
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 1

Ian Eaton GCIA Practical Assignment – Version 3.4

GCIA Certified Intrusion Analyst
(GCIA) Practical Assignment

Paper version 1.0

Assignment version 3.4 (revised September 24, 2003)
Part 1 option 1

Location of Course Work:
SANS Darling Harbour, Sydney Australia, January 2004

Prepared by: Ian Eaton

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 2

Part 1

IPv6 in the Wild

1 Introduction...3
1.1 Target Audience ..3
1.2 Why have this paper..3

2 The source of the trace...3
2.1 What is a Honeypot and the Honeynet project ..3
2.2 Scan of the Month Challenges...4

2.2.1 Scan of the Month Challenge 28 ..4
3 The IPv6 protocol..4

3.1 Major differences from IPv4...5
3.2 Compatibility with IPv6 ..6
3.3 IPv6 migration path..7

3.3.1 IPv6 tunnelled packets ...7
3.3.2 Tunnel Brokers ...7
3.3.3 IPv6 over IPv4 (6over4)..8
3.3.4 ipv6sun...8

3.4 IPv6 packet Structure ..9
3.4.1 The IPv6 header...9

3.5 IPv6 ICMP packet encapsulated in IPv4..10
3.5.1 IPv4 header component ...10
3.5.2 IPv6 header component ...10
3.5.3 Hop-by-Hop option header ...11
3.5.4 ICMPv6 embedded protocol ...11

4 The example trace ..11
4.1 The compromise..12
4.2 Related traffic ..12
4.3 Traffic Timeline ..12

5 IPv6 addressing..14
5.1 IPv6 address..15
5.2 Pv6 addresses seen in the network trace..16
5.3 Link Local Addresses ..16
5.4 Site Local Addresses...17
5.5 Global Unicast addresses..17
5.6 Interface Identifier (EUI-64) ...19
5.7 Global Anycast addresses...19
5.8 Multicast addresses...20
5.9 Other address types ..21
5.10 Investigating IPv6 addresses...22

6 Conclusion..23
7 Appendix...23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 3

1 Introduction
This paper provides a summary of the IPv61 protocol and an example of its use by black
hats in the real world. The intention is not to provide just a technical treatment of IPv6 but
provide enough information to understand an IPv6 network trace or at a minimum be able
to locate the information required. A real network trace freely available on the Internet is
used to introduce IPv6 to the reader, it also helps to limit the scope of the paper to those
aspects directly related to the network trace and introduce ways to investigate the source
of the attack using similar methods used for IPv4 network traces.
This is a lofty goal, especially when we have limited space and this is my first look into the
world of IPv6. A lot of information beyond what I consider important for our discussion will
be omitted or only briefly discussed, I hope leaving enough references behind to provide
the reader the ability to fill in the gaps I may have left.

1.1 Target Audience
This paper can only be a brief introduction to IPv6 due to length restrictions so the target
audience is a technical one. If you have very little experience with IPv4 then you may find
it difficult to follow, I expect the reader to have a good grounding in IPv4 with the intention
that if you are familiar with IPv4 you should get a lot out of the paper.

1.2 Why have this paper
As IPv6 moves from the testing stage to deployment2 it is worth taking a looking into the
protocol as it becomes more widespread, the IDS analyst needs to become familiar with
this protocol as should become apparent when we examine the real world trace.
A complete switch to IPv6 will not happen over night, the short to medium term will see
both IPv4 and IPv6 working alongside each other. Today we find pools of IPv6 networks
around the world interconnected by a greater ocean of IPv4. These IPv6 pools talk to
each other by tunnelling their packets within an IPv4 packet. This way you can connect
any computer that has an IPv6 stack to any other computer or IPv6 network. It is actually
very easy to tunnel IPv6 leaving great potential for this activity to evade detection, almost
acting as a covert channel that only a well-informed IDS analyst will notice.

2 The source of the trace
The real world example used in this paper is available on the internet from the Honeynet
Project who provides resources for the security community to learn and teach others about
Internet security issues. This trace shows the compromise of a honeypot that later
involved the use of IPv6.

2.1 What is a Honeypot and the Honeynet project
A honeypot as described by Lance Spitzner3 is:

An information system resource whose value lies in unauthorized or
illicit use of that resource.

A honeypot can take many forms, their existence, or any services they provide are not
generally advertised publicly. Attackers locate systems using many techniques, one way
is to use a scattergun approach and fire packets randomly across the Internet in the hope

1 The core IPv6 RFC is RFC2460
2 RFC3701 discusses the phasing out of the 6bone network which was a test bed for IPv6 activity; this RFC makes mention that
allocation of production address prefixes has been underway since 1999.
3 A more detailed explanation of a honeypot/honeynet – http://www.spitzner.net/honeypots.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 4

of locating an active host. A host is poked and prodded until a weakness is found or
considered too hard for the attacker to compromise.
When there is no public information about a system, any traffic it receives is automatically
suspicious, this traffic is recorded in full and later analysed by experts to learn the tricks
and techniques of the black hat community. Honeynets take the next step and provide
multiple Honeypots that form a networked environment hosted on the Internet.

2.2 Scan of the Month Challenges
The "Scan of the Month Challenge" (SOTM)4 is one of the services the Honeynet Project
provides for anyone to enter. These are challenges that range in required skill level from
beginner to advance with the aim of improving the skill base of security practitioners
around the world. Simply, most of the challenges involve a piece of information, network
trace, Trojan binary file, or a whole system image with a series of questions that an entrant
is required to answer. With the top 30 responses posted on the Internet for others to learn
from the top few can receive a prize.

2.2.1 Scan of the Month Challenge 28
On the main SOTM page, challenge number 285 looked very interesting as the challenger
is presented with these words:

Scan 28 - Italian blackhats break into a Solaris server then enable
IPv6 tunnelling for communications.

This challenge showed there is a real threat with IPv6 and highlights the need for people to
learn more about this protocol6, this attack became the catalyst for improvements to
security tools such as snort 7 as the threat had now been realised. This trace is
downloadable from the scan of the month28 main page consisting of two files, day1.log
and day3.log. Our main interest is with day3.log
One of the ways to identify the Solaris machine is by the syslog traffic, looking at the
day3.log file in Ethereal at lines 117206, 117211, and 117334 we can determine the OS as
“SunOS Release 5.8 Version Generic_108528-09 64-bit”, the system type as “Sun
Ultra 5/10 UPA/PCI (UltraSPARC-IIi 360MHz)” and the host name “zoberius”.

3 The IPv6 protocol
The IPv6 protocol is not new, as a technology it has been evolving for many years8:

IPv6 was recommended by the IPng Area Directors of the Internet
Engineering Task Force at the Toronto IETF meeting on July 25, 1994
in RFC 1752, The Recommendation for the IP Next Generation Protocol.
The recommendation was approved by the Internet Engineering Steering
Group and made a Proposed Standard on November 17, 1994.
The core set of IPv6 protocols were made an IETF Draft Standard on
August 10, 1998.

The IPv6 protocol is now beginning to see serious deployment throughout Asian9 like
Japan, Korea and China. In addition, the US defence Department have stipulated they will
convert their network infrastructure to IPv6 by 200810. Even more reason to be on top of

4 Scan of the Month Challenge home page – http://www.honeynet.org/scans/index.html.
5 SOTM Challenge 28 main page – http://www.honeynet.org/scans/scan28/
6 Newsgroup posting by Lance Spitzner regarding IPv6 and the compromise –
http://www.securityfocus.com/archive/119/303782/2002-12-15/2002-12-21/0
7 Response to Lance Spitzner’s posting by Marty Roach, the creator of Snort –
http://www.securityfocus.com/archive/119/304374/2002-12-22/2002-12-28/0
8 This quote was taken from the introduction at http://playground.sun.com/pub/ipng/html/ipng-main.html
9 IPv6 rollout on horizon for the 'China Next Generation Internet' –
http://www.pcpro.co.uk/?http://www.pcpro.co.uk/news/news_story.php?id=55116
10 Defense Department Will Require IPv6 Compliance – http://biz.yahoo.com/iw/030626/054991.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 5

this impending technology change. This section introduces IPv6, showing the differences
from IPv4, issues with migrating and a detailed look at the protocols construction.

3.1 Major differences from IPv4
IPv4 has been around a long time providing real world experience, developers have a
good understanding on what works, and what features are commonly required. RFC2460
titled “Internet Protocol, Version 6 (IPv6) Specification”11 describes the major changes
between IPv4 and IPv6 best:
1. Expanded Addressing Capabilities;

IPv6 increases the IP address size from 32 bits to 128 bits, to support more levels of
addressing hierarchy, a much greater number of addressable nodes, and simpler auto-
configuration of addresses. The scalability of multicast routing is improved by adding a
"scope" field to multicast addresses. In addition, a new type of address called an
"anycast address" is defined, used to send a packet to any one of a group of nodes.

2. Header Format Simplification;
Some IPv4 header fields have been dropped or made optional, to reduce the common-
case processing cost of packet handling and to limit the bandwidth cost of the IPv6
header.

3. Improved Support for Extensions and Options;
Changes in the way IP header options are encoded allows for more efficient forwarding,
less stringent limits on the length of options, and greater flexibility for introducing new
options in the future.

4. Flow Labelling Capability;
A new capability is added to enable the labelling of packets belonging to particular
traffic "flows" for which the sender requests special handling, such as non-default
quality of service or "real-time" service.
The idea behind this capability12 is to reduce overhead on Internet routers for packets
that require special handling like real-time flows. After passing a packet containing a
non-zero flow label any further packets with a similar flow label will be handled in the
same way. The assumption is that all packets with the same flow label have the same
IPv6 details, i.e. Destination Address, Hop-by-Hop Options header, Routing Header
and Source Address contents, continuos inspection of these fields in not necessary.13

5. Authentication and Privacy Capabilities;
Extensions to support authentication, data integrity, and (optional) data confidentiality
are specified for IPv6.

Some other points of interest are:
6. Changes to packet fragmentation;

Due to improved MTU discovery14 capabilities, fragmentation is not expected in IPv6.
There are no fragmentation fields in the main header, they have been placed into
extension headers for the rare occasion they are needed. Fragmentation is only
performed by the source, if intermediate hosts (i.e. routers) need to forward a packet
along a path with a smaller MTU than was initially intended, it will send an ICMPv615
“Packet Too Big” error back to the source who will have to either create smaller
packets or fragment the packet itself. Fragmented packets are expected to be
reassembled by the destination only.

11 Full text is in RFC2460
12 The philosophy behind the Flow label is described in RFC1809 “Using the Flow Label Field in IPv6”
13 The final specification is in RFC3697
14 RFC1981 “Path MTU discovery for IP version 6”
15 ICMPv6 is described in RFC2463

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 6

7. Calculation of Checksums in upper level protocols;
TCP and UDP use an IPv4 pseudo header when calculating their checksums, these
upper layer protocols require a change to incorporate the IPv6 addresses in its
calculation.

8. UDP is now required to compute a checksum on all packets;

9. ICMPv6 requires the calculation of a checksum using the same pseudo header; and

10. IPv6 requires every link to have an MTU of 1280 bytes or greater.
Any node not implementing Path MTU discovery should use 1280 bytes as their
maximum packet size, this ensures that fragmentation will not become an issue for the
host. If a node generates packets that are smaller than the Path MTU, they could be
considered as wasting network resources.

3.2 Compatibility with IPv6
Most major network and OS vendors provide IPv6 support in their products, a list of which
vendors and their level of support can be found:
http://playground.sun.com/pub/ipng/html/ipng-implementations.html

While many applications provide IPv6 support to varying degrees, this is an excellent link
on application support for Linux and *BSD based services and applications:
http://www.deepspace6.net/docs/ipv6_status_page_apps.html

A lot of security tools also provide IPv6 compatibility, tools used in the analysis of the trace
in this paper are Ethereal16 and tcpdump17. IDS products with IPv6 support include snort18
and ISS19, each having a varying degree support.
Our targeted Honeypot was identified as a Solaris 8 system, Solaris 8 and above have
native IPv6 compatibility that is installed either during initial OS setup or manually if
required later. Manual configuration is detailed in Volume 3 of the “System Administration
Guide for Solaris 8”20 on page 351 these are the abridged steps:

1. become superuser
2. touch /etc/hostname6.interface

where interface is each network interface you would like to have IPv6 enabled
3. Reboot the system
4. Configure name servers as required.

The reboot is necessary because21:
<it> sends out router discovery packets and the router responds with
a prefix, enabling the node to configure the interfaces with an IP
address. Rebooting also restarts key networking daemons in IPv6 mode.

The router will only provide a prefix if configured to do so, though there are other ways to
obtain an IP address, including router discovery packets, some address types are
configured automatically by the host, and the administrator can manually configure them.
One of the most important issues a reboot ensures is all IPv6 capable network daemons
are restarted in IPv6 mode, and can start offering services via IPv6 addresses.

16 Ethereal home page http://www.ethereal.com
17 Tcpdump homepage http://tcpdump.org/
18 Snort home page http://www.snort.org
19 ISS home page http://www.iss.net
20 To locate this book go to the sun Production Documentation site at http://docs.sun.com/db/prod/solaris and search for “system
administration guide volume 3”, and click on “Search book titles only”.
21 Volume 3 of the “System Administration Guide for Solaris 8” page 251

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 7

3.3 IPv6 migration path
IPv6 will affect every host and piece of infrastructure residing directly on the Internet.
Knowing this the IETF in parallel with designing the protocol itself they have been working
on technologies and processes to make the transition as smooth as possible, which is
going to be long as the Internet is inherently IPv4 based.
As pockets of IPv6 networks or individual IPv6 capable hosts spring up randomly across
the Internet, there needs to be a means for seamless communication between them even
when separated by IPv4 networks. Tunnelling IPv6 packets inside IPv4 is an important
transition mechanism, this allows communication to travel across the Internet while
requiring no modification to the underlying IPv4 network infrastructure.
There are many IPv6 transition methods available today with others in progress moving
through the standards body22 23. This list only shows some of the techniques, the Italian
black hats that broke into the Solaris system used one of these transition methods to
configure communication with an IPv6 capable IRC server:

1. Dual-Stack hosts (running both an IPv4 and IPv6 stack at the same time)
2. Protocol Translation24
3. 6over425
4. 6to426
5. IPv6 Tunnel Broker27
6. Teredo (aka Shipworm)28 (currently not a standard)

3.3.1 IPv6 tunnelled packets
Due to the ubiquitous nature of IPv4 on the internet, tunnelling has become a requirement,
Figure 1 shows what an encapsulated packet looks like. Clients can create IPv6 tunnels
over IPv4 from their individual machine or gateway connected directly to an IPv6 backbone,
once the tunnel is established IPv6 communication flows over the IPv4 Internet seamlessly.

Figure 1 - IPv6 in IPv6 encapsulation

6over4 uses a dual IPv4/IPv6 stack host to communicate over an IPv4 multicast domain by
encapsulating IPv6 packets within IPv4. 6to4 also uses a dual IPv4/IPv6 stack to
encapsulate IPv6 packets as the traverse the IPv4 network, but uses a specially assigned
address prefix that embeds your IPv4 address in the IPv6 address to make it easier to
locate the endpoint of the tunnel.
Another very common method is via a Tunnel Broker. There are many Tunnel Brokers
around the world, some of which provide a free service, they provide a portal into the
native IPv6 network infrastructure on the Internet.

3.3.2 Tunnel Brokers
Tunnel Brokers provide an easy to configure solution for stand-alone clients or isolated
networks to connect to an IPv6 backbone. The idea is to provide clients a stable
connection and if required, a permanent IPv6 address that can be used across
connections even if your IPv4 address changes, for example if you use a dial up internet

22 Next Generation Transition (ngtrans) working group home page http://6bone.net/ngtrans/
23 IPv6 Operations (v6ops) working group has taken on from the ngtrans efforts http://6bone.net/v6ops/
24 RFC2766 “Network Address Translation - Protocol Translation (NAT-PT)”
25 RFC2529 “Transmission of IPv6 over IPv4 Domains without Explicit Tunnels”
26 RFC3056 “Connection of IPv6 Domains via IPv4 Clouds
27 RFC3053 “IPv6 Tunnel Broker”
28 Microsoft XP and above support this mechanism, further details can be found at
http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/teredo.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 8

connection which nearly always gives you a new address each time you connect. The
basic Tunnel Broker architecture is shown in Figure 2, client configuration can be manual
or scripted depending on the tunnel broker.

Figure 2 - Tunnel Broker configuration

Clients are dual-stack hosts that can be an individual system or a gateway for an IPv6
network. Clients make the initial connection to The Tunnel Broker (TB) who manages the
tunnels. Once authorised, the TB instructs the Tunnel Server (TS) to create the endpoint
on the server side, thus the actual tunnel is between the client system and the TS. The
DNS server provides an IPv6 PTR record for clients. An example of a free Tunnel Broker
is freenet6.org29, they provide a small tool to configure the IPv6 tunnel removing the need
for manual configuration.

3.3.3 IPv6 over IPv4 (6over4)
6over4 utilises an IPv4 multicast domain as an IPv6 virtual local link. This allows isolated
IPv6 hosts not directly connected to an IPv6 router to become fully functional IPv6 host.
Solaris 8 supports this type of tunnel also detailed in Volume 3 of the “System
Administration Guide for Solaris 8” on page 364. The abridged steps are:

1. create the file /etc/hostname6.ip.tunn
a. add the tunnel source and tunnel destination addresses to the file

tsrc IPv4-source-addr tdst IPv4-destination-addr up
b. optionally add a logical interface for the source and destination IPv6 address

addif IPv6-source-address IPv6-destination-address up
2. The system must be rebooted to configure the tunnels
3. For bidirectional communication these steps must replicated on the other end of the

tunnel

3.3.4 ipv6sun
The attacker uses a 6over4 tunnel to create the IPv6 connection, after the initial
compromise the attacker downloads several files from an ftp server 62.211.66.16, one of
which was a script named ipv6sun, this is an IPv6 tunnel30 setup script:

#!/bin/sh.
unset HISTFILE.
clear.
echo "Inserisci il tuo ipv4"; read ipv4tuo; echo "..Okz".
echo "Inserisci l'ipv4 del TunnelBroker"; read ipv4server; echo "..Okz".
echo "tsrc ipv4tuo tdst ipv4server up" > /etc/hostname6.ip.tun0.
echo "".
echo "Inserisci il tuo IPV6"; read ipv6tuo; echo "..Okz".
echo "Inserisci l'IPV6 dell'IRCServer"; read ipv6server; echo "..Okz".
echo "addif ipv6tuo ipv6server up" >> /etc/hostname6.ip.tun0.
echo "".
echo "TermiNateD =)".
echo "maphia-Groups r0x again".

29 home page www.freenet6.org
30 Within Ethereal the script can be obtained from the capture file day1.log, by running a "Follow TCP Stream" from position number
996.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 9

The attacker appears to speak Italian hence, some parts of the script are cryptic. Looking
at the script in detail the lines in bold show the purpose is to execute the two main steps
for creating a 6over4 tunnel as detailed in the previous section. We will see how quick the
attacker created the tunnel in a later section.

3.4 IPv6 packet Structure
Before we look at an IPv6 trace we need to understand more about its construction, the
header is of a fixed size and has been designed with the minimum requirements,
relegating any additional features to extension headers. Extension headers are analogous
to IPv4’s options, but provide a lot more flexible and expandable solution. There are
currently six extension headers defined or referenced in RFC2460:

• Hop-by-Hop Options;
This option carries information that must be examined by every node along a packets
delivery path

• Routing (Type 0);
This extension header is similar to the IPv4 Loose Source and Record Route options, it
defines a list of one or more intermediate nodes to be “Visited” on the way to a packet’s
destination.

• Fragment;
As previously mentioned, with the improvements in MTU discovery fragmentation is
unnecessary. The option is still available but is only implemented by the source of the
packet, no routers along the path can fragment an IPv6 packet.

• Destination Options;
These Extension headers only contain information for the destination host.

• Authentication31; and

• Encapsulating Security Payload32.
These IPSEC33 Extension headers offer exactly the same features and functionality as
for IPv4, they where initially defined for IPv6 but back ported to provide security and
extend its lifetime.

3.4.1 The IPv6 header
Figure 3 shows the IPv6 packet compared to IPv4.

Figure 3 - IPv4 and IPv6 packet structure

31 RFC2402 “IP Authentication Header”
32 RFC2406 “IP Encapsulating Security Payload (ESP)”
33 RFC2401 “Security Architecture for the Internet Protocol (IPSEC)”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 10

It is easy to see there are striking differences with the construction of each. Not only is the
IPv6 header significantly larger than an IPv4 packet without options, it also has far less
fields included in the main packet. 3.5.2 IPv6 header component shows a detailed
description of the IPv6 header components taken from our network trace.

3.5 IPv6 ICMP packet encapsulated in IPv4
To provide a concise explanation of the IPv6 packets construction this section breaks
down a real world IPv6 packet encapsulated in IPv4 from the day3.log file. This is
displayed by using the tcpdump command34:

/usr/sbin/tcpdump -nnXvve -r day3.log -c 1 'ip[9] = 41'
09:59:36.060504 0:7:ec:b2:d0:a 8:0:20:d1:76:19 0800 106: 163.162.170.173 > 192.168.100.28:
ipv6 72 (ttl 11, id 30290, len 92, bad cksum 3ac2!)
0x0000 4500 005c 7652 0000 0b29 3ac2 a3a2 aaad E..\vR...):.....
0x0010 c0a8 641c 6000 0000 0020 0001 fe80 0000 ..d.`...........
0x0020 0000 0000 0206 5bff fe04 5e95 ff02 0000 [...^.....
0x0030 0000 0000 0000 0001 ff00 5d0f 3a00 0100 ].:...
0x0040 0502 0000 8300 0d64 0000 0000 ff02 0000 d........
0x0050 0000 0000 0000 0001 ff00 5d0f ].

This packet effectively looks like this:

Figure 4 - Encapsulated ICMPv6 packet

3.5.1 IPv4 header component35
Except for carrying a protocol 41 packet (IPv6), this is a standard IPv4 header.

0x0000 4500 005c 7652 0000 0b29 3ac2 a3a2 aaad E..\vR...):.....
0x0010 c0a8 641c 6000 0000 0020 0001 fe80 0000 ..d.`...........

Data Description
4 IP version (4)
5 Header length for version 4 packet. (In this case, a typical 20-byte size indicating it does not contain any IPv4 options.)
00 Type of Service
005c Total Length (0x5c = 92 therefore the total packet length is 92 bytes)
7652 IP ID (0x7652 = 30290)
0000 Fragment flags and offset, this packet is not part of a fragment chain hence there is no requirement to have an offset or

the more fragments flag set. Also in this case the don't fragment flag is not set.
0b Time To Live of packet (0xb = 11)
29 Embedded protocol (0x29 = 41 = IPv6 embedded protocol)
3ac2 header checksum (this seems to be corrupted, probably due to the packet mangling when scrubbing the trace)
a3a2 aaad Source IP address is that of the attacker

0xa3 = 163, 0xa2 = 162, 0xaa = 170, 0xad = 173
c0a8 641c Destination IP address is that of the sun host (honeypot)

0xc0 = 192, 0xa8 = 168, 0x64 = 100, 0x1c = 28

3.5.2 IPv6 header component36
This is the IPv4 embedded protocol, in our case it is ipv6.

0x0010 c0a8 641c 6000 0000 0020 0001 fe80 0000 ..d.`...........
0x0020 0000 0000 0206 5bff fe04 5e95 ff02 0000 [...^.....
0x0030 0000 0000 0000 0001 ff00 5d0f 3a00 0100 ].:...

Data Description
6 IP version (6)
00 Traffic Class
00000 Flow Label, which in our case has not been set by the source host.
0020 Payload length (0x20 = 32 therefore the payload length will be 32 bytes long)

The payload length only represents the data after the main IPv6 packet, all extension headers are part of this calculation,
but not the IPv6 header itself. The IPv6 packet is always of a known size and therefore not necessary to be part of the
length calculation. Providing this quantity of bits only allow for a maximum packet size of 64kb, this really is not considered
a limitation, Ethernet probably the most widely deployed “link layer” protocol only provides a maximum MTU of 1.5kb

34 A description of the command is in Appendix A – Tcpdump command description.
35 IPv4 was introduced in RFC791
36 IPv6 was introduced in RFC2460
37 http://www.geocities.com/SiliconValley/Vista/8672/network/ethernet.html#A25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 11

(1500bytes37). The default MTU size for IPv6 on Ethernet is 1500bytes38. Any packets required to be larger than this can
use an extension header named jumbogram extension header39.

00 Next header field (IPv4 terminology - Embedded Protocol)
0x00 indicates a hop by hop option header follows this header

01 Hop Limit (IPv4 terminology - TTL) in this case it has only one hop left, when IPv6 is encapsulated in IPv4, the distance it
travels through the tunnel is considered one hop, with the hop count being so low this could indicate the attacker is trying to
traceroute or something similar to the target host.

Fe80 0000
0000 0000
0206 5bff
fe04 5e95

IPv6 source address, the address looks like
fe80:0000:0000:0000:0206:5bff:fe04:5e95
A proper text representation of this address would look like40
fe80::206:5bff:fe04:5e95

Ff02 0000
0000 0000
0000 0001
ff00 5d0f

IPv6 destination address, the address looks like
ff02:0000:00000:0000:0000:0001:ff00:5d0f
A proper text representation of this address would look like
ff02::1:ff00:5d0f

3.5.3 Hop-by-Hop option header41
One of many possible option headers, in this case it is a Hop-by-Hop option header

0x0030 0000 0000 0000 0001 ff00 5d0f 3a00 0100 ].:...
0x0040 0502 0000 8300 0d64 0000 0000 ff02 0000 d........

Data Description
3a Next header (0x3a = 58 = ipv6 icmp)
00 Header Extension length (Length is calculated in units of 8 bytes, not including the first 8 bytes) this is set to zero as the

total length is 8 bytes.
0100 This is a PadN extension option, Pad1 and PadN options are the only ones defined in RFC2460
0502 0000 Router alert: MLD.

3.5.4 ICMPv6 embedded protocol42
The next of many possible embedded protocols, in this case it is icmpv6.

0x0040 0502 0000 8300 0d64 0000 0000 ff02 0000 d........
0x0050 0000 0000 0000 0001 ff00 5d0f ].

Data Description
83 ICMP type code (0x83 = 131 = multicast listener report)
00 ICMP Code
0d64 Checksum (in this case it is correct)
0000 0000 maximum response delay
ff02 0000
0000 0000
0000 0001
ff00 5d0f

Multicast address
IPv6 address is ff02:0000:0000:0000:0000:0001:ff00:5d0f
But when typed is usually represented as ff02::1:ff00:5d0f

4 The example trace
The initial compromise of the honeypot is thoroughly examined within the papers on the
main SOTM28 page, there was only one main question in the challenge on IPv643:

Following the attack, the attacker(s) enabled a unique protocol that
one would not expect to find on an IPv4 network. Can you identify
that protocol and why it was used?

I am sure the standing of unusual for IPv6 has changed significantly since this attack, one
of the entrants44 even argued wether IPv6 was a usual protocol at all. For bonus points
there where two additional questions on IPv6

What are the implications of using the unusual IP protocol to the
Intrusion Detection industry?
What tools exist that can decode this protocol?

38 RFC2464 details the Transmission of IPv6 packets over Ethernet Networks.
39 Jumbograms are described in RFC2675
40 This technique described in RFC3513 section “2.2 Text Representation of Addresses”
41 The Hop-by-hop option header was introduced with IPv6 in RFC2460
42 The main ICMPv6 protocol is described in RFC2463
43 SOTM Challenge 28 main page – http://www.honeynet.org/scans/scan28/
44 This is the paper that argues the relevance of IPv6 – http://honeynet.org/scans/scan28/sol/2/index.html#questionb1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 12

4.1 The compromise
The honeypot was compromised via a “dtspcd” buffer overflow attack, where the attacker
proceeded to download additional tools, a root kit, and patches. IRC communications
seemed to be one of the main reasons for compromising the host, as there are many
attempts at IRC communications IPv6 communications. IPv6 was setup and activated with
the primary connection being with an IPv6 enabled IRC chat server. The attack details are
within the answers to the challenge45.

4.2 Related traffic
Figure 5 is a connection diagram detailing the hosts involved in the compromise and
subsequent configuration of IPv6. Each connection is shown with a description of the
traffic type, the line number and time of connection as displayed in Ethereal 46 .
Connections are from the day3.log binary log file unless mentioned otherwise.

Connections are displayed in two different colours, red (IPv6) and blue (IPv4). The IPv6
connections we will examine more closely while for completeness the IPv4 connections
are detailed.

Figure 5 - Connection Diagram of relevant hosts

4.3 Traffic Timeline
Figure 6 shows the timeline of events the attacker used to configure the target host for
IPv6 communication. Take note, the time scale varies throughout the diagram.

45 The official SOTM28 answer is at http://www.honeynet.org/scans/scan28/sol/official/index.html
46 Ethereal can be found at http://www.ethereal.com/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 13

IRC Session over ipv6.
117614@10:13:03.355965 -
123123@17:19:54.224430
[2001:6b8:0:400::5d0e]:32780 and
[2001:750:2:0:202:a5ff:fef0:aac7]:6667

Ident identity check from IRC server
117621@10:13:05.215839 -
117622@10:13:05.215839
[2001:750:2:0:202:a5ff:fef0:aac7]:60990
and [2001:6b8:0:400::5d0e]:113

11
109

8
7

65

43

12

Figure 6 - Timeline of relevant packet, shown by time as displayed in Ethereal

A brief description of each event numbered in the previous two figures follows, events 1
and 2 are from the day1.log binary file and mentioned in Figure 5

From the day1.log log file
1. Honeypot compromised

From host 61.219.90.180 the attacker used a dtspcd buffer overflow to compromise
the honeypot.

2. Tools download
Tools downloaded from 62.211.66.16 include a file named “ipv6sun” used to create
the 6over4 IPv6 tunnel. (Setting up an IPv6 tunnel could have been the objective of the
attacker from the start, even though it is configured a lot later)

From the day3.log log file
3. SSH connection

Through a SSH connection from host 62.101.108.86 while downloading an additional
file the attacker configures the IPv6 tunnel using the previously downloaded script. The
ICMPv6 packets directed to the honeypot presumably from the attacker trying to test
the IPv6 stack evidence this. After the HTTP download is completed there is around
3.5 minutes where I suspect the attacker configures the additional file and reboots the
system, disconnecting the SSH session.

4. HTTP traffic, downloading of software?
A new file named psy.tar is downloaded from the web server 62.211.66.55, it
contains psy-bnc, which is an IPv6 compatible IRC server/client as described in the
official write-up by Raul Garcia for SOTM2847.

5. Five unusual ICMP packets

47 The official SOTM28 answer is at http://www.honeynet.org/scans/scan28/sol/official/index.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 14

While the attacker is downloading the psy.tar file, a series of ICMPv6 packets with an
IPv4 source address of 163.162.170.173 is seen. This address appears to be the
tunnel endpoint. Performing a PTR lookup on the address reveals:
173.170.162.163.in-addr.arpa. 3600 IN PTR ts.ipv6.tilab.com.
The ‘ts’ in this FQDN presumably indicates Tunnel Server, which leads me to believe
that the host generating these ICMPv6 packets could be the same as 62.101.108.86
with a dual stack installed and its own tunnel providing IPv6 connectivity. These could
be an attempt by the attacker to verify if the IPv6 stack is working on the Solaris system,
we know it needs a reboot before the IPv6 stack is initialised for communications.

6. Syslog messages
It is uncertain if the attacker forgot they had to reboot the box before IPv6 connectivity
would work, after configuring the new tool and a few failed attempts to illicit a positive
response from the IPv6 stack the attacker restarts the system. Details are in the syslog
messages sent to a central syslog server.

7. IPv4 ICMP messages
The attacker needs to know when the system has completed the rebooted so they use
IPv4 ICMP requests from 62.101.108.86 until the host responds again, at which point
we then see ICMP echo replies indicating it has returned.

8. SSH connection
Once the system is up again there is a new SSH connection that lasts for less than a
minute from host 62.101.108.86, the attacker uses this connection to test IPv6
connectivity and then disconnects.

9. Multicast listener report
IPv6 ICMP packets seen leaving the host.

10. IRC Proxy configuration
Just over a minute after the close of the second SSH connection there is a connection
from 80.117.14.222, previously throughout the day3.log file this host has made IPv4
IRC connections, here the host configures the tool psy-bnc, during this connection we
see traffic like this (edited for brevity):

attack reqst => ADDSERVER 2001:750:2:0:202:a5ff:fef0:aac7:6667
server respn => Server 2001:750:2:0:202:a5ff:fef0:aac7 port 6667 (password: None)

added.
server respn => trying 2001:750:2:0:202:a5ff:fef0:aac7 port 6667
server respn => connected to 2001:750:2:0:202:a5ff:fef0:aac7:6667
server respn => :irc6.edisontel.it 001 `OwnZ`` :Welcome to the Internet Relay Network

`OwnZ``!~ahaa@host222-14.pool80117.interbusiness.it
attack reqst => SETAWAY -OwnZ-
server respn => :irc6.edisontel.it 002 `OwnZ`` :Your host is irc6.edisontel.it,

running version 2.10.3p3+hemp
11. Internet Relay Chat Session over IPv6

At the same time the attackers tool announces it is trying
2001:750:2:0:202:a5ff:fef0:aac7 port 6667 we see an IPv6 connection to the IRC
server initiated from the honeypot.

12. Ident check
The Internet Relay Chat server tries to make an ident call back to the honeypot in an
attempt to identify the user that is connecting to the server. This check fails with an
immediate reset indicating that the service is not listening on the honeypot.

5 IPv6 addressing
We have been exposed to IPv6 addresses like 2001:750:2:0:202:a5ff:fef0:aac7
already in this paper, the increased address range from 32bits to 128bits is one of the
most obvious and well advertised changes in the new protocol. This section will talk about

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 15

the new addressing scheme, the allocation of addresses and provide a clue to deciphering
these long numbers, along the way we will see how smart the new protocol is.

IPv4 addresses are made up of four distinct segments separated by a period (.) commonly
known as “dotted decimal notation” each segment contains a decimal representation of an
8-bit value. An IPv6 address in made up of 8 segments separated by a colon (:) each
containing a hexadecimal representation of a 16bit value. Here is an example address.

2001:06b8:0000:0400:0000:0000:0000:5d0e
IPv6 addresses like this are difficult to represent in text so there are two transformations
we can make, the first is to remove any leading zeros from within each address segment.

2001:6b8:0:400:0:0:0:5d0e
Lastly, due to the large size of this address space, it is quite plausible to have a string of
segments containing zeros, these can be reduced by representing this string with a double
colon (::) though this can only be done once within any address.

2001:6b8:0:400::5d0e
There are three basic types of addresses available48:
• unicast

This is a unique address assigned to a single interface on a host as in IPv4. There are
several types of unicast addresses including global unicast, site-local unicast, and link-
local unicast.

• anycast
This is a unique address type assigned to multiple interfaces, ideally on different hosts.
A packet directed to an anycast address is delivered to the closest host as identified by
the routing protocols measure of distance, and this host only.

• multicast
Another familiar address type is the multicast address. Any packet directed to a
multicast address is delivered to all nodes listening on that address. This functionality
replaces the broadcast address type found in IPv4, hosts register to special multicast
groups to receive local broadcasts.

5.1 IPv6 address
Similar to the way IPv4 was separated into classes like A, B and C class identified by their
high order bits, IPv6 address types are also identified by their high order bits49:

Table 1 - Break Up of the IPv6 Address Range
Unspecified 00...0 (128 bits) ::/128
Loopback 00...1 (128 bits) ::1/128
Multicast 11111111 FF00::/8
Link-local unicast 1111111010 FE80::/10
Site-local unicast 1111111011 FEC0::/10
Global unicast (everything else)

The unspecified address :: is equivalent to IPv4’s 0.0.0.0 while the loopback 127.0.0.1
address is described as ::1 in IPv6 format. Similar to IPv4, IPv6 network masks use
CIDR 50 (Classless Inter-Domain Routing) notation, however, unlike IPv4 any given
interface is expected to have more than one address, RFC3513 stipulates the addresses a
host requires, each is briefly discuss in the following sections:

o A Link-Local Address for each interface;
o Any additional Unicast and Anycast addresses that have been configured for the

node’s interfaces either manually or automatically;

48 RFC3513 “Internet Protocol Version 6 (IPv6) Addressing Architecture”
49 internet protocol version 6 address space http://www.iana.org/assignments/ipv6-address-space
50 This technique is detailed in RFC1519 “Classless Inter-Domain Routing (CIDR)”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 16

o The Loopback address (This has already been mentioned);
o All-Nodes Multicast Addresses;
o A Solicited-Node Multicast Address for each of its unicast and anycast

addresses; and
o Multicast Addresses of all other groups to which the node belongs.

Address assignment is easy with the use of automatic address configuration techniques,
there are techniques that give each host the ability to discover each other and keep track
of the changing conditions in the network. DHCP though still available as DHCPv651 52 is
not required for dynamic addressing, dynamically assigned address are built into the way
IPv6 operates, network routers are designed to play a greater role in the process of
address assignment, they can advertise the network prefix for clients to use when
configuring their addresses.

5.2 Pv6 addresses seen in the network trace
The IPv6 addresses seen in the trace are form the day3.log file, there are of a few
different addresses that are detailed in Table 2. Not all IPv6 connections are in the table,
only connections that are either interesting or observed for the first time seen, the Ethereal
line number is provided to ease location. The next few sections detail the various IPv6
address types, not all are observed in our trace but the IDS analyst should understand
them, as they are sure to be seen in other traces.
As previously described, the IPv6 packets are encapsulated in IPv4 so the source IPv4
address is also included with the Ethernet MAC address for completeness. The IPv4
addresses provide a clue to the tunnel ends, there is no native IPv6 traffic observed. This
host is configured as a standalone IPv6 client connecting into a Tunnel Server, the red
connections in Figure 5 show how these packets are routed.

