
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Intrusion Analysis in Depth

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version: 4.0

Josh Berry

August 18th, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract
The purpose of this paper is to demonstrate competency in the field of intrusion
analysis. This is accomplished in three stages:

 Summarize the analyzed intrusion attempts and possible defensive
recommendations in a few paragraphs

 Select three events to examine in depth from one day’s worth of
data. Present findings in the GIAC convention

 Provide an overview of the process used by the analyst to produce
the results within the report.

The analysis was performed on events that stood out either because of their
uniqueness or because of their potential danger. All examined events have
recommendations associated with them on how to mitigate the problem in the
future.

Part 1: Executive Summary

Intrusion analysis of the data provided for October 18th, 2002 has been
completed per your request. Thorough analysis was performed for the entire
day’s worth of data and three particular types of events have been examined in
depth:

 Anomalous fragmented traffic has penetrated the outer router.
This traffic is a variation of the Code Red worm meant to slip by
IDS systems undetected. See Part 2, Detect 1.

 An external system is probing your network for the Q Backdoor.
This traffic originates from a limited broadcast address
(255.255.255.255). See Part 2, Detect 2.

 An external system is probing several of your machines for proxy
services on ports 1080, 3128, and 8080. See Part 2, Detect 3.

Most of the traffic presented in the three outlined intrusion detects can be
mitigated with the defensive recommendations provided below. Many attacks
were directed at the network within this time frame, but no malicious responses
were seen coming from within the internal network. This suggests that the
exploit attempts were unsuccessful. Other reconnaissance attempts may have
been successful in retrieving pre-attack information. Much of the malicious traffic
seen directed at your network can be contained or kept to a minimum with some
simple recommendations:

 Apply egress filtering to limit outbound connections
 Apply ingress filtering at the router for high-impact ports
 Patch systems regularly to avoid vulnerabilities

Although the network did not appear to be compromised during this time
period, immediate attention should be given to the defensive recommendations
presented in the report to eliminate several avenues of attack should a
vulnerability ever occur within the network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 2: Network Detects

1) Analyzed Scenario
This is the log file used for analysis: http://isc.ssans.org/logs/Raw/2002.10.18
Although the log name date indicates that it was taken on October 18th of 2002,
running tcpdump–nnqr 2002.10.18–tttt | cut–d ‘ ‘ –f 1-2 shows:

-nn–disable name resolution for ports and IP addresses
-q–quiet output (limit protocol information that is displayed)
-r–read 2002.10.18 tcpdump file
-tttt–print timestamp

Start Time = 11/18/2002 00:00:41.296507
Stop Time = 11/18/2002 13:45:48.656507

These traces were taken with snort running in binary logging mode, only logging
packets that matched snort rules as stated in the README file at:
http://isc.sans.org/logs/README

2) Network Relationships

2.1 Network Topology
In order to properly estimate the network topology I first needed to know the
source and destination MAC’s that were captured in thesnort binary. To do this I
used many of the commands in Andre Cormier’s1 practical:
tcpdump–neqr 2002.10.18 | cut–d ‘ ‘ –f 2 | sort | uniq

00:00:0c:04:b2:33
00:03:e3:d9:26:c0

And then captured the destination MAC’s with this:
tcpdump–neqr 2002.20.18 | cut–d ‘ ‘ –f 4 | sort | uniq

00:00:0c:04:b2:33
00:03:e3:d9:26:c0

These two MAC addresses were the only sources and destinations for traffic
logged by snort. It appears as though the snort sensor is placed in between two
network devices. This was confirmed by looking up the MAC’s on
http://www.ieee.org/web/search2, which lists the MAC’s as assigned to Cisco
Systems, Inc.

Cisco Device -------|------- Cisco Device
|

Snort Sensor

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

I now need to determine the internal network range. To find the internal network
range I produced a list of source IP addresses for the source MAC of
00:00:0c:04:b2:33(these are slightly different than Andre’s scripts; it appears as
though the format that is printed has changed in newer versions):
tcpdump–neqr 2002.10.18‘ether src 00:00:0c:04:b2:33’ | cut–d ‘ ‘ –f 9 |

cut–d .–f 1-4 | sort | uniq

170.129.50.120
170.129.50.3

Then destination IP addresses for the source MAC of 00:00:0c:04:b2:33:
tcpdump–neqr 2002.10.18 ‘ether src 00:00:0c:04:b2:33| cut–d ‘ ‘ –f 11 |

cut–d .–f 1-4 | sort | uniq

144.9.72.134
164.109.22.53
194.67.23.251
194.67.35.196
195.161.116.65
---- [snip] ----

Source IP addresses for the source MAC of 00:03:e3:d9:26:c0:
tcpdump–neqr 2002.10.18 ‘ether src 00:03:e3:d9:26:c0’ | cut –d ‘ ‘ –f 9 |

cut–d .–f 1-4 | sort | uniq

128.167.120.13
153.33.24.3
161.69.201.238
---- [snip] ----
170.129.15.162
170.129.21.101
---- [snip] ----

Destination IP addresses for the source MAC of 00:03:e3:d9:26:c0:
tcpdump–neqr 2002.10.18 ‘ether src 00:03:e3:d9:26:c0’ | cut –d ‘ ‘ –f 11 |

cut–d .–f 1-4 | sort | uniq

170.129.100.243
170.129.108.132
170.129.113.233
170.129.113.81
170.129.114.248
---- [snip] ----

After analyzing the data with these commands it appears that the network is
designed like this:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

External ---- Cisco Device ----------------- Cisco Device ---- Internal
00:03:e3:d9:26:c0 | 00:00:0c:04:b2:33 170.129.0.0/16

|
Snort Sensor

The only peculiarity in this analysis is that some of the 170.129.0.0/16 addresses
appear as the source for a source MAC of 00:03:e3:d9:26:c0. Looking at the
traffic with:
tcpdump–neqr 2002.10.18 ‘ether src 00:03:e3:d9:26:c0 &&

src net 172.129.0.0/16’

20:00:02.646507 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4
(0x0800), length 60: IP (tos 0x0, ttl 46, id 0, offset 0, flags [none], length: 28)
170.129.15.162 > 170.129.15.162: igmp query v2 [gaddr 240.0.3.34]

20:00:02.666507 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4
(0x0800), length 60: IP (tos 0x0, ttl 46, id 0, offset 0, flags [none], length: 28)
170.129.21.101 > 170.129.21.101: igmp query v2 [gaddr 240.0.1.21]

20:00:02.666507 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4
(0x0800), length 60: IP (tos 0x0, ttl 46, id 0, offset 0, flags [none], length: 28)
170.129.21.133 > 170.129.21.133: igmp query v2 [gaddr 240.0.1.53]

