net 50410 51443 31

69.137.151.85 pcp08726942pcs.towson01.md.comcast.net 1204 80 28

The same analysis as for MY.NET.30.3 applies here, as both port 80 and 524 is
targeted. Interestingly, another port takes most of the traffic: 51443. That one is not
registered by IANA. So what is it?

By all probability, it is a service for Novell servers called NetStorage. It runs on two
ports, 51080 for HTTP, and 51443 for HTTPS. More information about this can be
found at the URL below [44]:

http://developer.novell.com/research/appnotes/2002/june/03/a0206033.htm

As it is a network based storage system, it is not too extraordinary that it receives
more traffic than other ports.

Activity from 199.131.21.34 (zc7831522.ip.fs.fed.us)

This system is number 4 on T10A.

One alert initially (more about this later) appears as a bit misguided; it is a single
packet triggering a "MY.NET.30.4 activity" alert towards port 2745. The remaining
3479 attacks is "EXPLOIT x86 NOOP", which could be shellcode associated with

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 57(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

buffer overflow attempts. The destination ports are port 80 (2885 occurrences) and
port 1025 (594 occurrences). I am usually a bit sceptical against x86 NOP alerts
targeting port 80, as any downloaded GIF-image will match the signature as well.

However, port 80 false positives generally tend to be concentrated on a single web
server. In this case, there is probably genuine cause for concern. In total, 436
unique hosts on MY.NET were targeted on port 80, and 75 hosts on port 1025 (in
total, 499 unique hosts were attacked, meaning a few systems were attacked on
both ports).

Unfortunately, it is quite difficult to determine whether any attack was successful.
What I will do is to list the top five destinations in terms of alerts (the majority were
targeted one or two times).

Top destinations for port 80
Destination Count

MY.NET.84.235 773

MY.NET.84.236 767

MY.NET.84.204 305

MY.NET.84.135 190

MY.NET.70.148 9

Top destinations for port 1025
Destination Count

MY.NET.84.227 31

MY.NET.84.203 28

MY.NET.84.176 24

MY.NET.84.187 24

MY.NET.84.205 24

MY.NET.84.235 deserves special consideration, as it already has been listed as a
potential problem. In fact, with a count of 18, it has a higher score than average on
port 1025 too.

To be able to attack only hosts listening on the target ports, it is realistic to assume
some type of scanning preluded the attacks. In this case, a SYN scan swept over
2398 internal hosts.

Distribution of scans from 199.131.21.34 (zc7831522.ip.fs.fed.us)
Destination Port Probable Target Service Count

2745 Backdoor left by Bagle 4422

1025 Buffer Overflow (MS03-032) 3602

80 Buffer Overflow (MS03-032) 1579

The above information explains the odd alert (MY.NET.30.4 Activity) previously
mentioned. The rule picked up on the scan rather than the attack.

The scan does not appear to be symmetric. By that I mean that all ports were not
scanned on every host. This asymmetry could indicate a worm, but it is not
impossible that the host in question has been “manually” compromised and is used
as a springboard for various malicious activity.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 58(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

On a final note, the source of the attack originates from a netblock owned by the US
Department of Agriculture. They may be more interested than the average cable
provider in knowing that one of their hosts are participating in illicit activity.

Activity from 212.76.225.24 (cable-212.76.225.24.coditel.net)

All systems on the T10A list have been dealt with except one: the most frequent
offender of them all. So what did this system do?

Overview of activity from 212.76.225.24 (cable-212.76.225.24.coditel.net)
Attack Target Count

Tiny Fragments - Possible Hostile Activity MY.NET.43.3 7,487

Null scan! MY.NET.43.3 57

Tiny Fragments - Possible Hostile Activity MY.NET.43.2 15

The majority of the "Tiny Fragments" traffic occurred between 00:30 and 08:00
during the 10th of April 2004. The 15 packets directed to MY.NET.43.2 happened
between 05:29 and 08:58 one day later (April 11). All packets had a recorded source
and destination port of zero.

The "Null scan!" triggers on all TCP packets that have no TCP flags at all. Of these,
most have source and destination ports of zero. The remaining 16 appears to be
random.

I can think of two reasons why the traffic is occurring. The first one is a broken
network device somewhere. The second one is traffic designed to cause a denial of
service (strange fragmentation generally makes me suspicious) against a NIDS,
firewall, or the targeted host itself. As it is best to assume the worst until the opposite
is proved, I will suspect the latter.

The system is also a perpetrator of some peculiar scans, all of them targeting
MY.NET.43.3. There is a total of 118 scans. Among these, 27 different combination
of TCP flags can be found, which is quite impressive. Most of the combinations are
invalid (one such example is a packet with URG, ACK, SYN and RST).

This scanning may be part of the other attack, but may also indicate an attempt to
fingerprint the IP stack of the target.

The system does not occur in the OOS files, which I almost would have expected by
seeing a bunch of very weird packets.