Table 2 - day3.log IPv6 addresses
line no. IPv6 address IPv4 address MAC address protocol
114471 fe80::206:5bff:fe04:5e95 163.162.170.173 00:07:e3c:b2:d0:0a ICMPv6
114471 ff02::1:ff00:5d0f 192.168.100.28 08:00:20:d1:76:19 ICMPv6
114473 :: 163.162.170.173 00:07:e3c:b2:d0:0a ICMPv6
114473 ff02::1:ff00:5d0f 192.168.100.28 08:00:20:d1:76:19 ICMPv6
114480 fe80::206:5bff:fe04:5e95 163.162.170.173 00:07:e3c:b2:d0:0a ICMPv6
114480 ff02::1:ff04:5e95 192.168.100.28 08:00:20:d1:76:19 ICMPv6
114518 fe80::206:5bff:fe04:5e95 163.162.170.173 00:07:e3c:b2:d0:0a ICMPv6
114518 ff02::2:d64f:8980 192.168.100.28 08:00:20:d1:76:19 ICMPv6
114539 fe80::206:5bff:fe04:5e95 163.162.170.173 00:07:e3c:b2:d0:0a ICMPv6
114539 ff02::1:ff00:5d0f 192.168.100.28 08:00:20:d1:76:19 ICMPv6
The Honeypot was rebooted at this point before we see these next addresses
117401 fe80::c0a8:641c 192.168.100.28 08:00:20:d1:76:19 ICMPv6
117401 ff02::1:ff00:5d0e 163.162.170.173 00:07:e3c:b2:d0:0a ICMPv6
117404 fe80::c0a8:641c 192.168.100.28 08:00:20:d1:76:19 ICMPv6
117404 ff02::1:ff00:5d0e 163.162.170.173 00:07:e3c:b2:d0:0a ICMPv6
117405 fe80::c0a8:641c 192.168.100.28 08:00:20:d1:76:19 ICMPv6
117405 ff02::1:fff8:e01c 163.162.170.173 00:07:e3c:b2:d0:0a ICMPv6
117614 2001:6b8:0:400::5d0e 192.168.100.28 08:00:20:d1:76:19 TCP
117614 2001:750:2:0:202:a5ff:fef0:aac7 163.162.170.173 00:07:e3c:b2:d0:0a TCP
117621 2001:750:2:0:202:a5ff:fef0:aac7 163.162.170.173 00:07:e3c:b2:d0:0a TCP
117622 2001:6b8:0:400::5d0e 192.168.100.28 08:00:20:d1:76:19 TCP

5.3 Link Local Addresses53
One of the first addresses seen from the attacker before the system reboot is
fe80::206:5bff:fe04:5e95. This is a link local address identifiable as it falls into the
fe80::/10 address range and is followed by a 64-bit Interface Identifier. This address
type is assigned to an interface at boot up so it has an address for communication straight

51 Dynamic Host Configuration Protocol for IPv6 (DHCPv6) is documented in RFC3315
52 Reference site for DHCPv6 – http://www.dhcpv6.org/
53 Main details are in RFC2463 “IPv6 Stateless Address Autoconfiguration”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 17

away. They are only relevant to the local network (equivalent to the IPv4 broadcast
domain) as a means of local communication between hosts. They are used in the
neighbour discovery process, and must not be forwarded by an IPv6 router.

Figure 7 - Link Local Address Structure

The first 10 bits are always fe80 hex or 1111 1110 10 binary, the middle 54 bits are set to
zero, and the last 64bits make the Interface Identifier which in our example is
206:5bff:fe04:5e95. This is a EUI-64 formatted Interface Identifier explained further in
section 5.6. It is constructed using the connecting interface MAC (Media Access Control)
address that should be unique as all MAC addresses by nature should be unique across
all computers around the world. As uniqueness is not a guarantee, there are processes in
place to verify uniqueness as described in RFC2461 (Neighbour Discovery in IPv6).

5.4 Site Local Addresses54
There are no Site Local addresses in our trace but they fall into the address range
feC0::/10 also followed by a EUI-64 formatted interface ID. These address types are
analogous to private IPv4 addresses as 10.0.0.0/8 defined in RFC1918, and must not be
forwarded beyond the local site by an IPv6 router. This address type is for sites that have
multiple internal networks.

Figure 8 - Site Local Address Structure

5.5 Global Unicast addresses
Global Unicast addresses also have an Interface Identifier, these can be created
dynamically by the host as a EUI-64 formatted address, specifically assigned via DHCPv6
or manually configured. The observed address 2001:6b8:0:400::5d0e has an interface
identifier of 5d0e with the rest of the interface identifier being set to zero.

Figure 9 - Link Local Address Structure

Even though Table 1 suggests Global Unicast addresses cover all other non specified
address blocks, the only range formally assigned start with a 001 binary prefix or
2000::/355 56. All other address blocks are to the most part unassigned. Within this range
IANA (Internet Assigned Numbers Authority) have allocated blocks of addresses to the
Regional Internet Registries (RIR)57:

Table 3 - IANA allocated address blocks
Prefix Binary representation Regional Registry Date Assigned
2001:0000::/23 0000 000X XXXX X IANA Jul 99
2001:0200::/23 0000 001X XXXX X APNIC Jul 99

54 Main details are in RFC2463 “IPv6 Stateless Address Autoconfiguration”
55 Which is further defined in RFC3587 “IPv6 Global UnicastAddress Format”
56 IANA’s IPv6 Address Allocation and Assignment Policy:
http://www.iana.org/ipaddress/ipv6-allocation-policy-26jun02
57 For the latest IPv6 top level aggregation identifier assignments: http://www.iana.org/assignments/ipv6-tla-assignments

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 18

2001:0400::/23 0000 010X XXXX X ARIN Jul 99
2001:0600::/23 0000 011X XXXX X RIPE NCC Jul 99
2001:0800::/23 0000 100X XXXX X RIPE NCC May 02
2001:0A00::/23 0000 101X XXXX X RIPE NCC Nov 02
2001:0C00::/23 0000 110X XXXX X APNIC May 02
2001:0E00::/23 0000 111X XXXX X APNIC Jan 03
2001:1000::/23 0001 000X XXXX X (future assignment)
2001:1200::/23 0001 001X XXXX X LACNIC Nov 02
2001:1400::/23 0001 010X XXXX X RIPE NCC Feb 03
2001:1600::/23 0001 011X XXXX X RIPE NCC Jul 03
2001:1800::/23 0001 100X XXXX X ARIN Apr 03
2001:1A00::/23 0001 101X XXXX X RIPE NCC Jan 04

and continues until
2001:FE00::/23 1111 111X XXXX X (future assignment)

The addresses 2001:6b8:0:400::5d0e and 2001:750:2:0:202:a5ff:fef0:aac7 used in
the IRC communication are global unicast addresses within the range assigned to the
RIPE NCC Regional Internet Registry (shown in blue in Table 3). This is the first place to
investigate these addresses further. The Regional Registries inturn allocate these ranges
either to the National Internet Registries, Local Internet Registries or directly to Internet
Service Providers58.
The regional registries are:

ARIN (American Registry for Internet Numbers) – North America and Sub-Sahara
Africa
Home page http://www.arin.net/
whois search http://www.arin.net/whois/index.html
LACNIC (Regional Latin-American and Caribbean IP Address Registry) – Latin
America and some Caribbean Islands
Home page http://lacnic.net/en/index.html
whois search http://lacnic.net/cgi-bin/lacnic/whois
RIPE NCC (Réseaux IP Européens) – Europe, the Middle East, Central Asia, and
African countries located north of the equator
Home page http://www.ripe.net/
whois search http://www.ripe.net/db/whois/whois.html
APNIC (Asia Pacific Network Information Centre) – Asia/Pacific Region
Home page http://www.apnic.net/
whois search http://www.apnic.net/apnic-bin/whois.pl

As an example of the next level of delegation, we can see how the APNIC has assigned
the range shown in bold in Table 3 at http://ftp.apnic.net/stats/apnic/delegated-apnic-latest. As an
example of the content, we can see further subdivision of the address block
2001:0200::/23 as follows59:

Table 4 - APNIC assigned address blocks
apnic|JP|ipv6|2001:200::|32|19990813|allocated
apnic|SG|ipv6|2001:208::|32|19990827|allocated
apnic|AU|ipv6|2001:210::|35|19990916|allocated
apnic|JP|ipv6|2001:218::|32|19990922|allocated
apnic|KR|ipv6|2001:220::|32|19991006|allocated

and continues
apnic|JP|ipv6|2001:3d8::|32|20020830|allocated
apnic|JP|ipv6|2001:3e0::|32|20020524|allocated
apnic|JP|ipv6|2001:3e8::|32|20020609|allocated
apnic|JP|ipv6|2001:3f0::|32|20020704|allocated
apnic|CN|ipv6|2001:3f8::|32|20020704|allocated

58 RFC3177 provides recommendations for regional registries when allocating IPv6 address.
59 For a description of the format used in these files visit http://www.apnic.net/db/rir-stats-format.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 19

It is just as easy to perform a “whois” lookup at each registry to find more details on a
particular IPv6 address as it is with IPv4 addresses, we will see an example of this later.

5.6 Interface Identifier (EUI-64)
Figure 10 shows how the EUI-64 Interface ID used by many address types, it is
constructed starting with the original MAC address60 and converted into the Interface
Identifier, our example is the link local address fe80::206:5bff:fe04:5e95 seen is the trace:

Figure 10 - Converting a MAC address to an IPv6 Interface Identifier

A standard MAC-48 address has two components, an OUI (organisationally Unique
Identifier) component and the Extension Identifier. The OUI is the first half of the MAC
address and assigned as block to a requesting organisation. The Extension Identifier is
determined by the organisation assigned the OUI. 0xfffe is inserted between the two
components to convert the MAC-48 address into a EUI-6461 (Extended Unique Identifier).
The 0xfffe is specially used to convert a MAC-48 address into an EUI-64 address allowing
the MAC-48 address to be encapsulated within the EUI-64 address while maintaining it’s
uniqueness on the network. The EUI-64 address is then converted into an Interface
Identifier by complementing the “Universal/Local” (U/L) bit that is the next-to-lowest
ordered bit in the first octet of the EUI-64

This address is from a tunnelled connection but because the source host is using a link
local address, we can return the Interface Identifier back to the host’s original MAC
address. Figure 10 shows the original MAC address is 00-06-5b-04-5e-95, looking up
the address on the IEEE website reveals some information about the source host62.

00-06-5B (hex) Dell Computer Corp.
00065B (base 16) Dell Computer Corp.
 One Dell Way
 Round Rock TX 78682
 UNITED STATES

For both security and privacy reasons being able to determine this level of information on a
host could be considered a big issue when attached global unicast or site-local addresses,
for link-local addresses pose less of a risk as you are expected to be able to identify the
MAC address on you local network. The EUI-64 address is designed to be globally unique
making the host traceable across multiple connections as it travels from network to
network with the prefix being the only change. This is a known issue that has been
addressed in RFC3041, this defines a method to create a unique address from the hosts
EUI-64 address that changes at regular intervals making it extremely difficult to track a
user based on their IP address, but still maintains uniqueness on the network.

5.7 Global Anycast addresses
A global anycast address is assigned from the same pool of addresses as the global
unicast address pool making them indistinguishable from a unicast address. A packet
directed to an anycast address is delivered to the closest node with that address as
determined by the routing protocols unit of measure. The anycast address though

60 More information on this process can be obtained from RFC2464
61 More information on EUI-64 – http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
62 This search was done from http://standards.ieee.org/regauth/oui/index.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 20

assigned to multiple nodes cannot be the source of a connection presumably because you
cannot guarantee the reply will return to the originating host.

5.8 Multicast addresses
Multicast addresses are designed to perform a similar function they do in IPv4, multicast
addresses are what make IPv6 extremely flexible, they form part of the core functionality
that lessens load on hosts. IPv6 uses multicast groups to perform the same functionality
used in IPv4 broadcasts. The idea is each group has a specific purpose that hosts can
join or leave as desired, hosts only need to process messages it requires, thus reducing
unnecessary broadcast traffic that in the end most of the hosts do not need to process.

Figure 11 - Multicast Address

A multicast address is identified by FF hex or 1111 1111 binary at its head. Only the low
order bit is used for the multicast flag, the rest are reserved and must always be set to
zero. A 0 (zero) in the low order bit indicates a permanent “well known” address, while a 1
(one) indicates a temporary address. The scope field indicates the coverage this multicast
group has, Table 5 shows the values the scope field can have63.

Table 5 - Multicast Scope Values
value Definition value Definition
0 reserved 8 organisation-local scope
1 interface-local scope 9 (unassigned)
2 link-local scope A (unassigned)
3 reserved B (unassigned)
4 admin-local scope C (unassigned)
5 site-local scope D (unassigned)
6 (unassigned) E global scope
7 (unassigned) F reserved

Link local and site local multicast addresses cover the same network area their
corresponding unicast addresses do. For example, the link local multicast address only
covers the same are as an IPv4 broadcast domain and should not be forwarded by an
IPv6 router. There are many permanently assigned fixed scope multicast addresses64 that
provide a specific function on the network, some examples are:

Table 6 - Example of Permanent Multicast Addresses
IPv6 address Address description
ff02::1 All Nodes Address (all nodes on the local link will process these messages)
ff02::2 All Routers Address (all routers within the local link will process these messages)
ff02::1:ffXX:XXXX Solicited-Node Address
ff02::1:2 All DHCP agents (all DHCP agents on the local link will process these messages)
ff05::2 All Routers Address (all routers within the site will process these messages)
Ff05::1:3 All DHCP servers (all DHCP servers with the site will process these messages)

Section 5.1 mentioned IPv6 addresses hosts must have, some are multicast groups that a
host must join to be considered a functioning IPv6 node, and these are:

o All-Nodes Multicast Addresses;
o A Solicited-Node Multicast Address for each of its unicast and anycast

addresses; and
o Multicast Addresses of all other groups to which the node belongs.

63 From RFC3513 page 14
64 Internet protocol version 6 multicast addresses – http://www.iana.org/assignments/ipv6-multicast-addresses

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 21

We can now identify some of the addresses in our trace as Solicited-Node Address
multicast packets, Table 7 shows the multicast addresses seen in our example trace that
have been the destination for certain traffic.

Table 7 - Multicast Addresses in our Trace
IPv6 address IPv4 address Address type
ff02::1:ff00:5d0f 192.168.100.28 Solicited node address
ff02::1:ff04:5e95 192.168.100.28 Solicited node address
ff02::2:d64f:8980 192.168.100.28 All routers address
The Honeypot was rebooted at this point
ff02::1:ff00:5d0e 163.162.170.173 Solicited node address
ff02::1:fff8:e01c 163.162.170.173 Solicited node address

Solicited-Node addresses are determined from the nodes unicast and anycast addresses
by taking the low order 24 bits of an address and appending those to an
ff02::1:FFXX:XXXX prefix. These addresses are created for each unicast or anycast
address assigned to the node, they are used in neighbour solicitation messages to help
with neighbour discovery. Taking a trace address of ff02::1:ff00:5d0f we can see the
last 24 bits are 005d0f Hex.

Figure 12 - Solicited-Node Multicast Address

5.9 Other address types
RFC3513 defines a couple of other address types, these are used as part of the migration
process and include the “IPv4 compatible IPv6 address” which is used to dynamically
tunnel IPv6 packets over an IPv4 routing infrastructure.

Figure 13 - IPv4 Compatible IPv6 Address

There is also the “IPv4 mapped IPv6 address” used to represent an IPv4 address as an
IPv6 address.

Figure 14 - IPv4 mapped IPv6 Address

RFC2529 defines another address type used in 6over4 communications; it is a link local
address with an embedded IPv4 address. The non-global scope IPv6 addresses you see
leaving the honeypot after it is rebooted are fe80::c0a8:641c are of this type, the
c0a8:641c component of this address is hex for 192.168.100.28.

Figure 15 - IPv6 Link-local address for and IPv4 virtual interface

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 22

5.10 Investigating IPv6 addresses
The IPv6 Address Oracle65 removes some of the pain associated with identifying IPv6
address types, after entering your IPv6 address it gives you:

detailed information about the structure of the addresses and
references to the standards documents that define the address.

The same methods used when investigating the owner of an IPv4 address can be used in
the IPv6 world, performing a “whois” on the address obtained by the honeypot during the
tunnel configuration identifies the owner of the address block66.

% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html
inet6num: 2001:6b8::/48
netname: IT-NGNET-20021111
descr: Telecom Italia Lab S.p.A.
descr: ngnet.it initiative
descr: www.ngnet.it/e/index.php
country: IT
admin-c: NGN2-RIPE
tech-c: NGN2-RIPE
notify: ipv6@tilab.com
mnt-by: CSELT-IPV6-MNT
mnt-lower: CSELT-IPV6-MNT
status: ASSIGNED
changed: ipv6@tilab.com 20021111
source: RIPE
role: ngnet Initiative
address: Telecom Italia Lab S.p.A.
address: Via Reiss Romoli, 274}
address: I-10148 Torino (Italy)
e-mail: info@ngnet.it
trouble: ***
trouble: * For ABUSE mail to: abuse@ngnet.it *
trouble: * For generic INFO mail to: info@ngnet.it *
trouble: * For OPERATIONAL ISSUES mail to: ipv6@tilab.com *
trouble: ***
admin-c: FI144-RIPE
tech-c: FI144-RIPE
tech-c: MM6609-RIPE
tech-c: IG1588-RIPE
notify: ipv6@tilab.com
mnt-by: CSELT-IPV6-MNT
changed: ipv6@tilab.com 20040204
source: RIPE
nic-hdl: NGN2-RIPE

Another lookup on the IRC servers IPv6 address 67 shows the block is assigned to
Edisontel S.p.A. also providing information to report abuse etc.
The UNIX based DIG utility can perform reverse lookups on IPv6 addresses:
$ dig e.0.d.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.4.0.0.0.0.0.8.b.6.0.1.0.0.2.ip6.int ptr

; <<>> DiG 9.2.3 <<>> e.0.d.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.4.0.0.0.0.0.8.b.6.0.1.0.0.2.ip6.int ptr
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 24377
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 1

;; QUESTION SECTION:
;e.0.d.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.4.0.0.0.0.0.8.b.6.0.1.0.0.2.ip6.int. IN PTR

;; ANSWER SECTION:
e.0.d.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.4.0.0.0.0.0.8.b.6.0.1.0.0.2.ip6.int. 30 IN PTR

abCdifgHigkLmnOpqRstuvWxyZ.abCdifgHigkLMnOpqRstUvWxyZ.la.

65 Advanced Network Management Laboratory IPv6 Address Oracle http://steinbeck.ucs.indiana.edu:47401/
66http://www.ripe.net/perl/whois?form_type=simple&full_query_string=&searchtext=2001%3A6b8%3A0%3A400%3A%3A5d0e&do_sear
ch=Search
67http://www.ripe.net/perl/whois?form_type=simple&full_query_string=&searchtext=2001%3A750%3A2%3A%3A202%3Aa5ff%3Afef0%
3Aaac7&do_search=Search

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 23

;; AUTHORITY SECTION:
0.0.4.0.0.0.0.0.8.b.6.0.1.0.0.2.ip6.int. 60 IN NS kenoby.ipv6.cselt.it.
0.0.4.0.0.0.0.0.8.b.6.0.1.0.0.2.ip6.int. 60 IN NS griselda.ipv6.tilab.com.

;; ADDITIONAL SECTION:
griselda.ipv6.tilab.com. 3334 IN A 163.162.170.180

;; Query time: 990 msec
;; SERVER: 192.168.111.10#53(192.168.111.10)
;; WHEN: Mon Apr 19 23:10:07 2004
;; MSG SIZE rcvd: 246

6 Conclusion
Through the Honeynet project, we have been privileged to witness first hand the tools and
tactics used by the black hat community, this paper I hope has shown the importance for
the IDS analyst to become familiar with this protocol through the presentation of an IPv6
based attack. Even if you do not run any IPv6 systems on you network, this attack has
demonstrated the ease at which an attacker can configure a compromised system to
support IPv6 and using some of the migration techniques, tunnel IPv6 traffic over the
internet.
There is a lot that a system administrator could do to detect this type of activity, some of
the things include:
1. Look for traffic that is non-standard on your network, if you do not expect to see

protocol 41 on your network then you should be alarmed if you do.
2. Detect the reboot of the system
3. Patch the system adequately to avoid the initial compromise.
4. Profile traffic entering and leaving your network and/or hosts. An increase in traffic

generated by an attacker who is making your host their new home should trigger alarm
bells.

5. Don’t rely on any single source of information to determine if you have a compromised
host, syslog messages are a great source of information as was evidenced by the
message indicating the machine had restarted, though this will only work if the attacker
has not completely disabled the syslog daemon.

7 Appendix
7.1 Appendix A – Tcpdump command description
/usr/sbin/tcpdump -nnXvve -r day3.log -c 1 'ip[9] = 41'
Command description
/usr/sbin/tcpdump The actual executable that captures data from the network. The

reason I use the full path is to ensure I am running the correct executable and
not another that could be in my path, a paranoid though good habit to be in.

-nn This is a command switch that stops tcpdump from resolving the names of IP
address, protocol and port numbers as it collects data. This saves processing
power and time. Besides, in my opinion, it is easier to work with numbers. If I
need the name, I will look it up via other means.

X Tells tcpdump to print the packet in hex as well as ASCII.
vv Print very verbose information.
e Display the link-level header
-r day3.log Read packets from the day3.log file
-c 1 Display only one packet
'ip[9] = 41' Display only packets with a IP protocol equal to 41 (IPv6)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 24

7.2 Appendix B – References
Almost all the references are inline with the text; here are some other references used
during the compilation of this paper:
http://www.spitzner.net/honeypots.html
Honeypots - Definitions and Value of Honeypots
By Lance Spitzner, 29 May, 2003
http://www.honeynet.org/scans/index.html
'Scan of the Month' challenge main page
Honeynet project team
http://www.honeynet.org/scans/scan28/sol/official/index.html
Official write-up for SOTM 28
Raul Garcia of the Mexico Honeynet Project May 30, 2003
http://docs.sun.com/
Sun Microsystems, Inc.
System Administration Guide, Volume 3, February 2000
http://www.networksorcery.com/enp/default0601.htm
The RFC Sourcebook is a comprehensive guide to the Request for Comments (RFCs)
series of Internet standards and Internet protocols
http://www.rfc-editor.org/rfcsearch.html
All RFCs discussed throughout the paper can be locate through this RFC search engine
http://www.cisco.com/warp/public/732/abc/docs/abcipv6.pdf
The ABCs of IP Version 6
CISCO IOS Learning Services

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 25

Part 2.1

1 Attack host 10.10.10.186
As a practical requirement this detect was posted to the intrusions.org mailing list and is
accessible at http://www.dshield.org/pipermail/intrusions/2004-May/008018.php. At the end of this
detect I have included the top three questions and answers as posted on the mailing list.

1.1 Source of Trace
This detect was taken from files contained within the tar gzip file 2003.12.15.tgz located
at http://www.incidents.org/logs/raw/. This archive contains 14 separate binary log capture files
named 2003.12.15.1 to 2003.12.15.14.

There is a lot of activity recorded in these files, I have chosen to concentrate on traffic
generated by the subject host 10.10.10.186. There is pertinent information relating to this
host in all the log files except the last 2003.12.15.14 so this discussion will cover the
whole set of traces within this archive set. Among others this host is seen attacking
172.20.201.198, these are the two systems I have chosen to write this detect on.

I constructed this diagram and specific information on each host using techniques as
identified by Ian Martin68, who inturn used ideas courtesy of Les Gordon69 and Andre
Cormier70.

Figure 16 – Identified Network Layout

Details on the Attacking host:
Who Attacker
IP 10.10.10.186
MAC 0:2:a5:b6:e2:e3
MAC owner Compaq Computer Corporation
P0f Linux 2.4/2.6 (up: 2 hrs)

Other players in the trace include:
Who DNS/DHCP server Who Subject Target Who Gateway
IP 10.10.10.2 IP 172.20.201.198 IP 10.10.10.1
MAC 0:50:56:40:0:64 MAC ? MAC 0:50:56:40:0:6d
MAC owner VMWare MAC owner ? MAC owner VMWare
P0f ? P0f Linux 2.2 (1) (up: 5 hours) P0f ?

Who Alternate Target Who Alternate Target
IP 172.20.11.2 IP 172.20.11.1
MAC ? MAC ?
MAC owner ? MAC owner ?
P0f ? P0f ?

1.2 Detect was generated by
The 14 files are binary log files which could be generated by any number of packet capture
programs like tcpdump, snort and ethereal. From what I have observed they do not seem

68 Ian Martin’s posted practical on the incidents.org mailing list – http://cert.uni-stuttgart.de/archive/intrusions/2003/07/msg00089.html
69 Les Gordon’s posted practical on the incidents.org mailing list – http://cert.uni-stuttgart.de/archive/intrusions/2002/10/msg00221.html
70 Andre Cormier’s posted practical on the incidents.org mailing list –
http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00162.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 26

to follow the pattern as described in the file http://www.incidents.org/logs/raw/README, the
README suggests the binary log files are made up of traffic triggered by an unknown set of
snort rules. In these files almost all the packet streams are in their entirety, for example
the full TCP three way hand shake to its close is intact.
The only thing missing from these capture files is any data after the 96th byte. The snap
length for the capture seems to have been set to 96 bytes so a lot of the payload is
missing from the trace, though there is usually enough to ascertain what is happening
within a selected trace.
Whichever program captured these logs it was set to capture log files of a particular size
before rotating to a new file as seen by a consistent file size of around 3Mb. The time
frame for the captured data is over a 78.5 minute time span. The activity we are interested
in occurs in all but two files, being the first 12 which contain approximately 25 minutes of
data, the additional two files contain the remaining 50 plus minutes of data.
To analyse the binary log files I used a few common tools like tcpdump71 (version 3.7.2),
Snort72 (version 2.1.1), Ethereal73 (version 0.10.2) and p0f74 (version 2.0.3). When using
snort I used a default snort.conf with a rule file set dated 20040404, the only change
being to uncomment all rule types to make them available.

1.3 Probability the source address was spoofed
Probability the source was spoofed is nearly impossible, host 10.10.10.186 actively
attacks 172.20.201.198 using multiple protocols including TCP. For the TCP protocol to
function correctly it needs to maintain state, maintaining state with TCP is nearly
impossible to do if you spoof your IP address.
There is the remote chance that the attacker is sniffing the packets crossing the wire and
spoofing every response packet, though this is not even remotely likely and would be and
extremely advanced technique. The attacker does not make an effort to hide the attack as
it is easily detectable, it would be a waste of effort to do this and then make the attack
obvious.

1.4 Description of attack
10.10.10.186 is seen to actively attack 172.20.201.198, the attacker follows four distinct
stages in their attempt to compromise the victim:

1. Testing of the FTP service on the target for a potential vulnerability;
2. Directed attack towards the FTP service with a buffer overflow;
3. More detailed analysis of the target host via a port scan, OS fingerprinting and

vulnerability assessment; and
4. Another attack directed against the FTP service with the same buffer overflow.

The attacker uses a couple of tools in an attempt to compromise this host. Starting off with
a basic FTP client to test for availability of specific commands, they then run a specific
exploit with the intention to take advantage of a flaw in the FTP server to compromise the
host.
The exploit is executed multiple times throughout the trace and is described in this CVE
entry related to the wu-ftpd 2.6.0 vulnerability – http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2000-0573
Further references related to this specific exploit include:

71 Tcpdump homepage http://tcpdump.org/
72 Snort home page http://www.snort.org
73 Ethereal home page http://www.ethereal.com
74 p0f home page http://lcamtuf.coredump.cx/p0f.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 27

AusCert description of a vulnerability within the site command for wu-ftpd “site exec”
command for version up to and including 2.6.0 – http://www.auscert.org.au/render.html?it=1911
Cert advisory for the vulnerability.http://www.cert.org/advisories/CA-2000-13.html
The exploit code could possible be this:
wuftpd <= 2.6.0 x86/linux remote root exploit (2000/06/28) –
http://www.mindsec.com/files/examples/7350wu/7350wu.c

After a few attempts using the exploit the attacker moves on to using a vulnerability
scanner with the aim of discovering as much information about the target as possible,
providing the attacker valuable information for further attack, though the only real exploit
that comes from the attacker is the SITE EXEC buffer overflow.

1.5 Attack Mechanism
As previously mentioned there are four stages to this attack, here I describe each stage.

1.5.1 Stage1
In files 2003.12.15.1 to 2003.12.15.3 we find what appears at first to be some fairly
benign probing of the FTP service. The attacker having connected to the FTP server
probes the service for information on its ability to handle the SITE command. The site
command is intended to be used by the administrator of the FTP server. Taken from the
apache FTP server site75:

<The> “SITE command is used by the server to provide services
specific to the system. Most of the SITE commands can be used by
the admin only. You can get all the available SITE commands by
"SITE HELP".
All the server administrative tasks can be performed by the SITE
command. So the administrator can monitor, control the server
remotely.”

Here are some snippets of the payload, remember the snap length on the trace is set to
96bytes so we are unable to view the whole packet payload.

attack reqst => SITE help
server respn => 214-The following SITE command
server respn => UMASK GROUP

In another connection we find the attacker test each SITE option inturn and receive an
error in response, this does appear to be done by hand as seen by the timing between
each request. Here I show a portion of the connection with a rounded time value, showing
a 4.5 to 7 second gap between each request.

attack reqst => 95.6sec SITE index
server respn => 500 'SITE INDEX': command not
attack reqst => 102.5sec SITE minfo
server respn => 500 'SITE MINFO': command not
attack reqst => 107.1sec SITE checksum
server respn => 500 Nothing transferred yet
attack reqst => 113.4sec SITE chmod
server respn => 500 'SITE CHMOD': command not

Even though the attacker receives a negative response to the SITE chmod command they
still try to lessen the file permission on a selected file to have full Read Write Xecute for the
Owner Group and Everone, fortunately for the target this does not work.

attack reqst => SITE chmod 777 libnss_files-2.
server respn => 553 Permission denied on serve

During this initial stage we don’t find any snort rules triggered by the attacker’s activity.

75 http://incubator.apache.org/projects/ftpserver/site_cmd.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 28

1.5.2 stage 2
After testing the FTP server for the SITE command the attacker then tries to exploit it with
a buffer overflow. If we look at file 2003.12.15.4 within Ethereal at line 16801 we see a
new connection to the FTP server, in this trace we see the server response that reveals
the FTP server allows anonymous access and has the name “lazy”. After the initial login
we see the FTP server bombarded with a collection of strange SITE EXEC commands that
have odd parameters, the start of this trace look like:

server respn => 220 lazy FTP server (Version w
attack reqst => 23.02sec USER ftp
server respn => 331 Guest login ok, send your
attack reqst => 23.04sec PASS mozilla@
server respn => 230 Guest login ok, access res
attack reqst => 23.06sec SITE EXEC %020d|%.f%.f|
server respn => 200-00000000000000000049|0-2|
server respn => 200 (end of '%020d|%.f%.f|')
attack reqst => 23.13sec SITE EXEC 7 mmmmnnnn%.f%.f%.f%
server respn => 200-7 mmmmnnnn-2-2200-20700000
server respn => 200 (end of '7 mmmmnnnn%.f%.f
attack reqst => 23.27sec SITE EXEC 7 mmmmnnnn%.f%.f%.f%
server respn => 200-7 mmmmnnnn-2-2200-20700000
server respn => 200 (end of '7 mmmmnnnn%.f%.f

the trace lasts for just over 27.6seconds and contains 222 packets most of which look
similar to the above. With the complexity of the commands and the speed of execution it
would be safe to say this trace is from an automated attack tool. The attacker seems to
have kept this connection open for a while performing other tasks as a graceful close for
this connection is found in a later file 2003.12.15.7. Towards the end of this specific trace
we see the attempted buffer overflow finish with this command sequence:

attack reqst => 28.67sec id;
server respn => uid=0(root) gid=0(root) groups

This connection only triggered two snort rules
[**] [1:553:6] POLICY FTP anonymous login attempt [**]

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"POLICY FTP anonymous login attempt";
content:"USER"; nocase; pcre:"/^USER\s+(anonymous|ftp)/smi"; flow:to_server,established;
classtype:misc-activity; sid:553; rev:6;)

This rule76 is designed to fire when a user logs into an FTP server using either the
username anonymous or ftp. If this FTP server is expected to allow anonymous logins you
probably would turn this rule off for traffic directed to the server otherwise you would
expect to receive a lot of false positives. This rule is triggered many times throughout the
attacker’s activity, from now on I will treat this rule as being inactive.

[**] [1:1971:3] FTP SITE EXEC format string attempt [**]

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP SITE EXEC format string attempt";
flow:to_server,established; content:"SITE"; nocase; content:"EXEC"; nocase; distance:0;
pcre:"/^SITE\s+EXEC\s[^\n]*?%[^\n]*?%/smi"; classtype:bad-unknown; sid:1971; rev:3;)

Simply put this rule77 is designed to trigger when the packet contains SITE EXEC and at
least two percent (%) signs separated by a number of characters within the following string
as long as they are not newline characters. It is designed to pick up this specific activity
directed to the a WU-FTPD daemon prior to 2.6.2 and does. To understand how this
command works in greater detail look at some of the references at the end of the paper.
This rule correctly triggers when the buffer overflow is attempted against the FTP server
and is triggered once for each attempt made by the attacker.

Looking at file 2003.12.15.4 within Ethereal at line 24339 we see the attacker makes a
new connection in an attempt to verify the previously executed exploit, this connection
continues into the next capture file 2003.12.15.5. The user logs in with the user
jsmith@company.com.

76 Snort rule reference http://www.snort.org/snort-db/sid.html?sid=553
77 Snort rule reference http://www.snort.org/snort-db/sid.html?sid=1971

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 29

server respn => 220 lazy FTP server (Version w
attack reqst => 66.22sec USER anonymous
server respn => 331 Guest login ok, send your
attack reqst => 74.58sec PASS jsmith@company.com
server respn => 230 Guest login ok, access res
attack reqst => 74.58sec SYST
server respn => 215 UNIX Type: L8
attack reqst => 76.36sec PASV
server respn => 227 Entering Passive Mode (172
attack reqst => 76.40sec LIST
server respn => 150 Opening ASCII mode data co
server respn => 226 Transfer complete.
attack reqst => ~122sec QUIT
server respn => 221-You have transferred 0 byt
server respn => 221-Total traffic for this ses

Maybe the attacker does not see what they expect so they perform the same buffer
overflow again which is in file 2003.12.15.6. This attempt does not complete cleanly as
the victim host resets the connection just before the end.

In file 2003.12.15.7 we find the final close of the first buffer overflow attempt, maybe
having this connection open caused the second attempt to fail so a third attempt at the
buffer overflow is made which seems to end with a desirable sequence of characters for
the attacker.

attack reqst => SITE EXEC 7 t....PsPsu....PsPs
server respn => 200-7 t...PsPsu...PsPsv...PsPs
attack reqst => 3....F3...jT...'.....=..R..h..
server respn => uid=0(root) gid=0(root) groups

This connection is again reset by the victim host, the buffer overflow does not appear to be
working for the attacker. In file 2003.12.15.8 we see the attacker lead off with a DNS
lookup and then a connection to the FTP server with an abrupt but friendly close possibly
just verifying the FTP server is still active on the target. I suspect the attacker is not
seeing what they want so, they move onto stage 3 of the attack.

During the execution of each buffer overflow snort triggers the same FTP SITE EXEC rule
(SID:1971) otherwise there are no other signs of the attackers activity.

1.5.3 Stage 3
Looking at file 2003.12.15.8 in ethereal we can see the timing of events

DNS Query 4.889sec
Start of FTP connection 4.895sec
Close of FTP connection 9.373sec
DNS Query 85.410sec
Port Scan starts 85.630sec

This shows when the attacker verified the FTP server was still active, then within the next
75 plus seconds’ opens up another attack tool, configures it and launches it against the
victim host. The attack tool starts with a DNS lookup and a full connect scan of host
172.20.201.198 which continues well into file 2003.12.15.9. The scan begins with port 1
and scans sequentially up to port 15000.
This scan is a full connect scan which expects an open port to generate a SYN/ACK in
response to the connection, using tcpdump we are able identify the ports that gave a
positive response. As the port scan covers both file 8 and 9 a similar command was
required to identify the open ports discovered in the rest of the scan.

/usr/sbin/tcpdump -nn -vv -r 2003.12.15.8 "host 10.10.10.186 and tcp[13] & 0x12 = 0x12"
The open ports are:

Port Description Port Description
21 ftp 1071 ?
22 ssh 3306 mysql
23 telnet 6010 x11-ssh-offset 6010/tcp # SSH X11 forwarding offset
25 smtp 6011 ?
79 finger 6012 ?
98 admin package linux conf, on a Solaris box 6013 ?

111 sunrpc portmapper 6014 ?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 30

113 auth 6015 ?
513 login ? 6016 ?
514 command shell for tcp, udp it is known for syslog 6017 ?
587 submission, mail message submission 6018 ?
1024 ? 6020 ?
1043 ?

During the course of this port scan additional snort rules were triggered, they are fairly
basic rules that trigger when a connection is attempted to specific ports, they could
generate numerous false positives depending on the wether the service is available or not,
they may not be implemented in a production rule set because of the potential for a high
rate of false positives78.

[**] [1:1418:3] SNMP request tcp [**]
[**] [1:1420:3] SNMP trap tcp [**]
[**] [1:1421:3] SNMP AgentX/tcp request [**]
[**] [1:615:5] SCAN SOCKS Proxy attempt [**]
[**] [1:618:5] SCAN Squid Proxy attempt [**]
[**] [1:620:6] SCAN Proxy Port 8080 attempt [**]

Now the port scan is complete and we see what appears to be a standard nmap79 OS
finger print attempt80, several packets with strange flag combinations hit the target system.
All these packets are within log 2003.12.15.9 and can be viewed in ethereal at the line
numbers shown
T1 – line 29053 – is a SYN packet with a bunch of TCP options to an open port, in our
case we know that port 21 is open.

