
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

University Security Audit for
August 16th –20th, 2002

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 4.0 (revised July 22, 2004)
David Manning

8/26/2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Executive Summary

The goal of this audit was to analyze the University’s security policies. I have
analyzed all data provided and come up with various recommendations that
when implemented will provide a more secure, easier manageable, and lower
bandwidth producing network.

The data provided shows a numerous P2P file transfers consistently taking place
on the University network. This sort of traffic could be the transfer of copyrighted
movies, music, and applications. While the University cannot be held
immediately liable to these copyright violations due to the DMCA Safe Harbor
clause it would be a proactive move to stop this activity. Also due to the
popularity of P2P, many recent Trojans and viruses have started using this vector
to infect new hosts. I recommend that P2P traffic be explicitly forbidden in every
professor and students Appropriate Use Policy (AUP). The network
administrators can implement a block that will stop most of this traffic but P2P is
very adaptable and forbidding this in the AUP would be the best way to stop it.

By looking at the network traffic being monitored I can conclude that firewall
policy is in severe need of an audit. To properly implement this audit an
inventory of all necessary servers and devices needs to be completed. Of
course a University is a very adaptable environment and academic necessity
requires some level of openness but by coordinating with professors, helpdesk
staff, and network administrators this inventory can be completed.

The steps outlined above are major projects that will take a number of resources.
The end results of this effort though will be a network that can be run much more
efficiently using less network bandwidth.

Analyzed Files

Five consecutive days of raw logs from 8/16/2002–8/20/2002 were downloaded
for analysis from isc.sans.org/logs/raw/. A variety of tools and procedures were
used during the analysis and are all explained in the Analysis Process section
below. The actual commands run and scripts are attached in the Appendix.

Alert Frequencies & Packet Statistics

All five logs were compressed into one large pcap file using the pcapmerge
command. This merged file (8.16-20.2002) was then analyzed by Snort v2.2 -
build 30 using the most current Snort & Bleeding Edge rules at the time (August
20th). All Snort rules were set to enabled and were ran except for the porn.rules,
icmp-info.rules, chat.rules, multimedia.rules, & p2p.rules which were commented
out. All Bleeding Edge rules were run with the exception of the “Yahoo Mail”
rules (sid 2000041–2000045, 2000341). With this configuration 4073 alerts
were generated. Below are the results from the Snort analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Alert Count Alert Name
1489 (http_inspect) BARE BYTE UNICODE ENCODING [**]
1137 (http_inspect) OVERSIZE REQUEST-URI DIRECTORY [**]
766 (http_inspect) IIS UNICODE CODEPOINT ENCODING [**]
153 BAD-TRAFFIC bad frag bits [**]
130 (http_inspect) DOUBLE DECODING ATTACK [**]
96 BAD-TRAFFIC tcp port 0 traffic [**]
91 (http_inspect) WEBROOT DIRECTORY TRAVERSAL [**]
52 (http_inspect) NON-RFC HTTP DELIMITER [**]
40 (http_inspect) APACHE WHITESPACE (TAB) [**]
32 SHELLCODE x86 inc ebx NOOP [**]
20 SHELLCODE x86 NOOP [**]
14 BACKDOOR Q access [**]
12 BLEEDING-EDGE SCAN NMAP -sA [**]
12 BAD-TRAFFIC ip reserved bit set [**]
9 BLEEDING-EDGE SCAN NMAP -sT or TCP incoming connection [**]
6 MISC Tiny Fragments [**]
4 (snort_decoder) WARNING: TCP Data Offset is less than 5! [**]
3 SHELLCODE x86 setuid 0 [**]
3 SHELLCODE x86 setgid 0 [**]
2 SCAN FIN [**]
1 MISC source port 53 to <1024 [**]
1 (http_inspect) OVERSIZE CHUNK ENCODING [**]

Table 1.0 Snort Alert Frequencies Count for all files

Packet Count Source IP Destination IP
3045 115.74.249.65 64.154.80.51
2664 115.74.249.65 64.154.80.50
1184 115.74.249.65 64.154.80.49
757 115.74.249.65 209.11.34.130
636 115.74.249.65 216.136.224.55

Table 1.1 Top 5 Talking Pairs by Packet Count

As you can see from the table above one host at 115.74.249.65 generated a
large amount of the traffic seen in these 5 log files. Of the 22857 total packets in
these log files, the 115.74.249.65 host was involved as source or destination in
21901 or 96%. The reason for this large packet count will be examined further
below. Because of the possibility of losing important but lower frequency pairs
the table below shows the top 5 talking pairs that do not include the host above.

Packet Count Source IP Destination IP
33 213.144.130.166 115.74.249.202
29 148.63.139.2 115.74.33.251
27 217.159.17.213 115.74.33.251
21 194.8.218.51 115.74.249.202
18 170.47.102.29 115.74.249.214

Table 1.2 Top 5 Non-115.74.249.65 Talking Pairs by Packet Count

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Also important to note is what services were actively being targeted by external
addresses. The table below expresses the top destination ports on the
115.74.0.0/16 network.

Port
Count

Port
Number

642 80
119 6346
96 0
33 53
30 8080

Table 1.3 Top 5 Ports Targeted by External IPs

The most clearly targeted service on the 115.74.0.0/16 network was HTTP
running on port 80. This is not out of the ordinary as there are many different
web server vulnerabilities that a variety of worms and exploits exist for. The only
active web server that we can see a HTTP response from is 115.74.249.202.
This server appears to be a valid web server running Apache 1.3.12 on RedHat.

A Gnutella P2P related port comes in as the second most targeted port on the
protected network. This appears to be valid Gnutella traffic but P2P file sharing
is usually not a valid use of University resources.

The 3rd most active port targeted is port 0 which does not have any application
listening on it but is used by some scan tools such as hping.

The 4th and 5th ports are the respective domain (DNS) and web proxy ports. We
did not see any response to any of these probes for either port.

Below we can see the top suspicious external addresses detected in the original
Snort capture. The top results I have chosen are from hosts that do not involve
the proxy server at 115.74.249.65 or Gnutella related traffic.

Packet
Count Source IP Address

48 211.47.255.21
32 211.47.255.24
19 213.180.193.125 (arc.yandex.ru)

Table 1.4 Top 5 Suspicious External Hosts

One of the hosts does have a valid PTR record showing a Romanian country
domain. The top 2 IPs are strangely crafted with the 3rd octet set as a broadcast.
Both of the 211.47.255 IPs resolve to APNIC assigned addresses located in
Korea.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 1.5 Whois Information for APNIC hosts

The whois information for Romanian hosts is below in Table 1.6.

pb# whois -A 211.47.255.21
% [whois.apnic.net node-1]
% Whois data copyright terms http://www.apnic.net/db/dbcopyright.html

inetnum: 211.46.0.0 - 211.49.255.255
netname: KRNIC-KR
descr: KRNIC
descr: Korea Network Information Center
country: KR
admin-c: HM127-AP
tech-c: HM127-AP
remarks: **
remarks: KRNIC is the National Internet Registry
remarks: in Korea under APNIC. If you would like to
remarks: find assignment information in detail
remarks: please refer to the KRNIC Whois DB
remarks: http://whois.nic.or.kr/english/index.html
remarks: **
mnt-by: APNIC-HM
mnt-lower: MNT-KRNIC-AP
changed: hm-changed@apnic.net 19991118
changed: hm-changed@apnic.net 20010606
changed: hm-changed@apnic.net 20040623
status: ALLOCATED PORTABLE
source: APNIC

person: Host Master
address: 11F, KTF B/D, 1321-11, Seocho2-Dong, Seocho-Gu,
address: Seoul, Korea, 137-857
country: KR
phone: +82-2-2186-4500
fax-no: +82-2-2186-4496
e-mail: hostmaster@nic.or.kr
nic-hdl: HM127-AP
mnt-by: MNT-KRNIC-AP
changed: hostmaster@nic.or.kr 20020507
source: APNIC

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 1.6 Whois Information for 213.180.193.125

Now we are going to try and determine the OS running on each of the hosts
involved. This analysis is done using p0f v1.8.3 on our merged pcap file.

Source IP
Address OS Guess

211.47.255.21 Linux 2.4.1-14
211.47.255.24 Linux 2.4.1-14
213.180.193.125 Macintosh PPC Mac OS X (10.2.1 and v?)

Table 1.7 p0f Estimation of OS on Remote Hosts

The p0f analysis shows that the two Korean hosts are both running the same
range of Linux 2.4.1-14 kernels. This also leads one to thing that this could be
one host spoofing multiple IPs.