---- [snip] ----

These are all IGMP version 2 messages. Tcpdump reports these messages as
IGMP queries, however, the group address is set, which is only supposed to
occur in IGMP report messages. Another anomaly is the fact that the source and
destination IP address are the same. If this were a query, the destination IP
address should be set to 224.0.0.1 with a source IP address of the router that
sent the query. If this were a report, then the destination address should be the
group address with a source IP address of the host3. This traffic is either a
misconfiguration in the router, a broken client, or spoofed traffic. I believe that
this is spoofed traffic because the source MAC is from the external router and the
destination address is for the local network, which means that the packet is
routable.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.2 Link Graph

3) Identified Detects
The following statistics show every event that Snort alerted on as well as how
many times the event was found and was produced with the following command:
egrep ‘\[**\] \[‘ 2002.10.18.alerts | sort | uniq -c

Count GID/SID/REV # Alert Name
2 [1:1054:6] WEB-MISC weblogic/tomcat .jsp view source attempt
2 [1:1171:7] WEB-MISC whisker HEAD with large datagram
2 [1:1201:7] ATTACK-RESPONSES 403 Forbidden
2 [1:1242:6] WEB-IIS ISAPI .ida access
2 [1:1243:8] WEB-IIS ISAPI .ida attempt
3 [1:1288:5] WEB-FRONTPAGE /_vti_bin/ access

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

27 [1:1322:6] BAD-TRAFFIC bad frag bits
2 [1:1610:5] WEB-CGI formmail arbitrary command execution

attempt
21 [1:184:4] BACKDOOR Q access
3 [1:2381:2] WEB-MISC schema overflow attempt
8 [1:523:4] BAD-TRAFFIC ip reserved bit set
16 [1:524:7] BAD-TRAFFIC tcp port 0 traffic
12 [1:527:4] BAD-TRAFFIC same SRC/DST
169 [1:540:9] CHAT MSN message
16 [1:579:7] RPC portmap mountd request UDP
15 [1:615:5] SCAN SOCKS Proxy attempt
16 [1:618:5] SCAN Squid Proxy attempt
16 [1:620:6] SCAN Proxy Port 8080 attempt
51 [1:628:3] SCAN nmap TCP
2 [1:884:8] WEB-CGI formmail access
1 [1:937:6] WEB-FRONTPAGE _vti_rpc access
1 [1:962:6] WEB-FRONTPAGE shtml.exe access
4 [1:972:7] WEB-IIS %2E-asp access
1 [1:990:5] WEB-IIS _vti_inf access

3.1) Detect 1
3.1.1) Description of Detect 1
The Bad-Traffic Frag Bits signature is used to identify packets that have the Don’t
Fragment and More Fragments bit set at the same time. This condition is an
anomaly because the bits contradict each other; the packet can’t be set to not
fragment and also be a fragment itself. Here are some snips of the traffic:

Command used for generating this output:
tcpdump–vvvttttnnexXSs 65535–r 2002.10.18 ‘ip[6] & 32 != 0’

vvv–very verbose output
e–display link-layer information
x–display hex information
X–display ASCII information
S–display absolute TCP Sequence number
s 65535–set the snaplen to 65535
‘ip[6] & 32 != 0’ –only look at fragmented traffic

11/18/2002 09:07:20.516507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 1482:
81.98.99.83.3746 > 170.129.210.115.80: P [bad tcp cksum 3fe3!]
2488519964:2488521392(1428)
ack 3972886712 win 17520 (frag 14181:1448@0+) (ttl 111, len 1468)

4500 05bc 3765 6000 6f06 7d2c 5162 6353 E...7e`.o.},QbcS
aa81 d273 0ea2 0050 9453 cd1c eccd 70b8 ...s...P.S....p.
5018 4470 cb69 0000 4745 5420 2f64 6566 P.Dp.i..GET./def
6175 6c74 2e69 6461 3f4e 4e4e 4e4e 4e4e ault.ida?NNNNNNN

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
4e4e 4e4e 4e4e 4e4e 4e25 7539 3039 3025 NNNNNNNNN%u9090%
7536 3835 3825 7563 6264 3325 7537 3830 u6858%ucbd3%u780
3125 7539 3039 3025 7536 3835 3825 7563 1%u9090%u6858%uc
6264 3325 7537 3830 3125 7539 3039 3025 bd3%u7801%u9090%
7536 3835 3825 7563 6264 3325 7537 3830 u6858%ucbd3%u780
3125 7539 3039 3025 7539 3039 3025 7538 1%u9090%u9090%u8
3139 3025 7530 3063 3325 7530 3030 3325 190%u00c3%u0003%
7538 6230 3025 7535 3331 6225 7535 3366 u8b00%u531b%u53f
6625 7530 3037 3825 7530 3030 3025 7530 f%u0078%u0000%u0
303d 6120 2048 5454 502f 312e 300d 0a43 0=a..HTTP/1.0..C
6f6e 7465 6e74 2d74 7970 653a 2074 6578 ontent-type:.tex
742f 786d 6c0a 484f 5354 3a77 7777 2e77 t/xml.HOST:www.w
6f72 6d2e 636f 6d0a 2041 6363 6570 743a orm.com..Accept:
---- [snip] ----

and:
11/18/2002 09:07:23.086507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 1482:
81.98.99.83.3746 > 170.129.210.115.80: . [bad tcp cksum 474d!]
2488521424:2488522852(1428)
ack 3972886712 win 17520 (frag 14297:1448@0+) (ttl 111, len 1468)

4500 05bc 37d9 6000 6f06 7cb8 5162 6353 E...7.`.o.|.QbcS
aa81 d273 0ea2 0050 9453 d2d0 eccd 70b8 ...s...P.S....p.
5010 4470 4032 0000 feff ff69 d28d 66f0 P.Dp@2.....i..f.
5089 9574 feff ff8b 4508 8b8d 50fe ffff P..t....E...P...
8948 108b f48d 952c feff ff52 6a00 8d85 .H.....,...Rj...
4cfe ffff 508d 8dd0 feff ff51 6a00 6a00 L...P......Qj.j.
ff95 98fe ffff 3bf4 9043 4b43 4be9 9f01;..CKCK...
---- [snip] ----

Looking further into this packet we see the string GET /default.ida?NNNNNN….
This string is part of the CodeRed exploit. Snort alerted on it for another IP
address with this signature:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-IIS ISAPI .ida attempt"; flow:to_server,established; uricontent:".ida?";
nocase; reference:arachnids,552; classtype:web-application-attack;
reference:bugtraq,1065; reference:cve,CAN-2000-0071; sid:1243; rev:8;)

and this one:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-IIS ISAPI .ida access"; uricontent:".ida"; nocase;
flow:to_server,established; reference:arachnids,552; classtype:web-application-
activity; reference:cve,CAN-2000-0071; reference:bugtraq,1065; sid:1242;
rev:6;)