Source sport Destination dport Info
10.10.10.186 48599 172.20.201.198 21 [SYN, ECN] Seq=0 Ack=0

Win=3072 Len=0 WS=10 MSS=265 TSV=1061109567 TSER=0
172.20.201.198 21 10.10.10.186 48599 [SYN, ACK] Seq=0 Ack=1

Win=32595 Len=0 MSS=265 TSV=1938094 TSER=1061109567 WS=0
10.10.10.186 48599 172.20.201.198 21 [TCP ZeroWindow] 48599 > 21

[RST] Seq=1 Ack=2894031810 Win=0 Len=0
T2 – line 29054 – is a NULL packet with options to open port, again to port 21.

Source sport Destination dport Info
10.10.10.186 48600 172.20.201.198 21 [] Seq=0 Ack=0 Win=3072

Len=0 WS=10 MSS=265 TSV=1061109567 TSER=0
10.10.10.186 48600 172.20.201.198 21 [] Seq=0 Ack=0 Win=3145728

Len=0 WS=10 MSS=265 TSV=1061109567 TSER=0
T3 – line 29055 – us a SYN|FIN|URG|PSH packet with options to an open port.

Source sport Destination dport Info
10.10.10.186 48601 172.20.201.198 21 [FIN, SYN, PSH, URG] Seq=0

Ack=0 Win=3072 Urg=0 Len=0 WS=10 MSS=265 TSV=1061109567 TSER=0
172.20.201.198 21 10.10.10.186 48601 [SYN, ACK] Seq=0 Ack=1

Win=32595 Len=0 MSS=265 TSV=1938095 TSER=1061109567 WS=0
10.10.10.186 48601 172.20.201.198 21 [TCP ZeroWindow] 48601 > 21

[RST] Seq=1 Ack=2891563653 Win=0 Len=0
T4 – line 29056 – is an ACK to an open port with options

Source sport Destination dport Info
10.10.10.186 48602 172.20.201.198 21 [ACK] Seq=0 Ack=0 Win=3072

Len=0 WS=10 MSS=265 TSV=1061109567 TSER=0
172.20.201.198 21 10.10.10.186 48602 [TCP ZeroWindow] 21 > 48602

[RST] Seq=0 Ack=1567106289 Win=0 Len=0
T5 – line 29057 - is a SYN packet to a closed port with options, the port scan would have
revealed which ports are closed, but port 1 is a safe bet as it is almost always closed, I
have never seen it legitimately open.

Source sport Destination dport Info
10.10.10.186 48603 172.20.201.198 1 [SYN] Seq=0 Ack=0 Win=3072

Len=0 WS=10 MSS=265 TSV=1061109567 TSER=0
172.20.201.198 1 10.10.10.186 48603 [TCP ZeroWindow] 1 > 48603

[RST, ACK] Seq=0 Ack=0 Win=0 Len=0
T6 – line 29058 – is an ACK to a closed port with options

78 To obtain more information on these specific rules search for the Snort ID at http://www.snort.org/cgi-bin/sigs-search.cgi
79 nmap’s man page http://www.insecure.org/nmap/data/nmap_manpage.html
80 nmap fingerprinting techniques are described in this classic text – http://www.insecure.org/nmap/nmap-fingerprinting-article.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 31

Source sport Destination dport Info
10.10.10.186 48604 172.20.201.198 1 [ACK] Seq=0 Ack=0 Win=3072

Len=0 WS=10 MSS=265 TSV=1061109567 TSER=0
172.20.201.198 1 10.10.10.186 48604 [TCP ZeroWindow] 1 > 48604

[RST] Seq=0 Ack=1567106289 Win=0 Len=0
Snort triggered on this connection with this rule because the ACK was set to zero

[**] [1:628:3] SCAN nmap TCP [**]

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap TCP"; stateless; flags:A,12;
ack:0; reference:arachnids,28; classtype:attempted-recon; sid:628; rev:3;)

T7 – line 29059 – is a FIN|PSH|URG to a closed port with options
Source sport Destination dport Info
10.10.10.186 48605 172.20.201.198 1 [FIN, PSH, URG] Seq=0 Ack=0

Win=3072 Urg=0 Len=0 WS=10 MSS=265 TSV=1061109567 TSER=0
172.20.201.198 1 10.10.10.186 48605 [TCP ZeroWindow] 1 > 48605

[RST, ACK] Seq=0 Ack=0 Win=0 Len=0
Snort triggered on this connection with this rule because URG PSH and FIN bits where set.

[**] [1:1228:3] SCAN nmap XMAS [**]

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap XMAS"; stateless; flags:FPU,12;
reference:arachnids,30; classtype:attempted-recon; sid:1228; rev:3;)

PU – line 29060 – is a UDP packet to a closed port
Source sport Destination dport Protocol Info
10.10.10.186 48592 172.20.201.198 1 UDP
172.20.201.198 10.10.10.186 ICMP Destination unreachable

Sifting through an nmap signature file from version 3.47 I found this signature as possibly
being that of the target system. To understand the makeup of this signature please refer
to the Fyodor’s classic fingerprinting article at http://www.insecure.org/nmap/nmap-fingerprinting-
article.txt

Fingerprint Linux 2.3.28-33
Class Linux | Linux | 2.3.X | general purpose
TSeq(Class=RI%gcd=<8%SI=<177B202&>3C1B3)
T1(DF=Y%W=7C70%ACK=S++%Flags=AS%Ops=MNNTNW)
T2(Resp=N)
T3(Resp=Y%DF=Y%W=7C70%ACK=S++%Flags=AS%Ops=MNNTNW)
T4(DF=N%W=0%ACK=O%Flags=R%Ops=)
T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(DF=N%W=0%ACK=O%Flags=R%Ops=)
T7(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
PU(DF=N%TOS=C0|A0|0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%DAT=E)

The attacker now has a clear idea as to which ports are open and perhaps an idea as to
which TCP/IP stack is installed on the victim host. The traffic generated by the attacker is
a series of tests as seen in capture files 2003.12.15.9 to 2003.12.13. All the ports
previously observed as being open by the port scan are tested for vulnerabilities. Looking
at the payload for some of these tests we can determine the whole scan / fingerprinting
effort is likely to have been generated by the vulnerability scanner Nessus, evidence is
contained in this packet and others:

server respn => 220 lazy FTP server (Version w
attack reqst => USER anonymous
server respn => 331 Guest login ok, send your
attack reqst => PASS nessus@nessus.org
server respn => 230 Guest login ok, access res
server respn => 221 You could at least say goo

Due to the snap length we can’t see all the information exchanged between the hosts, the
ftp server name is visible, but the version has been cut off, as a guess I would expect the
‘w’ to stand for wu-ftp81 daemon from Washington University. We notice that the attacking
host connects with the user anonymous and a password of nessus@nessus.org, a sure
sign this is a connection generated by Nessus. A full nmap TCP connect() scan is part of
a standard Nessus vulnerability assessment

81 http://www.wu-ftpd.org/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 32

Based on the banners received during the Nessus scan we can identify some of the
software installed on this server which will be valuable information for the attacker.

Port 21 – w? (I suspect it would have indicated wu-ftp)
Port 22 – SSH-1.99-OpenSSH_2.1.1
port 23 - Red Hat Linux release 7.0
port 25 - 220 lazy ESMTP Sendmail 8.11.0

When port 23 is tested by Nessus it reveals the OS version, which can easily be cross
checked for vulnerabilities specific to this OS. Nessus is not a stealthy scanner so it
should be expected to trigger any IDS installed somewhere between the attacker and the
destination, these are the types of rules triggered by the Nessus scan, many of which
triggered more than once during the scan82.

[**] [1:491:6] INFO FTP Bad login [**]
[**] [1:1672:7] FTP CWD ~ attempt [**]
[**] [1:1432:4] P2P GNUTella GET [**]
[**] [1:361:9] FTP SITE EXEC attempt [**]
[**] [1:489:7] INFO FTP no password [**]
[**] [1:604:5] RSERVICES rsh froot [**]
[**] [1:1992:2] FTP LIST directory traversal attempt [**]

1.5.4 Stage 4
Before the Nessus scan has completed the attacker takes the opportunity to run the buffer
overflow exploit again. It looks very similar to the previously described SITE EXEC exploit,
the difference with this one is what happens after the exploit has completed. The exploit
seems to work, at which point the attacker begins to explore the host system. To conserve
space I will only present some of the more interesting parts of the trace

In log file 2003.12.15.10 we see the full buffer overflow executed, after looking at a few
directories on the server the attacker checks what user they are logged in as

attack reqst => id
server respn => uid=0(root) gid=0(root) groups

Then checking a documents directory we find a directory containing documents related to
the version of wu-ftp installed, 2.6.0 is vulnerable to the SITE EXEC exploit.

attack reqst => cd doc
attack reqst => ls
server respn => wu-ftpd-2.6.0

This trace continues in file 2003.12.15.11 where we see the attacker trying to view
the .rhosts file, the reason for this will become apparent at the end of the trace.

attack reqst => cat .rhosts
server respn => cat:
server respn => .rhosts: No such file or direc

This triggers a simple snort rule designed to identify if the “.rhosts” character sequence is
seen in a packet headed towards the FTP server:

[**] [1:335:4] FTP .rhosts [**]

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP .rhosts"; flow:to_server,established;
content:".rhosts"; reference:arachnids,328; classtype:suspicious-filename-detect; sid:335;
rev:4;)

The attacker then checks many aspects of the host including network information. This
command reveals all the listening services.

attack reqst => netstat –an
server respn => Active Internet connections (s
server respn => 0 172.20.201.198:1020 192.
server respn => 0 0 172.20.201.198:22
server respn => ISHED tcp 0 0 172
server respn => udp 0
server respn => DGRAM 563

the attacker is also able to view information about the makeup of the host and view users
within the /etc/passwd file

82 To obtain more information on these specific rules search for the Snort ID at http://www.snort.org/cgi-bin/sigs-search.cgi

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 33

attack reqst => uname –a
server respn => Linux lazy 2.2.16-22 #1 Tue Au
attack reqst => cat passwd
server respn => root:x:0:0:root:/root:/bin/bas
server respn => che:x:48:48:Apache:/var/www:/b

The last part of the trace continues in file 2003.12.15.12 where the attacker changes into
a new user

attack reqst => su – jsmith
attack reqst => id
server respn => uid=500(jsmith) gid=100(users)

From here the attacker starts to investigate some of the files on the system.
attack reqst => cd ../work*
attack reqst => ls
server respn => important-proposal.txt
attack reqst => cat imp*
server respn => Blah blah blah...\n\n(sounds imp

Further into the trace the attacker tries to append data to the file, I am not sure how
successful the attacker is as the snap length makes it difficult to see if the data is there
when the attacker reads the file back. Before disconnecting from the system the attacker
tries one more command.

attack reqst => rlogin 172.20.11.1
server respn => 172.20.11.1: Connection refuse

An attempt is made to remotely log into another system 172.20.11.1 this receives a
negative response. The previously seen .rhosts check was related to this command,
the .rhosts file holds the rules for external users and systems that can connect to the
system using the well known “r” commands like rlogin, rsh etc. It is the remote
systems .rhosts file that determines what hosts can connect.

Normally I would expect to see an attacker set up shop on the server by uploading further
tools and establishing a back door for later access, instead the attacker just breaks the
connection.

1.5.5 The attacker moves on?
I am not sure if the attacker succeeded in their efforts to compromise 172.20.201.198 but
they move on to other targets including 172.20.11.2 and 172.20.11.1, making a
connection to port 513 (whois daemon) on 172.20.11.2 to find this service not listening.
The attacker moves on to make a series of SSH connection on 172.20.11.1, which is the
same host they tried to use rlogin to open a remote connection to.

Because the attacker did not leave a back door on 172.20.201.198 when they decide to
return to the host they run the SITE EXEC exploit again, towards the end of the trace tries
to rlogin into 172.20.11.1 again without success. This is an attempt to relay though the
victim host to another victim, the goal is to take advantage of privileges the original victim
might have to manipulate the subsequent victim host.

1.6 Correlations
There are numerous hosts on the 10.10.10.x network attacking hosts in other networks.
My suspicions are this attacker is within a mock network created for users to perform
attacks on various hosts, there would be great opportunity for the attacker to share
information identified by other attackers or even use another host to do the
reconnaissance.

The first correlations we can make are with hosts within the same 10.10.10.x subnet the
attack host is in. There are many other hosts within this subnet that target our victim like
host 10.10.10.165 which performs an entire ping sweep of the IP range that
172.20.201.198 lives in. Other hosts that target 172.20.201.198 are:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 34

10.10.10.196, 10.10.10.234, 10.10.10.228, 10.10.10.147, 10.10.10.232, 10.10.10.142,
10.10.10.160, 10.10.10.224, 10.10.10.174, 10.10.10.214.

We know that Nessus is widely advertised as a security tool for the security professional to
perform a vulnerability assessment of various hosts. Certain groups within the black hat
community are probably using this tool as well, but because its not very stealthy I am sure
the more experienced black hat is using other more difficult to detect techniques.

This link talks about another issue with wu-ftpd related to the SITE EXEC command but in
this case is not a buffer overflow, rather a configuration issue in slackware.
http://www.wu-ftpd.org/wu-ftpd-faq.html#QA72

Wu-ftpd is not the only system to be vulnerable to SITE EXEC exploits:

This is a more recent SITE command vulnerability found in GlobalSCAPE Secure FTP
Server (2004-03-18) http://secunia.com/advisories/11159/

While compiling the correlations section I found Chris Compton had also detailed this
detect, he makes the assumption that 10.10.10.196 and 10.10.10.186 are working in
tandem to penetrate the victim host. Chris’s paper presents the material slightly differently
providing more of a focus on the actual exploit rather than the sequence of events the
attacker went through. http://cert.uni-stuttgart.de/archive/intrusions/2004/01/msg00020.html
Davison Avery documented another example of this exploit found within the same log files
but from a different attacking host (10.10.10.228) and victim (172.20.201.135).
http://cert.uni-stuttgart.de/archive/intrusions/2004/03/msg00097.html

1.7 Evidence of Active Targeting
The attacker is half way through an FTP connection when logging starts so there is no
traffic indicating prior reconnaissance to locate this particular host. The attack seems
directed to this particular host until completion of the last buffer overflow attempt.
The attacking host does not interact with any other hosts until the last couple of log files,
there is again no evidence of previous reconnaissance being performed at the network
layer. If I am correct in assuming this is a mock network I suspect there was wide scale
sharing of reconnaissance information at the social level between all the attackers in the
10.10.10.x network.

When we look at the source port numbers from the attacking host used with each new
connection we can see they increase sequentially with little to no gaps between
successive port numbers. This indicates the victim was actively targeted by the attacker
and not performing any other network related tasks while targeting the victim.

1.8 Severity
(Criticality+Lethality) – (System Countermeasures+Network Countermeasures) = Severity
(4 + 5) – (0 + 0) = 9
Based on the information I have collected on these log files I suspect this is a network set
up specifically to allow people to attack systems, and test their ability to compromise hosts.
Criticality = 4
A public FTP server for a corporate should have a high criticality, this service though not
as visible as your Web server does provide a public face to your company.
Lethality = 5
The system is vulnerable to the exploit so a full compromise is possible via this attack
vector providing a root shell.
System Countermeasures = 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 35

As highlighted by the port scan there are multiple services externally accessible, if the date
on the log files is correct it was recorded late 2003, the software installed on this system is
well behind in patches. I suspect this environment has been setup to allow people to test
their attack techniques so system countermeasures are not implemented to make the
environment a little easier to attack.
Network Countermeasures = 0
Network countermeasures again are non existent in this environment, there was no packet
filtering in front of the system

1.9 Defence Recommendations
An anonymous FTP server is always open to abuse and thus should be strictly controlled
and monitored. If you don’t require anonymous access to your FTP server consider more
secure methods of file transfer like SFTP or SCP. These provide an encrypted tunnel
protecting all the data as it travels over the Internet while also providing a more secure
method of authentication if using cryptographic keys.
There are still uses for anonymous FTP servers, assuming you do want to allow
anonymous access to your files, FTP is an ideal candidate. If you allow anonymous
access we can assume the data being offered is not high in value, administrators should
make sure this is the case by removing all restricted data from the server, even if it is not
being served by the FTP daemon, as a compromise of the server would still make this
data available to the attacker.
FTP is a clear text protocol so all aspects of the communication can be monitored over the
network, no one should be able to hide their actions if you freely allow access to the
system so the protocol is probably the most ideal as you can get maximum benefit from
you network IDS. In the real world I would expect this whole attack sequence to be
detected by an IDS situated on the outside of the FTP server. Snort produced more than
enough alarm bells for me to start an investigation.
Because of its clear text nature I would not use FTP anytime I was offering confidential
data, access control should be strict and your main source of logging may need to come
directly from the host itself.
The trace shows that though detectable the attacker was able to deliver what ever packet
they desired to the victim without any form of filtering. Two things become apparent, there
is no firewall in place, and the system has what I would consider excessive services
available, especially if its home is directly on the Internet. All network services not
required for the functioning of the FTP server should be removed, and a firewall
implemented to block any traffic not required for public access.
System hardening resources include:
OpenNA book: “Securing & Optimizing Linux: The Hacking Solution (v3.0)” can be located
at http://www.openna.com while a free earlier release can be found at:
http://www.openna.com/products/books/sol/solus.php, from the website:
The SANS store http://store.sans.org/ offers papers on securing Linux like “Securing Linux: A
Survival Guide for Linux Security”
Red Hat hardening script named Bastille Linux can be found at:
http://www.bastille-linux.org/,
Taking the date of the trace literally (December the 15th 2003) we find the version of Linux
installed on the victim is quite old, this could indicate a lack of version control, a lack of
system management, or security patch policy. All these are very important in the day to
day running of an Anonymous FTP server. There are many guides that can help with

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 36

policy creation one being “The SANS Security Policy Project”
http://www.sans.org/resources/policies/ which provides a collection of policies and policy
templates.

1.10 Multiple Choice Test Question
How many packets does nmap send to a host when trying to identify the OS type given the
-O command line option:
a. 6
b. 7
c. 8
d. 9
Answer: c (T1 – T7 which are TCP tests, and a UDP test)

1.11 References
Snort User Manual which includes a section on “How to Write Snort Rules and Keep Your
Sanity” http://www.snort.org/docs/snort_manual/
Detailed description of PCRE (Perl Compatible Regular Expression) as supported by snort
http://www.pcre.org/pcre.txt
Mastering Regular Expressions (2nd Edition) Jeffrey E. F. Friedl (Published by O’Reilly)

1.12 Intrusions.org
There are four links related to the posted detect:
http://www.dshield.org/pipermail/intrusions/2004-May/008018.php (My original post)
http://www.dshield.org/pipermail/intrusions/2004-May/008019.php (Don Murdoch’s response to my
detect)
http://www.dshield.org/pipermail/intrusions/2004-May/008024.php (Responses to Don’s questions)
http://www.dshield.org/pipermail/intrusions/2004-May/008026.php (Lastly Don’s final comments to my
response)
Here are what I consider the top three questions from Don Murdoch and my response:

> There is the remote chance that the attacker is sniffing the
> > packets crossing the wire and spoofing every response packet,
> > though this is not even remotely likely and would be and ..
> > extremely advanced technique. The attacker does not make an
> > effort to hide the attack as it is easily detectable, it
> > would be a waste of effort to do this and then make the
> > attack obvious.
>
> don - hmmm.... do you mean sniffing locally on the
> wire or doing a man in the middle kind of thing?

In this case I was referring to the possibility that an attacker could be sniffing the network
traffic with a sniffer anywhere on the path between the two communicating hosts, listening
to the traffic as it passes performing a non blind form of the Mitnik attack. I figure as long
as the address used to perform the attack is either not assigned to a real host or the real
host is silenced (i.e. by a DoS) the attacker could maintain a full TCP communication with
the target as long as they can see every return packet.

> server respn => 220 lazy FTP server (Version w
> > attack reqst => USER anonymous
> > server respn => 331 Guest login ok, send your
> > attack reqst => PASS nessus at nessus.org
> > server respn => 230 Guest login ok, access res
> > server respn => 221 You could at least say goo

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 37

>
> don - ok, so you draw the conclustion that its nessus,
> but what did you look at in the nessus app to correlate..
> is there a particular assessment that matches the "goo"?
> in other words, does the nessus scanner have a ftp test
> that uses this email addr?

Performing a quick grep (grep -rin "nessus at nessus.org" *) on the nessus plugins for the
login string "nessus at nessus.org" allows me to add this to the detect.
Nessus is a fully featured open source Vulnerability Assessment tool that provides an ever
increasing set of tests to asses the security posture of a target host from over the network.
Nessus uses plugins to supply information for each of these tests. One of the plugins
"logins.nasl" does not do any security checks by itself but does provide default login
configuration information for other plugins to use.
Plugin information: http://cgi.nessus.org/plugins/dump.php3?id=10870
The source for this plugin has these settings by default:
http://cvsweb.nessus.org/cgi-bin/cvsweb.cgi/~checkout~/nessus-plugins/scripts/logins.nasl?content-
type=text/plain

default_ftp_login = "anonymous";
default_ftp_password = "nessus at nessus.org";
default_ftp_w_dir = "/incoming";
> I suspect this environment has been setup to allow people to
> > test their attack techniques so system countermeasures are
> > not implemented to make the environment a little easier to attack.
>
> don - at this point I don't recall all of the text above,
> but didn't you show that they were thwarted at some points?

I don't think I show the attacks are thwarted but more the attacks did not always complete
successfully, I am not an expert in performing these types of attacks on hosts but I suspect
due to the nature of buffer overflow attacks and the like they would not always work as
expected 100% of the time.

Part 2.2

2 Attack host 10.10.10.142
2.1 Source of Trace
This detect was taken from files contained within the tar gzip file 2003.12.15.tgz located
at http://www.incidents.org/logs/raw/. This archive contains 14 separate binary log capture files
named 2003.12.15.1 to 2003.12.15.14.
There is a lot of activity recorded in these files from many hosts to multiple targets, I have
chosen to concentrate on traffic generated by 10.10.10.142. Traffic generated by this
host is recorded within files 6 – 13 inclusive so this discussion will concentrate on these
files. This host seems to target 192.168.17.135 but via another host 172.20.11.3.
Figure 17 and information on each host was constructed using techniques as identified by
Ian Martin83, who inturn used ideas courtesy of Les Gordon84 and Andre Cormier85.

83 Ian Martin’s posted practical on the incidents.org mailing list - http://cert.uni-stuttgart.de/archive/intrusions/2003/07/msg00089.html
84 Les Gordon’s posted practical on the incidents.org mailing list - http://cert.uni-stuttgart.de/archive/intrusions/2002/10/msg00221.html
85 Andre Cormier’s posted practical on the incidents.org mailing list -
http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00162.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 38

Figure 17 - Identified Network Layout

Details on the Attacking host:
Who Attacker
IP 10.10.10.142
MAC 0:c:29:14:1e:63
MAC owner VMWare
P0f Linux 2.4/2.6 (up: 0 hrs)

The attack host came online some time in file 2003.12.15.6 as evidenced by this bootp
(DHCP) traffic. The key packets involved in the bootp transaction are in bold with the
additional packets related to retries, the first couple of attempts by the attack host to obtain
an IP address where either unheard or ignored by the DHCP server

/usr/sbin/tcpdump -n -r 2003.12.15.6 'ether host 00:0c:29:14:1e:63 or ether host
ff:ff:ff:ff:ff:ff'

05:07:53.041037 IP 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCP, Request from
00:0c:29:14:1e:63, length: 300

05:07:58.032847 IP 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCP, Request from
00:0c:29:14:1e:63, length: 300

05:08:06.033149 IP 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCP, Request from
00:0c:29:14:1e:63, length: 300

05:08:06.048346 arp who-has 10.10.10.142 tell 10.10.10.2
05:08:06.345766 IP 10.10.10.2.67 > 10.10.10.142.68: BOOTP/DHCP, Reply, length: 300
05:08:06.348248 IP 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCP, Request from

00:0c:29:14:1e:63, length: 300
05:08:06.365744 IP 10.10.10.2.67 > 10.10.10.142.68: BOOTP/DHCP, Reply, length: 300
05:08:07.044113 arp who-has 10.10.10.142 tell 10.10.10.2
05:08:07.044840 arp reply 10.10.10.142 is-at 00:0c:29:14:1e:63
05:08:07.045315 IP 10.10.10.2 > 10.10.10.142: icmp 28: echo request seq 0
05:08:07.045765 IP 10.10.10.142 > 10.10.10.2: icmp 28: echo reply seq 0

From this trace, we can see the networks DHCP server is 10.10.10.2. The attack host is
an OS hosted within a VMWare86 session that was identified by looking up the registered87
owner of the MAC address. The OS type was identified by a p0f88 scan across the traffic
generated by the attacking host, and the OS type has been identified as being a version of
Red Hat Linux89 by some regularly occurring DNS requests, an example looks like:
Source sport Destination dport Info
10.10.10.142 32770 10.10.10.2 53 Standard query A www.rhns.redhat.com
10.10.10.142 32770 10.10.10.2 53 Standard query A www.rhns.redhat.com.attackers.org

Not only does this show that 10.10.10.2 also provides DNS services for the network but
the attack host is trying to resolve an IP address for Red Hat’s “Red Hat Network”90 service
offered by Red Hat to keep users system up to date. A default installation of Red Hat
installs a small program named up2date91 which is kept running while the system is active.

10.10.10.142 attempts a connection to RHN every 60 seconds, these queries are not
being satisfied leading me to suspect this network does not have an Internet connection
providing an upstream DNS server to satisfy the request. Because the first query does not
resolve, a second attempt uses the same URL with an appended search path

86 VMWare home page http://www.vmware.com/
87 Search who has registered the MAC address http://standards.ieee.org/regauth/oui/index.shtml
88 More information of the P0f passive scanner can be located at http://freshmeat.net/projects/p0f/
89 Red Hat Linux home page http://www.redhat.com/
90 Red Hat’s Red Hat network service https://rhn.redhat.com/
91 Up2date download site - https://rhn.redhat.com/help/latest-up2date.pxt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 39

attackers.org. This search parameter was probably added to the resolve.conf92
file during the DHCP process to ease DNS lookups from the user perspective. Other
players in the trace include:

Who DNS/DHCP server Who Target Host Who Gateway
IP 10.10.10.2 IP 172.20.11.3 IP 10.10.10.1
MAC 0:50:56:40:0:64 MAC ? MAC 0:50:56:40:0:6d
MAC owner VMWare MAC owner ? MAC owner VMWare
P0f ? P0f ? P0f ?

Who SSH Daemon Who FTP Daemon
IP 172.20.201.198 IP 192.168.17.135
MAC ? MAC ?
MAC owner ? MAC owner ?
P0f ? P0f Linux 2.4/2.6 (up: 13 hrs)

2.2 Detect was generated by
In all three detects I use the same source of data as described in detect one under section
1.2, the 14 files are binary log files which could be generated by any number of packet
capture programs. These files only have the first 96 bytes causing a lot of the payload to
be missing from the selected trace. Each log file was rotated to the next when it reached
around 3Mb, the total period captured by these is around 78.5 minutes.
Tools I used to analyse the binary log files included tcpdump93 (version 3.7.2), Snort94
(version 2.1.1) and Ethereal 95 (version 0.10.2). When using snort I used a default
snort.conf with rule file set dated 20040404, the only change being to uncomment all rule
types to make them available to the snort rule processor.

2.3 Probability the source address was spoofed
The attacker having the IP address 10.10.10.142 uses 192.168.17.135 to proxy a port
scan through this host. If the tool the attacker used to perform the scan was a little
stealthier and the proxy host allowed the attacker to perform the requested action, the
victim host 172.20.11.3 would never have seen packets from the attackers IP address yet
the attacker would have been able to glean some very valuable information about the
target host.

From the perspective of the 192.168.17.135 host, it is unlikely the attacker’s source
address is being spoofed as the main connection to this host is FTP which uses TCP as
the transport protocol. For the TCP protocol to function correctly it needs to maintain state,
maintaining state with TCP is nearly impossible to do if you spoof your IP address.

The attacker attempts to hide their identity behind the 192.168.17.135 address when
trying to scan 172.20.11.3, with adequate logging on the FTP server this connection
would be logged allowing the target system administrators to contact the owner of the FTP
server and potentially correlate events to track down the attacker’s ultimate IP address.
There is a remote chance the attacker is sniffing the packets as they cross the wire
headed towards a real host, and spoofing all the response packets. This would require the
attacker to spoof an unused IP address or perform a DoS on the legitimate owner so it
cannot interrupt the connection. This is not even remotely likely and would be and
extremely advanced technique.

92 Detailed explanation of the resolve.conf file http://www.rt.com/man/resolver.5.html
93 Tcpdump homepage http://tcpdump.org/
94 Snort home page http://www.snort.org
95 Ethereal home page http://www.ethereal.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 40

2.4 Description of attack
There are two different modes available to FTP, “Active mode” and “Passive mode”. The
described attack commonly known as “FTP bounce” relates to the way FTP manages
active mode FTP connections. A great explanation on the two FTP modes is located at
http://slacksite.com/other/ftp.html.
In short FTP requires two network connections to function, one is the command channel
(port 21 on the server) the other is the data channel (in active FTP this is port 20 on the
server). The command channel is required in both modes and opened by the client, how
the data channel is established is where the two modes differ. In passive mode, the FTP
client is also responsible for establishing the data channel with the FTP server. FTP
servers that use active mode FTP require the client to specify an IP address and port
number for which the FTP server will actively establish the data channel back to the client.
Here lays the problem, in some cases the client can specify arbitrary IP addresses and
ports for the FTP server to connect too, these don’t always have to be associated with the
connecting client in any way. This allows the attacker to proxy network scans through the
FTP server thus hiding their true source.
If this attack worked, an attacker could hide their activities behind the FTP servers IP
address making the attacker extremely difficult to locate. Port scanning, bypassing
packet-filtering devices and bypassing export restrictions are just some of the possibilities.
If the FTP server also allows a writable directory then you have even more potential. A file
containing SMTP commands could be uploaded to the FTP server, the attacker would use
the PORT command to connect to a mail server they could then upload the file to the mail
server causing it to relay email, providing only the FTP servers IP address as the source.

2.5 Attack Mechanism
After obtaining an IP address, the attacker connects to a SSH server on 172.20.201.198
and maintains this connection while on the network. My thoughts are this network is
constructed for people to test attack and penetration techniques and this host could
contain instructions or information on the network, many other hosts make lengthy
connections to this server all made without prior reconnaissance.
Because there are no significant snort rules triggered by the attack host, I identified the
traffic manually by searching the trace with ethereal. The attack appears automated as it
is repeated 3 times using the same sequence and as we will see in a very short time span,
Figure 18 shows the connections made by the attacker, each one will be described shortly.
The specific trace we are looking at is in file 2003.12.15.12, opening this file in ethereal
allows us to obtain line numbers and packet timing.

Attacker host is 10.10.10.142
Target host is 172.20.11.3
Proxy host is 192.168.17.135

Figure 18 - Connections made by the attacker

Whatever software was used to generate the trace it begins with a ping to the target host.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 41

line Time src ip src prt dst ip dst prt protocol Comments
20302 155.833sec 10.10.10.142 - 172.20.11.3 - icmp echo request
20306 155.850sec 172.20.11.3 - 10.10.10.142 - icmp echo reply

At almost the same time, the attacker sends a lone ACK packet destined for port 80
typically known as the HTTP port, the source port is 53 well-known for DNS. If part of a
full TCP connection, this traffic would still be suspicious due to the port combinations.
line Time src ip src prt dst ip dst prt protocol Comments
20303 155.833sec 10.10.10.142 53 172.20.11.3 80 tcp lone ack packet
20307 155.850sec 172.20.11.3 80 10.10.10.142 53 tcp rst

Source Port 53 is possible but unusual, more commonly seen in older implementations of
DNS, normally an ephemeral port is used as the source port. Additionally TCP is not
normally used by DNS, but there are two circumstances where it is:

1. When the requesting host requires information that exceeds the capacity set for a
UDP connection of 512bytes; or

2. During a Zone transfer.
As there is no other related traffic from the attacker, I suspect this is an attempt to bypass
a stateless packet filter that could be sitting in front of the target host. The target responds
to the attacker when receiving the ICMP echo request and the lone ACK packet. The
ICMP echo request elicits a desirable response as far as the attacker is concerned, an
echo reply shows the host is alive. The lone ACK packet generates a RST, which is an
expected result for two reasons:

1. The HTTP service is not listening on port 80; or
2. The host does not have any knowledge on a previous connection related to this

TCP packet, when initiating a connection a lone ACK does not start the negotiation
process, it is seen in the last part of a three way handshake (SYN, SYN/ACK, ACK).
As there is no previous state information the target just resets the connection.

The attacker now knows the target host is available, a reverse DNS lookup of the target IP
address to obtain the FQDN (Fully Qualified Domain Name) of the host via the local DNS
server 10.10.10.2. Due to the 96-byte snap length, we cannot see the full DNS response
to identify the name the target IP address would resolve as.
line Time src ip src prt dst ip dst prt protocol Comments
20312 156.200sec 10.10.10.142 32770 10.10.10.2 53 dns ptr request 172.20.11.3
20313 156.203sec 10.10.10.2 53 10.10.10.142 32770 dns ptr response

The focus of this detect is when the attacker connects to the FTP service on a very
different host 192.168.17.135. Here is the TCP three way hand shake:
line Time src ip src prt dst ip dst prt protocol Comments
20314 156.255sec 10.10.10.142 39471 192.168.17.135 21 tcp syn
20317 156.532sec 192.168.17.135 21 10.10.10.142 39471 tcp syn,ack
20318 156.533sec 10.10.10.142 39471 192.168.17.135 21 tcp ack

Once the connection is established the attacker logs into the FTP server using anonymous
as seen by the username and password combination supplied to the server. Using the
FTP PORT command the attacker attempts to open a connection to the target host.

attack reqst => 163.546sec USER anonymous
server respn => 220 suse72all.target.labs.veri
attack reqst => 166.589sec PASS -wwwuser@
server respn => 331 Guest login ok, type your
server respn => 230 Guest login ok, access res
attack reqst => 168.624sec PORT 172,20,11,3,0,144
server respn => 500 Illegal PORT rejected (res
attack reqst => 168.918sec PORT 172,20,11,3,13,129
server respn => 500 Illegal PORT rejected (add
server respn => 221 You could at least say goo

A RST by the FTP server closes the connection. We can see how quickly the attack was
by the addition of timing information.
line Time src ip src prt dst ip dst prt protocol Comments
22294 168.962sec 192.168.17.135 39471 10.10.10.142 21 tcp rst

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 42

The port command is used to open a data channel with the current Active FTP server. As
mentioned in 2.4 - Description of attack there are two different modes an FTP server can
use, Active mode or Passive mode.
In our example, the attacker is trying to take advantage of an issue associated with servers
that implement Active FTP. When a client connects to an active FTP server they make the
standard initial connection to port 21, when the client requires the transfer of data it issues
a “PORT” command, this tells the FTP server which port to connect back on. Take note, it
is the FTP server that makes the initial connection from port 20 back to the client, the client
just informs the FTP server which destination port to connect to the client on.

Figure 19 - Basic Flow of an Active FTP Connection

The Client has the responsibility to tell the FTP server, which IP address and port it is
required to connect back to the client on, potentially the client could ask the FTP server to
make a connection back to any accessible host. In our case, the attacker tries to make the
FTP server to establish a data connection back to the target host using this command.

PORT 172,20,11,3,0,144
What does this command mean? The six decimal numbers separated by comers make up
the IP address and port number for the return connection, the obvious part is the first four
decimal numbers that are the same as the target IP address 172.20.11.3. In a legitimate
connection, the client opens up this port awaiting a return connection from the FTP server,
the last two decimal numbers are the destination port. To calculate the port we take the
left number and multiplying it by 256 and then add the right number.
i.e. (0 x 256) + 144 = 144
As another example, we can take the next PORT command

PORT 172,20,11,3,13,129
This has the same destination IP address of the target but a destination port number being
(13 x 256) + 129 = 3457

In both attempts, the FTP server rejects the attempt:
500 Illegal PORT rejected (add

Even though the command does not work, there are two further attempts to perform this
attack, with exactly the same attack sequence, ping, lone ACK, PTR lookup, and then FTP
connection. If we consider the initial ping as time zero the speed of the scan is obvious.

Echo Request 0.000sec
Lone ACK 0.001sec
DNS PTR lookup 0.368sec
FTP connection 0.423sec

I suspect this attack was delivered by an automated tool like nmap96 that has an FTP
bounce97 switch for this function, though I did not observe similar traffic when I tested it
with my version of nmap (3.47). Unless specifically told otherwise nmap commonly pings
the target host before scanning to ensure it is available before wasting resources on a
down system, the initial ping matches this signature. Additionally, unless the ports are
specified on the command line, nmap will scan for well-known ports as detailed in its nmap-

96 nmap’s man page http://www.insecure.org/nmap/data/nmap_manpage.html
97 Description of nmap’s FTP bounce switch http://www.insecure.org/nmap/nmap_doc.html#bounce

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 43

services file, ports 141 and 3457 are listed in this file, ports are usually scanned randomly
in an effort to evade detection hence the reason they are out of sequence.