Relationship of Hosts

The raw log files examined do not provide all network traffic between hosts but
only the traffic that originally triggered a Snort rule. It is hard to determine exactly

125.193.180.213.in-addr.arpa name = arc.yandex.
inetnum: 213.180.192.0 - 213.180.193.255
netname: COMPTEK-NET1
descr: CompTek International
descr: 3, Gubkina str., Moscow, 117809
country: RU
admin-c: YNDX1-RIPE
tech-c: YNDX1-RIPE
status: ASSIGNED PA
notify: ****@yandex.net
mnt-by: COMPTEK-MNT-RIPE
changed: *****@comptek.ru 20020607
source: RIPE

route: 213.180.192.0/20
descr: CompTek network / special
origin: AS13238
notify: ****@comptek.ru
mnt-by: COMPTEK-MNT-RIPE
changed: *****@comptek.ru 20010123
source: RIPE

role: Yandex LLC Network Operations
address: Yandex LLC
address: 40A Vavilova st.
address: 117333, Moscow, Russia
phone: +7 095 9743555
fax-no: +7 095 9743565
e-mail: ****@yandex.net
trouble: --
trouble: Points of contact for Yandex LLC Network Operations
trouble: --
trouble: Routing and peering issues: ****@yandex.net
trouble: SPAM issues: ******@yandex.ru
trouble: Network security issues: ******@yandex.ru
trouble: Mail issues: ***********@yandex.ru
trouble: General information: *****@yandex.ru
trouble: --
admin-c: VLI1-RIPE
tech-c: KBG2-RIPE
notify: ****@yandex.net
nic-hdl: YNDX1-RIPE
mnt-by: COMPTEK-MNT-RIPE
changed: *****@comptek.ru 20020607
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

what traffic has passed through the network but using the data provided the
network will be reconstructed to the best of my ability.

As we noticed in the tables above the host at 115.74.249.65 generated a large
percentage of the snort alerts. Looking at the traffic from this source we can see
that most of traffic sourced from this host (15063 of 21216 or 71%) are outbound
web requests.

We can further examine the traffic from this with the command
“tcpdump -nnXr 8.16-20.2002 src host 115.74.249.65”.
01:08:05.986507 115.74.249.65.64252 > 211.99.211.30.80: P
1530424958:1530425436(478) ack 3194147429 win 64240 (DF)
0000: 4500 0206 1dcd 4000 7a06 5da9 734a f941 E....Í@.z.]©sJùA
0010: d363 d31e fafc 0050 5b38 6e7e be62 d265 ÓcÓ.úü.P[8n~¾bÒe
0020: 5018 faf0 8b10 0000 4745 5420 2f61 6469 P.úð....GET /adi
0030: 2f73 6561 7263 682e 7369 6e61 2e63 6f6d /search.sina.com
0040: 2e63 6e2f 7365 6172 6368 7265 7375 6c74 .cn/searchresult
0050: 733b 6b77 3d25 4433 253b 6f72 643d 3632 s;kw=%D3%;ord=62
0060: 3030 3235 3931 3633 353f 2035 3931 3633 002591635? 59163
0070: 353f 2048 5454 502f 312e 310d 0a41 6363 5? HTTP/1.1..Acc
0080: 6570 743a 2069 6d61 6765 2f67 6966 2c20 ept: image/gif,
0090: 696d 6167 652f 782d 7862 6974 6d61 702c image/x-xbitmap,
00a0: 2069 6d61 6765 2f6a 7065 672c 2069 6d61 image/jpeg, ima
00b0: 6765 2f70 6a70 6567 2c20 6170 706c 6963 ge/pjpeg, applic
00c0: 6174 696f 6e2f 766e 642e 6d73 2d65 7863 ation/vnd.ms-exc
00d0: 656c 2c20 6170 706c 6963 6174 696f 6e2f el, application/
00e0: 6d73 776f 7264 2c20 2a2f 2a0d 0a52 6566 msword, */*..Ref
00f0: 6572 6572 3a20 6874 7470 3a2f 2f73 6561 erer: http://sea
0100: 7263 682e 7369 6e61 2e63 6f6d 2e63 6e2f rch.sina.com.cn/
0110: 6367 692d 6269 6e2f 7365 6172 6368 2f73 cgi-bin/search/s
0120: 6561 7263 682e 6367 693f 5f73 6561 7263 earch.cgi?_searc
0130: 686b 6579 3dd3 a2d3 ef0d 0a41 6363 6570 hkey=Ó¢Óï..Accep
0140: 742d 4c61 6e67 7561 6765 3a20 7a68 2d63 t-Language: zh-c
0150: 6e0d 0a41 6363 6570 742d 456e 636f 6469 n..Accept-Encodi
0160: 6e67 3a20 677a 6970 2c20 6465 666c 6174 ng: gzip, deflat
0170: 650d 0a55 7365 722d 4167 656e 743a 204d e..User-Agent: M
0180: 6f7a 696c 6c61 2f34 2e30 2028 636f 6d70 ozilla/4.0 (comp
0190: 6174 6962 6c65 3b20 4d53 4945 2036 2e30 atible; MSIE 6.0
01a0: 3b20 5769 6e64 6f77 7320 4e54 2035 2e31 ; Windows NT 5.1
01b0: 290d 0a48 6f73 743a 2061 642e 636e 2e64)..Host: ad.cn.d

<SNIP>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 1.8 Hex Packet Data of Outbound Web Requests from 115.74.249.65

This packet data shows a MS Internet Explorer 6.0 on Windows XP User-Agent
and a MS Internet Explorer 5.5 on Windows 2000 User-Agent both originating
our high traffic IP. Looking through other packets we can see other versions of
both MS Internet Explorer and Microsoft Windows originating from this source IP.
We can conclude that the host at 115.74.249.65 is a proxy server for all internal
hosts within the 115.74.0.0/16 network. This proxy server appears to do port
NATing for the 115.74.0.0/16 network but like most proxies it keeps the HTTP
User-Agent of the originating workstation. By issuing the command below and
seeing that no results are returned we can confirm that all externally bound web
traffic passes through the 115.74.249.65 proxy server.

tcpdump -nnr 8.16-20.2002 src net 115.74.0.0/16 and dst
port 80 and not host 115.74.249.65

Determing that 115.74.249.65 is an outbound webproxy takes care of 15063 of
21216 of the packets originating from it but leaves us with quite a few that do not
meet the HTTP web proxy definition. By further examining traffic with the
following command we can see a variety of different destination ports originate
from the proxy server.

07:52:27.606507 115.74.249.65.63168 > 208.254.63.69.80: P
2377840376:2377840864(488) ack 1240991753 win 64240 (DF)
0000: 4500 0210 2124 4000 7d06 ed86 734a f941 E...!$@.}.í.sJùA
0010: d0fe 3f45 f6c0 0050 8dba f6f8 49f8 0809 Ðþ?EöÀ.P.ºöøIø..
0020: 5018 faf0 d95d 0000 4745 5420 2f74 6d70 P.úðÙ]..GET /tmp
0030: 6164 2f63 6f6e 7465 6e74 2f72 656c 6961 ad/content/relia
0040: 7175 6f74 652f 696d 6167 6573 2f53 6176 quote/images/Sav
0050: 6555 7074 6f37 3025 7632 2e67 6966 2048 eUpto70%v2.gif H
0060: 5454 502f 312e 310d 0a41 6363 6570 743a TTP/1.1..Accept:
0070: 202a 2f2a 0d0a 5265 6665 7265 723a 2068 */*..Referer: h
0080: 7474 703a 2f2f 6164 2e74 7261 6666 6963 ttp://ad.traffic
0090: 6d70 2e63 6f6d 2f74 6d70 6164 2f63 6f6e mp.com/tmpad/con
00a0: 7465 6e74 2f72 656c 6961 7175 6f74 652f tent/reliaquote/
00b0: 4e45 572e 6874 6d6c 0d0a 4163 6365 7074 NEW.html..Accept
00c0: 2d4c 616e 6775 6167 653a 2065 6e2d 7573 -Language: en-us
00d0: 0d0a 4163 6365 7074 2d45 6e63 6f64 696e ..Accept-Encodin
00e0: 673a 2067 7a69 702c 2064 6566 6c61 7465 g: gzip, deflate
00f0: 0d0a 5573 6572 2d41 6765 6e74 3a20 4d6f ..User-Agent: Mo
0100: 7a69 6c6c 612f 342e 3020 2863 6f6d 7061 zilla/4.0 (compa
0110: 7469 626c 653b 204d 5349 4520 352e 353b tible; MSIE 5.5;
0120: 2057 696e 646f 7773 204e 5420 352e 3029 Windows NT 5.0)

<SNIP>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 1.9 Outbound Requests Not Destination Port 80 from Web Proxy

The top 5 non port 80 ports returned are 6347, 1863, 6348, 6349, & 5293. MSN
Messenger is primarily used on 1863 so now we know other application protocols
are being proxied through this host. The ports 6347 through 6349 are all
Gnutella client ports and looking at the data we can see that many other high
destination ports seen here are also related to Gnutella traffic.