3.9. More on Scans

Except for the scans that has already been discussed, there are some additional
information that deserves to be mentioned. It is a bit alarming that the top ten

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 59(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

scanning systems are internal hosts targeting external ones. The relationship
between internal and external hosts are shown below:

• Totally scanned hosts 3,998,813
• Totally scanned external hosts: 3,983,071
• Totally scanned internal hosts 15,742
• Percent internal hosts scanned: 0,4%

MS-RPC scanning

Two of the systems were found to be scanning large number of hosts on port 135,
which is typically associated with MS-RPC services. In both cases, the scanning was
incremental in terms of destination and source port.

Scans targeting port 135 TCP
T10S Source Unique targets

2 MY.NET.111.51 1,622,989

4 MY.NET.81.39 1,188,983

The problem is, there are so many attacks associated with port 135 that it is hard to
tell what the purpose is. It may, for example, be a reconnaissance scan, storing the
results for future use. There is no attacks corresponding to this scanning activity (this
does not mean there weren't any, only that none were recorded).

Although not directly relevant to this activity, it should be mentioned that
MY.NET.111.51 does appear in the alert logs. On three occasions, the signature
"RFB - Possible WinVNC - 010708-1" triggered. It went off on different days (9th,
10th, and 11th of April), and different destination ports were used (source port was
5900). This may indicate that the system 68.55.192.251 did connect to the internal
host using VNC, a remote desktop control utility which is available free of charge.

File sharing client scanning from MY.NET.84.235

One host that has been mentioned many times before, and will be mentioned again
is MY.NET.84.235. It earned position 9 on the T10S list by scanning 15,730 unique
targets on port 4662, which I previously stated is likely to belong to the Edonkey2000
or Overnet file sharing clients.

Extensive DNS utilisation

A vast number of scans were recorded with a target port of 53 (UDP). Further
investigation shows that there is two internal systems that generated this traffic.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 60(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Scans targeting port 53 UDP
T10S Source Unique targets Number of packets

1 MY.NET.1.3 103,753 2,878,847

7 MY.NET.1.4 58,528 786,975

There is also a few TCP packets on port 53:

Scans targeting port 53 TCP
T10S Source Unique targets Number of packets

1 MY.NET.1.3 29 300

7 MY.NET.1.4 7 46

When the traffic also is sorted on destination hosts, the picture starts to emerge.

Traffic from MY.NET.1.3
Target Resolves To Number of packets

69.6.57.7 <not available> 82,845

69.6.57.9 <not available> 82,735

192.26.92.30 c.gtld-servers.net 47,847

69.6.57.8 <not available> 40,593

69.6.57.10 <not available> 40,501

Traffic from MY.NET.1.4
Target Resolves To Number of packets

192.26.92.30 c.gtld-servers.net 20,655

192.48.79.30 j.gtld-servers.net 15,120

192.5.6.30 a.gtld-servers.net 13,071

69.6.25.84 n/a, SOA = ns1.wholesalebandwidth.com 11,790

65.244.133.127 n/a, SOA = auth00.ns.uu.net 11,116

65.244.133.129 n/a, SOA = auth00.ns.uu.net 10,472

It seems like MY.NET.1.3 and MY.NET.1.4 are DNS servers serving internal hosts.
In order words, I would conclude that this scanning is in fact false positives (i.e. it is
normal traffic). Les Gordon's practical [45] confirms my theory about these systems
being DNS servers.

When comparing the internal sources with recorded alerts, all33 we get is three Red
Worm false positives, when source port is 65535, but destination still is 53 TCP.

33 To be truly honest, MY.NET.1.3 has a single Tiny Fragment alert associated with it as well, going to
216.127.235.73, with source and destination ports of 0. As this is an isolated event, it may be
nothing more than a corrupt packet or even a problem with the Snort sensor itself.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 61(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

From looking at the timestamps, it appears to be one attempt and two retries, most
likely caused by a truncated answer on an UDP query together with a firewall
blocking TCP port 53 at the other end.

The four servers on the same network (69.6.57.0) is a bit interesting. One would
think that DNS servers would have valid reverse information. The funny thing is that
there are normal DNS records for them:

nserver: a.ns.alwaysclickingonemails.com 69.6.57.7
nserver: b.ns.alwaysclickingonemails.com 69.6.57.8
nserver: c.ns.alwaysclickingonemails.com 69.6.57.9
nserver: d.ns.alwaysclickingonemails.com 69.6.57.10

Source: http://www.dslreports.com/forum/remark,10137492~mode=flat [46]

The netblock belongs to WholesaleBandwidth, Inc.

Apparently, both the netblock and the domain is associated with excessive UCE
(Unsolicited Commercial Email, or “spam”, which it is more frequently known as). If
the internal email servers do a reverse lookup on incoming connections (which is
fairly common practice), it would certainly explain why its DNS servers get a lot of
traffic (approximately the same as the gTLD servers).

Miscellaneous UDP scanning from MY.NET.153.35

MY.NET.153.35 (position 3 on the T10S) performed a wide variety of scans. In total,
1,522,557 packets were recorded. Most of them were UDP. The most frequent
grouping targeted port 1214/udp on 4488 different hosts, for a total of 19,494
packets. Except from that, I have not perceived any particular patterns.