2.6 Correlations
This attack is commonly know as an FTP bounce, the attack itself is very old and well
known, the possible uses of the FTP bounce attack, and vulnerable FTP daemons are well
documented. In July 1995 *Hobbit* wrote a paper on the FTP Bounce Attack, this is the
original source describing the possibilities and abuses that can be had with an FTP server,
this paper is well worth the read. http://www.insecure.org/nmap/hobbit.ftpbounce.txt

The reason this has had such a large impact in the past is related to the RFC standards98.
This behaviour is compliant with the RFC standard, which allows clients to choose the IP
address and Port number thus opening up any RFC compliant FTP daemon to this
vulnerability, technically, it would be following the standard.
A later RFC (RFC257799) describes the security implications of the original standards100
and suggests ways to mitigate the impact of the attack, further discussion in the CERT
Coordination Centre paper titled “Problems with the FTP PORT Command or Why You
Don't Want Just Any PORT in a Storm” initially released in April 1998.
http://www.cert.org/tech_tips/ftp_port_attacks.html

The Common Vulnerabilities and exposure database have a couple of entires relating to
the FTP bounce vulnerability, the most important being this generic CVE entry.
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0017
This link lists numerous vendor products that are vulnerable to the exploit, a specific
example is the FTP proxy in Symantec Raptor Firewall 6.5.3 and Enterprise 7.0 –
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0538

This page lists systems that are vulnerable to the Symantec Raptor / Enterprise Firewall
FTP Bounce issue described by CVE 2002-0538 (last updated Apr 17, 2002)
http://www.securityfocus.com/bid/4522
More information on multiple Vendor FTP Bounce Attack Vulnerability (last updated Jul 10,
2003) http://www.securityfocus.com/bid/126
There are advisories related to numerous vulnerable systems, most of which are quite old
with the most recent issues in 2002, showing this vulnerability is still relevant even seven
years after the *Hobbit* article. Examples of the most recent exposures include:
IRIX ftpd Bounce vulnerability, Thursday Mar 28, 2002
http://www.securitywarnings.com/warnings/?id=20
CA’s Eserv FTP server denial of service and bounce attack vulnerabilities (discovered
January 29, 2002) – http://www3.ca.com/threatinfo/vulninfo/Vuln.aspx?ID=4800

2.7 Evidence of Active Targeting
Based on all the traffic generated by the attack host, both the victim and the proxy host
were targeted. The FTP proxy host does not see any traffic from the attacker except this
small attack pattern directed to the FTP server except to port 21 in any of the other files
indicating prior reconnaissance.

for i in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ; do /usr/sbin/tcpdump -n -r 2003.12.15.$i 'dst
host 10.10.10.142 and src host 192.168.17.135 and tcp[13] & 0x12 == 0x12' ; done | awk -F "
" '{print $3}' | awk -F "." '{print $5}' | sort | uniq | sort –n
21

98 A conmprehensive list of the FTP related RFC standards http://www.networksorcery.com/enp/default0601.htm
99 FTP Security Considerations (May 1999) http://www.faqs.org/rfcs/rfc2577.html
100 http://www.networksorcery.com/enp/default0602.htm details all the relevant FTP RFC’s

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 44

A different host could have identified the FTP server, or information sharing took place. I
suspect this attacker is within a mock network constructed for people to exercise their
penetration testing skills. In such an environment, there would be great opportunity to
share information identified by other attackers or use another host for reconnaissance.
If the attacker did indeed use a tool to generate this traffic, they had prior knowledge of the
parameters for the tool before running it. There are numerous hosts on the 10.10.10.x
network attacking hosts within other networks many of which connect to 172.20.201.198
for long periods, these connections do not appear to be attacks, this host could hold
information guiding attackers on what is available within the mock network.

2.8 Severity
(Criticality+Lethality) – (System Countermeasures+Network Countermeasures) = Severity
(4 + 3) – (2 + 1) = 4
Ultimately, the vulnerability is with the FTP server so this is related to the severity of
allowing the PORT command to be used as a proxy to run commands on other systems.
Criticality = 4
A corporate public FTP server should have a high criticality, this service is usually not as
visible as your Web Server but does provide a public face for your company.
Lethality = 3
There are quite a few mischievous things an attacker can do if they are able to find an FTP
server that allows an FTP bounce to occur as described in the *Hobbit* article. The
attacks though not necessarily damaging to the FTP server itself pose a serious threat to
the credibility of the company hosting the server, as they will appear to be the source of
any mischievous activity the attacker performs.
System Countermeasures = 2
It is hard to determine if there are any serious system countermeasures on the FTP server.
Even though the FTP server allows anonymous access the fact the FTP server is not
susceptible to this attack reduces the severity of the attack and increases the system
countermeasures. I suspect that in this specific environment there are no
countermeasures to make the environment a little easier to attack.
Network Countermeasures = 1
There does not appear to be any Network based countermeasures protecting this host.
The fact snort did not trigger an alert with a default rule set probably increases the severity
and the fact the ftp server allows anonymous access probably increases the alertness and
vigilance required by the owners of this server.

2.9 Defence Recommendations
Within documents cited in this paper there are a few recommendations including restricting
the use of the PORT command, or if still required only allowing the PORT command to
connect to ports greater than 1024. An obvious solution is not to run a vulnerable FTP
daemon in the first place.
A vulnerability scanner should vigorously test any host on your network before being
placed into production. This includes any third party products like printers that have an
FTP daemon, or any system that proxies FTP traffic like a proxy server or an application
layer Firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 45

Many of the Security scanners on the market will test for the FTP bounce vulnerability like
ISS Security Scanner101, Retina102, SARA103 and Nessus104. Nessus is the only totally
free105 security scanner mentioned and has a test for the FTP bounce vulnerability with
script id 10081, described at http://cgi.nessus.org/plugins/dump.php3?id=10081

2.10 Multiple Choice Test Question
During an active FTP connection the client sends a “PORT” command to the FTP server
requesting the establishment of a data channel, what IP address and port number does
the client give the FTP server to establish this return connection?
PORT 172,20,11,3,23,162
a. IP: 11.3.23.162 port: 44052
b. IP: 172.20.11.3 port: 6050
c. IP: 11.3.23.162 port: 17220
d. IP: 172.3.11.3 port: 23162
Answer: b (The process of converting this number is described in section 2.5)

2.11 References
Most references are embedded within the document
Example trace files of legitimate traffic, this can be used for comparison and provide
understanding the way traffic patterns should appear. http://www.packet-level.com/traceFiles.htm

Part 2.3

3 Attack host 10.10.10.165
3.1 Source of Trace
This detect was taken from files contained within the tar gzip file 2003.12.15.tgz located
at http://www.incidents.org/logs/raw/. This archive contains 14 separate binary log capture files
named 2003.12.15.1 to 2003.12.15.14.

There is a lot of activity recorded in these files, I have chosen to concentrate on traffic
generated by the subject host 10.10.10.165. Traffic generated by this host is recorded
within files 1 – 13 but the specific packets in this discussion are in file 2003.12.15.5.
Figure 20 and information on each host was constructed using techniques as identified by
Ian Martin106, who inturn used ideas courtesy of Les Gordon107 and Andre Cormier108.

101 ISS Security Scanner can be found through ISS main web site http://www.iss.net/
102 Retina Security Scanner can be found at http://www.eeye.com/html/Products/Retina/index.html
103 SARA Security Scanner can be found at http://www-arc.com/sara/
104 Nessus home page http://www.nessus.org
105 The free software definition http://www.gnu.org/philosophy/free-sw.html
106 Ian Martin’s posted practical on the incidents.org mailing list - http://cert.uni-stuttgart.de/archive/intrusions/2003/07/msg00089.html
107 Les Gordon’s posted practical on the incidents.org mailing list - http://cert.uni-stuttgart.de/archive/intrusions/2002/10/msg00221.html
108 Andre Cormier’s posted practical to the incidents.org mailing list -
http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00162.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 46

Figure 20 - Identified Network Layout

Details on the Attacking host and target:
Who Attacker Who SNMP Agent (target)
IP 10.10.10.165 IP 172.20.201.198
MAC 0:3:47:8c:89:c2 Telnet banner Red.Hat.Linux.release.7.0.(Guinness)
MAC owner Intel Corporation P0f ?
P0f Windows 2000 SP2+, XP SP1

(seldom 98 4.10.2222), Windows XP/2000
while downloading (leak!)

Command used to generate trace
/usr/sbin/tcpdump -nn -r 2003.12.15.5 'host 10.10.10.165 and port 161'

For hex dumps I added the “-X” command line parameter to the above command.
Selected examples of packets between 10.10.10.165 and 172.20.201.198 are:
05:07:00.578222 IP 10.10.10.165.1672 > 172.20.201.198.161: C=FirstBogus

GetRequest(26) .1.3.6.1.2.1.1.1.0
05:07:04.587904 IP 10.10.10.165.1672 > 172.20.201.198.161: GetRequest(26) .1.3.6.1.2.1.1.1.0
05:07:04.632204 IP 172.20.201.198.161 > 10.10.10.165.1672:

GetResponse(35) .1.3.6.1.2.1.1.1.0="Linux"
05:07:04.758182 IP 10.10.10.165.1672 > 172.20.201.198.161: GetNextRequest(26) .1.3.6.1.2.1.1.1.0
05:07:04.864461 IP 172.20.201.198.161 > 10.10.10.165.1672:

GetResponse(35) .1.3.6.1.2.1.1.2.0=.1.3.6.1.4.1
05:07:04.864965 IP 10.10.10.165.1672 > 172.20.201.198.161: GetNextRequest(26) .1.3.6.1.2.1.1.2.0
05:07:04.935582 IP 172.20.201.198.161 > 10.10.10.165.1672:

GetResponse(33) .1.3.6.1.2.1.1.3.0=1904931
05:07:04.936019 IP 10.10.10.165.1672 > 172.20.201.198.161: GetNextRequest(26) .1.3.6.1.2.1.1.3.0
05:07:05.070605 IP 172.20.201.198.161 > 10.10.10.165.1672:

GetResponse(35) .1.3.6.1.2.1.1.4.0="Root "
05:07:05.071095 IP 10.10.10.165.1672 > 172.20.201.198.161: GetNextRequest(26) .1.3.6.1.2.1.1.4.0
05:07:05.137609 IP 172.20.201.198.161 > 10.10.10.165.1672:

GetResponse(34) .1.3.6.1.2.1.1.5.0="lazy"
05:07:05.138005 IP 10.10.10.165.1672 > 172.20.201.198.161: GetNextRequest(26) .1.3.6.1.2.1.1.5.0
05:07:05.234561 IP 172.20.201.198.161 > 10.10.10.165.1672:

GetResponse(35) .1.3.6.1.2.1.1.6.0="Unkno"
05:07:10.986227 IP 10.10.10.165.1672 > 172.20.201.198.161: GetRequest(26) .1.3.6.1.2.1.1.4.0
05:07:10.989554 IP 172.20.201.198.161 > 10.10.10.165.1672:

GetResponse(35) .1.3.6.1.2.1.1.4.0="Root "
05:07:11.491741 IP 10.10.10.165.1672 > 172.20.201.198.161:

SetRequest(39) .1.3.6.1.2.1.1.4.0="iss.net Root "
05:07:11.685548 IP 172.20.201.198.161 > 10.10.10.165.1672: GetResponse(35)

noSuchName@1 .1.3.6.1.2.1.1.4.0="iss.n"
05:07:13.186188 IP 10.10.10.165.1672 > 172.20.201.198.161: GetRequest(26) .1.3.6.1.2.1.1.4.0
05:07:13.196139 IP 172.20.201.198.161 > 10.10.10.165.1672:

GetResponse(35) .1.3.6.1.2.1.1.4.0="Root "
05:07:13.196470 IP 10.10.10.165.1672 > 172.20.201.198.161: SetRequest(39) .1.3.6.1.2.1.1.4.0="Root

<root@lo"
05:07:13.203665 IP 172.20.201.198.161 > 10.10.10.165.1672: GetResponse(35)

noSuchName@1 .1.3.6.1.2.1.1.4.0="Root "
05:07:14.703008 IP 10.10.10.165.1672 > 172.20.201.198.161: GetRequest(26) .1.3.6.1.2.1.1.4.0
05:07:14.706116 IP 172.20.201.198.161 > 10.10.10.165.1672:

GetResponse(35) .1.3.6.1.2.1.1.4.0="Root "
Here we see host 10.10.10.165 connecting to 172.20.201.198 on UDP port 161 (SNMP).
The target host has a listening SNMP service accepting connections with a community
string of “public”. The full trace shows the attacker “walking” the SNMP tree to discover
as much information as possible about the host, potentially revealing information about
vulnerabilities the host may have and giving the attacker more information than desired.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 47

3.2 Detect was generated by
In all three detects I used the same source of data as described in detect one under
section 1.2, the 14 files are binary log files which could be generated by any number of
packet capture programs. These files only have the first 96 bytes causing a lot of the
payload to be missing from the selected trace. Each log file was rotated to the next when
it reached around 3Mb, the total period captured by these is around 78.5 minutes
Tools I used to analyse the binary log files included tcpdump109 (version 3.8.3), Snort110
(version 2.1.2) and Ethereal 111 (version 0.10.3). When using snort I used a default
snort.conf with rule file set dated 20040529, the only change being to uncomment all rule
types to make them available to the snort rule processor.

3.3 Probability the source address was spoofed
In previous detects I suggested this network was constructed for people to test their
penetration skills, with that in mind this traffic is very unlikely to be spoofed. However, to
be a little more scientific, the network protocol used to target our victim host is UDP:

05:07:00.578222 IP 10.10.10.165.1672 > 172.20.201.198.161: C=FirstBogus
GetRequest(26) .1.3.6.1.2.1.1.1.0
 0x0000: 4500 0049 8d46 0000 8011 22d4 0a0a 0aa5 E..I.F....".....
 0x0010: ac14 c9c6 0688 00a1 0035 67fa 302b 0201 5g.0+..
 0x0020: 0004 0a46 6972 7374 426f 6775 73a0 1a02 ...FirstBogus...
 0x0030: 0256 8402 0100 0201 0030 0e30 0c06 082b .V.......0.0...+
 0x0040: 0601 0201 0101 0005 00

UDP is a connectionless protocol that does not have the mechanisms to maintain state
information on connections. If state is required it relies on the upper level protocols (e.g.
within the application) to maintain this information. This gives UDP the ability to be very
simple and efficient in its delivery of packets but leaves network security devices in a state
of ambiguity as to whether each successive connection between the same hosts and UDP
ports is a continuation from a previous packet or an entirely new connection. This makes it
very hard at a network level to determine if the packet was spoofed.
To help we need to try to understand the attackers motivation, some possibilities include:

1. is the attacker trying to perform a denial of service against the host;
2. does the attacker think it if fun to just send random packets and not expect a

response; or
3. is it used to discover information about the target

In scenario 1 an attacker would be wise to hide their identity, though in this trace there are
not enough packets to put any sort of strain on the system, making it is unlikely to be a
resource exhaustion form of DoS attack. There have been documented cases where a
single packet can disable a system112, these DoS attacks use packets that are malformed
in some way and these appear correct removing that possibility.
Only a very bored individual could find scenario 2 interesting leaving the most likely
scenario, “the attacker wants more information about the target”. To obtain the required
information you need responses, to see the response you need a real IP address.
There is a remote chance the attacker is sniffing packets as they cross the wire headed
towards a real host, and spoofing the response packets. An attacker would need to spoof
an unused IP address or perform a DoS on the legitimate owner so it cannot interrupt the
connection. This is very unlikely and would be an extremely advanced technique.

109 Tcpdump homepage http://tcpdump.org/
110 Snort home page http://www.snort.org
111 Ethereal home page http://www.ethereal.com
112 The ping of death – http://www.insecure.org/sploits/ping-o-death.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 48

3.4 Description of attack
This is not necessarily an attack per-se but an attempt at gathering intelligence on the
targeted system, normally a prelude to an attack. After obtaining enough information
during the reconnaissance phase, the attacker would specifically construct an attack
based on information. According to “the Hack FAQ”113 there are four basic steps to
hacking a system, the abridged steps are114:

1. Learn as much as possible about your target before the attack;
2. Initial access to the system;
3. Obtain full system access; and lastly
4. Cover your tracks and install backdoors.

This trace shows an example of step one, the attacker is attempting to learn as much as
they can about the target system before launching into step 2 were they will attempt to
achieve initial system access.

3.5 Attack Mechanism
Only looking at the traffic generated between the subject hosts within file 2003.12.15.5 we
can identify what SNMP alerts snort triggered on and the frequency.

/usr/bin/snort -c ./rules/snort.conf -de -r 2003.12.15.5 -l ./172.20.201.198/ 'host
172.20.201.198 and host 10.10.10.165'
grep '\[**\]' alert | sort | uniq -c | sort -r | head
 40 [**] [1:1411:3] SNMP public access udp [**]
 4 [**] [1:1417:2] SNMP request udp [**]

The first packet is shown under section 3.3 along with a subsequent attempt that looked
very similar there was no response from the target host, these packets trigger snort rule
1417115 which fires on packets directed to port 161. The next packet shows another
attempt to communicate with the target host using the community string “public”:

05:07:04.587904 IP 10.10.10.165.1672 > 172.20.201.198.161:
GetRequest(26) .1.3.6.1.2.1.1.1.0
 0x0000: 4500 0045 8e74 0000 8011 21aa 0a0a 0aa5 E..E.t....!.....
 0x0010: ac14 c9c6 0688 00a1 0031 1fdc 3027 0201 1..0'..
 0x0020: 0004 0670 7562 6c69 63a0 1a02 0256 8502 ...public....V..
 0x0030: 0100 0201 0030 0e30 0c06 082b 0601 0201 0.0...+....
 0x0040: 0101 0005 00

This is the default community string used by the SNMP protocol and is the trigger for snort
rule 1411116, the target system obviously uses the same community string as we receive a
positive response to the connection, which also triggers snort rule 1411.

05:07:04.632204 IP 172.20.201.198.161 > 10.10.10.165.1672:
GetResponse(35) .1.3.6.1.2.1.1.1.0="Linux"
 0x0000: 4500 0086 942c 0000 3e11 5db1 ac14 c9c6 E....,..>.].....
 0x0010: 0a0a 0aa5 00a1 0688 0072 e32d 3082 0066 r.-0..f
 0x0020: 0201 0004 0670 7562 6c69 63a2 8200 5702 public...W.
 0x0030: 0256 8502 0100 0201 0030 8200 4930 8200 .V.......0..I0..
 0x0040: 4506 082b 0601 0201 0101 0004 394c 696e E..+........9Lin
 0x0050: 7578 ux

Remember the snap length for this trace was set to 96 bytes so we are missing the
remaining component to this trace. There is enough here for us see the attacker just
identified the OS version of the SNMP agent is running on (Linux).

The long number “.1.3.6.1.2.1.1.1.0” is called an OID (Object ID)117 and is a series of
numbers that uniquely identify a location of information within an SNMP agent. The
attacker is looking at the system OID, which contains information regarding the target

113 http://www.nmrc.org/pub/faq/hackfaq/index.html
114 http://www.nmrc.org/pub/faq/hackfaq/hackfaq-02.html
115 http://www.snort.org/snort-db/sid.html?sid=1417
116 http://www.snort.org/snort-db/sid.html?sid=1411
117 http://www.adventnet.com/products/snmputilities/help/quick_tour/snmp_and_mib/snmpmib_miboverview.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 49

system, you always want to know what system you are targeting before you attack, so this
would make sense as a first step.

The requested OID can be broken down like this ([.1.3.6.1.] [2.1.1.] [1.] [0]):
OID element Description notes
.1.3.6.1. MIB II 1 = Iso

3 = org
6 = dod
1 = internet

2.1.1.118 System
1. System MIB elements 1 – sysDescr

This number can be changed to look at other items
2 – sysObjectID
3 – sysUpTime
4 – sysContact
5 – sysName
6 – sysLocation
7 - sysServices

0 first instance of this OID

The attacker then continues to look for further information on the target host by “walking”
the SNMP tree, this is where you continually request the next available information item.
The attacker’s software sends an SNMP GETNEXT request to obtain the value within the
next OID in the tree, with each subsequent GETNEXT request, the attacker is walking the
SNMP tree.

attack reqst => GetNextRequest(19) .0.0
server respn => GetResponse(35) .1.3.6.1.2.1.1.1.0="Linux" sysDescr OID
attack reqst => GetNextRequest(26) .1.3.6.1.2.1.1.1.0
server respn => GetResponse(35) .1.3.6.1.2.1.1.2.0=.1.3.6.1.4.1 sysObjectID OID
attack reqst => GetNextRequest(26) .1.3.6.1.2.1.1.2.0
server respn => GetResponse(33) .1.3.6.1.2.1.1.3.0=1904931 sysUpTime OID
attack reqst => GetNextRequest(26) .1.3.6.1.2.1.1.3.0
server respn => GetResponse(35) .1.3.6.1.2.1.1.4.0="Root " sysContact IOD
attack reqst => GetNextRequest(26) .1.3.6.1.2.1.1.4.0
server respn => GetResponse(34) .1.3.6.1.2.1.1.5.0="lazy" sysName OID
attack reqst => GetNextRequest(26) .1.3.6.1.2.1.1.5.0
server respn => GetResponse(35) .1.3.6.1.2.1.1.6.0="Unkno" sysLocation OID
attack reqst => GetNextRequest(26) .1.3.6.1.2.1.1.6.0
server respn => GetResponse(31) .1.3.6.1.2.1.1.8.0=0

This continues we get to what seems to be the end of this sequence of OID's
attack reqst => GetNextRequest(28) .1.3.6.1.2.1.1.9.1.4.9
server respn => GetResponse(32) noSuchName@1 .1.3.6.1.2.1.1.9.1.4.9=

Then the attacker uses a different tactic, instead of just enumerating as much information
about the host as possible, they starts to test the host. They test their ability to write to the
SNMP Agent using an SNMP PUT command and then check the results by reading back
the targeted OID.

attack reqst => GetRequest(26) .1.3.6.1.2.1.1.4.0
server respn => GetResponse(35) .1.3.6.1.2.1.1.4.0="Root "
attack reqst => SetRequest(39) .1.3.6.1.2.1.1.4.0="iss.net Root "
server respn => GetResponse(35) noSuchName@1 .1.3.6.1.2.1.1.4.0="iss.n"
attack reqst => GetRequest(26) .1.3.6.1.2.1.1.4.0
server respn => GetResponse(35) .1.3.6.1.2.1.1.4.0="Root "
attack reqst => SetRequest(39) .1.3.6.1.2.1.1.4.0="Root <root@lo"
server respn => GetResponse(35) noSuchName@1 .1.3.6.1.2.1.1.4.0="Root "

This does not seem to work, as the response is not what the attacker attempted to write.
Something else to note with the last part of the trace, we can identify that the tool used in
the attack as ISS security scanner119, the attacker is scanning multiple hosts at the same
time with this tool. I do not have access to the tool to verify how it functions but it does
leave its mark in a similar way throughout the trace when checking other services. In file
2003.12.15.1, we see evidence of the very first step in the attack, this is an ICMP echo
request that shows more evidence ISS security scanner was used.

118 http://www.et.put.poznan.pl/snmp/mib2/mgroup20.html
119 http://www.iss.net/products_services/enterprise_protection/vulnerability_assessment/scanner_internet.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 50

/usr/sbin/tcpdump -nn -X -r 2003.12.15.1 'host 10.10.10.165 and host 172.20.201.198 and
icmp'
04:59:08.077424 IP 10.10.10.165 > 172.20.201.198: icmp 24: echo request seq 8960
 0x0000: 4500 002c 0bc0 0000 8001 a487 0a0a 0aa5 E..,............
 0x0010: ac14 c9c6 0800 3b30 87db 2300 ac14 c9c6 ;0..#.....
 0x0020: 3bdc 2300 4953 5350 4e47 5251 0000 ;.#.ISSPNGRQ..

These packets trigger a default Snort rule 465120 that looks for this specific sequence of
character in an ICMP packet “ISSPNGRQ”, the detailed information for this rule suggests:

An echo request that originates from a host running Internet
Security Scanner "pinger" software contains a unique payload in
the message request

3.6 Correlations
SNMP is has proven to be a very valuable tool for the network administrator and is
commonly used to centrally mange devices within a network and provides a source of
statistics that help in understanding the health of your network121. There are many well-
identified issues with the most commonly used versions on SNMP (version 1 and 2). One
of the drawbacks is they provide very little in the way of real security, they are clear text
protocols and provide security via a single character string as the password throughout the
enterprise known as a community name.
We can see the ease of identifying the community name within documented traces, but it
is very common for people not to even change the community name from the well-known
default of “public” making sniffing it off the network unnecessary. Products that ship with
SNMP turned on sometimes use alternate community names but these are also generally
well known.
On the SANS top 20 list of vulnerabilities, SNMP is mentioned as an issues in both the
Windows and UNIX category. These links provide a detailed description on how to tackle
problems associated with SNMP, how to determine if you are vulnerable and how to
protect yourself from SNMP issues.
Windows description of the problem – http://www.sans.org/top20/#w10
UNIX description of the problem – http://www.sans.org/top20/#u7
For an even more comprehensive description of SNMP issues, how it works, its
vulnerabilities, and how to protect against these attacks is provided by SANS.
http://www.sans.org/resources/idfaq/snmp.php
Guofei Jiang titles an alternate reference document that discusses the insecurities in
SNMP “Multiple Vulnerabilities in SNMP”. <Review some of these documents>
http://www.computer.org/security/supplement1/jia/
As part of their "PROTOS - Security Testing of Protocol Implementations" project the
University of Oulu developed a SNMPv1 protocol test suite. This project discovered many
issues in the implementation of SNMP finding it was not very secure.

The initial results from the c06-snmpv1 tests indicate that
implementation errors plague several SNMP products. None from the
sample of twelve implementations survived the test-material. This
is most alarming since SNMPv1 is widely used in critical parts of
network infrastructure.

PROTOS Test-Suite: c06-snmpv1 – http://www.ee.oulu.fi/research/ouspg/protos/testing/c06/snmpv1/

CVE and CAN entries related to SNMP
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0013

120 ICMP ISS Pinger – http://www.snort.org/snort-db/sid.html?sid=465
121 http://compnetworking.about.com/library/glossary/bldef-snmp.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 51

CAN-2002-0013 (under review) – Vulnerabilities in the SNMPv1
request handling of a large number of SNMP implementations allow
remote attackers to cause a denial of service or gain privileges
via (1) GetRequest, (2) GetNextRequest, and (3) SetRequest
messages, as demonstrated by the PROTOS c06-SNMPv1 test suite.

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0017
CVE-2002-0017 – Buffer overflow in SNMP daemon (snmpd) on SGI
IRIX 6.5 through 6.5.15m allows remote attackers to execute
arbitrary code via an SNMP request.

Windows – CVE-1999-0294, CVE-1999-0815, CAN-1999-0499, CAN-2002-0053
UNIX – CVE-2001-0236, CVE-2002-0797 CAN-1999-0186, CAN-1999-0254, CAN-1999-
0516, CAN-1999-0517, CAN-1999-0615, CAN-2002-0012, CAN-2002-0796

3.7 Evidence of Active Targeting
As previously mentioned ISS Security Scanner generated this trace, it appears the whole
network range of 172.20.201.x was added to the scanner, which performed a vulnerability
assessment on all the hosts across the specified C class network. This indicates the
attacker did not specifically target the victim. In file 2003.12.15.1 we see a ping sweep
from the attacker targeting this range with four hosts responding:

/usr/sbin/tcpdump -n -r 2003.12.15.1 'host 10.10.10.165 and icmp[icmptype] = icmp-echoreply'
04:59:08.312519 IP 172.20.201.2 > 10.10.10.165: icmp 24: echo reply seq 8960
04:59:08.312559 IP 172.20.201.198 > 10.10.10.165: icmp 24: echo reply seq 8960
04:59:08.321034 IP 172.20.201.135 > 10.10.10.165: icmp 24: echo reply seq 8960
04:59:08.420027 IP 172.20.201.1 > 10.10.10.165: icmp 24: echo reply seq 8960

These IP addresses once identified as alive are targeted with a raft of attacks.

3.8 Severity
(Criticality+Lethality) – (System Countermeasures+Network Countermeasures) = Severity
(3 + 2) – (2 + 1) = 2
Criticality = 3
Allowing SNMP through to Internet facing systems is a very bad idea, especially with well-
known community strings like the target host. The fact that the target host does not allow
the attacker to adjust the content of the SNMP OID's reduces the criticality of this attack, it
does however leave the host open to detailed identification, providing enough information
for the attacker to formulate a potentially successful attack.
Lethality = 2
The attack by itself if not lethal to the system, rather the ramifications of allowing this type
of access to an outsider could be potentially lethal.
System Countermeasures = 2
There does not appear to be any real counter measures on the system, the system
however does not allow write access to the SNMP OID's which could be considered a
system countermeasure.
Network Countermeasures = 1
There does not appear to be any Network based countermeasures protecting this host as
the scanner identifies many open ports, many of which should not be exposed on a
protected host situated directly on the Internet.

for i in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ; do /usr/sbin/tcpdump -n -r 2003.12.15.$i 'dst
host 10.10.10.165 and src host 172.20.201.198 and tcp[13] & 0x12 == 0x12' ; done | awk -F "
" '{print $3}' | awk -F "." '{print $5}' | sort | uniq | sort –n
21,22,23,25,79,98,111,113,513,514,587,1024,3306,36130

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 52

3.9 Defence Recommendations
Standard vulnerability assessment tools like ISS Security Scanner122, Retina123, SARA124
and Nessus 125 will test for vulnerabilities in your SNMP implementation, this trace is
actually ISS Security Scanner performing such tests. There are also many tools designed
to test SNMP deployments specifically, especially since the discovery that SNMP was
vulnerable at the design level. Solarwinds has a tool that checks the security of your
SNMP deployment: http://www.solarwinds.net/Tools/Security/Printer_SNMP_Security.htm

This link also discusses issues related to securing SNMP and how to select a sensible
community string for network environment:

• Do NOT use the default “public” or “private”
• Do NOT use something that would be easy to guess (your company

name, phone number, etc..)
• Do NOT use a text only string (make it alphanumeric)
• DO use an alphanumeric string (one that contains both numbers and

letters)
• DO use both upper and lower case (community strings are case

sensitive)
• DO use a community string that is at least six characters in

length
http://probing.csx.cam.ac.uk/about/snmp.html shows some of the steps required to disable some
of the most common SNMP agents, it also mentions the default SNMP community strings
used by these products.
The SANS references cited in section 3.6 also detail the process of defending yourself
from SNMP issues, these usually break down to a few key principles:

• Do not allow access to SNMP from the internet, if possible filter access to this port
from all systems except the manager even internally to your network.

• Use a strong community string that is unique to your network
• Ensure end systems only responds to messages from known hosts
• Send Authentication Trap - When a device receives an authentication that fails, a

trap is sent to a management station.126
• Ensure end systems only respond to the most recent protocol available
• If at all possible use SNMPv3

3.10 Multiple Choice Test Question
What is the most common SNMP community name used to read information from an
SNMP agent?
a. secure
b. private
c. public
d. read
Answer: C
Most implementations use "public" as a standard community string for read-only access.127

122 ISS Security Scanner can be found through ISS main web site http://www.iss.net/
123 Retina Security Scanner can be found at http://www.eeye.com/html/Products/Retina/index.html
124 SARA Security Scanner can be found at http://www-arc.com/sara/
125 Nessus home page http://www.nessus.org
126 http://www.comptechdoc.org/independent/networking/guide/netsnmp.html
127 http://probing.csx.cam.ac.uk/about/snmp.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 53

Part 3

Analyse This
1 Executive Summary
UMBC commissioned a security audit of their network to assist them in understanding the
security posture of the UMBC network. The audit was performed through the analysis of
five consecutive days of snort capture files recorded using an older snort system running
an unknown rule set. There where three file types, Alert, Scan and OOS (out of spec) files,
these where manipulated to generate reports used to identify unusual network patterns
some of which are discussed within this analysis.
The alerts observed in these log files do provide a reasonable view into the health of the
UMBC network, though they only show traffic entering or leaving the University network.
With no internal network traffic available for analysis it is hard to determine if there are any
inter network scanning or compromise of host with worms or Trojans.
However, only giving an overview as a full analysis would require more time than is
feasible, this document does detail results from this analysis. There are quite a few false
positive recorded, when identified as such the analysis provides a few recommendations
that may reduce these and improve the value of future assessments given a similar time
frame to perform the assessment. There are also hosts with very suspicious activity, these
hosts have been detailed for University staff to verify and rectify as appropriate.
Overall, the university network is reasonably clean considering the openness and size of
the environment covering a full class B network totalling 65,536 addresses. Table 9 shows
that only 84 of the possible 256 /24 networks sent and or received alerted traffic during the
selected period, reducing the address space to a possible 21,504 addresses. As expected
with this size of network and the obvious openness due to the nature of Universities there
are signs of nefarious activity.
Spoofed packets where observed indicating the University does not implement ingress or
egress filtering128 which is highly recommended. There does appear to be a serious worm
propagating through the University network “W32.Mockbot.A.Worm”, hosts suspected of
infection is detailed within the analysis. The evidence of worm and Trojan activity indicate
some users are not as security conscious as they could be, and some systems are not up
to date with patching, recommendations for educating users are at the end of the analysis.

1.1 Suspicious internal hosts
Throughout this document, suspicious internal and external hosts are highlighted for
further action, Table 8 shows only 10 of the identified hosts.
Table 8 - Suspicious Internal Hosts

Host IP FQDN (Fully Qualified Domain Name) Suspicions
130.85.150.44 illiad.lib.umbc.edu. Opaserv or BugBear worms
130.85.69.254 lib-69-254.pooled.umbc.edu. P2P client
130.85.17.45 erk177pc-1.umbc.edu. W32.Mockbot.A.Worm
130.85.80.224 pplant-80-224.pooled.umbc.edu. W32.Mockbot.A.Worm
130.85.153.195 SOA (UMBC3.umbc.edu.) W32.Mockbot.A.Worm
130.85.111.51 trc208pc-02.engr.umbc.edu. W32.Mockbot.A.Worm
130.85.112.193 SOA (UMBC3.UMBC.EDU.) W32.Mockbot.A.Worm
130.85.80.119 ss-80-119.pooled.umbc.edu. Kibuv.b Worm
130.85.97.12 ppp-012.dialup.umbc.edu. Kibuv.b Worm
130.85.112.193 SOA (UMBC3.UMBC.EDU.) Kibuv.b Worm

128 http://www.hackinglinuxexposed.com/articles/20030213.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 54

1.2 Log Files Analysed
The source of the files analysed was from http://www.incidents.com/logs

Alert logs start time end time Scans logs start time end time
alert.040420 04/20-12:50:51 04/21-00:06:02 scans.040420 Apr 20 13:00:31 Apr 20 23:52:25
alert.040421 04/21-00:16:03 04/22-00:07:21 scans.040421 Apr 21 00:00:01 Apr 21 23:57:20
alert.040422 04/22-00:00:01 04/23-00:07:21 scans.040422 Apr 22 00:00:01 Apr 22 23:55:15
alert.040423 04/23-00:16:04 04/24-00:07:19 scans.040423 Apr 23 00:00:02 Apr 23 23:56:48
alert.040426* 04/26-00:30:43 04/26-00:15:25 scans.040426* Apr 26 00:08:42 Apr 26 00:08:55

OSS logs start time end time
oos_report_040420 04/24-00:05:25 04/24-05:56:12
oos_report_040421 04/25-00:05:42 04/25-05:47:20
oos_report_040422 04/26-00:05:48 04/26-05:51:37
oos_report_040425 04/29-00:05:32 04/29-05:57:01
oos_report_040426 04/30-00:05:02 04/30-05:57:21

* These files where unusually small and corrupted, what data I could extract from them
was quite short. There is limited data of use during the month of April.

1.3 Defensive Recommendations
There was a lot of data generated over this five-day period requiring analysis, this level of
information is well beyond any single person to analyse on a day to day basis, even a
small team of people would find it hard to keep up. To minimise the workload involved in
the investigation process, the network should be broken down into segments (or critical
hosts). Within large corporate environments, network segments and or hosts are
categorised by risk or importance. The university could perform a risk assessment on
each segment to determine which are more critical for operations, from there the level of
scrutiny imposed on a are more critical segment would increase while spending less time
on less critical systems.
As a University, there is a fine line between implementing more secure systems and
restricting users’ freedoms. It is advised to segment the network at a physical layer to
separating networks that require more freedom with those that require more protection. As
an example, the network segment 130.85.97.x appears to provide access to users who
have dialled into the University network and should have open access to the Internet, while
the 130.85.1.x network holds some critical infrastructure (i.e. DNS, SMTP servers etc)
these should have considered protection and controls. If they are not already, it is advised
these networks are separated to provide finer grained security.
As this analysis was commissioned to look at the data set as a whole with no specific
information regarding sensitivity of each network segment, the following discussions focus
on the data set as a whole. Take note, all scan data was removed from the alert logs (as
per the process performed by Ian Martin) before generating this and other tables based on
the alert data as it is repeated in the scan specific logs.
Table 9 - Alerts by Network Segment

IP Alerts
src

Alerts
dst

Scans src Scans
dst

OOS
src

OOS
dst

 IP Alerts
src

Alerts
dst

Scans src Scans dst OOS
src

OOS
dst

1 - 771 4702868 14670 - - 67 - 61 - 1098 - -
2 - 45 - 14526 - - 69 3010 1972 589329 7189 - 3
4 - 21 - 14037 - - 70 716 3522 16379 14820 - 10
5 125 2243 - 13846 - 68 71 123 218 444 13984 - -
6 5 595 - 16126 - 983 73 - 9 - 6653 - -
7 - 14 - 14224 - - 75 528 446 1776 13719 - -
9 - 450 - 1862 - - 80 89 346 989123 13392 - -
10 4 184 - 14080 - - 81 1 741 694881 6762 - -
11 5723 110 43 2842 - - 82 196 1495 8742 7197 - -
12 86 719 79 16418 6 868 83 - 1290 41094 6777 - 1
13 - 31 - 13893 - - 84 36 567 464366 6750 - -
14 - 25 - 13560 - 11 86 - 10 - 6670 - -
15 1 644 - 14418 - - 97 84 5763 414290 58633 - 93
16 - 6 - 4576 - - 98 8 61 34772 14014 - -
17 14 3476 1179209 13590 - 3 99 - 224 - 13382 - 11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 55

18 - 269 - 15377 - - 100 - 38 - 13099 - -
20 - 25 - 13674 - - 101 - 32 - 12968 - -
21 - 25 - 13452 - - 102 - 23 - 13229 - -
22 - 74 - 1864 - - 103 - 12 - 3244 - -
24 268 2103 - 15812 - 206 109 94 306 69119 13227 - -
25 409 465 82347 5290 - 69 110 - 625 89183 13860 - -
27 2 1622 92 51455 - - 111 196 2385 583100 13561 - -
28 - 1 - 2462 - - 112 36 911 1269298 15465 - -
29 106 1064 - 12013 - - 120 - 12 - 12449 - -
30 - 51401 21 5585 - - 121 - 33 - 12524 - -
31 - 1212 - 11563 - - 123 - - - 318 - -
32 - 6553 - 10109 - - 130 - 26 - 13160 - -
33 - - - 1615 - - 136 - 6 - 382 - -
34 111 190 154722 2221 - 85 147 - 101 - 6971 - -
40 - 131 5 508 - - 149 - 12 13 13692 - -
41 - 26 - 13656 - - 150 1076 1363 227398 13573 - 4
42 - 22 - 13650 - - 151 8 399 16 13230 - -
43 6232 6025 838857 14267 - 90 152 49 10 110 14054 - -
53 30 2474 151978 14143 - - 153 963 1809 226717 14942 - -
54 - 19 - 13668 - 1 156 - 17 - 13465 - -
55 - 23 172 13476 - - 165 - 16 - 13489 - -
56 - 13 - 3374 - - 166 - - - 842 - -
60 22 371 55 13433 - 18 185 - 25 - 12648 - -
62 5 130 - 1178 - - 186 - 14 - 13238 - -
64 - 23 - 1567 - - 189 4 220 - 3386 - 12
65 - 347 - 3462 - - 190 178 334 - 38784 - -
66 83 37 11366 8506 - - 191 - 125 - 13211 - -

1.4 Description of the analysis process
Demonstration of the analysis process used to reach the conclusions is a requirement of
the paper. The layout is very similar to that used by Pete Storm129, he had a very clean
and readable paper, but unlike Pete, I do not have the database skills to import and
manipulate the alert data within a database. I instead populated my tables using UNIX
commands such as sed, awk, grep, wc, cat, originally based on the work by Ian Martin130
in his paper.
I know this process was not ideal, it is error prone and long winded but served my
purposes based on the skill set I have. In the end, these steps where probably quicker for
me than setting up a database, learning how to import the data so it is usable, and learn a
new language to query the database, as I don't have any prior knowledge in this area.
The big draw back was the lack of flexibility to produce detailed conclusions about the data
and better correlations between hosts due to the limitation of this technique.
This section describes how I prepared the data files before the analysis. The steps to
create the table in sections 2.1, 2.3 and 2.5 are in Appendix A – The process, some of the
additional steps used to arrive at my conclusions are included throughout the paper. Prior
to performing any log analysis I needed to clean the log files, this was a long manual
process using a few UNIX commands to assist.