Table 1.10 Gnutella Traffic from Proxy on non-Gnutella ports

The destination port of 5293 turns out to be more Gnutella related traffic. We can
conclude that both the Gnutella and MSN Messenger applications are allowed to
also use this proxy.

Now we just need to determine the rest of the network layout. Looking through
the merged dump file provides two unique MAC address of 00:00:0c:04:b2:33
and 00:03:e3:d9:26:c0.

01:11:53.546507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 0800 549:
115.74.249.65.64331 > 211.99.211.30.80: P 1832340388:1832340883(495)
ack 2462627999 win 17024 [tos 0x10]

pb# tcpdump -nnqr 8.16-20.2002 src host 115.74.249.65 and not dst
port 80
<snip>
11:12:53.306507 115.74.249.65.62298 > 64.4.12.183.1863: tcp 247 (DF)
11:14:32.326507 115.74.249.65.62298 > 64.4.12.183.1863: tcp 171 (DF)
16:08:12.956507 115.74.249.65.61455 > 64.4.12.193.1863: tcp 140 (DF)
11:48:41.896507 115.74.249.65.63021 > 24.186.100.122.6347: tcp 54
(DF)
11:48:43.916507 115.74.249.65.63053 > 24.222.138.80.9540: tcp 54 (DF)
11:48:45.916507 115.74.249.65.63076 > 142.59.90.225.7475: tcp 54 (DF)
11:48:48.876507 115.74.249.65.63083 > 152.19.208.65.6879: tcp 54 (DF)
11:48:50.906507 115.74.249.65.63098 > 24.148.7.103.6518: tcp 54 (DF)
11:48:51.866507 115.74.249.65.63099 > 24.186.100.122.6347: tcp 54
(DF)
<snip>
06:43:39.136507 115.74.249.65.62490 > 68.8.21.246.5285: tcp 54 (DF)
06:43:40.056507 115.74.249.65.62492 > 131.128.137.54.7508: tcp 54
(DF)
06:43:42.046507 115.74.249.65.62507 > 24.186.100.122.6347: tcp 54
(DF)
06:43:42.986507 115.74.249.65.62492 > 131.128.137.54.7508: tcp 54
(DF)
06:43:43.126507 115.74.249.65.62511 > 68.8.21.246.5285: tcp 54 (DF)
06:43:47.096507 115.74.249.65.62518 > 207.192.203.33.6490: tcp 54
(DF)
06:43:48.136507 115.74.249.65.62520 > 66.27.109.189.8473: tcp 54 (DF)

pb# tcpdump -nnXr 8.16-20.2002 port 5293
09:05:34.516507 115.74.249.65.61584 > 130.91.233.91.5293: P
2552044823:2552044877(54) ack 4276429179 win 17520 (DF)
0000: 4500 005e 24b0 4000 7c06 9139 734a f941 E..^$°@.|..9sJùA
0010: 825b e95b f090 14ad 981d 1d17 fee5 217b .[é[ð......þå!{
0020: 5018 4470 522f 0000 474e 5554 454c 4c41 P.DpR/..GNUTELLA
0030: 2043 4f4e 4e45 4354 2f30 2e36 0d0a 5573 CONNECT/0.6..Us
0040: 6572 2d41 6765 6e74 3a20 476e 7563 6c65 er-Agent: Gnucle
0050: 7573 2031 2e36 2e30 2e30 0d0a 0d0a us 1.6.0.0....

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

01:54:00.016507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60: 163.23.216.66.84
> 115.74.215.161.80: . ack 0 win 1400

Both of these MAC addresses belong to Cisco Systems, Inc [1]]. Using the
resource originally discovered by Rob Perdue [2] during one of his detects I have
further drilled down into the MAC address to make a more educated guess about
the devices. In the report referenced above, Rob Perdue did further searches
and found a MAC address of a PIX that matched the first 6 characters of the
00:03:e3:d9:26:c0 MAC address. I did some further search on my own and
found reference to the first 8 characters of the 00:00:0c:04:b2:33 MAC
referenced as a router [4]. Due to the traffic flow of internal traffic coming from
00:00:0c:04:b2:33 with a destination of 00:03:e3:d9:26:c0 we can make a guess
that 00:03:e3:d9:26:c0 is the MAC address of the internal interface of the PIX
and that 00:00:0c:04:b2:33 is the MAC address of an internal router.

The original Snort sensor that captured these packets can be assumed to be
monitoring off tap or a hub placed between these two devices. The diagram
below gives my best estimation of the sensor placement.

Table 1.11 Suggested Network Diagram

Defensive Recommendations

Examining all the alerts does not show any obviously compromised system but it
does point out some weaknesses in your egress and ingress filtering. Based on
the diagram in Table 1.11 we are assuming that that we are inside a PIX firewall
and that is the last firewall filtering that will take place before the packets reach

{ Internet }
|

|-----------------------|
| Cisco PIX |
00:03:e3:d9:26:c0

|
| |----------------------|

[TAP/HUB]---| Snort Sensor |
| | (Sniffing Interface) |
| |----------------------|
|

|-----------------------|
| Cisco Router |
00:00:0c:04:b2:33

|
|---------------|
115.74.0.0/16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the end hosts. The current firewall policy appears to allow many different ports
inside that should be blocked by on the ingress filtering. A university does have
somewhat of a unique environment due to the academic necessity for openness
but there are some rules that can be put in place to cut down on the traffic seen.

The web server at 115.74.249.202 is running a version of Apache that was
released over two years ago [14]. There have been many security updates and
releases since then and this server should be immediately updated.

Even though there is only one valid web server running on this network there are
numerous inbound HTTP scans. This highlights that the firewall policy is passing
any destination port 80 into the network and not filtering for the destination IP.
This is just one example that illustrates that the policy should be reject everything
and only allow in what services we want to be internet reachable. This of course
requires an inventory of all necessary services on the internal network and all
necessary services & access that some courses may require. While is a
daunting task it will prove to be fruitful when a manageable & understood network
emerges.

The proxy server at 115.74.249.65 can provide some level of security and
appropriate use control but at the current time does not appear to be doing so.
We are seeing a large number of Gnutella application packets connecting
through the proxy that could be set up to be dropped. If egress filtering blocks
everything that is not necessary and everything is forced to go through the proxy
we can shut down almost all Gnutella activity. Many viruses & spy ware
programs are being distributed in this manner and excluding it from the network
will not only cut down on network traffic but also cut down on users calling into
the Helpdesk for virus and spy ware related problems.

Also we need to confirm that there is no external access to the proxy server at
115.74.249.65. If an external host could access this proxy server they could then
have a gateway into our internal network. They could also then be able to attack
other networks and make it appear like it was our host performing the attack.

They were 4073 alerts generated in these 5 days of Snort logs. Due to the initial
raw data only being log data from a Snort machine and not a full packet capture
some alerts that required a state to be established were never triggered. This is
discussed in more detail in Detect #2. The alerts that we do have show many
false positives that can be filtered out to help the every day analyst find the signal
in the noise.

If there is only one valid web server running on the network and it is running
Apache then all IIS web server related rules can be disabled. If we can upgrade
the Apache server to the most current release we can disable many of the
http_inspect rules also. Most of the SHELLCODE events seen have been

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

determined to be false-positives generating on streaming media. By changing
the SHELLCODE_PORTS variable in the snort.conf file we can filter these out.

Detailed Analysis of Detects

In Table 1.0 the top events seen in the merged log file were displayed in
ascending order. Now we drill deeper into a few select detects to determine
exactly what happened.

Detect #1 - SHELLCODE x86 setuid 0/SHELLCODE x86 setgid 0

Description of Detect

This attack is usually seen at the end of a non-trivial buffer overflow attack as
‘setuid 0’ or ‘setgid 0’ command is set to escalate the privileges of the application
being attacked. This exploit could be manually run against a vulnerable host or
rolled into a worm that could operate completely autonomously. In a successful
exploitation this command would be run to grab root privileges before another
command, such as open a shell and bind it to a port, would be run.

Both the setuid and setgid alerts were generated from two different hosts in the
same /24 network. Doing an ARIN lookup for both IPs returns the same whois
information.

Table 2.1 Whois Information for setuid/setgid Attacking Host

In this case it appears a false positive generated by the Microsoft streaming
protocol (TCP 1755) coincidentally matching the “b017 cd80” string that the Snort
signature is matching on. In the example of the setgid being set to 0 the string
that the Snort signature is matching on is “b0b5 cd80”.