When running the source against the attack data, I found at least some alerts that
may warrant a closer inspection on this host. The interesting alert is of type “High
port 65535 udp - possible Red Worm – traffic”, which occurs more frequently as its
TCP counterpart. In this case, all packets has a source port of 3247, which indicates
that a tool is being used. The table below lists the destination hosts:

Possible Red Worm (UDP) traffic from MY.NET.153.35 – Port 65535/udp
Target Resolves To Count

217.165.75.40 de2294.alshamil.net.ae 13

64.53.153.88 d53-88-153.nap.wideopenwest.com 7

64.231.25.137 HSE-Toronto-ppp293457.sympatico.ca 4

24.5.46.4 c-24-5-46-4.client.comcast.net 3

82.48.87.89 host89-87.pool8248.interbusiness.it 2

Note that destination 24.5.46.4 also had connections to TCP port 65535 from
several internal hosts.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 62(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Internal systems compromised by worms

Several internal systems were found to perform extensive scanning on TCP ports
135, 139, 445, 1025, 2745, 3127, 3410, 5000 and 6129. Furthermore, those
systems contacted one single host on port 7000, triggering the alert "[UMBC NIDS
IRC Alert] Possible sdbot floodnet detected attempting to IRC". SdBot was first
analysed back in 2002, which would explain why the (presumably old) Snort ruleset
found it. SdBot was originally34 nothing more than an IRC backdoor, but later
variants appeared with more offensive elements.

The characteristics of this attack says it should be a Phatbot, Agobot, Gaobot,
Polybot - or even a recent SdBot - variant. It is not really important which one it is -
what matters is that several internal systems are infected by a worm with an IRC-
controlled backdoor (that is, controlled by an malicious outsider), and that they
currently are scanning external hosts in order to add to a potential zombie army. By
having a clue about the malware in question, we can also find a likely explanation
what exactly it is looking for35. An example on the scan distribution, including
targeted vulnerabilities, is shown in the table below.

Scan distribution from MY.NET.112.152
Port Probable Target Service Unique Targets Packets

2745 Bagle Backdoor 130,315 166,818

135 DCOM2 vulnerability. (MS03-039) 118,213 151,458

1025 MS03-032 vulnerabilities 108,950 138,439

445 MS03-032 vulnerabilities 98,122 124,548

3127 MyDoom.A Backdoor 91,188 115,350

6129 Dameware vulnerability 85,436 107,441

139 MS03-049 Workstation vulnerability 78,095 98,054

3410 Optix Pro Backdoor 73,142 91,474

5000 MS01-059 UPnP vuln. 68,893 85,981

Although the number of packets and targets vary between the source addresses, the
pattern is similar (i.e. port 2745 was hit more than port 5000). The observant reader
will have noticed that the unique targets are fewer than the packet count. This has
an simple explanation: if more than one million hosts are scanned, the likelihood is
that some of them will have the targeted port open. When this happens, an attempt
to exploit the vulnerability will occur. As TCP is the protocol in use, a three-way-
handshake will be required before the malicious payload. Thus, for each port that is
open, at least 4 additional packets will be sent.

The below table shows which internal hosts seems to be infected, and the extent of
their scanning (destination ports aggregated).

34 http://www.f-secure.com/v-descs/sdbot.shtml [37]
35 Courtesy of Joe Stewart [47]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 63(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Probable Worm activity from internal systems
T10S Source Unique Targets Packets

5 MY.NET.70.96 89,939 1,130,728

6 MY.NET.112.152 139,466 1,079,563

8 MY.NET.66.56 37,160 338,527

10 MY.NET.42.2 39,832 250,968

- MY.NET.151.75 24,345 211,495

- MY.NET.80.224 15,466 139,721

- MY.NET.153.174 16,760 136,783

- MY.NET.43.10 14,521 81,710

- MY.NET.80.5 9,582 81,588

- MY.NET.97.66 17,872 73,547

- MY.NET.150.199 5,755 47,867

At this point, I also noticed that our old friend MY.NET.84.235 seem to be suffering
from a SdBot as well. Not only that, but it goes to the same server as MY.NET.80.5,
which may be suffering from yet another type of worm.

3.10. Out Of Spec Traffic

Traffic with "Reserved” TCP Flags

Most of the OOS packets are probably logged due to the fact that the Snort ruleset
is a bit outdated. For example, the number one source on the T10O list is
responsible for 1716 POP3 (port 110 TCP) attempts towards MY.NET.6.7, which
may or may not be a POP server. Apparently, one new session is made every
minute through the data set. There are no recorded alerts from the source.

It is fairly clear why the traffic triggered. All packets have the TCP “reserverd” bits set
(both 1 and 2). This is the problem with the older ruleset; those bits are reserved no
longer, but instead used for Explicit Congestion Notifications36. And in the SYN
packet, both CWR and ECE (bits 1 and 2) should be set. Of course, for the packet to
be completely valid, the ECN bits in the IP header should both be set to zero.