1.4.1 Alert Logs
There are many comments in previous practicals relating to the quality of these logs, they
regularly have overlapping or truncated entries so I parsed each file with grep, looking for
lines that did not start with the date “04/2”

grep -v -n ^04\/2 alert.040420
This provided the line number of each entry that failed the test, from here I manually edited
each file fixing the identified issue. I could not see an easy way to automate this process,
the issues were with alerts spliced across multiple lines, there could be four, five or a
couple of hundred lines apart, the distance was random.

129 http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf
130 http://www.giac.org/practical/GCIA/Ian_Martin_GCIA.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 56

As an example, we have a situation like:
04/20-14:09:05.820172 [**] EXPLOIT x86 NOOP [**] 24.84.58.6304/20-14:37:14.073435 [**]

spp_portscan: portscan status from MY.NET.1.4: 11 connections across 11 hosts: TCP(0),
UDP(11) [**]

:4095 -> MY.NET.70.74:80
04/20-14:37:14.081775 [**] spp_portscan: portscan status from MY.NET.17.45: 98 connections

across 21 hosts: TCP(98), UDP(0) [**]
It should have looked like:

04/20-14:09:05.820172 [**] EXPLOIT x86 NOOP [**] 24.84.58.63:4095 -> MY.NET.70.74:80
04/20-14:37:14.073435 [**] spp_portscan: portscan status from MY.NET.1.4: 11 connections

across 11 hosts: TCP(0), UDP(11) [**]
04/20-14:37:14.081775 [**] spp_portscan: portscan status from MY.NET.17.45: 98 connections

across 21 hosts: TCP(98), UDP(0) [**]
This could indicate there are multiple processes writing to the same file, each process also
has a different idea of the time or there is a delay in processing before the files are
recorded in the file. Possibly we have multiple processes on separate systems with
unsynchronised clocks writing to the same file. In this example, we can see the time
stamp is not consistent, this sample could indicate three processes writing to the same file?
Andre Cormier came to a similar conclusion131.

04/22-02:46:28.156289 [**] spp_portscan: End of portscan from MY.NET.81.39: TOTAL time(7s)
hosts(58) TCP(61) UDP(0) [**]

04/22-02:30:14.905962 [**] SMB Name Wildcard [**] MY.NET.11.4:1971 -> 64.12.24.35:65535
04/22-02:14:31.293257 [**] High port 65535 tcp - possible Red Worm - traffic [**]

MY.NET.43.8:137 -> 210.120.128.117:137
04/22-02:46:28.701969 [**] spp_portscan: PORTSCAN DETECTED from MY.NET.81.39 (THRESHOLD 12

connections exceeded in 0 seconds) [**]
04/22-02:14:31.299999 [**] High port 65535 tcp - possible Red Worm - traffic [**]

64.12.24.35:65535 -> MY.NET.43.8:1971
The cleaned files where saved with a .clean extension, and placed into one single file.

cat alert.040420.clean alert.040421.clean alert.040422.clean alert.040423.clean
alert.040426.clean >> alert.all

The network these sensors are on is a class B network, with the alert logs sanitised to
protect the identity of the network owners, strangely the scan logs have not. In previous
practicals, the identity of the University was revealed as the University of Maryland
Baltimore County132 and the MY.NET address range as 130.85.0.0/16. Each analyst
took a different path, some choosing to maintain MY.NET in the alert data133, some
changed it with a fictitious IP address like 10.10134 and some as I did chose to replace
MY.NET with the correct IP address135:

sed 's/MY.NET/130.85/g' alert.all >> alert.all.clean
Then following the process Ian Martin used I separated the port scan alerts from the rest:

grep "spp_portscan" alert.all.clean >> alert.spp
grep -v "spp_portscan" alert.all.clean >> alert.misc

To ease manipulation I converted the “[**]” into “:” as a field separator
sed 's/ *\[**\] /:/g' alert.misc >> alert.misc1
sed 's/ *\[**\] /:/g' alert.spp >> alert.spp1

Then for the miscellaneous alerts, I converted the “->” into a “:”.
sed 's/ \-> /:/g' alert.misc1 >> alert.misc2

To show the evolution of each entry, the original format looked like:
date time alert name source IP+port dest IP+port
04/20-12:50:51.940732 [**] SMB Name Wildcard [**] 130.85.150.198:1109 -> 67.162.149.143:137

Adjusted format indicating the individual fields:
date time alert name source IP+port dest IP+port
04/20-12:50:51.940732:SMB Name Wildcard:130.85.150.198:1109:67.162.149.143:137
{1} {2}{3} {4} {5} {6} {7} {8}

131 http://www.giac.org/practical/GCIA/Andre_Cormier_GCIA.pdf
132 http://www.giac.org/practical/GCIA/Andrew_Jones_GCIA.pdf
133 Pete Storm
134 http://www.giac.org/practical/GCIA/Donald_Parker_GCIA.pdf
135 Ian Martin

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 57

This worked for most of the alerts in the alert file, I originally assumed each alert entry
included ports, however this was not the case. There were fragmentation and ICMP alerts
that do not have port entries, or a place holder. For manipulation, each entry needed to be
of the same format. The first step was to separate the two types of alerts, those with port
numbers and those without. Firstly, I remove all the entries that do not have port numbers:

cat alert.misc2 | grep '[0-9]\+\.[0-9]\+.[0-9]\+\.[0-9]\+:[0-9]\+\.[0-9]\+\.[0-9]\+\.[0-
9]\+$' > alert.misc.ip

In addition, placed the rest into a separate file:
cat alert.misc2 | grep -v '[0-9]\+\.[0-9]\+.[0-9]\+\.[0-9]\+:[0-9]\+\.[0-9]\+\.[0-9]\+\.[0-

9]\+$' > alert.misc.transport
There were still corrupt lines in the alert.misc.transport file, I knew what I expected
each entry to look like date:description:src-ip:src-port:dst-ip:dst:port so I
created a filter to match all conforming lines placing all but corrupt lines into a new file, this
removed an additional 9 entries:

grep '04\/2[0-6]\-[0-9]\+:[0-9]\+:[0-9]\+.[0-9]\+:[^\:]\+:[0-9]\+\.[0-9]\+.[0-9]\+\.[0-
9]\+:[0-9]\+:[0-9]\+\.[0-9]\+.[0-9]\+\.[0-9]\+:[0-9]\+' alert.misc.transport >
alert.misc.transport2

Using a similar filter, the entries in alert.misc.ip were verified for non-corrupt entries.
grep '04\/2[0-6]\-[0-9]\+:[0-9]\+:[0-9]\+.[0-9]\+:[^\:]\+:[0-9]\+\.[0-9]\+.[0-9]\+\.[0-

9]\+:[0-9]\+:[0-9]\+\.[0-9]\+.[0-9]\+\.[0-9]\+:[0-9]\+' alert.misc.ip | head
alert.misc.ip is manipulated to give it the same format as alert.misc.transport, the
null port entries where replaced with a “none” comment as a place holder.

awk -F: '{print $1":"$2":"$3":"$4":"$5":none:"$6":none"}' alert.misc.ip > alert.misc.ip2
Showing the original format:

date and time alert name source IP destination IP
04/20-12:42:38.217125:ICMP SRC and DST outside network:172.200.101.156:58.128.231.103
{1} {2}{3} {4} {5} {6}

new format looked like:
date and time alert name source IP+port dest IP+port
04/20-12:42:38.217125:ICMP SRC and DST outside network:172.200.101.156:none:58.128.231.103:none
{1} {2}{3} {4} {5} {6} {7} {8}
I then joined both files again totalling 130,303 alert entries:

cat alert.misc.transport2 alert.misc.ip2 > alert.misc3
Now the alert data is ready for processing.

1.4.2 Scan Logs
The scan logs went through a similar process as the alert data, in short here are the steps:

1. Attempted to clean up the log files
grep -v -n ^Apr\ scans.040423

2. Created one file that was in excess of 910Mb in size containing 13,816,238
individual entries
cat scans.040420.clean scans.040421.clean scans.040422.clean scans.040423.clean scans.040426

>> scans.all
3. First changed the “->” into a “:”.

sed 's/ \-> /:/g' scans.all >> scans.clean
4. Added a “:” between the destination port and the scan type information to aid my

ability to manipulate the data
cat scans.clean | sed 's/\(:[0-9]*\) /\1:/g' > scans.clean2

5. Verified all scan entries conformed to expectations, removing 3 more lines.
grep '^Apr 2[0-6] [0-9]\+:[0-9]\+:[0-9]\+:[0-9]\+\.[0-9]\+.[0-9]\+\.[0-9]\+:[0-9]\+:[0-

9]\+\.[0-9]\+.[0-9]\+\.[0-9]\+:[0-9]\+:[^\:]\+' scans.clean2 > scans.clean.csv
The scan data evolved as such, the original format looked like:

date time src IP+port dst IP+port type of scan
Apr 20 13:00:31 130.85.34.14:34798 -> 198.247.172.10:25 SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 58

With the adjusted format indicating the fields that can be filtered on:
date time src IP+port dst IP+port type of scan
Apr 20 13:00:31:130.85.34.14:34798:198.247.172.10:25:SYN ******S*
{1} {2}{3}{4} {5} {6} {7}{8}

Now the scan data is ready for processing.

1.4.3 OOS Logs
The OOS log files posed a bigger problem for me as they contained multi line entries
making standard UNIX tools unable to cope if looking for information that crossed multiple
lines. Luckily the OOS files where much smaller than the Alert and scan files, only
containing 2,542 entries, small enough to manually clean out obviously corrupt entries,
and create a single file from the five days of data named oos_report.all.clean. To
create the tables in section 2.5, modification of each entry is done from the command line
and piped through simular commands as the other log types.

grep '^04\/2[0-6]-[0-9]\+:[0-9]\+:[0-9]\+.[0-9]\+ ' oos_report.all.clean | sed 's/ \-> /:/g'
| sed 's/\(:[0-9]\+.[0-9]*\) /\1:/g' | [more commands]

An example entry looks like:
04/24-00:05:25.200503 204.92.130.31:39436 -> 130.85.12.6:25
TCP TTL:48 TOS:0x0 ID:37508 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x9CF95DC4 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 259922879 0 NOP WS: 0

With the end result looking like
04/24-00:05:25.200503:204.92.130.31:39436:130.85.12.6:25
{1} {2}{3} {4} {5} {6} {7}

Now the OOS data is ready for processing.

2 Detailed Analysis
There are three data types requiring detailed analysis, alert, scan and OOS (out of spec)
data. Each type are discussed over the next six sections, the first section presents the
data in tables displaying the top offenders within selected categories, the following section
then looks at selected events in greater detail. The detailed discussion will provide
information on suspicious hosts that may require further investigation from University staff
to verify identified concerns.

2.1 Alert Summary
The tables in this section display the alert data in various ways helping identify suspicious
activity, some of which is further discussed in section 2.2

2.1.1 Alerts by Type
Fifty-Six different types of alerts where triggered during the selected period logging
130,303 times. Table 10 shows the frequency of each alert type and the approximate
percentage of the total alert count.
Table 10 - Alerts by Type

Message No. % Messages No. %
EXPLOIT x86 NOOP 38953 30 Attempted Sun RPC high port access 25 <1
130.85.30.4 activity 35321 27 [UMBC NIDS IRC Alert] XDCC client detected

attempting to IRC
23 <1

High port 65535 tcp - possible Red Worm - traffic 19494 15 External RPC call 23 <1
130.85.30.3 activity 15911 12 [UMBC NIDS] External MiMail alert 17 <1
SMB Name Wildcard 8638 7 TFTP - External TCP connection to internal tftp server 17 <1
Tiny Fragments - Possible Hostile Activity 4420 3 FTP DoS ftpd globbing 15 <1
RFB - Possible WinVNC - 010708-1 2360 2 EXPLOIT NTPDX buffer overflow 14 <1
Null scan! 1938 1 DDOS mstream client to handler 14 <1
NMAP TCP ping! 869 <1 [UMBC NIDS] Internal MiMail alert 11 <1
Possible trojan server activity 419 <1 [UMBC NIDS IRC Alert] Possible Incoming XDCC

Send Request Detected.
10 <1

SUNRPC highport access! 254 <1 IRC evil - running XDCC 7 <1
connect to 515 from outside 250 <1 TFTP - Internal TCP connection to external tftp server 6 <1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 59

TCP SMTP Source Port traffic 191 <1 EXPLOIT x86 stealth noop 5 <1
DDOS shaft client to handler 147 <1 connect to 515 from inside 4 <1
[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

138 <1 DDOS mstream handler to client 4 <1

Incomplete Packet Fragments Discarded 127 <1 Traffic from port 53 to port 123 3 <1
High port 65535 udp - possible Red Worm - traffic 122 <1 SYN-FIN scan! 3 <1
TCP SRC and DST outside network 80 <1 Probable NMAP fingerprint attempt 2 <1
SMB C access 75 <1 NIMDA - Attempt to execute root from campus host 2 <1
FTP passwd attempt 69 <1 NETBIOS NT NULL session 2 <1<1
[UMBC NIDS IRC Alert] Possible sdbot floodnet
detected attempting to IRC

65 <1 HelpDesk 130.85.70.49 to External FTP 2 <1

ICMP SRC and DST outside network 43 <1 External FTP to HelpDesk 130.85.70.49 2 <1
TFTP - Internal UDP connection to external tftp server 41 <1 EXPLOIT x86 NOPS 2 <1
IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL
nosize

38 <1 [UMBC NIDS IRC Alert] User joining XDCC channel
detected. Possible XDCC bot

1 <1

[UMBC NIDS IRC Alert] Possible drone command
detected

34 <1 TFTP - External UDP connection to internal tftp server 1 <1

NIMDA - Attempt to execute cmd from campus host 34 <1 External FTP to HelpDesk 130.85.70.50 1 <1
EXPLOIT x86 setuid 0 28 <1 External FTP to HelpDesk 130.85.53.29 1 <1
EXPLOIT x86 setgid 0 26 <1 Back Orifice 1 <1

2.1.2 Top 20 Alert Destination Ports
Here are the top 20 destination ports used out of 1,583 that triggered alerts.
Table 11 - Top 20 Alert Destination Ports

Port Count % Known traffic using this port number

U
ni

qu
e

A
le

rt
s

U
ni

qu
e

Ex
te

rn
al

Sr

c
IP

U
ni

qu
e

In
te

rn
al

D

es
t I

P

U
ni

qu
e

In
te

rn
al

Sr

c
IP

U
ni

qu
e

Ex
te

rn
al

D

es
t I

P

80 40786 31 World Wide Web HTTP 11 2293 824 13 42
51443 28792 22 ? 1 10 1 0 0
524 14946 11 NCP 2 23 2 0 0
65535 10093 8 [trojan] Adore worm, [trojan] RC1 trojan, [trojan] Sins 3 38 27 28 60
137 8638 7 NETBIOS Name Service 2 0 1 62 639
none 4463 3 ? 2 26 18 0 37
8009 3786 3 Unassigned, Novell Netware Remote Manager 2 2 2 0 0
1971 2259 2 NetOp School 1 1 1 0 0
1605 2018 2 Salutation Manager (Salutation Protocol) 1 1 1 0 0
0 1749 1 Reserved, many vulnerabilities 3 101 58 0 0
2894 1521 1 abacus-remote 6 7 2 0 0
3019 1393 1 Resource Manager 1 2 1 0 0
1759 1354 1 SPSS License Manager 2 1 1 1 1
5900 1160 <1 Virtual Network Computer 3 2 12 3 2
2718 1049 <1 pn-requester2 2 1 1 1 1
25 808 <1 Simple Mail Transfer 9 40 5 17 53
53 560 <1 Domain Name Server 3 86 5 0 0
32771 279 <1 FileNET RMI, Sometimes an RPC port on my Solaris box (rusersd) 2 31 46 0 0
515 254 <1 Spooler, [trojan] lpdw0rm, [trojan] Ramen 2 1 1 1 1
27374 227 <1 [trojan] SubSeven, [trojan] Lion, and others 1 1 1 11 33

2.1.3 Alert Reflexive Ports and IP Addresses
With a few exceptions, it is uncommon to see source and destination ports the same, it is
certainly an issue when the source and destination IP addresses are the same. There
where no reflexive IP addresses in the Alert data, but there where reflexive ports all
detailed in Table 12, these unusual packets are potentially worth further investigation.
Table 12 - Alert Reflexive Port Combinations

Port Count Known use Comments Src IP count Dst IP count
137 7396 NETBIOS Name Service This is quite common traffic 61 412
0 1738 Reserved, many vulnerabilities Port 0 is unusual at the best of times 98 55
53 208 Domain Name Server There are some legitimate cases for this 5 2
25 191 Simple Mail Transfer This is not normal 4 1
80 142 World Wide Web HTTP This is not normal 83 35
65535 15 Usually not good This is unusual 8 9
123 4 Network Time Protocol Server to server will exhibit this behaviour 2 2

2.1.4 Top 10 Alert External Talkers
Out of the 3,232 systems that triggered the unknown snort rule set with an external source
IP address Table 13 highlights the top 10. Over the next few tables ports that triggered
alerts more than 100 times are in bold to give a sense of which ports where specifically

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 60

targeted by a given source, ports greater than 1023 are considered ephemeral ports and
none refers to ICMP or fragmented packets, which don’t specify a port.
Table 13 - Top 10 Alert External Talkers

External Source IP Count FQDN
(Fully Qualified Domain Name)

U
ni

qu
e

D
st

 IP

U
ni

qu
e

D
st

Po

rt
s

K
ey

 D
st

Po

rt
s

 (o
ve

r
10

0
in

 b
ol

d)

134.192.42.11 21803 SOA (comm2.umaryland.edu.) 1 1 51443
131.92.177.18 5211 aeclt-cf00a4.apgea.army.mil. 1 1 524
209.164.32.205 4771 209.164.32.205.ptr.us.xo.net. 13 72 none, 0, 80, 139, 113
68.55.155.26 3733 pcp05129829pcs.elkrdg01.md.comcast.net. 1 1 8009
69.136.228.63 3470 pcp08652049pcs.towson01.md.comcast.net. 1 1 51443
64.12.24.34 3076 SOA (dns-01.ns.aol.com.) 3 3 1605, 2718, 1232
220.197.192.39 2613 ? 181 3 80, 6129, 2745
69.138.77.62 2479 pcp08479849pcs.desoto01.md.comcast.net. 2 3 3019, 524, 80
151.196.115.104 2454 pool-151-196-115-104.balt.east.verizon.net. 1 2 524, 3019
64.12.24.35 2335 SOA (dns-01.ns.aol.com.) 4 4 1971, 3706, 1214, 65535

2.1.5 Top 10 Alert Internal Targets
These top 10 hosts out of 1,208 where specifically targeted by an external IP address
triggering the unknown snort rule set. The command used to create this table removes all
lines with an internal source IP address ensuring only external sources are further
analysed and then calculates the frequency of the targets. I expected only to see internal
IP addresses as targets from external systems, but there where also external IP addresses
as targets in the list (not represented in the top 10). This could indicate there where alerts
generated by spoofed packets, a topic further explored in section 2.2.1.
Table 14 - Top 10 Alert Internal Targets

Targeted
Internal IP

Count FQDN
(Fully Qualified Domain Name)

U
ni

qu
e

Sr
c

IP

U
ni

qu
e

D
st

Po

rt
s

K
ey

D

st

 Po
rt

s
(o

ve
r

10
0

in

bo
ld

)

130.85.30.4 35322 lan2.umbc.edu. 313 1645 All ephemeral
130.85.30.3 15912 lan1.umbc.edu. 199 658 80, rest ephemeral
130.85.43.8 3437 SOA (UMBC3.umbc.edu.) 9 3 65535, 0, 6667
130.85.97.43 2160 ppp-043.dialup.umbc.edu. 2 27 none, 0, 20, 6, 7, 9, 11, 12, 13
130.85.43.13 2123 SOA (UMBC3.umbc.edu.) 7 4 6667, 1863, 42936, 80
130.85.97.55 1811 ppp-055.dialup.umbc.edu. 2 21 none, 0, 80, 53, 10, 11, 12, 13, 14, 15
130.85.69.232 1526 lib-69-232.pooled.umbc.edu. 10 10 65535, 0,80,69
130.85.153.81 1393 refweb17.libpub.umbc.edu. 4 3 65535, 0, 40
130.85.17.4 1282 c00040.umbc.edu. 31 29 80, rest ephemeral
130.85.17.3 1161 c00039.umbc.edu. 27 27 All ephemeral

2.1.6 Top 10 Alert Internal Talkers
Out of total 149 systems, this is the top 10 with a source IP address of the internal network.
Table 15 - Top 10 Alert Internal Talkers

Internal Source
IP

Count FQDN
(Fully Qualified Domain Name)

U
ni

qu
e

D
st

 IP

U
ni

qu
e

D
st

Po

rt
s

K
ey

D

st

Po
rt

s
 (o

ve
r

10
0

in

bo
ld

)

130.85.43.8 3235 SOA (UMBC3.UMBC.EDU.) 8 2 65535, 137
130.85.11.4 3112 quarantine.UMBC.EDU. 55 2 3111, 65535
130.85.69.232 2992 lib-69-232.pooled.umbc.edu. 2 2 65535, 69
130.85.11.7 2510 dc2.ad.UMBC.EDU. 3 1 137
130.85.43.13 2125 SOA (UMBC3.umbc.edu.) 3 1 65535
130.85.153.81 884 refweb17.libpub.umbc.edu. 1 1 65535
130.85.150.44 632 illiad.lib.umbc.edu. 206 1 137
130.85.75.13 506 chpdm.umbc.edu. 157 1 137
130.85.150.198 435 pharos2.lib.umbc.edu. 161 1 137
130.85.70.156 245 henry.umbc.edu. 1 239 All ephemeral

2.1.7 Top 10 Alert External Targets
864 different external hosts where targeted by systems with an internal IP address
triggering the unknown snort rule set, Table 16 highlights the top 10 external targets.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 61

Table 16 - Top 10 Alert External Targets
Targeted External
IP

Count FQDN
(Fully Qualified Domain Name)

U
ni

qu
e

Sr
c

IP

U
ni

qu
e

D
st

Po

rt
s

K
ey

D

st

Po
rt

s
(o

ve
r

10
0

in

bo
ld

)

64.12.24.34 3070 SOA (dns-01.ns.aol.com.) 3 4 1605, 2718, 1232, 1168
67.167.3.240 2991 c-67-167-3-240.client.comcast.net. 1 1 2894
210.120.128.117 2606 nis.dacom.co.kr. 2 1 137
64.12.24.35 2169 SOA (dns-01.ns.aol.com. hostmaster.aol.net. 3 4 1971, 3706, 1214, 3883
169.254.0.0 1529 SOA (prisoner.iana.org.) this is an APIPA address 4 1 137
169.254.25.129 1216 SOA (prisoner.iana.org.) this is an APIPA address 2 1 137
24.43.50.166 1197 CPE0010a4ebceb5-CM.cpe.net.cable.rogers.com. 11 3 5900, 1109, 1058
195.36.245.141 884 f01m-6-141.d3.club-internet.fr. 1 1 1759
200.199.135.134 295 SOA (ns2.telemar-ba.net.br.) 4 48 137, ephemeral
65.222.188.7 223 savgw.citizen.org. 1 1 65535

2.1.8 Top 10 Alert Types from External Hosts
From all the alerts generated by attackers there were 45 different types triggered by
systems with an external source address, Table 17 shows the top 10.
Table 17 - Top 10 Alert Types from External Hosts
External Alert Type Count External Alert Type Count
EXPLOIT x86 NOOP 38953 Null scan! 1938
130.85.30.4 activity 35321 RFB - Possible WinVNC - 010708-1 1158
130.85.30.3 activity 15911 NMAP TCP ping! 869
High port 65535 tcp - possible Red Worm - traffic 9177 SUNRPC highport access! 254
Tiny Fragments - Possible Hostile Activity 4420 connect to 515 from outside 250

2.1.9 Top 10 Alerts Types from Internal Hosts
From all the alerts generated Table 18 shows the top 10 triggered by attackers with an
internal source address, there where 18 different types in total.
Table 18 - Top 10 Alert Types from Internal Hosts
Internal Alert Type Count Internal Alert Type Count
High port 65535 tcp - possible Red Worm - traffic 10317 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize 38
SMB Name Wildcard 8638 NIMDA - Attempt to execute cmd from campus host 34
RFB - Possible WinVNC - 010708-1 1202 [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC 23
Possible trojan server activity 232 TFTP - Internal UDP connection to external tftp server 21
[UMBC NIDS IRC Alert] Possible sdbot floodnet
detected attempting to IRC

65 High port 65535 udp - possible Red Worm - traffic 17

2.2 Alert Details
This section discusses some of the suspicious activity identified from the tables in section
2.1. Expansion of only a few alert types is provided within this analysis, as there is not
enough time or space to investigate all the activity. Alerts with the highest count are not
always of the highest concern, a host that keeps just under the radar and only triggers a
couple of alerts could be your highest threat, looking at hosts generating low alert counts
could be equally rewarding. Due to the quantity of alerts, analysis of this type has not
been done, it is considered more beneficial in the short term to remove the high alerting
false positives to ensure future reporting will provide more value.
Through out discussions in this section I have colour coded some of the tables to give a
better idea as to what systems I think are of a greater priority to investigate.

Colour Definition
Red These systems are a priority for investigation
Orange These systems should be investigated
Yellow These systems are of potential concern
Green These systems should be OK

2.2.1 Alert #1 – Spoofed Packets
The first thing that drew my attention to this category of alerts was 37 external destination
addresses and no internal source addresses, unless packets are being spoofed, how can
there be external destination addresses with no internal source addresses.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 62

Port Count % Known traffic using
this port number

Unique
Alerts

Unique External
Src IP

Unique Internal
Dest IP

Unique
Internal Src IP

Unique External
Dest IP

none 4463 3 ? 2 26 18 0 37

There where two alert types without ports associated with the alert:
Tiny Fragments - Possible Hostile Activity 4420
ICMP SRC and DST outside network 43

The suspicious numbers come from the “ICMP SRC and DST outside network” rule, a
quick search shows there where 37 unique destinations, and 21 unique sources. Then
checking both the alert and scan data for spoofed source addresses revealed a few more
in the alert data but none in the scan logs:

awk -F: '{print $5":"$7":"$4}' alert.misc3 | grep -v '130\.85\.[0-9]\+\.[0-9]\+' | cut -d: -
f 2- | grep -v '130\.85\.[0-9]\+\.[0-9]\+' | cut -d: -f 2 | sort | uniq -c | sort -rn

IP address Comments
80 TCP SRC and DST outside network
43 ICMP SRC and DST outside network
1 EXPLOIT x86 NOOP

There where a total of 72 unique destinations and 42 external sources address, here are
the top 5 sources and destinations

awk -F: '{print $7":"$5}' alert.misc3 | grep -v '130\.85\.[0-9]\+\.[0-9]\+' | cut -d: -f 2-
| grep -v '130\.85\.[0-9]\+\.[0-9]\+' | sort | uniq -c | sort –rn

awk -F: '{print $5":"$7}' alert.misc3 | grep -v '130\.85\.[0-9]\+\.[0-9]\+' | cut -d: -f 2-
| grep -v '130\.85\.[0-9]\+\.[0-9]\+' | sort | uniq -c | sort –rn

Table 19 - Top5 Source and Destination Addresses (Spoofed Packets)
Src IP address Count Comments Dst IP address Count Comments
192.168.0.2 12 RFC 1918 128.235.251.108 12 mailhost.njit.edu.
172.161.154.148 10 ACA19A94.ipt.aol.com. 216.155.193.161 5 cs34.msg.dcn.yahoo.com.
172.208.148.242 9 ACD094F2.ipt.aol.com. 207.46.107.88 5 baym-cs288.msgr.hotmail.com.
192.168.2.117 6 RFC 1918 65.32.145.223 4 6532145hfc223.tampabay.rr.com.
172.153.200.207 6 AC99C8CF.ipt.aol.com. 168.95.192.1 4 hntp1.hinet.net.

There where six RFC 1918 addresses within the 192.168.0.X and 192.168.2.X. range,
these could be from a system with its address manually configured, while there was one
“Automatic Private IP Address”136 169.254.224.102. APIPA addresses are automatically
configured on windows based systems when there are no other addresses from other
sources available to the system, i.e. via DHCP, manual etc. Another odd address was
61.77.112.240 owned by Korea Telecom, a very unusual address to find on the network.

inetnum: 61.72.0.0 - 61.77.255.255
netname: KORNET
descr: KOREA TELECOM
descr: KOREA TELECOM Internet
Operating Center
country: KR

The rest of the source addresses are within the America Online address space, a “whois”
lookup reveals the two major blocks of addresses

OrgName: America Online
OrgID: AOL
NetRange: 172.128.0.0 - 172.191.255.255
CIDR: 172.128.0.0/10

OrgName: America Online
OrgID: AOL
NetRange: 172.192.0.0 - 172.211.255.255
CIDR: 172.192.0.0/12, 172.208.0.0/14

This traffic pattern could be from systems dialled into America Online and connected to the
campus network at the same time, these hosts would have two routes to the Internet, and
on occasions may chose the wrong route thus exposing an unusual source address. The
FQDN for the IP addresses in Table 19 does not show the destinations as particularly
unusual supporting this hypothesis.
Recommendations
Without a policy that does not allow a user to dial to the Internet while connected to the
University network there is not much you can do. A security measure that should be

136 What is Automatic Private IP Addressing (APIPA)? – http://www.duxcw.com/faq/network/autoip.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 63

implemented at all routers is ingress and egress filtering to limit the exposure the
University has to being part of a DoS attack using spoofed addresses.

2.2.2 Alert #2 – Port 65535
Almost all the tables in section 2.1 show some activity regarding port 65535

Port Count % Known traffic using this port number

U
ni

qu
e

A
le

rt
s

U
ni

qu
e

Ex
te

rn
a

l S
rc

 IP

U
ni

qu
e

In
te

rn
al

D

es
t I

P

U
ni

qu
e

In
te

rn
al

Sr

c
IP

U

ni
qu

e
Ex

te
rn

a
l D

es
t

IP

65535 10093 8 [trojan] Adore worm, [trojan] RC1 trojan, [trojan] Sins 3 38 27 28 60

The 10,093 alerts break down like this
Count Alert type
10046 High port 65535 tcp - possible Red Worm - traffic
46 High port 65535 udp - possible Red Worm - traffic
1 SMB Name Wildcard

This section will concentrate on the “High port 65535” rules that appear to trigger on any
traffic having a source or destination port of 65535. Though port 65535 is a legitimate
ephemeral port, it is still unusual to see this quantity of packets. Most operating systems
have a configurable range of addresses used for dynamic allocation as source ports137,
port 65535 is the last port in this range for most of the common operating systems.
Normally, an OS will cycle through the range of ephemeral ports only using 65535 when it
reaches the end. With the traffic totalling 8% of alerts, there has to be a better explanation.
The dshield database138 shows the interest in this port varies considerably from day to day
but does not get anywhere near the levels reached by ports like 80 and 137. Additional
information on this port indicates there are Trojans including the Adore worm139, RC1
Trojan140, and the Sins Trojan that use this port. Pete Storm states the Adore worm does
not use UDP, this suggests these are related to something else. Table 20 shows the top
10 sources and destination ports triggering these alerts.

Table 20 - Top 10 "High port 65535 tcp" source and destination ports
Port Src # Dst # comments Ports Src # Dst # comments
65535 9446 10046 - 65535 91 46 -
2894 2991 1515 ABACUS-REMOTE 4672 8 10 -
1971 2090 2259 NetOp School 6257 3 29 -
1605 2050 2018 Salutation Manager (Salutation Protocol) 4692 3 3 -
2718 1015 1048 PN REQUESTER 2 61898 2 - -
1759 884 1351 SPSS License Manager 2025 2 - -
25 252 514 SMTP 62939 1 - -
80 126 85 HTTP 58367 1 - -
1627 68 77 - 54719 1 - -
1979 64 64 - 49076 1 - -

Systems generating this alert are correlated with the scan data to identify any scan activity
these hosts may have performed. Firstly, a list of the 152 IP addresses that triggered the
“High port 65535 xxx” alert rule and their frequency is collected (42 where internal
systems), each one is checked against the scan data looking for activity.

Internal Src Alert # dst IP Scan # Internal Src Alert # dst IP Scan # Internal Src Alert # dst IP Scan #
130.85.6.7 2 2 - 130.85.25.70 23 8 17877 130.85.60.38 1 1 -
130.85.12.6 8 8 55 130.85.25.71 19 10 14126 130.85.69.214 1 1 169918
130.85.12.7 12 5 1 130.85.25.72 22 8 11526 130.85.69.226 2 1 73049
130.85.24.20 81 1 - 130.85.25.73 19 7 11486 130.85.69.232 2991 2 225716
130.85.24.33 6 1 - 130.85.29.3 4 2 - 130.85.70.164 100 5 2583
130.85.24.34 34 17 - 130.85.34.11 69 6 - 130.85.75.27 3 1 -
130.85.24.44 10 6 - 130.85.34.14 32 7 154637 130.85.75.99 3 1 -
130.85.24.74 32 3 - 130.85.43.13 2125 3 5790 130.85.97.100 1 1 285
130.85.25.12 10 2 - 130.85.43.3 18 4 3625 130.85.97.105 2 1 7328
130.85.25.10 227 2 - 130.85.43.4 166 10 2249 130.85.97.183 3 1 2830
130.85.25.66 47 8 3519 130.85.43.5 34 9 167 130.85.98.56 8 2 7501

137 http://www.ncftpd.com/ncftpd/doc/misc/ephemeral_ports.html
138 http://www.dshield.org/port_report.php?port=65535&recax=1&tarax=2&srcax=2&percent=N&days=70
139 http://www.sans.org/y2k/adore.htm
140 http://www.blackcode.com/trojans/details.php?id=1073

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 64

130.85.25.67 5 3 2983 130.85.43.8 3235 8 46542 130.85.111.34 8 9 29502
130.85.25.68 8 4 6182 130.85.53.31 3 2 - 130.85.153.81 884 1 829
130.85.25.69 29 9 14628 130.85.60.17 8 3 - 130.85.153.97 39 4 838

Out of the 108 external addresses triggering this alert only five where also see in the scan
logs, these should be investigated further for scan activity.

External Source Scan #
66.238.42.230 1732
68.218.142.172 44
200.51.38.2 523
203.15.51.51 34810
213.180.193.68 36546

A simple explanation for this traffic suggests it is related to the Adore worm, correlating
with other peoples practicals tend to suggest this is the case.
Recommendations
Investigate the identified internal hosts further and verify they are not infected with the
Adore worm, if they have been infected they should be disconnected from the network and
cleaned before being reconnected.

2.2.3 Alert #3 – Port 137 (“SMB Name Wildcard” activity)
This discussion looks at “SMB Name Wildcard” activity.

Port Count % Known traffic using this
port number

Unique Alerts Unique Ext
Src IP

Unique Int
Dest IP

Unique Int
Src IP

Unique Ext
Dest IP

137 8638 7 NETBIOS Name Service 2 0 1 62 639

These statistics show a lot of activity
generated by port 137 directed to 639 different
external addresses, almost one-tenth the
quantity of internal source addresses.
Looking at Figure 21 from the dshield 141
website we can see there is a consistently
high level of activity associated with this port
well known for Microsoft windows NETBIOS
Name Service142, also known for the quantity
of vulnerabilities and Trojan horses that listen
on this port.