Reason for Analysis

If a host did successfully have shell code ‘setuid 0’ or ‘setgid to 0’ would mean
that the system is close to being completely compromised. The attacker would

OrgName: Yahoo! Broadcast Services, Inc.
OrgID: YAHO
Address: 701 First Avenue
City: Sunnyvale
StateProv: CA
PostalCode: 94089
Country: US

NetRange: 63.250.192.0 - 63.250.223.255
CIDR: 63.250.192.0/19
NetName: NETBLK2-YAHOOBS
NetHandle: NET-63-250-192-0-1
Parent: NET-63-0-0-0-0
NetType: Direct Allocation

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

be one command away from opening up a shell and binding it to a port or
executing any other malicious command on the target host. Because this is such
a high priority alert it is of critical importance to determine if it is valid.

Detect was Generated by

This detect was generated by the Snort v2.2 (build 30) intrustion detection
system. The following 2 rules triggered on two similar 4 byte strings detected in
the network traffic.

Table 2.2 Snort Rules 649 & 650 (setgid 0 & setuid 0)

The rule above alerts on any external host from a defined shell code port,
everything except port 80 in this case, directing the “B0 B5 CD 80” or “B0 17 CD
80” string to our internal network. Because there is no offset this signature looks
to match either of those strings at the start of the packet data. The first part of
the content “B0 17” is the assembly language move call for the system move call
[Rich Helton]. The second part of the content, “CD 80” is the instruction to call
the interrupt handler that will execute the function [Rich Helton].

Table 2.3 Snort Alerts Excerpt –setuid(0) and setgid(0)

Probability the Source Address was Spoofed

[**] [1:650:8] SHELLCODE x86 setuid 0 [**]
[Classification: A system call was detected] [Priority: 2]
09/17-13:10:17.056507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800
len:0x5EA
63.250.205.41:1755 -> 115.74.249.65:63116 TCP TTL:116 TOS:0x0
ID:44961 IpLen:20 DgmLen:1500 DF
A* Seq: 0x1F8D5D6D Ack: 0x1C06D8CC Win: 0x4090 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS436]

<snip>

[**] [1:649:8] SHELLCODE x86 setgid 0 [**]
[Classification: A system call was detected] [Priority: 2]
09/16-19:52:11.296507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800
len:0x5EA
63.250.205.11:1755 -> 115.74.249.65:64689 TCP TTL:115 TOS:0x0
ID:17639 IpLen:20 DgmLen:1500 DF
A* Seq: 0x26BD7672 Ack: 0xCA9AD173 Win: 0x40B0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS284]

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 setgid 0"; content:"|B0 B5 CD 80|";
reference:arachnids,284; classtype:system-call-detect;
sid:649; rev:8;)

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 setuid 0"; content:"|B0 17 CD 80|";
reference:arachnids,436; classtype:system-call-detect;
sid:650; rev:8;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In this case we do not have a complete packet dump so we can not confirm that
the initial TCP SYN 3-way handshake was completed. If we did have a complete
packet capture we could verify if a 3-way handshake was completed and rule out
the possibility that the source address was spoofed.

In this case we can look at the packet data and see that this is not a 1 packet
delivery exploit and therefore the source address would have to have traffic
ACKed before it could deliver the rest of the payload.

Attack Mechanism

In this detect, the attack was attempted from a Yahoo! Streaming media
Broadcasting server against a local IP on our network. A successful attack
generated by this alert would be preceeded by a crafted buffer overflow and
postceeded by a command to open up a remote shell on a unique port on the
destination host.

In this case the detect appears to be a false positive cause by 4 bytes being
present at the start of some streaming media content.

Because of the proxy server at 115.174.249.65 we can not tell what end host on
our network this packet was destined for. While attacks against proxy servers do
exist this detect appears to be a false positive destined for an internal IP.

Correlations

The setuid 0 and setgid 0 Snort alerts frequent false positive on downloaded
data. This is why the default snort.conf file provided has $SHELLCODE_PORTS
defined as anything not equal to port 80. Frequent triggers on normal jpeg, gif,
and other binary downloads are extremely common without this variable set as it
is currently. I did not find any exact correlations on these log files but I did find
similar detect done by Rich Helton [10].

Currently there are 74 CVE entries dealing with problems with the setuid call [11].
There are also various CVE entries dealing with vulnerabilities in streaming
media programs but I did not find any that would affect a Linux/UNIX host
running an application that received the ms-streaming protocol.

Evidence of Active Targeting

We do not have a complete packet capture for this network but looking at the
traffic presented there is no prior or post contact from the host in question. This
does not look to be a case of active targeting.

Severity

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Severity = (2 + 5)–(1 + 3)

Criticality–The system targeted is a workstation running on the internal network.
It has much less importance than a functional server.

Lethality–A successful attack of this manner would lead to root access on the
target host. This of course is as lethal as any attack can be because if gives the
attacker full control over the host.

System Countermeasures–As this host is participating in receive a media
stream we can assume that it does not have a strict host based firewall running
on it or any other protection.

Network Countermeasures–This attack did have to pass through a proxy server
on the network that could have been set up to block certain parameters.
Because we cannot see on the other side of the proxy or examine any of the
proxy’s logs we cannot come to any conclusion.

This equation will give us a total severity of 3 on a maximum scale of 8.

Detect #2 –Web Attacks directed against Internal Apache Server

Description of Detect

On our internal network there is a web server at 115.74.249.202 running Apache
1.3.12 with FrontPage on RedHat Linux. There were a variety of attacks
detected against this web server but to narrow down the false positives this
detect will only deal with attacks that particularly target the Apache web server.

By excluding IIS vulnerabilities from the traffic directed towards the
115.74.249.202 server we are left with a variety of different attacks.

pb# tethereal -r 8.16-20.2002 -R 'ip.addr == 115.74.249.202' | egrep -vi
'(default.ida|dll|vti|cmd.exe|PROPFIND)'
23 6831.600000 24.48.78.100 -> 115.74.249.202 HTTP GET /cgi-
local/formmail.cgi?recipient=st3mm@aol.com&subject=http://www.XXXXXXXX/cgi-
local/
formmail.cgi&body=JupZ&email=yym@aol.com HTTP/1.1
25 8044.980000 213.144.130.166 -> 115.74.249.202 HTTP HEAD
/main/catalog/ethprod.pdf HTTP/1.1
104 22833.180000 213.11.160.2 -> 115.74.249.202 TCP http > http [ACK] Seq=0
Ack=0 Win=1400 Len=0
1487 38351.340000 216.199.89.139 -> 115.74.249.202 HTTP OPTIONS / HTTP/1.1
2677 69999.850000 219.164.183.47 -> 115.74.249.202 HTTP GET
/main/../images/head1.jpg HTTP/1.1
7225 144570.480000 198.51.119.130 -> 115.74.249.202 TCP 11679 > http [RST,
ACK] Seq=0 Ack=0 Win=31968 Len=1332
8268 180135.820000 115.74.249.202 -> 195.29.191.46 HTTP HTTP/1.1 403
Forbidden (text/html)
17886 312784.980000 194.7.125.10 -> 115.74.249.202 TCP 58097 > webcache
[SYN] Seq=0 Ack=0 Win=64240 Len=0 MSS=1460
18082 314433.120000 208.61.206.232 -> 115.74.249.202 FTP Request: PASS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 2.4 Non-IIS Attacks against Internal Web Server

As you can see from the tethereal output above 9 unique attacks can be detected
directed for the web server. Most of these attempts are simple reconnaissance
probes that the most critical of which is the attempt to access formmail.cgi.

The formmail.cgi attack targets a web server running a vulnerable version of the
formmail.cgi and attempts to have the script successfully send an email to the
address in the URL above. If this initial test from 24.48.78.100 (Adelphia Cable
ISP) seen in the URL above is successful it is likely that the attacker will return to
this site to send a large number of spoofed & spam laden emails from this server.

With the rise of spam in recent years many network administrators are taking a
pro-active approach to spam defense and having a flood of spam emails
originate from the 115.74.0.0 network and internal domain could result in the the
network being blacklisted at various antispam sites [7].

Reason for Analysis

This detect was analyzed because it is the only host on the network that was
detected sending return traffic on port to a remote host. If you take out the proxy
server at 115.74.249.65 this host was actually the only host on the 115.74.0.0/16
network that generated any response to an external host. Of course this is
inferred by looking at our snort binary pcap file and not a full packet capture from
this network. There very well could be other hosts on the network that did no
generate any snort alerts during the initial packet capture.

Detect was Generated by

The detect was generated by the Snort v2.2 (build 30) intrustion detection system
and further analyzed using tethereal.

The table below shows the relevant Snort alerts that involved the 115.74.249.202
host.

Alert
Count Alert Name

37 (http_inspect) WEBROOT DIRECTORY TRAVERSAL [**]
29 (http_inspect) NON-RFC HTTP DELIMITER [**]

9
BLEEDING-EDGE SCAN NMAP -sT or TCP incoming connection
[**]

1 (snort_decoder) WARNING: TCP Data Offset is less than 5! [**]
1 SCAN FIN [**]
1 (http_inspect) IIS UNICODE CODEPOINT ENCODING [**]

Table 2.5 Snort Alerts Involving 115.74.249.202

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The alert that would have generated by the formmail attack seen in Table 1.10
never was never triggered as you can see in Table 1.11. By examining the rule
context below we can determine why this occurred.