It is possible (and even likely) that MY.NET.6.7 is a POP server, and that
68.54.84.49 is a remote user doing a frequent (a bit too frequent to be polite, in my
opinion) connections to retrieve new email in almost real-time. But as nobody told
Snort that the reserved bits are no more, the alerts are still being generated.

This issue seem to apply for sources 1 to 8 and 10 on the T10O list. An overview on
the traffic is available below.
36 Implemeted by RFC 3168 [48].

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 64(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Traffic Overview (Reserved TCP Flags)
T10O Source Destination(s) Port(s) Usage Count

1 68.54.84.49 MY.NET.6.7 110 POP3 1,716

2 202.144.28.167 MY.NET.70.225 4662 File Sharing 699

3 141.224.64.4 MY.NET.12.4 25 SMTP 265

4 62.174.236.17 MY.NET.43.3 24842 <unknown> 171

5 193.170.194.27 MY.NET.110.82
MY.NET.12.6

113
25

Auth/Ident
SMTP 169

6 66.225.198.20 MY.NET.12.6 25 SMTP 166

7 80.54.249.136 MY.NET70.225 4662 File Sharing 163

8 80.38.206.68 MY.NET.42.10 28053 <unknown> 116

10 202.54.60.162 MY.NET.24.44
MY.NET.60.14

80 HTTP 90

Nothing strikes my mind as odd when looking at the timestamps either, so it is
probably nothing serious (unless file sharing is prohibited, but that is a policy
question rather than a OOS problem).

Something that is somewhat out of the ordinary here is the traffic to ports 24842 and
28053, which are not standard ports. The traffic has the SYN flags set, so it is
apparently attempts to create new sessions.

Another oddity came from 80.54.249.136: it appears that ephemeral ports are
capped at 5000, the largest one seen is 4982, but the traffic indicates several wrap-
overs, i.e. it reverts back to somewhere just above 1023.

Traffic from MY.NET.199.202

MY.NET.199.202 has position 9 on T10O, with 96 recorded packets. The reason
they were recorded seems to be same as above, i.e. “reserved” TCP flags.
However, there is something peculiar with those packets - these are the only ones in
scans, oos, or alerts which have MY.NET both as source and destination. One might
suspect something unsavoury going on. The TTL is 61 in all packets (the initial TTL
may have been 64, which means the host is three router hops away), and the source
port is increasing incrementally (as it should), so it is most likely the same source
host. It could be that MY.NET.199.202 has a misconfigured router setting, which
could explain why the traffic is seen by the Snort sensor.

The traffic can be summarised thus:

OOS Traffic from MY.NET.199.202
Target Port Number of Packets

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 65(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

OOS Traffic from MY.NET.199.202
MY.NET.12.7 443 39

MY.NET.24.34 80 29

MY.NET.12.4 143 10

MY.NET.60.39 22 4

MY.NET.60.38 22 4

MY.NET.24.44 80 3

MY.NET.60.14 80 2

MY.NET.24.33 443 2

MY.NET.12.2 25 2

MY.NET.34.11 80 1

Other OOS traffic from MY.NET

All other OOS packets from MY.NET comes from two hosts: MY.NET.12.4 and
MY.NET.12.6. An overview is available below:

OOS traffic from MY.NET.12.4
Target Resolves To SRC port DST Port

68.34.99.7 pcp02751671pcs.essex01.md.comcast.net 143 19830

66.92.148.23 dsl092-148-023.wdc2.dsl.speakeasy.net 143 3941

24.16.14.104 c-24-16-14-104.client.comcast.net 143 2321

From looking at the source port, one might expect this to be IMAP server responses.

OOS traffic from MY.NET.12.6
Target Resolves To SRC Port DST Port

211.144.32.98 <not available> 25 3207

216.219.110.229 mail16.savings-blvd.com 25 13808

24.10.168.33 c-24-10-168-33.client.comcast.net 25 4303

24.187.74.24 ool-18bb4a18.dyn.optonline.net 25 3389

61.1.93.44 <not available> 25 1236

69.6.65.45 <not available> 25 19022

24.57.150.188 d57-150-188.home.cgocable.net 25 3150

216.219.110.139 mail6.savingsave.com 25 4382

My guess is that MY.NET.12.0/24 is dedicated for email services (we previously saw
a system – MY.NET.12.7 - getting traffic on the POP3 port). MY.NET.12.6 seem to
be a SMTP server.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 66(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Checking the oos.txt file in more depth, the traffic to those two hosts are TCP RST- it
fits perfectly well into the theory of it being responses.

There is three interesting things with this traffic:

The TTL is 255

This means that the NIDS sensor should be on the MY.NET.12.0 network
segment or that the traffic is crafted by a device on the same segment as the
sniffer interface (The ECN specification warns that some routers or firewalls may
wrongly respond with a RST when seeing ECN bits set).

The RST packets have the CWR/ECE bits set

This is kind of interesting. The ECN specification is a bit hard to read, but if I
understand correctly, a RST that comes as a response to a SYN should not have
these bits set.