Figure 21 - DShield.org port 137 report (70-day trend)

Except for one, this traffic triggers the “SMB Name Wildcard” snort rule, which this section
will concentrate on as we have already looked at the other alert type.

awk -F: '{print $8":"$4}' alert.misc3 | grep "^137:" | cut -d":" -f 2 | sort | uniq -c |
sort -rn

Alert Type Count
SMB Name Wildcard 8637
High port 65535 tcp - possible Red Worm - traffic 1

Trying to identify the rule used by the University, we find this rule on Max Visions
whitehats.com website, a possible snort rule looks like143:

alert UDP $EXTERNAL any -> $INTERNAL 137 (msg: "IDS177/netbios_netbios-name-query"; content:
"CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|00 00|"; classtype: info-attempt; reference:
arachnids,177;)

This rule triggers on systems searching for resources on the target host by performing a
wildcard query looking for its NetBIOS name table. This specific rule triggers on external

141 http://www.dshield.org/port_report.php?port=137&recax=1&tarax=2&srcax=2&percent=N&days=70
142 http://www.dshield.org/ports/port137.php
143 http://www.whitehats.com/info/IDS177

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 65

hosts from any port targeting internal hosts on port 137, but none of the alerts show
external source addresses.

awk -F: '{print $4":"$5":"$6}' alert.misc3 | grep "^SMB Name Wildcard" | awk -F: '{print
$2":"$3}' | grep -v "^130\.85\.[0-9]\+\.[0-9]\+" | cut -d":" -f 2 | sort | uniq -c | sort -
rn

Either the variables $EXTERNAL and $INTERNAL are the same and there was no traffic of
this nature from outside the network or they have been customised to suit the Universities
requirements. Looking for the destination ports related to “SMB Name Wildcard”, we find in
all but one case a destination port 137, which at this stage we will consider as an anomaly.

Destination Port Count
137 8637
65535 1

The anomalous alert looks like:
04/22-02:30:14.905962:SMB Name Wildcard:130.85.11.4:1971:64.12.24.35:65535

The max vision link also provides insight into this traffic, the highlights of which are:
1. <This is> normal operation
2. Used when file sharing is active to determine NetBIOS names
3. When originating from an external network, is usually a pre-attack probe.
4. Information available includes:

a. The NetBIOS name of the server.
b. The Windows NT workgroup domain name.
c. Login names of users who are logged into the server.
d. Name of the administrator account if logged into the server.

5. It is considered best practice to ensure users outside of your network are
not permitted to access the NetBIOS name service.

So far, we can consider these probes as benign, checking the source ports will help
classify this traffic, this table shows the top 10 source ports and the percentage against the
total SMB alert count.

awk -F: '{print $4":"$5":"$6}' alert.misc3 | grep "^SMB Name Wildcard" | awk -F: '{print
$2":"$3}' | grep "^130\.85\.[0-9]\+\.[0-9]\+" | cut -d":" -f 2 | sort | uniq -c | sort –rn |
head

Source Port Count % Source Port Count %
137 7395 87 1082 99 1
1059 235 3 1058 71 <1
1072 187 2 1131 56 <1
1060 120 1 1109 42 <1
1050 102 1 1044 16 <1

We are potentially seeing two different types of traffic144 . Traffic with a source and
destination port 137 is probably benign, and is normal windows traffic touched on again in
Alert #4 – Reflexive Ports. Traffic with a source port above 1023 is more likely to be the
“Opaserv” or “BugBear” worms. Systems generating traffic with a source port not 137
could be infected with these worms and should be checked for signs of infection using an
up to date virus scanner, here are these hosts:

awk -F: '{print $4":"$6":"$5}' alert.misc3 | grep "^SMB Name Wildcard" | awk -F: '{print
$2":"$3}' | grep -v "^137:" | cut -d":" -f 2 | sort | uniq -c | sort -rn

Source Port Count of alerts
with source >1023

 Source Port Count of alerts
with source >1023

130.85.150.44 515 130.85.43.5 81
130.85.150.198 380 130.85.43.17 46
130.85.43.14 118 130.85.66.15 3
130.85.43.16 98 130.85.11.4 2

Recommendations
The 137 to 137 traffic looks legitimate but the traffic with a source port greater than 1023 is
potentially serious, this traffic should be further scrutinised. This rule is also only of value
as additional information during an investigation, it has many false positives. A snort rule

144 http://www.dslreports.com/forum/remark,5995337~mode=flat

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 66

that looks for traffic that has a source not 137 could be more valuable as an indicator of
nefarious activity as identified in the previous link.

2.2.4 Alert #4 – Reflexive Ports
In all but a few cases packets discovered with the same source and destination ports are a
sign of packet crafting, almost certainly unexpected, and usually up to no good. This
section will look at the legitimacy of the ports identified in Table 12 and reveal any hosts
generating suspicious traffic.
Port 137: According to Building Internet Firewalls145:

Microsoft implementations use port 137 for queries as well as responses.
Indicating this traffic is more likely to be legitimate, if there are rules that need to trigger on
traffic with this pattern they need to be more specific in what content they are looking for to
reduce the rate of false positives. This traffic was discussed in detail in section 2.2.3.
Port 0: A packet containing port 0 as either a source or a destination is not normal, for it to
appear as a reflexive port makes it a real concern. Here are the top10 source and
destination IP addresses, there where no internal systems generating this traffic and the
systems in bold also appear in the Port 0 table under section 2.4.2

awk -F: '{print $6":"$8":"$5":"$4}' alert.misc3 | grep "^0:0:" | cut -d":" -f 3,4 | sort |
uniq -c | sort -rn
awk -F: '{print $6":"$8":"$7":"$4}' alert.misc3 | grep "^0:0:" | cut -d":" -f 3,4 | sort |
uniq -c | sort -rn

Source IP # Alert FQDN Destination IP # Alert
61.48.8.56 614 Null scan! SOA (ns1.apnic.net.) 130.85.112.209 614 Null scan!
82.83.43.1 354 Null scan! dsl-082-083-043-001.arcor-ip.net. 130.85.82.109 354 Null scan!
209.164.32.205 314 Null scan! 209.164.32.205.ptr.us.xo.net. 130.85.97.43 139 Null scan!
203.210.158.107 48 Null scan! localhost. 130.85.12.6 134 Null scan!
83.28.245.202 40 Null scan! bmz202.neoplus.adsl.tpnet.pl. 130.85.97.55 114 Null scan!
217.95.226.63 37 Incomplete Packet

Fragments Discarded
bmz202.neoplus.adsl.tpnet.pl. 130.85.81.116 55 Null scan!

68.218.142.172 30 Null scan! adsl-218-142-172.jax.bellsouth.net. 130.85.70.164 49 Incomplete Packet
Fragments
Discarded

213.199.82.204 22 Null scan! 204.net82.skekraft.net. 130.85.153.97 46 Null scan!
217.31.166.66 18 Null scan! schismatrix.gnulix.org. 130.85.153.81 41 Null scan!
211.121.26.205 15 Null scan! SDDfa-03p4-205.ppp11.odn.ad.jp. 130.85.70.72 40 Null scan!

This traffic is diffidently not normal and can be used to fingerprint the target OS146. Darrin
Wassom147 did an analysis on port 0 traffic where he suggests similar traffic is crafted in
an attempt to fingerprint targeted systems. As there where no internal addresses acting as
the source the only recommendation is to investigate the external sources for signs of
further scan activity and if found report it to the system owner.
Port 53: According to Building Internet Firewalls148:

A DNS server uses well-known port 53 as its server port for TCP and UDP.
It uses a port above 1023 for TCP requests. Some servers use 53 as a
source port for UDP requests, while others will use a port above 1023. A
DNS client uses a random port above 1023 for both UDP and TCP.

Identifying the source and destinations may reveal the legitimacy of these connections.
Source IP # FQDN Destination

IP
FQDN

64.152.70.68 102 proximitycheck2.allmusic.com. 130.85.1.3 188 UMBC3.UMBC.EDU.
63.211.17.228 101 proximitycheck1.allmusic.com. 130.85.1.4 20 UMBC4.UMBC.EDU.
219.133.41.254 2 SOA (dns.guangzhou.gd.cn.)
209.135.37.205 2 msrbaa03.usi.net.
200.52.107.160 1 np1mty05.banamex.com.

145 http://secu.zzu.edu.cn/book/NetWork/NetworkingBookshelf_2ndEd/fire/ch20_03.htm
146 http://www.securiteam.com/securityreviews/5XP0Q2AAKS.html
147 http://cert.uni-stuttgart.de/archive/intrusions/2003/04/msg00002.html
148 http://secu.zzu.edu.cn/book/NetWork/NetworkingBookshelf_2ndEd/fire/ch20_01.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 67

The only alert triggered by this traffic is “NMAP TCP ping!” an example of a possible rule149:
alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap TCP"; ack:0; flags:A,12;
flow:stateless; reference:arachnids,28; classtype:attempted-recon; sid:628; rev:7;)

This rule is looking for TCP traffic that has the ack number set to zero, TCP is a legitimate
transport protocol for DNS in two cases, during a zone transfer, or when a UDP packet is
too small to return all the requested information back to the requester.
The destination systems are DNS servers, that looks OK, the two systems generating the
most traffic are quite interesting, details are discussed in a post by Ashley Thomas150 to
the incidents.org mailing list. In short, these are signs of a Radware system performing a
proximity check for the location of a host, presumably a system internal to the University is
looking for something on the allmusic.com website. These Radware systems are
attempting to improve the clients experience by trying to locate them in the assumption
they are within close proximity to their DNS servers.
The other sources could be older DNS servers that still use source port 53.
Port 25: According to Building Internet Firewalls,151 there is no reason for this type of
traffic:

SMTP is a TCP-based service. SMTP receivers use port 25. SMTP senders use
a randomly selected port above 1023.

Source IP # FQDN Destination
IP

FQDN

63.84.193.227 133 mx2.ezinedirector.net. 130.85.12.6 191 mxin.umbc.edu.
63.84.193.228 45 mx3.ezinedirector.net.
66.77.190.140 7 sitemail1.fanball.com.
66.63.162.42 6 ems8.emsemail.biz.

“TCP SMTP Source Port traffic” is the only alert type triggered by this traffic. This table
indicates the traffic is coming from mail servers directing traffic to the internal University
Mail server. This looks OK to me except SMTP is not suppose to use source port 25,
Mark Menke152 put this traffic down to a false positive and Sidney Faber153 recognised the
traffic as abnormal but is uncertain as to what is happening. I was also unable to locate
any reason for this traffic except to suggest that a Trojan that exhibits this traffic pattern
could have compromised these systems or they use a mailer that goes against standards.

Port 80: There is no reason for this traffic according to Building Internet Firewalls154 “NMAP
TCP ping!” is the only alert triggered by this traffic:

HTTP is a TCP-based service. Clients use random ports above 1023. Most
servers use port 80, but some don't.

Source IP # FQDN Destination IP # FQDN
211.152.3.40 12 SOA (ns.cnc.ac.cn.) 130.85.24.44 30 userpages.umbc.edu.
159.226.208.40 11 SOA (ns.cnc.ac.cn.) 130.85.34.11 16 SOA (UMBC3.UMBC.EDU.)
202.28.21.2 6 SOA (ns.thnic.net.) 130.85.6.7 11 umbc7.umbc.edu.
212.199.61.6 4 212.199.61.6.forward.012.net.il. 130.85.24.34 11 www.umbc.edu.
212.179.16.106 3 bzq-179-16-106.cust.bezeqint.net. 130.85.18.62 10 SOA (UMBC3.UMBC.EDU.)
210.202.193.1 3 richtek.com. 130.85.7.114 5 SOA (UMBC3.UMBC.EDU.)
209.6.58.139 3 rcn.berklee.edu. 130.85.2.224 4 SOA (UMBC3.umbc.edu.)
204.96.18.6 3 204.96.18.6.cust.phila.sprintlink.net. 130.85.156.62 4 SOA (UMBC3.UMBC.EDU.)
203.146.247.2 3 SOA (ns.tnet.co.th.) 130.85.109.175 4 SOA (UMBC3.umbc.edu.)
193.144.127.9 3 SOA (ninot.gva.es.) 130.85.82.50 3 oit-82-50.pooled.umbc.edu.

There where 83 sources all external with this traffic pattern, the Code Red worm fits this
pattern155 putting these systems on the list for further investigation for scan activity and
informing the system owners.

149 http://www.snort.org/snort-db/sid.html?sid=628
150 http://www.dshield.org/pipermail/intrusions/2002-December/006176.php
151 http://secu.zzu.edu.cn/book/NetWork/NetworkingBookshelf_2ndEd/fire/ch16_02.htm
152 http://www.giac.org/practical/Mark_Menke_GCIA.doc
153 http://www.giac.org/practical/Sidney_Faber_gcia.doc
154 http://secu.zzu.edu.cn/book/NetWork/NetworkingBookshelf_2ndEd/fire/ch15_03.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 68

Port 65535: This traffic type is discussed in Alert #2 – Port 65535
Port 123: Building Internet Firewalls156 suggests there is a legitimate case for this traffic:

client-to-server query – Source port above 1023, destination port 123
server-to-client response - Source port 123, destination port above 1023
server-to-server query or response - Source and destination ports both 123

Source IP # FQDN Destination IP # FQDN
66.250.188.13 3 66.250.188.13.chaincast.com. 130.85.66.29 3 SOA (UMBC3.umbc.edu.)
212.204.214.70 1 dist001.media.widexs.nl. 130.85.97.50 1 ppp-050.dialup.umbc.edu.

“EXPLOIT NTPDX buffer overflow”157 is the only alert triggered by this traffic, this rule
triggers on UDP packets with a payload greater than 128-bytes, this is the only test done
on the traffic so there is a chance for false positive. Verification of the destination hosts for
compromise should be done as this exploit allows a root compromise, though the identity
of the dial up host may need a little extra work to identify. These IP addresses where not
seen in the scan data targeting port 123 (see section 2.4.2) or any other systems. The
registration information on these two hosts is in sections 3.4 and 3.5.
Recommendations
Investigate the identified hosts in this section for possible compromise.

2.2.5 Alert #5 – Exploit x86 Set(uid/gid) 0
At first glance, these alerts are of concern as they could indicate a compromise.

Snort rules that may match these alerts158 159:

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (msg:"SHELLCODE x86 setuid 0";
content:"|B0 17 CD 80|"; reference:arachnids,436; classtype:system-call-detect; sid:650;
rev:8;)

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (msg:"SHELLCODE x86 setgid 0";
content:"|B0 B5 CD 80|"; reference:arachnids,284; classtype:system-call-detect; sid:649;
rev:8;)

The unknown rule set used by the University seems to be heavily influenced by rules on
Max Visions site, so the rules are more likely to be160 161:

alert TCP $EXTERNAL any -> $INTERNAL any (msg: "IDS283/shellcode_shellcode-x86-setuid0";
flags: A+; content: "|b017 cd80|"; classtype: system-attempt; reference: arachnids,283;)

alert TCP $EXTERNAL any -> $INTERNAL any (msg: "IDS284/shellcode_shellcode-x86-setgid0";
flags: A+; content: "|b0b5 cd80|"; classtype: system-attempt; reference: arachnids,284;)

The snort specific rules trigger on traffic from an external IP address and port as defined
by the $SHELLCODE_PORTS variable to an internal IP address on any port. While the Max
Vision rules will trigger on traffic from an external IP address with any port to an internal IP
address on any port. Some things we can see from the traffic to identify the likely rules.

1. There are no alerts by traffic originating from the internal network, this could also
indicate the variables for $INTERNAL and $EXTERNAL have been tunned to reduce
the likelihood of false positives.
awk -F: '{print $4":"$5":"$6}' alert.misc3 | grep "EXPLOIT x86 setuid 0" | awk -F: '{print

$2":"$3}' | grep "^130\.85\.[0-9]\+\.[0-9]\+" | cut -d":" -f 2 | sort | uniq -c | sort -
rn

awk -F: '{print $4":"$5":"$6}' alert.misc3 | grep "EXPLOIT x86 setgid 0" | awk -F: '{print
$2":"$3}' | grep "^130\.85\.[0-9]\+\.[0-9]\+" | cut -d":" -f 2 | sort | uniq -c | sort -
rn

155 http://www.dshield.org/pipermail/intrusions/2001-July/000986.php
156 http://secu.zzu.edu.cn/book/NetWork/NetworkingBookshelf_2ndEd/fire/ch22_05.htm
157 Potential rule triggered http://www.digitaltrust.it/arachnids/IDS492/event.html
158 http://www.snort.org/snort-db/sid.html?sid=650
159 http://www.snort.org/snort-db/sid.html?sid=649
160 http://www.whitehats.com/info/IDS283
161 http://www.whitehats.com/info/IDS284

Message No. %
EXPLOIT x86 setuid 0 28 <1
EXPLOIT x86 setgid 0 26 <1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 69

2. In a default snort rule we find the $SHELLCODE_PORTS variable set to anything but
port 80 “!80”. Checking the ports we find traffic on port 80 did trigger this indicating
the $SHELLCODE_PORTS variable is either set to “any” or the rule does not use this
variable. This makes the Max Vision rule the likely candidate.

Top 5 source and destination ports for both alerts:
Setuid Source ports Setgid Source ports Setuid Destination ports Setgid Destination ports
Port (setuid) Count Port (setgid) Count Port (setuid) Count Port (setgid) Count
80 2 80 10 119 5 4497 2
3476 2 9254 1 6882 2 119 2
62622 1 6881 1 6881 2 6885 1
55122 1 52551 1 3250 2 6882 1
52895 1 43559 1 2894 2 6881 1

Max Vision reports what the possibilities of false positives are for IDS283, there is almost
identical information regarding IDS284, the highlights are:

1. This signature is very short
2. [it] does not contain context clues to reduce false positives
3. false alarms [could occur] where binary data is transferred from

outside the network [examples are]
a. A user downloading binary files from an external web server.
b. binary data streams is Napster mp3 transfers

Source port 80 plays a significant part in triggering this rule, this traffic is likely to be clients
downloading files from web sites containing a sequence of hex character "B017 CD80"
or :"B0B5 CD80”

Recommendations
Due to the likelihood of false positive, a few options should be considered:

1. Turn off this rule;
These rules are too generic and highly likely to trigger false positives.

2. Tune the rule to be more specific;
The snort rule reduces the false positive rate by not inspecting traffic for port 80, as
discussed by Max Vision there is other traffic that can trigger a false positive. A
better solution would be to improve the content being searched to identify the
specific attack, the downside here is, and when you get too specific, you create the
potential for a false negative.

3. Only use it for further evidence when investigating a compromise.
If a more reliable rule triggered indicating a possible break in, when you cross-
reference the IP address for a history of alerts from that address, and this rule came
up, there is a higher chance it is not a false positive.

2.2.6 Alert #6 – 130.85.30.4 and 130.85.30.3 activity
These alert types are mentioned in previous practicals, a correlation of information from
other analysts may prove interesting. It has been suggested these rules trigger on any
traffic directed to these systems162, the triggered traffic is certainly one way, with no reply
traffic recorded removing the possibility to determine a sequence of events.

Some possible reasons these hosts are specifically
targeted by a snort rule include:

1. They are Honeypots and the University wants to keep a record of all packets
targeting the systems (though in this case logging is less than adequate);

2. They are valuable systems containing crucial information; or

162 http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf (page 49)

Message FQDN of system No. %
130.85.30.4 activity lan2.umbc.edu. 35321 27
130.85.30.3 activity lan1.umbc.edu. 15911 12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 70

3. These rules are used to produce reports detailing their usage for back charging etc.
Top 10 destination ports on to both systems show these systems are presumably related
to University activity, these ports as noted by Pete Storm seem to correlate with a Novell
Netware system163 164 165:
Table 21 - Top 10 Ports Targeted on 130.85.30.3

Dst Port Count % Comments
524 13748 NetWare Core Protocol (NCP)
3019 1393 NDPS RMS
80 528

GroupWise Web Access, iFolder, iMonitor, NetWare Enterprise Web Server, NetWare Remote Manager (NRM),
NetWare Web Access, Novell Internet Messaging System (NIMS) , Portal Services, Zenworks for Servers 2

2745 74 Beagle.C through Beagle.K (This could just be related to scan activity) see section 2.4.6
6129 65 Dameware Remote Admin (This could be related to scan activity)
443 47

BorderManager,GroupWise Web Access, iFolder, iPrint, NetWare Enterprise Web Server, Novell Internet
Messaging System (NIMS), Portal Services, Zenworks for Servers 2

4899 11 Remote Administrator default port (This could just be related to scan activity)
8009 6 NetWare Remote Manager (NRM), Zenworks for Servers 2
4000 5 Could be related to scan activity see section 2.4.6
427 4 SLP

Table 22 - Top 10 Ports Targeted on 130.85.30.4
Dst Port Count % Comments
51443 28792 Optional alternate port for iFolder Management Console166
8009 3780 NetWare Remote Manager (NRM), Zenworks for Servers 2
80 1365

GroupWise Web Access, iFolder, iMonitor, NetWare Enterprise Web Server, NetWare Remote Manager (NRM),
NetWare Web Access, Novell Internet Messaging System (NIMS), Portal Services, Zenworks for Servers 2

524 1198 NetWare Core Protocol (NCP)
2745 61 Beagle.C through Beagle.K (This could just be related to scan activity) see section 2.4.6
6129 50 Dameware Remote Admin (This could be related to scan activity)
443 29

BorderManager,GroupWise Web Access, iFolder, iPrint, NetWare Enterprise Web Server, Novell Internet
Messaging System (NIMS), Portal Services, Zenworks for Servers 2

4899 9 Remote Administrator default port (This could just be related to scan activity)
20168 6 possibly related to the Lovgate virus (This could just be related to scan activity)
4000 5 Could be related to scan activity see section 2.4.6

Only the first few ports look sensible, the rest are probably related to scan activity, the
sources of this scan activity should be investigated further to determine the purpose of this
activity. The top 10 source address targeting each system:

Table 23- Top 10 Source Addresses Targeting 130.85.30.3
IP address Count % FQDN
131.92.177.18 5211 33 aeclt-cf00a4.apgea.army.mil.
69.138.77.62 2458 15 pcp08479849pcs.desoto01.md.comcast.net.
151.196.115.104 2454 15 pool-151-196-115-104.balt.east.verizon.net.
68.34.94.70 1901 12 TSU-68-34-94-70.tsu01.md.comcast.net.
68.55.113.28 632 4 pcp311377pcs.woodln01.md.comcast.net.
68.57.90.146 629 4 pcp912734pcs.brndml01.va.comcast.net.
68.55.27.157 617 4 pcp02560368pcs.owngsm01.md.comcast.net.
68.55.250.229 390 2 pcp261188pcs.howard01.md.comcast.net.
141.157.40.149 287 2 pool-141-157-40-149.balt.east.verizon.net.
138.88.98.71 227 1 pool-138-88-98-71.res.east.verizon.net.

Table 24 - Top 10 Source Addresses Targeting 130.85.30.4
IP address Count % FQDN
134.192.42.11 21803 62 SOA (comm2.umaryland.edu.)
68.55.155.26 3733 11 pcp05129829pcs.elkrdg01.md.comcast.net.
69.136.228.63 3470 10 pcp08652049pcs.towson01.md.comcast.net.
68.33.49.146 1598 5 pcp03625900pcs.mtromd01.md.comcast.net.
172.209.111.241 827 2 ACD16FF1.ipt.aol.com.
68.55.191.197 417 1 pcp05510211pcs.owngsm01.md.comcast.net.
68.55.113.28 400 1 pcp311377pcs.woodln01.md.comcast.net.
68.54.168.204 305 <1 pcp02772508pcs.howard01.md.comcast.net.
68.34.94.70 292 <1 TSU-68-34-94-70.tsu01.md.comcast.net.
64.8.195.10 228 <1 64-8-195-10.client.dsl.net.

With a list of the 197 source addresses targeting 130.85.30.3 and the 313 addresses
targeting 130.85.30.4 the scan data was checked for these same addresses. This table

163 Netware 6 - http://www.novell.com/documentation/nw6p/index.html?page=/documentation/lg/nw6p/adminenu/data/aclkn27.html
164 Netware 6 - http://support.novell.com/cgi-bin/search/searchtid.cgi?/10065719.htm
165 Netware 5 and earlier - http://support.novell.com/cgi-bin/search/searchtid.cgi?/10014320.htm
166 http://www.novell.com/documentation/ifolder21/index.html?page=/documentation/ifolder21/readme/data/ahf1v06.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 71

shows the attackers that also appear in the scan data targeting both systems. These
systems need further investigation to determine if they did indeed perform some type of
unwelcome scan activity and then reported to the system owner to have the activity stoped.

Table 25 – Source Addresses Seen in the Scan logs who targeted both 130.85.30.3 and 130.85.30.4
IP address Alert # Scan # S IP # IP address Alert # Scan # IP # IP address Alert # Scan # IP #
24.222.128.240 2 10979 8808 80.63.67.86 2 7845 6647 212.192.241.20 3 4886 4451
24.43.50.166 3 4818 3770 159.218.66.88 3 47 12 212.29.89.240 2 12978 9899
24.6.74.41 2 27156 15462 165.246.35.168 2 26654 15477 212.3.250.197 2 9054 7721
24.97.20.62 2 13435 10473 193.120.129.82 2 14580 10979 213.186.239.244 2 6575 5802
61.220.43.174 2 25411 15015 195.57.122.14 2 12594 9883 213.189.229.5 2 18527 12925
64.136.199.197 2 20487 11182 201.128.103.27 2 3212 3164 213.39.228.182 2 13907 10723
64.163.92.253 2 18561 12889 202.183.231.196 2 5955 5738 213.73.245.83 2 13196 10265
64.68.188.105 2 20178 13374 202.60.240.4 2 12381 9616 216.118.120.35 2 12845 9858
65.82.70.5 2 14883 11119 204.116.105.26 2 12353 9712 216.199.191.118 2 9123 7587
66.205.222.145 2 6246 6100 206.222.14.209 2 16732 11957 217.37.163.109 2 14080 10786
67.161.192.207 2 23745 14823 207.178.156.104 2 7901 6753 217.37.21.213 2 6465 6008
67.36.69.73 2 15371 11570 208.182.190.91 2 8243 6399 218.156.65.55 2 17827 12365
67.92.156.144 2 13212 10261 210.109.146.30 2 16215 11849
80.24.133.184 2 8341 7032 211.136.159.206 2 7293 5622

Table 25 highlights the value these rules can provide in detecting scan activity, we can see
in all but three cases it was only the two host specific rules that fired. Once cross-
referenced with the number of entries in the scan data and the number of unique
destination IP addresses by that host, all are revealed as network scanners. Further
investigation might suggest the intent behind these scans, i.e. worm activity, an attacker
trying to enumerate available services on the University network etc.
Table 26 and Table 27 show the attackers who only triggered one or other host specific
rule, this reveals further scan activity and in most cases is a single host targeting
thousands of University hosts. The hosts that triggered more than one alert in this case
are very suspicious, and certainly require further investigation:

Table 26 - Attackers seen in the scan logs only targeting 130.85.30.3
IP address Alert # Scan # IP # IP address Alert # Scan # IP #
61.30.107.50 1 5081 4892 208.177.178.20 1 28 28
66.69.180.216 1 17820 12706 209.90.101.77 1 12529 9276
68.157.167.58 1 11187 8941 210.23.197.163 1 4212 4127
68.219.142.66 1 8840 7608 218.155.244.116 2 29 7
81.74.150.162 1 6718 5835 218.188.13.228 1 5801 5800
207.3.145.130 5 18380 11027 220.197.192.39 3 31604 6629
207.96.102.27 1 9986 8125

Table 27 - Attackers seen in the scan logs only targeting 130.85.30.4
IP address Alert # Scan # IP # IP address Alert # Scan # IP #
24.218.87.53 1 1592 1560 130.39.31.182 1 10757 8764
61.248.203.170 1 6040 5386 136.145.193.14 1 13005 10145
61.84.6.89 2 162 46 144.92.91.95 1 11075 8905
64.166.194.201 1 10389 8381 202.30.111.21 2 51 11
66.53.128.107 1 1087 1087 203.106.94.2 1 5363 4706
80.191.163.12 1 19073 13220 209.115.211.86 1 7904 6844
80.38.233.3 1 13892 10698 212.93.134.12 1 5943 5710
130.206.173.195 1 8961 7767 218.154.28.67 2 35 7

Recommendations
Because the University is logging every packet directed to these systems these rules offer
great opportunities during the investigation process, some uses for these rules include:

1. To identify unusual ports that have been targeted on the network;
The ports listening on these systems are well known, any systems targeting ports
outside these should be further investigated.

2. Identify scanning systems.
As demonstrated, we are able to determine systems that have been scanning the
network by just correlating the alert data with the scan logs. This revealed systems
that have been performing other activity on the campus network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 72

These systems almost work like a honeypot in that traffic outside the expected is logged
providing the necessary first lead for further investigation. It is recommended that the
University continue to use these techniques to investigate network activity.

2.3 Scans Summary
The tables in this section display the alert data in various ways helping identify suspicious
activity, some of which is further discussed in section 2.4

2.3.1 Top 20 Scan Types
From the 13,816,238 scan entries, there where 236 different types of scan activity
identified within the chosen timeframe, Table 28 shows the 20 most triggered scan types
and the percentage of the total.
Table 28 - Top 20 Scan Types

Type Flags No. % Type Flags No. %
SYN ******S* 8252100 60 NOACK **U*P*S* 135 <0.1
UDP 5542631 40 NOACK **U**RSF 113 <0.1
FIN *******F 9866 <0.1 NOACK **U**RS* 109 <0.1
SYN 12****S* RESERVEDBITS 7059 <0.1 UNKNOWN 1****R** RESERVEDBITS 67 <0.1
NULL ******** 913 <0.1 VECNA **U*P*** 58 <0.1
UNKNOWN 12*A**S* RESERVEDBITS 631 <0.1 UNKNOWN *2***R** RESERVEDBITS 40 <0.1
UNKNOWN 1**A**S* RESERVEDBITS 580 <0.1 UNKNOWN 12***R** RESERVEDBITS 33 <0.1
UNKNOWN *2*A**S* RESERVEDBITS 489 <0.1 XMAS **U*P**F 30 <0.1
INVALIDACK ***A*R*F 432 <0.1 INVALIDACK *2*A*R*F RESERVEDBITS 25 <0.1
VECNA ****P*** 150 <0.1 UNKNOWN *2*A**** RESERVEDBITS 24 <0.1

2.3.2 Top 20 Scan Destination Ports
Table 29 shows the top 20 destination ports out of 234 observed that triggered the scan
detection engine within the selected period.
Table 29 - Top 20 Scan Destination Ports

Port Count Known traffic using this port number
U

ni
qu

e
A

le
rt

s
U

ni
qu

e
Ex

te
rn

al

Sr
c

IP

U
ni

qu
e

In
te

rn
al

D

es
t I

P
U

ni
qu

e
In

te
rn

al

Sr
c

IP

U
ni

qu
e

Ex
te

rn
al

D

es
t I

P

53 4681210 Domain Name Server 13 66 14 6 115665
135 2616043 DCE endpoint resolution, NCS local location broker 8 124 263 20 1844430
2745 786716 Urbis geolocation service, Bagle Virus Backdoor 8 41 6272 25 570176
6129 656848 Dameware Remote Admin 9 54 15727 20 364557
80 604263 World Wide Web HTTP 21 255 15496 146 320430
445 582272 Win2k+ Server Message Block 4 21 259 15 428583
1025 570135 network blackjack, [trojan] Fraggle Rock, listener RFS

remote_file_sharing, [trojan] NetSpy, [trojan] Remote Storm
3 4 6 25 413812

3127 514793 W32/MyDoom, W32.Novarg.A backdoor, MyDoom.C / Doomjuice 6 14 164 24 377757
139 473811 NETBIOS Session Service, [trojan] SMB Relay, [trojan] Sadmind 6 30 259 19 346566
3410 316638 Backdoor.OptixPro.13 4 4 4 21 244707
443 297002 HTTP protocol over TLS SSL 11 42 15725 29 33
25 249438 Simple Mail Transfer 15 320 12372 18 6074
5000 141574 [trojan] Back Door Setup, Universal Plug and Play 3 5 5 19 114368
4899 70007 Remote Administrator default port 2 12 15584 2 1162
6346 43846 gnutella-svc, BearShare file sharing app 6 742 37 41 10650
20168 41026 possibly related to the Lovgate virus 2 5 15111 1 2
4000 29522 [trojan] Connect-Back Backdoor, [trojan] SkyDance, w32.witty.worm 8 9 13608 4 9
41170 26774 Could be "Blubster" a file sharing program. 2 1 1 8 9613
32773 25862 Sun's rpc.nisd program 2 2 13877 2 1
21 23872 File Transfer [Control] 5 21 13527 17 21

2.3.3 Scan Reflexive Ports and IP Addresses
With a few exceptions, it is uncommon to see source and destination ports the same, it is
certainly an issue when source and destination IP addresses are the same. There where
no reflexive IP addresses in the Scan data, but there where 33 reflexive ports, the top 10
are detailed in Table 30 and are potentially worth further investigation.
Table 30 - Scan Reflexive Port Combinations

Port Count Known use. Comments Src IP # Dst IP #
123 18870 Network Time Protocol Server to server will exhibit this behaviour 3 53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 73

4672 13557 remote file access server Needs investigation 4 9169
0 1226 Reserved, many vulnerabilities Port 0 is unusual at the best of times 80 50
6112 871 CDE subprocess control, FSGS (game) Needs investigation 7 304
6346 550 gnutella-svc, BearShare file sharing app Needs investigation 11 520
2745 196 Urbis geolocation service, Bagle Virus Backdoor Needs investigation 11 145
3127 122 W32/MyDoom, W32.Novarg.A backdoor Needs investigation 11 94
3531 115 ? Needs investigation 11 46
5000 74 [trojan] Back Door Setup, [trojan] BioNet Lite, Free

Internet Chess Server & more
Needs investigation 5 10

3410 70 ? Needs investigation 10 55

2.3.4 Top 10 Scan External Talkers
Table 31 highlights the top 10 systems out of 2,090 with an external source IP address
that performed some form of scanning.
Table 31 - Top 10 Scan External Talkers

External Source
IP

Count FQDN
(Fully Qualified Domain Name)

U
ni

qu
e

D
st

 IP
s

U
ni

qu
e

D
st

Po

rt
s

K
ey

 D
st

Po

rt
s

 (o
ve

r
10

,0
00

in

 b
ol

d)

213.180.193.68 36546 proxychecker.yandex.net. 5 30488 80, 81, and on and on, mostly ephemeral
ports

203.15.51.51 34810 CNAME 51.32-63.51.15.203.in-addr.arpa.
PTR tester-51-2.sorbs.net

1 33090 No observed pattern, most are ephemeral
ports.

220.197.192.39 31604 ? 6629 8 2745, 6129, 80, 139, 3127, 53, 1025, 1981
24.6.74.41 27156 c-24-6-74-41.client.comcast.net. 15462 1 443
165.246.35.168 26654 ? 15477 1 6129
61.220.43.174 25411 61-220-43-174.HINET-IP.hinet.net. 15015 1 443
67.161.192.207 23745 c-67-161-192-207.client.comcast.net. 14823 1 443
64.136.199.197 20487 64-136-199-197-dhcp-kc.everestkc.net. 11182 2 80, 443
64.68.188.105 20178 SOA (ns1.nvc.net. hostmaster.nvc.net.) 13374 1 443
80.191.163.12 19073 SOA (ns.ripe.net. ops-80.ripe.net.) 13220 1 6129

2.3.5 Top 10 Scan Internal Targets
Table 32 shows the top 10 systems out of 15,754 with a destination IP address of an
internal host that received scan type activity.
Table 32 - Top 10 Scan Internal Targets
Internal
Destination IP

Count FQDN
(Fully Qualified Domain Name)

U
ni

qu
e

Sr
c

IP
s

U
ni

qu
e

D
es

t
Po

rt
s

K
ey

D

es
t

 Po
rt

s
(o

ve
r

10
0

in

bo
ld

)

130.85.27.232 35015 SOA (UMBC3.umbc.edu.) 52 33138 80, 443, 6129
130.85.97.65 22027 ppp-065.dialup.umbc.edu. 54 21586 443, 6129
130.85.97.159 14535 ppp-159.dialup.umbc.edu. 40 13214 443, 6129
130.85.66.30 4960 SOA (UMBC3.umbc.edu.) 56 4759 80, 113, 443, 6129
130.85.12.6 2663 mxin.umbc.edu. 359 50 0, 25, 80, 443, 6129
130.85.6.7 2073 umbc7.umbc.edu. 67 16 80, 110, 443, 6129, 4899
130.85.97.93 1817 ppp-093.dialup.umbc.edu. 140 14 443, 6129, 6346
130.85.18.25 1798 shsfrontpc-02.umbc.edu. 49 1037 0, 53, 80, 443, 2710, 2745, 6129, 7001
130.85.112.204 1796 SOA (UMBC3.UMBC.EDU.) 311 12 443, 6129, 6346
130.85.97.73 703 ppp-073.dialup.umbc.edu. 50 633 80, 443, 6129

2.3.6 Top 10 Scan Internal Talkers
Table 33 shows the top 10 systems out of 208 with an internal source IP address that
performed scan type activity.
Table 33 - Top 10 Scan Internal Talkers

Internal Source
IP

Count FQDN
(Fully Qualified Domain Name)

U
ni

qu
e

D
st

 IP
s

U
ni

qu
e

D
st

Po

rt
s

K
ey

D

st

Po
rt

s
 (o

ve
r

10
0,

00
0

in
 b

ol
d)

130.85.1.3 3630346 UMBC3.UMBC.EDU. 136143 1462 53, 80, 123, 135, 139, 445, 1025, 2745, 3127, 6129, and
many more

130.85.17.45 1179206 erk177pc-1.umbc.edu. 142819 18 80, 135, 139, 445, 1025, 2745, 3127, 3410, 5000, 6129,
443, 21

130.85.1.4 1072522 UMBC4.UMBC.EDU. 57767 606 53, 123, 45917, 10123, rest ephemeral
130.85.80.224 910257 pplant-80-224.pooled.umbc.edu. 142819 18 80, 135, 139, 445, 1025, 2745, 3127, 3410, 7000, 6129
130.85.112.189 713587 SOA (UMBC3.UMBC.EDU.) 530123 1 135
130.85.81.39 694881 erk-81-39.pooled.umbc.edu. 694139 17 80, 135, 443, 8080
130.85.111.51 553598 trc208pc-02.engr.umbc.edu. 77594 10 135, 139, 445, 1025, 1981, 2745, 3127, 3410, 6129, 7000
130.85.112.193 553284 SOA (UMBC3.UMBC.EDU.) 71631 13 80, 135, 139, 443, 445, 1025, 1981, 2745, 3127, 3410,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 74

5000, 6129, 7000
130.85.43.7 484134 SOA (UMBC3.umbc.edu.) 355638 17 80, 135, 7000
130.85.84.186 447533 engr-84-186.pooled.umbc.edu. 60526 14 135, 139, 445, 1025, 2745, 3127, 3410, 5000, 6129

2.3.7 Top 10 Scan External Targets
Table 34 shows the top 10 systems out of 2,502,696 with a destination IP address of an
external host triggering the scan detection engine.
Table 34 - Top 10 Scan External Targets
External
Destination IP

Count FQDN
(Fully Qualified Domain Name)

Unique
Src IPs

Unique
Dest
Ports

Key Dest Ports
(over 10,000 in
bold)

192.26.92.30 75863 c.gtld-servers.net. 3 1 53
128.8.10.90 73847 d.root-servers.net. 3 1 53
69.6.25.84 60176 SOA (ns1.wholesalebandwidth.com.) 2 1 53
128.63.2.53 59512 h.root-servers.net. 3 1 53
69.6.25.125 54086 ns1.wholesalebandwidth.com. 2 1 53
192.5.6.30 51127 a.gtld-servers.net. 3 1 53
198.41.0.4 48855 a.root-servers.net. 3 1 53
192.48.79.30 48309 j.gtld-servers.net. 2 1 53
64.21.49.27 42438 SOA (ns1.nac.net. dnsadmin.nac.net.) 2 1 53
203.20.52.5 41545 SOA (wombat.aussie.net. root.aussie.net.) 2 1 53

2.4 Scans Details
This section discusses some of the suspicious activity identified by the tables in section
2.3 Scans Summary. Through out discussions in this section I have colour coded some of
the tables to give a better idea as to what systems I think are of a greater priority to
investigate

Colour Definition
Red These systems are a priority for investigation
Orange These systems should be investigated
Yellow These systems are of potential concern
Green These systems should be OK

2.4.1 Scans #1 – Suspicious flag combinations
This section will look at flag combinations trying to identify if they are legal or illegal. Some
flag combinations are legal and easily explained while others are illegal and are a sure
sign of mischievous behaviour. There are good reasons for attackers to use unusual flag
combinations167 168, these include evasion of IDS, penetration of firewalls, or simply host
identification, nmap169 uses unusual flag combinations for host discovery.
The scan detection software triggers when either or both reserved bits are been set in byte
13 of the TCP header. At one point in time, it was unusual to see either of these bits set in
legitimate traffic, while today it is common as they are now associated with Explicit
Congestion Notification (ECN) as detailed in RFC3168. These bits work in tandem with
the two low order bits in the IP headers TOS byte. Here is a quick diagram of which bits
are set as detailed in the SANS course notes170, as we don’t have information on what bits
where set in the IP header we can’t be 100% sure that these flags are correctly set, Table
35 highlights some of the flag settings that are consistent with expected ECN traffic.