In this rules “flow” condition the traffic has to be established for the alert to check
for the “/formmail” string. However in this case because the raw file was not a
complete packet capture but only a binary logging from a previous Snort run this
alert was never generated.

Table 2.6 Formmail CGI Rule from Snort v2.2

Probability the Source Address was Spoofed

Because all proper HTTP traffic requires state to be established before doing a
HTTP GET we can assume that the 3-way handshake was completed before all
attacks. Some HTTP clients do send the initial GET request on the 3rd part of the
handshake but this would still require at the SYN-ACK packet to be received on
the originating host which would confirm that the source address was not
spoofed.

Attack Mechanism

The formmail script is primarily intended as a way for web users to easily and
quickly send an email to a set user usually at the web site domain. However
there have been versions that did not validate the destination email address
allowing anybody to anonymously send emails using this unintended email
gateway. Many spammers are constantly on the look out for anonymous email
gateways to pass their emails through with the primary motivation being a small
amount of money for every successful email sent out.

In this detect, the attack would have succeeded if the web site at 115.74.249.202
was running a vulnerable version of the Formmail.cgi script. As this is a fairly old
vulnerability and we did not see any repeated attempts after the initial probes we
can assume that this cgi is not currently running on the web server in question.
However this is something that should be confirmed by either examining a
complete packet capture and looking for a HTTP 404 code or by examining the
Apache logs on the server in question.

Correlations

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-
CGI formmail access"; flow:to_server,established;
uricontent:"/formmail"; nocase; reference:arachnids,226;
reference:bugtraq,1187; reference:bugtraq,2079; reference:cve,1999-
0172; reference:cve,2000-0411; reference:nessus,10076;
reference:nessus,10782; classtype:web-application-activity; sid:884;
rev:14;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Similar detects have been done by Michael Holstein [10], Heather M. Larrieu
[12], and Loic Juillard [13]. Their analysis was very similar to mine with no major
differences.

Both CVE-1999-0172 & CAN-2001-0357 reference the vulnerabilities inherent in
these older Formmail scripts.

There also is a 2002 paper written by Ronald F. Guilmette and Justin Mason,
maintainer of SpamAssassin, detailing some vulnerabilities in FormMail 1.9 [14].

Evidence of Active Targeting

The only traffic on this network seen from the source host of 24.48.78.100 is
multiple formmail.cgi script attempts to 115.74.249.202. The attacker could have
scanned the network previously for all hosts running Apache servers on port 80
and then returned later to test for the existence of a vulnerable formmail.cgi
script.

Included below is a link graph showing the top scans and the only response from
the web server at 115.74.249.202. This shows how the alerts for a typical web
server have a many to one relationship.

Table 2.7 Link Graph for Apache web server

Severity

Apache v1.3.12
115.74.249.202

TCP port 80

213.144.130.166
TCP 20729–20894

194.8.218.51
TCP 43007–47956

67.35.236.53
TCP 63051–63062
TCP 51319–51321

209.226.179.100
TCP 49499 - 49525

217.66.73.67
TCP 1025 - 1031

211.21.14.114
TCP 50233 & 51990

194.7.125.10
TCP 48940, 58097, 10580

164.77.240.237
TCP 3163- 3170

193.198.33.44
TCP 1253 - 1457

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Severity = (5 + 3)–(1 + 2) = 5

Criticality–The system targeted is a production web server running on our local
network. Looking at some of the pages served by the host it appears that it is
hosting a variety of critical documents.

Lethality–While there are known DoS [CVE-2000-0255] attacks against
FormMail CGI programs, this was not the method of attack in this case. The
actual anonymous sending of the email does not appear to be a very lethal
attack. But if this was allowed there is a small possibility that the whole network
block could be blacklisted on one of the many SPAM real-time black lists denying
the network access to send any emails to SMTP servers that subscribe to that
blacklist.

System Countermeasures–We do not have very much information about the
web server in question so we are unable to determine exactly what
countermeasures are present on the system. The Apache server running on the
host is a fairly old version that was released on the 25th of February 2000 [15].
We can probably jump to the conclusion that a web server that has not been
updated in over 2 years (detect seen on 9/16/2002) is not actively monitored and
is not running any host based firewall or HIDS.

Network Countermeasures–Due to the limited knowledge we have about the
network we cannot determine what network countermeasures are in place. We
do know that this traffic has already passed through a Cisco PIX and we see why
no reason it would not pass through the next hop Cisco Router. Because this
was valid HTTP traffic there are no explicit firewall rules that could have blocked
this. This is not taking into account the recent advent of in-line network
application layer firewalls/intrusion prevention systems that could detect and drop
this attack before it reached the web server.

Detect #3 –Nmap ACK scan

Description of Detect

This is a reconnaissance attack to probe what ports are open on a host but
instead of the setting the packet flags to SYN they are set to ACK. This is an
“advanced method is usually used to map out firewall rule sets. In particular, it
can help determine whether a firewall is stateful or just a simple packet filter that
blocks incoming SYN packets.” [16]. If the firewall is not stateful and this packet
passes through then a reset being received from the target host will show this.
This scan is somewhat unusual because it can never say if a port is open or not.
It simply marks them as “filtered” if no response is received and “unfiltered” if a
RST is sent back. That does make it useful for mapping out firewall rules [16] but

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

it makes it a scan take requires other reconnaissance before an attack can be
attempted.

Reason for Analysis

This detect was chosen for analysis because of its relatively new nature and
current non-inclusion in the default Snort rule set. Many Snort users are now
adding the Bleeding-Edge rules to their Snort configuration files but there is not
much documentation on exactly what these rules are triggering on.

Detect was Generated by

This detect was generated by the Snort v2.2 (build 30) intrusion detection system
Bleeding-Edge rule 2000538.

Table 2.8 Snort Bleeding-Edge Scan NMAP –sA rule

This signature is set to alert on any host in the $EXTERNAL_NET on any port
that hits our network on any port. The most relevant fields from the rule above
are the “flags: A,12” and “window:1024”. The flags field means it is looking for a
packet with just the ACK bit set no matter what reserved bits 1 & 2 are set as.
There are three unique signatures in the Bleeding-Edge rules and the only
difference in each one is the windows size. This means that the Nmap–sA scan
sets one of these three window sizes every time it scans. Because is there is no
“flow” rule itis looking for this packet regardless of state.

Probability Source Address was Spoofed

This scan does not require any connection to be established so this source
address could possibly be spoofed. The attacker could be sniffing on that
network from a different IP and still see the response or could be performing a
large scan and using decoys (Nmap–D flag) to make it harder for us to track
down the real source. With this scan there is a high probability that this address
could be spoofed.

Attack Mechanism

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"BLEEDING-EDGE SCAN
NMAP -sA"; dsize:0; flags:A,12; fragbits:!D; window:1024;
reference:arachnids,162; classtype:attempted-recon; sid:2000538;
rev:1;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 2.9 Tcpdump of all packets that match the Snort NMAP –sA rule

In this detect, we saw 4 unique hosts each hit the web proxy at 115.74.249.65
two times each. This is the only contact that each of these hosts had with the
any host on the network. Also the last octet of each of these hosts is 194 or 124.
This leads credence to the theory that these hosts were originally spoofed.
However we have to consider the fact that the original log file we were examining
here was not a complete packet capture from the network but a “binary alert” file
that contained all traffic that the original version of Snort alerted on.

Correlations

Even though this is a Bleeding-Edge signature there has been previous work of
similar nature done by Antony Gummery [17] and Todd Williams [18]. There also
many documents out there such as the Nmap man page [16] and various
hacking papers [19] that document exactly what an ACK scan can accomplish
against a stateless firewall.

Evidence of Active Targeting

All traffic seen here was directed at the proxy server above. The original Snort
sensor detected no other traffic from any of these hosts.

Severity

(4 + 1)–(1 + 1) = 4 out of a maximum of 8

Criticality–The target system in all of these probes is the proxy server for the
entire 115.74.0.0/16 network. If this were to be compromised the attacker would
be on the internal network and be able to easily monitor all http and MSN
Messenger traffic.

Lethality–However this detect was a simple reconnaissance probe directed
towards the proxy server that was just mapping out the firewall rules and live
hosts behind the firewall.