No corresponding requests

If they are responses, one surmise we would have had requests logged in the
same way. That is not the case. And as stated above, ECN-capable (and
compliant) systems should not use these bits unless they appeared in the SYN
(and they furthermore responded correctly with SYN-ACK), in which case they too
would have been logged. One possibility is that there is multiple routes to the
Internet, and that the replies took a different path out. But for the traffic to be
legitimate, these must be resets for an already established TCP session, and not
something else (e.g. response to a malformed packet).

To conclude this section – I have no real idea what is going on there. Further
investigation is recommended.

3.11. Analysis Process

My analysis platform was a laptop system running Gentoo Linux.

The first step was to concatenate all files of the same type into one file. This gives
larger files (the scans file became 970 MB), which increases the time and computing
resources required for analysis. The advantage is that it is easier to find
relationships over multiple days. The files were uncompressed using gunzip before
the concatenation took place.

$ cat alert.* >> alerts.txt
$ cat scans.* >> scans.txt
$ cat oos_reports* >> oos.txt

A fourth file was created by removing all portscans from the alert file, since these
were a majority. My thought was to deal with the portscans through the scan logs
instead. This step was done by using grep:

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 67(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

$ grep -v "spp_portscan" alerts.txt > alerts_no_ps.txt

The four files listed below became the input for all subsequent analysis.

Concatenated files
File name File size Contents

alerts.txt 207M All generated alerts

alerts_no_ps.txt 8.6M All alerts that are not portscans

oos.txt 8.1M All "Out of Spec" alerts

scans.txt 994M Full list of portscans

After taking a quick glance at the raw data, I quickly realised the foolishness of
sifting through them manually. Being somewhat familiar with Perl, it made a logical
choice as it is more or less designed for just this sort of things. Or is it?

I noticed that Perl did not like it at all when it ran out of memory (segmentation fault).
To be able to do any meaningful analysis I had to add some extra 2 GB of swap and
not even then was I able to run all analysis. After having run snortsnarf.pl for over
four hours, I gave up and went to install a MySQL database instead.

That caused the next problem. I needed to get the data into the database. And
before even that, I had to decide how to design the tables.

I looked at Brandon Newport's practical [49] to get some pointers (for information on
how to create the initial database, refer to his practical or the excellent MySQL
documentation [50]).

I opted for three different tables (Brandon used two, alerts and spp): alert, scans and
oos. After some fiddling on my own part, the three tables looked thus (formatted as
from the 'describe' command):

Description of the 'alert' table
Field Type Null Key Default Extra

date varchar(21) YES NULL

attack varchar(80) YES NULL

src varchar(15) YES NULL

srcport int(5) YES NULL

dst varchar(15) YES NULL

dstport int(5) YES NULL

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 68(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Description of the 'scans' table
Field Type Null Key Default Extra

date varchar(15) YES NULL

src varchar(15) YES NULL

srcport int(5) YES NULL

dst varchar(15) YES NULL

dstport int(5) YES NULL

type varchar(10) YES NULL

info varchar(30) YES NULL

Description of the 'oos' table
Field Type Null Key Default Extra

date varchar(25) YES NULL

src varchar(15) YES NULL

srcport int(5) YES NULL

dst varchar(15) YES NULL

dstport int(5) YES NULL

For the amusement of the reader, here is a “what ever did I think with”-story:

Some time into the analysis, I tried to list all destination ports below
1024 and got back entries with port 65535. My error?

The “dstport” field was initially defined as “varchar” instead of “int”. Text
and numerical comparison behaves quite differently. Needless to say, that was
the point where I had to learn how to use "alter table".

I decided to go without the portscanning alerts already extracted from the alert file
since I would be analysing each individual packet as part of the scans data instead.

Preparing the data and populating the tables

When loading data into a database, the data must be formatted in a way the
database can understand. Usually, this means an arbitrary number of lines,
separated by newlines, and consisting of a number of fields, delimited by a character
that is unlikely to appear in the data. Brandon used % (not perhaps the most
common choice) as delimiter, but I saw no particular reason to do otherwise.

Furthermore, I extended the sed lines he wrote to do the extraction, and combined
them with grep. For more information what the particular lines does, please refer to
his practical (my sed modifications include extra white space removal; the grep
command is used to exclude incorrect lines).

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 69(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Preparing the alert data

As Snort handles several IP-protocols, it should not come as a surprise that some
alerts (e.g. any that is not TCP or UDP) lacked port number information. Obviously,
this wreaked some havoc in the import process. Result: a small program written (I
decided I would prefer to have all alerts in the same table rather than splitting them
into two). The program checks the number of delimiters, and if it is three (as
opposed to five, as it will be with port numbers), it inserts two more delimiters in the
correct position (which will cause the port values to be null). Rows that has neither
three nor five delimiters will be excluded.