Notes TOS 1 TOS 0 CWR bit ECE bit Addition Notes
SYN 0 0 1 1
SYN-ACK 0 0 0 1
ACK 0 1 0 0

During the three way hand
shake of ECN-aware end-
hosts

167 “ambiguities in implementations of the TCP/IP” http://www.securityfocus.com/archive/1/296122/2002-10-19/2002-10-25/2
168 Article on how TCP/IP implementations handle unusual flag combinations inconsistently http://www.kb.cert.org/vuls/id/464113
169 nmap fingerprinting techniques are described in this classic text – http://www.insecure.org/nmap/nmap-fingerprinting-article.html
170 Track 3 – Intrusion Detection In-Depth course notes (SANS Darling Harbour 2004) book 3.2,3.3 page 5-21

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 75

No congestion 0 1 0 0
No congestion 1 0 0 0

(or) ECN-Aware is 01 or 10 in
Differentiated Services Byte

Congestion 1 1 0 0
Receiver Response 1 1 0 1
Sender Response 1 1 1 1

Table 35 – Scans Alerts that could be Related to ECN Type Traffic
Type Flags # Comments
SYN 12****S* 7059 First stage of an ECN aware three way hand shake
UNKNOWN *2*A**S* 489 Second stage of an ECN aware three way hand shake
UNKNOWN *2***R** 40 Abrupt close of an ECN aware session as a receiver response
UNKNOWN 12***R** 33 Abrupt close of an ECN aware session as a sender response

Table 36 shows some of the more suspicious flag combinations that triggered the scan
detection engine, hosts that generated these flag combinations need further investigation.

Table 36 – Selection of Scan Alerts with Suspicious Flag Combinations
Type Flags # Comments
NULL ******** 913 At a minimum ACK should be set
INVALIDACK ***A*R*F 432 RST and FIN perform different close functions
VECNA171 ****P*** 150 There is no ACK set
NOACK **U*P*S* 135 Standard 3-way handshake no other flags except a SYN should be set
NOACK **U**RSF 113 SYN+FIN=illegal
NOACK **U**RS* 109 SYN+RST=illegal
XMAS172 **U*P**F 30 Unusual flag combination
FULLXMAS 12UAPRSF 18 Completely illegal
NOACK 1****RSF 14 SYN+RST+FIN=totally illegal
NOACK *2U**RSF 12 Completely illegal

2.4.2 Scans #2 – Reflexive Ports
As discussed in 2.2.4 with a few exceptions packets with the same source and destination
ports are unexpected behaviour. This section will expand on our previous discussion, as
there are a different set of suspicious ports within the scan data.
Port 123: The NTP traffic previously seen was diffidently suspicious triggering a specific
snort rule, those hosts did not appear as sources in the scan data.

awk -F: '{print $5":"$7":"$4":"$8}' scans.clean.csv | grep "^123:123:" | cut -d":" -f 3,4 |
sort | uniq -c | sort -rn
awk -F: '{print $5":"$7":"$6":"$8}' scans.clean.csv | grep "^123:123:" | cut -d":" -f 3,4 |
sort | uniq -c | sort -rn

Src IP (3) # FQDN Dst IP (53) # FQDN
130.85.1.3 10420 umbc3.umbc.edu. 192.5.5.250 2566 clock.isc.org.
130.85.1.4 8449 UMBC4.UMBC.EDU. 169.254.25.129 2475 SOA (prisoner.iana.org.)
209.164.32.205 1 209.164.32.205.ptr.us.xo.net. 65.107.99.68 1722 65.107.99.68.ptr.us.xo.net.
 204.91.240.100 1215 lithium.elemental.org.
 192.5.41.40 1162 ntp0.usno.navy.mil.
 128.4.1.2 1112 mizbeaver.udel.edu.
 129.6.15.29 1107 time-b.nist.gov.
 128.118.46.3 1035 zinc.ops.tns.its.psu.edu.
 66.80.148.142 564 ip-66-80-148-142.iad.megapath.net.
 66.93.55.96 378 dsl093-055-096.blt1.dsl.speakeasy.net.

All the scans are “UDP” except one from an external source showing “VECNA **U*P***” this
host did perform a lot of scan activity targeting several systems, a more detailed look at
this activity is in section 3.1

“umbc3 umbc.edu” and “umbc4 umbc.edu” appear to provide many vital services for the
University including DNS and time synchronisation. From this traffic it looks like these
systems are synchronising their time with multiple time servers around the world, making
this traffic likely to be server to server which does use port 123 as its source and
destination as described in section 2.2.4. What is not normal is to configure a single
system to synchronise with more than a couple of external time servers, this could indicate

171 Information on VECNA scan types http://www.securityfocus.com/archive/1/42136
172 Further Information on XMAS tree scans http://archives.neohapsis.com/archives/snort/2002-02/0152.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 76

these systems are a gateway for the internal network, being a University each system is
likely to be configured to synchronise with different systems.
The systems in orange look a little odd as the PTR records indicate they are DSL or dial
up accounts, while the system in red is an APIPA address, as discussed in 2.2.1 these
addresses are automatically configured on windows hosts. It should be verified that these
addresses are correct to be leaving these systems.
Port 4672: The “Remote file access server” is assigned this port, with the observed traffic
pattern, low volume of source addresses and many destinations, I suspect this traffic is
related more to P2P networking173. eDonkey2000 uses UDP port 4672 for clients to
connect to when asking for resources.

Src IP (4) # FQDN Dst IP (9169) # FQDN
130.85.111.34 13333 fsc2.engr.umbc.edu. 221.169.128.11 40 221-169-128-11.adsl.static.seed.net.tw.
130.85.97.86 210 ppp-086.dialup.umbc.edu. 140.113.239.67 40 E067.Life.NCTU.edu.tw.
130.85.153.81 13 refweb17.libpub.umbc.edu. 62.243.219.154 35 cpe.atm2-0-1081008.0x3ef3db9a.albnxx11.customer.tele.dk.
82.83.43.1 1 dsl-082-083-043-001.arcor-ip.net. 80.32.141.236 30 236.Red-80-32-141.pooles.rima-tde.net.
 212.191.160.138 29 pc138.smrw.lodz.pl.
 140.121.125.129 29 yljeng4.me.ntou.edu.tw.
 213.41.156.164 28 nydglc.net1.nerim.net.
 213.245.92.48 28 chp-gw-04-213245092048.chello.fr.
 212.179.104.88 27 cablep-179-104-88.cablep.bezeqint.net.
 81.34.231.11 26 11.Red-81-34-231.pooles.rima-tde.net.

All but the external source address alerted on UDP, 82.83.43.1 came up with a scan alert
“INVALIDACK 1**A*RS* RESERVEDBITS” which had a destination of 130.85.82.109 this
host performed a lot of scan activity directed to this one host, a more detailed look at this
activity is in section 3.2
Port 0: This port was discussed previously in section 2.2.4 with that conclusion being
relevant here as well, again all traffic is from external systems. The systems in bold where
also seen in section 2.2.4

Src IP (169) # FQDN Dst IP (150) # FQDN
66.238.42.230 280 UDP 66.238.42.230.ptr.us.xo.net. 130.85.18.25 280 UDP shsfrontpc-02.umbc.edu.
209.164.32.205 199 NULL ******** 209.164.32.205.ptr.us.xo.net. 130.85.82.109 120 NULL ******** oit-82-109.pooled.umbc.edu.
82.83.43.1 120 NULL ******** dsl-082-083-043-001.arcor-ip.net. 130.85.112.209 108 NULL ******** SOA)UMBC3.umbc.edu.)
61.48.8.56 108 NULL ******** SOA (ns1.apnic.net.) 130.85.97.43 84 NULL ******** ppp-043.dialup.umbc.edu.
209.164.32.205 39 NOACK **U**RS* 209.164.32.205.ptr.us.xo.net. 130.85.97.55 77 NULL ******** ppp-043.dialup.umbc.edu.
210.130.219.28 37 UDP SOA (ns00.cdn-japan.com.) 130.85.12.6 46 NULL ******** mxin.umbc.edu.
83.28.245.202 32 NULL ******** bmz202.neoplus.adsl.tpnet.pl. 130.85.53.111 37 UDP ecs021pc34.ucslab.umbc.edu.
209.164.32.205 28 NOACK **U**RSF 209.164.32.205.ptr.us.xo.net. 130.85.153.97 33 NULL ******** refweb33.libpub.umbc.edu.
63.250.197.48 23 UDP wmcontent80.bcst.yahoo.com. 130.85.70.72 32 NULL ******** whoopazz.ucs.umbc.edu.
68.218.142.172 20 NULL ******** adsl-218-142-172.jax.bellsouth.net. 130.85.81.116 30 NULL ******** erk-81-116.pooled.umbc.edu.

Port 6112: This port is associated with the “CDE subprocess control”, “FSGS (game)174”
and “dtspcd” all the alerts generated triggered as “UDP” scan.

Src IP (7) # FQDN Dst IP (304) # FQDN
130.85.97.40 584 ppp-040.dialup.umbc.edu. 69.165.77.188 106 69-165-77-188.sbtnvt.adelphia.net.
130.85.97.18 120 ppp-018.dialup.umbc.edu. 65.50.129.71 106 CPE0004758421e2-CM.cpe.net.cable.rogers.com.
130.85.97.34 103 ppp-034.dialup.umbc.edu. 24.174.97.119 105 cs2417497-119.houston.rr.com.
130.85.97.54 27 ppp-054.dialup.umbc.edu. 24.107.231.84 105 cpe-24-107-231-84.ma.charter.com.
130.85.97.35 23 ppp-035.dialup.umbc.edu. 67.69.156.23 69 Toronto-HSE-ppp3828528.sympatico.ca.
130.85.97.27 13 ppp-027.dialup.umbc.edu. 67.39.183.198 10 ppp-67-39-183-198.dsl.emhril.ameritech.net.
66.238.42.230 1 66.238.42.230.ptr.us.xo.net. 68.223.6.228 7 adsl-223-6-228.aep.bellsouth.net.
 209.91.129.140 7 sud-tcs1-port120.vianet.on.ca.
 172.165.231.143 7 ACA5E78F.ipt.aol.com.
 66.118.100.199 6 100-199-dial.xtn.net.

The odd external source targeted 130.85.18.25 over many ports, it is looked at with more
detail in section 3.3 while the rest of the source addresses appear to come from the same
network range 130.85.97.x assigned to dial up users, this segment is quite active when

173 http://mldonkey.berlios.de/modules.php?name=Wiki&pagename=WhatFirewallPortsToOpen
174 quick description of FSGS http://www.ausstarcraft.com/fsgs.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 77

we look back at Table 9. If this is game traffic, the users behind these six systems could
all be playing together or the same person dialled up at different times.
Port 6346: This port is associated with P2P network applications like gnutella 175
(BearShare, limewire, etc. 176)”. The traffic pattern of a few internal hosts targeting many
external systems are typical of this activity, this port number is the default for gnutella.

Src IP (11) # FQDN Dst IP (520) # FQDN
130.85.43.2 153 SOA (UMBC3.umbc.edu.) 69.244.44.120 3 pcp09209576pcs.pimaco01.az.comcast.net.
130.85.97.22 131 ppp-022.dialup.umbc.edu. 67.162.100.232 3 c-67-162-100-232.client.comcast.net.
130.85.97.78 88 ppp-078.dialup.umbc.edu. 24.51.236.159 3 fl-nworge-cmts3a-159.orlnfl.adelphia.net.
130.85.97.27 84 ppp-027.dialup.umbc.edu. 82.121.75.244 2 AAubervilliers-152-1-13-244.w82-121.abo.wanadoo.fr.
130.85.82.81 48 oit-82-81.pooled.umbc.edu. 81.101.122.77 2 cpc4-ruth1-4-0-cust77.renf.cable.ntl.com.
130.85.98.56 21 resppp-56.dialup.umbc.edu. 69.198.14.152 2 CPE000039de8d60-CM000039de8c60.cpe.net.cable.rogers.com.
130.85.97.105 9 ppp-105.dialup.umbc.edu. 69.162.235.86 2 69-162-235-86.ironoh.adelphia.net.
130.85.112.204 8 SOA (UMBC3.umbc.edu.) 68.74.177.12 2 adsl-68-74-177-12.dsl.emhril.ameritech.net.
130.85.97.183 3 ppp-183.dialup.umbc.edu. 68.7.184.179 2 ip68-7-184-179.sd.sd.cox.net.
130.85.43.3 3 SOA (UMBC3.umbc.edu.) 68.62.226.45 2 pcp01538250pcs.huntsv01.al.comcast.net.
130.85.97.100 2 ppp-100.dialup.umbc.edu.

Port 2745: All the traffic is from internal to external systems and could be associated with
the “Bagle Virus Backdoor” (Beagle.C through Beagle.K) or Urbis geolocation service,
which is apparently no longer operational177. All the internal systems that triggered this
scan alert are in bold under Scans #6 – Other Scan Ports. These systems are suspicious
and should be inspected for possible infection by this virus.
Port 3127: The “W32/MyDoom” and “W32.Novarg.A backdoor” reside on this port making
the internal source addresses rather suspicious. The systems triggering these alerts are
listed in bold within Scans #6 – Other Scan Ports. A recent worm “W32.Mockbot.A.Worm”
connects this port with 3410178, section 2.4.6 shows this correlation.

Port 3531: This traffic triggered the “UDP” scan detection. PeerEnabler part of the KaZaA
Media Desktop uses this port179, this traffic is associated with P2P networking. The
University should inspect these systems and remove the software if it is against policy180.
Port 5000: All the internal systems that triggered this scan alert are in bold under Scans
#6 – Other Scan Ports. There are two types of alerts triggered by this traffic, “UDP” and
“SYN ******S*” which may indicate two different causes. The “UDP” scans could be
related to “Yahoo Voice Chat”181 while the “TCP” connections could be related to a worm,
“Kibuv.b” was identified less than a month after these logs where recorded182, the orange
systems should be investigated for worm activity.

Port 3531 Internal Source Port 5000 Internal Source
Src IP (11) # FQDN Src IP (5) # Scan Type FQDN
130.85.69.254 26 lib-69-254.pooled.umbc.edu. 130.85.97.248 49 UDP ppp-248.dialup.umbc.edu.
130.85.69.214 25 lib-69-214.pooled.umbc.edu. 130.85.97.12 16 UDP ppp-012.dialup.umbc.edu.
130.85.80.119 16 ss-80-119.pooled.umbc.edu. 130.85.112.193 5 SYN ******S* SOA (UMBC3.UMBC.EDU.)
130.85.153.33 16 refweb04.libpub.umbc.edu. 130.85.80.119 2 SYN ******S* ss-80-119.pooled.umbc.edu.
130.85.69.232 10 lib-69-232.pooled.umbc.edu. 130.85.153.195 2 SYN ******S* SOA (UMBC3.umbc.edu.)
130.85.153.31 6 refweb02.libpub.umbc.edu.
130.85.97.76 5 ppp-076.dialup.umbc.edu.
130.85.97.13 4 ppp-013.dialup.umbc.edu.
130.85.97.85 3 ppp-085.dialup.umbc.edu.
130.85.97.30 3 ppp-030.dialup.umbc.edu.
130.85.97.177 1 ppp-177.dialup.umbc.edu.

175 http://mldonkey.berlios.de/modules.php?name=Wiki&pagename=WhatFirewallPortsToOpen
176 http://www.torontotechcenter.com/ports6001_7000.shtml
177 http://www.chebucto.ns.ca/~rakerman/port-table.html
178 http://securityresponse.symantec.com/avcenter/venc/data/w32.mockbot.a.worm.html
179 http://www.derkeiler.com/Mailing-Lists/securityfocus/incidents/2003-07/0043.html
180 The next message in the thread describes the process to identify if it is KaZaA or not
http://www.derkeiler.com/Mailing-Lists/securityfocus/incidents/2003-07/0055.html
181 http://isc.sans.org/show_comment.php?id=759
182 http://www.internetweek.com/shared/printableArticle.jhtml?articleID=20301309

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 78

Port 3410: Most of the destination systems are in the 130.x.x.x range, this traffic
triggered as “SYN ******S*”. All the internal systems that triggered this scan are seen in
Scans #6 – Other Scan Ports under port 3410 in bold.

2.4.3 Scans #3 – Port 53 (DNS)
Most of the DNS traffic logged in the scan files I would consider benign.

Port Count Known traffic using
this port number

Unique Alerts Unique External
Src IP

Unique Internal
Dest IP

Unique Internal
Src IP

Unique External
Dest IP

53 4681210 Domain Name Server 13 66 14 6 115665

There are 72 systems triggering this alert, the top two are internal systems making up 99%
of the total traffic.

Source IP
address

 Count FQDN
(Fully Qualified Domain Name)

Comments

130.85.1.3 3617968 UMBC3.UMBC.EDU. Appears to be a key UMBC DNS server
130.85.1.4 1063009 umbc4.umbc.edu. Appears to be a key UMBC DNS server
130.85.27.3 36 vodka.umbc.edu. Maybe configured to perform its own queries
130.85.97.82 9 ppp-082.dialup.umbc.edu. manually configured or scanning for DNS
130.85.111.34 5 fsc2.engr.umbc.edu. manually configured or scanning for DNS
130.85.69.232 1 lib-69-232.pooled.umbc.edu. manually configured or scanning for DNS

The top 10 targets from these addresses are the same as detailed in Table 34 with at least
six being top-level name servers183, this traffic appears to be normal DNS traffic occurring
from the internal network. The orange and yellow systems may need some further
investigation as they could be scanning if these hosts do not expect DNS traffic. Traffic
from external IP address are targeting more than just the University DNS servers. The
systems marked with red require investigation for scan activity.

Source IP
address

 # FQDN
(Fully Qualified Domain Name)

Comments

130.85.1.3 57 UMBC3.UMBC.EDU. Appears to be a key UMBC DNS server
130.85.1.5 35 umbc5.umbc.edu. Appears to be a key UMBC DNS server
130.85.1.4 30 umbc4.umbc.edu. Appears to be a key UMBC DNS server
130.85.18.25 16 shsfrontpc-02.umbc.edu. The source of this traffic should be investigated
130.85.97.55 11 ppp-055.dialup.umbc.edu. The source of this traffic should be investigated
130.85.97.43 9 ppp-043.dialup.umbc.edu. The source of this traffic should be investigated
130.85.82.109 7 oit-82-109.pooled.umbc.edu. The source of this traffic should be investigated
130.85.81.116 6 erk-81-116.pooled.umbc.edu. The source of this traffic should be investigated
130.85.112.209 6 - The source of this traffic should be investigated
130.85.97.73 1 ppp-073.dialup.umbc.edu. The source of this traffic should be investigated
130.85.97.65 1 ppp-065.dialup.umbc.edu. The source of this traffic should be investigated
130.85.53.50 1 ecs021pc20.ucslab.umbc.edu. The source of this traffic should be investigated
130.85.34.14 1 imap.cs.UMBC.EDU. The source of this traffic should be investigated
130.85.11.4 1 quarantine.UMBC.EDU. The source of this traffic should be investigated

Recommendations
I would consider these as false positives, they appear to trigger on normal DNS behaviour,
I expect 130.85.1.3 and 130.85.1.4 are primary name servers performing iterative
lookups of domain names for clients internal to the network. Include these and any other
known DNS servers within the portscan-ignore hosts variable to reduce the false positives.

2.4.4 Scans #4 – Windows Ports (135,139, and 445)
There is a lot of scan activity related to these ports, which are all in some way related to
windows based traffic.184 These ports are constantly scanned for vulnerabilities185 186 187
and have a prominent place in the top 10 target ports on dshield188

183 http://pigtail.net/LRP/gtld-servers.html
184 http://www.microsoft.com/resources/documentation/windows/2000/server/reskit/en-us/tcpip/part4/tcpappc.mspx
185 Port 135 – http://www.dshield.org/port_report.php?port=135&recax=1&tarax=2&srcax=2&percent=N&days=70&Redraw=
186 Port 139 – http://www.dshield.org/port_report.php?port=139&recax=1&tarax=2&srcax=2&percent=N&days=70&Redraw=
187 Port 445 – http://www.dshield.org/port_report.php?port=445&recax=1&tarax=2&srcax=2&percent=N&days=70&Redraw=
188 http://www.dshield.org/topports.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 79

Port Count Known traffic using this port number

U
ni

qu
e

A
le

rt
s

U
ni

qu
e

Ex
te

rn
al

Sr

c
IP

U
ni

qu
e

In
te

rn
al

D

es
t I

P

U
ni

qu
e

In
te

rn
al

Sr

c
IP

U
ni

qu
e

Ex
te

rn
al

D

es
t I

P

135 2616043 DCE endpoint resolution, NCS local location broker 8 124 263 20 1844430
445 582272 Win2k+ Server Message Block 4 21 259 15 428583
139 473811 NETBIOS Session Service, [trojan] SMB Relay, [trojan] Sadmind 6 30 259 19 346566

Table 37 shows, which internal systems generated scan activity on the selected ports and
the quantity of target addresses across the whole scan data:

awk -F: '{print $7":"$4}' scans.clean.csv | grep "^[port]:" | cut -d: -f 2 | grep
"^130\.85\.[0-9]\+\.[0-9]\+" | sort | uniq -c | so.rt –rn
awk -F: '{print $4":"$6}' scans.clean.csv | grep "^[ipaddr]:" | cut -d: -f 2 | sort | uniq |
wc -l

Table 37 – Internal hosts scanning Windows Ports Scanned
IP address # to 135 # to 139 # to 445 FQDN Target IP covering any port
130.85.17.45 164238 132575 144934 erk177pc-1.umbc.edu. 142819
130.85.43.4 - 6 - - 1091
130.85.43.7 480932 - - - 355638
130.85.43.8 8467 4587 6623 - 15059
130.85.43.10 94991 1563 48259 - 119007
130.85.43.13 924 571 752 - 1516
130.85.69.155 891 666 801 lib-69-155.pooled.umbc.edu. 1030
130.85.69.210 13314 12108 12835 lib-69-210.pooled.umbc.edu. 17017
130.85.70.164 - 3 - dojo.ucs.umbc.edu. 1286
130.85.80.71 1335 741 1035 ss-80-71.pooled.umbc.edu. 1128
130.85.80.119 7809 7666 7779 ss-80-119.pooled.umbc.edu. 11160
130.85.80.224 116671 110408 114309 pplant-80-224.pooled.umbc.edu. 100635
130.85.81.39 693980 - - erk-81-39.pooled.umbc.edu. 694139
130.85.109.25 23036 - - ecs10202.engr.umbc.edu. 17406
130.85.111.34 - 44 - fsc2.engr.umbc.edu. 17408
130.85.111.51 81305 55848 71532 trc208pc-02.engr.umbc.edu. 77594
130.85.112.189 713587 - - - 530123
130.85.112.193 68644 55966 63222 - 71631
130.85.112.225 - 2 - - 1384
130.85.150.210 9929 6466 8519 libpc10.lib.umbc.edu. 7923
130.85.150.226 23579 16933 20787 libpc22.lib.umbc.edu. 19903
130.85.153.195 29934 24497 27585 - 27905

All these systems are targeting more than a thousand different external IP address, this is
a sure sign of some scan activity potentially associated with a worm. All these systems
should be checked for Trojans and worms.
Recommendations
These ports should be blocked form entering or leaving the University network, the
University of California, Irvine did just this189 providing strong reasons why these ports
should not be accessible from the Internet.

2.4.5 Scans #5 – Web based scans (Port 80 and 443)
These two ports are synonymous with web traffic, port 80 is used mainly for HTTP traffic
without encryption while port 443 is set aside for encrypted HTTP traffic. There are
numerous issues with these protocols and scanning for these ports is continuous as can
be see on the dshield website190 191, these figures show there was heightened interest in
these ports during the time frame these logs where captured, at the time of writing port 80
had a place in the top 10 target ports on dshield192.

189 http://www.nacs.uci.edu/security/netbios.html
190Port 80 – http://www.dshield.org/port_report.php?port=80&recax=1&tarax=2&srcax=2&percent=N&days=70&Redraw=
191Port 443 – http://www.dshield.org/port_report.php?port=443&recax=1&tarax=2&srcax=2&percent=N&days=70&Redraw=
192 http://www.dshield.org/topports.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 80

Figure 22 - DShield.org port 80 report (70 day trend) Figure 23 - DShield.org port 443 report (70 day trend)

There are vulnerabilities with various web servers and numerous worms created to take
advantage of these flaws like code red193 194, Nimda195 196, and WebDav Buffer Overflow
Attacks197 198. A lot of this scan activity could be related to automatic scanning performed
by various worms.

Port Count Known traffic using this port
number

Unique Alerts Unique Ext
Src IP

Unique Int
Dest IP

Unique Int Src
IP

Unique Ext
Dest IP

80 604263 World Wide Web HTTP 21 255 15496 146 320430
443 297002 HTTP protocol over TLS SSL 11 42 15725 29 33

The figures for port 80 look suspiciously like scan activity, a low internal source count with
a high level of destinations, for internal hosts the port 443 traffic looks OK. As far as
external traffic is concerned, there is that classic scan pattern. This indicates there is
some activity on port 445 possibly a worm that is scanning for victims, at this stage internal
systems do not appear to be affected. This table shows the top 10 unique alerts that
triggered the scan detection software.

Port 80 scan Count Port 443 scan Count
SYN ******S* 603647 SYN ******S* 297076
UDP 1058 UDP 73
SYN 12****S* RESERVEDBITS 924 SYN 12****S* RESERVEDBITS 17
VECNA ****P*** 44 NOACK **U*P*S* 2
FIN *******F 26 NOACK **U**RS* 2
NOACK **U**RSF 8 VECNA ****P**F 1
NULL ******** 7 UNKNOWN 12*A**S* RESERVEDBITS 1
NOACK **U**RS* 6 NOACK 1***PRSF RESERVEDBITS 1
NOACK **U*P*S* 5 NOACK 1****RSF RESERVEDBITS 1
VECNA **U*P*** 2 NOACK **U*PR*F 1

I would not be inclined to investigate the SYN alerts based on this table, these alerts are
very generic and like the SYN alerts with the reserved bits set (see section 2.4.1), they
look legitimate. Signs of scan activity by hosts will become more apparent when looking at
the top talker tables. Alerts in red are diffidently illegal, the hosts generating these packets
should be crossed referenced with other traffic looking for signs of scan activity. The
orange alerts are unusual and worth further investigation.
Recommendations
The alert data is more valuable when trying to determine issues with web traffic, the
reason being signatures looking for specific illegal traffic that is more readily recognisable
by the analyst like the “NIMDA - Attempt to execute cmd from campus host” signature
used by the University. IP addresses triggering these alerts should be cross-referenced

193 http://www.cert.org/advisories/CA-2001-19.html
194 http://www.linklogger.com/coderedii.htm
195 http://www.cert.org/advisories/CA-2001-26.html
196 http://www.linklogger.com/nimda.htm
197 http://www.cert.org/advisories/CA-2003-09.html
198 http://www.linklogger.com/webdav.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 81

with the scan data to paint a more accurate picture of the hosts activity. The scans with
unusual flag combinations need further investigation as they are likely to be associated
with no good.

2.4.6 Scans #6 – Other Scan Ports
If you ever question why we see so much scan activity, the answer is because it works,
attackers search the internet for open services to compromise or listening Trojans in the
hope of finding systems already compromised. An article titled “How thorough is Trojan
detection by port scanning?” discusses from the administrators point of view how valuable
it is to scan the network for Trojan ports, which is certainly relevant for attackers alike.
http://www.diamondcs.com.au/index.php?page=archive&id=sec05

Evidence of Scanning from Internal Systems
Port 3127, 3410 and 6129: The “W32/MyDoom” and “W32.Novarg.A backdoor” are
associated with port 3127 though it may choose any port from 3127 to 3198 this is the
most common, at the time of writing, this port is one of the top 10 targets on dshield199.
Systems in bold produced alerts that had both the source and destination port of 3127.
Table 38 - Port 3127 Internal Sources

IP address Count IP address Count IP address Count IP address Count
130.85.17.45 140536 130.85.69.226 22 130.85.97.17 128 130.85.112.193 60799
130.85.43.8 5070 130.85.69.232 59 130.85.97.171 771 130.85.150.210 7651
130.85.43.10 3591 130.85.80.119 7660 130.85.97.22 2 130.85.150.226 19221
130.85.43.13 724 130.85.80.224 112797 130.85.97.38 2 130.85.153.195 26286
130.85.69.155 755 130.85.80.71 928 130.85.97.84 2
130.85.69.210 12686 130.85.84.186 48218 130.85.110.72 6
130.85.69.214 101 130.85.97.115 153 130.85.111.51 66311

A more recent worm “W32.Mockbot.A.Worm” links this port with 3410200 and 6129, the IP
addresses in blue generate traffic with two or more of these ports giving a strong case to
suggest these systems are compromised by this worm. It propagates by looking for
systems previously infected by “W32.Mydoom.A@mm” or “Backdoor.Optix” worms.
Table 39 - Port 3410 Internal Sources

IP address Count IP address Count IP address Count IP address Count
130.85.17.45 24332 130.85.69.155 650 130.85.80.224 95063 130.85.97.92 1
130.85.43.8 4186 130.85.69.210 12181 130.85.84.186 39471 130.85.110.72 2
130.85.43.10 1258 130.85.69.214 115 130.85.97.115 66 130.85.111.51 52700
130.85.43.13 532 130.85.69.226 8 130.85.97.17 80 130.85.112.193 54513
130.85.53.225 21 130.85.69.232 97 130.85.97.171 293 130.85.150.226 15855
130.85.53.41 2 130.85.80.119 7690 130.85.97.39 2 130.85.153.195 7535

Table 40 - Port 6129 Internal Sources
IP address Count IP address Count IP address Count IP address Count
130.85.17.45 136106 130.85.69.210 12479 130.85.97.115 91 130.85.150.210 6965
130.85.43.8 4808 130.85.80.71 845 130.85.97.171 613 130.85.150.226 18002
130.85.43.10 2163 130.85.80.119 7728 130.85.110.72 2 130.85.153.195 25519
130.85.43.13 666 130.85.80.224 112015 130.85.111.34 2
130.85.53.225 1 130.85.84.186 44987 130.85.111.51 62093
130.85.69.155 705 130.85.97.17 117 130.85.112.193 58833

At a minimum systems marked with red should be inspected for viruses, orange systems
are suspicious, while yellow systems could be a false positive as there was only one or
two counts.
Port 2745: Beagle.C through to Beagle.K is known to use this port, these are the internal
systems that may require further investigation, the bold systems in Table 41 where also
seen in Scans #2 – Reflexive Ports. Looking at the IP address that triggered the scan data
we find a strong correlation with the discussion on ports 3127, 3410, 6129. Though the
link to Symantec does not mention port 2745 in the description of “W32.Mockbot.A.Worm”

199 http://www.dshield.org/topports.php
200 http://securityresponse.symantec.com/avcenter/venc/data/w32.mockbot.a.worm.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 82

I think these systems are compromised by this worm or a variant that also scans for
systems compromised by “Beagle” worms and its variants.
Table 41 - Port 2745 Internal Sources

IP address Count IP address Count IP address Count IP address Count
130.85.17.45 159058 130.85.69.214 35 130.85.97.13 1 130.85.111.51 86470
130.85.43.8 12752 130.85.69.226 10 130.85.97.17 395 130.85.112.193 72193
130.85.43.10 139748 130.85.69.232 42 130.85.97.82 1 130.85.150.210 10868
130.85.43.13 1087 130.85.80.71 1611 130.85.97.115 507 130.85.150.226 25197
130.85.53.225 1 130.85.80.119 7875 130.85.97.171 2755 130.85.153.195 31387
130.85.69.155 957 130.85.80.224 118118 130.85.109.25 23004
130.85.69.210 13598 130.85.84.186 66464 130.85.110.72 3

Port 1025: Microsoft Remote Procedure Call (RPC) service listens on this port along with
a few Trojans like Fraggle Rock, Remote
Storm, and NetSpy. According to a MS KB
article, it could be used as an Active Directory
logon and directory replication interface 201 .
Figure 24 taken from the dshield web site
shows that around the same time these logs
where generated there is a peak in activity.
This activity looks unusual, Error! Not a valid
bookmark self-reference. shows the internal
hosts that triggered the scan detection, these
systems should be investigated for possible
worm activity202.

Figure 24 - DShield.org port 1025 report (70 day trend)
Table 42 - Port 1025 Internal Sources

IP address Count IP address Count IP address Count IP address Count
130.85.17.45 149325 130.85.69.232 3 130.85.83.91 68 130.85.111.34 40
130.85.53.225 12 130.85.70.164 1 130.85.84.186 56658 130.85.111.51 76556
130.85.53.41 5 130.85.70.197 2 130.85.97.54 1 130.85.112.193 66104
130.85.69.155 851 130.85.80.119 7761 130.85.97.86 2 130.85.112.225 6
130.85.69.210 13032 130.85.80.224 115244 130.85.98.56 1 130.85.150.210 9260
130.85.69.214 7 130.85.80.71 1178 130.85.109.25 23032 130.85.150.226 22308
130.85.69.226 1 130.85.82.8 1 130.85.110.72 21 130.85.153.195 28660

Port 5000: Refer to section 2.4.2 for a discussion on this port. The systems in bold are
also listed there.

IP address Scan Type Count IP address Scan Type Count IP address Scan Type Count
130.85.1.3 UDP 1 130.85.80.119 SYN ******S* 7770 130.85.97.171 SYN ******S* 256
130.85.17.45 SYN ******S* 24075 130.85.84.186 SYN ******S* 37030 130.85.97.248 UDP 49
130.85.43.13 SYN ******S* 474 130.85.84.235 SYN ******S* 2 130.85.111.34 UDP 11
130.85.53.225 UDP 37 130.85.97.115 SYN ******S* 39 130.85.112.193 SYN ******S* 52450
130.85.69.155 SYN ******S* 7 130.85.97.12 UDP 17 130.85.153.195 SYN ******S* 7356
130.85.69.210 SYN ******S* 11903 130.85.97.17 SYN ******S* 83 130.85.153.81 SYN ******S* 2
130.85.70.164 SYN ******S* 3

Evidence of Scanning from External Systems
Port 32773: This port is known for Sun’s rpc.nisd service but does have a few worms and
Trojans. The internal source and external destination figures are not that alarming, the
concern is associated with 2 external sources and the 13,877 internal destinations. This
looks like a clear case of network scanning across portions of the University network,
these systems need further investigation and potentially reported.

Ext src addr FQDN #
213.189.229.5 18527
211.136.159.206 7293

201 http://support.microsoft.com/default.aspx?scid=KB;en-us;q280132
202 http://www.linklogger.com/TCP1025.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 83

Taking the leading IP address 213.189.229.5 as an example we can quickly determine
the sort of information that could lead to a phone call for the responsible company/ISP

Destination ports # Total destination IP
21 9122
23 9055
111 203

11027

Port 21: Not only is this the well-known port for FTP control, it does have a few worms and
Trojans. As in the previous case, the internal source and external destination figures are
not that alarming, on the face of it they look normal, the unusual numbers are associated
with the external sources totalling 21 and the 13,527 internal destinations. I would not
expect any network to have this many legitimate FTP servers, thus indicating one or more
of these external IP address performed a scan across portions of the University network,
these systems should be further investigated and potentially reported.