System Countermeasures–We can not successfully determine the OS on the
proxy server and therefore cannot determine what countermeasures reside on
the host.

pb# tcpdump -nnr 8.16-20.2002 host 115.74.249.65 | grep "win 1024"
09:18:33.596507 12.111.47.194.80 > 115.74.249.65.3844: . ack 0 win 1024
09:18:33.626507 141.155.200.194.80 > 115.74.249.65.3844: . ack 0 win 1024
07:44:15.926507 65.64.34.124.80 > 115.74.249.65.3844: . ack 0 win 1024
07:44:16.006507 65.122.47.124.80 > 115.74.249.65.3844: . ack 0 win 1024
16:35:51.536507 65.64.34.124.80 > 115.74.249.65.3844: . ack 1 win 1024
16:35:51.656507 65.122.47.124.80 > 115.74.249.65.3844: . ack 1 win 1024
08:13:10.496507 12.111.47.194.80 > 115.74.249.65.4100: . ack 0 win 1024
08:13:10.536507 141.155.200.194.80 > 115.74.249.65.4100: . ack 0 win 1024

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network Countermeasures–This traffic was passed inside the firewall and we
had a complete packet capture we could determine if the firewall in question
passed this ACK traffic through without having a connection established. This
would mean that the firewall was stateless and was not a very effective defense
against this traffic. However this traffic could be a part of a greater connection
but we cannot tell with the data presented.

Analysis Process

All analysis was done using Snort v2.2.0 (August 19th rules), Tcpdump v3.4.0,
p0f v1.8.3, GNU tethereal 0.9.14, and Oinkmaster v1.0 running on an OpenBSD
3.4 server. All of the data examined was merged into one pcap file with the
following command

pcapmerge -r 2002.8.16 -r 2002.8.17 -r 2002.8.18 -r
2002.8.19 -r 2002.8.20 -w 8.16-20.2002

All snort rules were kept up to date using the oinkmaster.pl script run as a cron
job once a day. Also some custom scripts were written to examine the data and
all are attached in the appendix for further review and use.

A perl script was written to go through the data files, determine the home
network, and run the data files through snort. This script was big help in
automating the process of turning the raw data files into human usable alerts.

When examining as much data as contained in these raw logs it is important to
be able to see the signal through the noise. I used a variety of command line
tools and scripts to do this. One example is a command line pipe used to
examine the name of all alerts generated so I can easily find alerts of greater
importance.

grep "\[**" <snort_alert_file> | cut –d’ ‘ –f3- | sort |
uniq –c | sort -nr

The command above would return every single alert generated by snort in
descending count list. This easily helped me see the top alerts but also more
importantly it let me see alerts that had a lower count but might warrant further
investigation due to their nature.

I also appended the “ awk ‘{print $1”,”$2}’ “ command to many of my
command line pipes so I could then import the files into MS Excel as a CSV
(Comma Seperated Values) sheet.

All these tools gave me good grasp on the data I was dealing with and helped me
delve deeply into the packets seen.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

[1] IEEE Standars. “IEEE OUI and Company_id Assignments”. URL:
http://standards.ieee.org/regauth/oui/oui.txt. (14 Aug 2004).

[2] Perdue, Rob. “GIAC GCIA Version 3.5 Practical Detect”. 13 Aug. 2004. URL:
(NOT MIRRORED YET–See Appendix) (16 Aug 2004).

[3] Cisco Systems, Inc. “Cisco PIX Firewall Release Notes, Version 6.3(2).”
CISCO PIX FIREWALL SOFTWARE. URL:
http://www.cisco.com/en/US/products/sw/secursw/ps2120/prod_release_note091
86a00801a6d21.html (16 Aug. 2004).

[4] Cisco Systems, Inc. “Using Terminals”. Cisco Connection Documentation
URL:
http://www.yars.free.net/CiscoCD/cc/td/doc/product/software/ssr91/rpc_r/58417.h
tm#xtocid270337 (16 Aug. 2004).

[5] Whitehats, Inc. “IDS283 "SHELLCODE-X86-SETUID0"”. arachNIDS - The
Intrusion Event Database. URL:
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids283&view=protocol (15
Aug. 2004).

[6] Whitehats, Inc. “IDS284 "SHELLCODE-X86-SETGID0"”. arachNIDS - The
Intrusion Event Database. URL:
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids284&view=protocol (15
Aug. 2004).

[7] Sourcefire Vulnerability Research Team. “Snort Signature Database” URL:
http://www.snort.org/snort-db/sid.html?id=650 (15 Aug. 2004).

[8] Sourcefire Vulnerability Research Team. “Snort Signature Database” URL:
http://www.snort.org/snort-db/sid.html?id=649 (15 Aug. 2004).

[9] OpenRBL. “Openrbl:zones:DNSBL Zones:” URL:
http://us.openrbl.org/zones.htm (16 Aug. 2004).

[10] Helton, Rich “GIAC GCIA Version 3.4 Practical Detect 2 Rich Helton”. 26
Jan. 2004.
URL: http://cert.uni-stuttgart.de/archive/intrusions/2004/01/msg00137.html (16
Aug. 2004).

[10] Holstein, Michael. “SANS GCIA Practical Assignment”. June 04, 2002. URL:
http://www.giac.org/practical/Michael_Holstein_GCIA.doc (18 Aug. 2004) 10–
14.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[11] CVE. “Common Vulnerabilties and Exposure: setuid” URL:
http://www.cve.mitre.org/cgi-bin/cvekey.cgi?keyword=setuid (18 Aug. 2004)

[12] Larrieu, Heather. “Intrusion Detection in Depth”. URL:
http://www.giac.org/practical/GCIA/Heather_Larrieu_GCIA.doc (18 Aug. 2004) 26
–31.

[13] Juillard, Loic. “[Spam relay scanning]” 16 Aug 2003. URL:
http://cert.uni-stuttgart.de/archive/intrusions/2003/08/msg00151.html (18 Aug
2004).

[14] Guilmette, Ronald F. & Mason , Justin. “Anonymous Mail Forwarding
Vulnerabilities in FormMail 1.9” 23 Jan. 2002. URL:
http://www.monkeys.com/anti-spam/formmail-advisory.pdf (18 Aug 2004).

[15] Apache Week. “Apache Week: Issue 188, 25th February 2000”. 25 Feb.
2000. URL: http://www.apacheweek.com/issues/00-02-25. (18 Aug 2004).

[16] Fyodor. “Nmap network security scanner man page”. URL:
http://www.insecure.org/nmap/data/nmap_manpage.html. (Aug 20, 2004).

[17] Gummery, Anthony. “LOGS: GIAC GCIA Version 3.3 Practical Detect(#2)”.
22 Mar. 2003.
URL: http://www.dshield.org/pipermail/intrusions/2003-March/007239.php. (Aug
20, 2004).

[18] Williams,Todd. “LOGS: GIAC GCIA Version 3.3 Practical”. 30 Dec. 2003.
URL: http://cert.uni-stuttgart.de/archive/intrusions/2003/12/msg00176.html. (Aug
20, 2004).

[19] Detach “Dealing with Firewalls”. HACKING UNIX. 7 Jan 2002. URL:
http://duho.hackaholic.org/pub/hacking_unix/hacking_unix-part4.txt. (Aug 20,
2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix

Command Line Commands Used

#Returns the alert title for every snort alert generated
grep "\[**" <snort_alert_file>

#Snort command line options that were run for every file examined
snort -b -A full -c /etc/snort/snort.conf -devk none -r
/root/sans/raw/<log_file_name> -l /root/sans/raw/d<log_file_name> -h
115.74.0.0/16

#Command to produce the top talking pairs from a pcap file
tcpdump -qnnr 8.16-20.2002 | cut -d' ' -f2,4 | awk -F. '{ print $1"."$2"."$3"."$4"
"$5"."$6"."$7"."$8}' | awk '{print $1","$3}' | sort | uniq -c | sort -nr | awk '{print
$1","$2}' > top_talking_pairs

#Command to produce the top destination ports
tcpdump -qnnr 8.16-20.2002 dst net 115.74.0.0/16 | cut -d' ' -f2,4 | awk -F. '{ print
$5"."$6"."$7"."$8" "$9}' | awk '{print $3}' | cut -d':' -f1 | sort | uniq -c | sort -nr >
top_dst_home_ports

#!/usr/bin/perl -w
##
###########
snortll perl script
this script takes in a list of dumpfiles, makes a directory for them,
determines the home network, and then runs snort against the file while
logging into the directory made previously.
All log data is written to /var/snortall.log for later examination
Written by David Manning
##
###########

open (LOG,">>/var/snortall.log") || die "Cannot open $LOG: $!";;

open (DUMPFILES,"dumpfiles") || die "Cannot open $DUMPFILES: $!";;

@dumpfiles = <dumpfiles>;

foreach $file (@dumpfiles) {
chomp ($file);
$homenet="";
`mkdir d$file`;
print LOG "Making directory for $file\n";
@hosts = `tcpdump -qtnnr $file | cut -f1,2 -d'.' | sort | uniq`;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

foreach $ip (@hosts) {
if (!(`tcpdump -nnr $file -c 1 not net $ip`)) {

$homenet = "$ip" + "/16";
last;

}
}
print LOG "$file has a network of $homenet\n";
print LOG "Running Snort for $file..";
`snort -b -A full -c /etc/snort/snort.conf -devk none -r /root/sans/script/$file -l

/root/sans/script/d$file -h $homenet/16` ;
print LOG "..Done\n";

}

Rob Perdue’s Practical from References (Not yet Mirrored)

From: rsp7@njit.edu <rsp7@njit.edu>
Reply-To: "Intrusions List (GCIA Practicals)" <intrusions@lists.sans.org>
To: intrusions@lists.sans.org
Date: Fri, 13 Aug 2004 11:56:30 -0400 (EDT)
Subject: [Intrusions] LOGS: GIAC GCIA Version 3.5 Practical Detect By Rob Perdue

Hello all,

Below is one of my detects required for the GCIA certification. Your comments,
suggestions and questions are greatly appreciated.