$ grep "^04/" alerts_no_ps.txt \
| sed -e 's/[[:space:]]*\[**\][[:space:]]*/\%/g' \
-e 's/ -> /\%/g' -e 's/:/%/4' -e 's/:/%/3' \
| ./insert_delims

A file named file db_alert_input.txt will be generated by insert_delims (which is the
program I wrote37). 15 rows were ignored by insert_delims, and 79 were excluded by
grep. They were reviewed to confirm they did not contain any critical alerts.

Two rows had to be corrected manually (the \% in K:lined were replaced with a
dash), as the sed script was unable to handle colons in the alert description (I
preferred this manual correction rather than spending a night in sed's manual page):

04/07-19:53:19.847607%[UMBC NIDS IRC Alert] K\%line'd user detected,
possible trojan.%211.146.117.228%6883%MY.NET.84.203:1181

04/10-02:26:55.616670%[UMBC NIDS IRC Alert] K\%line'd user detected,
possible trojan.%210.155.158.200%6969%MY.NET.97.158:3416

After this, the data loaded without problems:

mysql> load data local infile "/home/gcia/db_alert_input.txt"
into table alert fields terminated by "%";

Preparing the scans data

When I first tried to import the data into the tables, MySQL returned warnings.
A cursory glance showed incomplete lines in the downloaded files. I tried to see if
the original meaning could be preserved, but in many cases, the lines were too
corrupted. I decided to write a small program to remove most of the offending lines
(the program38 ignores all lines which does not have exactly n delimiters and the
output is written to dbout.txt).

cat scans.txt | sed -e 's/Apr /Apr /' -e 's/ -> /%/' \
-e 's/:/%/3' -e 's/:/%/3' -e 's/ /%/3' \
-e 's/ /%/3' -e 's/ /%/3' \
| ./extract_dbout 6

37 It can be retrieved from http://hem.bredband.net/flank/source/insert_delims.c [51]
38 Available at http://hem.bredband.net/flank/source/extract_dbout.c [52]

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 70(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This excluded 116 bad rows, and I decided to load the data:

mysql> load data local infile "/home/gcia/dbout.txt"
into table scans fields terminated by "%";

Unfortunately, there were still warnings during import. To remove remaining bad
lines, I chose to do it from MySQL instead (remember, there were more than 15
million entries in there so it was not very funny to handle it with standard UNIX
commands, and especially not on laptops which usually comes with IDE disks).

The following command listed all scan types in the table:

mysql> select distinct type from scans;

I could then list all scan types which looked legitimate, and tell MySQL to delete any
other types. This left me with a table I felt were OK for my need. Probably not the
most elegant way to do it, but it worked for me.

mysql> delete from scans where type != 'SYNFIN' and
type != 'SPAU' and type != 'FULLXMAS' and type != 'XMAS'
and type != 'NMAPID' and type != 'NOACK' and
type != 'NULL' and type != 'UNKNOWN' and
type != 'INVALIDACK' and type != 'SYN' and type != 'FIN'
and type != 'UDP' and type != 'VECNA';

Preparing the OOS data

As I already mentioned, I decided to import the OOS information into the database.
For this purpose, I used only the first line for each alert to make it manageable (it
contains time, source, destination and ports). The oos table was used to find
relationships, while the text file was used for in-depth analysis on isolated events.

$ grep "^04/" oos.txt | sed -e 's/ -> /%/' -e 's/ /%/' \
-e 's/:/%/3' -e 's/:/%/3' > oos_db_in.txt

mysql> load data local infile"/home/gcia/oos_db_in.txt"
into table oos fields terminated by "%";

Performing the analysis

With the database up and running, it was time to start the analysis. It was done with
a large number of different SQL queries. It is not feasible to describe every
command used, or even a small subset of them. Instead, I will just give a few
samples to indicate my methodology.

I thought it a good idea to start with the Top Ten Talkers part, and then delve deeper
into interesting events.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 71(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

For example, to list the top ten generators of alerts, the following SQL query could
be used (“desc” means it should list the highest count first):

mysql> select src, count(*) as count from alert group by src
order by count desc limit 10;

Then, assuming that MY.NET.11.7 was highest on the list, one could dig further into
its behavior (this would list all destinations, the alert, and the number of occurrences
for each destination and alert, with the highest count first):

mysql> select dst, alert, count(*) as count from alert
where src = 'MY.NET.11.7' group by dst,alert
order by count desc;

The great advantage with the database approach is its flexibility. The problem is that
is hard to tell exactly what to look after. That will vary between each data set. As
such, I felt it more important to cover how I prepared the data, which I hope I have
done to a satisfying degree.

Since the Snort ruleset which generated the logs was a bit dated, I downloaded an
older version of Snort to use as a reference. For this purpose, I chose version 1.8.5.

I also want give some extra credit to http://www.portsdb.org [53], which is an
excellent resource for finding information regarding port usage (both IANA [54][55]
and user supplied).

Method Evaluation

I am not a DBA, and my SQL and database management skills are rudimentary at
best (the only prior experience I had was the odd SQL query now and then). This
being the case, I am sure that my queries were coarse, and that I could have
designed the tables and database much more optimally. Even so, I felt many times
during the analysis that I had done the correct choice. The worst query took
approximately 4 minutes (it was done on the 15 million entries in the scans table).
To just write a perl script for that particular query would have taken far longer, let
alone the execution of it.