The fragment anomaly of Don’t Fragment and More Fragments bits being set is
either caused by a network configuration problem or more probably the worm
does this in order to potentially bypass access controls for systems that do not
track the state of a connection or to evade intrusion detection systems (it
successfully eluding being identified as a CodeRed exploit)4. The CodeRed
worm in the fragmented packet attempts a buffer overflow of Microsoft’s IIS
server, infecting the server and propagating itself further. The packet has the
PUSH flag set to push the data to the application because more fragments are
following. Two more packets are sent from the attacker, one 3 seconds later to
the same target and then another one 36 minutes and ten seconds later to
another target (170.129.217.170) with this data in common (ASCII periods have
been removed):

PtEPH,RjLPQjj;CKCK;CKCKLLLLtghm;CKCKL4LLHhPPPh9PsP:LMTHuPLAHRj
---- [snip] ----

It appears as though the worm randomly sent the latter part of its payload to
170.129.217.170 or the sensor just missed the first packet, the latter being more
probable. Also, each of these fragment alerts all have different fragment ID’s
verified with this:
tcpdump -q -r 2002.10.18 'ip[6] & 32 != 0' | sed -e 's/.*frag //' -e 's/:.*//' | sort | uniq
-c

and they have all been crafted to appear to be the beginning of the fragment with
the 0+ offset with the length of the datagram being 1448 for a total length of
1468, including the header information. Some of the connections have the same
SYN (sequence) numbers which could be a sign of packet crafting but is
probably just a retransmission.

The description of the vulnerability that CodeRed takes advantage of can be
found here:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-05005

or on Microsoft’s website at:
http://www.microsoft.com/technet/security/bulletin/MS01-033.mspx6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.1.2) Reason the Detect was Selected
This detect was selected because it was a potentially critical event, and a crafted
variation of the previous CodeRed worm that bypassed some access controls
and slipped by some IDS systems due to its fragmentation anomaly. This
particular instance was not alerted on with the CodeRed rules by Snort and in
that respect was successful in slipping by. The worm can be very dangerous,
especially when combined with evasion capabilities and was therefore selected
as the detect.

3.1.3) Detect Generated By
The platform used for the detect is Slackware 9.0.0 running Snort 2.1.3 (Build
27). The tcpdump version is 3.7.2 and libpcap version 0.7.2. The snort rule set
is using the latest set of rules as of 07/30/2004, with every rule turned enabled.
The command used to generate the alert file was:
snort–c /etc/snort/snort.conf–r 2002.10.18.

-c to read the configuration file
-r to read the tcpdump file

The snort.conf file is configured to perform full alert output, logging, decoding of
the data link layer, verbose raw packet data dumps, and disabling of checksum
calculations with:
output alert_full: /var/log/snort/2002.10.18.alerts
config logdir: /var/log/snort
config decode_data_link
config dump_payload_verbose
config checksum_mode: none

Multiple alerts can be generated from one packet using this configuration option:
config event_queue: max_queue 10 log 3 order_events priority

The stream preprocessors have been disabled due to the fact that the packet
dumps only have malicious packets and not the full 3-way handshake for each
connection/session.

The rule that triggered the alert was:
alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-TRAFFIC bad
frag bits"; fragbits:MD; sid:1322; classtype:misc-activity; rev:6;)

This rule looks for anomalous packets that have both the More Fragments and
Don’t Fragment bits set, which is an illegal condition. Alert generated by snort:

[**] [1:1322:6] BAD-TRAFFIC bad frag bits [**]
[Classification: Misc activity] [Priority: 3]
11/18-04:43:33.186507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x5CA

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

81.98.99.83 -> 170.129.217.170 TCP TTL:111 TOS:0x0 ID:35584 IpLen:20
DgmLen:1468 DF MF
Frag Offset: 0x0000 Frag Size: 0x05A8

3.1.4) Probability the Source Address was Spoofed
There is always a probability of spoofing, however, these are TCP connections
and as such require the 3-way handshake completion before successful data
transfer, making spoofing much more difficult. Spoofing an address is usually
only useful if the attacker does not need a response back from the target such as
in a DoS type attack. Further examination of the alert shows that this is actually
a CodeRed attack(GET /default.ida?NNNNNNN…) attempting to disguise itself
or evade IDS systems in fragmented packets. CodeRed is a worm that takes
advantage of an IIS 4.0 and 5.0 and did not spoof its IP, address because it
needs to complete the 3-way handshake in order to successfully exploit the
system and replicate itself.

3.1.5) Attack Mechanism
CodeRed affects Microsoft Index Server 2.0 and the Windows 2000 Indexing
service on computers with Microsoft NT 4.0 or Windows 2000 that are also
running IIS 4.0 or IIS 5.0 web servers. The worm uses a known vulnerability in
the idq.dll file and is exploitable whether the Indexing service is running or not as
long as a mapping in IIS exists for the .ida and .idq files.

CodeRed performs a buffer overflow attack on IIS, exploiting the flaw in the
idq.dll file, allowing it to replicate its code to the infected system in memory.
Once the worm replicates itself it checks for the file c:\Notworm. If the file exists
then CodeRed goes into an infinite sleep. If c:\Notworm does not exist and the
day of the month is before the 20th the worm attempts to infect other randomly
selected targets and defaces the website. In between the 20th and 28th of the
month the worm attempted to DoS www.whitehouse.gov. After July 28th, 2001
the worm ceases to propagate and goes into an infinite sleep state7.

These CodeRed attacks appear to be unsuccessful because no CodeRed or
anomalous fragmented packets are seen coming from the attacked systems as
displayed by running tcpdump -nnS -r 2002.10.18.dmp 'ip[6] & 32 != 0' | cut -d ' ' -
f 2. Had the CodeRed infection been successful then these systems would have
begun attempting to locate and exploit other vulnerable machines.

3.1.6) Correlations
This specific fragmentation attack from CodeRed has been documented here:
http://seclists.org/incidents/2001/Jul/0069.html4

The CVE candidate for the vulnerability is listed here:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-05005

Microsoft lists information about the vulnerability here:
http://www.microsoft.com/technet/security/bulletin/MS01-033.mspx6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A full write-up of the CodeRed worm is available on Symantec’s site at:
http://securityresponse.symantec.com/avcenter/venc/data/codered.worm.html7

The IP address was not found to have any records of being attacked or attacking
other systems on dshield.org.

3.1.7) Evidence of Active Targeting
CodeRed distributes itself by scanning and exploiting systems randomly. The
attacked systems were more than likely randomly selected and thus it is not
active targeting.

3.1.8) Severity
Severity = (Criticality + Lethality)–(System Countermeasures + Network
Countermeasures). Each value can range between 1 and 5, giving a potential
score of +8 or -8.

Criticality = 4. This appears to be a publicly accessible web server and is
therefore probably important to the owner of the system.