Thanks!

Network Detect 1: Chat MSN Message

Snort Alert:

[**] [1:540:11] CHAT MSN message [**]
[Classification: Potential Corporate Privacy Violation] [Priority: 1]
07/18-08:48:35.294488 46.5.180.250:61149 -> 64.4.12.155:1863
TCP TTL:125 TOS:0x0 ID:38562 IpLen:20 DgmLen:182 DF
AP Seq: 0x94BC4902 Ack: 0x57D2776D Win: 0xF906 TcpLen: 20

1. Source of Trace:

This log was taken from the GIAC Certification Practical logs posted at
http://isc.sans.org/logs/raw/2002.6.18.

Few items of note regarding the log file.

The log files are the result of a Snort instance running in binary
logging mode. This means that only the packets that violate the ruleset will
appear in the log.

All of the IP addresses of the protected network space have been "munged".
Additionally, the checksums have been modified to prevent clever people from
discovering the original IP addresses. You will find that certain keywords
within the packets have been replaced with "X"s. All ICMP, DNS, SMTP and Web
traffic has also been removed.

IP addresses belonging to non-local hosts are the actual IP addresses.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The above items were taken from the readme file located at
http://isc.sans.org/logs/raw/README.

Ruleset and Snort version used to generate the log are unknown.

Network Layout

What makes these logs especially challenging is that the analyst is
given no knowledge of the network from which these logs were created. However,
within the log there is enough information to be gathered to give the analyst a
good, but not exact, picture of the network at hand.

In this case Ethereal version 0.10.5a with WinPcap 3.0 will be used to
help determine the layout.

After loading the log into Ethereal and sorting by time stamp, a quick eyeball
of source and destination IP's revealed that all the traffic was inbound or
outbound to network 46.5.0.0/16. By sorting the Ethereal output by source
address it was found that 46.5.180.250 was the only source address in the log
that belonged to that network. At this point http://www.arin.net/ was consulted
to see if the 46.5.0.0/16 network had an owner. Using 46.5.180.250 in the Arin
Whois lookup produced:

OrgName: Internet Assigned Numbers Authority
OrgID: IANA
Address: 4676 Admiralty Way, Suite 330
City: Marina del Rey
StateProv: CA
PostalCode: 90292-6695
Country: US

NetRange: 46.0.0.0 - 46.255.255.255
CIDR: 46.0.0.0/8
NetName: RESERVED-46

Since this network range is reserved by IANA it would appear this would be the
protected network. To verify, other IP's from the log that did not belong to
this network address were also run through Arin and other registries. These
IP's were found to belong to various public owners.

With the protected network determined, the MAC addresses were examined to get
an idea of how many devices transmit traffic through the sensor which generated
the log. Returning to the only protected IP seen generating outbound traffic,
46.5.180.250, the mac address associated with this IP, 00:00:0c:04:b2:33, was
used as a starting point.

Using eth.src == 00:00:0c:04:b2:33 as an Ethereal display filter, it was found
that the only outbound traffic associated with this MAC address was from
46.5.180.250. While examining the packets displayed with the above filter it
appeared that not only was all outbound traffic coming from the same source mac
address but also all the traffic was destined to various IP's but a single mac
address, 00:03:e3:d9:26:c0. With these two MAC addresses identified the
display filter, eth.src != 00:00:0c:04:b2:33 and eth.src != 00:03:e3:d9:26:c0,
was used to see if there were any other MAC addresses sending traffic inbound
or outbound. There were not.

With the sole two MAC addresses found, that ended up in the log anyway, the
next step was to see what kind of devices these were.

Even though Ethereal is nice enough to give us the manufacturers associated
with these MAC addresses, they were manually referenced using the OUI list

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

found at http://standards.ieee.org/regauth/oui/oui.txt. Using this list and
Ethereal it was determined both MAC addresses belonged to Cisco devices.

00-03-E3 (hex) Cisco Systems, Inc.
0003E3 (base 16) Cisco Systems, Inc.

170 West Tasman Dr.
San Jose CA 95134
UNITED STATES

00-00-0C (hex) CISCO SYSTEMS, INC.
00000C (base 16) CISCO SYSTEMS, INC.

170 WEST TASMAN DRIVE
SAN JOSE CA 95134-1706

With the information found thus far a simple network layout can be produced:

PROTECTED NETWORK ---CISCO DEVICE 1---SNORT---CISCO DEVICE 2---OUTSIDE
46.5.0.0/16 00:00:0c:04:b2:33

00:03:e3:d9:26:c0

The weakness in this diagram is that there is not much known about the
protected network or the nature of the two Cisco devices.

To come up with a better idea of the network, I kept on digging.

Using the MAC OUI's an attempt was made to narrow down the possibilities of
what these Cisco devices are.

Poking around http://www.cisco.com an article was found pertaining to a pix
software release. In this document,
http://www.cisco.com/en/US/products/sw/secursw/ps2120/prod_release_note09186a008
01a6d21.html , there was an example "show ver" run on a pix firewall which
produced the following output(only relevant data shown):

0:ethernet0:address is 0003.e300.1552, irq 10
1:ethernet1:address is 0003.e300.1553, irq 7

The OUI's of these two pix interfaces match that of CISCO DEVICE 2
(00:03:e3:d9:26:c0). Though by no means a sure thing, with the above
information and the common practice of sandwiching firewalls with NIDS, it
would make sense that CISCO DEVICE 2 is the inside interface of a PIX Firewall.

The same search was performed for the MAC of CISCO DEVICE 1 but the results
were inconclusive. Though best guess would be that CISCO DEVICE 1 is a router.

With a good feeling about identifying the hardware involved in the network,
attention was turned to gathering more information about the protected
network. A look at the traffic inbound to the protected network, using display
filter ip.dst == 46.5.0.0/16 and sorted by protocol, shows that most of the
inbound traffic is for HTTP, FTP, and DNS. Though some of this traffic is due
to less then honorable packets, there is enough traffic to imply the presence
of these services inside the protected network. The nature of this traffic
suggests that the sensor is placed at an entry/exit for the outer point of a
DMZ.

Looking then at the outbound traffic from the 46.5.0.0/16 network using display
filter ip.src == 46.5.0.0/16, it is seen that ,as mentioned earlier, all
outbound traffic from the protected network is from 46.5.180.250. Looking
through this traffic there were outbound http connections, file sharing
connections, some outbound IM traffic, and few ssh connections. Most of the
traffic was outbound http so I focused on that for a clue. Outbound requests to
port 80 were focused on using a display filter of ip.src == 46.5.180.250 and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

tcp.dstport == 80. In these packets there are various GET requests to various
web servers. In the payload of these packets it can be seen that there are
various clients making these requests. Below is an export from ethereal
highlighting these findings. (Export has been edited to show only pertinent
information)

Snip 1

Internet Protocol, Src Addr: 46.5.180.250, Dst Addr: 61.218.76.250
Transmission Control Protocol, Src Port: 63085, Dst Port: http (80), Seq:
512801141, Ack: 1905796758, Len: 425
Request Method: GET

Accept: */*\r\n
Referer: http://www.corega.com.tw/lan.htm\r\n
Accept-Language: en-us,zh-hk;q=0.7,zh-tw;q=0.3\r\n
Accept-Encoding: gzip, deflate\r\n
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR

1.0.3705)\r\n
Host: www.corega.com.tw\r\n
Connection: Keep-Alive\r\n

Snip 2

Internet Protocol, Src Addr: 46.5.180.250, Dst Addr: 209.225.0.6
Transmission Control Protocol, Src Port: 61962, Dst Port: http (80), Seq:
723942382, Ack: 3571025822, Len: 246
Request Method: GET

Accept: */*\r\n
Accept-Language: en-us\r\n
Accept-Encoding: gzip, deflate\r\n
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)\r\n
Host: servedby.advertising.com\r\n
Connection: Keep-Alive\r\n

Looking at these packets shows a GET request made from a Windows 2k machine
running IE 6 and a separate GET request being made from a Windows 98 box
running IE 5.5.