The biggest problem was to get the data into the tables, and this was further
complicated by the invalid entries that existed in the data files.

Something that I realised at the end of the analysis (I never fixed this) was that I
should have taken more care with the timestamps. If they had been imported into
fields of date/timestamp type, it could have simplified some searches (e.g. being
able to sort on reverse date, or event within an hour). I feel I managed pretty well
without this, but I thought I should mention it as a suggestion for future work.

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 72(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4. References for part two and three

[0] ”Snort”. URL: http://www.snort.org/ (25 Jun 2004)

[1] “Part 2 data” URL: http://www.incidents.org/logs/Raw/2003.12.15.tgz (24 Jun 2004)

[2] Martin, Ian. “SANS GCIA Practical Version 3.3”. Jul 2003.
URL: http://www.giac.org/practical/GCIA/Ian_Martin_GCIA.pdf (24 Jun 2004)

[3] “oui.txt”. URL: http://standards.ieee.org/regauth/oui/oui.txt (24 Jun 2004)

[4] “IEEE OUI and Company_id Assignments”
URL: http://standards.ieee.org/regauth/oui/index.shtml (24 Jun 2004)

[5] ”GCIA Raw data README”. Apr. 2004.
URL: http://www.incidents.org/logs/Raw/README (24 Jun 2004)

[6] Postel, Jon (editor). ”Internet Protocol”. Sep 1981.
URL: http://www.ietf.org/rfc/rfc0791.txt (24 Jun 2004)

[7] “Nessus”. URL: http://www.nessus.org (24 Jun 2004)

[8] “Source routed packets”. 2003.
URL: http://cgi.nessus.org/plugins/dump.php3?id=11834 (24 Jun 2004)

[9] “CAN-1999-0510”. 1999.
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0510 (24 Jun 2004)

[10] “Source Routing”. URL:
http://www.iss.net/security_center/advice/Underground (line wrapped)
/Hacking/Methods/Technical/Source_Routing/default.htm (24 Jun 2004)

[11] Novak, Judy et al. “TCP/IP for Intrusion Detection”. The SANS Institute. 2004.

[12] “IDS418 "SOURCE_ROUTE_UDP_LSRR"”.
URL: http://www.whitehats.com/info/IDS418 (24 Jun 2004)

[13] “CVE-1999-0909”. 2000.
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0909 (24 Jun 2004)

[14] “Microsoft Windows IP Source Routing Vulnerability”. Sep 1999.
URL: http://www.securityfocus.com/bid/646 (24 Jun 2004)

[15] “NAI-Sep201999: Windows IP Source Routing Vulnerability”. Sep 1999.
URL: http://www.securityfocus.com/advisories/1761 (24 Jun 2004)

[16] Postel, Jon (editor). ”Transmission Control Protocol”. Sep 1981.
URL: http://www.ietf.org/rfc/rfc0793.txt (24 Jun 2004)

[17] ”OpenSSH Security”. URL: http://www.openssh.org/security.html (25 Jun 2004)

[18] Cheswick, William & Bellovin, Steven. “Firewalls and Internet Security Repelling the Wily
Hacker”. Reading. Addison-Wesley. 1994. ISBN 0-201-63357-4.

[19] Sternudd, Patrik. “[Intrusions] LOGS: GIAC GCIA Version 3.4 Practical Detect Patrik Sternudd”.
Apr 2004. URL: http://www.dshield.org/pipermail/intrusions/2004-April/007902.php (24 Jun 2004)

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 73(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[20] Sternudd, Patrik. “[Intrusions] LOGS: GIAC GCIA Version 3.4 Practical Detect Patrik Sternudd
(resubmitted)”. Apr 2004.
URL: http://www.dshield.org/pipermail/intrusions/2004-April/007945.php (24 Jun 2004)

[21] “Unicode 4.0.1”. Mar 2004. URL: http://www.unicode.org/versions/Unicode4.0.1/ (24 Jun 2004)

[22] “Windows Workstation Service Remote Buffer Overflow”. Nov 2003.
URL: http://www.eeye.com/html/Research/Advisories/AD20031111.html (24 Jun 2004)

[23] “Microsoft Security Bulletin MS03-049”. Nov 2003. URL:
http://www.microsoft.com/technet/security/bulletin/MS03-049.mspx (24 Jun 2004)

[24] “CAN-2003-0812”. 2003.
URL: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0812 (24 Jun 2004)

[25] “W32.HLLW.Deadhat.B”. Feb 2004. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.deadhat.b.html (24 Jun 2004)

[26] ”Nmap”. URL: http://www.insecure.org/nmap/ (24 Jun 2004)

[27] “W32.Mydoom.A@mm”. Jan 2004. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.novarg.a@mm.html
(24 Jun 2004)