Lethality = 5. CodeRed causes severe network congestion and usually slows
down the infected system to a barely usable level. Variations of the worm (this
one being one of those) were suspected of sending potentially confidential
information back to www.worm.com.

System Countermeasures = 5. The web server did not begin scanning other
systems and thus was probably not vulnerable to the attack either because the
server was not running one of the vulnerable versions of IIS or was patched
against this vulnerability.

Network Countermeasures = 2. The packets were logged by the sensor,
however, the packets were allowed through the network even though they
contained an illegal combination of fragment flags.

Severity = (4 +5)–(5 + 2) = 2.

3.2) Detect 2
3.2.1) Description of Detect 2
The BACKDOOR Q access signature is used to identify TCP packets with a
source IP address of 255.255.255.0/24, the ACK flag set, and greater than 1 byte
in the payload. IP address 255.255.255.255 is a limited broadcast address and
should never be the source of a packet8. This is a backdoor application for
Unix/Linux systems. Some snips of the traffic:

Command used for generating this output:
tcpdump–vvvttttnnexXSs 65535–r 2002.10.18 ‘ether src 255.255.255.255’

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11/18/2002 02:47:15.126507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60:
255.255.255.255.31337 > 170.129.66.181.515: R [tcp sum ok] 0:3(3) ack 0 win
0 [RST cko] (ttl 14, id 0, len 43)
0x0000 4500 002b 0000 0000 0e06 bf97 ffff ffff E..+............
0x0010 aa81 42b5 7a69 0203 0000 0000 0000 0000 ..B.zi..........
0x0020 5014 0000 73bf 0000 636b 6f00 0000 P...s...cko...

11/18/2002 03:05:32.456507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60:
255.255.255.255.31337 > 170.129.4.175.515: R [tcp sum ok] 0:3(3) ack 0 win 0
[RST cko] (ttl 14, id 0, len 43)

0x0000 4500 002b 0000 0000 0e06 fd9d ffff ffff E..+............
0x0010 aa81 04af 7a69 0203 0000 0000 0000 0000zi..........
0x0020 5014 0000 b1c5 0000 636b 6f00 0000 P.......cko...
----- snip -----

This is a broadcast IP address being transmitted over TCP which is invalid
because TCP is a connection oriented protocol9. Another odd fact about the
packet is that the source port is 31337, which is often used by hackers, hacking
tools, and malicious programs because it stands for the slang term eleet. There
are several destination addresses for the 255.255.255.255 traffic, all of which
have the RST and ACK flags set. The RST flag being set is interesting because
there were no packets originating from the targeted addresses going to
255.255.255.255.

Every packet sent has an IP ID of 0, and a TTL value of 14. This low TTL value
along with consecutive IP ID’s of 0 are more evidence of packet crafting.

3.2.2) Reason the Detect was Selected
This detect was selected because the systems targeted by 255.255.255.255
should be closely monitored. If this truly is the Q Backdoor it encrypts its content
and therefore makes it difficult to determine what the backdoor is attempting to
do. Also, the commands are sent in the payload of the packet, but these packets
only contain 3 bytes of data. Since it is difficult to determine what this traffic is for
and because the packet might be encrypted which further obfuscates the
intention, these systems should be watched closely.

3.2.3) Detect Generated by
The platform used for the detect is Slackware 9.0.0 running Snort 2.1.3 (Build
27). The tcpdump version is 3.7.2 and libpcap version 0.7.2. The snort rule set
is using the latest set of rules as of 07/30/2004, with every rule turned enabled.

The snort configuration is the same as it was for the first detect.

The rule that triggered the alert was:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q
access"; flags:A+; dsize: >1; stateless; reference:arachnids,203; sid:184;
classtype:misc-activity; rev:4;)

This rule looks for TCP traffic with any IP in the class-C address range of
255.255.255.0/24 with the ACK flag set and more than 1 byte in the payload.
This is one of the snort alerts:

[**] BACKDOOR Q access [**]
11/18-08:35:06.196507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
255.255.255.255:31337 -> 170.129.26.65:515 TCP TTL:14 TOS:0x0 ID:0
IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 2B 00 00 00 00 0E 06 E8 0B FF FF FF FF AA 81 .+..............
0x0020: 1A 41 7A 69 02 03 00 00 00 00 00 00 00 00 50 14 .Azi..........P.
0x0030: 00 00 9C 33 00 00 63 6B 6F 00 00 00 ...3..cko...

3.2.4) Probability the Source Address was Spoofed
There is a high probability that the source address is spoofed. 255.255.255.255
is a limited broadcast that should never be the source of a packet and no
machine should be set with this as the IP address. The obvious amount of
packet crafting with the low TTL values, IP ID’s of 0 and source port of 31337
show evidence of packet crafting and the source is probably crafted as well.

3.2.5) Attack Mechanism
This traffic matches the signature for the Q Backdoor in snort and might be a
variation of the backdoor. The original backdoor did not set the RST flag so this
might have been done to bypass poor ACL’s. The q backdoor qs client is used to
send one way IP packets to target machines running the qd daemon. These
packets can spawn remote shell processes to which a user can connect with the
Q client. The qs client can also send single commands or set up redirection
servers on the target. The client also allows the user to spoof the source IP
address. This particular attack must be another variation because the IP ID’s
appear to be crafted as well (the #define Q_ID portion of the code was probably
set to 0 at compile time). The Q client is used to connect to encrypted or
unencrypted remote shell daemons that were activated using the qs client.
Information about how the backdoor is used and operated was obtained through
Les Gordon’s practical:
http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc10.

3.2.6) Correlations
This particular traffic has been associated with IRC traffic in the past:
http://archives.neohapsis.com/archives/incidents/2001-05/0038.html11

http://lists.jammed.com/incidents/2001/05/0039.html12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This traffic was also analyzed by Tu Niem for his practical assignment:
http://cert.uni-stuttgart.de/archive/intrusions/2003/02/msg00008.html13

and by Les Gordon in depth at:
http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc14

This backdoor is defined in the arachNids database at:
http://www.whitehats.com/info/IDS20315

3.2.7) Evidence of Active Targeting
This traffic raises flags on numerous levels. The source port of 31337 is a red
flag when analyzing traffic, consistent IP ID’s of 0 shows that the packets are
being crafted, and RST packets with no stimuli raises the visibility of these
attacks or probes. This is probably not active targeting because it is so visible
and also the fact that each machine is only targeted once. If the backdoor was
installed on these systems there would probably be more of this traffic.

3.2.8) Severity
Severity = (Criticality + Lethality)–(System Countermeasures + Network
Countermeasures). Each value can range between 1 and 5, giving a potential
score of +8 or -8.

Criticality = 2. The systems are probably being scanned and not actively
targeted making the target criticality low.