These findings would support that IP 46.5.180.250 is possibly a proxy server
for allowing outbound traffic for internal clients on the protected network.

With this additional information the network seen in the log most likely
resembles the following:

Internal Protected Network (46.5.0.0/?)
|
|

Few Routers Thrown In There
|
|

-------------- Proxy Server (46.5.180.250)
| |
| Few More Routers (due to TTL values seen in outbound packets)
| |
| |
DMZ Router 1 (00:00:0c:04:b2:33)
| |
| Snort---
| |
-------------- Pix Firewall (00:03:e3:d9:26:c0)

|
|

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

More Stuff (Possibly a NIDS and border router)
|
|

Internet

2. Detect Was Generated By:

The raw log used in this analysis was generated by and unknown version of Snort
using an unknown ruleset and configuration file.

The detects used in my analysis were generated by:
-*> Snort! <*-
Version 2.1.3-ODBC-MySQL-FlexRESP-WIN32 (Build 27)
By Martin Roesch (roesch@sourcefire.com , www.snort.org)
1.7-WIN32 Port By Michael Davis (mike@datanerds.net , www.datanerds.net/~mike)
1.8 - 2.1 WIN32 Port By Chris Reid (chris.reid@codecraftconsultants.com)

The version of Snort utilized in my analysis had all rules enabled and the
stream4 preprocessor disabled.

Fist step was to run the log through Snort using the following command:
snort -c c:\snort\etc\snort.conf -l c:\snort\log -k none -r c:\snort\2002.6.18

Options-
-c - was used to specify a config file
-l - was used to let snort know where to log the goods
-k none - was used to ignore the munged checksums
-r was used to read in the log file

There were plenty of events to go around but I wanted to look for something
that I had not seen discussed yet. I decided to go with the following
signature:

[**] [1:540:11] CHAT MSN message [**]
[Classification: Potential Corporate Privacy Violation] [Priority: 1]
07/18-08:48:35.294488 46.5.180.250:61149 -> 64.4.12.155:1863
TCP TTL:125 TOS:0x0 ID:38562 IpLen:20 DgmLen:182 DF
AP Seq: 0x94BC4902 Ack: 0x57D2776D Win: 0xF906 TcpLen: 20

Though perhaps not as scary as some other signatures, this traffic shows a
potentially large vulnerability in the protected network. If the source of
this traffic is not addressed it is very possible that the analyst will be
seeing a lot more of the scary signatures then he or she cares to.

The rule that caught this traffic is:

alert tcp $HOME_NET any <> $EXTERNAL_NET 1863 (msg:"CHAT MSN message";
flow:established; content:"MSG "; depth:4; content:"Content-Type|3A|"; nocase;
content:"text/plain"; distance:1; classtype:policy-violation; sid:540; rev:11;)

For this rule the stimulus was traffic outbound to port 1863, plain text
content, and "MSG" included in the content. This stimulus fired rule "Chat MSN
message."

3. Probability the source address was spoofed:

The source address in these signatures is not likely to be spoofed. The
signature is firing on a series of instant messages being sent using the MSN
messenger, if the addresses were spoofed there wouldn't be much of a
conversation, the attacker would never see the returned messages.

4. Description of Attack:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The MSN traffic detected by Snort is an attack, this traffic is a violation of
policy which may lead to a future attack.

In this case MSN Messenger was downloaded to a client inside the protected
network, installed, configured and activated. Though I cannot say for sure,
the fact that the chat rules were enabled in Snort leads me to believe that the
security personnel responsible for the network are aware of the threat that
Instant Messaging can pose. It is unknown if there is a policy in place for
this type of activity, but there appears to be an interest in monitoring it.

5. Attack Mechanism:

Instant messaging is one of the most popular forms of electronic
communication. It's nature is much like that of email, the client has an
address list, is able to send and receive files, and receive rich content such
as hyperlinks. This kind of activity opens another avenue for a possible
attack to a protected network.

A few of the biggest threats that IM'ing presents to a network are as follows:

Information leaks - IM text is usually sent out in clear text. If there is an
attacker listening they can read the entire conversation. This could be
anything from how someone's dinner was the night before to sensitive company
information.

Opening for a worm - According to an article seen on esecurityplanet at
http://www.esecurityplanet.com/trends/article.php/3373251 , published on June
24th, 2004, attacks focused on IM software are on the rise.

"Actually, between 2002 and 2003 there was a 400 percent increase in IM
malware, according to Symantec's figures. Since 2002, 25 instant messaging
worms have been released into the wild, with about 20 of them coming out last
year alone. At least five or six have hit the wild so far this year, reports
Chien."

Open vulnerabilities - Just like any other piece of software IM software can
open vulnerabilities on the machine it is running on.

An example of a vulnerability that can be introduced to a network through the
use of this software can seen here:
http://securityresponse.symantec.com/avcenter/security/Content/1943.html . This
advisory discusses a buffer overflow condition in the MSN Messaging software
which could allow remote code execution. Though this advisory is from 2002, it
highlights the potential avenues for attack that the unregulated use of this
type of software can open.

A more recent advisory was released in 2004 and can be read at
http://securityresponse.symantec.com/avcenter/security/Content/9828.html . This
advisory discusses a possible information leak in MSN Messaging software.

I believe that attackers are always looking for the path of least resistance.
With much of the security focus and money these days turned to scanning emails
for viruses and getting OS's patched products such as IM software may slip
underneath the radar. If this software is being used on a network and not
controlled many levels of security could be bypassed with the only protection
being that which may be deployed on client PC's. Attackers are aware of this
and I expect to see a continued rise in attacks focusing on IM software.

6. Correlations:

This is a new detect. I have not been able to find a previous paper discussing

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

this particular signature.

Because this is signature is alerting on a policy violation there is not a CVE
associated with this alert.

A good article on the threat IM software posses can be read at:
http://www.esecurityplanet.com/trends/article.php/3373251

And some vulnerabilities concerning MSN Messenger can be read at:
http://securityresponse.symantec.com/avcenter/security/Content/1943.html
http://securityresponse.symantec.com/avcenter/security/Content/9828.html

7. Evidence of Active Targeting:

There is no evidence of active targeting. The traffic appears to be normal
conversation between two MSN clients.

8. Severity:

Severity is calculated using the following formula:
severity = (criticality + lethality) - (system countermeasures + network
countermeasures)

Each category is given a value between 1 (lowest) and 5 (highest).

Criticality = 3:

I cannot say for sure what kind of system is running the MSN Messenger
software, most likely this is a Windows Workstation but it could just as well
be a Windows Server. Since I cannot determine what kind of box is running this
software I will take a middle of the road stance and assign a value of 3.

Lethality = 3

This traffic is not that of an attack. However, if this box were to be
attacked by a worm it is possible for the entire network to be taken down.
Since there have only been 5 or 6 worms targeting IM software seen in the wild
last year I will only give this a value of 3. I would expect this value to
rise as attacks against this software increase.

System Countermeasures = 1

There is no way to determine from the log what, if any, antivirus and firewall
software is running on the PC. I will assume the worst case that there are no
countermeasures running on the box and assign a value of 1.

Network Countermeasures = 1

This traffic is being allowed over the protected network so there are no
network countermeasures in place. Snort is only being used to detect this
traffic, which has to count for something so I will give this a value of 1.

Using the above formula this gives a severity rating of 4.

Severity = 4

9. Defensive Recommendations:

The first thing that should be done to combat the use of IM software is to
develop a policy and make sure that each user of the network is aware of this
policy. This policy will vary from company to company, but it is from these
policies that the rest of the defensive actions will be determined.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In most cases I would guess that if the company is concerned enough about IM
software to develop a policy for it, this policy will be a no tolerance
policy. In this case I would make the following recommendations.

• Block known IM ports on company firewalls, especially those between the
protected network and the outside world.

• Restrict user rights on workstations to prevent unauthorized
installation of software.

• Leverage existing IDS devices to detect this traffic by enabling chat
signatures. If there is no IDS device, then one should be purchased.

• Savvy users could use http tunneling software, such as httport, to
bypass firewall rules and avoid chat detection. Analysts should be aware of
this potential violation and look for tunneling traffic during analysis of
daily IDS logs.

• Ensure all company computers are running antivirus software with up to
date definitions.

• Make sure that all current and future employees are aware of this
policy.

10. Multiple Choice Question:

It is decided by your company that the existing Snort NIDS will be used
to detect the use of IM software. Currently, the NIDS are not configured to do
so. What step(s) must be taken to enable the detection of IM traffic?

A) Disable the Stream4 Preproccesor in the snort.conf file.
B) Enable the p2p.rules file in the snort.conf file.
C) Enable the chat.rules file and enable the Stream4 Preproccesor in the
snort.conf file.
D) Enable the chat.rules file in the snort.conf file.

Correct Answer: D