[28] “Deadhat.B”. Feb. 2004. URL: http://www.pandasoftware.com/virus_info (line wrapped)
/encyclopedia/overview.aspx?lst=det&idvirus=44590 (24 Jun 2004)

[29] Conelly, Ken. “[LOGS] Summary of large-scale portscanning detects”. Feb 2004.
URL: http://cert.uni-stuttgart.de/archive/intrusions/2004/02/msg00105.html (24 Jun 2004)

[30] Schwartzkopff, Michael. “Source port 22002”. Feb 2004.
URL: http://cert.uni-stuttgart.de/archive/intrusions/2004/02/msg00126.html (24 Jun 2004)

[31] Gibbons, Carl. “Re: [LOGS] Summary of large-scale portscanning detects”. Mar 2004.
URL: http://cert.uni-stuttgart.de/archive/intrusions/2004/03/msg00032.html (24 Jun 2004)

[32] Sternudd, Patrik. “[Intrusions] Source port 22002 (Worm targeting MyDoom backdoors)”.
Apr 2004. URL: http://www.dshield.org/pipermail/intrusions/2004-April/007888.php (24 Jun 2004)

[33] Rekhter, et al. ”Address Allocation for Private Internets”. Feb 1996.
URL: http://www.ietf.org/rfc/rfc1918.txt (23 Jun 2004)

[34] IANA. “Special-Use IPv4 Addresses”. Sep 2002.
URL: http://www.ietf.org/rfc/rfc3330.txt (23 Jun 2004)

[35] eDonkey2000. URL: http://www.edonkey2000.com/ (24 Jun 2004)

[36] Rautiainen, Sami. “F-Secure Virus Descriptions : Adore”. Apr 2001.
URL: http://www.f-secure.com/v-descs/adore.shtml (24 Jun 2004)

[37] “F-Secure Virus Descriptions : SdBot”. Nov 2002.
URL: http://www.f-secure.com/v-descs/sdbot.shtml (24 Jun 2004)

[38] “GIAC Logs”. URL: http://isc.sans.org/logs/ (24 Jun 2004)

[39] “IDS177 "NETBIOS-NAME-QUERY”.
URL: http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids177&view=research (24 Jun 2004)

[40] Beardsley, Tod. “Intrusion Detection and Analysis: Theory, Techniques, and Tools”. May 2002.
URL: http://www.giac.org/practical/Tod_Beardsley_GCIA.pdf (23 Jun 2004)

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 74(75)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[41] “eDonkey2000 FAQ”.
URL: http://www.edonkey2000.com/documentation/donkeyfaq.html (24 Jun 2004)

[42] “eDonkey2000 FAQ – General”.
URL: http://www.edonkey2000.com/documentation/clientfaq.html (24 Jun 2004)

[43] “Novell Protocols”. URL: http://www.protocols.com/pbook/novel.htm#NCP (24 Jun 2004)

[44] “Overview of NetStorage”. Jun 2002.
URL: http://developer.novell.com/research/appnotes/2002/june/03/a0206033.htm (24 Jun 2004)

[45] Gordon, Les. “Intrusion Analysis - The Director's Cut!”. Nov 2002.
URL: http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc (24 Jun 2004)

[46] “broadband » Forums » Stopping Spam » Vast amount of spam linked to one "company"”.
May 2004. URL: http://www.dslreports.com/forum/remark,10137492~mode=flat (24 Jun 2004)

[47] “Security Incidents: Re: Outbreak of a virus on campus, scanning tcp 80/6129/1025/3127”.
Apr 2004. URL: http://seclists.org/lists/incidents/2004/Apr/0063.html (24 Jun 2004)

[48] Ramakrishnan, et al. ”The Addition of ECN to IP”. Sep 2001.
URL: http://www.ietf.org/rfc/rfc3168.txt (23 Jun 2004)

[49] Newport, Brandon. “Level Two Intrusion Detection In Depth GCIA Practical Assignment”.
May 2001. URL: http://www.giac.org/practical/Brandon_Newport_GCIA.zip (23 Jun 2004)

[50] ”MySQL Reference Manual”. URL: http://dev.mysql.com/doc/mysql/en/index.html (25 Jun 2004)

[51] Sternudd, Patrik. “insert_delims.c”. Jun 2004.
URL: http://hem.bredband.net/flank/source/insert_delims.c (24 Jun 2004)

[52] Sternudd, Patrik. “extract_dbout.c”. Jun 2004.
URL: http://hem.bredband.net/flank/source/extract_dbout.c (24 Jun 2004)

[53] ”Ports Database”. URL: http://www.portsdb.org/ (24 Jun 2004)

[54] Reynolds, Joyce K (editor). ”Assigned Numbers: RFC 1700 is replaced by an On-Line Database”.
Jan 2002. URL: http://www.ietf.org/rfc/rfc3232.txt (25 Jun 2004)

[55] IANA. ”TCP and UDP Port Numbers” 19 Mar 2004.
URL: http://www.iana.org/assignments/port-numbers (25 Jun 2004)

GCIA Practical Assignment v3.4, Patrik Sternudd 2004-06-25 Page 75(75)