Lethality = 5. The Q backdoor allows the attacker to run commands on the
system and gain a remote shell which can be used to attack other systems, steal
information from the infected system, or disrupt the attacked system.

System Countermeasures = 5. The targeted systems did not appear to respond
to the traffic or receive more traffic from 255.255.255.255 and were probably not
infected with the backdoor program.

Network Countermeasures = 2. The packets were logged by the sensor,
however, the packets were allowed through the network even though they are
TCP packets from a broadcast address.

Severity = (2 + 5)–(5 + 2) = 0.

3.3) Detect 3
3.3.1) Description of Detect 3
The SCAN SOCKS Proxy attempt signature is used to detect potential probes to
port 1080 with the SYN flags set. The socks protocol is referenced at
http://www.faqs.org/rfcs/rfc1928.html as RFC 192816. This protocol is designed
to be an application layer gateway for TCP based applications and is often used
as an HTTP gateway/relay. Some snips of the traffic:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Command used for generating this output:
tcpdump–vvvttttnnexXSs 65535–r 2002.10.18 ‘ether src 255.255.255.255’

11/18/2002 00:43:59.236507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60:
202.108.254.204.53469 > 170.129.149.62.1080: S [tcp sum
ok] 1844151687:1844151687(0) win 1024 (ttl 46, id 52921, len 40)
0x0000 4500 0028 ceb9 0000 2e06 b51d ca6c fecc E..(.........l..
0x0010 aa81 953e d0dd 0438 6deb 8587 6deb 8587 ...>...8m...m...
0x0020 5002 0400 e6ed 0000 0000 0000 0000 P.............

11/18/2002 01:36:23.816507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60:
202.108.254.204.2897 > 170.129.215.53.1080: S [tcp sum o
k] 1196016012:1196016012(0) win 1024 (ttl 46, id 29679, len 40)
0x0000 4500 0028 73ef 0000 2e06 cdf0 ca6c fecc E..(s........l..
0x0010 aa81 d735 0b51 0438 4749 c18c 4749 c18c ...5.Q.8GI..GI..
0x0020 5002 0400 3fbd 0000 0000 0000 0000 P...?.........
----- snip -----

This traffic does not indicate any type of packet crafting, the IP ID’s, SYN ISN
numbers, and source ports are all random numbers. This appears to be a plain
vanilla scan for proxy services on three ports (3128/Squid, 1080/Socks,
8080/Microsoft & Other Proxies). The scans are timed 10 to 11 minutes between
the first port (8080) and the second port (3128), and then 20 to 21 minutes
between the second port (3128) and the third port (1080), and then 20 to 21
minutes before another host is scanned. This could either be a slow scan or the
attacker is scanning a large amount of hosts (possibly the 170.129.0.0/16 Class
B network) and snort is only alerting on the hosts that are active because
connections to non-active hosts are not passed by the router.

3.3.2) Reason the Detect was Selected
This detect was selected because it was a broad port scan looking for multiple
proxy ports across an entire network. This is a highly visible reconnaissance
attempt. This is the only truly broad scan in the data set.

3.3.3) Detect Generated By
The platform used for the detect is Slackware 9.0.0 running Snort 2.1.3 (Build
27). The tcpdump version is 3.7.2 and libpcap version 0.7.2. The snort rule set
is using the latest set of rules as of 07/30/2004, with every rule turned enabled.

The snort configuration is the same as it was for the first detect.

The rule that triggered the alert was:
alert tcp $EXTERNAL_NET any -> $HOME_NET 1080 (msg:"SCAN SOCKS
Proxy attempt"; stateless; flags:S; reference:url,help.undernet.org/proxyscan/;
classtype:attempted-recon; sid:615; rev:5;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This rule looks for traffic with a destination port of 1080 and the SYN flag set.
This is one of the snort alerts:

[**] SCAN SOCKS Proxy attempt [**]
11/17-21:28:48.676507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
202.108.254.204:14924 -> 170.129.252.40:1080 TCP TTL:46 TOS:0x0 ID:25248
IpLen:20 DgmLen:40
******S* Seq: 0x277434C2 Ack: 0x277434C2 Win: 0x400 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 28 62 A0 00 00 2E 06 BA 4C CA 6C FE CC AA 81 .(b......L.l....
0x0020: FC 28 3A 4C 04 38 27 74 34 C2 27 74 34 C2 50 02 .(:L.8't4.'t4.P.
0x0030: 04 00 45 0E 00 00 00 00 00 00 00 00 ..E.........

3.3.4) Probability the Source Address was Spoofed
The source IP address (202.108.254.204) is scanning for 3 different proxy
addresses (ports 3128, 1080, 8080). The time between scanning port 8080 and
3128 is averaging around 10 to 11 minutes, the time between scanning port 3128
and 1080 is around 20 to 21 minutes, and the time between scanning 1080 and
scanning the next host is around 20 to 21 minutes. The source port of the host
varies and there are no other systems performing proxy scans. This is the only
source scanning for open proxies at the time, the timing is fairly regular, and the
attacker needs a response to do anything useful which indicates that the source
is not spoofed.

3.3.5) Attack Mechanism
This attack is expecting a response to the TCP probes for ports 1080, 8080, and
3128. The attacker is attempting to find machines that respond with a SYN/ACK
indicating that the port is open. If the proxy port happens to be open on one of
the scanned systems then further malicious activity might be possible.
Improperly configured proxies can be used to bypass ACL’s
(http://www.securityfocus.com/news/29617) giving the attacker access to
resources behind the proxy. Other possibilities include relaying spam, relaying
attacks against other networks, and anonymously surfing the web through the
proxy.

3.3.6) Correlations
This proxy scan was analyzed by GCIA candidates at:
http://cert.uni-stuttgart.de/archive/intrusions/2003/06/msg00267.html18

http://lists.sans.org/pipermail/intrusions/2004-June/008067.php19

The SANS Internet Storm Center shows that these ports are still highly
targeted20:
http://isc.sans.org/port_details.php?port=1080
http://isc.sans.org/port_details.php?port=3128
http://isc.sans.org/port_details.php?port=8008

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The snort web page contains a description of the alert21:
http://www.snort.org/snort-db/sid.html?sid=615
http://www.snort.org/snort-db/sid.html?sid=618
http://www.snort.org/snort-db/sid.html?sid=620

There are many CVE entries for vulnerable proxy servers22:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0326
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0371
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0239
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0547
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0471

SecurityFocus had an article on Adrian Lamo and hacking proxies:
http://www.securityfocus.com/news/296 (Reference 17)

3.3.7) Evidence of Active Targeting
This scan is targeting multiple systems on multiple known proxy ports at very
slow speeds. The slow speed could be due to a low and slow scan, but could
also be due to the attacker scanning the full class B of 170.129.0.0/16. The
attacker might be scanning the class B network of 170.129.0.0/16 and the active
hosts behind the router are generating alerts from snort. At best this is active
network targeting.