Ext src addr FQDN #
207.3.145.130 SOA (unix.worldpath.net.) 9122
82.49.56.134 host134-56.pool8249.interbusiness.it. 8683
218.188.13.228 SOA (bbdns1.on-nets.com.) 5801
213.180.193.68 proxychecker.yandex.net. 653
203.15.51.51 tester-51-2.sorbs.net. 604
62.58.50.220 dsbl.zonnet.nl. 137
163.20.86.130 domain.wles.tpc.edu.tw. 71
195.47.93.190 SOA (dns.nextra.cz.) 62
66.238.42.230 66.238.42.230.ptr.us.xo.net. 29
61.172.200.228 ? 23

I would be a little less concerned with 213.180.193.68 as it is potentially associated with a
proxy checking system as previously described in section 2.2.5 regarding port 53 traffic.
Port 20168: This port is possibly related to the lovegate virus and has figures that indicate
external scanning, the source IP addresses should be investigated for scanning activity.
Port 4000: This port is related to a few different worms and Trojans and has figures that
indicate external scanning, these are the top five source IP addresses that need further
investigation.

Port 20168 External Source Port 4000 External Source
Ext src addr FQDN # Ext src addr FQDN #
206.222.14.209 SOA (dns4.ee.net.) 16732 193.120.129.82 host2.sdl.ie. 14580
80.38.233.3 3.Red-80-38-233.pooles.rima-tde.net. 13892 208.182.190.91 host190-91.wa-bass-ms.davidson.k12tn.net. 8243
64.166.194.201 adsl-64-166-194-201.dsl.lsan03.pacbell.net. 10389 130.235.23.99 lukas.lucs.lu.se. 3392
62.58.50.220 dsbl.zonnet.nl. 1 213.96.185.200 200.Red-213-96-185.pooles.rima-tde.net. 1156
203.15.51.51 tester-51-2.sorbs.net. 1 203.144.159.196 ppp-203.144.159.196.revip.asianet.co.th. 881

Recommendation
Systems scanning the University network are probably leading up to an attack against
University hosts. These systems should be reported and traced back to their origin, there
are a few reasons why these systems are scanning:

1. They have been compromised by a worm trying to propagate itself further;
2. It is a compromised system used as a sacrificial lamb to obtain as much information

as they can about systems on the internet before launching an attack.
3. The attacker is actually on the other end of the system performing these scans

preparing for a compromise of a system
The University is in a great position to play an important for role within the security
community by providing information to resources like dshield. This can help the correlation
effort for the greater Internet community203 and add to the weight when trying to shut down
attacker activity by joining fight back204.

203 http://www.dshield.org/intro.php
204 http://www.dshield.org/fightback.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 84

File sharing ports
These systems should be investigated if it is against University policy to use P2P services
that are widely used to share copyrighted material.
Port 6346: This port is used by the gnutella service

IP address Count IP address Count IP address Count IP address Count
130.85.43.13 14 130.85.53.41 3335 130.85.97.112 14 130.85.97.82 49
130.85.43.14 33 130.85.53.50 1 130.85.97.182 864 130.85.98.56 4311
130.85.43.16 27 130.85.70.105 1 130.85.97.183 1745 130.85.111.34 1
130.85.43.2 384 130.85.70.164 23 130.85.97.22 2192 130.85.112.204 93
130.85.43.3 59 130.85.70.16 67 130.85.97.27 145 130.85.112.209 1
130.85.43.4 2 130.85.82.109 7 130.85.97.39 533 130.85.112.225 1
130.85.43.5 2 130.85.82.81 50 130.85.97.43 9 130.85.153.81 9
130.85.43.6 4 130.85.84.203 4 130.85.97.52 3 130.85.153.97 2
130.85.43.7 1 130.85.84.235 12 130.85.97.60 4
130.85.53.128 1 130.85.97.100 131 130.85.97.62 11
130.85.53.225 17990 130.85.97.105 4470 130.85.97.78 1720

Port 41170: This port is used by bluster a file sharing program
IP address Count IP address Count IP address Count IP address Count
130.85.97.39 2 130.85.97.73 1803 130.85.97.94 25 130.85.97.96 8680
130.85.97.56 11083 130.85.97.74 4984 130.85.97.95 58 130.85.97.181 138

Recommendation
The University of Florida has implemented a solution that have all but eliminated the use of
P2P networking on the campus network. This could be a long-term goal if this becomes
more of a problem. http://www.wired.com/news/print/0,1294,60613,00.html

2.5 OOS log Summary
The tables in this section display the OOS data in various ways helping identify suspicious
activity with some items discussed further in section 2.6

2.5.1 Top 10 OOS External Talkers
There where 259 external sources logged in the OOS files, Table 43 shows the top 10
Table 43 - Top 10 OOS External Talkers

External Source IP Count FQDN
(Fully Qualified Domain Name)

U
ni

qu
e

D
st

 IP

U
ni

qu
e

D
st

Po

rt
s Key Destination Ports

68.54.84.49 937 pcp01741335pcs.howard01.md.comcast.net. 1 1 110
199.184.165.136 131 xemacs.org. 2 131 2500, 2640, 4922, the next 128 ports are

between 35819 and 36028 once each.
66.225.198.20 118 unknown.splashhost.net. 1 1 25
204.92.130.35 93 smtp25.svngsrgstr.com. 3 1 25
204.92.130.31 80 smtp21.svngsrgstr.com. 2 1 25
141.152.34.103 78 SOA (nsdc.ba-dsg.net.) 2 1 25
204.92.130.36 75 smtp26.svngsrgstr.com. 1 1 25
204.92.130.32 69 smtp22.svngsrgstr.com. 2 1 25
202.70.64.15 50 ? 2 1 80
67.119.232.234 47 adsl-67-119-232-234.dsl.sndg02.pacbell.net. 1 1 110

2.5.2 Top 10 OOS Internal Targets
There where 50 internal targets logged in the OOS files, Table 44 shows the top 10
Table 44 - Top 10 OOS Internal Targets

Targeted
Internal IP

Count FQDN
(Fully Qualified Domain Name)

U
ni

qu
e

Sr
c

IP

U
ni

qu
e

D
st

Po

rt
s Key Destination Ports

130.85.6.7 983 4 2 110, 80
130.85.12.6 821 149 1 25
130.85.24.118 128 1 128 Ephemeral (src 20)
130.85.5.67 67 7 1 8080
130.85.24.44 54 17 1 80
130.85.12.4 47 1 1 110
130.85.34.11 44 9 1 80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 85

130.85.34.14 39 4 2 113, 25
130.85.97.101 36 5 1 3646
130.85.25.72 26 9 1 113

2.5.3 Top 10 OOS Internal Talkers
There where only two systems with an internal source address that are logged in the OOS
files for the selected period.
Table 45 - Top 10 OOS Internal Talkers

Internal Source
IP

Count FQDN
(Fully Qualified Domain Name)

U
ni

qu
e

D
st

 IP

U
ni

qu
e

D
st

Po

rt
s Key Destination Ports

130.85.12.6 5 mxin.umbc.edu. 5 5 60783, 48174, 4145, 3122, 2114
130.85.12.4 1 mail.umbc.edu. 1 1 52602

2.5.4 Top 10 OOS External Targets
From the two internal talkers there where six targets each receiving only one packet.
Table 46 - Top 10 OOS External Targets

Targeted External
IP

Count FQDN
(Fully Qualified Domain Name)

U
ni

qu
e

Sr
c

IP

U
ni

qu
e

D
st

Po

rt
s Key Destination Ports

69.59.157.47 1 1 1 60783 (src 25)
68.55.137.118 1 1 1 52602 (src 993)
61.167.236.216 1 1 1 4145 (src 25)
211.144.32.80 1 1 1 2114 (src 25)
200.52.127.126 1 1 1 3122 (src 25)
161.58.155.247 1 1 1 48174 (src 25)

2.6 OOS log Details
This section discusses suspicious activity identified within the tables in section 2.5

2.6.1 OSS #1 – 68.54.84.49
These are the first three packets out of 937 logged in the OOS log files.
04/24-00:05:48.635408 68.54.84.49:42379 -> 130.85.6.7:110
TCP TTL:51 TOS:0x0 ID:9047 IpLen:20 DgmLen:60 DF
12****S* Seq: 0xF3D0181B Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 1018444620 0 NOP WS: 0
04/24-00:06:54.932062 68.54.84.49:42380 -> 130.85.6.7:110
TCP TTL:51 TOS:0x0 ID:2900 IpLen:20 DgmLen:60 DF
12****S* Seq: 0xF75C5E65 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 1018451249 0 NOP WS: 0
04/24-00:07:58.248062 68.54.84.49:42381 -> 130.85.6.7:110
TCP TTL:51 TOS:0x0 ID:50510 IpLen:20 DgmLen:60 DF
12****S* Seq: 0xFB98A8A3 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 1018457581 0 NOP WS: 0

This traffic does not look particularly unusual, a break down of the first packet reveals:
Element Comments

Source and destination IP These look OK, external source, internal destination
Source and destination port These look OK, ephemeral source port directed to IMAP port 130.85.7.110 resolves to umbc7.umbc.edu.

this name does not give a clue as to the function of this machine.
TCP TTL:51 This could be a systems that has set it’s TTL to 64 and is around 13 hops away.
TOS:0x0 and 12****S* Nothing strange with the SYN set, it is the first part of a three way handshake, as previously discussed in

section 2.4.1 an ECN aware host will set both reserved flags on within the initial connection, and the low
order bits in the TOS byte are set to zero.

IP ID:9047 A non zero number here is good.
IpLen:20 Correct length for an IP datagram without options.
DgmLen:60 Correct length for a standard SYN datagram
DF Don’t Fragment is not so strange
Seq: 0xF3D0181B A non zero sequence number is correct.
Ack: 0x0 A zero acknowledgement number is expected, as there is nothing for this host to acknowledge yet.
Win: 0x16D0 This is a reasonable window size (decimal 5840)
TcpLen: 40 This is expected, the datagram length is 60, the IP header is 20 so the TCP length should be 40bytes
TCP Options These Look OK

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 86

The only thing really
out of the ordinary with
this traffic is the
setting of the reserved
bits. If we look at the
timing of this traffic,
we can surmise it is a
typical IMAP client
connecting to a server
checking every minute

for new email. Graphing the connections over time reveals a user who begins work at time
00, connects to the IMAP server, works for six hours and disconnects only to return at the
same time the next day. This traffic can be put down to a false positive.
Recommendations
The OOS detection software needs to be more aware of ECN traffic to reduce the chance
of false positives.

3 External Source Address Registration
The hosts in this section have been selected as potential attackers and require further
investigation, this may end in the manager of the address space being contacted to stop
the activity from continuing.

3.1 209.164.32.205
This host was first identified in 2.4.2 during our discussion on port 123, there was a lot of
activity from this host directing scan activity toward 12 hosts across 233 ports.

Owner Registration Information Contact Infromation
OrgName: XO Communications
Address: Corporate Headquarters
Address: 11111 Sunset Hills Road
City: Reston
StateProv: VA
PostalCode: 20190-5339
Country: US

NetRange: 209.164.0.0 - 209.164.63.255
CIDR: 209.164.0.0/18
NetName: XOXO-BLK-18

Comment: For best results, please send all spam

and worm reports only to
abuse@xo.com.

OrgAbuseName: XO Communications,
Network Violations

OrgAbusePhone: +1-866-285-6208
OrgAbuseEmail: abuse@xo.com
OrgTechName: XO Communications,

IP Administrator
OrgTechPhone: +1-703-547-2000
OrgTechEmail: ipadmin@eng.xo.com

This address did not appear as an attacker in the DShield database

3.2 82.83.43.1
This host was first identified in 2.4.2 during our discussion of port 4672, there was a lot of
activity from this host directed to 130.85.82.109 over a 3-hour period covering 161 ports,
some obviously crafted like those noted in Table 36.

Owner Registration Information Contact Infromation
descr: ARCOR AG
descr: Alfred-Herrhausen-Allee 1
descr: D-65760 Eschborn
country: DE

inetnum: 82.82.169.0 - 82.83.255.255
route: 82.82.0.0/15
netname: ARCOR-DSL-NET12

role: Mannesmann Arcor Network
Operation Center

address: Arcor AG & Co.KG
address: Department TBN
address: Otto-Volger-Str. 19
address: D-65843 Sulzbach/Ts.
address: Germany
phone: +49 6196 523 0864
e-mail: noc@adm.arcor.net
Security issues mailto:abuse@arcor-ip.de
Information http://www.arcor.net
Peering contact mailto:peering@adm.arcor.net
Operational issues mailto:noc@adm.arcor.net
Address assignment mailto:ip-registry@arcor.net

This address did not appear as an attacker in the DShield database

IMAP connections from host 68.54.84.49

0

10

20

30

40

50

60

04
/2

4-
00

04
/2

4-
03

04
/2

4-
06

04
/2

4-
09

04
/2

4-
12

04
/2

4-
15

04
/2

4-
18

04
/2

4-
21

04
/2

4-
24

04
/2

5-
02

04
/2

5-
05

04
/2

5-
08

04
/2

5-
11

04
/2

5-
14

04
/2

5-
17

04
/2

5-
20

04
/2

5-
23

04
/2

6-
01

04
/2

6-
04

04
/2

6-
07

04
/2

6-
10

04
/2

6-
13

04
/2

6-
16

04
/2

6-
19

04
/2

6-
22

Date and Hour

N
um

be
r o

f C
on

ne
ct

io
ns

IMAP connections

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 87

3.3 66.238.42.230
This host was identified in 2.4.2 during our discussion on port 6112, there was a lot of
activity from this host towards 130.85.18.25 across 1026 UDP ports over 27 minutes.

Owner Registration Information Contact Infromation
OrgName: XO Communications
Address: Corporate Headquarters
Address: 11111 Sunset Hills Road
City: Reston
StateProv: VA
PostalCode: 20190-5339
Country: US

NetRange: 66.236.0.0 -
66.239.255.255

CIDR: 66.236.0.0/14
NetName: XOX1-BLK-2

OrgAbuseName: XO Communications, Network
Violations

OrgAbusePhone: +1-866-285-6208
OrgAbuseEmail: abuse@xo.com
OrgTechName: XO Communications, IP

Administrator
OrgTechPhone: +1-703-547-2000
OrgTechEmail: ipadmin@eng.xo.com

This address did not appear as an attacker in the DShield database

3.4 66.250.188.13
This host triggered an alert shown in section 2.2.4 under the discussion of port 123.

Owner Registration Information Contact Infromation
OrgName: Cogent Communications
Address: 1015 31st Street, NW
City: Washington
StateProv: DC
PostalCode: 20007
Country: US

NetRange: 66.250.0.0 -
66.250.255.255

CIDR: 66.250.0.0/16
NetName: COGENT-NB-0001

OrgAbuseName: Cogent Abuse
OrgAbusePhone: +1-877-875-4311
OrgAbuseEmail: abuse@cogentco.com
OrgTechName: Cogent Communications
OrgTechPhone: +1-877-875-4311
OrgTechEmail: noc@cogentco.com

This address did not appear as an attacker in the DShield database

3.5 212.204.214.70
This host triggered an alert shown in section 2.2.4 under the discussion of port 123.

Owner Registration Information Contact Infromation
descr: WideXS Internet
country: NL

inetnum: 212.204.214.0 -
212.204.214.127

route: 212.204.192.0/19
netname: NL-WIDEXS

person: Peter Bosgraaf
address: WideXS
address: Bijlmermeerstraat 62
address: 2131 HG Hoofddorp
address: The Netherlands
phone: +31 23 5698070
fax-no: +31 23 5698099
e-mail: peter@widexs.nl
notify: peter@widexs.nl
remarks ---
remarks E-mail is the preferred contact method!
remarks ---
remarks abuse@widexs.nl for abuse notifications
remarks hostmaster@widexs.nl for hostmaster notifications
remarks support@widexs.nl for customer service
remarks ---

This address did not appear as an attacker in the DShield database

4 Link Diagram
The host used in the link diagram 130.85.17.45 is suspected of being infected by the
“W32.Mockbot.A.Worm”. This diagram is based on the 1,179,273 alerts associated with
this host within the scan data only. There where 51 hosts that targeted 130.85.17.45
while it targeted 142,820 individual hosts, across 52,813 C class networks or 327 B class
networks.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 88

65.105
65.21665.54

66.9666.98

128.52

129.55

130.0

. . .

130.255
203.141

203.250

206.65

207.155

208.210
209.51

210.79
211.14

212.227

21
3.1

30

213.73.245.83
213.39.228.182

213.189.229.5

213.186.239.244

212.93.134.12
212.3.250.197
212.29.89.240

212.192.241.20

211.136.159.206

210.109.146.30

209.90.101.77
209.115.211.86

207.96.102.27
207.3.145.130

206.222.14.209

204.116.105.26
13

0.8
8.2

47
.56

130.39.31.182

13
0.1

94
.22

4.2
13

130.15.16.162

82.49.56.134

80.38.233.3
80.24.133.184

80.138.165.184

68.219.142.66

68.157.167.58

67.36.69.7367.161.192.207

66.69.180.216

65.82.70.5

69.20

66.207

128.114

207.46

207.126

207.188

207.200128.30
128.31

130.85.17.45

5 Conclusions
The overall health of the University network is satisfactory considering its size. However,
some issues that have been identified do need addressing, the details are within this
analysis. The University needs to prioritise its resources combating these security issues
for the network to remain at its current state. The immediate concern is with the
“W32.Mockbot.A.Worm” that appears to have compromised several hosts. Various P2P
programs are in use on the University network, the use of these programs needs to be
determined and if deemed inappropriate the identified hosts should be cleaned of this
software.

6 Defensive Recommendations
The amount of data is almost overwhelming until you devise a method to tackle the task.
This analysis tried to look at obviously bad behaviour, while also looking for issues that
can easily be solved to reduce the false positive rate, to help make subsequent analysis
more meaningful. Much of the alert data is related to false positives, the set of snort rules
used appear to be quite generic, and mostly out of date, they should be tuned to remove
easily identified false positives.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 89

Some things that can be used to address the Universities security posture are:
1. Utilise the host specific rules to identify scanning hosts as described in 2.2.6;
2. Provide an Intranet server related to security issues

a. Describe the latest network issues and general security tips;
b. Provide the latest patches for various operating systems, or links to their

location;
c. Links to free firewalls for various operating systems;
d. Links to anti virus software for various operating systems.

3. Scan the network environment for vulnerable hosts using nessus, I understand that
this recommendation may not be appropriate in a University network but it would
help identify insecure or incorrectly patched systems.

These things may help reduce the quantity of viruses, worms and Trojans spreading
throughout the University network.

7 Appendix
7.1 Appendix A – The process
There is not the space to detail all that was done during the analysis process, this
appendix shows at a minimum how the main tables in sections 2.1 Alert Summary and 2.3
Scans Summary were created.

7.1.1 Table 9 - Alerts by Network Segment
To create the table I started with a basic while loop:

let i=0 ; while [$i -le 256] ; do <<something to repeat>> ; let i=i+1; done
To determine the count of alerts sourced from the specific net range:

awk -F: '{print $5}' alert.misc3 | grep "^130\.85\.$i\.[0-9]\+" | cut -d"." -f 1,2,3 | sort
| uniq –c

To calculate the destination count only the “print” was changed to “$7” while the scan
data had the file change to scans.clean.csv and the “print” statement changed
accordingly. The OOS data was a little more complex as I needed to incorporate the grep
command introduced in section 1.4.3, change the file name, and the “print” statements.

7.1.2 Table 10 - Alerts by Type
The frequency of alert data was determined by:

awk -F: '{ print $4 }' alert.misc3 | sort | uniq -c | sort -rn >> alert.misc3.highest-alert-
types

7.1.3 Table 11 - Top 20 Alert Destination Ports
The totals where determined using this command:

awk -F: '{print $8}' alert.misc3 | sort | uniq -c | sort -rn > alert.misc3.ports
To determine the unique alerts that targeted port 80:

awk -F: '{print $8":"$4}' alert.misc3 | grep "^80:" | awk -F: '{ print $2 }' | sort | uniq -
c | sort -rn > alert.misc3.csv.80.alerts

But to make the task much easier I create a file named "portlist1" that contained the top
20 port numbers and ran all the ports through a loop:

for i in `cat portlist1` ; do echo "starting $i" ; awk -F: '{print $8":"$4}' alert.misc3 |
grep "^$i:" | awk -F: '{ print $2 }' | sort | uniq -c | sort -rn >
alert.misc3.csv.$i.alerts ; echo "finished $i" ; done

Using the same loop structure I used this body to determine the unique external source
addresses targeting said port:

awk -F: '{print $8":"$5}' alert.misc3 | grep "^$i:" | awk -F: '{ print $2 }' | grep -v
"^130\.85\.[0-9]\+\.[0-9]\+" | sort | uniq -c | sort -rn >
alert.misc3.csv.$i.external.source

And the unique internal IP addresses that received alerts to each port:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 90

awk -F: '{print $8":"$7}' alert.misc3 | grep "^$i:" | awk -F: '{ print $2 }' | grep
"^130\.85\.[0-9]\+\.[0-9]\+" | sort | uniq -c | sort -rn >
alert.misc3.csv.$i.internal.destination

Unique internal source addresses targeting said port:
awk -F: '{print $8":"$5}' alert.misc3 | grep "^$i:" | awk -F: '{ print $2 }' | grep

"^130\.85\.[0-9]\+\.[0-9]\+" | sort | uniq -c | sort -rn >
alert.misc3.csv.$i.internal.source

And the unique external target IP addresses:
awk -F: '{print $8":"$7}' alert.misc3 | grep "^$i:" | awk -F: '{ print $2 }' | grep -v

"^130\.85\.[0-9]\+\.[0-9]\+" | sort | uniq -c | sort -rn >
alert.misc3.csv.$i.external.destination

The totals where calculated for each port using the UNIX word count command “wc”:
wc -l alert.misc3.csv.$i.alerts > alert.misc3.csv.$i.alerts.wc
wc -l alert.misc3.csv.$i.external.source > alert.misc3.csv.$i.external.source.wc
wc -l alert.misc3.csv.$i.internal.destination > alert.misc3.csv.$i.internal.destination.wc
wc -l alert.misc3.csv.$i.internal.source > alert.misc3.csv.$i.internal.source.wc
wc -l alert.misc3.csv.$i.external.destination > alert.misc3.csv.$i.external.destination.wc

The description of known uses for the given port was from information obtained through
http://www.iana.org/assignments/port-numbers, and http://www.dshield.org/

7.1.4 Table 12 - Alert Reflexive Port Combinations
Firstly to determine if there where any reflexive IP address combinations I used this:

awk -F: '{print $5":"$6}' alert.misc3 | grep "^\([0-9]\+\.[0-9]\+\.[0-9]\+\.[0-9]\+\):\1$" |
sort | uniq -c | sort -rn

This listed the alerts with the source and destination ports the same and their frequency.
awk -F: '{print $6":"$8}' alert.misc3 | grep "^\([0-9]\+\):\1$" | sort | uniq -c | sort -rn

Using our loop and a file containing the identified ports “reflex.port.list” these
commands populated the rest of the table

awk -F: '{print $6":"$8":"$5}' alert.misc3 | grep "^$i:$i:" | cut -d":" -f 3 | sort | uniq -
c | sort -rn > reflex.port.$i.source

awk -F: '{print $6":"$8":"$7}' alert.misc3 | grep "^$i:$i:" | cut -d":" -f 3 | sort | uniq -
c | sort -rn > reflex.port.$i.destination

wc -l reflex.port.$i.source > reflex.port.$i.source.wc
wc -l reflex.port.$i.destination > reflex.port.$i.destination.wc

7.1.5 Table 13 - Top 10 Alert External Talkers
The external source IP address totals where determined by:

awk -F: '{ print $5":"$6":"$7":"$8":"$4}' alert.misc3 | grep -v "^130\.85\.[0-9]\+\.[0-9]\+"
| awk -F: '{ print $1 }' | sort | uniq -c | sort -rn > alert.misc3.external.talkers

The FQDN was determined using dig -x <ip address>
The unique destination IP addresses was performed using the for loop mentioned in
section 2.1.2 using a file “iplist1” containing all the IP addresses for the next 4 tables:

awk -F: '{ print $5":"$6":"$7":"$8":"$4}' alert.misc3 | grep "^$i" | awk -F: '{ print $3 }'
| sort | uniq -c | sort -rn > alert.misc3.csv.$i

Then to determine the unique destination ports from each source host:
awk -F: '{ print $5":"$6":"$7":"$8":"$4}' alert.misc3 | grep "^$i" | awk -F: '{ print $4 }'

| sort | uniq -c | sort -rn > alert.misc3.csv.$i.ports
To determine how many unique entries there where I counted the lines in each file:

wc -l alert.misc3.csv.$i > alert.misc3.csv.$i.wc
wc -l alert.misc3.csv.$i.ports > alert.misc3.csv.$i.ports.wc

7.1.6 Table 14 - Top 10 Alert Internal Targets
To determine the internal targets:

awk -F: '{ print $5":"$6":"$7":"$8":"$4}' alert.misc3 | grep -v '^130\.85\.[0-9]\+\.[0-9]\+'
| awk -F: '{ print $3 }' | sort | uniq -c | sort -rn > alert.misc3.internal.targets

The process of populating the table was similar to that of Table 13 except for one key
difference common to both Table 14 and Table 16. To determine what IP addresses and
ports targeted 130.85.30.4 along with the frequency I reordered the elements in the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 91

source alert file from src-ip:src-port:dst-ip:dst-port to dst-ip:dst-port:src-
ip:dst-port with the leading “awk” command, otherwise everything else was the same.

awk -F: '{ print $7":"$8":"$5":"$6}'

7.1.7 Table 15 - Top 10 Alert Internal Talkers
To determine the frequency of internal talkers:

awk -F: '{ print $5":"$6":"$7":"$8":"$4}' alert.misc3 | grep "^130\.85\.[0-9]\+\.[0-9]\+" |
awk -F: '{ print $1 }' | sort | uniq -c | sort -rn > alert.misc3.internal.talkers

The process of populating this table was similar to that of Table 13.

7.1.8 Table 16 - Top 10 Alert External Targets
External targets list and the frequency were determined by:

awk -F: '{ print $5":"$6":"$7":"$8":"$4}' alert.misc3 | grep '^130\.85\.[0-9]\+\.[0-9]\+' |
awk -F: '{ print $3 }' | sort | uniq -c | sort -rn > alert.misc3.external.targets

The process of populating this table was similar to that of Table 13 except the “awk”
change highlighted in section 7.1.6

7.1.9 Table 17 - Top 10 Alert Types from External Hosts
awk -F: '{ print $5":"$6":"$7":"$8":"$4}' alert.misc3 | grep -v "^130\.85\.[0-9]\+\.[0-9]\+"

| awk -F: '{ print $5 }' | sort | uniq -c | sort -rn > alert.misc3.external.alert.types

7.1.10 Table 18 - Top 10 Alert Types from Internal Hosts
awk -F: '{ print $5":"$6":"$7":"$8":"$4}' alert.misc3 | grep "^130\.85\.[0-9]\+\.[0-9]\+" |

awk -F: '{ print $5 }' | sort | uniq -c | sort -rn > alert.misc3.internal.alert.types

7.1.11 Table 28 - Top 20 Scan Types
awk -F: '{ print $8 }' scans.clean.csv | sort | uniq -c | sort -rn >>

scans.clean.csv.scans.by.type

7.1.12 Table 29 - Top 20 Scan Destination Ports
To determine the frequency of alert directed to each port:

awk -F: '{print $7}' scans.clean.csv | sort | uniq -c | sort -rn > scans.clean.csv.ports
After creating a file named "portlist1" containing all 20 port numbers and using the same
loop as described in section 2.1.2 this command identified the unique alerts related to
each port

awk -F: '{print $7":"$8}' scans.clean.csv | grep "^$i:" | awk -F: '{ print $2 }' | sort |
uniq -c | sort -rn > scans.clean.csv.$i.scans

This determined unique external source addresses targeting said port
awk -F: '{print $7":"$4}' scans.clean.csv | grep "^$i:" | awk -F: '{ print $2 }' | grep -v

"^130\.85\.[0-9]\+\.[0-9]\+" | sort | uniq -c | sort -rn >
scans.clean.csv.$i.external.source

And the unique internal IP addresses that received alerts to each port:
awk -F: '{print $7":"$6}' scans.clean.csv | grep "^$i:" | awk -F: '{ print $2 }' | grep

"^130\.85\.[0-9]\+\.[0-9]\+" | sort | uniq -c | sort -rn >
scans.clean.csv.$i.internal.destination

Unique internal source addresses targeting said port:
awk -F: '{print $7":"$4}' scans.clean.csv | grep "^$i:" | awk -F: '{ print $2 }' | grep

"^130\.85\.[0-9]\+\.[0-9]\+" | sort | uniq -c | sort -rn >
scans.clean.csv.$i.internal.source

And the unique external IP addresses that received alerts directed to each port
awk -F: '{print $7":"$6}' scans.clean.csv | grep "^$i:" | awk -F: '{ print $2 }' | grep -v

"^130\.85\.[0-9]\+\.[0-9]\+" | sort | uniq -c | sort -rn >
scans.clean.csv.$i.external.destination

Then a “wc” was performed on each port number
wc -l scans.clean.csv.$i.scans > scans.clean.csv.$i.scans.wc
wc -l scans.clean.csv.$i.external.source > scans.clean.csv.$i.external.source.wc
wc -l scans.clean.csv.$i.internal.destination > scans.clean.csv.$i.internal.destination.wc
wc -l scans.clean.csv.$i.internal.source > scans.clean.csv.$i.internal.source.wc
wc -l scans.clean.csv.$i.external.destination > scans.clean.csv.$i.external.destination.wc

The description of known uses for the given port was from information obtained through
http://www.iana.org/assignments/port-numbers, and http://www.dshield.org/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 92

7.1.13 Table 30 - Scan Reflexive Port Combinations
Firstly, to determine if there where any reflexive IP address combinations I used this:

awk -F: '{print $4":"$6}' scans.clean.csv | grep "^\([0-9]\+\.[0-9]\+\.[0-9]\+\.[0-
9]\+\):\1$" | sort | uniq -c | sort -rn

This listed all the alerts that had the source and destination ports the same and frequency.
awk -F: '{print $5":"$7}' scans.clean.csv | grep "^\([0-9]\+\):\1$" | sort | uniq -c | sort

-rn
Using our loop and a file containing the identified ports “reflex.port.list” these
commands populated the rest of the table

awk -F: '{print $5":"$7":"$4}' scans.clean.csv | grep "^$i:$i:" | cut -d":" -f 3 | sort |
uniq -c | sort -rn > reflex.port.$i.source

awk -F: '{print $5":"$7":"$6}' scans.clean.csv | grep "^$i:$i:" | cut -d":" -f 3 | sort |
uniq -c | sort -rn > reflex.port.$i.destination

wc -l reflex.port.$i.source > reflex.port.$i.source.wc
wc -l reflex.port.$i.destination > reflex.port.$i.destination.wc

7.1.14 Table 31 - Top 10 Scan External Talkers
To determine the frequency of external source IP addresses:

awk -F: '{ print $4 }' scans.clean.csv | sort | uniq -c | sort -rn | grep -v '130\.85\.[0-
9]\+\.[0-9]\+' > scans.clean.csv.external.talkers

FQDN determined using dig -x <ip address>
Using our for loop and using a file “iplist1” containing all the IP addresses for the next
four tables this line helped determine the destination IP address and the count to each:

awk -F: '{ print $4":"$5":"$6":"$7":"$8}' scans.clean.csv | grep "^$i" | awk -F: '{ print $3
}' | sort | uniq -c | sort -rn > scans.clean.csv.$i

To determine the unique destination ports from each source host:
awk -F: '{ print $4":"$5":"$6":"$7":"$8}' scans.clean.csv | grep "^$i" | awk -F: '{ print $4

}' | sort | uniq -c | sort -rn > scans.clean.csv.$i.ports
Ports with counts greater than a set number are in bold to give a sense of what ports have
been specifically targeted, ports greater than 1023 are considered ephemeral ports. Lastly
to determine how many unique entries there where I counted each line in the files:

wc -l scans.clean.csv.$i > scans.clean.csv.$i.wc

wc -l scans.clean.csv.$i.ports > scans.clean.csv.$i.ports.wc

7.1.15 Table 32 - Top 10 Scan Internal Targets
The external IP address frequency was determined:

awk -F: '{ print $6 }' scans.clean.csv | sort | uniq -c | sort -rn | grep '130\.85\.[0-
9]\+\.[0-9]\+' > scans.clean.csv.internal.targets

The process of populating this table was similar to that of Table 31 except for one key
difference common to Table 32 and Table 34. To determine what IP addresses and ports
targeted 130.85.27.232 along with the frequency I reordered the elements in the source
scan file from src-ip:src-port:dst-ip:dst-port to dst-ip:dst-port:src-ip:dst-
port with the leading “awk” command otherwise the process was the same.

awk -F: '{ print $6":"$7":"$4":"$5}'

7.1.16 Table 33 - Top 10 Scan Internal Talkers
The frequency of internal IP address as sources of alerts was determined by:

awk -F: '{ print $4 }' scans.clean.csv | sort | uniq -c | sort -rn | grep '130\.85\.[0-
9]\+\.[0-9]\+' > scans.clean.csv.internal.talkers

The process of populating this table was similar to that of Table 31.

7.1.17 Table 34 - Top 10 Scan External Targets
The frequency of external IP address as targets was determined by:

awk -F: '{ print $6 }' scans.clean.csv | sort | uniq -c | sort -rn | grep -v '130\.85\.[0-
9]\+\.[0-9]\+' > scans.clean.csv.external.targets

The process of populating this table was similar to that of Table 31 except the “awk”
change highlighted in section 7.1.15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 93

7.1.18 Table 43 - Top 10 OOS External Talkers
To determine the frequency of external source IP addresses:

grep '^04\/2[0-6]-[0-9]\+:[0-9]\+:[0-9]\+.[0-9]\+ ' oos_report.all.clean | sed 's/ \-> /:/g'
| sed 's/\(:[0-9]\+.[0-9]*\) /\1:/g' | awk -F: '{ print $4 }' | sort | uniq -c | sort -rn
| grep -v '130\.85\.[0-9]\+\.[0-9]\+'

FQDN determined using dig -x <ip address>
Using our for loop and a file “iplist1” containing all the IP addresses for the next four
tables this line helped determine the destination IP address and the count to each:

grep '^04\/2[0-6]-[0-9]\+:[0-9]\+:[0-9]\+.[0-9]\+ ' oos_report.all.clean | sed 's/ \-> /:/g'
| sed 's/\(:[0-9]\+.[0-9]*\) /\1:/g' | awk -F: '{ print $4":"$5":"$6":"$7}' | grep "^$i"
| awk -F: '{ print $3 }' | sort | uniq -c | sort -rn

To determine the unique destination ports from each source host:
grep '^04\/2[0-6]-[0-9]\+:[0-9]\+:[0-9]\+.[0-9]\+ ' oos_report.all.clean | sed 's/ \-> /:/g'

| sed 's/\(:[0-9]\+.[0-9]*\) /\1:/g' | awk -F: '{ print $4":"$5":"$6":"$7}' | grep "^$i"
| awk -F: '{ print $4 }' | sort | uniq -c | sort -rn

7.1.19 Table 44 - Top 10 OOS Internal Targets
The external IP address frequency was determined:

grep '^04\/2[0-6]-[0-9]\+:[0-9]\+:[0-9]\+.[0-9]\+ ' oos_report.all.clean | sed 's/ \-> /:/g'
| sed 's/\(:[0-9]\+.[0-9]*\) /\1:/g' | awk -F: '{ print $6 }' | sort | uniq -c | sort -rn
| grep '130\.85\.[0-9]\+\.[0-9]\+'

The process of populating this table was similar to that of Table 43 except for one key
difference common to Table 44 and Table 46. To determine what IP addresses and ports
targeted 130.85.6.7 along with the frequency I reordered the elements in the source scan
file from src-ip:src-port:dst-ip:dst-port to dst-ip:dst-port:src-ip:dst-port with
the leading “awk” command otherwise the process is the same.

grep '^04\/2[0-6]-[0-9]\+:[0-9]\+:[0-9]\+.[0-9]\+ ' oos_report.all.clean | sed 's/ \-> /:/g'
| sed 's/\(:[0-9]\+.[0-9]*\) /\1:/g' | awk -F: '{ print $6":"$7":"$4":"$5}' | grep "^$i"
| awk -F: '{ print $3 }' | sort | uniq -c | sort -rn

To determine the unique destination ports from each source host:
grep '^04\/2[0-6]-[0-9]\+:[0-9]\+:[0-9]\+.[0-9]\+ ' oos_report.all.clean | sed 's/ \-> /:/g'

| sed 's/\(:[0-9]\+.[0-9]*\) /\1:/g' | awk -F: '{ print $6":"$7":"$4":"$5}' | grep "^$i"
| awk -F: '{ print $2 }' | sort | uniq -c | sort -rn

7.1.20 Table 45 - Top 10 OOS Internal Talkers
The frequency of internal IP address as sources of alerts was determined by:

grep '^04\/2[0-6]-[0-9]\+:[0-9]\+:[0-9]\+.[0-9]\+ ' oos_report.all.clean | sed 's/ \-> /:/g'
| sed 's/\(:[0-9]\+.[0-9]*\) /\1:/g' | awk -F: '{ print $4 }' | sort | uniq -c | sort -rn
| grep '130\.85\.[0-9]\+\.[0-9]\+'

The process of populating this table was similar to that of Table 43.

7.1.21 Table 46 - Top 10 OOS External Targets
The frequency of external IP address as targets was determined by:

grep '^04\/2[0-6]-[0-9]\+:[0-9]\+:[0-9]\+.[0-9]\+ ' oos_report.all.clean | sed 's/ \-> /:/g'
| sed 's/\(:[0-9]\+.[0-9]*\) /\1:/g' | awk -F: '{ print $6 }' | sort | uniq -c | sort -rn
| grep -v '130\.85\.[0-9]\+\.[0-9]\+'

The process of populating this table was similar to that of Table 44

7.2 Appendix B – References
Almost all the references are inline with the text; here are some other references used
during the compilation of this paper:

Mastering Regular Expressions (2nd Edition)
Jeffrey E. F. Friedl (Published by O’Reilly)
Building Internet Firewalls (2nd Edition)
Elizabeth D. Zwicky, Simon Cooper & D. Brent Chapman