3.3.8) Severity
Severity = (Criticality + Lethality)–(System Countermeasures + Network
Countermeasures). Each value can range between 1 and 5, giving a potential
score of +8 or -8.

Criticality = 2. The systems are being scanned randomly and no other proxy
traffic is seen going into the network outside of the scans which indicates that
proxy services are not running on these machines.

Lethality = 3. Improperly configured proxy servers can allow attackers to bypass
ACL’s, to browse websites anonymously, or to relay malicious traffic through,
such as spam.

System Countermeasures = 5. The only proxy traffic seen going to these
systems are the scans. If the systems were running proxy services there would
probably be other proxy traffic and alerts generated by snort.

Network Countermeasures = 2. The packets were logged by the sensor,
however, the packets were allowed through and should be blocked either by
router ACL’s or by a firewall.

Severity = (2 + 3)–(5 + 2) = 2.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4) Network Statistics

4.1 Top Talkers
The following source IP addresses represented the sources of the most
malicious content.

1) 170.129.50.120 was talking the most, much of this being MSN chat traffic.
Snort alerted on the MSN traffic, but looking at more traffic from 170.129.50.120
shows web connections outbound with large chunk of garbled data that might be
encrypted. All of this traffic is from high source ports > 60000 and is going
outbound to multiple systems on port 80. The other IP addresses were chosen
because they represented the most snort alerts.

2) 202.108.254.204 scanned a total of 16 IP addresses for proxy services on
ports 8080, 3128, and 1080. Snort alerted on these proxy scans.

3) 255.255.255.255 was chosen as a top talker for several reasons. This
address is a limited broadcast address transmitting TCP packets (See reference
number 8). TCP is a connection oriented protocol and therefore cannot
broadcast packets23. Also, this address should not be the source of a packet.
Snort alerts on these packets as being BACKDOOR Q access. This type of
traffic was discussed in several locations
[http://www.securityfocus.com/archive/19/18795824].

4) 153.33.24.3 triggered RPC Portmap mountd requests. These packets made it
past the first layer in the network and could potentially return very useful
information to attackers. RPC services should never be accessible from the
internet.

5) 211.47.255.23 triggered the BAD-TRAFFIC tcp source port 0 alert from snort.
Port 0 is an invalid port number. Looking at the packets sent by this IP address,
it appears to send an initial SYN request, followed by 3 more requests with the
same ISN, four times within a 2 minute time frame. The following requests are
probably retransmissions and this is probably some form of reconnaissance
probe.

Count Source IP Address
1364 170.129.50.120
47 202.108.254.204
21 255.255.255.255
16 153.33.24.3
16 211.47.255.23

4.2 Top Targeted Ports
1) 80–Port 80 traffic generated 76 snort alerts. These alerts ranged from
CodeRed based alerts, to Frontpage alerts, to anomalous fragmented packet

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

alerts. Port 80 is being actively targeted because it is often accessible from the
internet and is usually the port used to run web servers which have been affected
by numerous vulnerabilities.

2) 0–Port 0 is an invalid port number. The associated connection attempts are
probably reconnaissance probes.

3) 515–This port is targeted by 255.255.255.255 with reset connections. Port
515 is the print spooler port and should not be allowed in from outside networks.

4) 111–This port is usually used by the Portmap service to map RPC services to
port numbers. This port should never be accessible from outside networks as it
can provide a wealth of valuable reconnaissance information and has been
associated with dangerous vulnerabilities in the past25.

5) 3128–This is one of 3 proxy ports that were probed from one IP address.
The attacker was probably trying to find an open proxy to allow anonymous web
browsing or to relay attacks through.

Count Destination Port
1280 80
21 515
16 0
16 111
16 3128

4.3 Three Most Suspicious Source Addresses
1) 255.255.255.255 - This address is suspicious because it is a broadcast
address transmitting TCP connections, which is a protocol violation because TCP
is a connection oriented protocol and thus should not broadcast traffic (See
reference 21). All traffic with source 255.255.255.255 has a source port of
31337, a common port used by malicious programs that spells eleet. There is no
registration information for this address because it is a broadcast address.

2) 153.33.24.3–This address is targeting the portmap service on
170.129.113.233. Portmapper maps RPC services to port numbers which can
be further probed for valuable reconnaissance information. This service should
not be accessible from an external address. The probes coming from this
address have a source port of 965, indicating that the user has root level
privileges and that the user is probably running some form of RPC scanner or
exploit that crafts the source port. Registration information for 153.33.24.326:

OrgName: LTX Corp.
OrgID: LTXCOR-1
Address: 3930 N. First St.
City: San Jose

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

StateProv: CA
PostalCode: 95134
Country: US

NetRange: 153.33.0.0 - 153.33.255.255
CIDR: 153.33.0.0/16
NetName: LTX-SAN-JOSE
NetHandle: NET-153-33-0-0-1
Parent: NET-153-0-0-0-0
NetType: Direct Assignment
NameServer: SJ-DNS1.LTX.COM
NameServer: NS-240A.LTX.COM
Comment:
RegDate: 1992-12-07
Updated: 2003-10-03

TechHandle: TK29-ARIN
TechName: Kemmerling, Todd
TechPhone: +1-408-383-2438
TechEmail: kemmer@ltx.com

OrgTechHandle: DEC10-ARIN
OrgTechName: Christman, David E.
OrgTechPhone: +1-408-383-2420
OrgTechEmail: david_christman@ltx.com

3) 211.47.255.23–This IP is listed as a suspicious address because the host is
sending SYN requests to 170.129.235.40 on port 0. Port 0 is an invalid port
number and needs to be blocked by an ACL on the router. Port 0 indicates
packet crafting and is probably used for probing to elicit a response for
determining whether the machine is connected or what operating system is
running on 170.129.235.40. Registration information for 211.47.255.23 (See
reference 26):

OrgName: Asia Pacific Network Information Centre
OrgID: APNIC
Address: PO Box 2131
City: Milton
StateProv: QLD
PostalCode: 4064
Country: AU

ReferralServer: whois://whois.apnic.net

NetRange: 210.0.0.0 - 211.255.255.255
CIDR: 210.0.0.0/7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

NetName: APNIC-CIDR-BLK2
NetHandle: NET-210-0-0-0-1
Parent:
NetType: Allocated to APNIC
NameServer: NS1.APNIC.NET
NameServer: NS3.APNIC.NET
NameServer: NS4.APNIC.NET
NameServer: NS.RIPE.NET
NameServer: TINNIE.ARIN.NET
NameServer: DNS1.TELSTRA.NET
Comment: This IP address range is not registered in the ARIN database.
Comment: For details, refer to the APNIC Whois Database via
Comment: WHOIS.APNIC.NET or http://www.apnic.net/apnic-bin/whois2.pl
Comment: ** IMPORTANT NOTE: APNIC is the Regional Internet Registry
Comment: for the Asia Pacific region. APNIC does not operate networks
Comment: using this IP address range and is not able to investigate
Comment: spam or abuse reports relating to these addresses. For more
Comment: help, refer to http://www.apnic.net/info/faq/abuse
Comment:
RegDate: 1996-07-01
Updated: 2004-03-30

OrgTechHandle: AWC12-ARIN
OrgTechName: APNIC Whois Contact
OrgTechPhone: +61 7 3858 3100
OrgTechEmail: search-apnic-not-arin@apnic.net

5) Correlations from other Students

5.1 Detect 1
This CodeRed exploit has been documented by several GCIA candidates:
http://cert.uni-stuttgart.de/archive/intrusions/2003/12/msg00176.html27

http://cert.uni-stuttgart.de/archive/intrusions/2002/08/msg00106.html28

http://cert.uni-stuttgart.de/archive/intrusions/2002/09/msg00407.html29

5.2 Detect 2
This backdoor was analyzed by Tu Niem for his practical assignment:
http://www.giac.org/practical/GCIA/Tu_Niem_GCIA.pdf (See reference 13)
and by Les Gordon in depth at:
http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc (See reference 14)
The backdoor was also analyzed with firewall traffic by John Jenkinson at:
http://www.giac.org/practical/GCIA/John_Jenkinson_GCIA.doc30

5.3 Detect 3
Bruce Auburn examined Proxy scanning and some specific scan tools at:
http://www.giac.org/practical/GCIA/Bruce_Auburn_GCIA.pdf31

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Stephen Breault examined these alerts at:
http://lists.sans.org/pipermail/intrusions/2004-June/008067.php (See reference
19)
More GCIA candidates analyzed these alerts here:
http://cert.uni-stuttgart.de/archive/intrusions/2003/06/msg00267.html (See
reference 18)

6) Other Insight
There are several types of traffic entering the network that could be blocked by
the external router to provide an extra layer of security. Some of this anomalous
traffic should be dropped by a router configured and functioning properly.
Access lists could block port 0 traffic and port 111 RPC traffic. Also, if configured
correctly, the external router should not forward 255.255.255.255 broadcast
traffic.

7) Defensive Recommendations

7.1 Detect 1
The best way to defend against this attack is to apply the appropriate patch for
IIS, information about where to get the patch can be found here:
http://www.microsoft.com/technet/security/bulletin/MS01-033.mspx (See
reference 6), or a cumulative patch fixing this vulnerability and many others in IIS
at:
http://www.microsoft.com/technet/security/bulletin/MS01-044.mspx32

There should be network based access control devices put in place to keep state
of connections and block connections that violate protocol standards. The idq.dll
file can also be unmapped from IIS to prevent the system from being vulnerable
to future problems with the Index Service.

7.2 Detect 2
Broadcast addresses as sources should be blocked at the perimeter by either the
router or a firewall. Also, a firewall that tracks connection state should be
deployed to prevent packets with RST and no stimuli from entering the network.
Also, the printer port (515) should not be accessible from the outside and can be
blocked by the router or with a firewall.

7.3 Detect 3
Proxy servers are generally used to provide a gateway to the internet for internal
clients, unless used as reverse proxies. Since the proxy server usually is
provided as a layer of protection for web browsers within a network, these ports
can be blocked coming inbound from either the external router or from a firewall.
If any proxy servers do reside on the internal network, proper configuration needs
to be checked to ensure external access is blocked and that user authentication
is required.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 3: Analysis Process

1) System Setup
Log data for analysis was downloaded onto a Slackware 9.0.0 system. Snort
version 2.1.3 (Build 27), Tcpdump 3.7.2, and libpcap 0.7.2 were all installed on
the system prior to any analysis.

2) Pre-Analysis Configuration
The snort rule set was updated with oinkmaster, with this configuration option to
enable all rules:
modifysid * ‘̂# alert’ | ‘alert’
modifysid * ‘̂#alert’ | ‘alert’

After enabling all the rules I removed the state tracking for each rule since the
snort binary file only contained malicious connections (not the full 3-way
handshakes). In order to accomplish this I created a small perl script to strip out
the flow combinations for each rule file:

#!/usr/bin/perl -i
my($freg, $sreg);
while(<>) {

if ($_ =~ /^alert/) {
$_ =~ s/(.*)\s+flow\:/$1\s/;
$freg = $1;
$_ =~ s/\;\s+(.*)/\s$1/;
$sreg = $1;
$_ = "$freg $sreg\n";
print;

} else {
print;

}
}

Which was run like this: ./remove_flow.pl <rulefile.rules>. The solution is ugly but
it worked. After cleaning up the rules, configurations in the snort.conf file were
set. The stream4 preprocessors were disabled to ignore the state of
connections. Data was sent to several places, full alert output was sent to a log
file and CVS output was enabled for easy data manipulation. Hex packet logs
were sent to /var/log/snort:
output alert_full: /var/log/snort/2002.10.18.alerts
output alert_CSV: /var/log/snort/2002.10.18.csv

timestamp,msg,ethsrc,src,srcport,ethdst,dst,dstport
config logdir: /var/log/snort

Snort was configured to decode layer 2 traffic and dump raw payload information
at a verbose level with these options:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

config decode_data_link
config dump_payload_verbose

The checksums in the snort binary files were changed to disable the possibility of
using them to figure out the true IP addresses in the dump file. Snort
automatically checks for proper checksums so this was disabled with:
config checksum_mode: none

In the past, Snort would alert on the first signature that a payload matched. If
multiple events were contained in one packet, only one would be alerted on.
Recently, in Snort 2.1.3RC1, event queue support was created to alert on
multiple events per packet and prioritize these alerts. This configuration option
was enabled like this:
config event_queue: max_queue 10 log 3 order_events priority

3) Data Analysis
Once everything was configured as needed I generated the alert logs by running
snort against the binary file with:
snort–c /etc/snort/snort-gcia.conf–r 2002.10.18

The alert files were parsed in various ways to help data analysis. I found all
unique alerts running with this:
egrep '\[**\] \[' 2002.10.18.alerts | sort | uniq–c

Unique IP sources and unique IP destinations as well as Unique IP source and
destination ports:
cat 2002.10.18.csv | cut -d , -f 4 | sort | uniq -c
cat 2002.10.18.csv | cut -d , -f 7 | sort | uniq -c
cat 2002.10.18.csv | cut -d , -f 5 | sort | uniq–c
cat 2002.10.18.csv | cut -d , -f 8 | sort | uniq–c

Other analysis of the snort binary was done using original and modified
commands from Andre Cormier’s practical(See reference 1). These were used
togather source and destination MAC’s, source and destination IP’s from each
MAC:

Unique Source MAC’s:
tcpdump–neqr 2002.10.18 | cut–d ‘ ‘ –f 2 | sort | uniq

Unique Destination MAC’s:
tcpdump–neqr 2002.20.18 | cut–d ‘ ‘ –f 4 | sort | uniq

Unique Source IP’s From 00:00:0c:04:b2:33:
tcpdump–neqr 2002.10.18 ‘ether src 00:00:0c:04:b2:33’ | cut –d ‘ ‘ –f 9 |

cut–d .–f 1-4 | sort | uniq

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Unique Destination IP’s From 00:00:0c:04:b2:33:
tcpdump–neqr 2002.10.18 ‘ether src 00:00:0c:04:b2:33 | cut –d ‘ ‘ –f 11 |

cut–d .–f 1-4 | sort | uniq

Unique Source IP’s From 00:03:e3:d9:26:c0:
tcpdump–neqr 2002.10.18 ‘ether src 00:03:e3:d9:26:c0’ | cut –d ‘ ‘ –f 9 |

cut–d .–f 1-4 | sort | uniq

Unique Destination IP’s From 00:03:e3:d9:26:c0:
tcpdump–neqr 2002.10.18 ‘ether src 00:03:e3:d9:26:c0’ | cut –d ‘ ‘ –f 11 |

cut–d .–f 1-4 | sort | uniq

After this analysis was completed I was able to accurately define the network
topology and create link graphs associated with various machines. This
information was then used to fully analyze the attacks seen on the network.
While analyzing the data I realized that although all of the network traffic within
the binary file was logged because it set off a preprocessor or signature in snort,
when I ran snort against the file not every connection was alerted on. I attribute
this lack of alerts to the enhancements that have been developed in snort since
the binary file was created.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References:
References have been included within the body of the document.

1 Cormier, Andre.“GCIA Practical.”Feb. 5, 2003.
URL: http://www.giac.org/practical/GCIA/Andre_Cormier_GCIA.pdf

2 IEEE. "Search." IEEE Home page. Jul 2004
URL: http://www.ieee.org/web/search/

3 Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Unknown: China Machine
Press. 1994. 180-181.

4 Bejtlich, Richard. “IIS .ida exploit involving worm.com/181.com/ 216.99.52.100.”
Jul 15, 2001. URL: http://seclists.org/incidents/2001/Jul/0069.html

5 Mitre CVE Database. “Buffer overflow in ISAPI extension (idq.dll).”
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0500

6 Microsoft Security Bulletin. “Unchecked Buffer in Index Server ISAPI Extension
Could Enable Web Server Compromise.”
URL: http://www.microsoft.com/technet/security/bulletin/MS01-033.mspx

7 Symantec Security.“CodeRed Worm.”July 16, 2001.
URL:
http://securityresponse.symantec.com/avcenter/venc/data/codered.worm.html

8 Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Unknown: China Machine
Press. 1994. 171.

9 Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Unknown: China Machine
Press. 1994. 169.

10 Gordon, Les.“GCIA Practical.”Nov 22, 2002.
URL: http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc

11 Peterson, Jeff. “Backdoor Q access.” May 4, 2001.
URL: http://archives.neohapsis.com/archives/incidents/2001-05/0038.html

12 Storm, Jason. “Backdoor Q access.” May 4, 2001.
URL: http://lists.jammed.com/incidents/2001/05/0039.html

13 Niem, Tu. “GCIA Practical.” Jan 23, 2003.
URL: http://www.giac.org/practical/GCIA/Tu_Niem_GCIA.pdf

14 Gordon, Les.“GCIA Practical.”Nov 22, 2002.
URL: http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15 Whitehat ArachNIDS Database. “Trojan-Active-Q-TCP”.
URL: http://www.whitehats.com/info/IDS203

16 RFC Database. “RFC 1928: SOCKS Protocol.”
URL: http://www.faqs.org/rfcs/rfc1928.html

17 Poulsen, Kevin. “Lamo's Adventures in WorldCom”. SecurityFocus.
Dec 5, 2001. URL: http://www.securityfocus.com/news/296

18 Wittich, Don, Pat and Dondi. GCIA Practical: Detect 1. Jun 22, 2003.
URL: http://cert.uni-stuttgart.de/archive/intrusions/2003/06/msg00267.html

19 Breault, Stephen. GCIA Practical: Detect 1. Jun 5, 2004.
URL: http://lists.sans.org/pipermail/intrusions/2004-June/008067.php

20 SANS Stormcenter. Ports 1080, 8080, 3128. Aug 2004
URL: http://isc.sans.org/port_details.php?port=1080
URL: http://isc.sans.org/port_details.php?port=3128
URL: http://isc.sans.org/port_details.php?port=8080

21 Snort Database. Scan for Squid/Socks/Other Proxy.
http://www.snort.org/snort-db/sid.html?sid=615
http://www.snort.org/snort-db/sid.html?sid=618
http://www.snort.org/snort-db/sid.html?sid=620

22 Mitre CVE Database. Vulnerable Proxy Servers.
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0326
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0371
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0239
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0547
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0471

23 Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Unknown: China Machine
Press. 1994. 169, 223.

24 Horsfall, Dave. “Re: Probe from 255.255.255.255.”. SecurityFocus.
Jun 1, 2001. URL: http://www.securityfocus.com/archive/19/187958

25 SecurityFocus BID Database. RPC Vulnerabilities.
URL: http://www.securityfocus.com/bid/422
URL: http://www.securityfocus.com/bid/1892
URL: http://www.securityfocus.com/bid/3400

26 ARIN Database. Whois Entries.
URL: http://ws.arin.net/cgi-bin/whois.pl

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

27 Williams, Todd. GCIA Practical: Detect 1. Dec 30, 2003.
URL: http://cert.uni-stuttgart.de/archive/intrusions/2003/12/msg00176.html

28 Gregory, Scott. GCIA Practical: Detect 1. Aug 10, 2002.
URL: http://cert.uni-stuttgart.de/archive/intrusions/2002/08/msg00106.html

29 McCabe, Mike. GCIA Practical. Nov 3, 2002.
URL: http://www.giac.org/practical/GCIA/Mike_McCabe_GCIA.doc

30 Jenkinson, John. GCIA Practical. Aug 13, 2001.
URL: http://www.giac.org/practical/GCIA/John_Jenkinson_GCIA.doc

31 Auburn, Bruce. GCIA Practical. Jul 8, 2003.
URL: http://www.giac.org/practical/GCIA/Bruce_Auburn_GCIA.pdf

32 Microsoft Security Bulletin. “Cumulative Patch for IIS.” Aug 15, 2001.
URL: http://www.microsoft.com/technet/security/bulletin/MS01-044.mspx

